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Abstract 

Globally wheat is one of the three most important cereal crops globally providing 20% of 

protein and total calories consumed. In the world as well as the state of Kansas, wheat is planted 

on more acres than any other crop. Additionally, wheat sales generated $1.27 billion in revenue 

in 2021 making wheat an economic driver for the entire state. However, the annual genetic gain 

in wheat is 0.8-1.2% and is not sufficient to support the increasing global population. Therefore, 

the adoption of new technology and computational methods are critical to increase genetic gain 

and increase wheat adaptability both globally and in the Central Plains. 

Proper temporal resolution is critical for quality HTP sensor data collection, as collection 

at key physiological growing points can increase yield prediction and assist with phenotypic 

selection. However, growth stages are dependent on weather and fluctuate both across locations 

and years. This makes day of year or day after sowing a poor phenology metric, particularly with 

winter wheat where the vernalization requirement compounds phenology prediction challenges 

and significantly shifts developmental stages relative to calendar days. This study was designed 

to assess the performance of various phenology models to predict heading time of both 

historically adapted and experimental genotypes of wheat genotypes in Kansas. The results 

suggest that full season models with multi-phase coefficients can increase phenology prediction 

over traditional thermal indices. However, using cumulative thermal times after the vernalization 

requirements also provided phenology predictions that were statistically similar to the full season 

phase change models.  

Genotype by environment interactions is a prominent issue for breeding programs, 

particularly when performance testing elite lines across multiple locations and years. In addition 

to macroenvironments, variations in soil properties have shown to develop microenvironments 

within location years. These soil microenvironments can potentially be quantified through both 

traditional and precision agriculture tools. Whereas, traditional soil sampling density is limited 

by cost and time, precision agriculture on-the-go soil sensors have the potential to gather large 

quantities of data. However, these measurements are often giving only relative measurements. 

Through this experiment two sensor platforms were evaluated as potential tools to quantify 

spatial variability within breeding programs. This study showed that soil spatial variability does 



  

impact genotype yield performance and that indirect measurements from both sensor platforms 

can quantify this impact.  

The continued development of high quality, cost effective multi-spectral imaging devices 

has led to numerous studies to evaluate this technologies ability to predict traits and grain yield. 

Despite these advancements the widespread implementation of these tools for selection has been 

slow and most breeders still rely on harvested grain yield and visual selection for cultivar 

advancement. The intention of this experiment was to evaluate high spatial resolution data from, 

multi-spectral sensors at multi-temporal collection points to make yield group rank order 

selections. Additionally, a random forest algorithm was used to evaluate the potential of 

incorporating machine learning with HTP data as a selection tool. Although the rank order 

correlations were higher than the correlation to grain yield, the selection accuracies of random 

forest were not statistically better than the no-information rate. However, this study does lay the 

groundwork for future similar studies using alternative sensor aided metrics and machine 

learning algorithms. 

Overall, the combined results of these studies show that these precision agriculture tools 

have to potential to increase genetic gain in plant breeding. However, these studies also show 

that both sensor and computational limitations still exist. Moving forward it is pivotal that future 

studies focus on technology combinations that have the potential to easily be implemented within 

a breeding program.  
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Abstract 

Globally wheat is one of the three most important cereal crops globally providing 20% of 

protein and total calories consumed. In the world as well as the state of Kansas, wheat is planted 

on more acres than any other crop. Additionally, wheat sales generated $1.27 billion in revenue 

in 2021 making wheat an economic driver for the entire state. However, the annual genetic gain 

in wheat is 0.8-1.2% and is not sufficient to support the increasing global population. Therefore, 

the adoption of new technology and computational methods are critical to increase genetic gain 

and increase wheat adaptability both globally and in the Central Plains. 

Proper temporal resolution is critical for quality HTP sensor data collection, as collection 

at key physiological growing points can increase yield prediction and assist with phenotypic 

selection. However, growth stages are dependent on weather and fluctuate both across locations 

and years. This makes day of year or day after sowing a poor phenology metric, particularly with 

winter wheat where the vernalization requirement compounds phenology prediction challenges 

and significantly shifts developmental stages relative to calendar days. This study was designed 

to assess the performance of various phenology models to predict heading time of both 

historically adapted and experimental genotypes of wheat genotypes in Kansas. The results 

suggest that full season models with multi-phase coefficients can increase phenology prediction 

over traditional thermal indices. However, using cumulative thermal times after the vernalization 

requirements also provided phenology predictions that were statistically similar to the full season 

phase change models.  

Genotype by environment interactions is a prominent issue for breeding programs, 

particularly when performance testing elite lines across multiple locations and years. In addition 

to macroenvironments, variations in soil properties have shown to develop microenvironments 

within location years. These soil microenvironments can potentially be quantified through both 

traditional and precision agriculture tools. Whereas, traditional soil sampling density is limited 

by cost and time, precision agriculture on-the-go soil sensors have the potential to gather large 

quantities of data. However, these measurements are often giving only relative measurements. 

Through this experiment two sensor platforms were evaluated as potential tools to quantify 

spatial variability within breeding programs. This study showed that soil spatial variability does 



  

impact genotype yield performance and that indirect measurements from both sensor platforms 

can quantify this impact.  

The continued development of high quality, cost effective multi-spectral imaging devices 

has led to numerous studies to evaluate this technologies ability to predict traits and grain yield. 

Despite these advancements the widespread implementation of these tools for selection has been 

slow and most breeders still rely on harvested grain yield and visual selection for cultivar 

advancement. The intention of this experiment was to evaluate high spatial resolution data from, 

multi-spectral sensors at multi-temporal collection points to make yield group rank order 

selections. Additionally, a random forest algorithm was used to evaluate the potential of 

incorporating machine learning with HTP data as a selection tool. Although the rank order 

correlations were higher than the correlation to grain yield, the selection accuracies of random 

forest were not statistically better than the no-information rate. However, this study does lay the 

groundwork for future similar studies using alternative sensor aided metrics and machine 

learning algorithms. 

Overall, the combined results of these studies show that these precision agriculture tools 

have to potential to increase genetic gain in plant breeding. However, these studies also show 

that both sensor and computational limitations still exist. Moving forward it is pivotal that future 

studies focus on technology combinations that have the potential to easily be implemented within 

a breeding program.  
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1 

Chapter 1 - Literature Review 

 

 Global and local importance of wheat 

Wheat (Triticum aestivum) is an important source of calories worldwide. It is estimated 

that wheat provides 20% of the world’s protein and 20% percent of the total calories consumed 

worldwide come from wheat (Reynolds et al., 2012). This makes it one of the three most 

important cereal crops globally. Currently, annual genetic gain in wheat is 0.8-1.2%. However, 

this rate is not sufficient to provide enough food and fuel for projected population increases and 

it is estimated that genetic gain needs to increase to 2.4% annually to be sustainable (Ray et al., 

2013). Therefore, efforts are needed to increase genetic gain amongst breeding programs. 

In the United States, Kansas historically has the highest production of hard red winter 

wheat, earning the nickname “The Wheat State”. Concerted efforts to develop cultivars less 

prone to lodging and more adapted to the climate of the Central Plains resulted in better 

production for producers (Olmstead & Rhode, 2011).Currently, wheat is planted on more acres 

in Kansas than any other crop. It was reported that 6,800,000 acres of wheat were planted in 

2020, producing 281,250,000 bushels (NASS 2021). Furthermore, wheat sales generated $1.27 

billion in revenue making wheat the third most economically important grain crop grown in 

Kansas, behind corn (Zea mays L.) and soybeans (Glycine max L.). Currently, both private and 

public breeding programs, continue to allocate resources to develop improved cultivars. With the 

adoption of new technology and the incorporation of diverse germplasm, there is new potential 

to continue to increase genetic gain and increase wheat adaptability in the Central Plains (Crain 

et al., 2018; He et al., 2019).  
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Current Breeding Technologies  

Traditional wheat breeding programs develop new varieties through crossing, inbreeding, 

performance evaluation and selection. All these processes are simultaneously occurring in a 

continuous cycle, with each stage taking time and resources. Therefore, efforts are being made at 

all stages to increase efficiency, allowing breeders to increase production on reduced budgets 

(Bentley & Mackay, 2017).  

Using genetic tools allows breeders to make better selections and therefore put more time 

and financial resources in to evaluating plants with desired traits. Marker assisted selection 

(MAS) has successfully been used in breeding applications to identify desirable candidate lines 

(Chhetri et al., 2017; Tanksley & Rick, 1980). Similarly using genomic selection (GS) models 

holds potential to reduce selection cycles in field crops compared to phenotypic selection alone 

(Voss-Fels et al., 2019). Furthermore, GS can  increase prediction accuracies over other marker 

platforms in wheat (Poland et al., 2012). However, developing representative training sets and 

having proper marker coverage can be an issue with this technology. Furthermore, genotype by 

environment and epistatic effects limit the prediction effectiveness of both MAS and GS 

(Lorenzana & Bernardo, 2009). 

Advancements and implementation of double haploid (DH) production have decreased 

the time of the inbreeding cycle. Through the wheat-maize DH system, breeders can now 

produce complete inbred lines of elite crosses in one year. These lines have been used for genetic 

studies or evaluated for variety release (Berg et al., 2006; da Silva et al., 2019). However, the 

current DH process has limited throughput and creating these lines adds cost which limits the 

adoption of this technology in breeding programs. Currently, breeders have adopted speed 

breeding as an alternative way to increase generation advancement (Ghosh et al., 2018). This 
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coupled with other technology such as genomic selection can increase trait selection within 

wheat programs (Watson et al., 2019).  

Of these three stages, performance testing is normally the slowest and most expensive 

step, because large populations of individuals need to be evaluated over many years and multiple 

environments prior to selection. Currently, research efforts are being focused on non-mechanical 

ways to evaluate large populations at early selection cycles (Hu et al., 2020). Previous research 

has shown high-throughput phenotyping (HTP) with unmanned aerial vehicles (UAVs) can be 

used as a tool to increase the accuracy of selection and evaluation of larger populations, leading 

to increased genetic gain (Haghighattalab et al., 2016). In addition to increasing selection 

accuracy, sensor-based HTP technologies also allow for increased temporal evaluation of plants 

in a non-destructive manor (Yasrab et al., 2021). This may allow researchers to gain useful 

insight on crop physiological responses throughout multiple crop development stages. 

Although each breeding tool is individually effective, it is evident that each one of these 

is a tool and not a stand-alone solution. As with any tool, the effectiveness is usually increased 

when several methods are combined. Recently, it has been shown that combining GS and HTP-

hyperspectral data was able to increase prediction accuracy in wheat nurseries (Krause et al., 

2019). Similarly in canola HTP data was used to identify QTL for early growth-related traits 

(Knoch et al., 2020). Overall, as breeding programs move forward and technology continues to 

improve, integration of multiple technologies into a cohesive breeding strategy may lead to 

higher genetic gains. 

 High Throughput Phenotyping using Sensor Platforms 

The principle of plant interactions with both visible and non-visible areas of the light 

spectrum have been a part of agronomic research since Gausman (1974) first reported 
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distinguishable reflectance curves in plants. Currently in agriculture, both production and 

research, applications of reflectance data are gaining momentum. However, it has been well 

documented that even advanced sensors have limitations in spatial and temporal resolution 

causing bottlenecks for implementing HTP data into breeding programs (Hein et al., 2021; Song 

et al., 2021). As technology and computational power continues to improve, continued research 

will be needed to understand the relationship between HTP and key crop physiological 

characteristics. 

Often the final goal in plant breeding is to increase production in the form of yield. 

Therefore, yield prediction using spectral sensors has been evaluated across many crops and 

production situations (Hassan et al., 2019; Wang et al., 2014). In many cases multiple yield 

components or vegetative indices are combined to predict yield and evaluate diverse treatments 

and genotypes. Multispectral satellite data has been used to model maize yield and make in-

season corn yield predictions (Joshi et al., 2019; Peralta et al., 2016).  However, these examples 

use large scale production fields, while within breeding applications where yield plots are 

significantly smaller, satellite imagery may not be adequate for data collection due to limitations 

in both spatial and temporal resolution (Tattaris et al., 2016). 

In contrast to direct yield prediction, HTP sensor platforms can also be used to collect 

data on physiological characteristics that can be associated with yield and used for variety 

selection within a breeding program. For example, plant height can impact crop production, 

therefore plant breeders need to evaluate this trait for selection so that it was substantially 

modified through breeding over time in Kansas (Maeoka et al., 2020). ). Multiple methods have 

been used to demonstrate the feasibility of extracting plant height through HTP sensor platforms 

(Hu et al., 2018; Wang et al., 2018). In these examples authors extracted height measurements 
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from orthorectified photos through the development of digital elevation models (DEM). In 

addition to directly measuring plant height, DEMs can also evaluate lodging severity (Sun et al., 

2019). Additionally, pairing HTP lodging scores with genome-wide association studies (GWAS) 

can identify markers and assist selection in early stages of germplasm development (Singh et al., 

2019). These tools are potentially useful for breeders to identify unfavorable genotypes early in 

the breeding cycle and avoid advancing genotypes that are prone to lodging. 

Crop diseases can also greatly reduce crop yield potential in Kansas (Cruppe et al., 2021) 

and impact variety selection. Therefore, it has been proposed to use spectral sensors as a means 

for monitoring crop health (Lowe et al., 2017) and aiding fungicide decisions (Cruppe et al., 

2017). In many cases, early detection of a disease or infestation can be crucial in reducing the 

impacts on the crop by allowing producers to potentially treat a field. Both multi-spectral and 

hyperspectral sensors have been used to identify diseases such as crown rot, root rot powdery 

mildew, and leaf rust  (Franke & Menz, 2007; Hillnhutter et al., 2011). Additionally, combining 

convolutional neural networks (CNNs) with evolving multispectral imagery acquisition has 

shown promise for improved disease detection (DeChant et al., 2017).  

Through the combination of HTP data and genetic tools such as GWAS and marker 

assisted selection (MAS) breeders can make better selections for cultivar development. Although 

this has already been implemented in many crops and many programs (Condorelli et al., 2018; 

Pauli et al., 2016), the need to further develop and explore the potential of this technology within 

wheat breeding programs remains.  

 Modeling Phenological Development  

Historically a major limitation to phenological models was access to weather data with 

the needed temporal resolution and accuracy of parameters within an acceptable spatial 
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proximity of a trial. However, recent technical advancements have made sensors and dataloggers 

cheaper, more reliable, and more powerful. This has shifted public weather data collection from 

human observations to highly technical research-grade instrumentation. As of 2019, there were 

62 publicly maintained open access weather stations that were part of the Kansas Mesonet 

network. These stations have the capability of collecting hourly precipitation, air temperature, 

relative humidity, barometric pressure, windspeed, solar radiation, soil temperature and soil 

moisture (Patrignani et al., 2020). Many of these stations are located at Kansas State University 

Research Stations or on land of cooperative landowners. The distribution and quantity make 

these weather stations a good source of weather data for field trials, including many of the 

Kansas State Wheat Breeding program’s research trials.  

Modeling phenology of crops can provide insight to key physiological and genetic 

responses to yield components (Dhillon et al., 2020). In HTP, within breeding programs, these 

models also can provide a link to multi-year reflectance data. Currently, researchers have used 

several different approaches to combine these multi-year data sets. The simplest way is to use 

day of year, with January 1st being day one (Naser et al., 2020). However, this method has 

limitations primarily because day of year is subject to management factors such as planting date. 

Furthermore, this method does not account for environmental factors such as solar radiation, 

precipitation, or temperature regime. All these factors can impact plant development and can 

significantly change between years, particularly with a winter crop such as wheat (Han et al., 

2019).  

Incorporating weather data to create thermal time indices to model phenology has been 

used in crop research for decades (Hildreth et al., 1941). One of the most popular thermal time 

indices uses is Growing Degree Days (GDD) (Gilmore Jr & Rogers, 1958). This model accounts 
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for environmental factors by incorporating daily temperature when predicting phenological 

growth stages and is commonly used in small grain simulations (McMaster & Wilhelm, 2003). 

The GDD models use three different temperature measurements a maximum (TMAX), minimum 

(TMIN) and a base temperature (TBASE). While this method is widely accepted and uses 

environmental data there are still discrepancies in what base temperatures to use and how the 

base temperature is incorporated into the equation. McMaster and Wilhelm (1997), reported up 

to a 9% difference in cumulative thermal units in Colorado when calculating GDD two different 

ways. This example provides insight into how thermal time indices can be misrepresented 

through lack of standardization.  

In addition to model discrepancies, the vernalization component of winter wheat provides 

unique challenges for phenology modeling compared to most commercially grown crops. 

Although photoperiod and vernalization impacts on phenology are genetically controlled, only 

~53% of the variation in phenology is due to genetics (Cane et al., 2013). Meaning that 

accounting for environmental factors such as temperature and water stress can have major 

implications on predicting phenology. Some studies avoid incorporating this period by modeling 

the growth from a fixed time, after most of the vernalization period has occurred (Lollato et al., 

2020). Even though it has been shown that phenology stage can reasonably be predicted through 

ignoring vernalization, there are several reports that support incorporating vernalization to 

improve the phenological prediction. Wang and Engel (1998) proposed calculating total 

physiological development days after emergence as a two-part function. In this example 

physiological development days needed for vegetative and reproductive phase are calculated 

differently. Whereas the reproductive stage is only temperature dependent, the vegetative stage 
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incorporates a vernalization function that incorporates photoperiod. Variations of this this 

equation have been tested and adapted for winter wheat crops globally (Xue et al., 2004). 

It has been theorized that incorporating other environmental factors such as soil 

temperature and soil moisture can improve phenology models. Wang and Engel (1998) proposed 

using soil temperature, if available, to calculate emergence. Additionally, it has been proposed 

that incorporating soil water measurement into phenology models can increase accuracy 

(Chauhan et al., 2019). However, this proposes a unique challenge as soil water available is 

highly dynamic. Spatial variation in soil texture, along with other physical and chemical 

properties can all greatly impact soil available water capacity (AWC) (Lei et al., 2012). 

Additionally, crop canopy and root systems can affect soil available water, particularly in variety 

trials and breeding applications where a wider range of genotypes are being tested (Amiri et al., 

2021). Therefore, when evaluating the right model and model parameters for a breeding program 

multiple environmental factors need to be considered.  

 Spatial Variability in Crop Breeding  

In plant breeding spatial variation effects can increase errors and ultimately genetic gain. 

In-field micro-environments can impact yield trials particularly when many genotypes are tested 

within a single field (Wasson et al., 2014). This variability can strongly affect phenotypic 

response of these genotypes, making it necessary to develop spatial corrections for plant 

breeding. Many plant breeding programs correct for spatial effects through implementing 

modified experimental designs. It has even been theorized that spatial corrections are more 

important than experimental design (Borges et al., 2019). However, it has been documented that 

combining spatial modeling with the proper experimental design allows for the best allocation of 

recourses within a breeding program (Gonzalez-Barrios et al., 2019; Piepho & Williams, 2010).  
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In addition to computational modeling advancements, sensing platforms have also 

recently been used to quantify spatial variation. High throughput phenotyping (HTP) sensors can 

provide useful data for spatial variability models. Recently, vegetative indices derived from 

multispectral data were used to evaluate spatial variability in durum wheat and identify yield 

sub-areas of the fields at harvest stage (Marino & Alvino, 2019). UAV imagery has also been 

used with spatial models to improve detection of spatial patterns in vineyards, proving to be 

useful in vineyard management (Matese et al., 2019). Furthermore, UAV data has the ability to 

increase spatial variability resolution in prediction of biomass production (Insua et al., 2019).  

In plant breeding, most of the inherent spatial variability affecting field screening of 

experimental genotypes is due to plant, soil, and water interactions. However, due to the 

heterogeneous nature of soil, it is often difficult to quantify spatial variation with limited point 

data. New advancements in soil sensing, such as soil probes with optical spectroscopy, electrical 

conductivity, and penetrometer sensors, have shown potential for spatially identifying soil micro-

climates that can be used in plant breeding prediction models (Pei et al., 2019). Additionally, on-

the-go soil electrical conductivity sensors have the ability to predict grid sample site with up to 

80% accuracy making them an alternative to grid sampling (Shaner et al., 2008). 

Combining HTP spectral data, soil sensor data, and point soil core samples can increase 

the accuracy of spatial maps over point measurements alone. Current research using data fusion 

of spatial data has shown promise in spatial models (Ji et al., 2019). Similar methods have also 

been used on a production scale to cluster satellite remote sensing data and soil sensing data to 

identify homogeneous parts of agriculture fields (Saifuzzaman et al., 2019). As large data sets 

continue to be collected using HTP, the importance of integrating data will continue to be an area 

of needed exploration.  
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Chapter 2 - Integrating Phenological Development from Crop 

Models into High Throughput Phenotyping 

Introduction 

The use of high throughput phenotyping (HTP) with automated data acquisition 

platforms has the potential to be a transformative selection tool for breeding programs 

worldwide. Recent studies have shown that collecting sensor data at key physiological stages can 

increase yield prediction and assist with phenotypic selection (Crain et al., 2017; Hassan et al., 

2019). Additionally, HTP sensor data can be used to assess disease response during key growth 

stages (Silva, 2021). However, growth stages vary from year to year depending on weather and 

management, which directly impacts the operational use of HTP platforms as well as data 

efficiency as both biotic and abiotic stressors impacting grain yield are driven by in-season 

environment trends (Bergkamp et al., 2018; Eversmeyer & Kramer, 2000).  Therefore, having 

the ability to predict growth stages from weather station data is pivotal to deploying HTP data 

collection in breeding programs. The objective of this study is to evaluate different thermal time 

indices and crop model systems to predict heading date in winter wheat breeding populations.  

In addition to predicting phenology for HTP purposes, these predictions can also be 

paired with sensor data to predict in-season regional yield and climate adaptation (Parida & 

Ranjan, 2019). As regional and global climate shifts continue, plant breeders need to develop 

cultivars that are adapted to the new climate and are resistant to weather extremes of the region. 

Modern wheat varieties have earlier flower times compared to legacy cultivars (Maeoka et al., 

2020; Rezaei et al., 2018), indicating that breeders are selecting genetics that are more adapted to 

the current climate. However, further advances in flowering time have not shown potential to 
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improve yields in a modeling exercise (Sciarresi et al., 2019). However, Hu et al. (2005) 

attributed an earlier flowering date, of 0.8 to 1.2 days per 10 years in the legacy variety Kharkof, 

to increased spring temperatures in the US Central Plains. These studies confirm that shifting 

phenology to match changing climate is both genetically and environmentally controlled. This is 

significant to breeding programs where diverse germplasm needs to be evaluated at multiple 

locations across multiple years. By understanding phenology through modeling and climate 

trends, breeders can take a better approach to develop cultivars with the proper maturity to avoid 

typical high stress weather trends (Lollato et al., 2020).  

Although thermal time indices are an important established method to normalize 

phenology data across years and locations, there are discrepancies on how these indices are 

calculated. McMaster and Wilhelm (1997) demonstrated that implementing minimum 

temperature thresholds to either the daily temperature or the daily average temperature can 

impact thermal indices. Likewise, researchers use different base temperature, maximum 

temperature, and optimum temperature between and within crops (Salazar-Gutierrez et al., 

2013). Similarly, some indices, such as physiological days (Pdays) index (Saiyed et al., 2009), 

integrates an optimum temperature threshold that weights thermal time accumulation when daily 

weather is close to the optimum growth temperature. Variations in all calculations and threshold 

parameters can significantly impact the calculated thermal time accumulation and in-season 

phenology prediction of the crops. This justifies the exploration of multiple indices for breeding 

programs and adopting the system that fits best within a region for a given crop. 

The vernalization component of winter wheat phenology poses unique additional 

challenges compared to spring wheat and other summer annual crops. It has been reported that 

within in Kansas, responses to vernalization, spring green up, and heading date are genotype 
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specific (Munaro et al., 2020). In an attempt to mitigate vernalization effects and standardized 

dates between years, researchers often use day of year after January 1st to evaluate HTP data both 

within year and across years (Giri, 2019; Lollato & Edwards, 2015; Silva, 2021). However, 

accounting for winter wheat early season plant growth can be significant for breeding programs 

and commercial production, specifically when evaluating stand establishment. Additionally, 

predicting full season phenology can also be useful for evaluating fall biomass production and 

estimating grazing thresholds where growth stage is critical to crop viability (Hossain et al., 

2003). Thermal indices that calculate thermal time differently for vegetative and reproductive 

phase have been developed as a solution for phenology development (Streck et al., 2003; Wang 

& Engel, 1998). These thermal indices may have an advantage over temperature-only models 

within winter wheat breeding programs.  

In addition to temperature, it has been documented that photoperiod can also affect the 

growing stage in many crops (Yan & Wallace, 1998). Typically, wheat is not as photoperiod 

dependent, but in crops such as soybeans, it can heavily influence crop development. However, it 

has been documented that wheat genotypes with Vrn-A1, Vrn-B1, Brn-D1, Ppd-B1, Ppd-D1 are 

photoperiod and temperature sensitive for phenology (Kiss et al., 2021) and that photoperiod can 

impact phenological development and spikelet number (Halse & Weir, 1970). Furthermore, 

Robertson (1968) demonstrated that developing a thermal index that accounts for photoperiod by 

incorporating day length, can improve phenology estimations in cereal crops. Furthermore, this 

biometerological time scale (BMT) contains genotype-specific response coefficients for both 

temperature and day length, making it adaptable to breeding programs. Additionally, several 

variations of thermal indices that include either day length or photoperiod coefficients have been 

widely used in literature (Aslam et al., 2017; Herndl et al., 2008). These reports indicate that 
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indices that incorporate a photoperiod component could potentially improve phenology 

prediction of winter wheat in Kansas.  

Although thermal indices such as Pdays and BMT have proved to be useful tools 

individually for predicting phenology in wheat, using these indices within crop models have the 

potential further improve prediction accuracy of wheat phenology. These models can range from 

simplistic to robust by quantifying genetics, soil, and other weather variables effects on crop 

growth and development. Recently, there have been several other models developed that use 

induvial parametrization to account for the genetic control of winter wheat (Aslam et al., 2017; 

Ceglar et al., 2019; Hodges & Ritchie, 1991). All these models are stage threshold driven 

meaning that the thermal equation changes once an accumulation limit is reached. Many of these 

models have 10 or more phase changes depending on crop types. Moreover, these threshold 

limits are typically genotype–independent, allowing for genotypic variation to be captured. This 

capability allows for breeders and researchers to evaluate responses to climate changes by 

genotype (Rezaei et al., 2018).  

Overall, the assessment of computational phenology models could provide useful insight 

when incorporated in to breeding programs. Having the ability couple these simulations with 

evolving sensor and sequencing techniques further validates the need for established regional 

performance of the crop models.  

 Materials and Methods 

 Plant Material 

To evaluate germplasm adapted to the Central Great Plains we evaluated two unique 

populations. The first population assessed was a subset of a diverse association mapping panel as 

described by Grogan et al. (2016). The initial panel consisted of 342 pure line winter wheat 
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varieties that originate from a wide range of breeding programs, time periods and growing 

regions across the United States. However, due to the diverse nature of this population, only 

varieties released after 1990 and were at one time in the top 10 varieties grown in Kansas were 

selected. These criteria resulted in the evaluation of 40 lines, as shown in Table 2.1.  

The second population consisted of lines being tested within the Kansas State Wheat 

Breeding (KSWB) program. Due to the fluid nature of plant breeding, experimental lines are not 

contained in the same experiment for multiple years. Experimental lines are grown, evaluated 

and either advanced or discarded at the conclusion of the growing season. For this experiment we 

evaluated germplasm that was grown in either the Preliminary Yield Nursery (PYN), the 

Advanced Yield Nursery (AYN) and the Kansas Interstate Nursery (KIN) within the scope of the 

KSWB program. Although the entries were part of several different experiments over the 3 

years, all experiments were in the same field within a location. Each of these trials can contain 

upwards of 200 lines. However, for this study, we evaluated only lines that were represented 

across at least 6 of the 9 site years were chosen for evaluation (Table 2.2). In addition to 

experimental germplasm ten released varieties that were used for checks were also evaluated. 

However, due to the wide geographic region of testing some checks were only included at 

locations where the variety was recommended for production.  

 The lines from the AM panel were grown over three years (2017, 2018 and 2020) at the 

Ashland Bottoms Experiment Station (39˚08'19.07'' N, 96˚38'21.00'' W), and at the Rocky Ford 

Experiment Station (39˚13'48.82'' N, 96˚34'41.87'' W) during the 2019 year. The experiment 

design was a randomized complete block with 2 replications. Plot dimensions were 2.4 m x 1.4 

m (3.36 m2) and planted with a Great Plains 3P606NT grain drill that was modified by Kincaid 

Manufacturing (Haven, KS, USA). Each plot consisted of 6 rows spaced at 20 cm with a seeding 
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rate of 15 g m-2 . The plots were planted in October of each year and harvested in late June or 

early July (Table 2.3).  

To assess thermal time models within the KSWB program 5 locations were evaluated 

over 3 years. Due to location variability, performance, and breeder availability not every location 

was evaluated for heading date every year. In total 9 location-years were included in this study. 

Locations include Ellsworth County (2018, 38° 33' 4.13"N, 98° 22' 7.67"W and 2020, 38° 33' 

4.13"N, 98° 22' 7.67"W), McPherson County (2020), Reno County (2018, 37° 55' 58.53"N, 98° 

01' 53.91"W, 2019, 37° 57' 46.64"N, 98° 07' 14.89"W and 2020, 38° 33' 4.13"N, 98° 22' 

7.67"W), Riley County (2018, 39° 7' 37.34"N, 96° 36' 39.93"W and 2019, 39° 7' 38.27"N, 96° 

36' 36.56"W) and Saline County (2019, 38° 39' 10.54"N, 97° 36' 4.417"W, Table 2.4). Similarly, 

to the AM panel the plots were 1.4 m wide and consisted of 6 evenly spaced rows. However, 

plots were 4.5 m long and planted with a Hege plot drill. The plots were planted in either 

October or November of each year and harvested in late June or early July (Table 2.3).  

 Phenotypic Data Collection 

Plots in the diversity panel were visually scored for percent heading every two days 

during the heading period and data was digitally recorded using FieldBook (Rife & Poland, 

2014). Percent heading was determined as the percentage of heads within the plot that had 

emerged from the boot in 10% intervals. Heading date was recorded when a plot reached a score 

of 50%, meaning 50% of the spike had emerged from 50% of all tillers (Crop Ontology 

CO_321:0000840). This determination is consistent with stage 59 on the Zadoks scale (Zadoks et 

al., 1974). In plots where 50% was not recorded at a single day, the percent heading scores were 

interpolated to a heading date using a logistic regression model  as described in (Wang et al., 

2019).  
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Genotypes in the KSWB yield nurseries were evaluated several times during the heading 

period similarly to the AM panel. However, instead of using a percent scale to evaluate heading 

date, the heading date was recorded as the date when 50% of the spike had emerged from 50% of 

all the stems was observed.  

 Weather Data 

All weather data was obtained from weather stations that are maintained by the Kansas 

Mesonet network (http://mesonet.k-state.edu). All experiments, except for 2019 Saline County, 

were within 2 km of a Mesonet weather monitoring station (Table 2.4, Fig. 2.1). Hourly weather 

data was collected during the growing season for precipitation, maximum (Tmax) and minimum 

(Tmin) air temperature, incident solar radiation (Rs) wind speed at 2-m height (u) and relative 

humidity (Patrignani et al., 2020).  

Thermal Indices 

Five base thermal indices, calculated seven different ways, were evaluated in this study. 

All the indices use daily weather data in combination with key physiological responses and in 

some cases daily photoperiod. Daily weather values were imported as a Pandas dataframe 

(Pandas Library, version 1.3.2) through a URL query string in Python programming language 

(Python, version 3.7.1, Python Software Foundation). Photoperiod, displayed as daily decimal 

hours with the time of sunrise and sunset on a 24 hour clock, was calculated using the ephem 

Python package (PyEphem, version 4.0.0.2). Both daily and cumulative values were calculated 

for all thermal indices using custom scripts written in Python.  Cumulative thermal indices were 

calculated on three levels; (i) the entire growing season for planting to harvest designated as day 

after sowing (DAS); (ii) day of year (DOY) starting from January 1st of the harvest year; and (iii) 

day Mar 1st of the harvest year to simulate from the start of green up. The exception to this 



24 

method was the BMT thermal index where it was only calculated for the entire growing season 

due to the reduced scale of the index.  

Growing degree days (GDD) is a widely accepted basic thermal index which uses the 

daily maximum and minimum observed temperature while incorporating a crop specific base 

(Tbase) temperature. Although the equation is rather simple, there are calculation discrepancies 

throughout literature and GDD is often calculated two ways as described by McMaster and 

Wilhelm (1997). One method of calculating GDD integrates the base temperature on the daily 

average temperature, whereas the other calculation incorporates the base temperature 

individually on the daily maximum and minimum temperatures before the daily average is 

calculated. Furthermore, a third way to calculate GDD incorporates an upper temperature 

threshold (Tupper), where wheat development has been shown to cease (McMaster et al., 2008).   

For this experiment all three variations of calculating GDD were explored. The three GDD 

calculations are designated as GDD method one (GDD1, Eq. 1 ) and GDD method two (GDD2 

Eq. 2) and GDD with a Tmax upper threshold (Tupper ) (Tmax_GDD Eq. 3). For all calculations 

within this experiment the Tbase was set at 0C, subsequently the Tupper temperature was set at 30C 

for the Tmax_GDD equation (Porter & Gawith, 1999). 
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In addition to GDD, thermal time was calculated using the method described by Wang 

and Engel (1998) and is designated as Wang and Engel growing degree days (GDDWE, Eq. 4). 

This nonlinear response function uses base, optimum and maximum temperature thresholds 

designated as Tmin Topt and Tmax with the daily average temperature. In this experiment the 

threshold temperatures used were Tmin= 0C,  Topt = 27.7C,  and Tmax = 40C. In addition to 

temperature response a photoperiod component was also added to the GDDWE equation to 

develop Photo Growing Degree Days (PGDD, Eq. 5) thermal index (Aslam et al., 2017) which 

uses a photoperiod coefficient and the day length in hours. 
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The Physiological days (Pdays) thermal time index was calculated using equation 6. In 

addition to using maximum and minimum temperature Pdays also incorporates an optimum 
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temperature. In this study Tmin was set at 0C, Topt at 17 C and Tmax at 30C.  Pdays implements a 

weighed scale, where thermal time is accumulated faster when daily temperatures are near the 

optimum temperature for crop growth (Saiyed et al., 2009).  
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The thermal time index Biomterological Time (BMT) was first introduced to spring 

wheat by Robertson (1968). BMT calculation combines temperature and photoperiod with 

response coefficients (Eq. 7). The day length (L) in hours of sunlight influences a genotypes 

photoperiod response in reference to the base daylength (a0). Whereas, the observed daily 

maximum (Tmax) and daily minimum (Tmin) temperatures are subtracted from a base temperature 

(b0).  For this study the base temperature was set at 0°C. The coefficients (used for this equation 

are developed from Robertson (1968). These coefficients are not constant, and change based on 

the plants predicted development. The five phenological development stages for the coefficient 
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response changes are designated as: (i) planting to emergence (PE), (ii) emergence to jointing 

(EJ), (iii) jointing the heading (JH), (iv) heading to senescence (HS), and (v) senescence to 

ripening (SR). The development stage specific coefficients allow the model to accumulate 

thermal units according to the appropriate growth stage.  

𝐵𝑀𝑇 =	∑ 𝑉@($%&'()*
+,%-*.-/ 𝑉# + 𝑉B)	    [Eq. 7] 

𝑊ℎ𝑒𝑟𝑒; 
𝑉@ = 𝑎@(𝐿 − 𝑎E) + 𝑎#(𝐿 − 𝑎E)# 

 
𝑉# = 𝑏@(𝑇1%2 − 𝑏E) + 𝑏#(𝑇1%2 − 𝑏E)# 

 
𝑉B = 𝑑@(𝑇1.- − 𝑏E) + 𝑑#(𝑇1.- − 𝑏E)# 

 

Agricultural Production Systems Simulator (APSIM) Wheat Model 

The APSIM Wheat Model (Zheng et al.) uses physiological phase changes that are driven 

by accumulation of thermal time to initiate the phase change. The APSIM model uses the daily 

recorded maximum and minimum temperatures to calculate the daily maximum (Tcmax) and 

minimum crown temperatures (Tcmin) as shown in equation 8. Furthermore, the APSIM model 

uses the daily crown mean temperature (Tc) to calculate the daily thermal time (TT). This 

calculation (Eq. 9) uses threshold temperatures of 0°C., 26°C. and 34°C.. The simulation also 

accounts for photoperiod calculated from experiment location latitude and day of year. The 

model also simulates vernalization effects (V) from the daily average crown temperature as 

shown in equation 10. The transition to phenological stages happens when the TT  reaches a 

target accumulation as detailed in Zheng et al.  

For this experiment all simulations were executed using the R package ‘rapsim’ 

(https://github.com/APSIMInitiative/APSIMWheatPhenology). Individual genotype coefficients 

were obtained for three phase changes including end of juvenal, floral initiation and start of grain 
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fill. Additionally, coefficients were calculated for photoperiod sensitivity and vernalization 

sensitivity.  In total each genotype had a combination of five individual coefficients. In total, 300 

iterations were performed to find the optimum combination of the coefficients which was 

selected by minimizing the RMSE.  

 

𝑇F1%2 = [2 + 𝑇1%2(0.4 + 0.0018(𝐻)-?G − 15)
#)				𝑊ℎ𝑒𝑛					𝑇1%2 < 0	

𝑇1%2																																																																			𝑊ℎ𝑒𝑛				𝑇1%2 ≥ 0                  [Eq. 8] 

 

∆𝑇𝑇 = ^
𝑇F																																													0 < 𝑇F	 ≤ 26
#I
J
(34 − 𝑇F	)																				26 < 𝑇F	 ≤ 34

0																																𝑇F	 ≤ 0	𝑜𝑟	𝑇F	 > 34
                                  [Eq. 9] 

 

∆𝑉 = min	(1.4 − 0.0778𝑇F , 0.5 + 13.44
!1	

(!!"#	8!!$%"B)0
	                        [Eq. 10] 

𝑤ℎ𝑒𝑛 

	𝑇1%2 < 30C	and	𝑇1.- < 15C 

 

Statistical Analyses 

Linear models for observed heading date and each thermal index were  assessed using the 

‘lme4’ package in R (Bates et al., 2007). The model (Eq. 12) creates a genotype specific thermal 

time coefficient for each genotype.  

𝑦. = 	𝜇 + 𝐺. + 𝜀      [Eq. 13] 

 

Where, 𝒚𝒊	is the value for the thermal time of interest, μ is the overall mean, 𝑮𝒊 is the 

fixed effect of the 𝒊𝒕𝒉	entry (genotype) and 𝜺 is the residual error. This model requires a second 



29 

step where the genotype specific thermal time coefficient is used to predict the heading date 

based on the calculated cumulative thermal time for that growing season.  

 The accuracy of the models were evaluated using coefficient of determination (R2), root 

mean square error (RMSE, Eq. 14), Akaike’s Information Criteria (AIC) and Bayesian 

Information Criteria (BIC). The AIC and BIC scores were calculated using ‘AICcmodavg’  

package in R (Mazerolle & Mazerolle, 2020).  

 

𝑅𝑀𝑆𝐸 = o∑ (OPQ$8QRS$)0%
$34

-
      [Eq. 14] 

 Results and Discussions 

In both the AM Panel and the KSWB program both year and location had significant 

effects on observed heading date. In the AM Panel only 2018 and 2020 had similar calendar 

dates for heading (Fig. 2.2). Whereas the heading date for 2019 was significantly later and the 

2017 heading date was significantly earlier. Heading duration also varied with 2017 having the 

longest heading period and 2018 the shortest. Similar trends were observed within the KSWB 

program; however, unlike the AM Panel, all three years were statistically different. In this case 

collectively 2018 had the earliest whereas 2019 had the latest heading date. We also observed 

that the 2020 growing season showed the highest variability of heading date by location, with the 

Ellsworth County site having the latest heading date of all location years. In total, only the 2020 

McPherson experiment had similar heading dates with both the 2019 Reno and the 2018 

Ellsworth locations (Fig. 2.2). Across all years and experiments, the average heading dates 

ranged from the 119th to 134th DOY (Table 2.5). This range is consistent with heading dates 

reported for other populations within the US Central Great Plains (Grogan et al., 2016). 
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The difference in observed heading dates could be explained by fluctuations in monthly 

average temperatures during the growing season. The 2017 growing season for the AM Panel 

experienced a warmer fall allowing for a higher accumulation thermal time prior to vernalization 

(Fig. 2.3). Furthermore, the experiment was planted earlier than subsequent years (Table 2.3) 

allowing for additional development during the fall. Although December of 2017 was cooler than 

other years, an early green up caused by elevated temperatures in February allowed for an earlier 

accumulation of thermal time. Inversely, 2019 experienced a warm October but remained cooler 

than other years through the fall into spring until normal temperatures resumed form April 

through July. However, the early low temperatures resulted in a slower accumulation of thermal 

units and could be the reason for the late observed heading date. It is also notable that the 2018 

and 2020 temperature patterns were similar with the exception of higher temperatures around 

anthesis and grain fill in 2018. This increased heat at anthesis paired with low annual 

precipitation in 2018 could explain the short heading period observed in 2018. Similar effects of 

elevated temperature decreasing flowering time have been reported by several studies (Sadras & 

Monzon, 2006; Wang et al., 2015).   

The monthly weather trends were similar for the KSWB program where year variation 

were stronger than location trends. Like the AM Panel, 2019 experienced the coldest fall/winter 

with the latest green up in spring (Fig. 2.3 B). Likewise, the elevated temperatures around 

anthesis were observed at all locations in 2018. The greatest location discrepancy within a year 

was observed in 2020, where Hutchinson location had higher mean temperatures than either the 

Lorraine or McPherson locations. This pattern was also show in the heading date data as 

previously discussed. Overall, the high variability in temperature trends between seasons 

supports using thermal indices to normalize the plant development.   
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Trends in cumulative thermal indices were comparable to growing season temperatures 

patterns. This is expected as all the thermal indices explored for this experiment are calculated 

based on daily maximum and minimum temperatures. This trend was most apparent for the full 

season curve for the 2017 AM Panel. Fig. 2.4 (C), shows considerable elevated accumulation of 

growing degree days (GDD1) during the fall right after sowing. This is constant with the early 

planting date and the warmer observed monthly mean temperature during the fall. In 

combination with the mild winter and early green up during that growing season, we would 

expect a higher accumulation of thermal units. Although the 2017 heading date was also early, 

the large accumulation of GDD early in the growing season potentially skewed the predicted 

heading date. This trend was observed for all thermal indices. However, the early and elevated 

accumulation was minimized with the Pdays equation, which could be expected due to its 

emphasis on optimum temperature compared to the daily average. The 2019 thermal 

accumulation for GDD1 was the lowest, which follows the trends of observed heading date and 

monthly temperatures previously reported. While the GDD1 curves collected after January 1st 

and March 1st (Fig. 2.4-A and 2.4-B) do minimize the gap in accumulation, 2017 still has the 

highest total GDD accumulation. It is noteworthy that in GDD1 accumulation after March 1st the 

accumulation trend appear to be more linear and the overall differences are minimized. However, 

even though the differences are minimized, the rank order of 2017, 2018, 2020 and 2019 is still 

present.  

Like the observed weather data, the accumulation of GDD in the KSWB program was 

much more dependent on year than location. This is also supported by the observed heading date 

data previously discussed. Although the thermal accumulation trends for the KSWB program 

were not as distinguishable as the 2017 AM Panel, differences still existed particularly over the 
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full season (Fig. 2.5 C). This trend was especially noticeable with the 2019 Riley County data 

where total accumulation was lower than all other location-years. Contrary, the Reno County 

location had highest accumulation within years. This location is the most southern location in all 

years, except for McPherson County in 2020. The higher average accumulation of GDD at Reno 

County was likely due to is southern geographic location. Like the AM Panel, differences in 

accumulation were mitigated for both the curve that started January 1st (Fig. 2.5 B) and March 1st 

(Fig. 2.5 A). 

 Cumulative thermal times at heading date had similar discrepancies as the thermal time 

accumulation figures. Both the AM Panel (Fig. 2.6 A, B and C) and KSWB program (Figure 2.7 

A, B and C) demonstrated similar patterns. In both data sets, the year-locations with earlier 

observed heading dates had a higher accumulation of thermal units at the time of heading. 

However, these lines converged to a more linear relationship for both the January 1st and March 

1st accumulation start dates.  Within the KSWB program, the 2019 Riley County thermal time 

observations went from a disguisable low group in the full season accumulation (Fig. 2.7 C) to 

an average accumulation in the March 1st accumulation (Fig. 2.7 A). This follows all previously 

discussed patterns where the early season cool period limited the accumulation of thermal units. 

The inverse of this is shown in the AM Panel where the 2017 data has elevated thermal 

accumulation across the entire season (Fig. 2.6 A) but mergers closer to the other years as we 

move to January and March 1st start dates (Fig. 2.6 A and B). These observations reinforce that 

yearly season accumulation, or lack of accumulation during the vernalization period, affects 

thermal indices’ ability accurately predict phenology.  

Evaluation of thermal indices in relationship to the observed heading date indicates that 

full season thermal time accumulation had higher RMSE when compared DOY or models that 
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incorporate thermal accumulation after January or March 1st. As shown in Table 2.6, the RMSE 

values in the AM Panel improved for all thermal indices with both the January 1st and March 1st 

thermal time calculations. This can be explained by both the overall reduction of accumulation 

days during the vernalization period and their relationship to previously discussed weather 

patterns. The fitted versus observed results (Fig. 2.8) for the AM Panel further confirm the 

advantages of thermal accumulation methods with reduced accumulation periods. We observed 

that with the full season accumulation of thermal time the model underestimates the observed 

heading date in 2017 and overestimated heading date in 2019.  This was reduced but still 

prevalent when using Jan 1st GDD calculations, and greatly improved with March 1st based 

GDD.  This could be expected due to the observed weather patterns and total thermal 

accumulation curves during the 2017 and 2019 seasons.  Overall, the superior performance of 

post-vernalization calculations indicates that the fall conditions are not a major determining 

factor in the resulting spring development, consistent with the known biology of winter wheat 

with its vernalization requirements.   

Comparable trends were observed in the KSWB program data. The full season GDD 

index overestimated heading date in 2019 as some estimated exceed 145 days (Figure. 2.9 C). In 

contrast, heading dates estimated for both 2020 and 2018 were closer to observed heading dates. 

Once again, these prediction gaps dimmish for GDD calculations based on January 1st and March 

1st (Fig. 2.9 A and B). The main difference in the KSWB program dataset is that the RMSE for 

each index is lowest for the January 1st predictions, whereas the lowest RMSE in the AM Panel 

was observed with the March 1st datasets. As previously discussed, in 2018 there were elevated 

temperatures around heading date. In the case of the KSWB program, which only had 3 years of 
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data, these elevated temperatures could have had a larger impact than the shorted March 1st data 

set.  

Although the main effects of accumulation period are evident, there are specific thermal 

indices that had better performance. The PGDD and GDDWE thermal indices has the lowest 

RMSE regardless of the accumulation period in both data sets. This could be due to the nonlinear 

response function that is used to calculate these indices. It is also notable that the introduction of 

photo period in the PGDD equations tended to reduce RMSE, increase R2, and improve AIC and 

BIC selection criteria. Additionally, differences were observed in all three GDD equations with 

the most significant RMSE difference of 1.5 days between full season accumulations of GDD1 

and GDD2. These results are also supported from previous studies (McMaster & Wilhelm, 1997) 

and justify the need to standardize calculations within a breeding program. 

APSIM model simulations were only made for full growing season with five distinct 

coefficients observed for each genotype. Genotype-specific coefficient differences were 

observed for all coefficients for both the AM Panel (Table 2.8) and the KSWB program (Table 

2.9).  However, for both sets of germplasm, only the end of juvenile thermal time coefficient was 

statistically significantly different. The end of juvenile coefficient relates to a genotype’s 

response to both early season green up and initiation of transition to reproductive stages. 

Increased accumulation of thermal units to end this stage would have significant impacts on the 

genotype’s phenology progression throughout a growing season. Within the AM Panel, the 

genotype Alliance had the highest thermal time requirement to end juvenile phase whereas Fuller 

had the lowest. These results for all genotypes are supported by published breeder agronomic 

and target geographic region for production (Fritz, 2007; Watson, 2002). Likewise the KSWB 

program germplasm showed differences in juvenile coefficients where the breeding line 
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KS120129M~4 had the highest requirement and four genotypes had the lowest coefficient 

amongst them was WB4269 which has an early maturity (WestBred, 2018). We did not observe 

significant differences for photoperiod or vernalization coefficients in the breeding trials. This 

could be expected as all the released evaluated genotypes were adapted for production in Kansas 

and the experimental genotypes are being developed for release, thus being well-tuned to the 

needed vernalization period for Kansas environments.   

Since APSIM simulations were across the entire growing season, all predictions were 

made in DAS then normalized to DOY accounting for sowing dates. Thus, the predictions would 

be consistent with full season thermal time indices. With both the AM panel and KSWB datasets, 

the APSIM simulations reduced RMSE while increasing R2 values (Fig. 2.10). Overall, the AM 

Panel RMSE of 1.812 days and the KSWB program RMSE of 2.405 days out preformed any of 

the full season individual thermal time indices. However, the full season APSIM for the KSWB 

program did not out preform the Jan 1 and Mar 1 condensed thermal indices for GDD, PGDD 

and GDDWE (Table 2.7).  Similarly to the full season thermal indices, the APSIM model over 

predicted phenology in 2019 due to the cool winter, which accounted for most of the reduced 

accuracy and why the condensed temporal indices performed better. However, considering that 

APSIM allows for full season prediction, the relative performance of the model is still better. 

The higher observed RMSE observed in the KSWB maybe caused by compounding both 

location and years.  

Overall, the previously discussed weather pattern effects during the vernalization period 

wore not observed with the APSIM model, which can likely be attributed to the phase change 

calculations within the APSIM model. The model’s ability to combine genotype specific thermal 

time coefficients with thermal times accumulation phase changes likely provides the advantage 
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over other thermal indices. Additionally, as yield prediction models are developed, there may be 

a need to incorporate early season plant vigor phenotyping, which would limit the applications of 

the condensed temporal models (Kipp et al., 2014). 

 Conclusions 

This study supports the use of thermal time to predict phenology within a breeding 

program where there is more genetic diversity than in a production setting. However, there are 

several challenges of using thermal indices alone, particularly when using them to predict 

phenology for an entire growing season.  While models that used start dates after the initiation of 

vernalization had stronger performance, there still is some novelty for breeding selection in 

predicting the entire growing season particularly as technologies and models advance and the 

potential need of full season data. In this study, it was demonstrated that multi-phase models, 

such as the APSIM model, have distinct advantages over thermal indices alone. This in 

combination with genotype-specific coefficients in season phenology can reasonably be 

predicted with these models. Future research in phenology modeling is warranted, especially as 

sensor technology continues to evolve and new analytical techniques such as machine learned 

are paired with this HTP data.  
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Figure 2.1. Experiment and weather station locations for both the AM Panel and Kansas Wheat 
Breeding experiments. The shapes represent the weather station locations in relationship to the 
experiment locations. The green polygon represents winter wheat acres planted in 2021 
 
 

 
Figure 2.2. Observed heading date distribution by location year for the AM Panel (A) and the 
Kansas State University Wheat Breeding Program (B). The x-axis is the harvest year growing 
season and the y-axis is the observed heading date in day of year (DOY) after Jan 1st. Colors 
represent location for the Kansas State University Wheat Breeding Program data. 
 

(A) (B) 
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Figure 2.3 Mean monthly temperature by location year for the AM Panel (A) and the KS Wheat 
Breeding Program (B). The x-axis is the month during the growing season and the y-axis is the 
recorded mean monthly temperature from the Kansas Mesonet weather stations. Symbol and line 
combinations represent the location and year the data was recorded. 
  

(A) 

(B) 
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Figure 2.4.  Cumulative Growing Degree Days by year and location fit with a logistic regression 
model for the AM Panel. The x-axis is day of year (DOY) after March 1st (A), January 1st (B) and 
days after sowing (DAS)(C). The y-axis is the cumulative thermal time calculated using GDD1. 
The shapes denote the individual location years and the red line is the fitted trend for all seasons. 
The fit lines for both figure A and B are logistic regression models and figure C is a polynomial 
model.   

(A) 

(B) 

(C) 
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Figure 2.5. Cumulative Growing Degree Days by year and location fit with a logistic regression 
model for the Kansas State University Wheat Breeding program. The x-axis is day of year 
(DOY) after March 1st (A), January 1st (B) and days after sowing (DAS)(C). The y-axis is the 
cumulative thermal time calculated using GDD1. The shapes denote the individual location years 
and the red line is the fitted trend for all seasons. The fit lines for both figure A and B are logistic 
regression models and figure C is a polynomial model.   

(A) 

(B) 

(C) 
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Figure 2.6. Growing Degree Day accumulation at observed heading date by year for full season 
(A), January 1st (B) and March 1st accumulation periods within the AM Panel. The x-axis is the 
observed heading date in day of year (DOY) after January 1st and the y-axis is the cumulative 
thermal time calculated using GDD1. 
  

(A) 

(B) 

(C) 
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Figure 2.7. Growing Degree Day accumulation at observed heading date by year and location 
for full season (A), January 1st (B) and March 1st accumulation periods within the Kansas State 
University Wheat Breeding program. The x-axis is the observed heading date in day of year 
(DOY) after January 1st and the y-axis is the cumulative thermal time calculated using GDD1. 
  

(A) 

(B) 

(C) 
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Figure 2.8. Growing Degree Days (GDD1) Predicted vs Observed Heading Dates for full season 
(A), January 1st (B) and March 1st (C) accumulation periods within the AM Panel. The x-axis is 
the observed heading date in day of year (DOY) after January 1st and the y-axis is the GDD1 
predicted heading date, DOY. 
  

(A) 

(B) 

(C) 
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Figure 2.9. Growing Degree Days (GDD1) Predicted vs Observed Heading Dates for full season 
(A), January 1st (B) and March 1st (C) accumulation periods within the Kansas State University 
Wheat Breeding program. The x-axis is the observed heading date in day of year (DOY) after 
January 1st and the y-axis is the GDD1 predicted heading date, DOY. 
  

(A) 

(B) 

(C) 
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Figure 2.10. APSIM Predicted vs Observed Heading Dates for the AM Panel (A) and the Kansas 
State University Wheat Breeding program (B). The x-axis is the observed heading date in day of 
year (DOY) after January 1st and the y-axis is the APSIM predicted heading date, DOY. Shape 
differences represent sample year and the line is the linear model fitted trend line.  
  

(A) 

(B)
 



46 

Table 2.1-Association Mapping Panel Entries for 2017, 2018, 2019 and 2020 experiments 
located at the Kansas State University Ashland Bottoms and Rocky Ford Research Stations.  

Variety Year of 
Release Variety Year of 

Release Variety Year of 
Release 

1863 2012 Heyne 1998 PostRock 2006 
2137 1995 Ike 1993 RonL 2006 
2145 2001 Jagalene 2001 Santa Fe 2003 
AG Icon 2017 Jagger 1994 Stanton 2000 
Alliance 1994 Joe 2015 SY GOLD 2010 
Arlin 1992 KanMark 2014 SY Wolf 2011 
Armour 2008 Karl 92 1992 Tatanka 2017 
Art 2007 Lakin 2000 Trego 1999 
Bob Dole 2018 Larned 1976 WB-Cedar 2011 
Clara CL 2011 Larry 2016 WB-Grainfield 2012 
Danby 2005 LCS Chrome 2016 WB4458 2013 
Everest 2009 LCS Mint 2012 Winterhawk 2007 
Fuller 2006 Longhorn 1990 Zenda 2017 

  Overley 2003   
 

Table 2.2- Kansas Wheat Breeding Program for  2018, 2019 and 2020 experiments located in 
Ellsworth, McPherson, Saline, Reno, and Riley Counties. Included established and experimental 
genotypes.  

Variety 
Bob Dole KS100060K-19 KS13DH0008-23 
Everest KS100509K-2 KS13DH0030-28 
Gallagher KS120081M~5 KS13DH0035-66 
Joe KS120125M~9 KS13DH0041-35 
KS090049K-8 KS120129M~4 KS14HW106-6-6 
KS090387K-20 KS120252M~14 Larry 
KS090413K-4 KS120506M~7 NUSAKA15-3 
KS090438K-9 KS120513M~5 SY Monument 
KS090616K-1 KS120559M~5 WB4269 
KS100028K-10 KS120648M~5 WB4458 
KS100028K-11 KS12DH0090-172 Zenda 

 KS12DH0156-88  
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Table 2.3- Field experimental locations and weather station details for the Association Mapping 
Panel experiments. 

Year Planting Location 
Location 

Coordinates 
Planting  

Date 
Harvest  

Date 
Weather  

Station ID 
Weather Station 

Coordinates 

2017 
Ashland Bottoms  

Experiment Station 
39˚08'19.07'' N,  
96˚38'21.00'' W 10/19/16 6/23/17 ASBK1 

39° 07' 32.78"N,  
96° 38' 11.50"W 

2018 
Ashland Bottoms  

Experiment Station 
39˚08'19.07'' N,  
96˚38'21.00'' W 10/26/17 6/27/18 ASBK1 

39° 07' 32.78"N,  
96° 38' 11.50"W 

2019 
Rocky Ford  

Experiment Station  
39˚13'48.82'' N, 
 96˚34'41.87'' W 10/23/18 7/15/19 RKFK1 

39° 07' 32.78"N,  
96° 38' 11.50"W 

2020 
Ashland Bottoms  

Experiment Station 
39˚08'19.07'' N,  
96˚38'21.00'' W 10/24/18 7/2/20 ASBK1 

39° 07' 32.78"N,  
96° 38' 11.50"W 

 
Table 2.4- Field experimental locations and weather station details for the Kansas Wheat 
Breeding Program experiments.  

Year Planting Location 
Location 
Coordinates 

Planting  
Date 

Harvest  
Date 

Weather  
Station ID 

Weather Station 
Coordinates 

2018 
Ellsworth County  
(EW) 

38° 33' 4.13"N, 
98° 22' 7.67"W 10/17/17 6/27/18 LORK1 

38° 33' 28.72"N, 
98° 21' 07.30"W 

2018 
Riley County 
(RL) 

39° 7' 37.34"N, 
96° 36' 39.93"W 10/20/17 6/23/18 ASBK1 

39° 7' 32.7828"N,  
96° 38' 11.508"W 

2018 
Reno County 
(RN) 

37° 55' 58.53"N, 
98° 01' 53.91"W 10/18/17 6/28/18 PRGK1 

37° 55' 51.56"N, 
98° 01' 37.49"W 

2019 
Riley County 
(RL) 

39° 7' 38.27"N, 
96° 36' 36.56"W 11/1/18 7/16/19 ASBK1 

39° 7' 32.7828"N,  
96° 38' 11.508"W 

2019 
Reno County 
(RN) 

37° 57' 46.64"N, 
98° 07' 14.89"W 10/24/18 6/30/19 PRGK1 

37° 55' 51.56"N, 
98° 01' 37.49"W 

2019 
Saline County 
(SA) 

38° 39' 10.54"N, 
97° 36' 4.417"W 10/23/18 6/18/18 GYMK1 

38° 43' 30.79"N, 
97° 26' 38.94"W 

2020 
Ellsworth County 
(EW) 

38° 33' 4.13"N, 
98° 22' 7.67"W 10/9/19  6/30/20 LORK1 

38° 33' 28.72"N, 
98° 21' 07.30"W 

2020 
McPherson 
(MP) 

38° 15' 48.18"N, 
97° 35' 30.01"W 10/14/19 6/26/20  MPRK1 

38° 21' 51.33"N, 
97° 41' 59.99"W 

2020 
Reno County 
(RN) 

37° 55' 58.40"N, 
98° 01' 49.41"W 10/14/19  6/22/20 PRGK1 

37° 55' 51.56"N, 
98° 01' 37.49"W 
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Table 2.5- Average heading date, day of year (DOY) by experiment, location, and year for both 
the AM Panel and the Kansas Wheat Breeding Program.  

Year Location Experiment 
Average Heading 

Date (DOY) 
SD 

(DOY) 
2017 Ashland Bottoms  AM Panel 119.3 5.0 
2018 Ashland Bottoms  AM Panel 131.1 1.1 
2019 Rocky Ford  AM Panel 133.8 2.2 
2020 Ashland Bottoms  AM Panel 130.7 2.8 
2018 Ellsworth County (EW) KSWB 130.6 2.0 
2020 Ellsworth County (EW) KSWB 136.1 4.7 
2020 McPherson (MP) KSWB 130.0 4.7 
2018 Riley County (RL) KSWB 127.9 2.0 
2019 Riley County (RL) KSWB 133.4 2.6 
2018 Reno County (RN) KSWB 128.8 2.0 
2019 Reno County (RN) KSWB 129.6 2.6 

2020 Reno County (RN) KSWB 125.0 4.7 
2019 Saline County (SA) KSWB 131.9 2.6 

 
Table 2.6- Thermal time index performance of AM Panel across all years and locations 

Thermal Index RMSE R2 BIC BIC Rank AIC AIC Rank 
BMT 5.41 0.625 2827.36 19 2814.97 19 
DOY 5.41 0.221 2926.32 20 2913.92 20 
GDD 10.3 0.771 2102.65 2 2090.26 2 
GDD Jan1 4.05 0.866 2090.26 1 2077.87 1 
GDD Mar1 2.7 0.870 2352.87 12 2340.47 12 
GDD Tmax 9.57 0.771 2125.61 4 2113.22 4 
GDD Tmax Jan1 3.88 0.859 2139.72 6 2127.32 6 
GDD Tmax Mar1 2.97 0.855 2354.42 13 2342.02 13 
GDD2 9.57 0.771 2344.91 11 2332.51 11 
GDD2 Jan1 3.9 0.859 2743.49 18 2731.1 18 
GDD2 Mar1 2.97 0.855 2379.16 16 2366.76 16 
Pday 11.1 0.758 2199.32 8 2186.93 8 
Pday Jan1 5.92 0.775 2206.04 9 2193.65 9 
Pday Mar1 4.95 0.473 2355.26 15 2342.87 15 
PGDD 8.33 0.770 2125.26 3 2112.86 3 
PGDD Jan1 3.35 0.835 2139.96 7 2127.56 7 
PGDD Mar1 3.28 0.833 2354.42 14 2342.02 14 
GDDWE 11 0.754 2240.82 10 2228.43 10 
GDDWE Jan1 4.35 0.820 2125.63 5 2113.23 5 
GDDWE Mar1 2.76 0.859 2387.15 17 2374.76 17 
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Table 2.7- Thermal time index performance of Kansas State Wheat Breeding program across all 
years and locations. 

Thermal Index RMSE R2 BIC BIC Rank AIC AIC Rank 
BMT 3.86 0.222 2827.36 19 2814.97 19 
DOY 2.91 0.153 2926.32 20 2913.92 20 
GDD 6.08 0.336 2352.87 12 2340.47 12 
GDD Jan1 2.39 0.509 2102.65 2 2090.26 2 
GDD Mar1 2.93 0.252 2090.26 1 2077.87 1 
GDD Tmax 6.98 0.259 2354.42 13 2342.02 13 
GDD Tmax Jan1 2.89 0.403 2125.61 4 2113.22 4 
GDD Tmax Mar1 2.61 0.336 2139.72 6 2127.32 6 
GDD2 6.99 0.257 2379.16 16 2366.76 16 
GDD2 Jan1 2.91 0.402 2344.91 11 2332.51 11 
GDD2 Mar1 2.56 0.359 2743.49 18 2731.1 18 
Pday 9.82 0.234 2355.26 15 2342.87 15 
Pday Jan1 5.04 0.186 2199.32 8 2186.93 8 
Pday Mar1 5.24 0.169 2206.04 9 2193.65 9 
PGDD 3.23 0.477 2354.42 14 2342.02 14 
PGDD Jan1 2.18 0.574 2125.26 3 2112.86 3 
PGDD Mar1 2.37 0.471 2139.96 7 2127.56 7 
GDDWE 4.26 0.449 2387.15 17 2374.76 17 
GDDWE Jan1 2.14 0.602 2240.82 10 2228.43 10 
GDDWE Mar1 2.34 0.491 2125.63 5 2113.23 5 
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Table 2.8- APSIM thermal time accumulation, photo period sensitivity and vernalization 
sensitivity coefficients by genotype for the AM Panel 

Genotype 
End of 

Juvenile TT 
Floral 

Initiation TT 
Start of 

Grain Fill TT 
Photoperiod 

Sensitivity 
Vernalization 

Sensitivity 
2137 320  580  420  3.9  4.0  
2145 440  360  300  4.0  4.0  
AGIcon 480  320  720  4.0  3.6  
ALLIANCE 460  380  400  4.0  3.9  
ARLIN 340  520  540  4.0  2.8  
ARMOUR 300  620  900  4.0  2.9  
Art 420  360  640  4.0  3.9  
BOB DOLE 260  680  820  4.0  3.9  
CLARA-CL 500  300  460  4.0  2.8  
DANBY 440  360  300  4.0  4.0  
EVEREST 260  620  640  4.0  3.7  
FULLER 440  340  300  4.0  3.3  
HEYNE 400  480  600  3.9  4.0  
IKE 400  480  600  3.9  4.0  
JAGALENE 340  560  380  4.0  3.8  
JAGGER 380  400  340  4.0  4.0  
KARL-92 200  800  720  4.0  3.6  
LAKIN 440  360  300  4.0  4.0  
LARNED 460  420  320  4.0  3.7  
LARRY 320  580  420  3.9  4.0  
LCS-MINT 480  320  720  4.0  3.6  
LONGHORN 420  380  700  4.0  4.0  
OVERLEY 320  480  900  4.0  3.7  
POSTROCK 400  480  600  3.9  4.0  
RONL 220  780  500  4.0  3.9  
SANTA-FE 420  360  640  4.0  3.9  
STANTON 500  300  460  4.0  2.8  
SY-GOLD 380  460  720  4.0  4.0  
SY-WOLF 500  300  460  4.0  2.8  
TATANKA 260  680  820  4.0  3.9  
TREGO 300  620  460  4.0  3.2  
WB-CEDAR 200  760  340  4.0  4.0  
WB-GRAINFIELD 420  420  680  4.0  3.7  
WB4458 420  360  640  4.0  3.9  
WINTERHAWK 360  520  340  4.0  2.8  
ZENDA 260  680  820  4.0  3.9  



51 

Table 2.9- APSIM thermal time accumulation, photo period sensitivity and vernalization 
sensitivity coefficients by genotype for the Kansas Wheat Breeding Program 

Genotype 
End of 

Juvenile TT 
Floral 

Initiation TT 
Start of 

Grain Fill TT 
Photoperiod 

Sensitivity 
Vernalization 

Sensitivity 
BOB DOLE 420  440 900 3.8 4.0 
EVEREST 420  320 860 4.0 4.0 
GALLAGHER 420  400 700 3.9 3.9 
JOE 380  440 300 4.0 4.0 
KS090049K-8 440  300 620 4.0 3.9 
KS090387K-20 360  460 560 3.9 4.0 
KS090413K-4 340  460 400 3.9 4.0 
KS090438K-9 360  400 460 4.0 4.0 
KS090616K-1 400  480 600 3.9 4.0 
KS100028K-10 420  440 900 3.8 4.0 
KS100028K-11 420  440 900 3.8 4.0 
KS100060K-19 300  560 680 4.0 3.8 
KS100509K-2 340  460 400 3.9 4.0 
KS120081M~5 420  400 700 3.9 3.9 
KS120125M~9 380  500 360 3.9 3.6 
KS120129M~4 280  620 400 4.0 4.0 
KS120252M~14 400  440 900 4.0 3.9 
KS120506M~7 500  320 400 4.0 3.7 
KS120513M~5 280  720 400 3.8 4.0 
KS120559M~5 420  440 900 3.8 4.0 
KS120648M~5 400  420 560 3.9 4.0 
KS12DH0090-172 400  420 560 3.9 4.0 
KS12DH0156-88 320  600 740 4.0 3.8 
KS13DH0008-23 400  440 900 4.0 3.9 
KS13DH0030-28 380  460 840 4.0 3.8 
KS13DH0035-66 300  540 580 4.0 4.0 
KS13DH0041-35 420  440 900 3.8 4.0 
KS14HW106-6-6 420  400 700 3.9 3.9 
LARRY 360  460 560 3.9 4.0 
NUSAKA15-3 420  380 700 4.0 4.0 
SY-MONUMENT 420  440 900 3.8 4.0 
WB4269 440  340 420 3.9 4.0 
WB4458 340  440 680 4.0 4.0 
ZENDA 420  440 900 3.8 4.0 
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Chapter 3 - Assessment of Spatial Variability within the KS Wheat 

Breeding Program  

 Introduction 

In plant breeding the impacts of genotype by environment interactions and the challenges 

to quantify these interactions have long been recognized (Allard & Bradshaw, 1964). Both macro 

and micro environment variations in precipitation, temperature, and soil nutrient availability 

have shown to impact breeder selections (Reynolds, 2002). Traditionally, breeders mitigate these 

interactions by evaluating genotype performance across varying environments over multiple 

years. However, limitations in labor, equipment and seed availably can restrict the number of 

testing locations that a breeding program can reasonably maintain throughout a growing season. 

Furthermore, in some instances, the annual weather variations can exceed long-term weather 

extremes for a location (Atlin et al., 2017). This makes breeding genotypes for both regional and 

global adaptation challenging. However, global food security depends on breeders ability to 

account for environmental variations in the presence of climate change (Braun et al., 2010).  

Environmental impacts on wheat yield are well documented and mostly modulated by 

heat and drought stress (Lollato et al., 2017). These impacts have been demonstrated to affect 

with-in season and across year production of global crops (Morgounov et al., 2018). In addition 

to impacting grain yield, spatial variability, particularly with field available nitrogen, can also 

impact grain quality (Stafford, 1999). Micronutrient spatial variability and field topography can 

also cause quality variability in micronutrient, protein, and oil concentrations of key staple grain 

crops (Kravchenko & Bullock, 2002; Lin et al., 2009).  Similarly, wheat diseases can cause 

genotype by environment interactions both on plant heath and mycotoxin concentrations 

(Miedaner et al., 2001). Genetic resistance effectiveness to diseases can also be impacted by 
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environmental parameters such as low or high temperatures (Rodriguez-Algaba et al., 2020). 

Accounting for these spatial effects on yield, quality and disease response are critical for 

breeders as they develop new genetics 

Like weather fluctuations, variations in soil physical and chemical properties can greatly 

affect genotype performance both at a micro and macro levels (Blum, 2018). Soil compaction 

can significantly impact genotype performance and can particularly be a problem in small fields 

where high foot traffic and small plot research equipment is used. In combination with weather 

variation, soil compaction can have variable impact on wheat root development and overall grain 

yield (Correa et al., 2019; Liu et al., 2021). In the US Central Great Plains, acid soils and the 

consequent increased aluminum levels, have significant implications for wheat breeding and 

production (Lollato et al., 2019). This has driven the development of acid-tolerant varieties that 

are have the ability to produce higher yields in these environments (Kariuki, 2007; Munaro et al., 

2020).  In a similar pairing, alkaline and sodic soils have also shown an evolutionary connection 

in plant breeding (Bui, 2013). Soil salinity can have impacts on crop production as it can have 

inverse effects on soil available water. Within Kansas, salinity issues are typically isolated within 

fields (Lamond & Whitney, 1992). However, saline inclusion in fields have significant 

implications on breeding of cereal crops (Isla et al., 2003). Having the ability to quantify these 

environmental parameters and test germplasm for tolerance in extreme conditions could lead to 

the release of improved varieties that can thrive in conditions that are traditionally associated 

with low production  

Breeding programs commonly use a variety of experimental designs and statistical 

analyses to account for spatial variability, as improved experimental designs in combination with 

proper spatial analysis can impact selection accuracies (Qiao et al., 2000). In early generation 



58 

studies where field space and seed availability are limited, single rep experiments are usually 

needed. In these instances, breeders either use augmented or partial replicated experimental 

designs (Cullis et al., 2006). These experiments allow for spatial adjustments without genotype 

replication by adjusting to checks placed throughout the experiment. These partial and un-

replicated trials can increase genetic gain by increasing genetic variance (Smith et al., 2006). 

Despite the efficiencies of these trials, their lack replication limits the ability to delineate the 

genetic variance and error, although computational solutions have been proposed (You et al., 

2016). Typically in later generation yield testing, breeding programs utilize replicated trials such 

as randomized complete block and alpha-lattice designs (Kumar et al., 2020). In addition to 

experimental design, there are multiple spatial statistical methods that can also account for 

variability within a trial; for instance, using mixed effect methods for genotype by environment 

analysis can quantify variance across environments (Elias et al., 2016). 

In-season remote sensing sensor measurements can account for yield spatial variability 

by analyzing plant growth throughout the season (Zarco‐Tejada et al., 2005). Similarly, this in-

season collection method can geostatistically characterize grain quality variability based on 

spatially delineated zones (Diacono et al., 2012). Precision agriculture technologies can improve 

nitrogen management through delimitating management zones in crop production situations 

(Khosla et al., 2002; Schwalbert et al., 2019).  However, using in-season sensor measurements to 

quantify spatial variability within breeding programs poses a unique challenge, compared to 

production or management trials, with an added genetic variation component. In-season 

vegetation indices can quantify this genetic variation (Babar et al., 2006) and although this 

genetic variation can impact spatial estimates, in-season vegetative indices using UAV’s can be 

used to estimate spatial effects within large breeding programs (Haghighattalab et al., 2017). 
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A twofold limitation of cost and time typically restricts the application of sampling for 

spatial variability within a breeding program. Although the total area of a test location for 

breeding programs is relatively small compared to production agriculture, these small plots 

require added spatial resolution to effectively quantify variability. Additionally, statistical spatial 

analysis requires robust and large sample sets. The novelty of collecting sensor-based soil 

parameters is that the sample size can be significantly increased without added time in the field 

or the added cost and time of laboratory soil analysis. Therefore, many on-the-go sensor 

platforms have been commercially developed for precision spatial quantification (Lund et al., 

1999; Sudduth et al., 2001). Primarily early generation on-the-go platforms were equipped with 

electromagnetic induction sensors to measure the apparent soil electrical conductivity (ECa) to 

quantify spatial changes (Brevik et al., 2006). Although spectrometers in soil lab analysis have 

widely been used to relate to soil properties (Ben-Dor et al., 2009; Nocita et al., 2015) the 

technology has not always been mobile or cost effective for field applications. Recently, this 

technology has lowered in cost and has become portable, allowing for quick and cost-effectively 

soil property analysis and fertilizer recommendations (Ng et al., 2020). Additionally, this optical 

sensor technology has recently been integrated into mobile sensors allowing for real time 

assessment of soil organic matter (Kweon et al., 2013). Modern soil sensor platforms have also 

implemented methods to quantify soil compaction through load cells and sensing cones (Cho & 

Sudduth, 2015; Zeng et al., 2008) The continued development of these sensors makes the 

possibility of application within a breeding program feasible.  
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 Materials and Methods 

 Experiment locations 

Soil samples were collected at two locations, Reno (RN) and Thomas (TH) Counties 

(Table 3.1).  The TH site was sampled prior to planting for two growing seasons (2020 and 

2021), whereas the RN site was only sampled preplant for the 2021 growing season. Due to crop 

rotation unique fields were sampled at each location between years. In addition to unique fields 

between years, there were two distinctly managed fields, one irrigated (THI) and one dryland 

(THD), sampled at the TH location both years. Likewise at Reno County, samples were collected 

at distinct north (RNN) and south (RNS) fields. Furthermore, although the RNN field was 

sampled as a continuous field there are four distinctly managed blocks within the whole field. 

Two of the blocks were planted in soybeans during the summer of 2020 and were followed by 

winter wheat plots. Whereas the other two blocks were summer fallow and planted to winter 

canola in the fall of 2020. In total seven site years were sampled for this experiment. The 

locations and fields were selected on their relative importance within the breeding program and 

their diverse geographic location which separated them in distinct wheat growing regions 

(Roozeboom et al., 2008). 

 Soil types varied by location and year. The principal soil type for the 20THI, 20THD, and 

21THI fields was a Keith silt loam (Fine-silty, mixed, superactive, mesic Aridic Argiustolls). 

However, the 20THD field had a three-acre inclusion of Richfield silty clay loam (Fine, 

smectitic, mesic Aridic Argiustolls) which accounted for approximately 25% of the total 

sampling area. The 21THD field was comprised of three soil types, with approximately 60% of 

the field was Richfield silty clay loam, though there was a two-hectare inclusion of Keith silt 

loam and a one eighth-hectare inclusion of Pleasant silty clay loam (Fine, smectitic, mesic Aquic 
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Argiustolls).  The primary soil type at both RNN and RNS was an Ost loam (Fine-loamy, mixed, 

superactive, mesic Udic Argiustolls) (Soil Survey Staff, 2021).  

 Plant Material  

To evaluate spatial variability within the Kansas State Wheat Breeding program only 

populations grown in a modified augmented type 2 (MAD-2) were selected. These un-replicated, 

rectangular plots use check varieties to allow for row column corrections. For these experiments 

the primary check was a, three-way blend of commercially adapted lines for the region.  A 

Western Blend was used for all fields at the TH location and the Central Blend was used as the 

primary check at the RN location. In addition to the primary check each experiment had two 

unique secondary checks that were selected based on agronomic potential and producer adoption 

within the testing region.   

The population at the 20THD location consisted of 351 wheat Ae. tauschii introgressions 

(AetTa). The lines were developed by crossing six hexaploidy wheat lines with 21 diploid AeTa 

lines to capture the genetic diversity of the D-genome. Full details of the population 

establishment is detailed in Nyine et al. (2020). The 20THI population consisted of elite winter 

durum lines (Triticum turgidum subsp .durum) being tested in the Durum Preliminary Yield 

Nursery (DPYN). The DPYN lines are fix lines that are being evaluated in a yield nursery for the 

first time after limited selection intensity. Likewise, the DPYN population was evaluated at the 

21THI location. However, due to evolving nature of breeding population, the entries at the 

20THI-DPYNA and 21THI-DPYNA were not equivalent. The population evaluated at the 

21THD location was the winter wheat PYN1A experiment. At RNN a population of F4 

segregating winter wheat populations planted in 3 row plots were evaluated. Two separate 

experiments were evaluated on the RNS location; the winter wheat PYN experiment which was 
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comprised into 4 distinct PYN populations identified as PYN 4-8 and a yield trial (YT) 

experiment which contained PYN populations 1-3 and a population of F5 segregating 

populations. 

Due to seed availably and evaluation stage, plot dimensions varied by location and 

experiment. The plot dimensions for the 20THD-Aeta, 20RN-PYN and 20THD-PYN1A were 

2.4 m x 1.4 m (3.36 m2).  Whereas, the 20THI-DPYNA, 21THI-DPYNA and 21RNS-YT 

experiments were 4.5 m x 1.4 m (6.75 m2).  Each plot consisted of 6 rows spaced at 20cm with a 

seeding rate of 15g m-2. The 20RNN-F4 plots were planted as 3 row plots and were 2.3 m x 0.6 

m.  The plots were planted in September and October of each year and harvested in late June or 

early July.  

 Soil Sensors  

Two soil field sensor platforms were used to obtain indirect measurements of soil 

properties. The Veris MSP-3 mobile sensor cart platform (Veris Technologies, USA) was used to 

collect apparent electric conductivity (ECa) and spectral reflectance. This sensor has two pairs of 

coulter disks equipped with rolling electrodes. While one disk electrode emits a small electrical 

current, its paired disk receives the current after passing through the soil medium. The recorded 

received electric pulse is an indirect measurement of soil resistivity. These soil resistivity 

measurements correlate with changes in soil texture, soil moisture, cation exchange capacity and 

salinity (Kweon et al., 2013; Naderi-Boldaji et al., 2014). The two pairs of disks allow for 

resistivity measurements at the 0-30 and 0-90 cm depths. Additionally, the cart contains a LED 

optical sensor mounted within a planter row that captures soil reflectance in the red (660nm) and 

near-infrared (940nm) spectral regions at the 5 cm depth. The reflectance values of the optic 

sensor are related to soil organic matter (Lund & Maxton, 2011). The cart was pulled at a speed 
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of 1.5 m s-1 on a 10-meter grid, soil readings were obtained every 1 to 2 seconds along the 

transect. However, in 2020 only 10 meter transects were obtained for the whole field and only 

portions of the field were cross hatched to obtain the 10-meter true grid pattern (Table 3.1). The 

cart was also equipped with a GPS unit that allowed for all samples to be geo-referenced. 

However, to improve transect accuracy the cart was pulled with a John Deere 5055E tractor 

equipped with a Trimble RTK autosteer navigation system.  

The second sensor used was the Veris P4000 DW-EC-Force Probe. This platform was 

used on all locations at all years. Like the MSP-3 the P4000 probe is equipped with an optical 

and electromagnetic sensor. Additionally, the P4000 is equipped with load cell force 

penetrometer that allows for an indirect measurement of soil compaction (Cho & Sudduth, 

2015). The main advantage of the P4000 is that it allows for point sampling at controlled depths. 

The probe is pushed through the soil medium using through the tractor hydraulic system at a rate 

not to exceed 30 mm s-1. The probe also has a GPS system for geo-reference. However, this 

system did not have the accuracy needed for sampling within small plots (Fig. 3.1) Therefore, all 

geo-referenced points were collected with the RTK Trimble system detailed above. Probe 

readings were collected at two different intervals. On the whole field probe readings were taken 

on 30m grids, whereas smaller areas within the large field had a higher density of samples and 

probe measurements were taken on 5m grids. 

 Soil Analysis 

In addition to soil sensor measurement, physical soil cores were also obtained with the 

Veris P4000 using the core attachment. These cores were 5.1cm in diameter and taken to the 

one-meter depth. Within the whole field, cores were collected on 60m grids. All soil cores were 

paired with P4000 probe locations. Samples were preserved in plastic sleeves and immediately 
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frozen for future analysis. The cores were split into three depths 0-20, 20-60 and 60-100 cm. A 

sub sample of the soil was oven dried to obtain volumetric water content (VWC) and bulk 

density (BD) (Blake & Hartge, 1986). The remaining samples were air dried and sieved to pass 

through a 0.25mm sieve. The ground samples were then used to determine other soil properties.  

All sample depths were analyzed for electrical conductivity using a 1:5 soil to water (He 

et al., 2012). All other soil parameters were only measured for the 0-20 and 20-60 cm depths. 

Soil pH was measured in a 1:5 soil to water solution (Brown, 1998) and phosphorus (P) 

concentrations were obtained through a Mehlich-3 extract (Mehlich, 1984). Cation exchange 

capacity (CEC) was measured using the displacement method (Chapman, 1965). Soil potassium 

(K), calcium (Ca), magnesium (Mg), and sodium (Na) were obtained with ammonium acetate 

extraction (Warncke & Brown, 1998). Total nitrogen and organic carbon were taken using the 

dry combustion method (Nelson & Sommers, 1996), and soil texture was recorded through the 

hydrometer method (Bouyoucos, 1962).  

 

 Spatial Analysis 

To assess spatial patterns ordinary kriging (OK) was applied to the observed soil 

properties from all platforms. The first step in this process was to assess the spatial covariance 

structure of the data by constructing a variogram. A variogram model was then fitted using the 

variogram function in the ‘gstat’ package (Pebesma & Graeler, 2015). This function allows for 

variogram model selection that minimizes the root mean squared error (RMSE). The variogram 

assess the degree of spatial autocorrelation of points exhibit and allows for optimal performance 

of the kriging models. Five model structures were evaluated for each soil parameter variogram, 

including exponential, linear, Gaussian, and spherical distribution. In this study all variograms 
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were fit with the assumption of isotropic distribution. The theoretical variogram model is shown 

by equation 1. 

𝛾(ℎ) = @
#T(U)

∑ [𝑍(𝑥. + ℎ) − 𝑍(𝑥.)]#
T(U)
.V@                        [Eq. 1] 

𝑊ℎ𝑒𝑟𝑒; 
𝛾(ℎ)	is the variogram value at a distance of  ℎ 

𝑍(𝑥.) is the observed value of a given parameter at location 𝑥. 

𝑍(𝑥. + ℎ) is the observed value location with distance ℎ 

𝑁(ℎ) are the pairs at distance ℎ 

  After a variogram model was selected for each combination of parameters and locations, 

a spatial grid point was created for spatial predictions. The OK method was selected to make 

spatial predictions and was executed using the ‘gstat’ package in R (Pebesma & Graeler, 2015). 

The OK algorithm estimates a property Z at any point in the spatial grid by weighting the 

average of observed points near the estimated grid point.  

𝑍(𝑥E) = 	∑ 𝜆.𝑍(𝑥.)-
.V@                                            [Eq. 2] 

Where, 𝑍(𝑥E) is the predicted value at each location and 𝜆. is the weight assigned to each 

neighbor.  

 In addition to individually kriged grid points the interpolated kriged data was partitioned 

into zones based on the K-means algorithm (Eq. 3). This hard clustering method minimizes the 

sum of squares within clusters where 𝜇(.) is centroid of the 𝑖*U cluster and is calculated by the 

mean of points in matrix 𝑋. 

𝑎𝑔𝑟	𝑚𝑖𝑛 ∑ 	∑ ||𝑥 − 𝜇(.)||#𝒙∈Y$ 	Z
.V@                      [Eq. 3] 
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The silhouette method was used to quantitatively determine the optimum number of clusters for 

each parameter (Rousseeuw, 1987). This method compares the fit of each point to its own cluster 

compared to other clusters. The maximum obtainable silhouette value is 1 and indicates the point 

fully belongs to the cluster whereas lower values indicate a poor fit with a value of zero meaning 

the point does not fit to one particular cluster. The fviz_nbclust function within the ‘factoextra’ 

package in R was used to evaluate 2 to 10 clusters for each field and soil parameter where the 

cluster with the highest silhouette value was determined to be the optimum number of clusters.  

 The produced spatial grid and delineated zones from the kriging and k-means process 

was uploaded to Quantum GIS (QGIS: A Free and Open Source Geographic Information 

System. ), along with a point file obtained from the GPS planting file that represented the middle 

of the plot. Each plot was then assigned a kriged value for each soil parameter along with a 

delineated zone through the join attributes by nearest distance function in QGIS.  

 Statistical Analysis 

Yield adjustments were executed by incorporating row and column adjustments using 

method 3 consistent with the MAD-2 design with Agrobase Generation II software (Agrobase 

Generation II 2014, Agronomix, Winnipeg, MB, Canada; https://www.agronomix.com/ ). 

Method 3 adjusts parameters based on both the secondary check and the primary check subplot 

within each whole plot represented in equation 4.  Where 𝑏 is the regression coefficient of the 

mean control subplots. 

𝑌.[(Z) = 𝑌.[(Z) − 𝑏R𝑋.[(\) − Χz\S                   [Eq. 4]   

To test spatial zone effects on yield, a Tukey test was performed on each individual 

parameter zone at the 0.95 significance level. In addition to evaluating zonal effects on yield the 
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kriged value of each soil parameter was evaluated in a linear model to asses each traits 

correlation to yield. 

In order to make to make spatial corrections with plot level kriged values, a mixed 

multivariate model [Eq. 5]  was used within the ‘ASReml-R’ package (Butler et al., 2009) 

𝑦	 = 	𝑋𝛽	 + 	Ζ𝜏	 + 	𝜀                  [Eq. 5]   

where y is a vector of observed yields, 𝛽 is a vector of known fixed effects representing the 

measured soil traits and 𝜏 is the genotype random effects vector. 𝑋	𝑎𝑛𝑑	Ζ are the incidence 

matrices for 𝛽 and 𝜏 and  𝜀 is a vector of random effects residual effects, normally distributed 

with zero mean. For each model the fixed effect covariates were the soil properties of interest 

and the random effects were genotype, range and row.  

 The experimental design and spatial correction models for yield were compared by 

calculating the coefficient of variation (CV) 

𝐶𝑉 = 	 ]
^
            [Eq. 6]   

Where 𝜎 is the population standard deviation and  𝜇 is the population mean. 

 Results and Discussions 

The soil parameter distribution varied by location and year. While most properties had 

normal distribution, there were several locations that exhibited bi-modal distribution (Fig. 3.2, 

3.3 and 3.4). This variability in distribution may be expected due to the heterogeneous nature of 

soil (Adamchuk et al., 2010), particularly in fields with NRCS-mapped soil type inclusions or 

fields where multiple management experiments have occurred over time. This variability was 

also commonly observed by depth, particularly with the P4000. While these depth variations 

would be expected due to soil profile horizon variations, the location and measured soil property 

affected the magnitude of the shift and distribution. The 21RNN and 21RNS fields had lower 
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ECa values than all THI and THD fields for both years (Figure 3.2). This likely was due to a 

combination of low pre-sampling precipitation and a summer soybean crop that was harvested 

just prior to the sampling period. In general, the Red and IR reflectance trends by depth 

paralleled each other. This would be expected since both the Red and IR bands correlate to 

organic matter content (Kweon et al., 2013) and large scale organic matter variations would not 

be expected for the soil types tested. 

Comparable to the P4000 data, trends by location and by depth were observed in the 

MSP3 data (Fig. 3.3). This observation was particularly evident for ECa at 21RNN field (Fig. 

3.3C) where there was a strong bi-modal trend. As discussed in the field description, although 

this field was sampled as one field, it was managed as four blocks. The two summer fallow, fall 

sown canola fields likely had a higher VWC resulting in a higher EC reading as the Veris EC 

measurement is directly correlated to VWC (Hezarjaribi & Sourell, 2007). For this reason, the 

21RNN spatial extrapolations were conducted as four sub-fields within the 21RNN whole field. 

In comparison to the P4000, the MSP3 red and IR measurements did not show as much variation 

or range at all locations. This is likely due to the 5 cm measurement depth of the MSP3 in 

comparison to the 20cm sections captured by the P4000.  

Lab analysis of the physical soil cores revealed location and depth patterns of multiple 

soils parameters. At all locations the VWC for the 0-20cm depth were lower than the values at 

the 20-60cm depth (Fig 3.4). This would be expected based on precipitation events and previous 

crop management. Even though the irrigated site at TH receives a pre-plant application to aid in 

germination and stand establishment, the application timing in respects to soil sample timing 

would favor higher VWC values at the 20-60cm depth. It is also notable that the VWC values at 

the RN location were lower than TH values for both years. The combination of limited summer 
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precipitation and the summer soybean crop are likely the cause of this discrepancy. In general, 

organic matter content was higher at the surface than the subsurface. This trend is also consistent 

with relative measurements obtained and previously discussed for both soil sensor platforms. 

Bulk density samples varied by depth and location both on magnitude and distribution. There 

were instances where the bulk density exceeded normal expected limits which was like caused 

by compression within the sample tube from the hydraulic probe (Rogers & Carter, 1987). 

However, the relative values were still used to account for compaction variability within the 

field. Soil macronutrients were also within expected ranges. However, it is worth noting that 

phosphorus content was both higher and had a greater distribution range at the 20-60cm depth. 

While this is not abnormal, it is notable that the distribution would affect plant growth and could 

lead to spatial zones with higher phosphorous content.  

Like the soil physical properties there were also trends in the soil chemical properties and 

micronutrient distribution. Primarily, there was an observed location difference between TH and 

RN in soil pH, particularly at the surface (Fig 3.5). The TH surface pH values tended to be more 

neutral and ranged from 7.02 to 8.76. Whereas the RN pH surface values were more acidic and 

ranged from 4.8 to 8.33. However, the 20-60cm pH values were similar at both locations with 

TH samples and ranging from 7.86 to 8.9 and RN samples ranging from 7.64 to 8.46. This wider 

range of pH values at RN surface could significantly impact plant performance as it has been 

shown that acidic soils can impact genotypic performance of wheat yield (Lollato et al., 2019). 

The increased pH for the second depth at RN could be associated with the increased 

concentration of Ca also observed at the 20-60cm depth (Fig 3.5C and D). While processing the 

RN cores inclusions of calcium carbonate were visible at the 40cm depth (Fig. 3.6). The presence 

of these extra cations also caused the CEC to increase at the 20-60cm depth although the CEC at 



70 

both RN and TH were comparable across all years.  However, the distribution of the Ca inclusion 

could affect soil property distribution and genotype performance at the location. 

Soil textural classification differences occured at all locations for all years (Fig. 3.7). The 

textural changes were expected at TH as the USDA NRCS soil survey included soil series with 

both silt loam and silty clay loam textures. However, the soil survey at RN only included one soil 

texture while multiple textures were observed. The discrepancy in observed and mapped soil 

textures was expected as the scale of soil survey maps are inadequate for precision agriculture 

applications as the accuracies and scale are often inconsistent (Brevik et al., 2003).  Overall, all 

locations and years had at least two textures present, with the 20THD, 21THD and 21THI having 

four textural classes represented. The spatial distribution of textures can affect genetic 

performance as texture has been associated with water holding capacity and wheat yield (Wu et 

al., 2011). Since soil texture is a soil property that does not rapidly change having the ability to 

construct an accurate soil texture map may be helpful to breeders particularly for experimental 

design avoidance where experiments can be placed in areas of uniform texture. 

The fitted variogram model varied for each soil parameter and sensor platform. The 

exponential model resulted in the best fit a majority of the time for the MSP3 data (Table 3.2) as 

it accounted for 19 of the 40 (47.5%) soil parameter depth combinations. Additionally, the 

spherical model accounted for 27.5% (11 of 40) parameter-depth combinations while the linear 

model accounted for 20% (8 of 40) and the gaussian model accounted for 3.1% (2 of 64). The 

P4000 distribution of model fits was not as distinct (Table 3.3) with the spherical (39.1% 25 of 

64), linear (31.3% 20 of 64) and exponential (26.6% 17 of 64) models all being significantly 

represented. However, like the MSP3, the gaussian model was selected the least, 3.1% (2 of 64). 

The variogram range for both the MSP3 (Table 3.2) and the P4000 (Table 3.3) sensors have 
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similar distributions. However, the average range for the P4000 (32.75m) was higher than the 

MSP3 (25.62m) indicating more autocorrelation with the MSP3 platform.  However, this maybe 

expected with the increased number of observations provided by the MSP3 (Griffith, 1987). 

The k-means cluster groupings for the MSP3 platform ranged from two to ten clusters 

with two clusters being selected at the highest frequency (70% 28 of 40). This trend was also 

observed for P4000, however at a lower magnitude, where two clusters were selected 59.4% (38 

of 64) of the time. The wider distribution of clusters with the P4000 could be attributed to sample 

size. Since k-means is a hard clustering technique, when datasets have lower number of samples, 

each point has a lower chance to distinctly belong to a group (Hot & Popović-Bugarin, 2015). In 

this study it is important to recognize that the increased sample density advantage the MSP3 has 

over the P4000 due to time and labor requirements. This sample density can lead to better 

geospatial corrections by limiting the effect that one sample point can have on the geo-spatial 

corrections. Although, it has also been documented that geostatistical analysis can be performed 

with a  limited number of observations over large sample areas (Schloeder et al., 2001). Several 

studies show that the optimum number of samples for OK is 100-150 (Voltz & Webster, 1990), 

which limits the implementation of the P4000 within a breeding program. 

In most cases, field experiments covered multiple k-means cluster groups as shown in 

Figure 3.7. However, in some cases not all cluster groups were represented (Fig. 3.8 and 3.9) 

which would be expected as the whole field was tested but the individual experiments only 

spanned a small area of the whole filed. Cluster avoidance could be one strategy breeders can 

utilize if spatial samples are collected before experiments are planned and mapped (Heil & 

Schmidhalter, 2017). However, this would require samples be taken prior to plot design or the 

establishment of long-term soil trends at a sight. At most locations the MSP3 soil parameters 
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were associated with yield effects, however, the cluster trends were inconsistent depending on 

location and germplasm being tested. For example, the lower valued cluster for ECSH exhibited 

a yield increase at 20THD, 21THD and 21RNN. However, the low ECSH cluster showed a 

significant yield decrease at 20THI, 21RNN and 21RNS and no significant effect at 21THD. A 

similar trend was observed for the MSP3, ECDP measurement and all EC measurement depths 

with the P4000. Although ECa is associated with texture and moisture (Kalopesas et al., 2015) 

the actual groupings might not quantify the exact differences of soil property rather than the 

relative effect of that specific location to population being tested. Like the ECa values, P4000 

force data also correlated with yield, however, the trends were again inconsistent. In general, 

lower force, indicating less compaction, had a positive effect on yield. However, in some 

insistences (21RNN- Fig 3.7) a higher force at the surface layer had a yield benefit. While this 

may not be expected other factors such as soil moisture and soil texture could have an impact on 

soil compaction and yield potential through stand establishment (Tesar & Jackobs, 1972). This 

example shows that one soil parameter alone does not always indicate increased yields, 

particularly in a stressed environment like 21RNN where the increased force could have been 

caused by soil textural changes that were conducive to higher yield potential. 

Similar to the k-means groups, the individual kriged values also showed trends to grain 

yield. However, the correlations were not strong as the R2 values ranges from <0.01 to 0.15 for 

the MSP3, from <0.01 to 0.23 for the P4000 and <0.01 to 0.28 for the lab analyzed soil cores. Of 

the most significant MSP3 trends was ESCH where a general weak negative correlation to yield 

was observed. Inversely, the P4000 EC depth 1 had a general positive correlation to yield. The 

difference in effective depth and sensor specific sphere of influence all could affect the 

correlation of the values. It is also worth noting that since these are kriged extrapolated 
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datapoints that the spatial corrections and sample density could also have a significant impact on 

the correlation to grain yield.  

For all experimental years and locations, the spatial and statistical corrections improved 

the CV over the raw data (Fig 3.16, Table 3.5). It is notable that in general the raw CV for the 

2020 fields was higher than the 2021 fields except for the 21THI-DPYNA. This likely could be 

explained by a late spring freeze in 2020 that caused significant damage to the plants. Both a 

spatial and genetic effect of freeze damage potentially could account for variation in 

performance. However, the disparity in effectiveness may also be related to overall number of 

plots and area of each experiment. For example, the 21THI-DPYNA had the lowest number of 

samples and the covered the smallest area (Table 3.3) which makes it susceptible to higher CV’s 

if the genetic or spatial variation is high. This is also supported by literature as larger 

experiments can be impacted by spatial corrections more than smaller experiments (Hoefler et 

al., 2020). However, this experiment shows that spatial corrections alone can be as effective or 

more effective than experimental design corrections.  

The soil platform geo-spatial corrections improved CV in all instances expect for the 

AeTa experiment at THD in 2020. However, as previously mentioned, this experiment had 

potential freeze damage and the blocking effect of the MAD-2 may have quantified that event 

better than the soil corrections. In all other experiments the soil geo-spatial corrections were at 

least 2% better than the experimental design corrections. Additionally, the MSP3 sensor had the 

best CV in 4 of the 7 experiments (57.1%), while the soil cores were best in 2 of the 7 

experiments (28.6%) and the experimental design was best once. However, the differences 

between the soil platforms were never more than 1.71% meaning the soil platform corrections 

were similar which was expected as they quantify similar soil properties.  
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Although experimental CV values were similar for spatial and statistical methods there 

was disparity in correction magnitude and its effect on rank order. For example, several spatial 

adjustments lowered the raw yield whereas the statistical adjusted yield increased the raw yield 

for the same genotype (Table B.1). In extreme cases this change was as much at 0.67 tons ha-1 

which changed the rank order by as many as 259 positions in an experiment of 485 entries. 

Although, in general the top tiers were mostly unchanged, these large changes in rank order can 

have significant impacts on breeder selections and warrants the further investigation on yield 

correction impacts on breeder selections. 

Overall, the sensor platform did not significantly affect the CV correction or rank order 

as much as the spatial correction vs the statistical correction did (Table 3.5). In most 

experimental locations and years, the MSP3 had the lowest CV of the single correction methods, 

however, improved performance was not significant. This likely was due to the increased 

sampling density that limited the extrapolation needs during OK.  Even though there was rank 

order change between platforms the degree of change was not as significant as observed between 

the statistical and spatial corrections. Since all platforms were quantifying the variability of the 

soil, it would be expected that the differences were not as great. However, each platform used 

different techniques, sample depths and quantity of observations, so some variation would be 

expected. 

The advantage that soil property corrections have over the experimental statistical 

methods is that blocking strategies may not always capture the variation. As shown in both Fig. 

3.7 and B.3, the soil clusters and geo-spatial corrections do not occur in discrete squares or 

rectangles and span across several blocks, which can negate the value of blocking. Additionally, 

the quality and placement of checks in a MAD-2 are susceptible to spatial and management 
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variability (Lin & Poushinsky, 1983). For example, poor stand establishment, or isolated stressor 

events can dimmish the effectiveness of the check corrections.  These factors support the 

implementation of geo-spatial corrections from soil parameters over experimental design.  

 Conclusions 

This experiment confirms that soil spatial variation within breeding experiments exist and 

that it has significant impacts on genotype performance and ranking estimation. Additionally, 

there is support that on-the-go precision soil sensors have the capability to capture this variation. 

However, it is unknown if these platforms would need to be used on every field for every 

growing season, or if more sable soil properties such as soil texture can be quantified once and 

used multiple years. Furthermore, the cost of equipment and operation need to be explored prior 

to implementation of this technology into a breeding program. From this study a high-density 

sampling system such as the MSP3 was favored as it both improved the CV and was easier to 

operate, making it more likely to be implemented in a program.   

Additionally, underlying questions of soil parameter effects on the germplasm being 

tested still exist. Continued research, to quantify blocking affects these spatial corrections is 

needed. These techniques should be tested on germplasm that has been through several rounds of 

selection and are now in replicated field trials. At this stage, this technology could not only 

improve breeder selections but could also push towards agronomic recommendations upon 

selection for release. Furthermore, these soil sensors should be compared to remote sensing 

techniques where both pre-season and in-season monitoring with UAV’s may have the potential 

to capture soil surface variability with bare ground sensing and full profile variability with 

genotype reflectance data.   
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Figure 3.1. 21THD Veris P4000 sample points. Points in pink represent the raw GPS positions 
obtained from the P4000 and the green points represent RTK corrected points.  Ariel image was 
obtained after sampling and grid marks are sampling paths created by the MSP3 sensor.  
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Figure 3.2. Distribution of soil values obtained by the Veris P4000 by depth for EC, Force, Red 
and IR parameters for 20THD (A), 20THI (B), 21RNN (C), 21RNS(D), 21THD (E) and 21THI 
(F). The x-axis is the measured value of the parameter, force is in KPa, apparent electrical 
conductivity (ECa) is in µS cm-1, and reflectance are 16-bit digital values.  Each sensor sample 
depth is represented by color. 
  

(A) (B) 

(C) (D) 

(E) (F) 



78 

 
Figure 3.3. Distribution of soil values obtained by the Veris MSP3 for shallow EC (30cm), deep 
EC (90cm), Red and IR parameters at 20THD (A), 20THI (B), 21RNN (C), 21RNS(D), 21THD 
(E) and 21THI (F). The x-axis is the measured value of the parameter, force is in KPa, apparent 
electrical conductivity (ECa) is in µS cm-1, and reflectance are 16-bit digital values.  The colors 
in the ECa graphs represent sample depth and represent the spectral band for the reflectance 
graphs.  
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Figure 3.4. Distribution of soil values obtained from lab analysis of physical soil cores by depth 
for VWC, pH, EC, N, P, K, CEC, OM, and BD at 20THD (A), 20THI (B), 21RNN (C), 
21RNS(D), 21THD (E) and 21THI (F). The x-axis is the measured value of each soil parameter, 
volumetric water content (VWC), organic matter (OM) and nitrogen (N) are precents. 
Phosphorous (P) and potassium (K) are ppm and bulk density (BD) is g cc-1.  Each sample depth 
is represented by color.  
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Figure 3.5. Distribution of soil values obtained form lab analysis of  physical soil cores by depth 
for  pH, EC, CEC, Ca, and Mg at 20THD (A), 20THI (B), 21RNN (C), 21RNS(D), 21THD (E) 
and 21THI (F) The x-axis is the measured value of each soil parameter, electrical conductivity 
(EC) is in µS cm-1, and cation exchange capacity (CEC) is cmol kg-1. Calcium (Ca), and 
magnesium (Mg) are ppm and pH is unitless.  Each sample depth is represented by color.  
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Figure 3.6. Soil texture distribution by location and year. Soil textural categories are in 
accordance to the USDA textural soil classification system (García-Gaines & Frankenstein, 
2015).   
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Figure 3.7. K-means cluster contour map for EC, Force, Red and IR measurements from the 
P4000 at 21RNS with PYN and YT plot map overlays. Number of color clusters were 
determined by k-means clusters and the values for the cluster color represent the median value of 
the cluster range.  
  



83 

 

(B) (A) 



84 

 

(C) (D) 



85 

 
 
Figure 3.8. P4000 k-means cluster contour effects of EC, Force (F), Red (R) and IR on yield at 
20THD (A), 20THI (B), 21THD (C), 21THI (D), 21RNN (E), 21RNS-YT (F) and 21RNS-PYN 
(G). The title in the gray bar represents the soil measurement and depth. Depth-1 is 0-40 cm 
Depth 2 is 40-60cm and depth 3 is 60-100cm. The trait abbreviations are electrical conductivity 
(EC), force (F), red (R), and near infrared (IR) The x-axis is the k-means cluster group for each 
individual parameter, EC is µS/cm, force is kPa and both red and near infrared are digital 
reflectance values. Symbols denote Wilcoxon t-test significance where "****"=0.001, 
"***"=0.001, "**"=0.01, "*"=0.05 and ns= not significant. 
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Figure 3.9.  MSP3 k-means cluster contour effects of EC, Force (F), Red (R) and IR on yield at 
20THD (A), 20THI (B), 21THD (C), 21THI (D), 21RNN (E), 21RNS-YT (F) and 21RNS-PYN 
(G). The title in the gray bar represents the soil measurement and depth. ECSH is 0-30 cm and 
ECDP is 0-90cm. The trait abbreviations are electrical conductivity (EC) , red (R), and near 
infrared (IR) The x-axis is the k-means cluster group for each individual parameter, EC is µS/cm 
and both red and near infrared are digital reflectance values. Symbols denote Wilcoxon t-test 
significance where “****”=0.001, “***”=0.001, "**"=0.01, "*"=0.05 and ns= not significant.   
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Figure 3.10. P4000 Kriged soil property correlation with grain yield of EC, Force (F), Red (R) 
and IR at 20THD (A), 20THI (B), 21THD (C), 21THI (D), 21RNN (E), 21RNS-PYN (F) and 
21RNS-YT (G). The title in the gray bar represents the soil measurement and depth. Depth-1 is 
0-40 cm Depth 2 is 40-60cm and depth 3 is 60-100cm. The trait abbreviations are electrical 
conductivity (EC), force (F), red (R), and near infrared (IR) The x-axis is the k-means cluster 
group for each individual parameter, EC is µS/cm, force is kPa and both red and near infrared are 
digital reflectance values. 
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Figure 3.11. MSP3  Kriged soil property correlation with grain yield of EC, Force (F), Red (R) 
and IR on yield at 20THD (A), 20THI (B), 21THD (C), 21THI (D), 21RNN (E), 21RNS-PYN 
(F) and 21RNS-YT (G). The title in the gray bar represents the soil measurement and depth. 
ECSH is 0-30 cm and ECDP is 0-90cm. The trait abbreviations are electrical conductivity (EC) , 
red (R), and near infrared (IR) The x-axis is the k-means cluster group for each individual 
parameter, EC is µS/cm and both red and near infrared are digital reflectance values. 
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Figure 3.12. Soil analysis kriged soil property correlation with grain yield of BD, EC, CEC, K, 
N, OM, P, pH and VWC on yield at 20THD (A), 20THI (B), 21THD (C), 21THI (D), 21RNN 
(E), 21RNS-PYN (F) and 21RNS-YT (G). The title in the gray bar represents the soil 
measurement and depth. Depth-1 is 0-40 cm and Depth 2 is 40-60cm. The x-axis is the measured 
value of each soil parameter, volumetric water content (VWC), organic matter (OM) and 
nitrogen (N) are precents. Phosphorous (P) and potassium (K) are ppm and bulk density (BD) is 
g cc-1. Electrical conductivity (EC) is in µS cm-1, and cation exchange capacity (CEC) is cmol 
kg-1. Calcium (Ca), and magnesium (Mg) are ppm and pH is unitless.  Each sample depth is 
represented by color.  
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 Figure 3.13. Coefficient of variation (CV%) by trial for raw data, data adjusted by the MAD-2 
method 3, spatially adjusted yields and spatio-statistical adjusted yield. The x-axis represents 
CV% and the y-axis represents the location, year and experiment. The colored bars represent the 
type of spatial correction.  
  



101 

Table 3.1- Field experimental locations sample pattern, sensor platform and sample density for 
spatial soil sampling  

Year 
Location 

ID 
Field Area 

(ha) 
Sampling 

Grid Size (m) 
Sensor 

Platform 
Number of 

Observations 

2020 THD 2.19 
10* Veris MSP3 3,379 

30 x 30 Veris P4000 120 
60 x 60 Soil Cores 17 

2020 THI 2.74 
10* Veris MSP3 2,129 

30 x 30 Veris P4000 86 
60 x 60 Soil Cores 19 

2021 RNN 3.15 
10 x 10 Veris MSP3 4,651 
30 x 30 Veris P4000 120 
60 x 60 Soil Cores 20 

2021 RNS 2.36 
10 x 10 Veris MSP3 3,432 
30 x 30 Veris P4000 80 
60 x 60 Soil Cores 16 

2021 THD 4.83 
10 x 10 Veris MSP3 5,908 
30 x 30 Veris P4000 208 
60 x 60 Soil Cores 36 

2021 THI 4.27 
10* Veris MSP3 3,432 

30 x 30 Veris P4000 70 
60 x 60 Soil Cores 20 

* Data was collected on single spaced transects opposed to grids 
 
Table 3.2- Field experimental locations and weather station details for the Association Mapping 
Panel experiments. 

Year 
Location 

ID 
Experiment  

ID 
Experiment 

Area (ha) 
Number of 

plots 
Primary 
Check  

Secondary  
Checks 

2020 THD Aeta  0.11 210 Western 
Blend 

Joe 
WB 4792 

2020 THI DPYNA 0.14 196 Western 
Blend 

AF03-1 
KS12D0096-1 

2021 RNN F4 0.13 504 Central 
Blend 

Zenda 
WB 4699 

2021 RNS PYN 0.33 692 Central 
Blend 

Zenda 
WB 4699 

2021 RNS YT 0.43 588 Central 
Blend 

Zenda 
WB 4699 

2021 THD PYN1A 0.16 336 Western 
Blend 

Joe 
WB 4792 

2021 THI DPYNA 0.07 169 Western 
Blend 

AF03-1 
KD 1133 
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Table 3.3- MSP3 K-means clustering, variogram model type, sill and range for all locations and 
all years.  

Location 
Year Measurement 

K—means 
clusters 

Variogram Model 
Type Sill Range 

20THD 

Shallow EC 2 Linear 46.18 44.82 
Deep EC 2 Spherical 68.53 77.36 
Red 3 Exponential 9.31 7.18 
IR 2 Linear 70.76 6.57 

20THI 

Shallow EC 2 Exponential 19.38 25.60 
Deep EC 10 Exponential 19.12 20.49 
Red 2 Linear 5.18 5.50 
IR 2 Spherical 108.39 16.02 

21HUS 

Shallow EC 2 Exponential 9.69 27.01 
Deep EC 2 Spherical 4.88 29.42 
Red 7 Exponential 3.12 8.57 
IR 2 Exponential 645.51 15.63 

21RNN 
F1 

Shallow EC 2 Exponential 7.13 19.74 
Deep EC 2 Exponential 4.65 11.04 
Red 2 Exponential 9.41 3.34 
IR 3 Spherical 537.62 7.38 

21RNN 
F2 

Shallow EC 2 Exponential 24.59 13.88 
Deep EC 2 Exponential 136.24 24.24 
Red 3 Exponential 51.55 3.56 
IR 8 Spherical 296.50 7.71 

21RNN 
F3 

Shallow EC 3 Spherical 8.89 26.48 
Deep EC 2 Linear 24.85 15.95 
Red 2 Linear 17.16 4.01 
IR 4 Spherical 328.90 13.96 

21RNN 
F4 

Shallow EC 3 Exponential 101.22 29.38 
Deep EC 2 Exponential 201.06 27.91 
Red 2 Spherical 15.36 5.05 
IR 4 Exponential 910.44 26.49 

21RNN 
Full 

Shallow EC 2 Linear 118.41 65.09 
Deep EC 2 Linear 356.33 64.42 
Red 4 Exponential 34.04 8.15 
IR 2 Exponential 724.47 13.89 

21THI 

Shallow EC 2 Spherical 22.47 37.93 
Deep EC 2 Spherical 30.44 28.57 
Red 2 Gausian 146.28 15.38 
IR 2 Gausian 312.30 10.97 

21THD 

Shallow EC 2 Exponential 104.69 89.34 
Deep EC 2 Spherical 138.40 155.77 
Red 2 Linear 189.21 5.73 
IR 4 Exponential 213.02 5.27 
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Table 3.4- P4000 K-means clustering, variogram model type, sill and range for all locations and 
all years. 

Location Year Measurement  
Sample 
Depth 

 K—means 
clusters 

Variogram 
Model Type Sill  Range 

20THD 

EC 
0-20 2 Spherical 203.57 6.46 
20-60 5 Spherical 208.83 16.12 
60-100 10 Linear 146.41 13.28 

Force 
0-20 10 Spherical 655331.50 18.38 
20-60 2 Spherical 1162210.00 24.82 
60-100 2 Spherical 2162789.00 28.33 

Red 
0-20 9 Gaussian 3435.08 25.18 
20-60 2 Spherical 22922.76 77.97 
60-100 2 Linear 45527.98 72.41 

IR 
0-20 6 Exponential 24319.55 25.72 
20-60 2 Spherical 54928.93 72.70 
60-100 2 Linear 87780.92 57.89 

20THI 

EC 
0-20 2 Spherical 127.68 36.64 
20-60 3 Linear 136.09 23.16 
60-100 9 Spherical 479.80 49.61 

Force 
0-20 2 Linear 1246620.00 8.13 
20-60 10 Linear 1144286.00 14.59 
60-100 9 Exponential 2419179.00 14.50 

Red 
0-20 10 Linear 7106.53 10.71 
20-60 2 Spherical 3062.37 39.38 
60-100 2 Exponential 51949.75 66.97 

IR 
0-20 8 Linear 55405.83 11.97 
20-60 2 Exponential 12733.54 14.52 
60-100 2 Exponential 144501.30 51.06 

21RNS 

EC 0-20 2 Exponential 50.81 16.87 
20-60 9 Exponential 36.56 11.24 

Force 0-20 2 Spherical 3359784.00 24.12 
20-60 2 Linear 857948.20 20.14 

Red 0-20 3 Linear 4523.56 10.05 
20-60 2 Spherical 5391.08 5.66 

IR 0-20 10 Spherical 34758.32 8.51 
20-60 2 Spherical 32611.45 18.98 

21RNN 

EC 0-20 2 Exponential 161.67 29.14 
20-60 5 Spherical 508.82 46.01 

Force 0-20 2 Exponential 11091563.00 24.11 
20-60 2 Spherical 9533657.00 57.18 

Red 0-20 2 Spherical 21632.19 59.39 
20-60 2 Spherical 8593.81 48.01 

IR 0-20 2 Spherical 140358.50 63.64 
20-60 3 Exponential 52648.88 17.54 

21THI 

EC 
0-20 2 Linear 226.86 8.97 
20-60 3 Linear 289.77 8.59 
60-100 9 Spherical 199.05 19.21 

Force 
0-20 2 Linear 2135037.00 12.82 
20-60 10 Gaussian 1327583.00 18.93 
60-100 9 Linear 5099018.00 6.38 

Red 
0-20 10 Linear 4307.55 13.97 
20-60 2 Spherical 11974.96 47.09 
60-100 2 Linear 54128.69 57.75 

IR 0-20 8 Linear 32719.71 12.26 
20-60 2 Linear 30848.67 14.38 
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60-100 2 Spherical 112107.30 61.69 

21THD 

EC 
0-20 2 Spherical 222.09 14.92 
20-60 2 Spherical 160.70 9.82 
60-100 5 Spherical 213.28 21.36 

Force 
0-20 3 Linear 1206741.00 4.76 
20-60 2 Linear 1441630.00 16.18 
60-100 4 Exponential 3051430.00 7.33 

Red 
0-20 5 Exponential 9544.43 14.69 
20-60 2 Exponential 74352.82 149.48 
60-100 2 Exponential 84451.22 143.01 

IR 
0-20 2 Exponential 31431.17 5.07 
20-60 2 Exponential 108677.90 84.13 
60-100 2 Exponential 150455.80 102.29 
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Table 3.5- Coefficient of Variation (CV%) of yield data from seven trial across two years. 
Values are obtained from the raw yields, the experimental design spatial corrections, and spatial 
corrections from soil core, MSP3 and P4000 data.  

Year Loc Exp. 
Raw 
Yield 

MAD-2 
Corrections 

Soil Core 
Corrections 

MSP3 
Corrections 

P4000 
Corrections 

2020 THD AeTa 18.9% 16.6% 16.9% 17.0% 17.5% 
2020 THI DPYNA 26.7% 18.9% 14.1% 14.0% 15.7% 
2021 RNN F4 13.7% 12.7% 9.7% 9.7% 9.7% 
2021 RNS PYN 9.3% 9.1% 6.7 % 6.9% 6.8% 
2021 RNS YT 14.12% 13.7% 9.5% 9.2% 9.7% 
2021 THD PYNA 16.7% 15.3% 11.2% 11.0% 11.1% 
2021 THI DPYNA 23.9% 22.7% 17.4% 17.0% 17.4% 
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Chapter 4 - Rank order Phenotypic Selection for Wheat Breeding 

using UAVs 

 Introduction 

Major technological advancements within plant breeding have the potential to allow 

breeders to evaluate larger populations and with higher confidence. However, despite these 

advancements most breeder selections are based on grain yield and visual selection, particularly 

for complex traits (Bentley & Mackay, 2017). Efforts continue to make both genotyping and 

phenotyping advancement to increase genetic gain and secure food stability for an increasing 

global population (Velu & Singh, 2013). Furthermore, both genomic and phenomic 

computational advancements need to be explored to maximize the potential of the digital age and 

overcome current bottle necks.  

Sequencing technology has greatly improved in plant breeding, allowing for cheaper 

sequencing with higher coverage. Additionally, whole genome sequencing has allowed for 

multiple wheat refence genomes to be created (Walkowiak et al., 2020).  This technology 

combined with advancements in genomic selection have shown potential to supplement 

traditional breeding selection and are currently being implemented in breeding programs for both 

grain yield and grain quality (Battenfield et al., 2016; Sehgal et al., 2020).  However, it has been 

shown even with improvements, prediction accuracies of these models vary and are still 

dependent on high-throughput and high-precision phenotype data to improve the models. 

Furthermore, genomic selection accuracies will need to be higher in breeding programs with 

faster selection cycles (Poland et al., 2012).  
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Similar to sequencing, advancements in sensor technology and data management 

strategies have enabled substantial advancements in high-throughput phenotyping. Low cost, 

accessible options have provided opportunities for non-destructive plant phenotyping. Currently 

a number of phenotyping carts, tractors and UAV platforms have been effectivity deployed in 

wheat breeding systems (Barker III et al., 2016; Beauchêne et al., 2019; Busemeyer et al., 2013). 

When equipped with multi-spectral, thermal and hyperspectral sensors these platforms are 

capable of capturing large amounts high spectral, radiometric and spatial resolution data with 

increased temporal resolution. However, implementation and sensor bottlenecks still exist, 

limiting the widespread adoption of these technologies in breeding programs (Song et al., 2021). 

Continued advancements in data management and computational pipelines, have the potential to 

overcome these bottlenecks and further the adoption of these technologies (Crain et al., 2021). 

It is well demonstrated that HTP data can predict phenotypic traits such as height, 

lodging and even disease response (Singh et al., 2019; Su et al., 2018; Wang et al., 2018). 

Furthermore, combining HTP data with machine learning computational advancements, such as 

convolutional neural networks, has the potential to aid with genotype selection within a breeding 

program for heading date and spike detection (Fernandez‐Gallego et al., 2020; Wang et al., 

2019). Additionally, using vegetative indices (VI’s) such as green normalized difference 

vegetation index (GNDVI), normalized difference vegetation index (NDVI) and normalized 

difference red edge (NDRE), with machine learning techniques have been used to quantify field 

variability for grain yield and quality prediction (Zhou et al., 2021). However, NDVI has been 

shown to have saturated values as crops develop and leaf area index (LAI) exceeds values of two 

(Haboudane et al., 2004). This saturation phenomenon has been shown to limit the ability to 

detect genotype specific classification when compared to NDRE (Bonfil, 2017). Likewise, it has 
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been reported that GNDVI can out preform NDVI correlations for grain yield and biomass, 

particularly at early reproductive stages (Gordillo-Salinas et al., 2021; Kyratzis et al., 2017). 

However, recent research shows that combined VI’s have greater potential to correlate to 

physiological traits such as flag leaf nitrogen values in wheat (Eitel et al., 2008). Furthermore, it 

has shown that using a combination of GNDVI, NDVI and NDRE in machine learning 

applications can out preform single VI predictions for grain yield in wheat (Ramos et al., 2020). 

In addition to incorporating multiple VI’s it has been explored to incorporate multi-

temporal points from key growth stages to improve trait prediction.  In multiple crops, single 

date multi-spectral data collected around anthesis has shown to have the highest correlation to 

grain yield regardless of the VI index (García-Martínez et al., 2020; Kyratzis et al., 2017; 

Potgieter et al., 2017). However, it has been shown that using multi-temporal VI’s to quantifying 

the VI growth rate between two dates of key physiological dates such as vegetative to heading 

and head to grain fill can improve yield prediction (Bonfil, 2017).  Similarly, (Zhou et al., 2017) 

accounted for multiple collection dates through VI summation and an accumulative VI index.  

Furthermore, it has been shown that incorporating multi-temporal collection points through 

multi-linear regression can improve yield prediction. Further progression has been shown by 

using machine learning tools such as LASSO, support vector regression and random forest 

regression in combination with multi-temporal VI data (Fu et al., 2020; Shafiee et al., 2021). 

Ultimately a combination of genotype and phenotype technologies will be needed to 

maximize the technological advancements in plant breeding. Furthermore, these technologies 

need to be combined with data management and computational advancements. Developing solid 

pipelines that allow for easy implementation and adoptions within breeding programs will be 

pivotal moving forward (Kim, 2020).   
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 Materials and Methods 

 Experimental Locations 

Field experiments were conducted across seven locations over 5 years throughout the 

central corridor of Kansas (Fig. 4.1).  However, not all seven locations were represented each 

year due to either limitations in UAV data collection or crop loss due to extreme environmental 

conditions such as late spring freeze and hail damage. Those site years were omitted since they 

would not represent normal production conditions and making selections on those sites would 

not be beneficial to the program.  Despite the loss of some locations this experiment still covers 

eighteen site years with diverse temperature and moisture conditions (Fig 4.3). Furthermore, 

these locations represent prominent and distinct wheat growing regions making them priority 

target locations for the breeding program (Roozeboom et al., 2008). 

  

 Plant Material 

Diverse germplasm developed by the KSWB program was used to evaluate VI 

predication accuracies. Like all breeding programs, the KSWB program has a continuous cycle 

of germplasm evaluation and advancement demonstrated in Fig. 4.2.  Since prediction at any 

advancement stage can save time and increase genetic gain, genotypes at all stages in the 

selection schematic were evaluated.  

Early generation lines were grown in the Preliminary Yield Nursery (PYN) under a 

modified augmented design-type2. These smaller rectangular plots were 2.4 m x 1.4 m (3.36 m2) 

and contain between 100 and 200 unique genotypes. Advanced lines were grown in either the 

Advanced Yield Nursery (AYN), or the Kansas Interstate Nursery (KIN) within the scope of the 

Kansas State Wheat Breeding program. These larger plots were 4.5 m x 1.4 m (6.75 m2) and 
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grown in an alpha-lattice experimental design and typically contain 40 genotypes per 

experiment. Additionally, a segregating F5 population was also grown in the larger plot size with 

an alpha-lattice experimental design.  It is notable that there are multiple AYN and PYN 

grouping within each year.  

The genotypes within a PYN, AYN or KIN experiment are fluid year to year. For 

example, in early generations the lines are either selected or dropped meaning the selected PYNs 

become AYN’s while the unselected are removed from the testing cycle.  This narrows the 

genetic diversity to more desirable and typically higher yielding genotypes. By the time a 

genotype reaches the KIN it has gone through several selection cycles. Furthermore, genotypes 

can be selected and reentered into the KIN experiment for several years prior to release. 

UAS and Sensor Specifications  

All UAV phenotyping was completed using a DJI Matrice 100 (DJI, Shenzhen, China) 

quadcopter, equipped with a Micasense (MicaSense Inc. Seattle, WA) RedEdge-M multispectral 

sensor.  The five-band multispectral sensor that captures images in the blue (455-495 nm), green 

(540-560 nm), red (658-678 nm), red-edge (RE; 707-727 nm), and near-infrared (NIR; 690-730 

nm) regions of the light spectrum. To increase radiometric resolution all images were captured 

and stored as 16-bit tiff. GPS planting coordinates were used with the CSIRO mission planner 

application to create UAV flight mission plans. All flight plans were conducted using the Litchi 

mobile application. To ensure proper spatial resolution and image overlapping for image analysis 

a 20 m above ground level flight height and  2 m s-1, flight speed were maintained for all flights. 

Furthermore, the RedEdge-M capture rate is one second, when paired with the other flight 

parameters the resulting images contain an 80% overlap both the x and y directions of the flight 

pattern.  
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The individual images  describe above were then used to create a composite orthomosaic 

using Agisoft Photoscan (Version 1.4.0, Agisoft LLC, Russia) as described in Wang et al. 

(2020). The stitching process blends pixels values of adjacent photos together resulting in one 

stitched image. To maintain true geospatial position, ground control points (GCPs) were used to 

make corrections to the orthomosaic image. White square tiles (90cm2) were, distributed to the 

outer corners of each trial and surveyed using an Emlid Reach RS (Emlid Ltd. Hong Kong), 

Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) (Haghighattalab et al., 

2016).  

Individual five band reflectance values were extracted from the orthomosaic image using 

multi-step process in Quantum Geographic Information System (QGIS, www.qgis.org). Step one 

consisted of creating a polygon shape file with the plot-id for the targeted plot of intrest. Next, 

the HTP Geoprocessor plugin described in (Wang et al., 2016) was used to extract the plot level 

digital and then were assigned to the plot-id. The extracted digital values were used to calculate, 

GNDVI, NDRE, and NDVI.  All VI calculations are shown in Table 4.2. 

 Thermal Time Corrections 

Between spring green up and plant senescence, the target flight temporal resolution for all 

experiments was 10 to 14 days. However, travel time and equipment failure affected the revisit 

time. Furthermore, the RedEdge-M is a passive sensor meaning it needs the sun as an external 

light source and ideal flight time was within 1.5 hours before or after solar noon. This made 

environmental conditions such as wind and cloud cover limit flight dates.   

Due to the diverse growing conditions cause by both location and year effects all flight 

dates were normalized based on growing degree days. Weather data for thermal time corrections 

was obtained from weather stations that are maintained by the Kansas Mesonet (Patrignani et al., 
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2020). Based on results discussed in chapter 2 the growing degree day method (GDD1) thermal 

index with accumulation starting on January 1st, to avoid vernalization effects, was used. Four 

thermal time grouping targets were chosen for multi-temporal analysis 400, 700, 1200 and 1500 

0Cd. Flight dates within 1000Cd of the target thermal time were assigned to that thermal 

grouping. These dates were chosen as 4000Cd is estimated to represent tillering while 7000Cd 

represents jointing, 12000Cd represents heading or flowering and 15000Cd represents mature 

kernels.  

To capture temporal impacts with multiple VI’s two different summarization methods 

were implemented. First the sum VI method described by Zhou et al. (2017) was used to quantify 

the cumulative VI between jointing and anthesis (400-1200 0Cd). Secondly, a normalized 

temporal VI between two thermal time was used to quantify growth rate between two dates 

(Bonfil, 2017). The summation method was only implemented for the 400, 700 and 1200 0Cd as 

these are key growing stages. Whereas 1500 0Cd is a maturity time point and higher values at 

this stage could have a negative impact. However, all thermal times were used for the two-point 

normalized temporal indices. Calculations for all the temporal indices are included in Table 4.2. 

 Spatial Corrections  

A 2D spatial p-spline method was implemented to evaluate the spatial trends of the raw 

phenotypic VI’s.  All spatial correction were completed with the R package ‘SpATS’ 

(Rodriguez-Alvarez et al., 2018). The SpATS model makes spatial correction through smoothing 

p-splines ANOVA in a two-dimensional interaction in one model. Additionally, the SpATS 

package has the capability to construct the variogram from the row and column parameters 

through the variogram function. The variogram produced from this function is based on the 

deviance of the column (𝑐𝑑_[),	row(𝑟𝑑_[) and is the residual (𝜐_[) displacement. In this 
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experiment a three dimensional variogram was construction from the row column deviance to 

visualize the variation (Fig. 4.7). The SpATS model also allows for the addition of 

environmental and genotypic effects resulting in equation 1. 

𝑦 = 	𝑓(𝑢, 𝑣) +	𝑋`𝑏` +	𝑍`ℎ` + 𝜀	         [Eq. 1] 

Where is the 𝒚 is the VI phenotypic response,  𝒇(𝒖, 𝒗) is the smoothing p-spline function 

that accounts for row (𝒖) and column (𝒗) effects; 𝑿𝒅 and 𝒁𝒅 are fixed and random blocking 

factor design matrices, 𝒃𝒅 and 𝒉𝒅 are fixed and random effect design matrix; 𝜺 is the residual 

errors assumed in a normal distribution. From equation 1 both Best Linear Unbiased Estimators 

(BLUEs) and Best Linear Unbiased Predictors (BLUP) values were calculated and used in the 

ensuing analysis.  

Broad-sense heritability per line was calculated for each phenotypic collection date and 

VI combination using equation 2 

 𝐻# = ]5
0

]5
0"67

0

8

           [Eq. 2] 

Where 𝜎b# represent the genotypic variance, 𝜎(# is the residual error variance and r is the 

number of replications.  

To account for spatial variability individual yield trials were analyzed with Agrobase 

Generation II software (Agrobase Generation II 2014, Agronomix, Winnipeg, MB, Canada; 

https://www.agronomix.com/ ) according to the chosen experimental designs. The PYN 

experiments were analyzed as a modified augmented design type 2, using method 3 where 

adjustment are based on the slope form regressing the average of all primary and secondary 

check plots (Lin & Poushinsky, 1985).  The KIN and AYN experiments were conducted as an 

alpha-lattice with 2 or three replicates(Yau, 1997). For both experimental designs the resulting 

BLUPs for lines tested accounted for site X trial X year interactions. Additionally, the 
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phenotypic VI values were also corrected based on the respective experimental design. To 

further asses rank correlation between VI and yield data, both raw and fitted data were placed in 

rank order by year, location, and experiment.  

Statistical Analyses 

Linear models were used to asses both VI values and VI rank order effects with grain 

yield and grain yield rank. using the ‘lme4’ package in R (Bates et al., 2007).  

𝑦. = 	𝜇 + 𝛽.x + 𝜀      [Eq. 3] 

Where, 𝒚𝒊	is the grain yield or grain yield rank, μ is the overall mean, 𝛽. is the coefficient 

estimator for the VI or VI rank of interest and 𝜺 is the residual errors assumed in a normal 

distribution. The accuracy of the models was evaluated using coefficient of determination (R2). 

Additionally a Pearson’s correlation (r) using ‘GGally’ package in R (Schloerke et al., 2018) was 

conducted. Additionally, a Spearman’s correlation was conducted to assess the rank order 

correlation of VI’s to grain yield at all locations.  

 Random Forest  

To assess top yield group prediction ability a random forest classification analysis was 

preformed using the ‘randomForest’ package in R (Liaw & Wiener, 2002). The classification 

method is used to predict non-numeric groupings of a data set. In this experiment a binary 

classification for yield groups was used where 1 indicated the genotype was in the top yield 

group and a value of 0 indicated the genotype was not part of the yield group. Yield groupings of 

the top 10%, 20% and 40% were evaluated for selection.  

The dataset was randomly subset into a training and testing set at a 60%/40% split. The 

training set is used to create the model through a boot strapping method. To stabilize the error 

rate 500 trees were used for each random forest algorithm.   
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The performance of the classifications was evaluated through a confusion matrix which 

contains multiple metrics for model performance. The Cohen’s Kappa statistic was calculated 

and used as a criteria for model fit. The measurement quantifies the diagonal parentages of the 

confusion matrix and compares those values to the expected percentages of random chance.  The 

kappa values range from 0 to 1 whereas a value close to 0 indicates a poor or no fit and a value 

of 1 represents complete agreement.  

Κ = ?0)(&'(`	4&?0%0,.*c	8	dU%-d(	4&?0%0,.*c	
@8	dU%-d(	4&?0%0,.*c

         [Eq. 4] 

 

Model accuracy was calculated based on the number of correct predictions made in 

comparison to the total number of elements in the table. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 (!+"!T)
(!+	"	e+	"	eT	"	!T)

         [Eq. 5] 

Where TP is the true positives, TN are true negatives, FP are false positives and FN are 

false negatives. However, to fully understand the accuracy metric, the no information rate must 

also be considered. The no information rate metric indicates the value of majority classification 

and the probability of selecting that classification with no prior information. A hypothesis test 

was also conduction to determine if the model accuracy rate is greater than the no information 

rate. As a result of the large, unbalanced selection data in general the no information rate for 

these data sets are very high.  

Other metrics calculated from the confusion matrix include the sensitivity and specificity 

of the model. The sensitivity measures the model’s ability to predict TP in respect to TP and FN. 

A sensitivity value of 1 indicates that there are no false negative.  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	 (!+)
(!+	"	eT	)

                        [Eq. 6] 
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The specificity or true negative rate metric assess the model’s ability to quantify the TN 

in relationship to TN and FP. Due to the unbalanced nature of this data set both the sensitivity 

and specificity metrics need to be considered.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 		 (!T)
(e+	"	!T)

                    [Eq. 7] 

To evaluate the importance of each predictor VI a Mean Decrease Accuracy plot was 

constructed. The plot indicates the loss of accuracy that would occur if the variable was dropped 

from the model. The higher the loss of accuracy score the more important that variable is to the 

model. Additionally, the contain the Gini coefficient which measures the variables contributions 

to the homogeneity of the tree nodes. Like the accuracy score the higher Gini score indicates 

higher importance of the variable to the model.  Both metrics are obtained from the out-of-bag 

portion of the data where the MSE and residual sum of squares is minimized. 

 Results and Discussions 

Despite all locations being grown through the central corridor of Kansas both location 

and year temperature and moisture variation impacted the yield environment. The 2018 growing 

season observed lower temperature throughout most of the growing season until May when the 

temperatures were elevated compared to the other four growing season (Fig. 4.3A). Additionally, 

the 2018 growing season had lower monthly precipitation compared to the other locations (Fig. 

4.3B). These conditions resulted in the lowest average yield performance of all years. In total 

none of the years were statistically comparable and only 2020 Washington, was similar to 2017 

McPherson and 2021 Saline (Fig 4.4). This potentially could impact prediction and correlation of 

VI’s to yield performance as it has been shown using dissimilar predictor and training target 

environments reduces prediction accuracy (Cooper et al., 1997). However, developing a VI 

model that works across yield groups would be highly impactful for a breeding program.  
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Temporal trends in VI distribution were observed at all locations. With all indices the 

trend was to increases VI from 400 to 700 and decrease from 700 to 1200 and 1200 to 1500 0Cd 

(Fig 4.5). Although the decrease in VI values from 1200 to 1500 0Cd where greater than any 

other thermal time interval, which is consistent with other UAV and remote sensing research 

(Hassan et al., 2019). Furthermore, the range VI’s at 1200 and 15000Cd in general are wider than 

at 400 and 7000Cd. Heading (12000Cd) is critical growth stage for overall yield potential of 

winter wheat, particularly in Kansas where fertility can be impacted by heat (Prasad & 

Djanaguiraman, 2014). With a greater genotype response at this stage it could lead to significant 

yield detection. This is also consistent with literature that has found VI at or near anthesis have 

the greatest correlation to grain yield (Wang et al., 2014). It is also notable that the GNDVI and 

NDVI indices approach saturation early in the growing season which may narrow the potential 

for genotype specific detection (Haboudane et al., 2004). However, both indices have been 

shown to correlate to grain yield and have been widely used as tools in breeding programs 

(Haghighattalab et al., 2016). 

In general heritability values were high for all, VI, year and flight date. However, 

differences were observed in both VI heritability between flight dates within year and across 

years (Fig 4.6). Overall, 2018 (0.529) and 2021 (0.545) had the lowest mean heritability with 

2017 (0.784), 2019 (0.721) and 2020 (0.707) all having similar full season heritability. It is 

interesting to note that the two lowest heritable VI years were also the highest and lowest 

yielding years during this study. Whereas the three middle yielding groups all had similar 

heritability. In contrast, heritability by VI differences were not observed as GNDVI (0.651), 

NDRE (0.649) and NDVI (0.671) had similar mean heritability across all years. This indicates 
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that the environmental condition of the location year has a greater impact then the VI on 

heritability.  

Previous studies have shown that large scale breeding nurseries can be impacted by 

spatial differences in soil, micro-climates and past management (Miller et al., 1988). The 

variogram (Fig. 4.7) shows that significant VI spatial trends were observed for the NDRE, VI at 

Reno County. This trend was overserved for all traits at all location years.  The positive and 

negative spatial deviation varies with the location in the field, which impacts raw VI values of 

some genotypes more than others, particularly in partial or single rep experiments.  The 

advantage the p-splines method describe by Rodriguez-Alvarez et al. (2018) provides is that 

spatially adjusted values, in addition to BLUP and BLUE values, are calculated in a single step. 

This single step correction is visualized in Fig. 4.8 where the global and local trends are 

corrected to provide distributed genotypic BLUP values. Overall, the combination of observed 

spatial trends and previous reports of spatial adjustments for plant breeding applications, 

supports the use of automated spatial correction tools for VI data.  

A Pearson’s correlation was conducted on whole locations to assess the correlation of 

thermal time flight date VI’s to both corrected and raw grain yields. Additionally, a Spearman 

correlation was conducted on whole locations to assess rank order values. The rank order is of 

interest since breeders are more inserted in relative yield performance rather than the absolute 

value when making selections. This was done for both spatially fitted and BLUP values.  

Although, significant correlation was observed for all absolute values within a location for both 

fitted (Fig. 4.9)  and BLUP VI (Fig C.1) in general the correlation for the fitted data was better. 

Overall, although significant, correlation in general was low. Similar observations were observed 

with the Spearman rank order correlation. In some instances, the rank correlation was improved, 
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however, the magnitude and directionality of the change was inconsistent. This indicates the rank 

order correlation follows a similar trend to VI/grain yield correlation.  

From the correlation matrix (Fig. 4.9) and Table 4.3 the 12000Cd flight date had the 

highest correlations 61.5% of the time while the 7000Cd flight date accounted for the other 

31.5% of the time. However, when assessing the rank order correlation, the highest correlation 

by flight time was flipped with the 7000Cd flight date accounting for the highest correlation 

61.5% and the12000Cd flight or the other 31.5% of the time. Although the flight times were 

categorized by thermal time the variance in both the thermal time stage prediction and actual 

match of thermal time to the group likely contributed to this inconsistency. However, from these 

correlations is it evident that both the 700 and 12000Cd are highly correlated to genotype 

performance compared to 400 and 15000Cd thermal times. This is consistent with previous 

reports as the 700 and 12000Cd are closely related to reproductive growth stages of wheat.  

In addition to VI correlations the ∆VI and ΣVI values also showed correlation to grain 

yield (Fig 4.11). However, like the individual VI’s the correlation improved with the rank order 

compared to the actual grain yield. In all cases the ΣVI had higher correlation than any of the 

∆VI period indices. Of the ∆VI indices the 700 to 12000Cd period had the highest correlation 

which is also consistent with the individual correlations. In contrast the 1200 to 15000Cd period 

had the lowest correlation and had a negative correlation to the other time periods. As this period 

is associated with grain fill and maturity it is likely that a combination of stay green and later 

maturing genotypes affected the VI’s correlation to grain yield, although the rank order was 

strong (Christopher et al., 2008; Cox et al., 1988). 

Due to the genetic diversity and difference in prior selection intensity of each experiment 

linear models were used to assess rank order by experiment at each location for 2021. Overall R2 
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values were low ranging from <0.01 to 0.40 (Table 4.5, Fig. 4.11). Additionally, to evaluate the 

rank as a potential selection tool, the percent of lines needed to be kept to capture the top 10% of 

the highest yielding genotypes was evaluated. Similar to the linear model performance the rank 

order numbers were poor and a range between 16% and 100% of the lines needed to be kept to 

capture the top 10% (Table 4.6). Although 16% would be an acceptable keep rate, only 12 of the 

potential 216 temporal, VI combinations resulted in keep rates lower than 50%. 

Overall random forest prediction accuracies depended on yield grouping and VI’s used 

(Table 4.7). The top 10% yield groups had the highest predictions accuracies (0.890-0.899), 

followed by the top 20% (0.775-0.797) and top 40% (0.599-0.629) yield groupings. While these 

prediction accuracies are high, that metric alone cannot quantify the performance of the random 

forest model. Further comparison of the accuracies to the no information rate shows that in most 

cases the random forest actually performs worse than if the largest proportioned class was chosen 

every time. Furthermore, the poor performance of these models is reflected in the hypothesis 

testing where the large p-values conclude that the none of the models are significantly better than 

the no information rate. Finally, the near zero values of the Cohen’s Kappa values for all models 

indicates that models are not good fits compared to random probability.  

Despite the overall poor performance of the models, some models still show potential and 

warrant further study, as the sensitivity of the model had overall good performance. Recalling 

from equation 6, sensitivity measures a model’s ability to detect true positives. In this study a 

true positive occurs when an unselected genotype in the test data set was also unselected in the 

predicted data set. A false negative occurred when an unselected genotype in the test data set was 

selected in the predicted dataset. Although, the split nature of all these datasets favors high 

sensitivity values, due to the majority of the genotypes being unselected, all the test populations 
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had higher sensitivity than the actual construction of the dataset. Meaning the observed false 

negative rate was low.  Inversely, the specific numbers were poor, indicating that the false 

positive rate was high in respects to the true negative rate. A false positive is considered a 

genotype that was selected in the real dataset but unselected in the predicted set. While a true 

negative was a genotype that was selected in the real dataset and the predicted dataset. While the 

high sensitivity numbers indicate only a small portion of the unselected genotypes from the data 

set were selected in the predicted data set the specificity numbers indicate that a large portion of 

the selected genotypes in the data set were unselected in the predicted data set. 

The random forest function also provides an importance score for each variable used. 

This score relates to the predictive power and the order of importance the variable has on the 

model’s performance. The prediction accuracy is based on the out-of-bag sampling during node 

construction of each tree. A rank pattern can be assembled by incorporating all VI and temporal 

combinations into the random forest model for each categorical yield group. As seen in Fig 4.12 

the NDRE value at the 7000Cd time point had the highest importance for the top 10% and 20% 

yield groups but had lower importance for the top 40% group. Overall, importance of both VI’s 

and temporal points were inconsistent across all three models, indicating no one set of VI or 

temporal points is collectively more important. With the generally poor and inconsistent model, 

the lack of well-defined input performance maybe expected.  

 Conclusions 

This experiment confirms that UAV spectral VI’s are correlated to grain yield of 

genotypes within KSWB program. Furthermore, this study highlights the potential of using HTP 

systems with targeted temporal resolution for potential future machine learning applications. 

However, this study still shows that fluid nature and the genetic diversity of a breeding program 
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poses challenges to implementing these techniques on a large scale. Further research is needed to 

incorporate other phenotypic traits with VI’s to find ideal trait combinations for selection 

prediction. Furthermore, continued studies on G x E impacts on HTP data collection and model 

incorporation are needed.  
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Figure 4.1. Experiment locations for the Kansas Wheat Breeding experiments over a five-year 
period. Temperature contours are derived from the 2020 observed mean monthly temperatures. 
The maps shows the north to south temperature gradient for the locations that impacts the 
cumulative growing degree units used to normalize UAV flight dates. 

 
 

 
 
Figure 4.2. Schematic diagram of proposed experimental selection using UAV VI’s within the 
KS Wheat Breeding program across 5 years.  

Mean Temperature (C) 
8.4 - 11.7 

11.7-12.2 
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12.7-13.3 

13.3-13.9 

13.9-17.4 
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Figure 4.3. Mean monthly temperature (A) and mean monthly precipitation (B) by location year 
across 18 site years. The x-axis is the month during the growing season and the y-axis is the 
recorded mean monthly temperature (A) and mean monthly precipitation (B) from the Kansas 
Mesonet weather stations. Symbol and line combinations represent the location and year the data 
was recorded.  
  

(A) 

(B) 
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Figure 4.4. Grain yield by year and location for the KSWB experiments over 5 years. The x-axis 
is the harvest year growing season and the y-axis is adjusted grain yield in tons ha-1. Colors 
represent location that data was collected for during each season. 
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Figure 4.5. VI distribution by thermal time flight date for GNDVI, NDRE and NDVI  at the 
2021 Reno County location.  The x-axis is the thermal time at the flight date, the y-axis is the 
calculated VI value and the colors indicate the VI.  
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Figure 4.6. Broad sense heritability for GNDVI, NDRE and NDVI by flight date. Graphs 
include 5 years and 9 locations. However, not all locations are represented every year.  
 

 
Figure 4.7. 3D Variogram created from 2D splines for NDRE collected 6/15/21 for the 2021 
Reno Yield trial. The x-axis is the row effect the y-axis is the column displacement, and the z-
axis is the spatial trend. 
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Figure 4.8 2D splines spatial correction workflow example. Data is the NDRE, VI collected 
6/15/21 from the 2021 Reno Yield trial. The x-axis on the maps are columns and the y-axis are 
the rows.  
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Figure 4.9. Pearson correlation (A) and Spearman rank order correlation (B) values for adjusted 
grain yield, raw grain yield, and spatially fitted GNDVI, NDRE and NDVI at 2021 Reno County. 
  

(A) 

(B) 
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Figure 4.10. Pearson correlation (A) and Spearman rank order correlation (B) values for 
adjusted grain yield, raw grain yield, and spatially fitted ∆VI at 2021 Reno County. 
  

(A) 

(B) 
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Figure 4.11. Linear model performance for grain yield rank order and fitted rank order by 
experiment at the 2021 McPherson location. The x-axis is the rank order of the fitted GNDVI 
values, and the y-axis is the adjusted grain yield rank order. The gray title box indicates the year 
location, experiment, and thermal time flight date. 
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Figure 4.12. Rank order importance for the random forest model incorporating all VI and 
temporal combinations for 3 distinct yield groupings. The x-axis is the decreased mean accuracy 
and the y-axis the VI, thermal time combination. Higher decrease accuracy numbers indicate 
higher importance. 
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Table 4.1- Growing degree accumulation at flight date for all locations. Thermal time categories 
are designated at the top of the table. These categories were used for all analysis. 

  400 700 1200 1500 

Growing 
season LOC Date GDU LOC Date GDU LOC Date GDU LOC Date GDU 

2021 MP 4/1/21 385 MP 4/24/21 592 MP 5/29/21 1222 MP     

2021 RN 4/1/21 427 RN 4/24/21 649 RN 5/28/21 1235 RN 6/15/21 1628 

2021 SA 4/3/21 410 SA 4/30/21 735 SA 5/26/21 1166 SA 6/9/21 1439 

2020 RN 3/29/20 434 RN 5/6/20 737 RN 5/31/20 1126 RN 6/15/20 1688 

2020 MP 4/7/20 456 MP 4/27/20 681 MP 5/30/20 1201 MP 6/12/20 1523 

2020 WS 4/10/20 442 WS 5/5/20 736 WS 6/4/20 1230 WS 6/23/20 1674 

2020 SU 4/8/20 579 SU 4/30/20 854 SU 5/30/20 1364 SU 6/12/20 1691 

2019 RL --- --- RL 4/26/19 610 RL 5/31/19 1171 RL 6/17/19 1538 

2019 RN 4/8/19 427 RN --- --- RN 5/30/19 1238 RN 6/14/19 1569 

2019 RP --- --- RP 5/13/19 659 RP 6/13/19 1228 RP --- --- 

2018 RP 4/11/18 323 RP 5/23/18 894 RP 6/11/18 1355 RP --- --- 

2018 RN 4/17/18 486 RN 5/8/18 792 RN 5/30/18 1179 RN --- --- 

2018 SA 4/16/18 480 SA 5/9/18 819 SA 5/22/18 1125 SA --- --- 

2017 RP --- --- RP --- --- RP 5/24/17 1137 RP 6/16/17 1642 

2017 MP --- --- MP --- --- MP 5/6/17 1185 MP 6/8/17 1607 

2017 RL --- --- RL --- --- RL 5/25/17 1259 RL 6/5/17 1609 

2017 RN --- --- RN --- --- RN 5/6/17 1272 RN 6/1/17 1545 
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Table 4.2- Equations for vegetation indices used to evaluate rank order predictions. 

VI Index Equation 

GNDVI Green Normalized Difference 
Vegetation Index 𝐺𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅	 − 	𝐺𝑟𝑒𝑒𝑛
𝑁𝐼𝑅	 + 	𝐺𝑟𝑒𝑒𝑛 

 

NDRE Normalized Difference Red 
Edge 𝑁𝐷𝑅𝐸 =

𝑁𝐼𝑅	 − 	𝑅𝑒𝑑𝐸𝑑𝑔𝑒
𝑁𝐼𝑅	 + 	𝑅𝑒𝑑𝐸𝑑𝑔𝑒 

 

NDVI Normalized Difference 
Vegetation Index 𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅	 − 	𝑅𝑒𝑑
𝑁𝐼𝑅	 + 	𝑅𝑒𝑑 

 

DGNDVI400-700 
Change in Green Normalized 
Difference Vegetation Index 
400 to 700 0Cd 

DGNDVI9::;<:: =
𝐺𝑁𝐷𝑉𝐼<:: 	− 	𝐺𝑁𝐷𝑉𝐼9::
𝐺𝑁𝐷𝑉𝐼<:: 	+ 	𝐺𝑁𝐷𝑉𝐼9::

 
 

DNDRE400-700 
Change in Normalized 
Difference Red Edge 400 to 
700 0Cd 

DNDRE9::;<:: =
𝑁𝐷𝑅𝐸<:: 	− 	𝑁𝐷𝑅𝐸9::
𝑁𝐷𝑅𝐸<:: 	+ 	𝑁𝐷𝑅𝐸9::

 
 

DNDVI400-700 
Change in Normalized 
Difference Vegetation Index 
400 to 700 0Cd 

DNDVI9::;<:: =
𝑁𝐷𝑉𝐼<:: 	− 	𝑁𝐷𝑉𝐼9::
𝑁𝐷𝑉𝐼<:: 	+ 	𝑁𝐷𝑉𝐼9::

 

åGNDVI9;<;=> 

Accumulation of Green 
Normalized Difference 
Vegetation Index 400 , 700 
and 1200 0Cd 

8GNDVI9;<;=> = 	𝐺𝑁𝐷𝑉𝐼9:: + 	𝐺𝑁𝐷𝑉𝐼<:: 	+ 	𝐺𝑁𝐷𝑉𝐼=>:: 
 

åNDRE9;<;=> 
Accumulation of Normalized 
Difference Red Edge 400 , 
700 and 1200 0Cd 

8NDRE9;<;=> = 	𝑁𝐷𝑅𝐸9:: + 	𝑁𝐷𝑅𝐸<:: 	+ 	𝑁𝐷𝑅𝐸=>:: 
 

åNDVI9;<;=> 
Accumulation of Normalized 
Difference Vegetation Index 
400 , 700 and 1200 0Cd 

8NDVI9;<;=> = 	𝑁𝐷𝑉𝐼9:: + 	𝑁𝐷𝑉𝐼<:: 	+ 	𝑁𝐷𝑉𝐼=>:: 
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Table 4.3- Pearson’s correlation of spatially fitted VI temporal points to adjusted grain yield by 
location. 

Spatially Fitted VI to GRYLD- Pearson Correlation 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.266 0.305 0.392 --- 0.268 0.293 0.393 --- 0.252 0.339 0.383 --- 
RN 2021 0.078 0.070 0.421 0.164 0.074 0.122 0.451 0.168 0.063 -0.030 0.401 0.131 

SA 2021 0.161 0.200 0.202 0.117 0.149 0.172 0.179 0.103 0.165 0.219 0.221 0.140 

MP 2020 0.276 0.292 0.754 0.554 0.312 0.210 0.764 0.410 0.229 0.225 0.743 0.550 
RN 2020 0.115 0.483 0.367 0.040 0.076 0.445 0.388 0.170 0.117 0.341 0.439 0.088 
SU 2020 0.297 0.353 0.308 -0.065 0.313 0.465 0.318 -0.182 0.283 0.345 0.351 -0.093 

WS 2020 0.292 0.388 -0.008 -0.080 0.320 0.416 -0.045 -0.083 0.304 0.332 0.022 -0.022 

RL 2019 --- 0.659 0.521 0.520 --- 0.688 0.569 0.463 --- --- 0.666 0.570 
RN 2019 0.198 --- 0.525 0.333 0.142 --- 0.520 0.309 0.245 --- 0.527 0.380 

RP 2019 --- 0.376 0.488 --- --- 0.360 0.532 --- --- 0.370 0.499 --- 

RN 2018 0.301 0.318 0.513 --- 0.326 0.323 0.521 --- 0.368 0.364 0.524 --- 
RP 2018 0.305 0.504 0.431 --- 0.335 0.536 0.388 --- 0.347 0.490 0.429 --- 

SA 2018 0.450 0.412 0.617 --- 0.521 0.456 0.681 --- 0.379 0.252 0.567 --- 

MP 2017 --- --- -0.065 -0.411 --- --- -0.047 -0.352 --- --- -0.169 -0.032 
RL 2017 --- --- 0.004 -0.084 --- --- 0.015 -0.149 --- --- -0.040 -0.137 
RN 2017 --- --- 0.202 0.233 --- --- 0.307 0.220 --- --- 0.167 0.243 

RP 2017 --- --- 0.106 0.016 --- --- 0.185 0.024 --- --- 0.131 0.269 

 
Table 4.4- Spearman’s correlation of spatially fitted VI temporal points to adjusted grain yield 
by location. 

Spatially Fitted VI to GRYLD- Spearman Correlation 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.300 0.340 0.335 --- 0.296 0.326 0.341 --- 0.286 0.377 0.335 --- 
RN 2021 0.059 0.229 0.385 -0.091 0.040 0.200 0.408 -0.112 0.085 0.183 0.444 -0.072 
SA 2021 0.145 0.187 0.186 0.105 0.127 0.173 0.174 0.093 0.146 0.190 0.185 0.114 
MP 2020 0.263 0.311 0.706 0.477 0.285 0.234 0.725 0.308 0.224 0.202 0.655 0.477 
RN 2020 0.321 0.494 0.725 0.483 0.353 0.511 0.720 0.497 0.160 0.588 0.638 0.432 
SU 2020 0.281 0.331 0.296 -0.074 0.299 0.443 0.333 -0.167 0.256 0.322 0.327 -0.049 
WS 2020 0.235 0.245 -0.077 0.066 0.251 0.281 -0.108 0.013 0.241 0.178 -0.065 0.141 
RL 2019 --- 0.714 0.585 0.580 --- --- 0.615 0.541 --- --- 0.706 0.611 
RN 2019 0.164 --- 0.522 0.325 0.141 --- 0.509 0.310 0.227 --- 0.537 0.383 
RP 2019 --- 0.376 0.478 --- --- 0.354 0.524 --- --- 0.363 0.496 --- 
RN 2018 0.296 0.275 0.459 --- 0.320 0.291 0.483 --- 0.364 0.297 0.483 --- 
RP 2018 0.301 0.525 0.437 --- 0.338 0.565 0.400 --- 0.330 0.501 0.436 --- 
SA 2018 0.439 0.383 0.621 --- 0.523 0.445 0.691 --- 0.397 0.231 0.549 --- 
MP 2017 --- --- -0.215 -0.416 --- --- -0.191 -0.370 --- --- -0.308 -0.094 
RL 2017 --- --- -0.037 -0.124 --- --- -0.049 -0.173 --- --- -0.144 -0.161 
RN 2017 --- --- 0.208 0.199 --- --- 0.323 0.187 --- --- 0.145 0.233 
RP 2017 --- --- 0.153 0.050 --- --- 0.231 0.049 --- --- 0.166 0.272 
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Table 4.5- P-values for linear model VI rank order predictions to observed grain yield rank order 

Exp. Loc. 
GNDVI- 
400 

GNDVI- 
700 

GNDVI- 
1200 

NDRE- 
400 

NDRE- 
700 

NDRE- 
1200 

NDVI- 
400 

NDVI- 
700 

NDVI- 
1200 

F5 MP 0.08 0.24 0.10 0.09 0.26 0.14 0.06 0.20 0.12 

KIN MP <0.01 0.05 0.40 <0.01 <0.01 0.41 <0.01 0.06 0.40 

KINF MP 0.04 0.10 <0.01 0.05 0.09 <0.01 <0.01 0.11 <0.01 

PYN2 MP <0.01 <0.01 0.07 <0.01 <0.01 0.08 <0.01 <0.01 0.06 

PYN3 MP 0.05 0.13 <0.01 0.05 0.12 <0.01 <0.01 0.17 0.03 

AYN1 RN <0.01 0.07 <0.01 <0.01 0.08 0.02 <0.01 0.04 0.03 

AYN2 RN 0.02 0.10 <0.01 <0.01 0.07 <0.01 <0.01 0.09 0.04 

F4 RN <0.01 <0.01 0.15 <0.01 <0.01 0.15 <0.01 <0.01 0.12 

F5 RN <0.01 <0.01 0.14 <0.01 <0.01 0.12 <0.01 <0.01 0.17 

KINF RN <0.01 0.02 0.09 <0.01 <0.01 0.04 0.07 <0.01 0.04 

PYN2 RN <0.01 0.05 0.17 <0.01 0.03 0.17 <0.01 0.03 0.22 

PYN3 RN <0.01 0.02 0.10 <0.01 <0.01 0.06 <0.01 0.02 0.15 

PYN4 RN 0.06 0.17 0.06 0.06 0.14 0.07 0.06 0.13 0.12 

PYN5 RN 0.03 0.10 0.15 0.03 0.09 0.19 <0.01 0.06 0.18 

PYN6 RN 0.21 0.23 0.13 0.20 0.22 0.10 0.16 0.19 0.14 

PYN7 RN 0.07 0.14 0.02 0.06 0.10 0.02 0.05 0.16 0.02 

AYN1 SA 0.15 0.12 0.06 0.18 0.08 0.09 0.16 0.08 0.14 

AYN2 SA <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

PYN2 SA 0.04 0.09 0.04 0.04 0.08 0.03 0.04 0.09 0.03 

PYN3 SA <0.01 0.02 0.03 <0.01 <0.01 <0.01 <0.01 0.02 0.02 

PYN4 SA 0.13 0.19 0.11 0.13 0.15 0.07 0.08 0.12 0.10 

PYN5 SA 0.25 0.35 0.30 0.24 0.34 0.30 0.20 0.30 0.28 

PYN6 SA 0.13 0.17 0.16 0.11 0.19 0.16 0.10 0.13 0.14 

PYN7 SA 0.04 0.06 0.07 0.03 0.05 0.07 0.03 0.07 0.07 
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Table 4.6- Table of percentages of the total population needed to capture the top 10% yield 
group using single temporal VI’s as a selection criteria.   

Exp. Loc. 
GNDVI- 
400 

GNDVI- 
700 

GNDVI- 
1200 

NDRE- 
400 

NDRE- 
700 

NDRE- 
1200 

NDVI- 
400 

NDVI- 
700 

NDVI- 
1200 

F5 MP 63.7% 68.4% 77.4% 65.8% 63.2% 73.7% 63.2% 83.2% 85.8% 

KIN MP 72.0% 40.0% 16.0% 72.0% 56.0% 16.0% 68.0% 30.0% 18.0% 

KINF MP 78.0% 52.0% 68.0% 78.0% 58.0% 60.0% 78.0% 58.0% 74.0% 

PYN2 MP 83.8% 95.0% 85.6% 91.3% 96.3% 86.3% 83.8% 85.6% 92.5% 

PYN3 MP 91.9% 68.8% 65.6% 92.5% 66.3% 65.6% 90.0% 70.6% 70.0% 

AYN1 RN 47.5% 62.5% 62.5% 52.5% 65.0% 57.5% 50.0% 85.0% 87.5% 

AYN2 RN 90.0% 55.0% 87.5% 92.5% 60.0% 87.5% 100.0% 52.5% 72.5% 

F4 RN 95.8% 97.5% 98.0% 95.8% 97.5% 98.0% 95.5% 97.5% 98.0% 

F5 RN 78.9% 91.1% 94.4% 77.2% 91.7% 93.9% 69.4% 88.3% 94.4% 

KINF RN 67.5% 77.5% 77.5% 65.0% 77.5% 80.0% 72.5% 95.0% 75.0% 

PYN2 RN 79.4% 94.4% 91.9% 70.0% 94.4% 90.6% 74.4% 90.0% 88.8% 

PYN3 RN 86.9% 95.6% 92.5% 91.9% 95.6% 95.0% 91.9% 95.0% 92.5% 

PYN4 RN 88.8% 72.5% 70.0% 87.5% 70.0% 70.0% 80.0% 58.8% 61.3% 

PYN5 RN 72.5% 69.2% 59.2% 75.0% 77.5% 68.3% 61.7% 76.7% 80.8% 

PYN6 RN 77.6% 67.1% 91.2% 75.3% 74.1% 88.8% 73.5% 71.8% 83.5% 

PYN7 RN 93.5% 94.7% 90.0% 93.5% 96.5% 91.2% 93.5% 86.5% 81.8% 

AYN1 SA 90.0% 77.5% 42.5% 87.5% 87.5% 70.0% 87.5% 65.0% 47.5% 

AYN2 SA 62.5% 95.0% 65.0% 55.0% 92.5% 65.0% 60.0% 100.0% 75.0% 

PYN2 SA 88.1% 86.9% 76.3% 90.0% 87.5% 87.5% 93.1% 81.3% 65.6% 

PYN3 SA 90.6% 94.4% 93.1% 91.9% 94.4% 91.3% 91.9% 93.8% 91.3% 

PYN4 SA 80.0% 71.3% 73.8% 56.3% 82.5% 76.3% 87.5% 81.3% 71.3% 

PYN5 SA 64.2% 53.3% 42.5% 40.8% 53.3% 45.0% 64.2% 71.7% 53.3% 

PYN6 SA 60.6% 91.2% 94.1% 65.9% 81.2% 90.0% 79.4% 95.3% 90.6% 

PYN7 SA 80.0% 74.7% 70.6% 94.7% 65.9% 81.8% 90.6% 92.4% 55.9% 
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Table 4.7- Random forest model performance metrics. All models used a 60% training 
population and a 40% testing population. Additionally, all models use the GNDVI, NDRE, and 
NDVI indices. The thermal time column indicates the temporal thermal times used to create and 
test the model. 

Thermal Times Yield 
Group 

Prediction 
Accuracy 

95 % CI 
No 

Info. 
Rate 

P-Value 
[Acc > 
NIR] 

Kappa 
Coefficient 

(K) 
Sensitivity Specificity 

400-700-1200-1500 Top 10% 0.899 (0.8823, 
0.9148) 0.898 0.451 0.025 1 0.014 

400-700-1200-1500 Top 20% 0.797 (0.7751, 
0.8184) 0.799 0.569 0.069 0.982 0.065 

400-700-1200-1500 Top 40% 0.604  (0.5778, 
0.6302) 0.598 0.34 0.144 0.747 0.392 

400-700-1200 Top 10% 0.896  (0.8822, 
0.9086) 0.898 0.657 0.003 0.997 0.005 

400-700-1200 Top 20% 0.791  (0.7735, 
0.8085) 0.802 0.899 0.046 0.972 0.06 

400-700-1200 Top 40% 0.629  (0.6081, 
0.6496) 0.608 0.026 0.194 0.757 0.43 

400-700 Top 10% 0.896  (0.8822, 
0.9086) 0.898 0.657 0.003 0.997 0.005 

400-700 Top 20% 0.791  (0.7735, 
0.8085) 0.802 0.899 0.046 0.972 0.06 

400-700 Top 40% 0.629  (0.6081, 
0.6496) 0.608 0.026 0.194 0.757 0.43 

400-1200 Top 10% 0.894  (0.8818, 
0.9052) 0.898 0.786 0.013 0.994 0.014 

400-1200 Top 20% 0.789  (0.7731, 
0.804) 0.802 0.954 0.061 0.965 0.079 

400-1200 Top 40% 0.599  (0.5808, 
0.6177) 0.606 0.765 0.132 0.732 0.395 

700-1200 Top 10% 0.894  (0.8805, 
0.9069) 0.898 0.753 -0.008 0.995 0 

700-1200 Top 20% 0.794  (0.7667, 
0.8187) 0.798 0.643 0.044 0.983 0.046 

700-1200 Top 40% 0.602  (0.581, 
0.6228) 0.608 0.725 0.122 0.762 0.354 

1200-1500 Top 10% 0.89  (0.8772, 
0.9014) 

0.887 0.325 0.088 0.996 0.056 

1200-1500 Top 20% 0.775  (0.7583, 
0.7904) 

0.789 0.962 0.057 0.961 0.08 

1200-1500 Top 40% 0.611 
 (0.5916, 
0.6291) 0.59 0.017 0.16 0.765 0.388 
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Appendix A - Supplementary Material Chapter 2 

 

 
Figure A.1. Wang and Engel growing degree days (GDDWE) Predicted vs Observed Heading 
Dates for full season (A), January 1st (B) and March 1st (C) accumulation periods for the AM 
Panel. The x-axis is the observed heading date, calendar day of year (DOY) 

 
 

 

 
Figure A.2 Physiological days (Pdays) Predicted vs Observed Heading Dates for full season (A), 
January 1st (B) and March 1st (C) accumulation periods for the AM Panel. The x-axis is the 
observed heading date, calendar day of year (DOY) 
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Figure A.3 Photo Growing Degree Days (PGDD) Predicted vs Observed Heading Dates for full 
season (A), January 1st (B) and March 1st (C) accumulation periods for the AM Panel. The x-axis 
is the observed heading date, calendar day of year (DOY) 

 
 

 

 
Figure A.4 Wang and Engel growing degree days (GDDWE) Predicted vs Observed Heading 
Dates for full season (A), January 1st (B) and March 1st (C) accumulation periods for the Kansas 
State University Wheat Breeding program. The x-axis is the observed heading date, calendar day 
of year (DOY) 
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Figure A.5 Physiological days (Pdays) Predicted vs Observed Heading Dates for full season (A), 
January 1st (B) and March 1st (C) accumulation periods for the Kansas State University Wheat 
Breeding program. The x-axis is the observed heading date, calendar day of year (DOY). 

 

 
 

 
Figure A.6 Photo Growing Degree Days (PGDD) Predicted vs Observed Heading Dates for full 
season (A), January 1st (B) and March 1st (C) accumulation periods for the Kansas State 
University Wheat Breeding program. The x-axis is the observed heading date, calendar day of 
year (DOY). 
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Appendix B - Supplementary Material Chapter 3 

 
Figure B.1. Diagram of the Veris MSP-3 mobile sensor cart platform used to collect apparent 
electric conductivity (ECa). This sensor has two pairs of coulter disks equipped with rolling 
electrodes. The disk pairs emit and receive small electrical current, giving ECa measurements at 
the 0-30 and -90 cm depths. 
 
 

 
Figure B.2 The P4000 DW-EC-Force Probe 3-point mounted on John Deere 5055E tractor 
equipped with Trimble RTK GNSS. The Veris P4000 sensor probe is equipped with 
penetrometer, VIS-NIR optical and electromagnetic dipole sensor. 
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Figure B.3 Kriged map for EC, Force, Red and IR measurements from the P4000 at 21RNS with 
PYN and YT plot map overlays. Number of color clusters were determined by k-means clusters 
and the values for the cluster color represent the median value of the cluster range.  
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Table  B.1 21RNS-PYN yield rank order of raw yields experimental design adjusted yields, 
spatially adjusted yields based on soil core kriged values, spatially adjusted yields based on soil 
MSP3 kriged values, and spatially adjusted yields based on soil P4000 kriged values. 
 

Variety Name 
Raw 
Yield 

Raw 
Rank 
Order 

Adj. 
Yield 

Adj. 
Rank 
Order 

Core 
Spatial 

Adj. 
Yield 

Core 
Rank 
Order 

MSP3 
Spatial 

Adj. 
Yield 

MSP3 
Rank 
Order 

P4000 
Spatial 

Adj. 
Yield 

P4000 
Rank 
Order 

KS170087D-10 124.25 1 125.05 1 117.34 1 118.10 1 118.43 1 
KS160998S-2 124.08 2 124.57 2 115.47 2 116.21 2 116.08 2 
KS160563S-2 120.78 3 120.77 3 114.38 3 114.91 3 115.13 3 
KS160563S-3 116.66 5 116.65 4 111.38 6 112.35 6 112.33 4 
KS170025D-11 116.99 4 116.55 5 111.95 4 112.72 4 112.05 5 
KS160897S-4 114.51 15 116.29 6 108.07 30 109.19 22 108.58 27 
KS170001D-19 116 7 116.19 7 111.12 8 112.07 7 110.79 11 
KS160911S-3 115.83 10 115.64 8 110.91 9 111.79 8 111.22 8 
KS170275D-1 112.7 26 115.58 9 106.40 54 108.03 35 107.16 44 
KS170013D-7 116 8 115.4 10 110.51 11 109.95 16 111.05 10 
KS170087D-8 116 9 115.23 11 111.35 7 112.39 5 111.93 6 
KS20DH20385 115.67 11 115.05 12 111.47 5 111.24 10 110.61 12 
KS20DH201071 108.57 69 114.67 13 104.92 83 106.18 68 105.58 79 
KS160765S-1 116 6 114.57 14 110.67 10 111.35 9 111.53 7 
KS170013D-27 114.84 14 114.4 15 110.23 12 111.01 12 110.34 13 
KS160419S-4 115.5 12 114.36 16 110.02 14 111.19 11 109.95 17 
KS160897S-6 115.17 13 114.3 17 108.87 22 109.87 18 110.15 16 
KS170013D-5 113.36 20 114.16 18 109.54 17 110.00 15 109.62 19 
KS160786S-4 113.69 17 114.05 19 109.44 18 109.93 17 109.21 20 
KS170087D-3 113.03 24 113.83 20 109.77 16 110.09 14 111.20 9 
KS170025D-18 114.18 16 113.74 21 110.11 13 110.70 13 110.16 15 
KS160786S-3 113.19 21 113.55 22 109.26 19 109.60 20 109.02 22 
KS160393S-5 112.04 29 113.55 23 107.68 37 108.82 26 108.09 31 
KS160853S-1 113.52 18 113.47 24 107.99 31 107.65 42 107.70 34 
KS170225D-1 110.55 44 113.43 25 104.52 90 106.29 66 105.40 82 
KS160786S-1 113.36 19 113.35 26 109.90 15 109.75 19 110.30 14 
KS170087D-9 111.87 33 112.87 27 107.03 44 107.91 36 108.92 23 
KS160720S-1 110.88 37 112.82 28 107.28 40 108.31 28 108.23 30 
KS170025D-6 113.19 22 112.8 29 108.30 26 108.83 24 109.80 18 
KS170210D-5 113.19 23 112.76 30 108.24 27 107.74 40 108.70 25 
KS1720024A-1 109.23 57 112.64 31 105.27 77 106.36 63 105.67 73 
KS160382S-6 111.87 31 112.58 32 107.79 34 107.77 39 107.60 36 
KS160519S-1 112.7 25 111.67 33 108.88 21 108.83 25 108.65 26 
KS160524S-9 112.53 27 111.5 34 107.77 35 108.14 33 107.63 35 
KS170025D-19 112.04 30 111.44 35 107.69 36 107.72 41 109.07 21 
KS170013D-3 110.39 48 111.3 36 106.54 49 107.56 43 106.60 49 
KS170225D-2 111.71 34 111.28 37 107.26 42 106.62 56 107.47 40 
KS160472S-2 111.87 32 111.13 38 107.11 43 108.22 30 107.38 41 
KS160786S-6 110.55 43 110.91 39 106.60 48 106.88 51 106.41 55 
KS160786S-2 110.88 38 110.87 40 107.98 32 108.06 34 107.75 33 
KS20DH21171 105.44 112 110.87 41 101.90 145 102.50 135 102.68 128 
KS20DH21164 105.27 114 110.7 42 101.74 150 102.55 133 102.70 126 
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KS160786S-5 110.22 49 110.58 43 106.84 45 107.24 46 106.57 52 
KS170013D-9 110.22 50 109.78 44 107.28 41 107.87 37 107.30 43 
KS160458S-1 110.88 36 109.74 45 106.64 46 107.84 38 106.24 58 
KS170013D-25 109.23 56 109.74 46 104.36 93 105.51 82 104.81 90 
KS160382S-3 110.39 47 109.65 47 106.60 47 106.99 48 106.05 62 
KS160390S-3 108.08 74 109.59 48 105.00 80 106.03 71 105.46 81 
KS160365S-4 109.89 51 109.56 49 105.83 61 106.45 58 106.15 60 
KS160366S-3 109.89 52 109.56 50 105.81 62 106.54 57 105.78 70 
KS160524S-10 110.55 42 109.52 51 107.38 38 107.07 47 107.09 45 
KS20DH20893 109.23 58 109.15 52 105.45 74 105.71 79 105.67 74 
KS170134D-4 109.56 55 109.13 53 105.62 68 105.72 78 107.38 42 
KS170275D-3 108.24 72 109.1 54 104.88 85 104.23 99 104.38 95 
KS20DH21193 103.62 142 109.05 55 100.75 173 101.09 168 101.02 169 
KS170087D-7 107.91 80 108.91 56 104.37 92 105.22 87 105.83 68 
KS160911S-1 109.07 59 108.77 57 106.14 56 106.94 49 106.27 57 
KS170013D-23 108.08 76 108.59 58 103.28 112 104.73 93 103.90 102 
KS20DH20780 101.81 177 108.58 59 98.79 234 99.01 226 98.42 245 
KS170025D-1 109.07 60 108.47 60 105.78 63 105.31 84 106.91 47 
KS160906S-9 108.74 64 108.44 61 105.76 64 106.73 53 105.86 67 
KS170013D-2 106.26 98 108.34 62 103.10 115 102.81 122 103.10 119 
KS160332S-9 108.57 66 108.24 63 104.68 88 105.74 77 105.70 72 
KS160786S-12 108.24 71 108.23 64 106.49 51 106.21 67 106.40 56 
KS20DH20879 107.91 82 108.23 65 104.53 89 104.57 96 104.64 92 
KS160469S-3 108.9 63 108.16 66 105.55 72 106.10 69 105.58 77 
KS170013D-30 107.25 89 108.16 67 104.91 84 105.52 81 104.87 89 
KS160332S-3 108.57 65 108.15 68 105.60 69 106.34 65 105.40 83 
KS20CFB-21 103.79 139 108.14 69 102.66 129 102.83 121 102.09 142 
KS160366S-1 108.41 70 108.08 70 104.85 86 105.30 85 104.91 88 
KS160674S-1 109.56 54 107.95 71 105.86 60 106.62 54 106.57 51 
KS20DH200727 105.6 108 107.79 72 102.95 122 103.57 109 103.23 115 
KS160855S-2 107.75 84 107.77 73 105.59 70 105.96 73 105.95 63 
KS160352S-1 108.08 73 107.75 74 104.40 91 105.30 86 105.35 84 
KS160765S-6 107.75 83 107.74 75 104.96 81 105.67 80 106.59 50 
KS170134D-3 108.08 77 107.73 76 105.89 59 106.35 64 105.93 64 
KS160352S-3 107.09 90 107.65 77 103.04 119 103.41 112 103.60 103 
KS20CFB-24 103.29 148 107.64 78 102.60 133 102.64 132 101.90 145 
KS160366S-2 106.59 93 107.15 79 103.10 116 104.21 100 103.99 100 
KS160855S-4 107.09 92 107.11 80 105.00 79 105.35 83 105.29 85 
KS160911S-4 107.25 88 107.06 81 105.36 76 105.80 76 105.59 75 
KS160473S-3 108.08 75 107.05 82 105.56 71 105.82 75 105.58 78 
KS160332S-11 107.42 85 107 83 105.37 75 105.13 90 104.08 99 
KS170275D-12 106.1 101 106.96 84 103.54 107 102.67 130 103.43 109 
KS161024S-1 107.91 78 106.94 85 105.64 67 106.43 60 107.79 32 
KS170001D-14 107.91 79 106.94 86 105.69 65 106.62 55 106.54 53 
KS170134D-5 105.11 119 106.81 87 103.27 113 103.93 104 103.59 104 
KS20DH20851 106.43 97 106.75 88 102.97 121 103.09 117 102.78 123 
KS170313D-10 101.81 175 106.7 89 99.61 207 100.37 189 100.02 199 
KS20DH200649 104.45 128 106.64 90 101.66 153 101.18 164 101.70 154 
KS160383S-3 105.11 115 106.62 91 102.68 127 103.75 106 103.46 107 
KS20DH20867 106.26 99 106.58 92 103.29 111 103.29 114 103.26 114 
KS160856S-2 107.42 86 106.55 93 103.82 101 103.53 110 103.47 106 
KS170313D-8 101.64 182 106.53 94 101.27 161 101.32 162 100.96 172 
KS20DH20807 99.66 217 106.43 95 97.79 263 98.21 248 97.43 266 
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KS160352S-2 105.6 106 106.16 96 101.92 144 101.85 150 102.14 140 
KS160473S-6 107.25 87 106.11 97 103.92 100 105.21 88 103.46 108 
KS160572S-2 105.93 103 106.11 98 104.05 97 103.75 107 103.49 105 
KS160998S-1 105.6 107 106.09 99 102.99 120 103.44 111 104.18 97 
KS20DH20806 99.17 230 105.94 100 97.32 271 97.66 263 96.94 283 
KS160617S-1 105.93 104 105.92 101 104.14 96 104.83 92 105.05 86 
KS160524S-13 105.44 109 105.89 102 103.58 106 103.21 115 103.39 110 
KS170013D-18 103.79 138 105.87 103 100.64 178 100.94 174 99.75 208 
KS170313D-4 100.98 191 105.87 104 99.54 211 100.13 196 99.73 210 
KS170013D-26 104.94 122 105.85 105 101.68 152 102.53 134 101.98 143 
KS160390S-2 105.11 116 105.82 106 102.93 123 102.68 128 103.17 117 
KS160332S-8 106.1 100 105.77 107 103.96 99 103.83 105 103.95 101 
KS20DH20746 99 236 105.77 108 96.48 291 96.38 293 95.50 321 
KS160393S-4 104.78 124 105.75 109 102.62 131 103.03 119 102.71 125 
KS160677S-1 107.09 91 105.66 110 104.85 87 104.94 91 105.04 87 
KS160570S-1 105.44 110 105.62 111 103.63 105 103.35 113 102.63 134 
KS170013D-13 104.94 121 105.53 112 101.75 148 101.89 148 100.55 182 
KS1720021A-2 110.55 45 105.37 113 108.13 29 108.21 31 108.33 28 
KS160897S-1 104.28 130 105.31 114 102.31 137 101.65 153 101.82 150 
KS170001D-20 105.11 117 105.3 115 103.50 108 104.19 101 103.00 120 
KS170013D-29 104.28 131 105.19 116 101.83 147 102.67 129 101.92 144 
KS170210D-4 108.57 67 105.16 117 104.93 82 106.43 59 105.46 80 
KS170087D-12 104.12 136 105.12 118 102.19 139 102.25 140 101.79 152 
KS160971S-1 105.27 113 105.08 119 104.24 94 104.44 97 104.62 93 
KS160906S-1 103.29 147 105.07 120 100.54 181 101.15 165 100.86 174 
KS160897S-3 105.93 105 105.06 121 102.71 126 102.66 131 103.23 116 
KS20DH20161 110.88 40 104.75 122 108.21 28 108.29 29 107.56 38 
KS1720020A-1 112.2 28 104.6 123 109.13 20 109.59 21 108.80 24 
KS20DH20189 110.72 41 104.59 124 107.31 39 107.44 45 106.70 48 
KS170087D-4 105.11 118 104.34 125 104.19 95 104.68 94 105.59 76 
KS20DH20350 104.94 123 104.32 126 103.69 103 102.89 120 102.68 127 
KS160786S-7 104.12 134 104.07 127 101.93 143 102.18 143 102.40 137 
KS160897S-5 102.14 168 103.92 128 99.80 199 100.42 188 100.17 194 
KS20DH20052 101.81 176 103.88 129 98.30 245 99.38 210 98.88 230 
KS170013D-31 102.96 155 103.87 130 102.28 138 102.49 136 102.16 139 
KS160332S-5 104.28 129 103.86 131 102.73 125 103.17 116 102.56 135 
KS20DH20838 103.46 144 103.78 132 100.74 174 101.05 169 100.47 187 
KS20CFB-42 104.78 126 103.75 133 102.83 124 103.97 103 103.35 112 
KS170087D-1 104.12 135 103.68 134 103.46 109 103.59 108 103.35 113 
KS20DH20609 98.34 247 103.63 135 95.70 318 96.73 287 96.23 299 
KS170087D-5 104.28 132 103.51 136 103.79 102 104.14 102 104.71 91 
KS20CFB-40 103.62 141 103.3 137 101.44 158 100.93 175 101.50 158 
KS1720020A-2 110.88 39 103.28 138 108.56 23 108.97 23 108.23 29 
KS160971S-3 103.46 143 103.27 139 103.09 117 103.04 118 104.13 98 
KS170001D-8 101.97 171 103.23 140 100.93 166 101.40 159 100.86 173 
KS160383S-2 102.47 162 103.18 141 101.54 155 101.12 167 101.28 165 
KS20DH20415 103.79 140 103.17 142 103.42 110 102.76 125 102.80 122 
KS160410S-5 104.78 125 103.14 143 102.08 140 102.45 137 102.67 130 
KS160519S-3 104.12 133 103.09 144 103.17 114 102.69 127 102.77 124 
KS20DH20040 104.12 137 102.98 145 102.62 130 101.97 145 103.13 118 
KS170013D-16 102.96 154 102.97 146 100.61 179 101.38 160 100.55 181 
KS20DH20184 109.07 62 102.94 147 106.43 52 106.38 62 105.70 71 
KS160650S-2 104.45 127 102.84 148 103.06 118 102.80 123 102.64 132 
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KS20DH200791 100.65 199 102.84 149 99.95 197 100.37 190 100.16 195 
KS20DH20244 98.84 242 102.79 150 95.83 312 95.68 314 95.70 313 
KS20DH21159 97.35 270 102.78 151 96.37 295 96.99 283 97.60 262 
KS1720021A-3 107.91 81 102.73 152 106.40 55 106.41 61 106.42 54 
KS160671S-4 102.96 152 102.68 153 101.75 149 101.94 147 101.89 146 
KS160856S-3 101.64 179 102.67 154 100.10 193 99.75 203 99.99 202 
KS160430S-4 103.29 146 102.55 155 101.85 146 101.85 149 101.87 147 
KS170013D-4 103.13 151 102.53 156 102.06 141 100.64 182 101.68 155 
KS160671S-3 102.8 159 102.52 157 101.40 159 101.59 154 101.60 156 
KS160618S-1 102.47 163 102.46 158 101.36 160 102.44 138 102.68 129 
KS160650S-1 102.47 164 102.46 159 100.76 172 102.21 142 102.67 131 
KS20DH20826 102.14 169 102.46 160 99.72 202 100.18 195 99.42 216 
KS160806S-1 102.47 165 102.42 161 100.69 177 100.24 192 100.68 178 
KS160524S-12 101.97 170 102.42 162 101.48 156 100.93 176 101.14 168 
KS160419S-5 103.13 150 102.39 163 101.47 157 101.48 157 101.81 151 
KS160377S-1 101.81 174 102.37 164 100.17 191 101.04 170 101.00 171 
KS160388S-2 101.64 178 102.35 165 100.88 168 100.51 186 100.79 175 
KS170013D-17 100.16 205 102.24 166 97.99 257 98.27 247 96.98 281 
KS20DH20064 103.29 149 102.15 167 101.96 142 101.84 151 102.64 133 
KS20DH20089 99.66 216 102.13 168 100.08 194 99.54 207 99.06 223 
KS160856S-4 102.96 153 102.09 169 100.80 171 100.22 193 100.71 177 
KS160634S-2 101.15 186 102.03 170 99.57 210 99.43 208 100.00 200 
KS20DH20080 99.5 219 101.97 171 99.69 203 99.21 215 98.81 233 
KS160975S-3 101.48 183 101.89 172 101.00 165 100.97 173 101.16 167 
KS160388S-3 101.15 185 101.86 173 100.37 187 99.95 199 100.50 186 
KS20DH20493 102.96 157 101.81 174 101.55 154 101.22 163 101.34 163 
KS160524S-6 102.8 158 101.77 175 101.22 162 100.77 180 101.27 166 
KS160897S-2 99.99 208 101.77 176 98.75 235 99.17 218 98.80 235 
KS20CFB-37 109.07 61 101.74 177 106.41 53 106.92 50 105.92 66 
KS170013D-20 101.64 180 101.65 178 100.00 195 100.74 181 99.71 211 
KS20DH20694 96.2 289 101.49 179 93.36 364 94.34 344 93.46 364 
KS170313D-7 96.53 285 101.42 180 97.37 270 97.33 273 97.17 274 
KS160382S-2 102.14 167 101.4 181 100.83 169 101.04 171 100.24 192 
KS170025D-2 101.97 172 101.37 182 100.92 167 100.81 178 102.33 138 
KS160752S-1 99.33 221 101.27 183 99.82 198 100.01 198 100.43 189 
KS170961D-2 108.57 68 100.97 184 106.53 50 106.84 52 106.17 59 
KS20DH20765 94.05 335 100.82 185 93.33 365 92.83 372 92.67 377 
KS160765S-7 100.82 196 100.81 186 100.48 184 100.82 177 101.78 153 
KS170225D-5 97.85 259 100.73 187 96.39 294 97.34 271 96.98 280 
KS160393S-1 99.99 207 100.7 188 99.46 215 98.94 230 99.66 213 
KS160634S-1 100.65 198 100.64 189 99.77 200 101.13 166 101.44 160 
KS20DH21182 99.99 211 100.61 190 99.59 209 99.04 224 99.82 207 
KS170134D-2 101.31 184 100.54 191 101.17 163 101.56 156 101.40 162 
KS160671S-5 100.82 194 100.54 192 100.45 185 100.47 187 100.53 184 
KS160383S-1 99 231 100.51 193 98.42 241 99.38 211 99.20 220 
KS170210D-9 97.52 267 100.4 194 95.73 316 97.03 282 96.32 296 
KS170087D-6 101.15 187 100.38 195 101.73 151 101.95 146 102.41 136 
KS170013D-11 100.82 197 100.38 196 100.70 176 101.03 172 100.60 179 
KS170087D-11 99.33 222 100.33 197 99.17 220 99.00 228 98.28 248 
KS170087D-13 99.33 223 100.33 198 98.82 233 99.00 227 99.06 224 
KS160786S-13 100.32 202 100.31 199 101.10 164 100.60 184 100.74 176 
KS170025D-5 99.5 218 100.3 200 100.54 180 100.29 191 100.43 188 
KS170001D-4 99 234 100.26 201 98.13 252 98.57 236 97.92 253 
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KS20DH20967 100.32 203 100.24 202 99.61 205 99.61 205 99.99 201 
KS160393S-3 99.17 227 100.14 203 98.88 230 98.91 231 98.97 229 
KS160410S-7 100.82 193 100.08 204 99.53 212 99.23 214 100.12 198 
KS170210D-6 97.19 275 100.07 205 95.72 317 97.14 279 95.88 306 
KS170210D-7 97.19 276 100.07 206 95.54 321 96.92 285 96.02 303 
KS20CFB-18 95.7 294 100.05 207 95.31 328 96.03 308 95.59 316 
KS20DH20673 94.71 322 100 208 92.50 379 93.21 362 92.98 373 
KS20DH20125 110.55 46 99.99 209 108.37 24 108.20 32 107.07 46 
KS20CFB-5 100.98 192 99.84 210 99.72 201 99.13 219 100.14 196 
KS170013D-15 99.83 215 99.84 211 98.47 239 99.08 222 98.40 246 
KS170100D-3 100.16 206 99.81 212 100.72 175 100.79 179 100.60 180 
KS20CFB-47 99.33 225 99.79 213 97.27 273 97.49 266 97.39 269 
KS160897S-7 98.01 251 99.79 214 97.01 282 97.47 268 97.30 271 
KS170013D-10 98.51 243 99.77 215 99.01 223 99.09 220 98.88 231 
KS170313D-9 94.88 315 99.77 216 97.04 277 96.70 289 96.55 290 
KS20CFB-25 111.21 35 99.71 217 108.33 25 108.59 27 107.56 39 
KS20CFB-28 99.99 209 99.67 218 98.99 225 98.51 239 98.80 234 
KS20DH200258 93.56 341 99.66 219 94.61 345 92.94 369 93.78 356 
KS160671S-11 97.68 262 99.62 220 97.51 268 98.85 233 99.13 222 
KS160410S-9 100.32 201 99.58 221 99.31 219 99.04 225 99.84 205 
KS20DH20131 100.65 200 99.48 222 100.50 182 100.10 197 99.31 217 
KS160524S-11 99 233 99.45 223 99.60 208 98.87 232 99.18 221 
KS160765S-4 100.82 195 99.39 224 100.50 183 100.64 183 101.29 164 
KS170001D-11 98.84 240 99.25 225 98.21 250 97.84 256 97.23 273 
KS20CFB-20 94.88 316 99.23 226 96.19 303 96.12 304 95.76 310 
KS170134D-8 97.52 265 99.22 227 98.03 256 98.46 241 98.26 249 
KS20CFB-39 101.15 190 99.19 228 100.39 186 100.60 185 100.14 197 
KS170013D-19 97.02 279 99.1 229 96.56 289 96.17 301 95.76 311 
KS1720020A-3 106.59 94 98.99 230 105.94 57 106.10 70 105.79 69 
KS1720020A-4 106.59 95 98.99 231 105.93 58 105.99 72 105.92 65 
KS160911S-5 99.83 214 98.96 232 98.89 229 99.42 209 100.20 193 
KS1720024A-2 95.54 299 98.95 233 96.33 299 96.23 299 95.91 305 
KS160906S-8 99.17 229 98.87 234 99.07 222 99.76 202 99.01 227 
KS170013D-24 98.34 245 98.85 235 97.03 279 97.78 258 97.37 270 
KS160524S-1 98.01 250 98.85 236 99.96 196 98.56 237 99.43 215 
KS1720021A-1 106.43 96 98.83 237 105.66 66 105.91 74 106.06 61 
KS20DH21010 99.99 210 98.82 238 99.35 217 99.84 200 99.90 203 
KS160332S-2 99.17 226 98.75 239 99.61 206 99.66 204 98.73 237 
KS20CFB-27 99 235 98.68 240 98.26 247 97.88 255 97.89 254 
KS170013D-22 98.01 254 98.52 241 96.57 288 97.70 261 97.04 277 
KS20DH21167 97.85 260 98.47 242 98.05 254 97.76 259 98.61 238 
KS160720S-3 99.83 213 98.4 243 100.13 192 99.83 201 100.29 190 
KS20CFB-23 99.33 224 98.3 244 99.34 218 100.19 194 99.73 209 
KS160419S-6 99 232 98.26 245 98.88 231 98.72 235 99.01 228 
KS20CFB-32 109.73 53 98.23 246 107.94 33 107.55 44 107.60 37 
KS170275D-2 101.64 181 98.23 247 100.82 170 101.72 152 101.01 170 
KS20DH20539 97.35 269 98.21 248 96.42 292 96.25 298 96.51 291 
KS170001D-22 98.01 253 98.2 249 98.18 251 98.48 240 97.58 263 
KS160410S-4 99.83 212 98.19 250 98.82 232 99.07 223 99.27 218 
KS20DH20082 98.84 241 98.18 251 99.00 224 98.79 234 99.57 214 
KS160419S-2 98.84 238 98.1 252 98.40 242 98.09 251 98.86 232 
KS170013D-28 97.19 274 98.1 253 96.93 283 97.47 269 96.97 282 
KS20DH21018 98.01 256 97.93 254 97.31 272 98.34 245 98.80 236 
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KS20DH20068 95.37 307 97.84 255 95.74 315 95.30 322 95.43 325 
KS160971S-2 98.01 252 97.82 256 99.53 213 99.27 213 100.25 191 
KS20CFB-36 105.11 120 97.78 257 104.01 98 104.30 98 103.37 111 
KS160352S-5 97.19 271 97.75 258 96.77 285 97.32 274 97.46 264 
KS20DH21142 103.46 145 97.74 259 100.33 189 101.47 158 101.87 148 
KS170225D-7 101.15 188 97.74 260 100.21 190 101.34 161 100.52 185 
KS20DH21195 92.24 354 97.67 261 93.20 367 93.07 364 93.02 372 
KS170001D-3 96.36 287 97.62 262 95.97 310 96.20 300 95.59 315 
KS160410S-3 99.17 228 97.53 263 99.66 204 98.52 238 98.57 239 
KS160365S-2 97.85 257 97.52 264 97.85 261 98.01 252 98.10 251 
KS160430S-2 98.18 248 97.44 265 98.39 243 98.18 249 98.44 242 
KS20DH21011 97.52 268 97.44 266 97.06 276 97.95 253 98.37 247 
KS160752S-4 98.84 239 97.41 267 99.40 216 99.21 216 99.84 206 
KS170013D-6 98.01 255 97.41 268 98.67 237 97.12 280 98.44 243 
KS20DH20348 93.06 345 97.41 269 95.15 332 93.91 353 94.22 348 
KS20DH20010 98.51 244 97.37 270 98.04 255 97.69 262 99.03 225 
KS20DH20074 94.88 317 97.35 271 96.04 309 95.43 319 95.39 327 
KS170210D-3 97.52 266 97.17 272 98.11 253 98.46 242 98.47 240 
KS170076D-5 97.52 264 97.13 273 97.91 258 97.31 275 97.76 257 
KS160410S-1 100.16 204 97.09 274 100.33 188 99.08 221 99.69 212 
KS170001D-27 97.02 278 97.03 275 96.85 284 96.94 284 96.41 295 
KS170001D-10 97.85 258 96.88 276 99.14 221 99.36 212 100.55 183 
KS160352S-8 97.02 277 96.69 277 97.22 274 97.47 267 97.71 260 
KS20CFB-16 95.54 301 96.67 278 94.49 348 95.38 320 95.07 334 
KS160524S-8 97.68 261 96.65 279 97.78 264 97.51 265 97.67 261 
KS20DH20341 92.24 353 96.59 280 94.35 351 92.90 371 93.52 361 
KS160906S-7 96.53 284 96.55 281 97.89 259 97.80 257 97.98 252 
KS160475S-2 95.7 292 96.54 282 98.33 244 96.82 286 97.71 259 
KS20DH20151 102.63 161 96.5 283 102.57 134 102.37 139 102.12 141 
KS160473S-2 97.52 263 96.49 284 98.43 240 98.37 244 98.42 244 
KS160430S-5 97.19 272 96.45 285 97.83 262 97.74 260 97.71 258 
KS20DH20526 95.54 303 96.4 286 95.90 311 95.15 326 95.75 312 
KS20DH20124 97.02 280 96.36 287 98.25 248 97.25 277 97.02 278 
KS160383S-8 99.33 220 96.26 288 98.90 228 98.34 246 98.15 250 
KS170001D-12 97.19 273 96.22 289 98.73 236 99.00 229 99.89 204 
KS20DH200513 90.09 381 96.19 290 92.17 386 90.52 404 91.17 395 
KS160524S-5 95.7 293 96.15 291 96.58 287 95.62 315 96.50 292 
KS160332S-6 96.53 282 96.11 292 97.60 267 97.34 272 97.42 267 
KS170134D-1 96.69 281 95.92 293 98.29 246 98.44 243 98.46 241 
KS160856S-1 94.88 313 95.91 294 95.75 314 95.04 327 95.46 323 
KS170087D-14 94.88 314 95.88 295 95.76 313 96.02 309 96.78 287 
KS170001D-2 94.55 324 95.81 296 94.57 346 94.83 331 94.09 352 
KS160147S-2 98.84 237 95.77 297 97.74 265 98.14 250 96.79 286 
KS20DH20306 87.12 414 95.77 298 88.57 427 88.71 424 88.62 427 
KS160469S-5 96.36 286 95.62 299 97.12 275 97.28 276 96.99 279 
KS160528S-7 94.71 319 95.59 300 95.22 331 94.92 329 95.56 317 
KS160856S-7 94.55 323 95.58 301 95.57 320 94.58 337 95.20 331 
KS160524S-7 96.53 283 95.5 302 97.02 280 96.56 291 96.93 284 
KS170001D-21 94.71 320 95.2 303 96.06 307 95.21 325 96.00 304 
KS20CFB-35 102.47 166 95.14 304 102.61 132 102.71 126 101.83 149 
KS20DH20389 95.7 297 95.08 305 98.24 249 97.16 278 97.16 275 
KS160856S-6 94.05 333 95.08 306 95.14 333 94.28 346 94.84 339 
KS160524S-2 94.88 310 95.06 307 94.84 339 95.55 317 94.37 344 
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KS170100D-2 95.37 305 95.02 308 97.65 266 97.36 270 97.40 268 
KS170100D-1 95.37 304 94.94 309 96.15 305 96.09 306 97.86 255 
KS170313D-2 94.05 334 94.91 310 94.64 344 94.31 345 93.05 370 
KS20DH20138 105.44 111 94.88 311 105.05 78 104.61 95 104.18 96 
KS20DH20087 95.54 302 94.88 312 97.02 281 96.33 295 96.44 294 
KS20DH20865 94.55 327 94.87 313 95.45 322 94.76 332 95.18 332 
KS160855S-3 94.88 312 94.83 314 95.68 319 94.56 339 94.82 340 
KS170961D-1 98.18 249 94.77 315 98.92 226 99.18 217 99.02 226 
KS20CFB-15 93.56 340 94.69 316 92.82 374 93.83 355 93.46 363 
KS20CFB-29 106.1 102 94.6 317 105.50 73 105.20 89 104.50 94 
KS20DH20682 89.27 386 94.56 318 88.82 422 89.23 417 89.12 419 
KS20DH20247 90.59 376 94.54 319 90.38 406 90.02 410 89.76 413 
KS160786S-9 93.72 338 94.08 320 95.32 327 94.76 333 94.89 337 
KS160816S-1 94.05 332 94.07 321 96.55 290 96.35 294 96.82 285 
KS160572S-1 93.89 336 94.07 322 96.04 308 95.23 324 94.99 336 
KS160671S-8 92.07 358 94.01 323 94.73 342 95.01 328 95.46 322 
KS20DH20941 93.89 337 93.81 324 95.34 325 94.89 330 95.40 326 
KS20CFB-4 95.7 295 93.74 325 96.19 304 96.16 303 96.16 300 
KS20DH20227 95.7 296 93.74 326 95.41 323 95.59 316 95.51 318 
KS160430S-3 94.88 309 93.74 327 96.34 297 96.60 290 95.84 307 
KS160528S-2 94.71 318 93.68 328 96.11 306 94.56 338 95.51 319 
KS160855S-1 93.23 343 93.59 329 94.75 341 93.96 351 94.40 342 
KS20DH20434 94.71 321 93.56 330 96.33 298 96.09 307 96.65 289 
KS20DH20243 89.6 383 93.55 331 89.78 412 89.26 416 89.61 415 
KS20DH21054 92.9 348 93.52 332 94.67 343 94.51 341 95.28 329 
KS20CFB-41 95.37 306 93.41 333 95.37 324 95.25 323 95.64 314 
KS160472S-3 94.05 331 93.31 334 95.14 334 95.49 318 95.23 330 
KS160671S-2 94.88 311 93.27 335 96.41 293 96.32 296 96.69 288 
KS20DH20436 94.38 329 93.23 336 96.31 300 95.94 310 96.27 297 
KS160975S-2 92.73 349 93.22 337 94.40 350 94.43 342 95.50 320 
KS1720022A-1 98.34 246 93.16 338 99.52 214 99.59 206 99.23 219 
KS160475S-1 96.2 288 93.13 339 98.49 238 96.71 288 97.84 256 
KS20DH20013 90.92 370 92.99 340 90.31 408 90.73 400 90.24 409 
KS20DH201114 96.03 290 92.79 341 97.03 278 97.55 264 97.14 276 
KS160671S-7 94.22 330 92.79 342 96.27 302 95.73 313 96.23 298 
KS160650S-3 94.38 328 92.77 343 96.34 296 95.87 311 96.08 301 
KS20CFB-38 94.55 326 92.59 344 96.30 301 96.16 302 95.81 308 
KS20DH20573 87.29 412 92.58 345 88.61 425 89.09 419 88.88 424 
KS20DH20302 83.82 439 92.47 346 85.96 455 85.87 450 86.09 446 
KS20DH20982 93.56 342 92.39 347 95.12 335 95.33 321 95.43 324 
KS20CFB-7 91.91 360 92.37 348 91.60 393 91.88 384 91.47 391 
KS160906S-3 92.57 351 92.27 349 93.70 361 93.74 356 93.64 359 
KS20DH20638 86.96 415 92.25 350 87.79 433 88.23 427 88.21 430 
KS20DH201081 102.8 160 92.24 351 102.67 128 102.22 141 101.46 159 
KS1720023A-1 88.77 392 92.18 352 92.52 378 92.39 376 92.28 381 
KS160765S-5 92.07 359 92.02 353 94.03 354 93.84 354 94.39 343 
KS1720023A-2 88.61 396 92.02 354 92.16 387 92.13 379 92.01 384 
KS170313D-3 87.12 413 92.01 355 90.13 410 90.25 408 90.19 410 
KS170001D-6 90.59 374 91.85 356 93.21 366 93.00 366 92.94 374 
KS170013D-12 91.25 366 91.84 357 92.94 371 92.17 378 91.54 390 
KS20DH20460 92.9 347 91.75 358 95.25 330 94.41 343 94.88 338 
KS160375S-1 92.07 355 91.74 359 93.97 356 93.93 352 93.56 360 
KS160906S-5 92.57 352 91.7 360 93.97 357 94.03 350 95.01 335 
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KS20DH21058 91.08 367 91.7 361 93.53 363 93.07 365 94.05 353 
KS170001D-18 91.41 363 91.6 362 95.05 337 94.60 336 94.33 346 
KS20CFB-31 102.96 156 91.46 363 103.64 104 102.79 124 102.83 121 
KS170001D-25 91.25 365 91.44 364 93.16 368 92.95 368 92.54 378 
KS160524S-4 90.92 368 91.37 365 93.58 362 92.48 375 93.35 365 
KS160393S-2 90.26 377 91.23 366 92.99 370 92.21 377 93.03 371 
KS160671S-14 89.27 385 91.21 367 92.47 380 93.09 363 93.50 362 
KS20CFB-19 86.79 417 91.14 368 89.68 414 89.84 412 89.69 414 
KS160671S-13 89.1 387 91.04 369 92.03 388 92.96 367 93.34 366 
KS160147S-4 91.41 361 90.99 370 94.98 338 94.08 349 93.10 369 
KS160671S-6 92.57 350 90.96 371 94.79 340 94.63 335 95.13 333 
KS170313D-11 90.09 380 90.95 372 92.43 381 91.47 389 90.97 399 
KS20DH20236 92.9 346 90.94 373 92.66 376 93.54 359 93.15 368 
KS160410S-8 92.07 356 90.93 374 94.55 347 94.52 340 94.31 347 
KS20DH21040 90.92 371 90.84 375 92.38 383 93.31 361 94.16 349 
KS20DH20251 82.17 449 90.82 376 84.34 470 84.34 463 83.95 469 
KS20CFB-49 90.26 379 90.72 377 90.87 403 91.00 396 90.95 400 
KS20CFB-26 101.97 173 90.47 378 102.43 136 102.14 144 101.43 161 
KS20DH20242 86.46 420 90.41 379 87.17 443 87.78 435 88.01 431 
KS170076D-3 89.6 382 90.4 380 94.25 352 93.50 360 94.14 350 
KS20CFB-17 89.1 388 90.23 381 90.44 405 91.21 393 90.84 402 
KS20CFB-2 85.64 426 89.99 382 89.50 416 89.09 420 89.20 418 
KS20DH21051 95.7 298 89.98 383 94.45 349 96.40 292 97.29 272 
KS170134D-6 90.26 378 89.91 384 93.79 358 93.64 357 93.71 357 
KS1720024A-3 95.54 300 89.82 385 95.34 326 95.81 312 95.37 328 
KS20DH20307 85.31 430 89.66 386 88.13 430 87.88 433 87.85 435 
KS20CFB-30 101.15 189 89.65 387 102.46 135 101.58 155 101.50 157 
KS20DH20048 90.75 372 89.61 388 93.74 360 92.67 374 94.13 351 
KS20DH20147 90.75 373 89.58 389 93.76 359 92.94 370 92.78 375 
KS20CFB-50 90.59 375 89.45 390 92.85 373 91.97 382 93.30 367 
KS160906S-4 89.43 384 89.13 391 91.91 389 92.03 380 91.73 387 
KS20CFB-9 88.61 397 89.07 392 89.50 415 89.85 411 88.93 423 
KS160474S-2 92.07 357 89 393 95.26 329 93.61 358 94.50 341 
KS20DH20019 86.79 418 88.86 394 87.52 436 87.55 437 87.77 438 
KS20DH20287 80.19 463 88.84 395 83.13 475 82.76 474 83.14 474 
KS1720025A-2 94.55 325 88.83 396 94.16 353 94.73 334 94.33 345 
KS160534S-2 88.61 394 88.79 397 91.27 399 91.19 394 90.73 403 
KS160534S-1 88.28 399 88.46 398 90.70 404 90.84 397 90.10 411 
KS20DH20085 89.1 389 88.44 399 92.55 377 91.97 383 92.76 376 
KS160327S-2 91.41 362 88.34 400 93.10 369 92.77 373 92.10 382 
KS160906S-6 88.61 395 88.31 401 91.54 394 91.73 386 91.33 393 
KS20DH20553 87.45 407 88.31 402 89.40 418 89.31 415 89.47 416 
KS160752S-3 88.28 400 88.23 403 91.69 391 91.49 388 92.07 383 
KS160671S-1 88.44 398 88.16 404 91.42 395 90.79 398 91.56 389 
KS160524S-14 87.29 409 88.13 405 92.89 372 91.26 391 92.35 380 
KS160524S-3 87.45 404 87.9 406 91.37 397 90.13 409 91.05 397 
KS20DH20449 88.94 391 87.79 407 92.75 375 92.03 381 92.49 379 
KS20DH20756 81.02 456 87.79 408 84.64 466 83.49 471 83.67 472 
KS20DH20346 88.94 390 87.77 409 92.28 385 91.84 385 91.88 385 
KS170076D-7 88.11 402 87.72 410 91.83 390 90.35 407 90.85 401 
KS160528S-3 88.61 393 87.58 411 92.42 382 91.28 390 91.31 394 
KS170275D-6 90.92 369 87.51 412 94.01 355 94.13 348 93.95 355 
KS20DH20056 85.31 429 87.38 413 87.63 434 87.96 430 87.85 433 
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KS20DH20065 84.81 432 87.28 414 88.15 429 87.81 434 87.97 432 
KS160975S-1 87.45 405 87.26 415 92.32 384 91.64 387 93.65 358 
KS170076D-10 87.29 410 86.9 416 91.09 400 90.43 405 91.59 388 
KS20DH20511 85.97 421 86.83 417 89.77 413 88.74 422 89.42 417 
KS160382S-4 87.45 403 86.71 418 91.60 392 90.75 399 90.69 404 
KS20CFB-14 85.31 428 86.44 419 87.09 445 87.59 436 87.48 440 
KS20DH20057 83.82 438 86.29 420 87.20 442 87.12 443 87.15 442 
KS160528S-4 85.14 431 86.02 421 89.13 420 88.10 429 88.96 421 
KS172019A-1 86.79 416 85.76 422 91.33 398 91.25 392 91.36 392 
KS20CFB-33 93.06 344 85.73 423 96.63 286 96.09 305 95.79 309 
KS20DH20193 87.45 406 85.49 424 91.42 396 90.58 402 90.66 405 
KS172019A-2 86.46 419 85.43 425 91.07 401 91.08 395 91.13 396 
KS20CFB-43 87.29 411 85.33 426 89.43 417 89.46 414 89.87 412 
KS20DH20134 95.87 291 85.31 427 98.91 227 97.89 254 97.44 265 
KS160375S-5 85.64 424 85.31 428 89.05 421 89.12 418 88.38 428 
KS20DH20180 91.41 364 85.28 429 95.09 336 94.26 347 93.97 354 
KS20DH20119 95.21 308 84.65 430 97.87 260 97.04 281 96.44 293 
KS20CFB-10 83.49 441 84.62 431 86.00 452 86.39 446 85.87 451 
KS20DH20044 82.17 447 84.24 432 84.89 465 84.99 456 85.27 459 
KS170001D-7 83.49 440 84.08 433 88.58 426 87.12 442 87.77 437 
KS170076D-8 83.16 443 83.96 434 90.17 409 89.00 421 90.38 407 
KS160382S-5 84.65 433 83.91 435 89.82 411 88.71 423 88.96 422 
KS160671S-12 84.15 435 83.87 436 88.70 424 87.91 432 88.72 425 
KS20DH20336 79.37 467 83.72 437 85.02 463 83.56 470 84.33 467 
KS160634S-3 83.82 437 83.54 438 88.18 428 87.19 439 88.30 429 
KS20DH200578 81.18 453 83.37 439 85.97 454 84.10 466 85.23 460 
KS20CFB-11 82.17 446 83.3 440 85.00 464 85.20 454 85.23 461 
KS170013D-14 83.16 442 83.17 441 87.44 440 87.16 440 87.04 443 
KS20DH20136 93.72 339 83.16 442 97.48 269 96.28 297 96.07 302 
KS20DH200205 76.89 475 82.99 443 83.63 474 83.46 472 83.78 470 
KS170001D-5 82.83 444 82.84 444 87.35 441 86.85 445 86.79 445 
KS160906S-2 81.02 454 82.8 445 85.95 456 85.46 453 85.77 452 
KS170001D-16 82.34 445 82.75 446 87.06 446 86.18 448 85.74 454 
KS20DH20215 84.65 434 82.69 447 89.29 419 88.41 425 88.62 426 
KS1720025A-1 88.28 401 82.56 448 90.33 407 90.39 406 90.32 408 
KS20DH21050 87.45 408 81.73 449 88.82 423 90.56 403 91.80 386 
KS20CFB-46 81.18 452 81.64 450 84.58 467 85.00 455 85.29 458 
KS160528S-6 80.52 458 81.4 451 85.83 458 84.94 457 85.91 450 
KS160856S-5 80.36 461 81.39 452 85.99 453 84.72 458 85.55 457 
KS160410S-2 80.36 460 81.33 453 86.69 448 85.72 451 85.94 449 
KS170313D-1 80.36 462 81.22 454 86.37 450 84.53 462 85.22 462 
KS170001D-9 80.52 459 81.11 455 86.22 451 84.69 459 84.80 465 
KS170134D-7 81.35 451 81 456 87.60 435 87.26 438 87.57 439 
KS1720022A-2 85.8 423 80.62 457 91.02 402 90.62 401 90.58 406 
KS20DH21047 85.97 422 80.25 458 87.44 439 89.53 413 90.99 398 
KS20DH20235 82.17 448 80.21 459 85.85 457 86.04 449 86.03 447 
KS160489S-3 81.35 450 80.21 460 86.58 449 86.85 444 85.75 453 
KS160327S-1 79.37 466 79.93 461 84.53 468 83.36 473 84.12 468 
KS172010A-1 85.64 425 79.92 462 88.04 431 88.29 426 87.85 434 
KS172009A-1 85.47 427 79.75 463 87.92 432 88.12 428 87.84 436 
KS160489S-1 80.52 457 79.49 464 87.44 438 86.29 447 86.90 444 
KS160410S-6 80.03 464 78.39 465 85.74 459 84.63 460 85.99 448 
KS20DH21057 83.99 436 78.27 466 87.13 444 87.91 431 89.03 420 
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KS20CFB-6 77.55 474 78.01 467 82.13 477 81.80 477 81.89 477 
KS20CFB-45 79.86 465 77.9 468 84.23 471 84.22 464 84.69 466 
KS160375S-4 78.21 471 77.88 469 84.50 469 84.01 468 83.69 471 
KS160382S-1 78.05 472 77.72 470 83.79 472 83.57 469 83.06 476 
KS170313D-5 81.02 455 77.61 471 87.51 437 87.13 441 87.30 441 
KS20DH21031 78.71 469 77.54 472 85.27 461 84.59 461 85.63 456 
KS20DH20486 78.54 470 77.39 473 85.54 460 84.03 467 84.91 463 
KS160671S-15 77.72 473 76.11 474 85.27 462 84.17 465 84.89 464 
KS20DH20021 73.92 480 75.99 475 79.05 481 78.59 482 79.21 481 
KS20DH20224 76.73 476 74.77 476 83.76 473 82.41 475 83.11 475 
KS170001D-23 74.58 478 74.77 477 82.48 476 81.64 478 81.51 478 
KS20CFB-13 74.58 479 74.26 478 81.74 479 80.83 479 80.57 479 
KS20DH20170 78.71 468 72.58 479 86.94 447 85.51 452 85.67 455 
KS170001D-1 71.12 483 71.53 480 80.50 480 79.34 480 80.15 480 
KS172009A-4 71.45 481 71.13 481 79.00 482 78.60 481 77.59 483 
KS20DH21098 75.9 477 70.18 482 82.00 478 82.01 476 83.32 473 
KS172010A-2 70.13 484 69.81 483 78.39 484 77.77 484 76.99 484 
KS172014A-3 71.45 482 65.73 484 78.81 483 78.45 483 78.02 482 
KS170313D-6 63.86 485 64.72 485 74.41 485 72.79 485 72.27 485 
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Appendix C - Supplementary Material Chapter 4 

 
 

 
Figure C.1 2021 RN BLUP VI Pearson (A) and Spearman (B) rank correlation to GRYLD 
correlation. 

(A) 

(B) 
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Figure C.2 2021 RN BLUE VI Pearson (A) and Spearman (B) rank correlation to GRYLD 
correlation. 
  

(A) 

(B) 
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Figure C.3 2021 RN Raw VI Pearson (A) and Spearman (B) rank correlation to GRYLD 
correlation 
  

(A) 

(B) 
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Figure C.4 2021 RN Experimental Corrected VI Pearson (A) and Spearman (B) rank correlation 
to GRYLD correlation 
  

(A) 

(B) 
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Table  C.1 - Pearson’s correlation of BLUP VI temporal points to grain yield by location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.149 0.267 0.211 --- 0.167 0.258 0.217 --- 0.115 0.261 0.227 --- 
RN 2021 -0.223 0.112 0.284 0.145 -0.194 0.289 0.382 0.177 -0.250 -0.051 0.232 0.104 
SA 2021 0.154 0.130 0.129 0.071 0.142 0.111 0.123 0.065 0.193 0.166 0.161 0.086 
MP 2020 0.186 0.288 0.379 0.216 0.206 0.295 0.391 0.163 0.094 0.207 0.312 0.155 
RN 2020 0.451 0.557 0.185 -0.124 0.459 0.573 0.272 -0.098 0.371 0.454 0.188 -0.225 
SU 2020 0.405 0.402 0.260 0.039 0.409 0.402 0.289 -0.007 0.374 0.374 0.258 -0.035 
WS 2020 0.349 0.489 0.238 -0.215 0.387 0.506 0.244 -0.176 0.364 0.421 0.223 -0.158 
RL 2019 --- 0.283 0.169 -0.003 --- 0.289 0.155 -0.049 --- 0.278 0.251 0.057 
RN 2019 0.136 --- 0.337 0.156 0.108 --- 0.315 0.147 0.196 --- 0.375 0.189 
RP 2019 --- 0.313 0.395 --- --- 0.289 0.452 --- --- 0.313 0.397 --- 
RN 2018 0.324 0.372 0.325 --- 0.359 0.376 0.303 --- 0.354 0.380 0.336 --- 
RP 2018 0.317 0.369 0.173 --- 0.305 0.390 0.069 --- 0.321 0.328 0.119 --- 
SA 2018 0.256 0.324 0.386 --- 0.302 0.387 0.461 --- 0.239 0.239 0.399 --- 
MP 2017 --- --- 0.261 -0.012 --- --- 0.288 0.015 --- --- 0.130 0.078 
RL 2017 --- --- 0.050 -0.115 --- --- 0.072 -0.151 --- --- 0.081 -0.120 
RN 2017 --- --- 0.320 0.263 --- --- 0.397 0.231 --- --- 0.275 0.270 
RP 2017 --- --- 0.439 0.099 --- --- 0.402 0.196 --- --- 0.468 0.370 

 
Table  C.2 Spearman’s correlation of BLUP VI temporal points to grain yield by location. 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.149 0.260 0.161 --- 0.166 0.252 0.161 --- 0.122 0.262 0.199 --- 
RN 2021 -0.288 0.148 0.372 0.114 -0.239 0.266 0.426 0.119 -0.352 -0.019 0.338 0.107 

SA 2021 0.135 0.160 0.146 0.080 0.129 0.159 0.146 0.060 0.186 0.162 0.141 0.084 

MP 2020 0.211 0.314 0.327 0.155 0.222 0.314 0.331 0.070 0.101 0.233 0.262 0.080 
RN 2020 0.415 0.533 0.221 -0.134 0.425 0.544 0.263 -0.087 0.254 0.447 0.216 -0.231 
SU 2020 0.387 0.349 0.290 0.055 0.392 0.357 0.315 0.009 0.323 0.335 0.275 -0.005 

WS 2020 0.316 0.409 0.196 -0.210 0.343 0.416 0.200 -0.176 0.324 0.349 0.180 -0.177 

RL 2019 --- 0.283 0.169 -0.003 --- 0.289 0.155 -0.049 --- 0.278 0.251 0.057 
RN 2019 0.147  0.304 0.148 0.138  0.288 0.139 0.182  0.330 0.198 

RP 2019 --- 0.308 0.401 --- --- 0.295 0.451 --- --- 0.308 0.396 --- 
RN 2018 0.308 0.367 0.297 --- 0.358 0.373 0.289 --- 0.351 0.364 0.309 --- 
RP 2018 0.298 0.366 0.173 --- 0.284 0.388 0.067 --- 0.293 0.318 0.100 --- 

SA 2018 0.258 0.364 0.365 --- 0.316 0.431 0.435 --- 0.263 0.284 0.349 --- 

MP 2017 --- --- 0.131 -0.040 --- --- 0.176 0.005 --- --- 0.010 -0.008 
RL 2017 --- --- -0.082 -0.146 --- --- -0.063 -0.149 --- --- -0.075 -0.153 
RN 2017 --- --- 0.285 0.213 --- --- 0.364 0.186 --- --- 0.222 0.248 

RP 2017 --- --- 0.442 0.119 --- --- 0.425 0.024 --- --- 0.532 0.265 
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Table  C.3 - Pearson’s correlation of BLUE VI temporal points to grain yield by location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.186 0.293 0.186 --- 0.196 0.288 0.195 --- 0.169 0.287 0.200 --- 
RN 2021 0.166 0.142 0.352 0.141 0.170 0.200 0.427 0.175 0.114 0.010 0.350 0.125 
SA 2021 0.137 0.192 0.191 0.089 0.152 0.173 0.178 0.074 0.158 0.208 0.211 0.107 
MP 2020 0.210 0.282 0.368 0.182 0.223 0.282 0.363 0.118 0.121 0.211 0.313 0.128 
RN 2020 0.391 0.535 0.139 -0.129 0.394 0.558 0.250 -0.097 0.314 0.417 0.152 -0.222 
SU 2020 0.362 0.401 0.321 0.102 0.362 0.442 0.344 0.009 0.358 0.398 0.334 -0.017 
WS 2020 0.410 0.523 0.285 -0.234 0.446 0.540 0.235 -0.220 0.424 0.458 0.265 -0.188 
RL 2019 --- 0.269 0.163 -0.025 --- 0.281 0.144 -0.049 --- 0.270 0.265 0.045 
RN 2019 0.219 --- 0.402 0.196 0.188 --- 0.383 0.179 0.259 --- 0.417 0.241 
RP 2019 --- 0.294 0.448 --- --- 0.289 0.494 --- --- 0.301 0.449 --- 
RN 2018 0.361 0.387 0.369 --- 0.374 0.374 0.342 --- 0.387 0.418 0.370 --- 
RP 2018 0.378 0.494 0.207 --- 0.362 0.524 0.085 --- 0.368 0.463 0.099 --- 
SA 2018 0.295 0.387 0.432 0.338 0.338 0.463 0.515 --- 0.281 0.300 0.446 --- 
MP 2017 --- --- 0.233 -0.017 --- --- 0.278 0.103 --- --- 0.096 0.036 
RL 2017 --- --- 0.058 -0.108 --- --- 0.081 -0.145 --- --- 0.081 -0.114 
RN 2017 --- --- 0.261 0.253 --- --- 0.360 0.229 --- --- 0.214 0.270 
RP 2017 --- --- 0.417 0.098 --- --- 0.396 0.196 --- --- 0.438 0.357 

 
Table  C.4 Spearman’s correlation of BLUE VI temporal points to grain yield by location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.187 0.293 0.130 --- 0.194 0.282 0.140 --- 0.176 0.291 0.161 --- 
RN 2021 0.140 0.145 0.389 0.138 0.146 0.195 0.436 0.168 0.073 -0.009 0.402 0.150 

SA 2021 0.142 0.177 0.169 0.086 0.176 0.174 0.167 0.068 0.165 0.180 0.168 0.090 

MP 2020 0.239 0.315 0.332 0.143 0.238 0.312 0.331 0.063 0.134 0.242 0.262 0.069 
RN 2020 0.358 0.514 0.178 -0.130 0.369 0.529 0.253 -0.085 0.189 0.386 0.166 -0.234 
SU 2020 0.292 0.338 0.307 0.099 0.306 0.391 0.332 0.079 0.278 0.340 0.305 0.040 

WS 2020 0.363 0.461 0.235 -0.237 0.390 0.467 0.201 -0.193 0.371 0.388 0.209 -0.175 

RL 2019 --- 0.265 0.181 0.044 --- 0.298 0.150 0.026 --- 0.211 0.265 0.095 

RN 2019 0.198 --- 0.360 0.175 0.178 --- 0.340 0.158 0.239 --- 0.372 0.237 

RP 2019 --- 0.299 0.450 --- --- 0.298 0.490 --- --- 0.304 0.451 --- 

RN 2018 0.318 0.356 0.349 --- 0.351 0.350 0.332 --- 0.365 0.373 0.360 --- 
RP 2018 0.361 0.505 0.203 --- 0.346 0.537 0.083 --- 0.348 0.459 0.086 --- 

SA 2018 0.311 0.442 0.392 --- 0.352 0.505 0.488 --- 0.313 0.347 0.390 --- 

MP 2017 --- --- 0.103 -0.043 --- --- 0.168 0.091 --- --- -0.050 -0.054 
RL 2017 --- --- -0.076 -0.133 --- --- -0.060 -0.141 --- --- -0.073 -0.155 
RN 2017 --- --- 0.210 0.213 --- --- 0.311 0.197 --- --- 0.155 0.254 

RP 2017 --- --- 0.415 0.136 --- --- 0.411 0.050 --- --- 0.498 0.271 
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Table  C.5 - Pearson’s correlation of Raw VI temporal points to grain yield by location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.243 0.326 0.426 --- 0.253 0.317 0.437 --- 0.217 0.330 0.442 --- 
RN 2021 0.102 0.111 0.411 0.153 0.098 0.151 0.455 0.156 0.081 0.012 0.413 0.118 
SA 2021 0.189 0.236 0.228 0.125 0.182 0.198 0.206 0.105 0.195 0.244 0.239 0.149 
MP 2020 0.267 0.294 0.794 0.528 0.307 0.241 0.806 0.370 0.228 0.223 0.775 0.520 
RN 2020 0.083 0.503 0.302 0.007 0.054 0.478 0.357 0.146 0.075 0.264 0.364 0.059 
SU 2020 0.368 0.432 0.400 -0.013 0.377 0.518 0.416 -0.157 0.350 0.418 0.409 -0.083 
WS 2020 0.324 0.435 0.099 -0.102 0.356 0.459 0.056 -0.099 0.337 0.379 0.113 -0.042 
RL 2019 --- 0.639 0.512 0.510 --- 0.671 0.557 0.446 --- 0.599 0.654 0.563 
RN 2019 0.234 --- 0.504 0.356 0.177 --- 0.493 0.331 0.272 --- 0.516 0.406 
RP 2019 --- 0.364 0.482 --- --- 0.367 0.520 --- --- 0.359 0.468 --- 
RN 2018 0.356 0.372 0.511 --- 0.385 0.379 0.515 --- 0.411 0.418 0.519 --- 
RP 2018 0.322 0.521 0.414 --- 0.339 0.559 0.362 --- 0.341 0.488 0.408 --- 
SA 2018 0.431 0.385 0.594 --- 0.499 0.435 0.661 --- 0.358 0.235 0.548 --- 
MP 2017 --- --- 0.013 -0.291 --- --- 0.031 -0.270 --- --- -0.092 -0.001 
RL 2017 --- --- 0.011 -0.082 --- --- 0.023 -0.144 --- --- -0.029 -0.133 
RN 2017 --- --- 0.291 0.240 --- --- 0.397 0.216 --- --- 0.214 0.259 
RP 2017 --- --- 0.164 0.015 --- --- 0.225 0.019 --- --- 0.203 0.262 

 
Table  C.6 Spearman’s correlation of Raw VI temporal points to grain yield by location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.246 0.327 0.320 --- 0.252 0.316 0.339 --- 0.217 0.345 0.339 --- 
RN 2021 0.054 0.082 0.426 0.154 0.057 0.128 0.466 0.145 0.014 -0.046 0.446 0.146 
SA 2021 0.192 0.209 0.197 0.109 0.191 0.192 0.187 0.094 0.196 0.205 0.193 0.115 
MP 2020 0.269 0.330 0.743 0.483 0.299 0.273 0.751 0.293 0.210 0.238 0.702 0.468 
RN 2020 0.022 0.495 0.307 -0.022 0.028 0.469 0.301 0.076 -0.055 0.221 0.336 -0.020 
SU 2020 0.344 0.401 0.047 -0.018 0.362 0.489 0.109 -0.126 0.306 0.383 0.108 -0.027 
WS 2020 0.261 0.295 0.009 0.042 0.278 0.328 -0.027 -0.019 0.265 0.235 0.018 0.099 
RL 2019 --- 0.642 0.568 0.574 --- 0.683 0.601 0.526 --- 0.577 0.699 0.605 
RN 2019 0.194 --- 0.467 0.336 0.160 --- 0.454 0.321 0.249 --- 0.489 0.400 
RP 2019 --- 0.370 0.480 --- --- 0.370 0.520 --- --- 0.361 0.471 --- 
RN 2018 0.345 0.321 0.459 --- 0.382 0.340 0.484 --- 0.410 0.346 0.486 --- 
RP 2018 0.301 0.534 0.424 --- 0.327 0.577 0.377 --- 0.318 0.492 0.418 --- 
SA 2018 0.423 0.378 0.598 --- 0.502 0.434 0.669 --- 0.356 0.235 0.530 --- 
MP 2017 --- --- -0.153 -0.316 --- --- -0.118 -0.286 --- --- -0.262 -0.072 
RL 2017 --- --- -0.043 -0.126 --- --- -0.041 -0.165 --- --- -0.153 -0.166 
RN 2017 --- --- 0.252 0.198 --- --- 0.358 0.181 --- --- 0.155 0.232 
RP 2017 --- --- 0.201 0.060 --- --- 0.253 0.051 --- --- 0.233 0.263 
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Table  C.7 - Pearson’s correlation of experimental corrected VI temporal points to grain yield by 
location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.237 0.305 0.421 --- 0.247 0.300 0.431 --- 0.223 0.317 0.443 --- 
RN 2021 0.070 0.216 0.367 -0.094 0.050 0.189 0.395 -0.123 0.102 0.177 0.409 -0.084 
SA 2021 0.221 0.175 0.235 0.113 0.222 0.146 0.217 0.099 0.230 0.195 0.239 0.140 
MP 2020 0.261 0.292 0.799 0.548 0.301 0.236 0.812 0.397 0.222 0.220 0.777 0.551 
RN 2020 0.051 0.486 0.268 0.018 0.022 0.461 0.339 0.169 0.040 0.221 0.324 0.080 
SU 2020 0.105 0.076 0.079 0.054 0.130 0.091 0.093 0.041 0.128 0.085 0.089 0.032 
WS 2020 -0.310 -0.298 -0.307 -0.313 -0.298 -0.280 -0.298 -0.309 -0.297 -0.289 -0.304 -0.269 
RL 2019 --- 0.433 0.004 0.018 --- 0.388 0.041 -0.035 --- 0.475 0.323 0.208 
RN 2019 0.273 --- 0.533 0.438 0.202 --- 0.530 0.429 0.304 --- 0.544 0.493 
RP 2019 --- 0.378 0.501 --- --- 0.389 0.540 --- --- 0.371 0.485 --- 
RN 2018 -0.116 -0.140 -0.128 --- -0.049 -0.114 -0.080 --- 0.015 -0.126 -0.081 --- 
RP 2018 -0.431 -0.393 -0.415 --- -0.419 -0.386 -0.367 --- -0.412 -0.393 -0.357 --- 
SA 2018 0.435 0.396 0.594 --- 0.503 0.452 0.662 --- 0.360 0.236 0.550 --- 
MP 2017 --- --- -0.113 -0.232 --- --- -0.087 -0.278 --- --- -0.225 0.040 
RL 2017 --- --- 0.136 0.042 --- --- 0.124 -0.021 --- --- 0.109 -0.012 
RN 2017 --- --- 0.266 0.235 --- --- 0.386 0.208 --- --- 0.182 0.259 
RP 2017 --- --- 0.002 -0.169 --- --- 0.065 -0.182 --- --- 0.076 0.131 

 
Table  C.8 Spearman’s correlation of experimental corrected VI temporal points to grain yield 
by location 

 

Loc Year 
GNDVI-
400 

GNDVI-
700 

GNDVI-
1200 

GNDVI-
1500 

NDRE-
400 

NDRE-
700 

NDRE-
1200 

NDRE-
1500 

NDVI-
400 

NDVI-
700 

NDVI-
1200 

NDVI-
1500 

MP 2021 0.247 0.302 0.342 --- 0.258 0.297 0.348 --- 0.231 0.330 0.351 --- 
RN 2021 0.059 0.232 0.388 -0.087 0.041 0.202 0.411 -0.108 0.084 0.183 0.447 -0.068 
SA 2021 0.222 0.162 0.206 0.106 0.228 0.140 0.193 0.091 0.227 0.176 0.201 0.119 
MP 2020 0.260 0.332 0.760 0.500 0.286 0.267 0.777 0.328 0.195 0.234 0.710 0.508 
RN 2020 0.001 0.476 0.273 -0.008 0.005 0.450 0.284 0.099 -0.087 0.166 0.277 0.003 
SU 2020 0.347 0.426 0.131 0.000 0.367 0.515 0.214 -0.113 0.315 0.421 0.177 -0.014 
WS 2020 0.285 0.318 0.026 -0.015 0.311 0.350 -0.019 0.023 0.301 0.268 0.035 0.112 
RL 2019 --- 0.382 -0.076 0.004 --- 0.356 -0.003 -0.040 --- 0.472 0.252 0.153 
RN 2019 0.264 --- 0.512 0.425 0.197 --- 0.507 0.425 0.297 --- 0.532 0.491 
RP 2019 --- 0.379 0.494 --- --- 0.387 0.532 --- --- 0.369 0.484 --- 
RN 2018 0.165 0.152 0.213 --- 0.192 0.166 0.221 --- 0.217 0.168 0.222 --- 
RP 2018 -0.243 -0.064 -0.132 --- -0.225 -0.059 -0.184 --- -0.231 -0.088 -0.154 --- 
SA 2018 0.434 0.403 0.596 --- 0.508 0.452 0.671 --- 0.371 0.238 0.534 --- 
MP 2017 --- --- -0.149 -0.259 --- --- -0.130 -0.305 --- --- -0.267 -0.025 
RL 2017 --- --- 0.043 -0.049 --- --- 0.034 -0.118 --- --- 0.029 -0.095 
RN 2017 --- --- 0.225 0.201 --- --- 0.346 0.179 --- --- 0.119 0.249 
RP 2017 --- --- 0.002 -0.191 --- --- 0.070 -0.176 --- --- 0.079 0.110 

 


