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Abstract 

High levels of milk production has been and will continue to be a priority for the global 

dairy industry. Non-steroidal antiinflammatory drugs administered to dairy cattle following 

calving can be an effective way of programming higher milk production for the entirety of 

lactation. When dairy cattle on a commercial dairy received either sodium salicylate or meloxicam 

following calving, they responded with increased whole-lactation milk production, which was 

driven by higher daily milk yields following the seventh week of lactation. When dairy cattle at a 

research dairy received sodium salicylate following calving, they did not show the same increase 

in milk production but feed intake, feeding behavior, and blood parameters were altered for an 

extended period of time. The response to treatment was largely dependent on the parity of the 

animal. In an effort to determine whether re-programming of the rumen environment could explain 

these findings, sodium salicylate was administered to batch cultures of rumen fluid, and as a result, 

fermentation was inhibited. When substrate was fermented in rumen fluid from heifers who had 

been dosed with sodium salicylate, fermentation was inhibited for an extended period of time 

following sodium salicylate administration. Beyond the use of compounds such as these, other 

factors can program lactation for higher milk production, including the gender of the calf. Analysis 

of lactation records from the US has indicated that cows produce more milk following the birth of 

a heifer calf compared to a bull. With further research, findings such as these can provide farmers 

with more tools for improving productivity and lead to the sustainability of the dairy industry as a 

whole. 
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Chapter 1 - Review of the literature: The relationship between 

increased milk production and sustainability of the dairy industry 

A. J. Carpenter 

 

ABSTRACT 

The human race faces the challenge of feeding a growing population while maintaining the limited 

resources that sustain them. As dairy producers push progressively for higher levels of production, 

it comes at a cost of resources. This review will address whether progressively increasing levels 

of milk production harms, enhances, or has no effect on the sustainability of dairy production on 

a global scale. The three particular facets of sustainability analyzed are satisfaction of human food 

needs, enhancement of environmental quality, and sustainment of economic viability of farm 

operations. Even now, with the current population at approximately 7 billion and not the 9 billion 

that is projected by 2050, a large proportion of the world’s population is at some level hungry, 

undernourished, or both. With its high nutritional quality, milk and products made from milk are 

important players in the prevention or treatment of malnutrition. Increasing the output of milk 

produced can help to sustain the nutritional needs of the world. Despite this, the dairy industry has 

come under fire for its contributions to climate change, particularly due to production of high levels 

of enteric gasses such as methane. It is true that on a basis of total emissions, dairy cattle are 

producing more greenhouse gasses than they were at the beginning of the twentieth century; 

however, as milk production increases within a set period of time, the cost of maintenance per unit 

of milk produced is decreased. This concept is known as “the dilution of maintenance,” and several 

authors have demonstrated that as milk production per cow increases, the environmental burden 

per unit of milk produced is mitigated, contributing to the overall sustainability of the dairy 
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industry. Finally, increased milk production in general also contributes to the economic viability 

of farm operations, particularly in economic models where producers are paid on a volume basis. 

However, as the economics of milk pricing is highly complex and varies widely worldwide, some 

economies are more protected than others from market forces. Evidence from this review indicates 

that in general, increasing milk production will have an overall positive impact on the sustainability 

of the dairy industry. There are countless management strategies for increasing milk production 

per cow, including improved genetics and use of recombinant bovine somatotropin, monensin, 

sexed semen, and non-steroidal antiinflammatory drugs. 

 

 INTRODUCTION 

The world’s population is projected to exceed 9 billion by 2050, and with this growth, there 

is an increased demand for food, including dairy products. In 2010, per capita consumption of 

dairy products excluding butter was 89.1 kg. In 2050, this is estimated to increase to 116.55 kg per 

capita. This translates to a projected demand for dairy products in 2050 of 1093.1 million metric 

tonnes, in comparison to the 606.9 million metric tonnes consumed in 2010 (Knapp and Cady, 

2015). This increased demand becomes even more critical when it is taken into consideration that 

globally, a large proportion of the current population does not achieve the recommended daily 

intake for dairy products, particularly in Africa and Asia; milk consumption is low (<30 

kg/capita/year) in Vietnam, Senegal, and most of Central Africa as well as East and Southeast Asia 

(Gerosa and Skoet, 2012). The world’s food producers are therefore facing the challenge of feeding 

the poorest of our population and meeting the increased demand for food production in an 

environmentally and socially sustainable way (Godfray et al., 2010). At the same time, the human 

race is faced with the reality of limited natural resources such as land, energy, and water. While 
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intensification of animal agriculture has been touted by its advocates as a way to maximize 

production of animal products with high efficiency, those who oppose intensification call its 

sustainability into question.  

The term “sustainability” means many things to many different people. For the purpose of 

this review, sustainability will be defined by the current United States legal definition (US Code 

Title 7, Section 3103), which is “an integrated system of plant and animal production practices 

having a site-specific application that will over the long-term (A) satisfy human food and fiber 

needs; (B) enhance environmental quality and the natural resource base upon which the agriculture 

economy depends; (C) make the most efficient use of nonrenewable resources and on-farm 

resources and integrate, where appropriate, natural biological cycles and controls; (D) sustain the 

economic viability of farm operations; and (E) enhance the quality of life for farmers and society 

as a whole.” The 3 pillars of sustainability—environment, economic, and social—model this 

definition (Figure 1.1; von Keyserlingk et al., 2013). 

This definition will serve as the outline for this review, dividing the paper into the following 

components: (1) satisfaction of human food needs; (2) enhancement of environmental quality and 

natural resources (including efficient use of nonrenewable resources); and (3) sustaining economic 

viability of farm operations. Finally, the review will conclude with examples of current 

technologies and strategies used commonly on dairy farms in the US and how they fit with the 

picture of sustainability described herein. 

Several excellent reviews on the topic of the dairy industry and sustainability have been 

published, and readers are encouraged to refer to these publications, particularly Capper and 

Bauman (2013), Von Keyserlingk et al. (2013), and Knapp et al. (2014). This review differs from 

those published previously in that the focus is solely on the level of milk production and will take 
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a global view of the dairy industry worldwide rather than focusing on a specific country or region. 

While increased milk production is a hallmark characteristic of the US dairy industry, this still 

provides a unique perspective from previously published reviews because of its focus on this 

characteristic. It is often portrayed that the current push for extremely high per-cow levels of milk 

production in the US needs to be balanced with a sustainable system. But are these two goals 

mutually exclusive or at odds? Or is the question more complex than that?  

It should be noted in the following discussion that the focus of this review is on cow’s milk 

rather than milk from other mammals. It is true that other species may be more suited for different 

economic, social, and environmental situations worldwide. There are differences across 

domesticated mammals that have been utilized for milk production in the composition of their 

milk; however, most of the following discussion can be broadly applied to milk procured from 

other species. 

 

SATISFACTION OF HUMAN FOOD NEEDS 

 Poverty and the needs of a growing world population 

Currently, an estimated 795 million people worldwide—approximately 1 in every 9 

people—do not have enough food to lead a healthy lifestyle (FAO, 2015), and the number of 

people experiencing micronutrient inadequacies is even greater. Fortunately, the increase in food 

production experienced in the past several decades has outpaced the growing population, resulting 

in overall decreased numbers of hungry people; however, the need to feed the remaining hungry 

still remains (Godfray et al., 2010). 

In 1996, food security was defined at the World Food Summit as “when all people at all 

times have access to sufficient, safe, nutritious food to maintain a healthy and active life,” and it 
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encompasses both physical and economic access to food. The 3 pillars of food security are 

availability (adequate quantity of food on a consistent basis), access (adequate resources to obtain 

food), and use (nutrition and food safety knowledge, including sanitation; see 

http://www.who.int/trade/glossary/story028/en/). Smith et al. (2013) argued that livestock such as 

milk producing animals contribute to food security of impoverished people in developed countries 

because of their high quality nutrition; however, livestock provide food security mostly indirectly 

because many poor families will sell their animal source products rather than consume them, 

providing income to spend on farm inputs and food purchases. 

At the turn of the century, leaders at the United Nations developed Millennium 

Development Goals as an action plan against world poverty. The first of these 8 goals was the 

eradication of extreme poverty and hunger (see http://www.unmillenniumproject.org/goals/). This 

goal included 3 sub-targets, including “halve, between 1990 and 2015, the proportion of people 

who suffer from hunger.” The indicators for this goal were the prevalence of children under 5 who 

are underweight and the proportion of people in the population who consume below the minimum 

energy requirement. In 2015, these goals have expired, and this goal has been almost met on a 

global level, with 72 of the 129 countries being monitored having reached that secondary target 

(FAO, 2015) 

The Sustainable Development Goals (SDG) are set to pick up after the expiration of the 

Millennium Development Goals (see http://www.un.org/sustainabledevelopment/sustainable-

development-goals/). This includes as its second of 17 goals to “end hunger, achieve food security 

and improved nutrition and promote sustainable agriculture.” Included in the sub-targets for this 

goal is to “by 2030, end hunger and ensure access by all people, in particular the poor and people 

in vulnerable situations, including infants, to safe, nutritious and sufficient food all year round,” 
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and to “by 2030, end all forms of malnutrition, including achieving, by 2025, the internationally 

agreed targets on stunting and wasting in children under 5 years of age, and address the nutritional 

needs of adolescent girls, pregnant and lactating women and older persons.” Clearly, the objectives 

of sustainability and adequate nutrition go hand in hand. 

A common thread among low income populations worldwide is a lower intake of animal 

protein. Van Vliet et al. (2015) summarized some numbers that reflect this issues. Low income 

populations have lower protein intake (63 g/d on average) than high-middle (83 g/d) and high 

income (101 g/d) populations. Low income populations also have lower energy intake (2393 

kcal/d) than high-middle (2907 kcal/d) and high income (3296 kcal/d) populations. As a percent 

of their total protein intake, low income populations consume about 21% animal protein, 

significantly lower than high-middle and high income populations, which on average consume 

46% and 58% of their protein from animal sources. 

A lack of adequate nutrition often results in a sort of positive feedback loop for 

disadvantaged groups. A link between adequate nutrition and cognitive function has been shown 

repeatedly (Black, 2003). If access to high quality nutrition and/or nutritional education are 

limiting, cognitive and physical function can be impaired, making it difficult for these groups to 

maintain employment and rise out of poverty. Micronutrients such as iodine, iron, zinc, and 

vitamin B12 have been implicated in this link. Milk and dairy products are particularly good sources 

of vitamin B12. This will be discussed in further detail below.  

Dairy products can either be produced in the area where they are consumed, or they can be 

imported from another region or country. More discussion of this will be addressed in the economic 

viability section below. For the moment, our discussion will focus on how higher production of 

milk and subsequent manufactured dairy products meet the goal of sustainability to satisfy human 
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food and nutritional needs. The evidence detailed below on the health effects of dairy products 

would seem to indicate that in general, more milk production is beneficial for global human 

nutrition and health. The economic and environmental challenges to this goal will be expounded 

on in their own sections. 

 

 Dairy products as a source of high-quality nutrition 

Animal source foods are important sources of high quality nutrition. In fact, it has been 

postulated that the consumption of protein and energy from animal sources was an important factor 

in the evolutionary development of Homo sapiens. Milton (2003) concluded that “without routine 

access to [animal source foods], it is highly unlikely that evolving humans could have achieved 

their unusually large and complex brain while simultaneously continuing their evolutionary 

trajectory as large, active, and highly social primates.” It is estimated that in developing countries, 

the average person only consumes 25% of the daily recommended intake of dairy products 

(Blaskó, 2011). It is common knowledge that milk is a good source of calcium. This is particularly 

critical for the nutritional requirements of the population targeted in the SDG: children, adolescent 

girls, pregnant and lactating women, and the elderly. However, there are several other positive 

nutritional aspects of milk that are often overlooked. In the following section, these will be broken 

down into macronutrients, specifically energy and protein, and micronutrients, including several 

minerals and vitamins. 

One cup of whole milk contains approximately 149 kilocalories (USDA National Nutrient 

Database for Standard Release 27, Basic Report 01077). In undernourished populations, the lactose 

and milk fat in dairy products can be a valuable source of energy (excluding, of course, those who 

suffer from intolerance to lactose). The World Health Organization reported that in 2014, the 
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global wasting rate was 7.5%, and 50 million children under the age of 5 experienced wasting 

(Levels and trends in child malnutrition, 2015). While childhood stunting is decreasing worldwide, 

stunting prevalence was still 23.8% in the same year. Conversely, in developing countries, the 

prevalence of obesity is reaching epidemic proportions, and the caloric content of milk is a concern 

for many people who are concerned about being overweight. The relationship between dairy 

products and weight management will be discussed in the following section. 

Milk fat contains both saturated and unsaturated fatty acids, including conjugated linoleic 

acids (CLA). The fatty acid composition of milk is largely influenced by the diet that the cow 

receives and its interactions with rumen microorganisms during the process of biohydrogenation, 

wherein the rumen bacteria utilize unsaturated fatty acids as “sinks” for hydrogen resulting in the 

formation of saturated fats (Jenkins et al., 2008).  The CLA in milk are a result of this process in 

the rumen. Health benefits of CLA include favorable effects on plasma lipid status and potentially 

even anticarcinogenic effects (Haug et al., 2007). The most abundant unsaturated fatty acid in milk 

is oleic acid, which is considered to have several beneficial health effects, including membrane 

stabilization and the prevention of coronary heart disease (Haug et al., 2007). Although saturated 

fats have been implicated in cardiovascular disease, the link between consumption of saturated 

fats from milk and cardiovascular disease has been weak (Siri-Tarino et al., 2010). 

Milk products are an excellent source of a balanced amino acid profile, including branched-

chain amino acids which are required for protein synthesis and can be glucogenic (Harper et al., 

1984). Van Vliet et al. (2015) illustrated this in their review when they summarized the amino acid 

content of a variety of plant and animal sources (Table 1.1). It is important, particularly in non-

ruminants, to consider both the quantity and the quality of protein supplied in the diet. If high 

levels of protein are consumed, but this protein is deficient in a critical amino acid, the remainder 
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of the protein source cannot be maximally utilized, and that amino acid is considered to be limiting. 

The two most common limiting amino acids are lysine and methionine, and occasionally leucine. 

As illustrated in Table 1.1, many plant foods that are good sources of protein are low in leucine 

content, and those that are sufficient in lysine content tend to be low in methionine (van Vliet et 

al., 2015). Thus, to achieve a balanced amino acid intake with only plant proteins, it would be 

necessary to incorporate a variety of plant source foods into the diet as opposed to a single animal 

source protein such as milk. This is easily achieved in first world countries, but in developing 

nations, this can still remain a challenge due to limited economic resource and food availability. 

In their 2004 report estimating the precedence of low birth weight infants globally, the 

World Health Organization states, “Children can be ensured a healthy start in life if women start 

pregnancy healthy and well nourished, and go through pregnancy and childbirth safely (WHO, 

2004).” Protein is a critical component of development in young children. Early protein intake is 

critical for very low birth weight infants for proper growth and development. The World Health 

Organization estimated that approximately 15% of all births worldwide (more than 20 million 

births per year) are low birth weight, often as a result of poor health care and nutrition, and this 

estimate rises as high as 18% in Asia (WHO, 2004). In a study of very low birth weight infants 

born at Helsinki University Central Hospital (Finland) from January 1978-December 1985, 

adequate protein intake during the first 3 weeks after birth was associated with lean body mass, 

and a tendency for an association between protein intake during this time and height and body 

mass index was also reported (Matinolli et al., 2015). Conversely, there was no association found 

between early life protein intake and body fat or waist circumference. For infants weighing < 1 kg, 

the current recommendation for protein intake is 4.0-4.4 g/kg daily, and for those weighing 

between 1.0-1.8 kg, the daily recommendation is 3.5-4.0 g/kg. This must often be supplemented 
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in addition to breast milk, as human milk on average supplies < 2 g/kg daily (Matinolli et al., 

2015). Formula ingredients used for supplementation almost without exception include milk 

components. Even in healthy full-term babies and toddlers, the source of protein after weaning can 

be critical for growth and development. Two case studies were reported in Pediatrics in 2001 where 

toddlers were given milk alternatives after weaning and developed conditions seen more 

commonly in developing nations—kwashiorkor and rickets (Carvalho et al., 2001). Vegetarian 

diets can have disastrous effects on growing children. Because of their small body size, they have 

limited gut volume, and the low energy density combined with the bulkiness of plant-based foods 

can limit their energy intake and subsequent growth if not properly balanced (Sanders and Reddy, 

1994). 

In addition to these macronutrients, milk and dairy products are good sources of several 

minerals. The most well-known is calcium, but phosphorus, magnesium, zinc, and selenium are 

also found in high levels in milk. Calcium is probably most recognizable for being critical for the 

development and maintenance of bones and teeth; however, it has a plethora of other functions, as 

it plays a role in blood pressure, muscle contraction, and blood clotting, and it is a cofactor of 

enzymatic systems (Gaucheron, 2011). Approximately 70% of calcium in the human diet is from 

dairy product; children and elderly adults have the highest requirements for calcium (1200 mg/d), 

and the recommended intake for pregnant and lactating women is also higher than for other adults 

(1000 mg/d; Gaucheron, 2011). Calcium and vitamin D are critical to the prevention of rickets, 

and low intake of milk has been implicated as a partial cause for the resurgence of rickets in 

Kenyan children (Bwibo and Neumann, 2003). Another causative factor for rickets is phytic acid, 

which interferes with calcium absorption. High intake of unrefined cereal grains contributes phytic 

acid to the diet, so diets high in these grains and low in dairy products, such as those in rural Asian 
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populations, are particularly susceptible to the development of rickets (Sanders and Reddy, 1994). 

Additionally, calcium plays an important role in energy partitioning and weight regulation in 

human adults. This will be discussed in further detail in the following section. It is important to 

note that the level of calcium in dairy products is effected by processing. Fresh milk and cheeses 

provide the most calcium, while hard cheeses provide the lowest amount of calcium (Gaucheron, 

2011). 

Iodine is essential due to its critical role as a component of thyroid hormones (Haug et al., 

2007) and prenatal development (Black, 2003). Unfortunately, although milk can be a good source 

of iodine, there is large seasonal variation in the amount of iodine that is found in milk (Haug et 

al., 2007). Some regions have iodine-deficient soil, and in those places, milk is not likely to be a 

good source of iodine (Black, 2003). Global efforts in improving iodine status have focused on the 

supplementation of iodine through ocean products (Neumann et al., 2002). However, considering 

the prevalence of iodine deficiency and its impact on development and cognition, the iodine 

consumed with dairy products should not be discounted. It was estimated in 2003 that 30% of the 

world’s population lives in iodine-deficient areas, and iodine deficiency has been called the most 

preventable cause of mental impairment in the world (Black, 2003). 

Phosphorus has important roles in bone and teeth growth and maintenance, metabolism, 

and blood pH; and it is an important component of biological molecules such as DNA, RNA, ATP, 

and phospholipids (Gaucheron, 2011). Deficiency of phosphorus has been implicated in the 

etiology of rickets (Bwibo and Neumann, 2003), as well as kwashiorkor (Carvalho et al., 2001) 

and other disorders. Milk is an excellent source of phosphorus, with a concentration of total 

phosphorus of approximately 950 mg/L (Gaucheron, 2011). Phosphorus exists in both organic and 

inorganic forms, both of which are present in milk. 
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Magnesium is a component of more than 300 reactions in the body (Haug et al., 2007). It 

is an enzyme cofactor for many reactions and is involved with DNA transcription, protein 

synthesis, neuromuscular transmission, and phosphorylation (Gaucheron, 2011). Deficiency of 

dietary magnesium is associated with greater risk of cardiovascular disease (Del Gobbo et al., 

2013), decreased insulin sensitivity (Nadler et al., 1993), and the development of atherosclerosis 

(Maier, 2003). The concentration of magnesium in milk is fairly low relative to other minerals 

(approximately 120 mg/L), but dairy products are still considered to be important sources of 

magnesium, considering that 600 mL of milk provides about 16% of the recommended daily 

allowance for this mineral (Gaucheron, 2011). 

Zinc is involved with gene expression, cell division and differentiation, and DNA and RNA 

synthesis, and it is critical on a biochemical level for the maternal, infant, and child survival 

(Neumann et al., 2002). Because of their higher requirements, these groups are particularly 

susceptible to zinc deficiencies, and even mild deficiencies can cause depressed growth in children 

and may have negative effects on activity and cognition in children (Neumann et al., 2002). Zinc 

bioavailability is decreased by the phytate content of cereal grains, thus negating the reasonable 

levels of zinc in these foods (Neumann et al., 2002). Zinc deficiency is often a result of low intake 

of animal source foods, and 600 mL of milk provides approximately 20% of the recommended 

daily intake of zinc (Gaucheron, 2011).  

Selenium plays an important antioxidant role in the body, and milk can be particularly good 

source of selenium (Gaucheron, 2011). Selenium plays a role in DNA synthesis and repair, and it 

has some anti-carcinogenic properties (Haug et al., 2007). Some evidence indicates that there is a 

negative association between selenium intake and cardiac disease, although this relationship is still 

weakly defined (Flores-Mateo et al., 2006). Importantly, the health effects of selenium 
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supplementation show a somewhat quadratic effect, wherein excessively high and excessively low 

selenium status can both have adverse consequences (Rayman, 2012). The contribution of dairy 

product consumption to selenium intake varies across countries, ranging from 8-39% of selenium 

in the diet (Gaucheron, 2011). 

Animal source foods from ruminant animals such as dairy products are an important source 

of vitamin B12. Normal blood formation as well as neurological development and function is 

dependent on adequate B12 (Neumann et al., 2002). This vitamin is produced by bacterial synthesis, 

and it is not found in plant foods with the exception of algae. For nursing infants, intake of B12 

depends on the B12 intake of the mother, and mothers who consume low amounts of animal protein 

are more likely to become deficient in this vitamin (Allen, 1994). Dutch children receiving a 

macrobiotic diet based on whole-grain cereals, legumes, and vegetables with limited animal 

protein consumption were shown to be prone to B12 deficiency (Dagnelie and van Staveren, 1994). 

A common assumption in the past has been that small amounts of animal source foods will provide 

adequate amounts of B12; however, high prevalence of B12 deficiency has been demonstrated in 

several less developed countries, including Kenya, India, Guatemala, and Mexico (Murphy and 

Allen, 2003). Vitamin B12 has been implicated in the link between cognition and nutrition 

(Tangney et al., 2005). For example, the Dutch children receiving macrobiotic diets had delayed 

motor and language development compared to matched omnivorous children (Dagnelie and van 

Staveren, 1994). Among the oldest participants in a prospective study of community-dwelling 

older persons, high intake of vitamin B12 was associated with slower cognitive decline (Morris et 

al., 2005). 

The fat-soluble vitamin A is an important antioxidant, and it plays an important role in skin 

health, reproduction, immunity, growth, and gene regulation (Gaucheron, 2011). Deficiency of 
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this vitamin is associated with rickets (Carvalho et al., 2001). Perhaps the role that vitamin A is 

most well-known for, however, is vision, particularly in developing countries. While green leafy 

vegetables are also good sources of vitamin A, increasing their consumption is not always 

correlated with higher levels of serum retinol because the conversion of β-carotene to retinol is not 

as efficient as previously believed (Bwibo and Neumann, 2003). Therefore, the best solution for 

preventing vitamin A deficiency is increasing dietary diversification and quality (Bwibo and 

Neumann, 2003). Whole cow’s milk contains approximately 126 IU of vitamin A per serving 

(Gaucheron, 2011). The characteristic “golden” color of milk from the Guernsey breed is due to 

its high concentration of β-carotene (Baumann et al., 1934). 

Dairy products are an important source of another fat-soluble vitamin, vitamin D. Calcium 

transport across the duodenum is dependent on vitamin D (Caroli et al., 2011). Therefore, the 

positive effects of calcium are impossible without adequate vitamin D consumption. Whole milk 

is fortified with added vitamin D in some countries is an effort to meet the requirements; however, 

whole milk does naturally contain some vitamin D. Values for vitamin D naturally present in milk 

range from 0.3-1.0 μg/kg, while average fortified values are 7.05 and 9.9 μg/kg for fortified milk 

in the US and Canada, respectively (Schmid and Walther, 2013). 

 

 Nutritional role of dairy products in developed countries 

Poor nutrition is characterized not by the failure to receive enough nutrients but rather the 

failure to receive the right balance of nutrients to meet but not overly exceed requirements. Dairy 

products have come under scrutiny by some groups in the US and other developed countries. High 

fat and high sugar dairy products such as ice cream are incriminated in the obesity epidemic that 

the US currently faces. 
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Counterintuitive to conventional opinion, epidemiological evidence indicates that 

consumption of the recommended minimum of 3 servings a day of dairy products has a positive 

effect on weight management in obese individuals, despite their fat content and relatively high 

caloric value. Calcium is a regulator of lipid metabolism in adipocytes, and high-calcium diets can 

attenuate weight gain through these mechanisms, and this effect is particularly pronounced when 

calcium intake is largely derived from dairy products (Zemel, 2004). This is most likely due to the 

bioactive properties of some compounds found in dairy products. 

There has been some disagreement in the literature on the effect of dairy product 

consumption on health and chronic disease. In a recent meta-analysis, Chen et al. (2015) reported 

that consumption of dairy products is negatively associated with metabolic syndrome in a dose-

response manner. These authors stated that “our novel findings…in combination with recent 

evidence on [Type 2 diabetes], [cardiovascular disease], and specific cancers, provide further 

supports for public health recommendations to increase dairy consumption to prevent series of 

chronic diseases.” Historically, dietary recommendations have been to lower fat consumption, 

resulting in the endorsement of low-fat dairy products by nutritionists; however, a 2012 review of 

the literature comparing high and low-fat dairy products found little evidence that high fat dairy 

consumption is linked to increased cardiovascular disease risk (Huth and Park, 2012). Indeed, 

observational evidence by other authors indicates that within normal dietary patterns, high-dairy 

product consumption may have an inverse relationship with obesity (Kratz et al., 2013). 

The protein found in milk products is popular among athletes. Chocolate milk is commonly 

recommended as a recovery drink for athletes after a workout, and with good reason. Skeletal 

muscle responds differently to animal-based protein compared to plant-based. This has been 

postulated to be due to a number of reasons, as discussed by van Vliet et al. (2015). First, sources 
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of animal protein such as milk have a more balanced amino acid profile than plant proteins, and 

contain higher levels of the essential amino acids. In particular, animal proteins contain high levels 

of leucine, which is the most potent amino acid for stimulating muscle protein synthesis. In 

addition to their function when incorporated into body protein, essential amino acids can act as 

signaling molecules for muscle protein synthesis. Secondly, the absorption kinetics of amino acids 

from animal source foods are generally more efficient than those from plants. It has been estimated 

that 50-70% of the amino acids from beef or dairy products are absorbed within 5-6 h of 

consumption. Milk and isolated milk proteins (whey and casein) have Protein Digestibility 

Corrected Amino Acid Scores (PDCAAS) of 1.00, as opposed to soy (the plant with” the highest 

PDCAAS), which has a score of 0.91, although isolated soy protein also has a score of 1.00. The 

PDCAAS is used to estimate the ability of a protein to support skeletal muscle anabolism. 

 

ENHANCEMENT OF ENVIRONMENTAL QUALITY AND NATURAL 

RESOURCES 

In 2006, the FAO released a publication titled “Livestock’s Long Shadow,” which 

highlighted—and according to some, exaggerated—the detrimental effects of livestock production 

on the environment (Steinfeld et al., 2006). This report concluded that livestock are responsible 

for over 8% of human water use, contribute 18% of greenhouse gas (GHG) emissions, and account 

for 30% of land surface on Earth. The dairy industry is a significant contributor to the 

environmental impact of the livestock industry as a whole. As discussed in the previous section, 

milk and dairy products play an important role in meeting the dietary and protein needs of the 

human race, but in order for the production of milk to remain sustainable, the industry must not 
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deplete the natural resources that it depends on. In this section, the role of increased milk 

production on the environment and natural resources will be explored. 

It is obvious that on a global scale, there is an increasing volume of milk being produced. 

As a result, there is an increased demand for milk processing facilities and it might be assumed 

that there is thus greater energy utilization in the form of fossil fuels. However, the majority of 

environmental impact still occurs on-farm. Thoma et al. (2013) reported that 72% of the total GHG 

emissions associated with milk production are accumulated before the farm gate. Based on these 

conclusions, the following discussion will focus largely on mitigating negative environmental 

impacts on-farm rather than address the additional environmental burdens associated with greater 

milk volume in the processing stage. 

 

 Mechanisms of the dairy industry’s environmental impact 

The focus of a large body of media emphasizing agriculture’s effect on the environment 

has been on its contribution to climate change through GHG production. The importance of GHG 

in climate change and the influence of the dairy industry will be discussed in further detail below, 

but considering the high percentage of GHG from the dairy industry that is attributed to enteric 

methane production, an overview of the mechanisms in the rumen that produce methane—one of 

the most potent GHG—is an appropriate preamble to the discussion of the dairy industry’s 

environmental impact and the importance of increased milk production. Thoma et al. (2013) 

estimated that enteric methane contributes 25% of the total burden of GHG emissions associated 

with the entire lifecycle of milk production and processing. O'Brien et al. (2011) reported that 

enteric fermentation was the largest contributor to GHG emissions from dairy farms regardless of 

the methodology used, varying from 45-65%. Mc Geough et al. (2012) concluded based on their 
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case study in Eastern Canada that mitigating enteric methane would result in the greatest 

reductions in methane emissions from dairy farms. Improving productivity and production 

efficiency per cow is an effective way of mitigating the emissions released per unit of milk 

produced (Capper et al., 2008), consistent with the concept of dilution of maintenance. 

Greenhouse gases contribute to the “greenhouse effect” that has been implicated in climate 

change. The greenhouse effect can be defined as “the infrared radiation energy trapped by 

atmospheric gases and clouds” (Raval and Ramanathan, 1989). In other words, the greenhouse 

effect is the difference between energy emitted from the Earth’s surface and the energy released 

into space. The natural atmosphere includes many GHG. Clouds themselves are an important 

greenhouse substance; however, human activities also result in climate “forcings.” The major 

GHG include carbon dioxide (CO2), methane, nitrous oxide, water vapor, ozone, and 

chlorofluorocarbons (Climate change science: An analysis of some key questions, 2001). Each 

GHG has a different potency for its contribution to the greenhouse effect; for example, CO2 has a 

relatively low contribution to the greenhouse effect on a per mol or per kg basis, but it is still the 

largest contributor because of its high concentration in the atmosphere (Rohde, 1990). To simplify 

this concept and standardize GHG across different efficacies, many publications will express GHG 

production on a basis of CO2-equivalents (CO2e), defined as an estimate of the concentration of 

CO2 required to result in a given change in radiative forcing, a measure of change in the radiation 

balance (Gohar and Shine, 2007).  After CO2, methane is the next largest contributor to the 

greenhouse effect because of both its quantity and efficacy (Rohde, 1990). Although natural 

sources of methane emissions do exist—the largest of these sources being wetlands—the majority 

of anthropogenic methane is a result of enteric fermentation from livestock at 17% of total methane 
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produced globally (Knapp et al., 2014). Of the global sources of methane, agriculture as a whole 

contributes approximately 29%. 

As reviewed by Knapp et al. (2014), anaerobic metabolism of carbohydrates in the rumen 

and the production of the VFA acetate result in the production of the reducing equivalent hydrogen 

(Equation 1 & 2). Hydrogenase-expressing bacterial species convert this hydrogen to H¬2, and 

through negative feedback pathways, this H2 has an inhibitory effect on rumen fermentation 

pathways. Therefore, so-called “hydrogen sinks” are a necessary component of optimum rumen 

function. Common hydrogen sinks include the VFA propionate and butyrate (Equation 3 & 4), 

unsaturated fatty acids (Equation 5), and methane (Equation 6). 

Glucose → 2 pyruvate + 4H; [1] 

Pyruvate + H2O → acetate + CO2 + 2H; [2] 

Pyruvate + 4H → propionate + H2O; [3] 

2 acetate + 4H → butyrate + 2H2O; [4] 

C18:2 (linoleic acid) + 4H → C18:0 (stearic acid); [5] 

CO2 + 8H → CH4 + 2H2O; [6] 

It is clear from these equations that methane production by methanogens is an efficient way 

of disposing of a large amount of hydrogen. However, aside from the environmental effects of 

excessive methane production, methane represents a loss of energy (Moe and Tyrrell, 1979). 

Managing nutrition on dairy farms to decrease the production of acetate (a hydrogen-producing 

reaction; Equation 2) and increase the proportion of propionate production (a hydrogen sink; 

Equation 3) can have the dual positive effects of increasing efficiency and production and 

decreasing the amount of methane produced per kg of milk (Knapp et al., 2014). 
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Ultimately, the root cause of methane production is inherent nutrient loss that occurs in any 

metabolic process. In addition to GHG, nitrogen in the form of nitrate (NO3
-), phosphorus, and 

potassium are pollutants of concern that are excreted due to incomplete utilization in the animal 

(Tamminga, 2003). Nitrogen losses occur in the rumen, feces, and urine, although these losses can 

be mitigated by maximizing milk protein output (Tamminga, 1992). Although increasing output 

of phosphorus and potassium into milk can at least partially mitigate their loss into the 

environment, a more effective method of reducing the waste of these minerals is to decrease their 

consumption (Tamminga, 2003). 

 The concept of dilution of maintenance is key component to the discussion of livestock 

production systems and nutrient loss to the environment, and it summarized the relationship 

between higher production and the amount of waste products produced. As described by Capper 

and Bauman (2013), a cow’s maintenance requirement is considered to be a fixed cost of milk 

production. Therefore, as milk production is increased within a set period of time, the cost of 

maintenance per unit of milk produced is decreased (Figure 1.2). Since waste production and use 

of resources are functions of maintenance costs, increased productivity will decrease the amount 

of waste produced or resources used per unit of milk produced. 

 

 Greenhouse gas emissions 

Before the European settlement of the United States, bison were the largest ruminant 

contributor to methane emissions. While estimating methane production by these animals during 

this period are challenging due to the inability to measure population size and feed consumption, 

Hristov (2012) conservatively estimated that methane production from this period was 86% of that 

from farmed ruminants in the modern US; however, if the largest estimations of bison population 
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size are used to estimate methane production during that time, methane emissions could have been 

as much as 23% higher than the modern livestock industry. While these animals were hunted as a 

source of meat and pelts by Native Americans, if methane emissions are considered as a proportion 

of animal products harvested, the numerical differences would be even greater than total methane 

alone. Globally, the dairy industry is evolving to meet the needs of a growing demand for dairy 

products, and this is particularly characteristic in the United States (Von Keyserlingk et al., 2013). 

Much of this evolution has involved the intensification of the industry, a concept which goes hand-

in-hand with increased milk production. Although nutritional and management practices play a 

large role in this increase in production, it has been estimated that 55% of the 3,500 kg increase in 

average lactation yield between 1980 and 2006 is due to genetic improvements (Shook, 2006). 

The evolution of the dairy industry has altered the profile of GHG emissions across the 

past several decades. In 2007, 84.2 billion kg of milk were produced in the US compared to 53.1 

billion kg in 1944, and this was achieved with 936,000 dairy cattle in 2007 as opposed to 4,148,000 

in 1944 (Capper et al., 2009). Therefore, although average CO2 emissions produced per cow has 

increased from 13.5 to 27.8 kg during that time period, total methane emissions decreased from 

61,800,000 to 26,800,000 kg, and a similar trend was observed in reduction of CO2 emissions 

because of decreased cow numbers. Furthermore, CO2e produced per kg of milk have decreased 

from 3.66 kg in 1944 to 1.35 kg in 2007. Similarly, in Ontario between 1991 and 2011, kg of CO2e 

per kg of fat and protein corrected milk decreased by 22% (Jayasundara and Wagner-Riddle, 

2014). This decrease was partially due to decreased contribution of enteric fermentation although 

a larger contributor to this decrease was changes in feed production.   

To further compliment the trends in milk production as intensification of the dairy industry 

increases, there has been a shift in the dairy breeds utilized in the US from 1944 to 2007 (Capper 
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et al., 2009). Currently, Holsteins are the overwhelming majority of cattle at approximately 90% 

of cows in the US, while in 1944, Holsteins and Brown Swiss combined made up 46% of the dairy 

cattle population. Holsteins are a large breed and are characterized by large milk volume and low 

total milk solids on a percentage basis, although their greater milk output results on average in 

greater output of milk solids (Capper and Cady, 2012). Following Holsteins, Jerseys are the next 

most common breed of dairy cattle in the US. As opposed to Holsteins, this breed is known for 

their small size and high milk component percentages. Capper and Cady (2012) reported that 

producing 500,000 tons of cheese from Jersey milk would decrease the carbon footprint of 

production compared to using Holstein milk, as only 3.99 billion kg of Jersey milk would be 

required as opposed to 4.94 billion kg of Holstein milk due to the higher levels of milk solids in 

Jersey milk. Furthermore, it is perceived that because of their small body size and corresponding 

lower maintenance energy requirement that Jerseys are more efficient milk producers; however, 

published evidence for this belief is limited (Knapp et al., 2014). Mature Jerseys and Holsteins did 

not show any differences in maintenance or production requirements when adjusted for metabolic 

body weight (Tyrrell et al., 1991), as well as methane emissions as a proportion of DMI (Munger 

& Kreuzer, 2006) and methane emissions as a proportion of milk production (Tyrell et al., 1991; 

Munger & Kreuzer, 2006). Based on the current research, it seems likely that Jersey milk is more 

environmentally sustainable for cheese production and other processes that utilize the solid 

components of milk (although possibly not for fluid milk production), while Holstein milk is more 

economically sustainable for farmers when they are paid for milk on a volume basis, as they are 

in the US. This will be addressed again in the following section discussing economic sustainability. 

There are multiple approaches to increasing milk production and efficiency that are 

effective in mitigating enteric methane production, and some will be discussed in further detail in 
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a later section. Yan et al. (2010) utilized a data set of 579 lactating dairy cows used in 20 energy 

metabolism studies to analyze the relationship between efficiency of energy utilization and 

productivity. These authors reported that methane energy as a proportion of energy intake 

decreased as milk yield and efficiency increased. Knapp et al. (2014) reviewed the use of multiple 

strategies, including nutrition, genetics, and management. Similarly, Place and Mitloehner (2010) 

included cow comfort and herd health as methods of improving production efficiency for methane 

mitigation in their review. Given these observations, it is not surprising that Buddle et al. (2011) 

concluded that “there are currently no robust, reproducible and economically viable methods for 

reducing methane emissions from ruminants grazing on pasture.” This is in agreement with the 

findings by Bell et al. (2011) that nongrazing, intensive feeding systems result in the lowest GHG 

emissions as a proportion of energy-corrected milk (ECM) production.  

In addition to enteric methane emissions, manure management makes a significant 

contribution to GHG emissions by the dairy industry. In addition to methane, manure application 

results in the emission of ammonia and nitrous oxide (Guerci et al., 2013). In a cradle-to-grave 

assessment of GHG emissions by the dairy industry, Thoma et al. (2013) estimated that of the 35.4 

million metric tonnes of CO2e generated in 2007 from the production of fluid milk that 8.8 and 8.0 

million metric tonnes of CO2e resulted from enteric fermentation and manure management, 

respectively. The amount of GHG produced varies between manure management methods. For 

example, anaerobic lagoons and deep bedding produce significantly more GHG than dry lot and 

solid storage systems; however, even the process of shifting systems of nutrient management can 

increase a farm’s environmental burden (Thoma et al., 2013). In agreement with the concept of 

dilution of maintenance, the manure output of the dairy industry per unit of milk production has 

decreased with increasing intensification and higher milk production, being reduced by 24% 
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between 1944 and 2007 (Capper et al., 2009). In a case study of different dairy systems in Georgia, 

Belflower et al. (2012) demonstrated that long-term manure storage in confinement dairies 

significantly increases methane emissions on a per cow basis (70% greater), although per kg of 

milk grazing dairies produce approximately 30% more methane per unit of ECM. 

 

 Water 

Over the course of the twentieth century, human water use has increased at twice the rate 

of population growth (Ridoutt et al., 2010). Fresh water sources are generally categorized into 2 

classes, “green” and “blue.” Natural rainfall over agricultural lands is defined as green water, while 

blue water is sourced from surface water and groundwater. Use of these different categories of 

water are not equivalent in their water footprint (Ridoutt et al., 2010). 

As a whole, animal agriculture has been estimated to account for approximately one-third 

of the global water footprint (Medonnen and Hoekstra, 2012). The dairy industry in particular is a 

heavy user of water, being responsible for approximately 19% of animal agriculture’s water 

footprint. Some examples of water usage in dairy production systems are drinking water for cattle, 

feed production, and heat stress mitigation. Milk is 87% water, so high levels of milk production 

increase the water requirement of dairy cattle. Cattle meet their requirement for water through free 

water intake, water in their feed, and metabolic water. Of these, free water intake and water in feed 

are the two most biologically significant sources of water (NRC, 2001). Furthermore, as milk 

production increases, the amount of feed needed to sustain this level of production must also 

increase, and this has implications for the industry’s environmental impact. The use of these feeds 

increases the water requirement of the dairy industry, potentially decreasing sustainability. In the 

year 2000, approximately 4.7 billion tons of feed were consumed by livestock, 3.7 billion tons of 
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which was eaten by ruminants (Herrero et al., 2006). Approximately 48% of this biomass was 

comprised of grasses. Some of this demand for water can be mitigated by utilizing more drought-

tolerant crops. Often, producers utilize water as a method of reducing heat stress—a particularly 

important use for high-producing animals—for washing equipment on the farm, and on some 

farms for flushing manure. Once the product is off the farm, increased milk volume results in 

increased water usage for the processing of milk products. It should be noted that the water 

footprint of dairy products depends on the product in question. For example, skim milk powder 

can have a very low water impact (Ridoutt et al., 2010). 

Capper et al. (2009) demonstrated that the dairy practices used in 2007 to produce 1 billion 

kg of milk used approximately 35% of the water than industry practices used to produce the same 

amount of milk in 1944. Looking forward to continued modernization and development, it was 

estimated that in 2010, the global dairy industry (including both cattle and buffalo) utilized 

approximately 4,931 billion L of water (Knapp and Cady, 2015). Knapp and Cady (2015) 

calculated that in 2050, if milk production per animal was frozen to 2010 levels and animal 

numbers increased to meet demands that 7,941 billion L of water would be needed for global milk 

production. Alternatively, these authors calculated that with continued innovation, if animal 

numbers were maintained at 2010 levels and milk production per animal increased to meet the 

population demands in 2050, only 5,707 billion L of water would be needed for global milk 

production. Medonnen and Hoekstra (2012) argued that decreasing consumption of animal 

products would have a beneficial effect on water usage, since the water footprint of animal 

products are larger than the water footprint of nutritionally equivalent crops (per calorie or per g 

of protein). However, they did not account for the quality of nutrition, particularly protein, in 

animal food products compared to plants. As discussed in the previous section, animal products 
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are a more high quality food source, providing a more balanced source of protein. It was 

demonstrated that grazing systems have the lowest impact on water footprint (Medonnen and 

Hoekstra, 2012). This conclusion highlights the importance of maximizing the utilization of human 

inedible feedstuffs in ruminant systems. Reducing the environmental impact of milk production 

depends on reducing competition for sources of nutrition between animals and humans, and 

ruminants are particularly well-suited for this because of their ability to gain energy from cellulose. 

Furthermore, utilization of pasture increases the percentage of green water used for milk 

production as opposed to blue. While it has been demonstrated that increasing the intensity of milk 

production enhances the environmental stewardship of the dairy industry through the dilution of 

maintenance (Capper and Bauman, 2013), it could be that utilizing grazing systems and byproduct 

feeds may ultimately decrease milk production yet still increase the environmental sustainability 

of the industry as a whole. Based on this discussion, a balance of multiple farm types may be the 

best way to maximize sustainability and responsible resource use. 

 

SUSTAIN THE ECONOMIC VIABILITY OF FARM OPERATIONS 

It is important to note from the overall picture of sustainability of the dairy industry that 

the 3 pillars of sustainability are interconnected. For example, it is clear from previous discussions 

that milk and dairy products play important roles in satisfying human food needs globally. It will 

be shown in the following section that, at least in the US, higher levels of milk production increase 

the income of dairy farmers, thereby sustaining the economic viability of farm operations. This is 

largely a consequence of the relatively high levels of price regulation that the US dairy industry 

experiences. However, large families have a higher per capita expenditure on milk than childless 

families (Dhar and Foltz, 2005), meaning that families with children and lower income families 
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bear a greater burden due to regulation from the milk marketing orders than higher income and/or 

childless families (Chouinard et al., 2010). Charity initiatives such as the “Pour It Forward” 

campaign and well as government assisted programs have been used in an effort to balance these 

two pillars of sustainability that can be at odds with each other under certain scenarios. 

 

 Influence of the global economy 

In the following sections, the economics of milk production will be assessed based on the 

specific country or region where milk is being produced. This can vary based on the culture and 

as well as the local economy and milk pricing scheme. Before that discussion, it is important to 

realize that none of these economies are completely autonomous. Supply and demand from 

different countries can affect the price of milk in a different country. For example, at the same time 

that milk pricing in Europe switched away from the quota system and became more susceptible to 

market forces, China experienced a collapse in demand for dairy products and Russia placed a ban 

on imports, resulting in a dramatic drop in milk prices due to decreased global demand 

(http://www.bbc.com/news/uk-33953963). 

 The United States produces more milk than any other developed country. It is second to 

India for total milk produced as of 2013 (http://faostat3.fao.org/browse/Q/QL/E), and its 

production share is steadily growing. Milk is the second most produced animal commodity in the 

US, and the country is a major exporter of milk and milk products, although the growth of the 

dairy industry in other countries such as China—a major importer—may shift the global landscape 

of milk production and pricing (FAO Food Outlook, 2015). Border measures are in place to 

insulate the price of dairy products in the US from global market forces, both in terms of imports 

and exports. Exported dairy products are directly subsidized by the federal government. In fact, 
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this is often how the government is able to dispose of excess milk that is purchased under price 

support. Imported dairy products are subject to tariff-rate quotes, whereby low tariffs are imposed 

up to a certain quantity (or “quota”) of dairy imports, after which high tariffs are imposed. This 

has effectively insulated US milk prices from foreign supplies of dairy products and allowed 

domestic prices to remain higher than global prices (Sumner and Balagtas, 2002). 

 

 Influence of region 

The region in which milk is being produced is critical to the economic sustainability of the 

farm operations, largely because pricing is often regionally driven. Globally, there is an imbalance 

across regions where the areas that the population is growing the fastest is not being met by 

concurrent increases in food production, resulting in a growing yield gap in these areas (Godfray 

et al., 2010). Regional specialization in food products such as milk may increase global efficiency 

and help to balance supply and demand in areas where milk production is limited; however, this 

may increase the negative environmental impact of milk production due to increasing emissions 

from transportation of dairy products (Pretty et al., 2005), although the relative contribution of 

transportation costs is small compared to on-farm costs. 

Despite the benefits of regional specialization in food products on global efficiency of food 

production, this strategy does have its trade-offs. While it contributes to the sustainability of the 

dairy industry by satisfying human food and fiber needs, the increased market competition could 

have a negative effect on families in developing nations who produce milk as part of their income 

(Steinfeld, 2003). Conversely, it has been shown in India, Bangladesh, and Brazil that small dairy 

producers have been able to successfully compete with larger, more intensive systems because 

they do not have the same high cost for labor (Tarawali et al., 2011). Women in particular are 
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empowered in these economies as more of them are responsible for food production in these 

systems (Staal et al., 2009). 

It is common for producers in developing nations to utilize mixed crop livestock systems 

for food production rather than the highly specialized intensive systems common in more 

developed countries. Tarawali et al. (2011) reported that 75% of the world’s milk was produced in 

these mixed systems. There is great value to these types of systems in these economies, as 

livestock—and ruminants in particular—can convert low-value foods and inedible crop residues 

into high quality animal source foods (Smith et al., 2013). Tarawali et al. (2011) argued that there 

is greater value in these systems to having a smaller number of animals with higher production per 

animal rather than gaining the same level of production by utilizing more animals. This is a 

sustainable practice from the standpoint of environmental impact, as discussed above, as well as 

from an economic efficiency perspective. However, even while making a case for increasing 

intensification, these authors admit that this will increase the spatial separation between livestock 

and crop production, similar to the model seen in intensive agriculture in developed countries 

(Tarawali et al., 2011). While this may be a positive development from a purely economic 

standpoint, it does not take into consideration the social and cultural aspects of animal ownership 

that may create barriers for animal production (Steinfeld, 2003). 

Smith et al. (2013) reported that 13% of the human race’s energy intake is provided by 

livestock, but that livestock consume a disproportionately high amount of the world’s grain at 

approximately 50%. From values like these, it would be easy to conclude that animal products are 

an inefficient way to meet both the nutritional and economic needs of developing nations, and that 

livestock production is an inefficient method of using natural resources. However, as discussed in 

previous sections, this viewpoint does not account for the higher nutritional quality of animal 
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source foods, and it does not take into consideration the dilution of maintenance effect for 

environmental impact. Furthermore, animal product production is an efficient way of generating 

income for poor families in developing countries, since livestock utilize unexploited resources that 

would otherwise be wasted (Randolph et al., 2007). Poor people tend to sell rather than consume 

their animal products, meaning that animal production may contribute to their income while not 

necessarily contributing to the nutritional security of their family (Smith et al., 2013). Steinfeld 

(2003) outlined some potential barriers for livestock production in developing countries. These 

include financial and asset barriers, such as investment costs and land availability; technical 

barriers, such as food preservation technologies; social and cultural barriers; production and 

transaction costs; and high market and production risks. 

The dairy industry in developed nations is obviously different than the industry in 

developing countries. Furthermore, the pricing of dairy products is vastly different between 

developed and developing countries, and even between developed countries. Pricing of dairy 

products has historically been highly regulated in developed nations. On one extreme end of the 

spectrum is the quota system that has been utilized by the European Union and Canada. The 

European Union has de-regulated milk pricing recently, with disastrous results in the short-term. 

The European Union introduced milk quotas in 1984 (Guyomard et al., 1996). Under the 

quota system, increasing milk production does not in turn increase the profitability of the dairy 

farm. On April 1, 2015, European milk quotas were abolished, resulting in a financial crisis for 

dairy farmers. Without the constraints of the quota system, farmers increased their milk output in 

an attempt to increase their income, resulting in an imbalance of supply and demand and a severe 

drop in the price that they received for milk. In August of 2015, farmers were actually losing an 

average of 7p per liter of milk. In the UK, tensions culminated in a protest in August 2015, with 
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farmers herding cattle through supermarkets in an attempt to raise awareness of the financial crisis. 

In response, several supermarket chains in the UK agreed to set minimum prices for milk sold in 

the store (http://www.bbc.com/news/uk-33953963). During the crisis, increasing milk production 

was not actually economically viable for many farms, as they were actually losing money by 

producing milk. Additionally, due to the milk pricing structure at the time, elevated milk 

production actually decreased the sustainability of the dairy industry in the UK as a whole, as the 

glut of supply resulted in a further decrease in milk price. 

Milk pricing in the US became more highly regulated during the Great Depression as a 

result of the New Deal (Chouinard et al., 2010). Currently, 85% of milk in the US is marketed 

through 11 Federal Milk Marketing Orders, which are organized based on location. There are 2 

key components of milk pricing under the Federal Milk Marketing Orders. These components are 

classified pricing and pooling. Classified pricing refers to the concept that minimum prices are set 

based on what the milk and milk components will be ultimately used for (i.e., fluid milk or 

manufactured products), while pooling guarantees that farmers are paid a uniform price for their 

product based on volume and components, regardless of what end-product the fluid milk is used 

for. In addition to these regulations, there are other measures in place that safeguard the economic 

viability of American dairy farmers. One of these measures is federal price support, which sets a 

minimum price, under which the federal government will buy dairy products in order to increase 

demand and thereby increase price. Although this price has been dropping in the latter half of the 

twentieth century and beyond, it is still in place as a safety net for dairy producers (Jesse and 

Cropp, 2008). 

High levels of nationwide milk production do not upset the balance of supply and demand 

in terms of milk price as they would in a de-regulated system. Dairy farmers in the US are typically 
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paid by volume of milk produced, with premiums available for high quality and components. 

Therefore, in a simplistic view, increasing the volume of milk production increases revenue for an 

individual dairy producer. An example of this is the case of the Holstein vs. the Jersey breed, the 

two most popular breeds in the US. Holsteins are known for high volumes of milk production with 

relatively low percentages of milk components, while Jerseys are known for lower production and 

relatively high percentages of milk components. Bailey et al. (2005) simulated variety of scenarios 

under multiple component pricing comparing herds of Holsteins vs. Jerseys. They reported that 

across all scenarios, the income over feed cost (IOFC, a common metric used to benchmark 

profitability of dairy farms) was most affected by the volume of fat and protein produced by the 

farm rather than the percentage of these components. Therefore, Holsteins were more profitable 

than Jerseys under these situations, because although Jersey milk is more valuable per pound 

produced, Holsteins produce more total milk pounds, offsetting the Jersey’s advantage.  

  

 Strategies for increasing economic viability of milk production 

Under the US pricing system, the major sources of economic risk for dairy farmers is milk 

and feed price volatility, and although these variables are not the sole indicators of a dairy farm’s 

profitability, they are two very key components. While income from milk production will make 

up the majority of a typical dairy farm’s income, the cost of feed can be as high as 50% of variable 

costs on a dairy (Hardie et al., 2014). Income over feed cost is a commonly used metric to measure 

the income of milk relative to the cost of feed, and it is simply defined as the cost of feed subtracted 

from the income from milk produced and sold. Therefore, from a simplistic view, maximum 

profitability from a dairy farm will maximize IOFC by maximizing milk income and minimizing 

feed cost; however, dairy farming is inherently complex, and this simple view may not fully 
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characterize all scenarios and management structures. This is demonstrated in a model scenario 

published by Liang and Cabrera (2015). These authors reported that as target milk production 

increased, ECM increased to point, where it continued to increase but at a slower rate until it 

flattened. Net return to management showed a similar trend. The authors described increased milk 

production as a “win-win” in relation to GHG emissions as well as net return to management. 

 Obviously, when discussing economic viability, there are balances to be considered. Some 

expensive technologies may be cost-prohibitive for small farm operations because the increase in 

milk production does not cover the cost of the technology. Alternatively, decreased milk 

production may be economically viable under certain management structures. For example, least 

cost rations or grazing systems may not maximize milk production, but they enhance profitability 

because of their low cost. These types of systems may also contribute to overall environmental 

sustainability of the industry by utilizing otherwise untapped resources for productive use. A 

diverse range of management styles may be important for maximizing the sustainability of the 

dairy industry as a whole. 

Theoretically, decreased feed costs might increase IOFC if milk production did not 

decrease proportionally. In contrast, Hardie et al. (2014) reported that organic dairies in Wisconsin 

that had the lowest IOFC were those that relied the most heavily—even exclusively—on pasture 

compared to other organic dairies that used more concentrates in their ration; however,  the authors 

indicated that IOFC could not be isolated to one single driving factor. It is important to note that a 

large proportion of these farms utilized less efficient dairy breeds or crossbred animals. 

Most milk produced in the US is from conventionally managed cows; however, niche 

markets exist to appeal to certain groups of consumers. Examples of these include organic 

dairying, grazing dairies, and A2 casein milk. The economic viability of these markets may be 
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driven by lower input costs (such as grazing) or by consumer willingness to pay a higher price for 

the product (such as A2 or organic milk as well as grazing). Labeling these other processes of milk 

production has the effect of increasing competition between fluid milk products, decreasing the 

price that consumers pay and farmers receive for their milk (Dhar and Foltz, 2005). Consumer 

perception as a driver of income from milk sales will be discussed in further detail in a following 

section.  

Consumer perception plays a large role in the development of niche markets. The influence 

of consumer perception on prices of dairy products can be viewed through the concept of elasticity. 

In economics, this is defined as the sensitivity of one variable to a change in price to another 

variable. In dairy products, a change in the price of one often results in a consumer’s switch to 

another replacement product. For example, Andreyeva et al. (2010) reported that consumers may 

respond to an increase in the price for whole milk by switching to low fat or skim milk, not by 

cutting out milk altogether. Recombinant bovine somatotropin is an excellent example of the effect 

of consumer willingness to pay higher prices for a perceived benefit; it is discussed in the following 

section. 

 

 STRATEGIES FOR INCREASING MILK PRODUCTION AND THEIR 

EFFECT ON SUSTAINABILITY 

In the following section, specific examples of strategies used by dairy producers to increase 

milk production will be analyzed in the context of sustainability. This list includes the use of rbST, 

monensin, sexed semen, and non-steroidal antiinflammatory drugs (NSAID) on dairy farms. The 

discussion will focus on the use of these technologies in the US and should not be viewed as 

exhaustive. 
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 Genetic selection for increased milk production 

Genetic selection for increased milk production is common in the US dairy industry, 

although certainly not exclusive to this country. Selection for high levels of milk production has 

been reported to be associated with some negative management outcomes such as exacerbated 

negative energy balance in early lactation and reduced reproductive performance (reviewed by 

Rauw et al. (1998)). These authors suggested that “artificial selection for a particular trait may lead 

to the situation in which resources are used to the maximum, i.e. no buffer is left to respond 

adequately to unexpected stresses and challenges.” However, Bello et al. (2012) challenged this 

generally held belief, especially in regards to reproduction, claiming that various statistical pitfalls 

have led to the erroneous conclusion that these two traits are homogenously antagonistic, and 

called for further research to determine whether such a relationship exists. If these negative 

associations are truly existent, they may decrease the overall profitability of intensive genetic 

selection for milk production on a farm level. Despite this, 55% of the gains in production observed 

between 1980 and 2006 can be accounted for by genetic improvement. As evidenced previously 

in this review, the large increase in milk production experienced by the dairy industry in recent 

decades is a large driver of the overall sustainability of the industry. 

 

 Exogenous recombinant bovine somatotropin 

Perhaps the most well-characterized example of a common technology used in the dairy industry 

to increase milk production is rbST. Administration of rbST results in differences in nutrient 

partitioning, allowing more nutrients to be available to the mammary gland for milk production 

(Bauman and Currie, 1980). In the short term, rbST injections do not influence feed intake, and 
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milk production is increased through an “an exquisite coordination of metabolism to meet nutrient 

needs for increased synthesis of milk components (Bauman et al., 1988, Tyrrell et al., 1988). 

 The use of rbST has been researched from the 3 pillars of sustainability addressed in this 

review. It meets the goal of satisfying human nutritional needs through a direct effect on increasing 

milk production—averaging 4.5 kg/cow/d (Capper et al., 2008)—but beyond that, it has been 

studied for its environmental and economic effects. Through dilution of maintenance, 

administration of rbST has a striking effect on the environmental burden of milk production per 

unit of milk, reducing the amount of land required by 9.2%, water by 10.4%, and the carbon 

footprint by 9.1%. Supplementation of 1 million cows with rbST would have a similar 

environmental effect as removing approximately 400,000 cars (Capper and Bauman, 2013). 

The effect of rbST on the economic viability of farm operations is somewhat less clear cut. 

It is true that it has a high return on investment in comparison to other technologies used on the 

modern dairy farm; however, consumer perception plays an important role in its economic 

viability. Despite the clearly demonstrated safety of rbST, use of this technology met with 

resistance from consumers when it was implemented. Grobe and Douthitt (1995) concluded that 

consumers overestimate the risk of rbST in milk, and that this was not necessarily due to a lack of 

education and information. They demonstrated that price reductions of up to 10% could not 

compensate for risk perceptions. These authors reported that risk perceptions were positively 

influenced by quantity of milk purchased and gender, while income had a negative impact on risk 

perception. Dhar and Foltz (2005) reported that the substitution of unlabeled (conventional) milk 

for rbST-free or organic milk is asymmetric. In other words, consumers are likely to switch from 

conventional milk to rbST-free or organic milk in response to a change in price in conventional 



 

37 

milk, but once they have switched to another process, they are less likely to switch back to 

conventional milk, even if there are significant price changes in rbST-free or organic milk. 

 

 Monensin 

Monensin is a gold standard of sorts in the manipulation of rumen fermentation for 

improved efficiency. Since its acceptance in 1975, it has been widely utilized by both the beef and 

dairy industries because of its remarkable positive impact on the economic viability of farm 

operations (Goodrich et al., 1984). Elanco Animal Health (Greenfield, IN) markets monensin as 

Rumensin©, and the company boasts that this product averages a 5:1 return on investment 

(http://www.elanco.us/pdfs/optimizing-response.pdf). 

Monensin is an ionophore, which translates to “ion bearer.” It creates channels in the cell 

walls of Gram-positive bacteria, resulting in so-called “futile cycling,” where energy is expended 

while growth is stagnated (Russell and Strobel, 1989). This results in changes in the fermentation 

profile that lend themselves to increased efficiency, such as a decreased ratio of acetate to 

propionate and decreased methane production. 

Obviously, monensin is an example of a technology that meets all of the aspects of 

sustainability discussed in this review, particularly environmental and economic. However, like 

rbST, this technology has met with some resistance at the consumer level. Although it does not 

cause classic antibiotic resistance in the form of mutations (Russell and Houlihan, 2003), some 

groups of consumers are concerned about its widespread use due to its antibiotic activity. It remains 

to be seen if this effect of consumer perception will influence the use of monensin on dairy farms, 

but for now it is apparent that monensin is an effective way of increasing milk production and the 

overall sustainability of the industry. 
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 Sexed semen 

At times, the use of sexed semen has gained popularity in the dairy industry. A high 

percentage of female calves translates into more replacements available for the milking herd, and 

heifer calves are generally worth more than bull calves when they are sold. However, sexed semen 

is more expensive than non-sexed semen, and the conception rate when using sexed semen is often 

lower than conventional semen (DeJarnette et al., 2009). 

Until recently, the utilization of sexed semen on dairy farms has been approached from the 

standpoint of increasing the number of replacements and the trade-offs with semen prices and 

conception rates. However, Hinde et al. (2014) demonstrated that the sex of the calf is associated 

with differences in 305-d milk production in the following lactation, and that this effect compounds 

over time. Ettema and Østergaard (2015) calculated that this effect on milk production increased 

milk production and net return per cow per year. 

Since the initial publication of Hinde et al. (2014), several authors have attempted to 

replicate these results in various regions. Evidence that Holstein cattle produce more milk after 

giving birth to a heifer calf has been demonstrated in data sets from Canada (Beavers and Van 

Doormaal, 2014), Iran (Chegini et al., 2015), New Zealand (Hayr, 2014), and Poland (Sawa et al., 

2014). On a study of dairy cattle performed in Colombia, it was reported that cows who gave birth 

to heifers had higher colostrum production than those that gave birth to bulls (Angulo et al., 2015). 

Alternatively, Græsbøll et al. (2015) reported that in Danish Holsteins, cows produced more milk 

when they gave birth to bull calves. 

While little research has been done mechanistically to determine the cause of this sex-bias 

towards heifer calves—assuming that it is a real effect—one might speculate that following the 
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concept of dilution of maintenance, this effect on milk production would have a positive impact 

on the environmental burden of the dairy industry in addition to the beneficial economic effects 

for dairy farms. Therefore, this technology appears to be in line with the pillars of sustainability 

outlined in this review. 

 

 Non-steroidal antiinflammatory drugs 

The transition period is defined as 3 weeks prior to and 3 weeks following parturition. As 

a result of various metabolic, dietary, and social pressures, early lactation dairy cattle are prone to 

various health and metabolic disorder, which can lead to continuous reproductive and production 

issues throughout the remainder of the lactation. Linked to many of these transition disorders is 

systemic metabolic inflammation (Bradford et al., 2015), which has been linked by multiple 

authors to negative productive outcomes (Bionaz et al., 2007, Bertoni et al., 2008). 

While the therapeutic use of NSAID in the dairy industry is relatively common, some 

studies have suggested that the blanket use of NSAID in older cows after calving can have a 

positive impact on milk production in the ensuing lactation. Bertoni et al. (2004) demonstrated that 

treatment with lysine acetyl-salicylate post-calving increased daily milk production. Farney et al. 

(2013) and Carpenter et al. (2016) demonstrated that the administration of sodium salicylate or 

meloxicam following parturition to cows in their second or third parity and greater was associated 

with increased 305-d milk production. However, several other published reports have not seen the 

same positive response to NSAID (Shwartz et al., 2009, Priest et al., 2013, Mainau et al., 2014, 

Meier et al., 2014). This may be due to differences in administration or differences in the time 

periods measured between studies. Carpenter et al. (2016) showed that there was no difference in 

daily milk production until 7 weeks in lactation, so studies that evaluate milk production for less 
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than this may not detect a difference in milk production due to treatment. Further details can be 

found in Chapter 2 of this dissertation, where this paper is presented. 

Further research is needed to determine the effect of NSAID use on the economic viability 

of farms and the sustainability of the industry. It is unknown what the economic impact of the use 

of NSAID is at this juncture. In the US, some NSAID need veterinary approval for their use and 

are not approved for general administration, so the cost of using these products is difficult to 

determine. It also remains to be determined how NSAID administration influences feed intake. 

Unpublished results showed that sodium salicylate did not influence DMI, but in the same study, 

no differences in milk production were observed (Chapter 3). Although the exact mechanism by 

which NSAID treatment influences milk production is unknown, there is evidence that some 

NSAID manipulate rumen function (Chapter 4). 

 

 CONCLUSION 

The ultimate objective of the dairy industry is to produce a high-quality food product to 

provide for the nutritional needs of the world while at the same time providing a livelihood for its 

producers. To sustain this industry, these goals must be met while avoiding the depletion of the 

natural resources that the industry depends on. Under most circumstances, high levels of milk 

production promotes the sustainability of the dairy industry by meeting all of these conditions. 
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Table 1.1 Amino acid concentrations of various common dietary protein sources. Adapted 

from van Vliet et al. (2015). 

Source Essential amino 

acids, % total 

protein 

Leucine, % total 

protein 

Lysine, % total 

protein 

Methionine, % 

total protein 

Plant sources     

   Spirulina 41 8.5 5.2 2.0 

   Mycoprotein 41 6.2 6.7 1.5 

   Lentil 40 7.9 7.6 0.9 

   Quinoa 39 7.2 6.5 2.6 

   Black bean 39 8.4 7.3 1.6 

   Corn 38 12.2 2.8 2.1 

   Soy 38 8.0 6.2 1.3 

   Pea 37 7.8 6.3 1.6 

   Rice 37 8.2 3.8 2.2 

   Oat 36 7.7 4.2 1.9 

   Hemp 34 6.9 4.1 2.3 

   Potato 33 5.2 5.7 1.7 

   Wheat 30 6.8 2.8 1.9 

Animal sources     

   Whey 52 13.6 10.6 2.3 

   Milk 49 10.9 8.6 2.7 

   Casein 48 10.2 8.1 2.7 

   Beef 44 8.8 8.9 2.5 

   Egg 44 8.5 7.1 3.0 

   Cod 40 8.1 8.8 3.0 
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Figure 1.1 The 3 pillars of sustainability. Adapted from von Keyserlingk et al., 2013. 
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Figure 1.2 Increasing milk production in a lactating dairy cow results in dilution of 

maintenance. Adapted from Capper et al. (2009).  

 

Assuming a body weight of 650 kg and a milk fat percentage of 3.69%, the energy requirement 

for maintenance will account for 69, 49, and 33% of the total energy requirement at 7, 15, and 29 

kg of daily milk production, respectively. 
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Chapter 2 - Hot topic: Early postpartum treatment of commercial 

dairy cows with nonsteroidal antiinflammatory drugs increases 

whole-lactation milk yield 

A. J. Carpenter, C. M. Ylioja, C. F. Vargas, L. K. Mamedova, L. G. Mendonça, J. F. Coetzee, L. 

C. Hollis, R. Gehring, B. J. Bradford 

2016. J Dairy Sci 99: 1-8 

 

ABSTRACT 

Previous research has shown that postpartum administration of the nonsteroidal 

antiinflammatory drug (NSAID) sodium salicylate can increase 305-d milk yield in older dairy 

cattle (parity 3 and greater). However, in this prior work, sodium salicylate was delivered to cows 

via the drinking water, a method that does not align well with current grouping strategies on 

commercial dairy farms. The objective of the current study was to replicate these results on a 

commercial dairy farm with a simplified treatment protocol and to compare sodium salicylate with 

another NSAID, meloxicam. Dairy cattle in their second lactation and greater (n = 51/treatment) 

were alternately assigned to 1 of 3 treatments at parturition, with treatments lasting for 3 d. 

Experimental treatments began 12 to 36 h after parturition and were (1) 1 placebo bolus on the 

first day and 3 consecutive daily drenches of sodium salicylate (125 g/cow per day; SAL); (2) 1 

bolus of meloxicam (675 mg/cow) and 3 drenches of an equal volume of water (MEL); or (3) 1 

placebo bolus and 3 drenches of water (CON). Blood samples were collected on the first day of 

treatment, immediately following the last day of treatment, and 7 d after the last day of treatment; 

plasma was analyzed for glucose, β-hydroxybutyrate (BHB), free fatty acids, haptoglobin, and 
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paraoxonase. Milk production, body condition score, reproductive status, and retention in the herd 

were monitored for 365 d posttreatment, and effects of treatment, parity, days in milk, and 

interactions were evaluated in mixed effects models. Significance was declared at P < 0.05. Whole-

lactation milk and protein yields were greater in NSAID-treated cows, although 305-d fat 

production was not affected. There was a significant interaction of treatment and parity for plasma 

glucose concentration; MEL increased plasma glucose concentrations compared with CON and 

SAL in older cows. Sodium salicylate decreased plasma BHB concentration compared with MEL 

at 7 d posttreatment, although no difference was detected immediately following treatment. 

Haptoglobin concentrations were elevated in SAL cows compared with CON. There was a 

tendency for CON cows to be removed from the herd more quickly than MEL cows (42 vs. 26% 

at 365 d posttreatment). Body condition score, concentrations of plasma free fatty acids and 

paraoxonase, and time to pregnancy were not affected by treatment. These results indicate that 

NSAID administration in postpartum cows has the potential to be a viable way to improve 

productivity and potentially longevity in commercial dairies, although further research is necessary 

to optimize recommendations for producers. 

 

HOT TOPIC 

Despite ongoing research, the transition period remains a high-risk period for dairy cattle. 

A growing body of research indicates that systemic metabolic inflammation occurs in dairy cows 

following parturition and that this inflammation may be linked to negative production outcomes. 

Bionaz et al. (2007) demonstrated that reduced levels of the liver hydrolase paraoxonase are 

associated with increased markers of inflammation such as haptoglobin and globulin in early-

lactation dairy cattle. Those authors reported that animals in the experiment with the greatest 
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plasma paraoxonase activity during the first 30 d of lactation produced 10,090 ± 1,504 kg of milk 

in a 305-d lactation, whereas those with the least activity produced 8,119 ± 2,042 kg, a 1,971-kg 

difference. Bertoni et al. (2008) reported that cows in the highest quartile of an inflammatory index 

had decreased milk production in the first month of lactation compared with their counterparts 

with the lowest inflammatory markers (24.4 vs. 30.9 ± 2.11 kg/d). Farney et al. (2013b) 

administered dairy cattle with the nonsteroidal antiinflammatory drug (NSAID) sodium salicylate 

via drinking water in the week following calving in an attempt to suppress inflammation. Cows in 

their third lactation and greater that received sodium salicylate produced 21% more milk over a 

305-d lactation than did parity-matched controls. Interestingly, although the initial hypothesis was 

that inflammation was linked to suboptimal metabolism, this productivity response occurred even 

though both the control and treatment groups had low incidence of clinical metabolic disorders. 

Meloxicam is another drug in the NSAID class that has high oral bioavailability and a long 

plasma elimination half-life in cattle compared with sodium salicylate (Coetzee et al., 2009; 

Malreddy et al., 2013). Although no published studies have demonstrated that meloxicam affects 

milk production, research in lactating cattle has focused on its use during clinical mastitis 

(McDougall et al., 2009) and following assisted parturition (Newby et al., 2013). Considering the 

effect of sodium salicylate on production, it is likely that meloxicam, with a longer elimination 

half-life, may also have beneficial effects in lactation after a single dose. Therefore, the objective 

of this study was to determine if NSAID treatment in the first days following parturition would 

positively affect milk production and health of cows on a commercial dairy farm. 

Multiparous cows from a commercial dairy (n = 51/treatment) were enrolled in the study 

12 to 36 h after calving. Animals were managed similarly throughout the dry period and early 

lactation. Cows assigned to sodium salicylate treatment (SAL) received a placebo bolus on d 1 of 
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treatment and an oral drench containing 125 g/d of sodium salicylate (estimated to be 

approximately 185 mg/kg of BW; Wintersun Chemical, Ontario, CA) in 375 mL of water for 3 

consecutive days beginning on d 1 of treatment. Cows assigned to meloxicam treatment (MEL) 

received 675 mg of meloxicam (estimated to be approximately 1 mg/kg of BW; Unichem 

Pharmaceuticals, Rochelle Park, NJ) as a bolus on d 1 of treatment as well as 3 consecutive daily 

drenches of 375 mL of water. Control cows (CON) received a placebo bolus on d 1 and water 

drenches (375 mL) for 3 d. The placebo and meloxicam boluses both contained casein as a filler. 

Only cows entering their second lactation and greater were enrolled in the study (CON = 18 cows 

in parity 2 and 33 cows in parity ≥3; MEL = 27 cows in parity 2 and 24 cows in parity ≥3; SAL = 

20 cows in parity 2 and 31 cows in parity ≥3). Cows were blocked by mastitis at parturition (CON 

= 1, MEL = 2, SAL = 2), breed (CON = 6, MEL = 6, SAL = 4 crossbred; all others were Holstein), 

dystocia (calving difficulty score ≥3; CON = 5, MEL = 5, SAL = 6), and twin births (CON = 4, 

MEL = 4, SAL = 3) and were sequentially assigned to treatment within block between July 15 and 

September 2, 2013. Mastitis was determined by farm staff for blocking purposes, and was defined 

as clinical mastitis with abnormal appearance of milk, such as clots. Milk from treated cows was 

discarded for 10 d after the start of treatment to ensure that no drug residue entered the saleable 

milk stream, particularly for meloxicam (Malreddy et al., 2013). 

Blood samples were collected via the coccygeal vein on the first and last day of treatment 

and 7 d after the completion of treatment. Plasma was collected and stored at −20°C until analyzed 

for glucose by a colorimetric kit (kit #439-90901; Wako Chemicals USA Inc.), free fatty acids 

using an enzymatic colorimetric procedure (NEFA-HR; Wako Chemicals USA Inc., Richmond, 

VA), and BHB using a commercial kit (kit #H7587-58; Pointe Scientific Inc., Canton, MI). 

Haptoglobin was measured by the method of Cooke and Arthington (2013), a colorimetric 
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technique that uses differences in peroxidase activity to measure haptoglobin-hemoglobin 

complexing. Absorbance was measured with a spectrophotometer (PowerWave XS; BioTek 

Instruments Inc., Winooski, VT) and calculations were performed using Gen5 software (BioTek 

Instruments Inc.). Paraoxonase was measured by the method of Ferré et al. (2002). 

Reproduction and culling data were recorded in PC-Dart (Dairy Records Management 

Services, Raleigh, NC) by the farm staff, who were blinded to treatments. Reasons for culling were 

grouped into the following 7 categories: injury, lameness, low milk, mastitis, SCC, unknown, and 

other disease. Milk weights were collected electronically at each milking and stored in PC-Dart. 

Milk composition (including SCC) and yield were tested for individual cows at approximately 6-

wk intervals by DHIA technicians, and 305-d mature-equivalent lactation yields were calculated 

by DHIA for animals that remained in the herd for at least 90 d. Body condition score was recorded 

as the average of responses from at least 3 independent observers on the last day of treatment (3 d 

after enrollment) and approximately 2, 5, and 8 mo following enrollment. 

Statistical analyses were carried out using SAS (version 9.3; SAS Institute Inc., Cary, NC) 

and JMP (version 10; SAS Institute Inc.). Plasma variables were analyzed using d-0 values as a 

covariate along with fixed effects of block, parity (2 or 3+), treatment, sample day, and treatment 

by day interaction, and the random effect of cow. Milk data were analyzed with fixed effects of 

block, parity, treatment, week of lactation, and treatment × week interaction, along with the 

random effects of cow and week of the year. Both models accounted for repeated measures over 

time with autoregressive covariance structures. This covariance structure was selected based on 

Bayesian information criterion (BIC) values. Blocking factors and treatment × block interactions 

were tested and removed from models when P > 0.10. Additionally, d-0 covariate values (plasma 

analytes and BCS) and their interactions with treatment were tested in models for milk yield, but 
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all were removed because they were not significant predictors. To assess treatment effects on SCS, 

cows with mastitis at enrollment (n = 5) were excluded, and then individual test-day values 

between 4 and 305 DIM were modeled with linear and quadratic DIM terms (the cubic term was 

not significant), treatment, and treatment × DIM interaction, as well as the random effect of cow. 

Mastitis at enrollment was included in the statistical model for all responses other than SCS. 

In addition to milk responses by week, 305-d mature-equivalent lactation yields were 

evaluated as described by Farney et al. (2013b), using the PTA for the applicable component as a 

covariate to account for genetic differences; 122 cows had the requisite data and were used for this 

analysis. Survival analysis was used to assess treatment effects on retention in the herd and time 

to pregnancy. Pregnancy date was determined based on breeding dates when pregnancy was 

confirmed by ultrasound 65 d postinsemination, and cows that left the herd before 365 d 

postcalving were censored from pregnancy analysis on that date. Wilcoxon Chi-squared tests were 

used to assess differences between treatments for survival curves. Incidence of specific disorders 

and pregnancy on first service were evaluated by pairwise Fisher's exact tests. Significance was 

declared at P < 0.05 and tendencies at 0.05 ≤ P < 0.10. 

Both MEL and SAL increased daily milk production compared with CON (P < 0.05; 36.8, 

36.3, and 32.8 ± 2.2 kg/d, respectively). We found no evidence of treatment interactions with time 

(P = 0.56), although the contrasts between NSAID treatments and CON did not become significant 

until 7 wk in milk (Figure 2.1A). Analysis of 305-d mature-equivalent milk yield resulted in similar 

findings, with MEL and SAL increasing yields compared with CON (both P < 0.03; 11,205, 

11,411, and 10,472 ± 486 kg, respectively). Similar results were observed when daily and 305-d 

data were analyzed after removing cows with mastitis at parturition (P < 0.05 for all contrasts with 

CON, except SAL vs. CON for daily yield: P = 0.06). Figure 2.1B shows 305-d mature-equivalents 
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yields for milk fat and milk protein. No differences were observed for milk fat yield (P = 0.13) but 

protein yields were increased by each NSAID treatment (P < 0.05). We observed an interaction 

between treatment and DIM for SCS (P = 0.02, Figure 2.1C), with the results suggesting that 

NSAID treatments decreased SCS in the first several months of lactation. However, when the data 

set was limited to values measured in the first 50 DIM, a simple NSAID treatment contrast (CON 

vs. MEL + SAL) was not significant (P = 0.13). 

The increase in milk production is consistent with the response observed by Farney et al. 

(2013b). A few other experiments have assessed blanket treatment with NSAID in postpartum 

cows. Bertoni et al. (2004) gave acetyl-salicylate to cows for the first 5 DIM and saw a tendency 

for increased peak milk yield. Priest et al. (2013) gave carprofen as a blanket NSAID treatment to 

multiparous cows 21 to 31 d after calving and saw no effect on milk production. The authors 

hypothesized that this was due to the delay in treatment after calving. In a follow-up study, Meier 

et al. (2014) reported that whether NSAID treatment was administered beginning 1 d following 

calving or 19 d, there was no difference between control and NSAID groups for milk production. 

In an experiment reported by Shwartz et al. (2009), 26 cows received either intravenous flunixin 

meglumine or saline for the first 3 DIM. In the first 7 d of lactation, milk yield was decreased for 

cows receiving NSAID treatment, although there was no overall effect on milk yield up to 35 DIM. 

One study that administered injectable meloxicam as a blanket treatment postcalving showed no 

effect on milk production (Mainau et al., 2014). 

There are several possible explanations for variability in the reported milk responses to 

NSAID treatments. Meier et al. (2014) attributed the difference in results between their experiment 

and those of Bertoni et al. (2004) and Farney et al. (2013b) to the differences in mode of action 

between different NSAID treatments. This is a valid differentiation between their results and 
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responses to salicylates; however, it does not explain the differences between our results and those 

of Mainau et al. (2014), in which meloxicam was also used as a blanket treatment in early-lactation 

dairy cattle. This could be attributed to differences in sample size (n = 51 vs. n = 30), although 

there are other differences between these experiments. The method of meloxicam administration 

differed; in our experiment, meloxicam was given orally, whereas Mainau et al. (2014) injected 

meloxicam. Although BW was not measured in our experiment, if it is assumed that the average 

BW of cows on this study was approximately 680 kg, our dose of 675 mg would be approximately 

double the dosage of 0.5 mg/kg used by Mainau et al. (2014). Another difference between the 

current experiment and that of Mainau et al. is the timing of treatment administration (12–36 h 

postcalving vs. a maximum of 6 h postcalving). 

Perhaps the most important confounding effect on results of NSAID trials is the duration 

of milk production measurement. In the current experiment, statistical tendencies were detected 

beginning at 4 wk in milk (P = 0.07), and significance was not detected until 7 wk in milk (P = 

0.02). Priest et al. (2013) and Meier et al. (2014) measured milk production for 6 wk. Milk 

production was monitored for 5 wk by Shwartz et al. (2009). Mainau et al. (2014) reported milk 

production over 1 mo. It is possible that some of the discrepancy between the current experiment 

and these previously published reports is because milk production was not monitored long enough 

to detect any differences in previous studies. 

It is important to note that both NSAID treatments necessitated the discarding of milk to 

prevent the sale of milk contaminated by drug residues. There are no official guidelines in the 

United States for disposal of milk following salicylate or meloxicam treatment in lactating cows. 

However, based on the short half-life of salicylate, a milk withdrawal time of 24 h is considered 

adequate to avoid residues (US Pharmacopeia, 2004). In contrast, the recently approved use of 
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injectable meloxicam at 0.5 mg/kg of BW for mastitis in Canada requires a 4-d withdrawal, and 

oral meloxicam at 1 mg/kg of BW (approximately the dose used herein) resulted in undetectable 

residues in milk by 80 h posttreatment (Malreddy et al., 2013). Although these data suggest that a 

4- or 5-d withdrawal is likely adequate for avoiding residues following meloxicam treatment, we 

discarded milk for 10 d to remove any uncertainty about residue avoidance. The increased 305-d 

milk production that we observed can compensate for loss of milk revenue during the withdrawal 

period, but the inconvenience of segregating milk from these cows could limit adoption of 

postpartum NSAID treatment on dairies. On the other hand, several commonly used dry cow 

antibiotic therapies require that milk be discarded for the first 3 to 4 DIM (Royster and Wagner, 

2015), and the gland is transitioning from colostrum to mature milk secretion during this time, 

making the product of poor quality for dairy products anyway. Considering this, the SAL protocol 

would add only 1 to 2 d and MEL only 2 to 3 d of additional milk discarding. 

We found no effect of treatment on blood glucose concentration in second-parity cows, but 

MEL increased plasma glucose concentrations in older cows compared with CON and SAL (P < 

0.05; treatment × parity: P < 0.05; Figure 2.2A). Although plasma BHB concentrations were 

similar across treatments at the end of the treatment period (P > 0.1), SAL decreased plasma BHB 

concentration compared with MEL at 7 d posttreatment (P = 0.02; treatment × day: P < 0.05; 

Figure 2.2B). Plasma free fatty acid concentrations were not affected by treatment (P = 0.8; Figure 

2.2C). No other interactions were significant for free fatty acids, glucose, or BHB (P > 0.1). Neither 

plasma variables nor BCS measured on d 1 was a significant predictor of any of the outcomes 

measured (P > 0.1). 

The time points for blood sample collection were chosen based on the results of Farney et 

al. (2013a), which showed that glucose, BHB, and some signaling molecules were significantly 
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altered by NSAID treatment on either the final day of treatment or 7 d posttreatment. They reported 

that cows in third parity and greater experienced hypoglycemia at the end of 7 d of sodium 

salicylate treatment, even though they also had increased 305-d milk production. The SAL 

treatment regimen in the current experiment did not induce the same response, possibly because 

of the shorter treatment window. The elevation in blood glucose after meloxicam treatment in older 

cows in the current study is unique in the literature. Blood glucose was not measured in every 

experiment, and Newby et al. (2013) observed no changes in glucose levels. Unlike in the current 

experiment, BHB levels increased after treatment with sodium salicylate in Farney et al. (2013a), 

consistent with the hypoglycemia reported in that paper. Although there were no differences 

between CON and either NSAID treatment in the current experiment, SAL and MEL groups 

differed in BHB concentration, suggesting subtle differences in responses to different NSAID 

treatments. The failure to demonstrate a consistent pattern of blood metabolites between MEL and 

SAL would seem to indicate that the differences observed in milk production are due to something 

beyond simple transition health, perhaps a programming effect. Paraoxonase did not differ 

between treatments (P = 0.15; Figure 2.2D), although surprisingly, haptoglobin levels were 

elevated in SAL cows compared with CON (P = 0.02), with levels in MEL being intermediate 

(Figure 2.2C). Proinflammatory eicosanoids were elevated 7 d following the cessation of NSAID 

treatment in the study reported by Farney et al. (2013a). Those authors attributed this to a 

“rebound” effect of the inflammatory response after the antiinflammatory agent was removed. 

Though there was no interaction between treatment and time for haptoglobin or paraoxonase in 

the current study, it is possible that the “homeostatic target” for the inflammatory response 

postulated by these authors contributed to the differences in haptoglobin levels. It is important to 

recognize that not all metabolic changes may have been captured in the sampling time selected for 
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the current experiment, and it may be advisable in future studies to monitor blood metabolites for 

longer than the 7-d posttreatment period chosen in the current experiment. 

We detected a tendency for CON cows to leave the herd more quickly than MEL cows 

over the first 365 d postenrollment (P = 0.06; 21 vs. 13 gone by 365 d, Figure 2.3A). There was a 

tendency for CON to differ from MEL in “other disease” incidence (P = 0.09), a category that 

includes periparturient metabolic disorders, as only 2 cows in MEL were removed for this reason, 

compared with 8 cows in CON and 6 cows in SAL. No other statistical differences or tendencies 

were detected for other culling categories (P > 0.1; data not shown). Interestingly, no SAL cows 

were culled for low milk production, although 4 and 3 cows left the herd for this reason from CON 

and MEL groups, respectively. The incidence of culling due to mastitis was similar across 

treatment groups, with 2, 1, and 4 cows culled for mastitis in CON, MEL, and SAL treatments, 

respectively, suggesting that observed treatment effects on SCS dynamics (Figure 2.1C) did not 

translate into different clinical mastitis outcomes. We observed no difference between treatments 

for the time to pregnancy (P = 0.68; Figure 2.3B), and no differences in first-service pregnancy 

rate (P > 0.78; 21.3% overall). No differences were observed in BCS (P = 0.93, Figure 2.3C), and 

there was no interaction between treatment and time (treatment × time: P = 0.76).  

Few studies have directly analyzed the long-term effects of NSAID administration in the 

transition period on reproductive performance. Those that have focused on the transition period 

have generally investigated the use of NSAID as a therapeutic treatment for metritis. One concern 

regarding NSAID treatment too soon after calving is that the incidence of retained fetal membranes 

could be elevated; however, evidence suggests that its use does not increase the percentage of cows 

with retained placenta following meloxicam administration, even immediately after calving 

(Newby, 2014). Amiridis et al. (2001) demonstrated that cows treated for metritis with flunixin at 
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5 to 8 DIM had shorter intervals to first estrous, and uterine involution occurred more rapidly in 

these cows. Priest et al. (2013) reported that cows with subclinical metritis responded to treatment 

with the NSAID carprofen at 21 to 31 DIM with increased pregnancy rates 4 wk after the planned 

start of mating, whereas cows with normal to moderate uterine pathology did not respond in this 

way to NSAID. Alternatively, Drillich et al. (2007) reported no difference in first-service 

conception rate in cows with metritis that received flunixin plus an antibiotic compared with an 

antibiotic alone. When carprofen was administered after a voluntary waiting period, other 

researchers have reported no effect of carprofen on reproduction when administered 14 to 16 d 

after insemination (von Krueger and Heuwieser, 2010) or both before and after insemination 

(Heuwieser et al., 2011). Other researchers have shown no benefit of flunixin in combination with 

timed insemination (Rabaglino, 2010). When meloxicam was delivered intramuscularly at various 

time points surrounding breeding and throughout pregnancy, no differences in reproductive 

performance were observed (Hirsch and Philipp, 2009). Considering the positive effects of NSAID 

treatment on reproduction that other authors have observed, it is possible, if an NSAID effect is 

more potent in cows with metritis, that the number of cows with uterine infections was inadequate 

to detect a treatment effect in the current experiment. 

In conclusion, early-lactation treatment with NSAID from 2 different classes increased 

whole-lactation milk yield by 7 to 9%, with only a 3-d treatment window. When possible, NSAID 

effects should be recorded throughout the entire lactation, as treatment differences may be delayed 

and not immediately apparent following administration, such as in the current experiment. 

Furthermore, the tendency for MEL to delay the mean time to removal from the herd points to a 

fruitful area of investigation for future research. 
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Figure 2.1 Whole-lactation milk responses following early-lactation treatment with placebo 

(CON), meloxicam (MEL), or sodium salicylate (SAL). 

 

Treatments were administered for 3 d beginning 12 

to 36 h postpartum, and values are means ± SEM. 

(A) Daily milk yield data were compiled by week 

and analyzed with repeated measures (pooled SEM 

= 2.4 kg/d). *NSAID treatments differ from CON (P 

< 0.05, n = 51). (B) 305-d mature-equivalent 

component yields were analyzed in a model that 

accounted for genetic effects. *Differs from CON (P 

< 0.05, n = 39–42). (C) Individual test-day SCS data 

were modeled to account for DIM and cow (n = 49–

50). Treatment interacted with DIM to influence 

SCS, due to a different treatment × DIM coefficient 

for MEL versus SAL (P = 0.02). As an example, the 

equation for SAL was SCS = 1.27 + 0.0032 × DIM 

+ 0.0000378 × (DIM − 137.9)2. 
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Figure 2.2 Plasma constituent responses following early-lactation treatment with placebo 

(CON), meloxicam (MEL), or sodium salicylate (SAL). 

 

Treatments were administered for 3 d beginning 12 to 36 h postpartum. Unless otherwise noted, 

values represent the overall mean (±SEM, n = 50–51) across samples collected at 3 and 10 DIM, 

and means with different letters (a, b) differ (P < 0.05). (A) Plasma glucose concentration was 

increased by MEL in parity 3+ cows. (B) Treatment interacted with time to alter plasma BHB 

concentration. *SAL differs from MEL at d 7 post-treatment (P = 0.02). (C) Plasma free fatty acids 

concentration was not altered by treatment, but SAL increased haptoglobin concentration 

compared with CON. (D) Plasma paraoxonase activity was unaltered by treatment. 
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Figure 2.3 Survival analysis and BCS responses following early-lactation treatment with 

placebo (CON), meloxicam (MEL), or sodium salicylate (SAL). 

 

Treatments were administered for 3 d beginning 12 

to 36 h postpartum (n = 51). (A) Retention in the 

herd by treatment; 30, 38, and 35 cows remained in 

the herd at 365 d posttreatment for CON, MEL, and 

SAL, respectively. MEL tended to delay removal 

from the herd relative to CON (P = 0.06, Wilcoxon 

chi-squared test). (B) Pregnancy survival analysis 

showed no effect of treatment on mean time to 

pregnancy (P > 0.78). +Cows removed from the 

herd were censored from analysis. (C) BCS was 

evaluated on d 3 of treatment and approximately 2, 

5, and 8 mo posttreatment. No treatment × time 

interaction was detected (P = 0.76), and values 

represent the overall means (±SEM, n = 50–51). No 

treatment effect was detected (P = 0.93). 
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Chapter 3 - Effect of early postpartum treatment of dairy cows with 

sodium salicylate on long-term milk, intake and blood parameters 

A. J. Carpenter, C. M. Ylioja, L. K. Mamedova, B. J. Bradford 

 

 ABSTRACT 

Previous research has shown that cows who receive treatment with non-steroidal antiinflammatory 

drugs (NSAID) after calving may have increased milk yield after early lactation, resulting in 

greater 305-d milk production. It has not been demonstrated whether this increased production is 

associated with greater feed intake following the first 3 weeks of lactation. In this experiment, 

daily feed intake and milk yield were measured for 56 cows over the first 120 days in milk. Cows 

in their second parity and greater were blocked by parity and alternately enrolled into 1 of 2 

treatments 12-36 h after calving, either 3 daily drenches of water (CON) or 3 daily drenches of 

similar volume of water containing 125 g of sodium salicylate (SAL). Cows were housed in 

individual stalls to monitor DMI. Blood samples were collected before calving and on the last day 

of treatment, as well as at 7, 11, 14, 18, 21, 35, 49, 63, 77, 91, 105, and 120 DIM. Treatment with 

SAL did not affect 305-d milk, fat, or protein yields, daily milk yield or components, ECM, FCM, 

or DMI (P > 0.10); however, a significant interaction between parity and DMI was observed (P = 

0.03), where second parity cows had decreased intake while no differences were observed in older 

cows. This resulted in a tendency for a parity by treatment interaction on milk yield:DMI (P = 

0.08). Similary, no main effects of treatment were observed for glucose, BHBA, or FFA (P > 0.10), 

but there were significant interactions between treatment and parity for glucose, BHBA, and 

insulin (P < 0.05). Older cows had greater plasma glucose and insulin concentrations and 

decreased plasma BHBA following SAL but no differences were observed in second parity 
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animals. There was a tendency for SAL to increase insulin across all parities (P = 0.08). These 

alterations in glucose and insulin resulted in a tendency for a treatment interaction with the Revised 

Insulin Sensitivity Check Index and time (P = 0.08). Feeding behavior was also altered following 

SAL administration, with treatment resulting in a greater number of daily meals and greater 

average meal weight (P = 0.03), as well as a tendency for a longer meal length for SAL (P = 0.10). 

A tendency for treatment by week interaction for inter-meal interval was observed (P = 0.06), as 

was a significant parity by treatment interaction for average meal weight (P = 0.04). Overall, SAL 

had a prolonged programming effect on the first 120 DIM, with responses being largely dependent 

on parity. 

 

 INTRODUCTION 

The transition period—defined as 3 weeks prior to and 3 weeks following parturition in 

dairy cattle—is notorious for its potential pitfalls and challenges to dairy farm management. In 

addition to the event of parturition itself, milk production requires an enormous amount of energy, 

resulting in a vast shift in metabolism (Bell, 1995). As a result of numerous metabolic, dietary, 

and social pressures, early lactation dairy cattle are prone to a plethora of metabolic disorders. 

Metritis, retained placenta, and excessive negative energy balance (Staples et al., 1990) can lead 

to reproductive failures in the ensuing lactation. Therefore, a successful lactation is dependent on 

a successful transition period. 

A growing body of research indicates that systemic metabolic inflammation is elevated in 

dairy cows at parturition and that this inflammation may play a role in the development of 

metabolic disorders during the transition period (Bradford et al., 2015). Furthermore, inflammation 

has been linked to negative production outcomes (Bionaz et al., 2007; Bertoni et al., 2008; Yuan 
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et al., 2013). However, it is not fully understood what role inflammation plays in the early lactation 

dairy cow. 

Farney et al. (2013b) demonstrated that administration of the nonsteroidal 

antiinflammatory drug (NSAID) sodium salicylate (SS) increased 305-d milk production. 

Similarly, Carpenter et al. (2016) showed that not only was 305-d milk yield increased when cows 

received NSAID treatment, but that weekly milk yields were also elevated in these cows. 

Interestingly, Farney et al. did not detect a difference in milk production during the first 21 days 

of milk production, and Carpenter et al. demonstrated that elevated milk production due to NSAID 

treatment did not occur until 7 weeks in milk, with a tendency for treatment effects by 4 weeks. 

Thus, the fact that Farney et al. did not detect a difference in feed intake in the 2 weeks following 

SS administration is not surprising, since this milk production response appears to be delayed. 

Carpenter et al. performed their experiment on a commercial dairy, and so it is unknown whether 

feed intake was also effected by NSAID treatment and to what extent. 

The objective of the current experiment was to monitor feed intake, production efficiency, 

and blood parameters on dairy cows who received SS treatment following calving. Sodium 

salicylate was administered according to the protocol of Carpenter et al. (2016), and cows were 

monitored up to 120 days following calving. 

 

 MATERIALS AND METHODS 

 Animals and treatments 

All experimental procedures were approved by the Kansas State University Institutional 

Animal Care and Use Committee. Multiparous Holstein cows (n = 28/treatment) were enrolled on 

this study between January 24, 2014 and December 24, 2014. Farney et al. (2013b) demonstrated 
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that SS did not increase 305-d milk production in cows less than their third parity, so no cows in 

their first lactation were enrolled. A total of 30 cows were in their second parity, whereas 16 cows 

were in their third parity and greater. Cows were blocked according to parity and sequentially 

assigned to either SS drench (SAL) or water drench (CON) at calving. Treatment drenches were 

given according to the procedure of Carpenter et al. (2016). In short, oral drenches were given 

once daily for 3 consecutive days between 1400 and 1600 h, beginning 12-36 h after parturition. 

Cows assigned to SAL treatment received 125 g/d of SS dissolved in approximately 375 mL of 

water, while CON animals received an equal volume of water without SS. 

All animals were housed at the tie-stall facility at the Kansas State University Dairy 

Teaching and Research Center from calving to 120 DIM. Some cows were removed from the study 

due to injury or health events; if they were on study for at least 90 d, they were included in analyses. 

A total of 4 cows, all in their second parity, were excluded. Of these, 2 were suspected to have 

ruptured colonic ulcers (n = 1/treatment), and 2 experienced injury (n = 1/treatment). In total, 52 

cows remained on study for the full 120 d. 

Feed delivered and refusals were measured daily to determine feed intake. Cows were fed 

twice daily at 0630 and 0530 h. Samples of TMR were collected weekly. Ingredient composition 

of the ration is presented in Table 3.1. Cows were milked 3 times daily (0000, 1000, and 1700 h), 

and milk weights were recorded at each milking. Milk samples were collected twice weekly. 

Feeding behavior was measured on all cows in their third parity and greater (parity 3+) and 26 

second parity cows by feed bunks suspended from load cells for continuous monitoring of bunk 

weight. Feeding behavior variables (meal weight, meal length, number of meals/d, and intermeal 

interval) were determined as described by Yuan et al. (2015). 
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 Sampling and analysis 

Blood samples were collected via the coccygeal vein on the first and last day of treatment 

as well as day 7, 11, 14, 18, 21, 35, 49, 63, 77, 91, 105, and 120 following calving prior to the 

morning feeding. Two tubes (approximately 14 mL each) were used for each blood sample time 

point; one tube contained potassium EDTA and the other containined potassium oxalate with 

sodium fluoride as a glycolytic inhibitor (Vacutainer; Becton, Dickinson and Co., Franklin Lakes, 

NJ). Plasma was collected and stored at -20°C until analyzed for glucose by a colorimetric kit (kit 

#439–90901; Wako Chemicals USA Inc.), NEFA using an enzymatic colorimetric procedure 

(NEFA-HR; Wako Chemicals USA Inc., Richmond, VA), insulin using a bovine-specific 

sandwich ELISA (no. 10-1201-01; Mercodia AB, Uppsala, Sweden) with a detection limit of 0.025 

pg/μl, and BHBA using a commercial kit (kit #H7587–58; Pointe Scientific Inc., Canton, MI). 

Haptoglobin was measured by the method of Cooke and Arthington (2012), a colorimetric 

technique that uses differences in peroxidase activity to measure haptoglobin-haemoglobin 

complexing. Absorbance was measured with a spectrophotometer (PowerWave XS; BioTek 

Instruments Inc., Winooski, VT) and calculations were performed using Gen5 software (BioTek 

Instruments Inc.). Insulin sensitivity was estimated using the Revised Quantitative Insulin 

Sensitivity Check Index (RQUICKI) as described by Holtenius and Holtenius (2007) using the 

equation RQUICKI = 1/[log(Gb) + log(Ib) + log(FFAb)], where Gb is the blood plasma 

concentration of glucose, Ib is the blood plasma concentration of insulin, and FFAb is the blood 

plasma concentration of NEFA. 

Milk samples were analyzed for concentrations of fat, true protein, lactose (B-2000 

Infrared Analyzer; Bentley Instruments Inc., Chaska, MN), urea nitrogen (MUN 

spectrophotometer; Bentley Instruments Inc.), and somatic cells (SCC 500, Bentley Instruments 
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Inc.; Heart of America DHIA, Manhattan, KS). Samples of TMR were pooled in two month 

intervals and analyzed for chemical composition with near infrared reflectance spectroscopy by 

Dairy One (Ithaca, NY). Average chemical composition is reported in Table 3.1. 

 

 Data analysis 

Daily milk yield, DMI, and feeding behavior variables were averaged by week for analysis. 

Somatic cell linear score (SCLS) was determined through the following equation: log2(SCC/100) 

+ 3 (Shook, 1993). Energy corrected milk yield (ECM) was calculated as (0.327 × milk yield) + 

(12.95 × fat yield) + (7.65 × protein yield) (Dairy Records Management Systems, 2014), and fat 

corrected milk yield (FCM) was calculated as (0.432 × milk yield) + (16.216 × fat yield) (NRC, 

2001). Insulin and BHBA data were log transformed for analysis, and reported means are back-

transformed. The BOXPLOT procedure of SAS 9.3 (SAS Institute, Inc., Cary, NC) was used to 

identify extreme outliers for milk, DMI, and feeding behavior variables. Outliers were identified 

by the procedure as being greater than 1.5 times the interquartile range above the 75th percentile, 

or less than 1.5 times the interquartile range below the 25th percentile. 

 Data were analyzed using PROC MIXED in SAS with the main effects of treatment, parity, 

time (week or day), the interaction between treatment and time, and the interaction between 

treatment and parity. Cow was included as a random effect, and repeated measures were used with 

an autoregressive covariance structure, selected based on the Bayesian information criterion value. 

Plasma variables were analyzed using the pre-treatment value as a covariate. Daily milk yield and 

DMI were analyzed with pre-treatment haptoglobin as a covariate for lactation milk, fat, and 

protein yields, effects of being enrolled on other research trials following the current experiment 



 

83 

were tested and removed if P > 0.20. Significance was declared at P ≤ 0.05, and tendensies were 

identified at 0.05 < P ≤ 0.10. 

 

 RESULTS 

 Milk production and feed intake 

Data for daily milk and feed intake are presented in Table 3.2. Whole-lactation milk, fat, 

and protein yields were not affected by treatment (P ≥ 0.39) or the interaction between treatment 

and parity (P ≥ 0.20). The main effect of week was significant for daily milk yield, ECM, FCM, 

DMI, milk yield:DMI, ECM:DMI, SCC, and all components (P < 0.01) with the exception of 

MUN concentration which only showed a tendency (P = 0.07). Daily milk production was not 

affected by treatment (P = 0.79), and no treatment by parity or treatment by week interactions were 

detected (P ≥ 0.82). Similarly, milk fat, protein, lactose, and MUN percentage was not affected by 

treatment (P ≥ 0.18) or by treatment interactions with parity or week (P ≥ 0.16). As a result, there 

were no effects observed due to SAL (P ≥ 0.63) or interactions with SAL and week or parity (P ≥ 

0.35) on fat, protein, or lactose yield; ECM and FCM were also unaffected (treatment: P ≥ 0.79; 

treatment by parity: P ≥ 0.93; treatment by parity: P ≥ 0.76). No effects of treatment were observed 

for SCC or somatic cell linear score (treatment: P = 0.63; treatment by week: P = 0.65; treatment 

by parity: P = 0.63). Dry matter intake was not affected by SAL (P = 0.70), but there was a 

significant interaction of parity and treatment (P = 0.03)—with no DMI response observed in older 

cows but a decrease in feed intake in second parity cows (Table 3.2)—although the interaction 

between treatment and week was not significant (P = 0.75). Due to the lack of any observable 

effect on daily milk production, this change in DMI resulted in a tendency for an interaction 

between treatment and parity for milk yield:DMI (P = 0.08) and a significant interaction between 
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treatment and parity for ECM:DMI (P = 0.02), although treatment was not significant for either of 

these parameters (P ≥ 0.33; treatment by week: P ≥ 0.46). Second-parity cows had numerically 

greater milk yield:DMI after SAL administration, while older cows receiving SAL had numerically 

decreased milk yield:DMI. Meanwhile, cows receiving SAL tended to have decreased ECM:DMI 

than CON, but only in older cows (P = 0.06). 

 

 Blood parameters 

Results of plasma analysis are shown in Table 3.3. Predictably, the effect of time was 

significant for plasma glucose, FFA, BHBA, insulin, and haptoglobin (P < 0.01); however, it is 

interesting to note that RQUICKI only showed a tendency to change due to time (P = 0.10). Pre-

treatment plasma concentrations were tested as covariates for all plasma variables and were found 

to be significant predictors of plasma insulin, and haptoglobin (P < 0.01), while pre-treatment 

concentrations of glucose, FFA, and BHBA were not significant (P ≥ 0.11). Glucose was not 

affected by treatment (P = 0.11), and there was no interaction between treatment and day (P = 

0.90), although there was a tendency for an interaction between treatment and parity (P = 0.06), 

with glucose concentrations being elevated due to SAL but only in older cows. A similar pattern 

was observed for BHBA, with lower plasma concentrations observed due to SAL treatment, but 

again only in parity 3+ (treatment: P = 0.31; treatment by day: P = 0.94; treatment by parity: P = 

0.02). Insulin tended to differ between treatments (P = 0.08), with a significant interaction between 

insulin and parity (P = 0.04), but no interaction observed between treatment and time (P = 0.73). 

Once again, this treatment and parity interaction resulted from the fact that second parity animals 

were not affected by SAL while older cows had elevated insulin concentrations when treated with 

SAL. There was no effect of treatment or treatment interactions on FFA (treatment: P = 0.70; 
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treatment by day: P = 0.81; treatment by parity: P = 0.28). Interestingly, although RQUICKI did 

not differ due to treatment (P = 0.14) or its interaction with parity (P = 0.21), a significant treatment 

by day interaction was observed (P = 0.05; Figure 3.1). Haptoglobin was measured from samples 

collected up to 21 days on study; no differences due to treatment were observed (treatment: P = 

0.54; treatment by day: P = 0.80; treatment by parity: P = 0.78). 

 

 Feeding behavior 

Results for the main effect of treatment on feeding behavior measurements are reported in 

Table 3.4. The number of meals in a day was lower for cows receiving SAL treatment (P = 0.03), 

and there was a tendency for a longer meal length as well as higher meal weight for SAL (P = 

0.10). Inter-meal interval (IMI) did not differ between groups (P = 0.18). The main effect of week 

was significant for all measurements (P < 0.01), and the main effect of parity was significant for 

meal count and IMI (P ≤ 0.04), but not meal weight and length (P ≥ 0.14; Table 3.4). There was a 

tendency for treatment by week interaction for IMI (P = 0.06; Figure 3.2), and a significant parity 

by treatment interaction for meal weight (P = 0.04; Table 3.4). 

 

 DISCUSSION 

 Comparison of milk production response with previous NSAID research 

The treatment protocol for SAL administration was based on the procedure of Carpenter et 

al. (2016) as milk production was significantly increased after SS treatment following calving in 

that study. It was considered to be a superior treatment method to that used by Farney et al. (2013b) 

due to its ease of administration; in the Farney experiment SS was administered via the drinking 

water for the first 7 DIM, whereas in the Carpenter experiment, SS was given once daily for 3 d. 
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Despite both experiments reporting a response in milk production, Farney et al. (2013b) showed a 

greater increase in 305-d milk production than Carpenter et al. (2016); however, if the response of 

second and third parity cows are averaged from the Farney experiment, it appears numerically 

similar to Carpenter. Farney reported that there was only a response in milk production in cows in 

their third parity and greater (n = 15). In the current experiment, 16 cows in their third parity and 

greater were enrolled. It is possible that there was not a large enough cohort of older cows to detect 

a statistical difference in daily milk production when the protocol of Carpenter et al. was used.  

Another potential difference between the current study and that of previous experiments is 

the level of inflammation that cattle experienced at calving. Haptoglobin levels were measured to 

estimate the level of inflammation up to 21 DIM (Table 3.3), and these levels reported are less 

than those reported by Carpenter et al. (2016), although measurements in that experiment were 

taken closer to the time of calving. On the last day of treatment and d 7 in the current experiment—

approximately equivalent to the time points monitored by Carpenter—haptoglobin levels averaged 

292 ± 42.6 and 209 ± 43.3 μg/mL, respectively, across treatment. This is much lower numerically 

than the levels of haptoglobin exceeding 600 μg/mL in the study published by Carpenter. The 

concentrations observed in the current study fall within the range of the lowest quartile reported 

by McCarthy et al. (2016), and the concentrations reported by Carpenter fall within the second 

lowest quartile. McCarthy et al. reported that cows in the second lowest quartile of inflammation 

had different production responses following calving that those in the lowest quartile, having 

depressed DMI and a treatment by time interaction indicating a tendency for decreased milk yield 

in early lactation. Farney et al. (2013b) did not report a similar metric of inflammation for 

comparison across these studies. It is possible that the level of response observed by Carpenter 

was greater because baseline inflammation was higher in these cows. To investigate this 
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hypothesis, milk yield and DMI were analyzed with pre-treatment haptoglobin as a covariate in an 

attempt to see if differences in these variables could be detected when inflammatory response was 

used to account for some variation in the model; however, treatment remained an insignificant 

predictor (P ≥ 0.91). Pre-treatment haptoglobin concentration was tested as a predictor of daily 

milk yield and DMI response to SAL but was not significant (P ≥ 0.19); similarly, the interaction 

between pre-treatment haptoglobin and treatment did not affect milk yield or DMI (P ≥ 0.68). 

Numerically, haptoglobin concentrations levels were lower in SAL than CON (194.6 ± 27.83 vs. 

171.7 ± 24.58 μg/mL for CON vs. SAL, respectively; Table 3.3). Carpenter et al. reported that 

haptoglobin levels were actually greater in cows receiving SS treatment than control. 

Carpenter et al. (2016) speculated that differences in milk production response to NSAID 

treatment observed between experiments was due at least in part to differences in the time period 

that milk production was measured. They reported that no difference in milk production response 

due to NSAID treatment was detected in their experiment until 7 weeks into lactation. Despite the 

extended sampling time period that daily milk production was measured in the current experiment, 

no differences in milk production responses were detected. Other authors have reported that daily 

milk production did not differ following NSAID treatment (Priest et al., 2013; Mainau et al., 2014; 

Meier et al., 2014). Among these reports, the current experiment stands out in the length of time 

that daily milk production was monitored. 

Differences in milk components following SAL administration in previous studies have 

been reported in terms of component yield, not percentages. Farney et al. (2013b) demonstrated 

that 305-d fat and protein yields were increased or tended to increase in cows in their third lactation 

and higher following SS treatment, largely driven through increased 305-d milk production. Milk 

fat yield—but not protein or lactose yield—was increased in the third week of lactation, although 
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differences in component percentages were not reported (Farney et al., 2013a). Conversely, 

Carpenter et al. (2016) reported that 305-d fat yield did not differ following SS treatment in early 

lactation, although protein yield was elevated compared to control. It is not surprising in the current 

experiment that there were no differences observed in component yield, considering that the same 

305-d milk response reported by previous authors was not observed here. Although there was a 

significant interaction between treatment and DIM for meloxicam vs. SS treatment reported by 

Carpenter, no differences or interactions in SCC due to treatment were detected between SS and 

control animals in that study. This is consistent with the results of the current experiment. No 

information regarding SCC was reported by Farney et al. (2013a, b). 

 

 Differences in response to SAL as a function of parity 

Overall in the current experiment, SAL appeared to have a positive effect on metabolism 

in older cows, with increased plasma glucose and insulin concentrations, and decreased BHBA 

and RQUICKI in this group. This is in contrast with Farney et al. (2013a). These authors reported 

hypoglycemia in cows in their second parity and higher on day 7 of lactation, which corresponded 

to the last day of SS in their treatment protocol, whereas those in their first parity did not experience 

the same drop in blood glucose concentration in response to SS; notably, first parity cows also 

tended to have a decrease in 305-d milk production (Farney et al., 2013b). This corresponded with 

a tendency for decreased plasma insulin on day 7 in the SS treatment group, as well as significantly 

increased plasma BHBA on day 14 and 21, higher FFA on day 21, and increased RQUICKI on 

day 7. Carpenter et al. (2016) also failed to observe any parity interactions or the same negative 

effects on metabolism reported by Farney et al. (2013a) when they utilized a treatment protocol 

similar to that used in the current experiment. In their experiment, SS did not result in any changes 
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in glucose, BHBA, or FFA compared to control animals, and no parity interactions between SS 

and control were detected. Nevertheless, these authors did observe a similar increase in milk 

production as Farney et al. (2013b). The adverse metabolic effects observed by Farney et al. 

(2013a) may have at least in part been a result of the extended treatment period (7 d) compared to 

Carpenter et al. and the current study (3 d). 

Our results indicate that use of NSAID such as SS may help to mitigate the negative effects 

of age on metabolism reported by Lee and Kim (2006) and van Dorland et al. (2009) in the absence 

of a milk production response. Elevated plasma glucose might indicate increased glucose entry 

into the blood, decreased removal from the blood into tissues, or some combination of both, so it 

is difficult to determine the exact cause of higher plasma glucose in older cows without 

speculation. However, with the corresponding decrease in BHBA, it would appear that these cows 

were in a more favorable metabolic state. Decreased insulin sensitivity in SAL may have caused 

the observed increase in plasma glucose by slowing its uptake into tissue, promoting 

gluconeogenesis in the liver, or a combination of these (Aschenbach et al., 2010); however, 

inflammation is often linked to blunted insulin sensitivity (Odegaard and Chawla, 2013), and it 

follows that antiinflammatory treatment would result in higher RQUICKI as observed in Farney 

et al. (2013a). Therefore, the mechanism wherein SAL would decrease insulin sensitivity is 

unclear. A depressed responsiveness to insulin is often observed in non-mammary tissues in early 

lactation as a mechanism of increasing nutrient partitioning toward milk production (De Koster 

and Opsomer, 2013). Bjerre-Harpøth et al. (2012) showed that early lactation dairy cattle have 

increased RQUICKI in response to nutrient restriction, while cows in mid and late lactation do not 

demonstrate the same coping mechanism. The logical inverse of this finding is that in the absence 

of a difference in milk production, a depressed responsiveness to insulin in early lactation could 
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possibly be an indication of more available nutrients. Therefore, the decreased insulin sensitivity 

observed in response to SAL in the current experiment may be due at least in part to favorable 

metabolic conditions. These alterations in blood metabolites in parity 3+ occurred in spite of the 

fact that no differences in DMI were reported for this group (P = 0.13). Yet it should still be noted 

that average DMI for cows in party 3+ was numerically greater after SAL administration, which 

may ultimately be the cause for differences in plasma metabolite concentrations (Table 3.2). 

Despite the lack of milk production response in the current experiment, it is possible that 

decreased efficiency in older cows may have positive health benefits, particularly regarding 

transition disorders. Lee and Kim (2006) and van Dorland et al. (2009) have reported that higher 

parity cattle often have a less favorable metabolic status in early lactation, so decreased efficiency 

could potentially help prevent disorders associated with negative energy balance. The number of 

animals experiencing metabolic disorders or health incidents was not analyzed in this study due to 

the relatively small number of animals. Administration of the NSAID meloxicam decreased the 

likelihood of leaving the herd in commercial dairy cattle compared to control (Carpenter et al., 

2016); however, in that experiment, SS did not alter the risk of leaving the herd. In the current 

experiment, SS increased plasma glucose concentration and decreased plasma BHBA in older 

cows (see below and Table 3.3), indicating potentially positive effects on metabolism; however, 

plasma FFA was not affected. Alterations in metabolism following SAL may have resulted in 

differences in feed efficiency in second lactation cows (Table 3.2), while in older cows these 

alterations manifested as differences in blood metabolites, resulting in healthier metabolic profiles. 

For example, it could be speculated that some mechanism that resulted in increased plasma glucose 

concentration in older animals may have also occurred in second parity cows, but no differences 
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were detected between treatment groups in younger cows because of inadequate glucose 

precursors due to lesser DMI. 

In the current experiment, parity was a significant predictor of daily meal count and IMI 

(Table 3.4). In general, second parity cows consumed fewer meals and had a longer IMI than cows 

in parity 3+. Differences in feeding behavior due to parity have been reported previously (Dado 

and Allen, 1994, Azizi et al., 2009); however, there is a lack of examples in the literature where 

second parity cows were compared to older cows. Rather, previous research has compared 

primiparous and multiparous animals. Dado and Allen (1994) did not observe statistical 

differences between primiparous and multiparous cattle for any feeding behavior responses 

measured. In comparision, Azizi et al. (2009) reported that multiparous cattle had a decrease in 

meal frequency and time spent eating, and an increase in meal size compared to primiparous cows, 

with significant day by parity interaction for meal frequency and size from 2-5 weeks in lactation. 

Differences between the two experiments are likely due at least in part to differences in sample 

size, as Dado and Allen (1994) utilized 6 primiparous and 6 multiparous cows, while Azizi et al. 

(2009) enrolled 23 primiparous and 47 multiparous cows in their experiment. 

Some of the variable responses to SAL between second parity cows and older cows may 

be due to differences in gut fill. Additionally, van Dorland et al. (2009, 2014) reported differences 

in metabolism between older and younger groups of multiparous cows. Younger cows had lower 

BHBA and free fatty acid levels than cows in their fourth parity and greater (van Dorland et al., 

2009), and in another study, cows in their fourth parity and greater had lower mRNA abundance 

for genes related to fatty acid synthesis (ATP citrate lyase and glycerol-3-phosphate 

actyltransferase) combined with higher abundance for hydroxybutyrate dehydrogenase 2, which is 

involved with ketone body synthesis (van Dorland et al., 2014). This may indicate greater rates of 
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oxidation occurring in the older cows. Lower rates of propionate production due to SAL may help 

older cows compensate for this increased oxidation, which can act as a satiety signal (Allen et al., 

2009), and allow them to still increase their feed intake and alter feeding behavior (see below). 

 

 Feed intake and feeding behavior 

These changes in feeding behavior may be related to alterations in rumen function due to 

SAL. In humans, NSAID use has been associated with differences in the gut microbiome (Rogers 

and Aronoff, 2015). Previous research in our lab has indicated that SS affects rumen 

microorganisms when administered directly (Carpenter et al., 2015b) and has a sustained effect on 

the fermentative abilities of ruminal microbes following administration to heifers (Carpenter et al., 

2015a).  When administered directly to batch cultures (Carpenter et al., 2015b), SS decreased dry 

matter disappearance and increased final pH, indicating negative effects on ruminal fermentation. 

When batch cultures were performed with rumen fluid from heifers who did or did not receive oral 

drenches of SS (Carpenter et al., 2015a), dry matter disappearance was decreased 13 and 35 d 

following administration. This result was seen despite the fact that no treatments were 

administered in vitro to the cultures; the only difference was from treatment administration to the 

animals themselves. Furthermore, the rate of in situ dry matter disappearance was lower in heifers 

who had received SS treatment in this experiment. These results are in agreement with other reports 

of salicylate administration to rumen microbes. Ruiz-Moreno et al. (2015) and Fessenden (2013) 

utilized bismuth subsalicylate in batch and continuous cultures in an attempt to mitigate production 

of hydrogen sulfide. Both authors reported negative effects on rumen fermentation when bismuth 

subsalicylate was administered to ruminal microbes in vitro. To date, no one has investigated the 

effects of salicylates on rumen function in vivo to our knowledge; however, these reports would 
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indicate that an effect of SS on the ruminal microbes in vivo is likely. It also seems likely that the 

alterations in feeding behavior and even feed intake observed in the current experiment may be 

partially explained by changes in the rumen. 

Even in the absence of a milk production response, feed intake tended to be decreased in 

cows in their second parity receiving SAL treatment (P = 0.07; treatment by parity: P = 0.03). This 

was accompanied by alterations in feeding behavior in these cows, as well as in higher parity cows 

on SAL (Table 3.3). There was only a tendency for an effect of SAL on meal weight (P = 0.10), 

although a treatment by parity interaction was apparent, where SAL only affected meal weight in 

older cows, similar to the response observed for DMI. Further research is necessary to fully 

elucidate the in vivo relationship between feeding behavior, feed intake, and the effects of SS on 

the rumen, if these relationships exist. In the current experiment, it is possible that the lower intake 

observed in second parity cows in response to SAL is at least in part due to differences in gut fill. 

If fermentation was inhibited in these animals, their rumens may not have emptied as quickly, 

resulting in increased satiety. While this may explain the differences in intake, it does not account 

for how these cows were still able to maintain the same level of milk production as their CON 

peers. 

While it is possible that SS directly affects feed intake and behavior by altering rumen 

fermentation, it is also possible that this is confounded by secondary effects due to other effects of 

SS. In other words, instead of alterations to the rumen changing feeding behavior, one could predict 

that SS alters feeding behavior, which changes the rumen via differences the rumen environment 

(i.e., salivary buffering, rate of passage, steady state, etc.). This may explain the extended effect 

of SS on the ability of rumen fluid to digest dry matter in vitro observed by Carpenter et al. (2015a). 

It has been speculated that signals from the liver to the brain indicating energy status can alter feed 
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intake and behavior, and one of these proposed signals is AMP-activated protein kinase (AMPK; 

Allen et al., 2005). Salicylates have been shown to directly activate AMPK (Hawley et al., 2012). 

This may be enough to stimulate greater intake and alter feeding behavior, which may influence 

the rumen environment and microbial population for an extended period of time following 

treatment with SS; therefore, the long-term programming effects on ruminal fermentation observed 

by Carpenter et al. (2015a) could be due to alterations in the liver or the brain or both, or even 

some other organ or tissue. Indeed Weimer et al. (2010) demonstrated the importance of the animal 

itself in determining the microbial population of its rumen; even following near-total exchange of 

the contents of the rumen, animal factors eventually guided the microbial population to its original 

state. The microbial population of the rumen and responses of the ruminant itself have an inherent 

“which came first” relationship that is difficult to fully illuminate, and further research is necessary 

to determine the cause of alterations in feed intake and behavior in cows receiving SAL treatment 

in the current experiment. 

It is worth noting that the second bout of decreased insulin sensitivity that SAL cows 

experienced corresponded approximately with the time points of statistical difference between 

SAL and CON on various feeding behavior measurements (Figure 3.1 and Figure 3.2). If 

heightened insulin sensitivity speeds the clearance of fuels from the blood, it would be expected 

that hunger would occur sooner (Allen et al., 2009); therefore, if responsiveness to insulin is 

depressed as it was in SAL cows, it is not surprising that the time between meals would be 

lengthened as was observed here, which would at least in part explain the decrease in daily meal 

count during that time. 

While several authors have compared feeding behavior responses to treatment at various 

time points in lactation, to our knowledge, this is the longest continuously monitored time frame 
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of feeding behavior beginning within 24 h of parturition. Huzzey et al. (2005) monitored feed 

intake of cows from 10 d before to 10 d after calving, reporting that following calving, time spent 

feeding increased by approximately 3.3 min/d for the 10 d. DeVries et al. (2003) monitored feeding 

behavior from early to peak lactation; however, these authors collected data over 3 periods of 8 d 

each (approximately 35, 57, and 94 DIM). The data from the current experiment encompasses 

these time points. Effect of stage of lactation on feeding behavior was also investigated by Friggens 

et al. (1998). Similar to DeVries, these investigators collected feeding behavior in isolated periods 

throughout lactation (4 periods at approximately 6-9, 18-21, 23-26, and 35-38 weeks postpartum). 

The only period in this study overlapping the time frame of the current experiment is the first 

period. DeVries et al. (2003) reported that there were significant differences in daily mealtime, 

meal frequency, and meal duration between the first and second period on their experiment, 

although there were no differences in these measurements between the second and third period. 

This indicates a stabilization or plateau between the second and third periods, which is consistent 

with the data illustrated in Figure 3.2. In contrast, Friggens et al. (1998) did not see any effect on 

feeding behavior due to stage of lactation with the exception of a small but significant decrease in 

time spent feeding in period 4. This could be due to differences in period time points. The first 

period in Friggens’ experiment took place between the first and second period of DeVries, when 

presumably cows may have begun to stabilize in feeding behavior. Furthermore, only 20 cows 

were utilized across 4 treatments by Friggens et al., and these authors noted a high variation in 

feeding behavior, even between animals on the same treatment; therefore, the lack of adequate 

sample size may have masked any differences due to stage of lactation. 

Other authors have investigated the effect of stage of lactation in combination with other 

experimental factors. Several authors have found no effect of stage of lactation on feeding behavior 
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in combination with various other experimental factors (Cassida and Stokes, 1986, Benson et al., 

2001, Bradford and Allen, 2007), possibly due to low numbers of replicates or the choice of DIM 

for comparison or both. Alternatively, Abrahamse et al. (2008) reported that late lactation cows 

(approximately 245 DIM) ate more meals and spent less time eating per day than the same cows 

in early lactation (approximately 61 DIM), with a more pronounced effect in cows on high 

roughage diets. Oba and Allen (2003) also reported that although early and mid-lactation cows 

(approximately 9 vs. 192 DIM, respectively) had the same decreased response to propionate 

infusion, IMI increased in mid-lactation cows but not for those in early lactation. These authors 

hypothesized that IMI was not influenced in early lactation because the high demand for glucose 

by the mammary gland for milk production decreased the proportion of propionate that was 

oxidized in the liver to stimulate satiety, while in mid-lactation the mammary gland has lower 

glucose demand, allowing more propionate to be oxidized. In contrast, in the current experiment, 

SAL increased IMI in mid-lactation, although IMI was lower in early lactation across treatment 

(Figure 3.2), contrary to our hypothesis that SAL decreased propionate production for an extended 

period of lactation. In theory, if DMI was increased in these cows, passage rate would also increase, 

making gut fill less limiting; however, with the corresponding decrease in fermentation, it could 

be that particle size of feed did not decrease fast enough to allow rate of passage to increase as 

much as it would have otherwise. Again, further research is necessary to fully understand these 

interactions, since multiple competing mechanisms following SAL treatment may negate each 

other and mask a nuanced effect of treatment. 
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 CONCLUSION 

This experiment was conducted to determine whether the long-term milk production 

response to early lactation treatment with SS was achieved through differences in DMI. 

Unfortunately, in this experiment, a replication of previous results showing a response in milk 

production in older cows was not achieved (Farney et al., 2013b; Carpenter et al., 2016). Despite 

the failure to demonstrate a change in milk production, subtle differences in feed intake, efficiency, 

metabolism, and feeding behavior were reported. Second lactation cows achieved similar levels of 

milk production following SAL administration as their CON counterparts while consuming less 

feed, resulting in a greater efficiency of milk production in these animals. At the same time, older 

cows in their third parity and greater consumed similar amounts of feed and produced similar 

amounts of milk across treatment groups; however, older cows receiving SAL treatment appeared 

to have a healthier metabolic profile. Alterations in feeding behavior were also observed. These 

may be a result of long-term effects of SAL on the rumen, or it is possible that long-term ruminal 

effects reported previously are a result of these differences in feeding behavior (Carpenter et al., 

2015a). While it remains unclear why no differences in milk production were observed in this 

experiment, further research is necessary to elucidate the mechanisms promoting the differences 

observed in metabolism in response to SAL. 
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Table 3.1 Average composition of diet fed to cows up to 120 DIM.1 

Item  Amount  

  % of diet DM  

Alfalfa hay  19.6  

Corn silage  20.9  

Wet corn gluten feed2   29.3  

Cottonseed  3.8  

Fine rolled corn  15.9  

Expeller soybean meal3  4.9  

Straw  1.5  

Vitamin & mineral mix  4.3  

  %  

 High Mean Low 

Dry matter 53.9 51.2 49.7 

    

  % of DM  

 High Mean Low 

Crude protein 18.7 17.8 16.9 

ADF 23.2 21.2 18.7 

aNDF 36.1 33.2 30.6 

Crude fat 5.3 4.8 4.1 

TDN 73.0 71.3 70.0 

    

  (Mcal/kg)  

 High Mean Low 

NEl 1.63 1.68 1.72 

NEm 1.63 1.70 1.74 

NEg 1.04 1.08 1.12 
1Samples of TMR were collected once per week throughout the experiment and pooled into 2-

month intervals for analysis. The highest and lowest observations are reported, as well as the mean 

of all values across time. 

2Sweet Bran; Cargill, Inc., Blair, NE 

3Soybest; Grain States Soya, West Point, NE 
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Table 3.2 Milk and feed responses in the first 120 DIM following water (CON) or sodium 

salicylate (SAL) drenches in the first 3 DIM (125 g of sodium salicylate/d). 

  Treatment         

 CON  SAL  P-value 

Item Parity 2 Parity 3+   Parity 2 Parity 3+ 

Pooled 

SE Treatment Parity 

Treatment 

× parity 

305-d milk yield 

(kg) 
14,809 14,124  14,589 13,635 426.0 0.39 0.28 0.76 

305-d fat yield 

(kg) 
     518      488       497      522   20.5 0.78 0.91 0.20 

305-d protein 

yield (kg) 
     429      400       416      399   10.3 0.60 0.09 0.65 

Milk yield (kg/d) 52.6 55.3  52.6 54.6 1.37 0.79 0.12 0.12 

Fat %      3.69     3.69      3.69     3.60   0.118 0.66 0.80 0.77 

Protein %      2.82     2.68      2.81     2.77   0.048 0.42 0.09 0.37 

Lactose %      4.96     4.86      4.88     4.89   0.038 0.60 0.26 0.16 

MUN (mg/dL) 15.2 14.6  14.9 13.6 0.44 0.18 0.03 0.50 

Fat yield (kg/d)   1.9   2.0    1.9   2.0 0.06 0.76 0.37 0.84 

Protein yield 

(kg/d)   1.5   1.5    1.5   1.5 0.04 0.89 0.55 0.35 

Lactose yield 

(kg/d)   2.6   2.7    2.5   2.8 0.08 0.99 0.03 0.35 

Energy-corrected 

milk yield (kg/d) 53.6 55.5  52.7 55.6 1.53 0.79 0.16 0.76 

Fat-corrected 

milk yield (kg/d) 54.2 56.6  53.3 56.0 1.62 0.65 0.14 0.93 

DMI (kg/d) 26.2 25.7    25.1* 27.3 0.57 0.70 0.16 0.03 

Milk yield:DMI   2.0   2.2    2.1   2.1 0.06 0.85 0.03 0.08 

ECM:DMI   2.1   2.3    2.1     2.1* 0.05 0.33 0.03 0.02 

SCC 17.2 44.5        22.6 44.3     0.1 0.65 0.01 0.63 

SCLS  0.7   1.2      0.8   1.3     0.1 0.64 0.03 0.91 

*Tended to differ from CON within the same parity (0.05 < P ≤ 0.10). 
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Table 3.3 Blood parameter responses in the first 120 DIM following water (CON) or 

sodium salicylate (SAL) drenches in the first 3 DIM (125 g of sodium salicylate/d). 

  Treatment         

 CON  SAL  P-value 

Itema Parity 2 

Parity 

3+   Parity 2 

Parity 

3+ 

Pooled 

SE Treatment Parity 

Treatment 

× parity 

Glucose (mg/dL) 49.2 42.5  48.4 47.4ǂ   1.47 0.12 0.01 0.06 

FFA (μM)  400.3  417.6   418.4  380.7 25.17 0.72 0.70 0.29 

BHBA (μM)  590.5  755.4   635.5  628.3ǂ   1.05 0.32 0.04 0.02 

Insulin (ng/mL)     0.25     0.19      0.24     0.26* 0.034 0.08 0.16 0.03 

Haptoglobin 

(μg/mL) 200.5 184.3   192.8 148.9 38.03 0.59 0.54 0.72 
aNo significant interactions between treatment and time were detected (P ≥ 0.10). 

*Differs from CON within the same parity (P ≤ 0.05). 

ǂTends to differ from CON within the same parity (0.05 < P ≤ 0.10).  
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Table 3.4 Feeding behavior responses in the first 120 DIM following water (CON) or 

sodium salicylate (SAL) drenches in the first 3 DIM (125 g of sodium salicylate/d). 

  Treatment         

 CON  SAL  P-value 

Itema 

Parity 

2 

Parity 

3+   

Parity 

2 

Parity 

3+ 

Pooled 

SE Treatment Parity 

Treatment × 

parity 

Meal count (d-1) 12.3 14.3  11.8 12.5 0.504 0.03 0.01 0.18 

Meal weight (kg)   4.45   3.78    4.36   4.59* 0.467 0.10 0.30 0.04 

Meal length (min) 19.9 17.9  20.9 20.5 0.807 0.03 0.15 0.34 

Inter-meal interval (h)   1.70   1.45     1.72   1.64 0.078 0.18 0.04 0.29 
aFor effects of time and interactions between treatment and time, refer to Figure 3.2. 

*Differs from CON within the same parity (P ≤ 0.05). 
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Figure 3.1 RQUICKI response over time in the first 120 DIM following water (CON) or 

sodium salicylate (SAL) drenches in the first 3 DIM (125 g of sodium salicylate/d). 

 

*Means differ due to treatment (P ≤ 0.05). 

ǂMeans tend to differ due to treatment (0.05 ≤ P < 0.10). 
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Figure 3.2 Feeding behavior responses over time in the first 120 DIM following water 

(CON) or sodium salicylate (SAL) drenches in the first 3 DIM (125 g of sodium 

salicylate/d). 

 
 

1SAL differs from CON (P ≤ 0.05). 

2Significant effect of week (P ≤ 0.05). 

3SAL tends to differ from CON (0.05 < P ≤ 0.10). 

4Tendency for treatment × week interaction (0.05 < P ≤ 0.10). 

5IMI = inter-meal interval 

*Means differ due to treatment (P ≤ 0.05). 

ǂMeans tend to differ due to treatment (0.05 ≤ P < 0.10).  
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Chapter 4 - Sodium salicylate negatively impacts rumen 

fermentation in vitro and in situ 

A. J. Carpenter, C. F. Vargas Rodriguez, J. A. B. Jantz, and B. J. Bradford 

 

 ABSTRACT 

Administration of sodium salicylate (SS) to cows in early lactation has been shown to have a 

positive impact on whole-lactation milk production but a negative effect on metabolism in some 

cases. The objective of this trial was to determine if this effect was mediated through action on 

rumen microorganisms. The first experiment was designed to investigate the effects of direct 

inclusion of SS into a 24-h batch culture, and the objective of the second experiment was to test 

the fermentative ability of rumen fluid from heifers who had received SS. In the first experiment, 

strained and pooled rumen fluid from 3 heifers was combined in a 2:1 ratio with McDougall’s 

buffer, and 150 mL of the inoculum was added to each flask (n = 5/treatment) with 2.5 g of 

fermentation substrate. Premixed treatment mixtures (1 mL volume) were added to achieve the 

desired final amount of SS (CON1 = 0 mg, LOW = 125 mg, MED = 250 mg, HI = 375 mg). In the 

second experiment, 6 heifers were drenched daily for 3 d, either with 62.5 g of SS (SAL) dissolved 

in water or an equal volume of water (CON2; n = 3/treatment). Rumen fluid was collected from 

each heifer and was not pooled. After being mixed 2:1 with McDougall’s buffer, 150 mL of 

inoculum was added to the fermentation flasks (n = 4/heifer) with 2.5 g of fermentation substrate. 

This experiment was performed the day before SS treatment began and repeated 1, 12, and 35 d 

following the end of the treatment period. An in situ experiment was also performed at each of 

these time points. In the first experiment, inclusion of SS resulted in a decrease in DM 

disappearance (DMD) over 24 h (P < 0.05), as well as an increase in final pH (P < 0.05). There 
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was no difference detected between treatments for gas production in volume, rate, or lag (P ≥ 

0.28). In the second experiment, a significant treatment by day interaction was detected for DMD 

(P = 0.01), where there was no difference in DMD during a 24-h batch culture on the day following 

treatment, although SAL resulted in lower DMD on d 12 and d 35 (P < 0.05). There was no 

treatment effect on final pH of batch culture (P = 0.71) or on any gas production parameters (P > 

0.60). There was a tendency for SAL to result in lower DMD rate in situ on the day following 

treatment (P = 0.07). These results indicate SS administration has a negative effect on rumen 

microorganisms. 

 

 SHORT COMMUNICATION 

During the transition into lactation after calving, dairy cattle experience elevated systemic 

inflammation. The administration of the anti-inflammatory medication sodium salicylate (SS) after 

calving has been shown to increase whole-lactation milk production in cows in their third lactation 

and greater; however, treatment with SS is associated with hypoglycemia following its 

administration in some circumstances. Farney et al. (2013a) reported that cows had decreased 

blood glucose after receiving SS in the drinking water for 7 days following calving, but 305-d milk 

was greater in older cows receiving SS compared to control (Farney et al., 2013b). This effect was 

only observed in cows in their third parity and greater. Conversely, in a follow-up study, Carpenter 

et al. (2016) demonstrated that giving 3 daily doses of SS after calving in multiparous cows did 

not result in the same hypoglycemia, although 305-d milk was still increased . 

Salicylic acid is a compound that functions as a hormone in plants to combat pathogens. It 

has antiinflammatory properties in mammals through its interactions with the NF-ĸB pathway 

(Kopp and Ghosh, 1994). To investigate the effects of blocking inflammation in transition dairy 
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cattle, the first experiment to investigate the effect of SS in transition cattle was published by 

Farney et al. (2013b). In this study, SS (1.95 g/L) was administered through the drinking water to 

cows housed in tie stalls resulting in an average SS intake of 123.3 ± 5.5 g/d for 7 days following 

parturition. The authors reported that 305-d milk production was greater in cows receiving SS 

compared to controls by 21.1% in animals in their third parity and greater; however, primiparous 

cows tended to have decreased milk production. An experiment was performed to replicate these 

results on a commercial dairy farm (Carpenter et al., 2016). In this experiment, SS (125 g/d) was 

administered to multiparous cows via a drench gun once daily for 3 days. Similar to previous 

results, 305-d milk production was greater in cows receiving SS compared to control animals, and 

SS did not affect an animal’s risk of leaving the herd. 

Other forms of salicylate have been shown to be antimicrobial with the ability to depress 

rumen microbial function. Ruiz-Moreno et al. (2015) administered bismuth subsalicylate (BSS) to 

rumen microbes in a batch culture in an attempt to reduce hydrogen sulfide production resulting 

from the fermentation of distiller’s grains. When BSS was included at 2% and 4% of DM, final 

pH was increased, and total VFA concentration was decreased at 4% of DM. When BSS was added 

during continuous culture fermentation at 1% of DM, total VFA concentrations were also 

decreased, while pH and digestion of OM, NDF, and ADF were increased. Similarly, Fessenden 

(2013) reported that when BSS was administered at 0% or 0.5% of diet DM (at 2 different levels 

of sulfur), total VFA concentrations were decreased and pH was increased, and OM digestion was 

also decreased. 

Experiments with human colonic bacteria have also shown an antimicrobial effect of BSS. 

In the stomach, BSS is hydrolyzed to form salicylic acid (Bierer, 1990). Salicylate is believed to 

be partially responsible for the antibacterial effects of BSS. Cornick et al. (1990) reported that 
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although SS was as active as BSS against aerobic bacteria, it was not as active as BSS against 

anaerobic bacteria such as those found in the rumen, although inhibitory activity was still observed. 

León-Barúa et al. (1990) demonstrated that BSS reduced gas production by colonic bacteria in 

vitro to a greater extent than other bismuth containing compounds. Additionally, Manhart (1990) 

showed a dose-dependent response of various strains of bacteria to SS. 

The objective of these experiments was to determine the effect of SS on rumen 

microorganisms. In the first experiment, SS was directly included in a dose-dependent manner on 

batch cultures of rumen bacteria. In the second experiment, SS was administered to heifers, and 

the rumen fluid collected from these animals was tested for its fermentative ability in batch culture. 

 

 Procedures and analysis 

In the first experiment, SS was added directly to batch cultures of rumen fluid at different 

amounts (CON1 = 0 mg, LOW = 125 mg, MED = 250 mg, HI = 375 mg). Rumen fluid was 

collected from 3 heifers, strained through 8 layers of cheesecloth immediately following collection 

and 4 layers of cheesecloth immediately before flocculation, and allowed to flocculate in the lab 

for 15 minutes to remove feed particles and the protozoal fraction prior to pooling. Pooled fluid 

was combined in a 2:1 ratio with McDougall’s buffer, and 150 mL of the inoculum was added to 

each 250-mL flask (n = 5/treatment). Five blank flasks contained inoculum alone, while each 

treated and control flask contained 2.5 g of fermentation substrate (Table 4.1). Before inoculum 

was added to the flasks, 1 mL of premixed treatment mixtures were added to achieve the desired 

final amount of SS. Cumulative gas pressure was measured using the ANKOMRF Gas Production 

System (ANKOM Technology, Macedon, NY). Vessel pressure was recorded at 5 min intervals. 



 

114 

In the second experiment, 6 heifers (n = 3/treatment) were either drenched daily for 3 days 

with either 62.5 g SS in water (SAL) or an equal volume of water (CON2).  Each heifer received 

the same high forage ration (Table 4.2). Four batch cultures were performed as described above 

with the exception that rumen fluid was not pooled and SS was not added to the inoculum such 

that heifer was the experimental unit. Inoculum from each heifer was replicated into 4 flasks with 

2.5 g substrate added, and 2 flasks without substrate functioned as blanks for each heifer. Batch 

cultures were performed the day before the start of treatment, the day following treatment, 7 d after 

the end of treatment, and 3 weeks following the end of treatment. During each batch culture, heifers 

were handled in pairs containing one CON and one SAL animal in an attempt to standardize 

variation due to handling between treatments. 

An in situ experiment was performed in parallel to the second batch culture experiment. 

Immediately following each rumen fluid collection, 2 Dacron bags containing approximately 1 g 

of substrate DM (Table 4.1) were inserted into the rumen of each heifer for each time point. Time 

points before removal of bags from the rumen were 2, 8, 16, 24, and 48 hr. Additionally, 12 bags 

were rinsed under running water and washed with other bags upon removal from the rumen to 

estimate solubility. The 48-hr time point was used to estimate indigestible substrate, while the 

remaining time points were used to estimate rate of substrate degradation in the rumen. 

In both experiments, gas variables—volume, lag, and rate—were estimated using the NLIN 

procedure of SAS, which obtains estimates using nonlinear least squares. The following model 

was used to obtain estimates: 

𝑥 =
v

1 + 𝑒(2−4𝑘(𝑡−𝑙))
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In the above equation v = total volume of gas produced, k = rate of gas production, t = time 

in minutes, and l = lag in gas production. After obtaining estimates, gas production variables were 

analyzed for each experiment as described above. 

Data from experiment 1 were analyzed using the GLM procedure of SAS 9.3 (SAS 

Institute, Inc., Cary, NC) with the amount of SS as the predictive variable and dry matter 

disappearance (DMD), final pH, and the change in pH as dependent variables. Data from 

experiment 2 were analyzed using the MIXED procedure of SAS. Each dependent variable was 

analyzed with its own value on the first day of the experiment (baseline) as a covariate. Besides 

these covariates, the model included treatment with day and treatment by day interactions. The 

random statement contained heifer and replicate within heifer, and repeated measures were utilized 

across days within heifer. 

 

 Outcomes and implications 

In experiment 1, DMD was significantly depressed by inclusion of SS (P < 0.05), with HI 

having a lower DMD than LOW (P < 0.05), and MED intermediate (Table 4.3). Final pH was not 

different between LOW and CON, but MED and HI had higher final pH than CON (P < 0.05; 

Table 4.3). No differences were observed in gas production for volume, rate, or lag (P ≥ 0.28; 

Table 4.3). 

Results for experiment 2 are reported in Table 4.4. There was no influence of SAL onfinal 

pH of batch cultures at any time point (P = 0.71). Final pH of the batch culture performed before 

treatment administration was a significant predictor of final pH at all time points following 

treatment (P = 0.03). Immediately following treatment, SAL had no effect on DMD (P = 0.67); 

however, treatment reduced (P < 0.01) DMD in batch culture 7 d following treatment. Three weeks 
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after the end of the treatment period, DMD was still reduced (P = 0.01) by SAL (treatment by day: 

P = 0.01). For the in situ portion of the second experiment, no differences due to treatment were 

detected for rate of DMD (P = 0.21). There was a significant effect of treatment and day (P ≤ 0.01) 

on DM disappearance at 48 h (treatment by day: P = 0.31). Based on these results, it would appear 

that there is a long-term relationship between SS treatment and rumen fermentation or digestion.  

As discussed above, other salicylate compounds—specifically BSS—have been shown to 

have negative effects on rumen fermentation. Our findings are similar to those of Ruiz-Moreno et 

al. (2015), who showed that BSS inclusion at 2 and 4% of DM in 24-hr batch cultures increased 

final pH. In continuous culture, inclusion of BSS at 1% of DM in continuous culture increased 

average pH, although digestion of OM was also increased (Ruiz-Moreno et al., 2015). Like the 

current study, however, Fessenden (2013) reported that inclusion of BSS at 0.5% of DM in 

continuous culture decreased true and apparent DM and OM digestion, with a corresponding 

increase in average pH. For comparison, when expressed as a % of DM, the current experiment 

included SS at approximately 5, 9, and 13% for LOW, MED, and HI, respectively. It should be 

noted, however, that BSS is a much bulkier molecule than SS, at a molecular weight of 362.093 

g/mol compared to 160.10 g/mol for SS. Salicylic acid itself has a molecular weight of 138.12 

g/mol. Therefore, the salicylate component of BSS is roughly 38% of its molecular mass, while it 

composes approximately 85% of the SS molecule. Based on these calculations, when BSS was 

included at 2 or 4% of DM, this is approximately equivalent to inclusion of salicylate at 0.8 or 

1.5% of DM, respectively, while SS levels at 5, 9, and 13% of DM approximates to salicylate 

inclusion at 4, 8, and 11% of DM, respectively. These levels of inclusion are much higher than 

would be recommended for administration in vivo. Nevertheless, the results of the second 
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experiment indicate that there is an effect of SS administration on the ruminal environment, even 

at physiologically relevant levels. 

Unlike the results presented here, Ruiz-Moreno et al. (2015) reported a significant decrease 

in gas production during 24-hr batch culture with increasing levels of BSS inclusion. This is likely 

due to differences in measurements of gas production. Ruiz Moreno measured gas production by 

displacement of water when batch cultures were performed in serum bottles, while in the current 

study, the ANKOMRF system was used to measure gas production. It is possible that the simplistic 

measurement utilized by Ruiz Moreno reduced the measurement variation compared to the current 

experiment, increasing the statistical power of gas production measurement. 

While these results appear to be counterintuitive to previous accounts that showed an 

increase in milk production in response to SS treatment in early lactation, they may help to explain 

metabolic outcomes observed in these studies. Despite the positive effects on milk production 

observed in older cows, cows in their second parity and greater experienced hypoglycemia in early 

lactation under certain experimental conditions (Farney et al., 2013a). This coincided with a higher 

value in the Revised Quantitiative Insulin Sensitivity Check (RQUICKI; an estimate of relative 

insulin sensitivity (Holtenius and Holtenius, 2007)) on d 7 of treatment without any differences in 

expression of the rate-determining hepatic gluconeogenic enzymes glucose-6-phosphate, 

phosphoenolpyruvate carboxykinase, or pyruvate carboxylase. In a follow-up study in which a 

glucose tolerance test was administered to experimental animals receiving SS in early lactation, 

these cows had enhanced hepatic insulin sensitivity compared to controls, although differences in 

plasma glucose were not observed in this experiment (Montgomery, 2014). However, this does 

not rule out the possibility that the hypoglycemia observed by Farney et al. is a result of decreased 

production of glucogenic compounds by the rumen in addition to the effects of SS on insulin 
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sensitivity. In fact, it is possible that decreased substrate availability in the liver may serve to 

enhance insulin sensitivity in these animals. Bjerre-Harpøth et al. (2012) reported that cows in 

early lactation who underwent feed restriction experienced a significant change in RQUICKI 

values and had a higher ratio of glucagon to insulin, indicating enhanced insulin sensitivity. It is 

possible that lower amounts of propionate from ruminal fermentation due to depression in 

microbial activity or changes in bacterial community composition would have the same result. 

There are precedents in the literature of sustained effects following modification of the 

microbial population, but to our knowledge, this experiment is unique in the length of time that a 

difference was observed following treatment administration. Weimer et al. (2010b) noted that 

bacterial community composition did not completely return to its original state up to 4 wk after 

monensin was removed in combination with a milk fat inducing diet. Although exceptions such as 

this exist, it has been shown to be difficult to force shifts in the rumen microbial population for an 

extended period of time (Weimer, 1998). Even following nearly complete exchange of rumen 

contents, microbial populations in the rumen demonstrate a specificity for the host that is difficult 

to overcome by non-host forces (Weimer et al., 2010a). This is why experiments utilizing a Latin 

square design to study various rumen modifiers are able to successfully implement a wash-out 

period in order to minimize carry over effects. Considering this information, the results of the 

current experiment are surprising. 

Other research with SS has shown long-term alterations in feeding behavior in response to 

its administration in lactating cows (Carpenter and Bradford, unpublished). It is likely that these 

observations and the findings of the current experiments are related, but further research is 

necessary to determine the cause and effect relationship between ruminal fermentation and feeding 

behavior following SS treatment. While it is possible that some programming effect of the rumen 
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microbial population resulted in a long-term shift that changed the fermentative ability of the 

rumen, it is also possible that forces outside of the rumen (such as a neurological effect) altered 

feeding behavior, which in turn changed the rumen environment and resulted in a population shift. 

 Despite the relative simplicity of these experiments, they clearly demonstrate the 

antimicrobial effects of SS on rumen microorganisms. Not only was an immediate and dose-

dependent effect of this compound observed in vitro, a sustained negative effect on the ability of 

rumen microorganisms to degrade DM was clearly shown. There are still several questions that 

remain to be answered. There was no analysis performed on VFA production or profile in vitro or 

in vivo. There was no measurement of microbial populations following SAL in the second 

experiment. Future research should focus on these questions, as well as the effects on the rumen 

in vivo. It is unclear why a sustained positive response on milk production has been observed 

following SS administration in early lactation when the evidence herein indicates that rumen 

function is hampered. Future research to explore this relationship as well as the relationship 

between SS and feeding behavior is clearly warranted. 
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Table 4.1 Ingredient and chemical composition of fermentation substrate for in vitro rumen 

fermentation experiments. 

Item % of DM 

Corn silage 22.0 

Alfalfa hay 21.0 

Corn grain 25.0 

Cottonseed 4.0 

Dried distillers grains 14.0 

Soybean meal 14.0 

  

CP 21.5 

NDF 24.8 

ADF 18.9 

EE 3.9 

 

  



 

124 

Table 4.2 Chemical composition of rations delivered to heifers donating rumen fluid for in 

vitro and in situ fermentation experiments.  

Item % of DM 

CP 11.9 

NDF 48.5 

ADF 32.3 

EE 2.5 
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Table 4.3 Effects of adding sodium salicylate at different amounts on fermentation by 

rumen microbes in vitro for 24 h. 

Item CON11 LOW1 MED1 HI1 Pooled SEM 

Final pH   6.31a        6.36ab      6.42b        6.45b      0.01 

24-h disappearance (% of DM) 48.8a     37.08b      29.59bc      22.78c      1.96 

Gas production measurements      

     Asymptotic volume (mL)      249.8      297.9 276.2 296.0    26.41 

     Rate (mL/min)       0.0010          0.0010 0.0008 0.0010 0.0002 

     Lag (min)       137.0       122.2  79.1      127.8     55.09 

abcMeans with uncommon superscripts differ within row (P < 0.05). 

1Sodium salicylate was added to rumen fluid inoculum at the beginning of a 24-h batch culture of 

mixed rumen microbes in buffer (CON1 = 0 mg, LOW = 125 mg, MED = 250 mg, HI = 375 mg 

of sodium salicylate; n = 5 flasks/treatment). 
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Table 4.4 Effects drenching heifers with sodium salicylate on the fermentation capacity of 

rumen microbes in vitro for 24 h and in situ. 

 CON21  SAL1  

Item 
d1 d12 d35  d1 d12 d35 

Pooled 

SEM 

Final pH     6.34     6.34     6.25      6.32     6.34     6.29 0.018 

24-h disappearance  

(% of DM)2 

  46.5a   44.9a   43.9a    46.0a   38.9b   40.3b 0.93 

Gas production         

     Asymptotic volume 

(mL) 

317.1 365.6 276.3  311.3 364.3 281.2 3.69 

     Rate (mL/min) 0.0011 0.0012 0.0015  0.0010 0.0012 0.0016 0.0003 

     Lag (min)    87.5 180.7 125.6    97.1 168.7 124.0 8.18 

In situ measurements         

     DM disappearance rate 

     (% ∙ h-1) 

     11.6     12.0     11.7 

 

    8.6     9.6    10.7 1.18 

     48-h disappearance  

     (% of initial DM)3 

     91.3     91.2     92.0 

 

     90.4     90.8    91.7 0.33 

abMeans with uncommon superscripts differ within row (P < 0.05).1Heifers were drenched with 

62.5 g sodium salicylate (SAL) or water (CON2) for 3 d and in vitro and in situ experiments were 

conducted at 1, 12, and 35 d following treatment administration to test the ability of rumen 

microorganisms to ferment substrate. 

2Means differ due to treatment (P < 0.01), day (P < 0.01), and the interaction between treatment 

and day (P = 0.01). 

3Means differ due to treatment (P = 0.01) and day (P < 0.01; treatment × day: P = 0.31). 
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Chapter 5 - Holsteins favor heifers, not bulls: Biased milk 

production programmed during pregnancy as a function of fetal sex 

K. Hinde, A. J. Carpenter, J. S. Clay, B. J. Bradford  

2014,  PLoS ONE 9(2): e86169 

 

ABSTRACT 

Mammalian females pay high energetic costs for reproduction, the greatest of which is imposed 

by lactation. The synthesis of milk requires, in part, the mobilization of bodily reserves to nourish 

developing young. Numerous hypotheses have been advanced to predict how mothers will 

differentially invest in sons and daughters, however few studies have addressed sex-biased milk 

synthesis. Here we leverage the dairy cow model to investigate such phenomena. Using 2.39 

million lactation records from 1.49 million dairy cows, we demonstrate that the sex of the fetus 

influences the capacity of the mammary gland to synthesize milk during lactation. Cows favor 

daughters, producing significantly more milk for daughters than for sons across lactation. Using a 

sub-sample of this dataset (n = 113,750 subjects) we further demonstrate that the effects of fetal 

sex interact dynamically across parities, whereby the sex of the fetus being gestated can enhance 

or diminish the production of milk during an established lactation. Moreover the sex of the fetus 

gestated on the first parity has persistent consequences for milk synthesis on the subsequent parity. 

Specifically, gestation of a daughter on the first parity increases milk production by ∼445 kg over 

the first two lactations. Our results identify a dramatic and sustained programming of mammary 

function by offspring in utero. Nutritional and endocrine conditions in utero are known to have 

pronounced and long-term effects on progeny, but the ways in which the progeny has sustained 

physiological effects on the dam have received little attention to date. 
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 INTRODUCTION 

Since the 1970s, biologists have directed substantial research effort to understanding 

adaptive sex-biased allocation of maternal resources in animals and plants. Biologists have 

proposed numerous hypotheses for sex-biases, including local resource competition (Clark, 1978; 

Silk, 1983), “advantaged daughters” (Simpson and Simpson, 1982), local resource enhancement 

(Emlen et al., 1986; Silk and Brown, 2008), the “safe bet”/reproductive value (Shibata and 

Kawamichi, 2009; Leimar, 1996) and sex-differentiated sources of mortality (Smith, 1980). The 

most well-known and investigated, though, remains the Trivers-Willard hypothesis (Trivers and 

Willard, 1973). Trivers and Willard hypothesized that a female, as a function of her condition, is 

expected to preferentially allocate resources to the sex that provides greater marginal return on that 

investment. In polygynous mating systems characterized by male-male competition, they predicted 

that good condition females would bias resource allocation in favor of sons because males profit 

more from additional investment than do females. Collectively, the hypotheses proposed in the 

literature can be loosely grouped according to the extent that the directionality of the sex-bias is 

contingent on maternal condition; however, the predictions deriving from these hypotheses are not 

always mutually exclusive, complicating interpretation of empirical results (Cockburn et al., 

2002). Large-bodied ungulates are frequently used for investigating sex-biased maternal allocation 

because male body size contributes substantially to success in competitive access to mating 

opportunities, but evidence for systematic sex-biases has been equivocal (Cockburn et al., 2002; 

Cameron, 2004; Hewison and Gaillard, 1999; Sheldon and West, 2004; Pélabon et al., 1995). 

Although sex-ratio at birth has been the primary outcome investigated, post-natal maternal 

physiological transfer and behavioral care afford females substantial flexibility in sex-biased 
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resource allocation (Hewison and Gaillard, 1999). Sex-biased nursing behavior has been 

investigated as a possible proxy for sex-biased milk production in numerous mammalian taxa 

(Cameron, 1998; Hogg et al., 1992; Byers and Moodie, 1990; Stěhulová et al., 2013; Bercovitch, 

2002; Brown, 2001; Clutton-Brock et al., 1981). Suckling behavior, however, is not useful for 

estimating milk energy transfer as verified by experimental use of radio-labeled isotopes in Equus 

caballus (Cameron et al., 1999). Direct evidence for sex-biased milk synthesis among non-

domesticated species has now been reported in ungulates (Cervus elaphus hispanicus, Landete-

Castillejos et al., 2005), rodents (Myodes glareolus, Koskela et al., 2009), primates (Macaca 

mulatta, Hinde, 2007, 2009; Homo sapiens, Fujita et al., 2012, Powe et al., 2010, Thakkar et al., 

2013, but see also Quinn, 2013 for exception), and marsupials (Macropus eugenii, Robert and 

Braun, 2012). Drawing systematic conclusions from the studies to date, however, is challenging 

in part because most have been limited by relatively small sample sizes or report milk composition 

without accounting for milk yield. The most comprehensive data derive from Iberian red deer 

(Cervus elaphus hispanicus) and rhesus macaques (Macaca mulatta). Landete-Castillejos and 

colleagues (2005) showed that hinds favored sons by producing more milk with higher protein 

content for them. This bias did not vary as a function of maternal mass or age. Among rhesus 

macaques, mothers produced higher milk energy density [kcal/g] for sons (Hinde, 2009) due to 

higher fat content (Hinde, 2007). There was additionally an interaction with maternal life-history; 

smaller, younger mothers produced even higher fat and protein concentrations for sons and lower 

concentrations for daughters than did multiparous mothers. However, at peak lactation, mothers 

of daughters, across parities, produced greater milk volume that offset the reduced energetic 

density of milk for daughters (Hinde, 2009). These studies failed to support sex-bias hypotheses 

that predict mothers in better condition will preferentially allocate resources to a particular sex, 
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suggesting instead that there may be systematic sex-biases that are independent of maternal 

condition. 

Mother’s milk, however, is particularly difficult to evaluate when investigating adaptive 

allocation of maternal resources. Milk synthesis is unlikely to be at the maternal optimum because 

of parent-offspring conflict (Trivers, 1974; Godfray, 1995). Rather milk reflects a complex 

physiological and behavioral negotiation between the mother and offspring (Hinde and Milligan, 

2011; Neville et al., 2012). Functional development of the mammary gland initially occurs during 

pregnancy and is orchestrated by maternal and placental hormones, particularly placental lactogen, 

estrogen, and progesterone (Akers, 2002; Rudolph et al., 2003; Sternlicht et al., 2006). Post-

natally, local regulation of milk synthesis is maintained by milk removal via offspring suckling 

(Akers, 2002; Daly and Hartmann, 1995) but maternal rejection can prevent or limit milk intake 

(Stěhulová et al., 2013). As a result, sex-biased milk synthesis may reflect differential cellular 

capacity in the mammary gland, programmed via hormonal signals from the fetal-placental unit, 

or post-natally through sex-biased nursing behavior (Hinde, 2009). There has been only one study 

that has investigated mechanisms underlying sex-biased milk synthesis. Koskela and colleagues 

(2009) used an elegant cross-fostering design in bank voles (Myodes glareolus) to demonstrate 

that all-female litters received significantly greater milk yield than did all-male litters, regardless 

of litter size or maternal condition. The manipulation was conducted after females gave birth, and 

the extent to which pre-natal mammary gland development may have been sensitive to litter sex-

ratio was not reported. Litter size during gestation has been shown to influence mammary gland 

development in sheep (Rattray et al., 1974) and milk volume in goats (Hayden et al., 1979), but 

the effect of fetal sex on milk synthesis has not been investigated. 
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We investigated the magnitude and direction of sex-biased milk synthesis in the Holstein 

breed of Bos taurus. Although intensive artificial selection has shaped cattle during recent 

centuries, domesticated cattle are derived from large-bodied, sexually-dimorphic aurochs (Bos 

primigenius; Ajmone-Marsan et al., 2010, Grigson, 1978). Among beef cattle, several small 

studies have revealed sex-biased milk production that favors sons (Minick et al., 2001), favors 

daughters (Rutledge et al., 1971), or no sex-biases (Christian et al., 1965). In contrast, standardized 

husbandry practices, systematic milking procedures, detailed record-keeping, and large samples 

sizes make the dairy cow a powerful model for the exploration of maternal milk synthesis from 

both functional and mechanistic perspectives (Neville et al., 2012; Loor et al., 2011; Rowson et 

al., 2012). Birth sex-ratio in dairy cows is male-biased (Silva del Río et al., 2007) suggesting that 

mechanisms for sex-biases are operating in this taxon. Moreover the basic architecture for lactation 

is more highly conserved than other components of the genome, even for an animal artificially 

selected for milk yield (Lemay et al., 2009). Notably, because calves are removed from the dam 

within hours of parturition, this model system allowed us to investigate pre-natal mechanisms of 

sex-biased milk synthesis independent of post-natal maternal care and infant suckling behavior. 

Importantly, dairy cows are concurrently pregnant during lactation, typically 200+ days of the 305-

day lactation (González-Recio et al., 2012). We therefore predicted that milk synthesis on the first 

lactation could be affected not only by the sex of the calf produced, but also by the sex of the fetus 

gestated during lactation. We also predicted that mammary gland programming in response to fetal 

sex would persist into the subsequent lactation because the capacity to synthesize milk is, to some 

extent, cumulative across parities (Lang et al., 2012; Anderson and Sheffield, 1983; Miller et al., 

2006). These complex predictions are clarified by schematic representation (Figure 5.1). 
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METHODS 

To investigate sex-biased milk synthesis, we acquired all lactation records from 1995 to 

1999 in the database managed by Dairy Records Management Systems (http://www.drms.org). 

Whole-lactation milk yield and composition data were derived from monthly yield and 

composition data collected on commercial dairy farms across the United States. Standardized 

lactation curves, characterized over 5 decades of research, were then used to predict production 

between the monthly data points. Production is adjusted for breed, region, season and parity during 

the calculation of whole-lactation milk and component production, which was standardized to a 

305-day lactation. These records are used daily by most of the 50,000 dairy farmers in the US to 

make management decisions. Detailed discussions of the program and data analysis have been 

published elsewhere (Wiggens, 2001; VanRaden, 1997). Data from the late 1990’s were used to 

avoid the influence of sex-selected semen in artificial breeding programs in the commercial dairy 

industry, which became common in the mid-2000’s (Norman et al., 2010; Garnel and Seidel, 

2008). Additionally, this period of time allowed for analysis of the effects of recombinant bovine 

somatotropin (bST; Chilliard, 1998), approved in 1993 for commercial use in the US. The DRMS 

database includes a field for reporting administration of bST that was introduced into their software 

(PCDart) from the start of the commercial availability of bST. 

Several steps were taken to clean the data prior to analysis. Only records from Holstein 

cattle were retained, and lactations that began with either twin births or abortions were excluded. 

Lactations with missing or corrupt lactation number, year, or calf sex designations were deleted. 

Duplicate records for a single lactation within cow were eliminated, and records for lactation ≥6 

(representing 3.02% of lactations in the database) were excluded to enable repeated measures 

analysis of lactations with adequate representation in the database. If at least 1 of the first 5 test 
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days, typically conducted monthly, were flagged for bST administration, then the lactation was 

considered bST-positive (n = 100,478; 3.9% of lactations). The final database consisted of 2.39 

million lactation records, representing 1.49 million individual Holstein cows, however due to 

missing data in certain fields, some analyses included fewer lactations and final analysis sample 

sizes are reported for each analysis. Mixed models were used to evaluate the fixed effects of calf 

sex, parity, bST, and interactions and the random effect of year according to the following model: 

𝑌𝑖𝑗𝑘𝑙 =  μ + 𝑆𝑖 + 𝑃𝑗 +  𝐵𝑘 + 𝑌𝑙 + 𝑆𝑃𝑖𝑗 +  𝑆𝐵𝑖𝑘 + 𝑆𝑃𝐵𝑖𝑗𝑘 +  𝑒𝑖𝑗𝑘𝑙  

where Yijkl is a dependent variable, µ is the overall mean, Si is the fixed effect of calf sex 

(i = 1 to 2), Pj is the fixed effect of parity (j = 1 to 5), Bk is the fixed effect of bST (k = 1 to 2), Yl is 

the random effect of year (l = 1 to 5), SPij is the interaction of calf sex and parity, SBik is the 

interaction of calf sex and bST, SPBijk is the interaction of calf sex, parity, and bST, and eijkl is the 

residual error. Repeated lactations within cow were fit to a heterogeneous autoregressive (ARH 

[1]) covariance structure. Analyses were completed using the Mixed Procedure of SAS (version 

9.3; SAS Institute, Cary, NC). Significant interactions were investigated using the SLICE option 

and means were separated using the PDIFF option of SAS, with significance declared at P <0.05. 

To exclude potentially confounding effects of dystocia and bST treatment on results and to 

evaluate carryover effects of calf sex on multiple lactations, a more conservative data set was 

generated. All bST-positive lactations were deleted, and only those beginning with a calving 

difficulty score of 1 or 2 (no or minimal difficulty) were retained. Finally, the data were narrowed 

to only those cows with both lactations 1 and 2 represented, leaving 113,750 cows. Data for 305-

day milk yield in lactations 1 and 2 were modeled with the fixed effects of calf sex1, calf sex2, 

calf sex1 × calf sex2, and year. Analyses were completed using the Mixed Procedure of SAS (SAS 
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Institute) and means were separated using the PDIFF option of SAS, with significance declared at 

P <0.05. 

 

RESULTS 

 Sex-biased milk synthesis: Full dataset 

Holsteins biased milk production in favor of daughters, producing significantly more milk 

over the 305 days of standard lactation after gestating a daughter (Figure 5.2). These findings are 

based on 2.39 million lactation records from approximately 1.49 million female cows. First-parity 

cows giving birth to a daughter produced 142±5.4 kg more milk over the 305-day lactation period 

than did those giving birth to a son (7,612 vs. 7,470±69 kg, P < 0.001). Similar, though marginally 

smaller, effects were observed in parities 2–5 (Figure 5.2A). The overall effect amounted to a 1.3% 

increase in whole-lactation milk production for cows bearing daughters (Table 5.1). Extrapolation 

from total lactation production values revealed that milk composition was similar after gestation 

of a son or daughter. Fat concentration was 3.61% after gestation of a daughter and 3.62% after 

gestation of a son; protein concentrations were the same (3.17%). 

The disparity between milk produced following birth of a son vs. a daughter was largely 

eliminated by the use of bST. A recombinant, exogenous form of the growth hormone 

somatotropin, bST promotes endocrine alterations to partition a greater proportion of nutrient 

supply to the mammary gland, thereby increasing milk production (Bauman and Vernon, 1993). 

Recombinant bST is approved for exogenous administration to dairy cows beginning at week 9 of 

lactation. In our sample, bST accounted for a 12% increase in whole-lactation milk yield (Table 

5.1). On first parity, cows administered bST still produced significantly higher milk yield if they 
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had a daughter (8,681 vs. 8,631±71 kg, P < 0.05), but sex-biased milk synthesis was not observed 

in parities 2–5 (Figure 5.2B). 

 

 Sex-biased milk synthesis: Conservative sample 

Male calves are typically larger than females, and pose a greater risk of dystocia (Gianola 

and Tyler, 1974; Dematawena and Berger, 1997). Dystocia is associated with decreases in whole-

lactation milk production (Rutherford, 2013), and we hypothesized that the milk yield advantage 

conferred by a daughter might have been at least partly due to decreased incidence of dystocia 

compared to delivery of sons. Indeed, in our data, the odds of a son inducing dystocia (calving 

difficulty score ≥3 on a scale of 1 to 5) were significantly greater than for daughters (5.6 vs. 4.2% 

incidence, P < 0.001, odds ratio 95% CI: 1.32–1.35). Nevertheless, sex-biased milk synthesis 

remained when analysis was restricted to a subset of the dataset (n= 113,750) that excluded cases 

of bST and dystocia, and included information on individual cows across the first and second 

parity. On first parity, cows producing daughters had significantly greater 305-day milk yield, with 

an advantage of 1.6% relative to cows producing sons (7,947 vs. 7,818±9.6 kg, P < 0.001). The 

daughter advantage was also observed in parity 2, although the magnitude of the difference was 

reduced (0.83%; 8,515 vs. 8,445±37 kg, P < 0.001). These results indicate that the milk production 

advantage associated with birth of a daughter is not attributable to prevention of dystocia. 

 

 Inter-parity consequences of fetal sex 

Milk production on first lactation was associated with the sex of the fetus on the second 

pregnancy because the two overlapped temporally (Figure 5.3A). Across the first two parities in 

the subset that excluded cases of bST and dystocia, birth combinations could be son1son2, 
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son1daughter2, daughter1son2, and daughter1daughter2. Cows that had first produced a son and were 

gestating a son for their second pregnancy synthesized significantly less milk over 305 days than 

did all other groups (P < 0.001; son1son2 = 7,768±11.4 kg, N = 32,294). Gestation of a daughter on 

the second pregnancy could partially “rescue” milk synthesis on the first lactation if a son had been 

produced previously (P < 0.001; son1daughter2 = 7,876±12.2 kg, N = 27,807), but remained 

significantly less than cows that had produced a daughter on their first pregnancy (P < 0.001). 

Fetal sex on the second pregnancy didn’t have any effect for cows that produced a daughter on 

pregnancy 1 (daughter1son2 and daughter1daughter2 were 7,940±12.3 kg, N = 27,834 and 

7,954±12.6 kg, N = 25,815, respectively; P  =  0.36). 

Fetal sex on the first parity had persistent effects on milk production during the second 

lactation (Figure 5.3B). Cows that produced a son on their first parity were handicapped in their 

milk production on their second lactation (P < 0.001), particularly if they gestated a son on the 

second pregnancy as well (son1son2 = 8,345±18.9 kg). Production of a daughter on the second 

parity partially increased milk production on second lactation (P < 0.001; 

son1daughter2 = 8,539±19.4 kg). Cows that produced a daughter on their first parity produced 

significantly more milk on their second lactation (P < 0.001), regardless of the sex of the calf on 

the second parity (daughter1son2 and daughter1daughter2 were 8,614±19.6 kg and 8,605±19.8 kg, 

respectively; P = 0.19). 

 

DISCUSSION 

Holstein dairy cows demonstrate a significant biological effect of sex-biased milk 

production in favor of daughters. In dairying, calves are removed on the day of birth and 

standardized mechanical procedures are used for milking, therefore post-natal sex-bias does not 
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explain the results presented here. Instead milk production varied as a function of fetal sex, 

indicating that functional development of the mammary gland is influenced pre-natally. 

Importantly, lower milk yield for sons was not compensated by higher protein and fat production; 

total production of milk energy was greater in cows that gestated daughters. Among rhesus 

monkeys, mothers rearing daughters produce more milk, but of significantly lower milk energy 

density- the aggregated calories derived from fat, protein, and sugar- than do mothers of sons 

(Hinde, 2009). To our knowledge, the results reported here are the first to document that fetal sex 

influences milk production. Moreover the effects on milk production were dynamic and persistent 

across parities. Importantly, gestation of a daughter on the first parity increased milk production 

across the first two lactations and was protective against the negative effects of male gestation on 

the second parity. In contrast, gestating a son on the first parity suppressed milk production on the 

first two lactations, but the conception of a daughter on the second parity partially improved milk 

production. Nutritional and endocrine conditions in utero are known to have pronounced and long-

term effects on progeny (Rutherford, 2013), but the ways in which the progeny has sustained 

physiological effects on the dam have been less studied. 

Sex-differentiated programming of the mammary gland is further substantiated by the 

greater effect of bST administration in cows gestating sons than cows gestating daughters. 

Postnatal administration of recombinant bovine somatotropin (bST) in multiparous cows 

overwhelmed the prenatal effects of offspring sex, but had a greater effect in cows gestating sons. 

Somatotropin, or growth hormone (GH), is produced in the anterior pituitary, stimulated by GH-

releasing hormone. Most notably, GH influences metabolism in hepatic and adipose tissues, 

shunting more maternal bodily reserves to milk synthesis (Akers, 2006). Insulin-like growth 

factors are believed to be the major mediators of the effect of GH on the mammary gland (Bauman 
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and Vernon, 1993), however GH also directly affects the mammary gland and increases milk 

synthesis (Plath-Gabler et al., 2001; Johnson et al., 2013). While the mean production parameters 

increased with the administration of bST for cows producing both daughters and sons, the 

proportional increase in milk production was greater for multiparous cows gestating sons. Rose 

and colleagues reported that cows that had low milk yield responses to bST treatment within a 

herd had greater milk yields before bST treatment compared to cows with a high response in milk 

yield (Rose et al., 2004). This is consistent with our results that cows birthing daughters had 

elevated milk production and a lower response to exogenous bST administration compared to their 

counterparts bearing sons. We posit that mechanisms underlying lower initial milk production and 

greater individual response to bST administration are likely responsible for the greater response to 

bST in cows with sons. Administration of bST in many ways represents an “experimental” 

manipulation of mammary gland programming and reveals possible mechanistic pathways through 

which sex-biases are operating. Although bST was able to overwhelm sex-biased milk synthesis 

among multiparous cows, significant sex-bias remained among primiparous cows whose 

mammary glands had functionally developed for the first time in the context of the fetal sex of the 

first gestation. The magnitude of sex bias is strongest among first parity rhesus monkeys (Hinde 

2007, 2009) and possibly humans (Powe et al., 2010; Thakkar et al., 2013) and Tamar wallabies 

(Robert and Braun, 2012) in which primiparous females have been disproportionately represented 

in published studies. The effect of fetal sex may diminish to some extent among multiparous 

females due to the aggregate effects on mammary gland architecture of sequential gestations of 

different fetal sexes. Alternatively, maternal investment tactics may change as a function of 

residual reproductive value (Williams, 1966) or targeted effort during critical developmental 

windows (Cameron et al., 2000). 
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These biological findings may have economic impact for the modern dairy industry. With 

the widespread availability of sexed-selected semen for use in artificial breeding programs, dairy 

managers have the option of achieving approximately 90% female pregnancies rather than a 

natural rate near 47% (Silva del Río et al., 2007). There are many factors for managers to consider 

when evaluating the profitability of sexed semen use, including decreased conception rate 

(Norman et al., 2010) and increased semen cost. Some published analyses have been skeptical of 

the economic merit of using sexed semen on dairy operations (Olynk and Wolf, 207), although the 

cost of the cell sorting technology continues to drop, making recent analyses more favorable 

(Riberio et al., 2012). Accounting for the impact of a female calf on lactation productivity revealed 

by our analysis, however, further improves the expected profitability of sexed semen use. It is 

common to use sexed semen for breeding nulliparous heifers only, and given the long-term impact 

of a first-parity daughter, the production benefits of this management strategy are substantial. The 

cumulative increase in milk yield over two lactations for a cow giving birth to a daughter on the 

first parity rather than consecutive bulls is ∼445 kg (Figure 5.3). The impact of sexed semen on 

the structure of the dairy industry has been a complex question already (De Vries et al., 2008), but 

these results highlight a key factor that has not previously been considered. 

The precise mechanistic pathways through which fetal sex influences mammary gland 

development remain unknown. Fetal-origin hormones may translocate via maternal circulation to 

bind directly to receptors in the dam’s mammary gland influencing functional development and 

subsequent milk synthesis. Among ungulates, ruminants may be especially valuable for 

understanding mammary gland development during pregnancy as a function of fetal sex because 

of their cotyledonary placenta. Klisch and Mess posited that for ruminants, an evolutionary “arms 

race” between the mother and fetus (Moore, 2012) for glucose transport, necessitated by the lack 
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of gastrointestinal glucose supply (Aschenbach et al., 2010), resulted in selective pressure that 

favored an “inefficient” placenta (Klisch and Mess, 2007). For example, the placenta of the 

domestic cow has ∼5 times the surface area as the horse placenta even though the two species 

produce similarly sized neonates (Baur, 1981). As a byproduct of the greater placental surface 

area, fetal steroidal hormones can readily diffuse into maternal circulation (Klisch and Mess, 

2007). Concentrations of estrogens and androgens differ between male and female fetuses and, if 

in maternal circulation, potentially enhance or inhibit mammary gland development and 

consequently milk synthesis during lactation. In dairy cows, fetal steroid hormones are present 

from the first trimester and are critical for the development of fetal sex organs (Yang and Fortune, 

2008; Nilsson and Skinner, 2009). Insulin-like peptide 3 (INSL3), another fetal-origin bioactive, 

increases in maternal circulation across pregnancy in dairy cows gestating sons and decreases in 

cows gestating daughters (Anand-Ivell et al., 2011) but the influences of fetal-origin INSL3 on the 

mammary gland are not known. Functional development of the mammary gland in taxa 

characterized by highly invasive hemochorial placentas may also be susceptible to fetal hormones; 

indeed the majority of reports of sex-biased milk synthesis in the literature are from taxa that have 

greater placental invasion and/or placental surface area (Rutherford, 2013; Baur, 1981; Capellini, 

2012). Suggestively, human mothers with higher concentrations of circulating androgens during 

the 2nd trimester had a lower probability of sustaining breastfeeding to three months post-partum 

(Carlsen et al., 2010). The higher circulating androgens may have originated from fetal sons, but 

the effect of fetal sex was not directly analyzed in that study, nor was milk synthesis measured. 

Indirectly, fetal sex may influence the production of placental lactogen, a primary hormonal driver 

of mammary gland development during pregnancy (Akers, 2002; Rudolph et al., 2003; Sternlicht 
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et al., 2006) but as of yet differences in placental lactogen as a function of fetal sex have not been 

reported. 

Daughter-biased milk synthesis may reflect adaptive maternal allocation in response to 

fetal sex, adaptive fetal manipulation of maternal physiology, or may be a by-product of the 

maternal-fetal interface. Importantly, uniformly biased milk production in favor of daughters 

across maternal conditions does not support the Trivers-Willard hypothesis (Trivers and Willard, 

1973), or other hypotheses positing facultative sex-biased allocation of resources as a function of 

maternal condition (Cockburn et al., 2002). Dairy cows have a male-biased birth ratio; in the 

absence of sex-specific artificial insemination, between 50–54% of calves born are male (Silva del 

Río et al., 2007; Foote, 1977). The mediating effect of maternal condition on birth-sex ratio has 

been inconsistent (Meier et al., 2010) as has been the directionality of birth sex-ratio bias. Better-

condition cows may produce more sons (Roche et al., 2006) or daughters (Hohenbrink and 

Meinecke-Tillmann, 2012). Integrating the results presented here, dairy cows produce more sons, 

but seemingly favor daughters with more milk. Mammalian mothers in polygynous taxa may 

preferentially allocate physiological resources to daughters so that they are able to initiate 

reproduction at relatively younger ages than do sons (Hinde, 2009; Hinde et al., 2013). For female 

mammals, because of the temporal constraints of pregnancy and lactation, lifetime reproductive 

success of daughters will be contingent on the length of their reproductive careers, a function of 

age at first birth and longevity (Blomquist, 2009; Martin and Festa-Bianchet, 2012). Among 

sexually dimorphic polygynous taxa, the temporal constraints are relaxed for males, who benefit 

from growing bigger and stronger (Willisch et al., 2012; Festa-Bianchet, 2012), allowing males 

more time to compensate for deficits in early life maternal investment before becoming 

reproductively active (Bercovitch et al., 2000). Daughter-biased milk production may involve life-
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history tradeoffs for both cows and their daughters. High milk production in dairy cows is generally 

associated with reduced fertility, health, and survival depending on environmental conditions 

(Windig et al., 2006). Moreover daughters gestated during lactation have moderately reduced 

survival and milk production in their own adulthood (González-Recio et al., 2012). Although we 

do not know whether the magnitude of the effects presented here is correlated with such 

consequences, future research should investigate the fitness effects of daughter-biased milk 

synthesis both in the short-term (i.e. inter-birth interval), across the lifetime, and inter-

generationally. 

The question remains though, under natural conditions how do bull calves grow faster 

during the post-natal period if their dams are producing less milk, and therefore lower total protein 

and fat production? One explanation may be that females bias nursing behavior such that milk 

production is up-regulated for sons, a tactic we could not evaluate in conventional dairying as 

calves are removed after birth. Landete-Castillejos and colleagues (2005) revealed that among 

captive Iberian red deer, dams rearing sons had greater total milk production and total protein 

production, possibly due to post-natal hind-calf behavioral dynamics. However in the one study to 

date of cow maternal behavior, cows do not show any sex biases in nursing behavior (Stěhulová 

et al., 2013). In beef cattle that are reared by their dam, sons are born bigger and have better post-

natal growth than do daughters, but only one out of three studies has shown any evidence of male-

biased milk synthesis (Minick et al., 2001; Rutledge et al., 1971; Christian et al., 1965). In the 

absence of post-natal behavioral modifications of prenatal mammary gland programming, the 

presence and concentration of other milk bioactives such as immunofactors and hormones that 

influence offspring development (Neville et al., 2012) may differ in milk produced for sons and 

daughters. Notably, investigations of sexually dimorphic developmental trajectories, however, 
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overwhelmingly essentialize the role of the mother and sex-biased allocation of maternal 

resources. More often overlooked are sexually differentiated mechanisms within offspring that 

influence utilization and assimilation of early life nutrition and environmental signals (Hinde, 

2009; Badyaev, 2002; Aiken and Ozanne, 2013). Consideration of progeny-specific adaptations as 

well as biased maternal effort will contribute to a better understanding of the ontogeny of sexual 

dimorphism. 
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Figure 5.1 Hypothesis: milk production is influenced by fetal sex across lactations. 

 

Fetal sex in pregnancy 1 may alter milk production across multiple lactations because of the critical 

steps in mammary development that occur during the first pregnancy. In the cow, pregnancy 2 

typically overlaps with lactation 1, providing opportunity for calf sex in parity 2 to impact milk 

production in the first lactation. 
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Figure 5.2 Daughters result in greater lactation productivity, and this effect is altered by 

exogenous somatotropin (bST) administration. 

Lactation records from Holstein 

cows (n = 2.39 million lactations) 

were analyzed to determine effects 

of calf sex, parity, use of bST, and 

their interactions on 305-day milk 

production. Calf sex influence on 

milk production was dependent on 

bST use (interaction P < 0.01). A) In 

the absence of bST, daughters 

resulted in significantly greater milk 

production compared to sons across 

all parities (all P < 0.001). B) 

Lactations influenced by bST 

administration failed to consistently 

demonstrate the daughter bias. 

Daughters still conferred an 

advantage in first-parity cows administered bST (P < 0.05), but did not significantly influence milk 

yield in parity 2–5 cows. Values are differences of LS means ± SED.  
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Table 5.1 Influence of calf sex, in the presence and absence of exogenous somatotropin (bST), 

on lactation productivity. 

  No bST   bST   

Cow milk 

production1 Daughter Son SEM  Daughter Son SEM 

N 

(lactations) 

305-d milk yield (kg) 8,172.8 8,064.9 68.6   9,123.4 9,094.8 70.8 2,391,300 

305-d fat yield (kg) 295.56 291.46 3.25  329.50 328.11 3.40 2,125,643 

305-d protein yield 

(kg) 258.78 255.61 2.06  291.05 290.26 2.16 2,108,796 

Peak milk (kg/d) 36.97 36.36 0.34   40.52 40.38 0.35 825,175 
1For all variables, there was a significant effect of fetal sex (P < 0.001), bST (P < 0.001), and the 

interaction between fetal sex and bST (P < 0.01). 

  



 

159 

Figure 5.3 Daughters confer milk production advantages post-natally, during gestation, 

and across multiple lactations. 

Cows (n = 113,750) with both first 

and second parity lactation records, 

with no reports of dystocia or bST 

administration, were used to assess 

effects of calf sex on milk production 

in the first 2 lactations. Groups are 

labeled by calf sex (S = son, 

D = daughter), with the pregnancy 

denoted by subscript. Values are LS 

means ± SEM. Means labeled with 

different letters differ (P < 0.001), 

and those with common labels do not 

(P > 0.10). A) First-parity cows 

having a daughter produced 

significantly more milk than those 

having a son, but gestating a daughter 

in pregnancy 2 increased milk production in cows that had a son first. B) Second-parity milk 

production is greatest in cows that had a daughter in pregnancy 1. Additionally, cows with a son 

in pregnancy 1 showed increased milk production if they had a daughter in pregnancy 2. 

 


