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NOMENCLATURE

A : cross-sectional flow area, sq.ft.

A : wetted area, sq.ft.
w

c : specific heat at. constant pressure, Btu/slug R
P

c : specific heat at constant volume, Btu/slug R

D : equivlaent hydraulic diameter, 4Ax/a , ft.

e : base of natural logarithms

e : expansion efficiency, defined by Equation (A-2)

f : local friction coefficient

F : a funcion of the Mach number, defined by Equation (18)

1 f
L

f : mean value of friction coefficient, — fdx
Jo

h coefficient of convective heat transfer, Btu/sec sq.ft. R

H : a function of the Mach number, defined by Equation (19)

J : mechanical equivalent of heat (778 foot-pounds per Btu)

k : ratio of specific heats

L : maximum length of flow passage in subsonic region, ft.
max

L ! a function of the Mach number, defined by Equation (51)

M : Mach number

P : static pressure, lb/sq.ft. abs.

P : total pressure, lb/sq.ft. abs.

14 : heat flow per unit mass, Btu/slug

R t gas constant, ft-lb/slug R

r : a ratio defined by Equation (13)

T : static temperature, H

T : total temperature, R
o

T : flow passage wall temperature, R

T : adiabatic wall temperature, Raw r '

iii



U : a function of the Mach number, defined by aquation (Jb)

V : axial velocity in flow passage, ft/sec

v : specific volume, cu. ft. /slug

W : work per unit mass, ft-lb/slug

w : rate of mass flow, slug/sec

X : friction-distance parameter, — dx

x : axial distance through flow passage, ft.

Greek Letters

P : density, slug/cu.ft.

<P : defined by Equation (A-J)

uii : wall shearing stress, lb/sq.ft.

Y ! Mach number squared

(9 : defined by Equation (69)

JJL 1 defined by Equation (71)

Subscripts

1 : signifies properties at initial section of flow passage, i.e.,

at x -

2 : signifies properties at final section of flow passage, i.e.,

at x - 1

P : properties evaluated at Panno line

R : properties evaluated at Rayleigh line

Superscript

(
)* : signifies properties at Mach number unity

()' : signifies the first derivative



INTRODUCTION

The well-known Fanno-line process deals with a perfect gas flowing

in a duct of constant cross-sectional area with friction in which there

is no heat transfer to or from the gas. Making use of the principles of

conservation of mass, momentum, and energy, as well as the perfect gas

relation, it is possible to separate the variables and express them in

terms of the Mach number. On the other hand, Rayleigh worked on the same

type of flow except that he considered the case of heat transfer with no

friction. In connection with these two processes, there exist two very

convenient tables (2) for the processes which enable us to determine the

ratios of the fluid properties at any section downstream for a given in-

itial Mach number.

In practical cases, however, the theoretical adiabatic or ideal flow

is seldom encountered. Therefore, it is proposed to investigate the case

when both friction and heat transfer are present. A number of studies of

the steady flow of a compressible fluid have been published. Steady flow

in ducts with friction and heat addition was investigated by Hicks,

Montgomery, and Vasserman (l) and by Shapiro (2). Each of them presents

the problem by a different approach, but none of them has been able to

solve for the fluid properties and present them in general forms.

Research of steady, one-dimensional compressible fluid flow in a con-

stant-area passage with friction and heat transfer is being conducted in

the Department of Mechanical Engineering, Kansas State University under

the direction of Professor Wilson Tripp, .since the Fanno-line process is

affected only by the wall friction of the passage and the Kayleigh-line

process i.'i affected only by heat transfer from the wall, it is advisable

to combine the two effects on the fluid properties in such a way as to
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make use of the information already available from Fanno's and Raylelgh's

investigations. It is Professor Tripp's suggestion to introduce a new

function r(M) which denotes the proportionality of the two effects. The

function r is so defined that the flow process which is to be represented

identical with the Fanno-line process when r is equal to zero. With the

new function r, we follow a procedure similar to that employed in Shapiro's

analysis, and we are able to express the fluid properties in terms of the

Mach number and r in differential form. The differential equations can not

be integrated unless r is known. The next step which must then be taken is

to determine the function, r.

It is possible to ignore the nature of the local frictional effect by

introducing a parameter, namely, the friction-distance parameter, which is

defined as the average value of the wall friction over the entire length

of the flow passage. When a constant average value of wall friction is

assumed, the function, r, depends on the nature of the heat transfer only.

Three special cases of heat transfer are considered, namely, constant

heat flux, constant wall temperature, and constant ratio of wall tempera-

ture to total temperature. For the three cases, it is assumed that the

Reynolds' analogy remains valid and that the recovery factor is unity.

According to Shapiro (2), experiments show that Reynolds' analogy has an

accuracy of a few per cent for fully developed turbulent gas flows. With

Reynolds' analogy, it is possible to relate the total temperature to the

length variable, x.

In the special cases of constant heat flux and constant wall temper-

ature, the "L" and "U" functions of the Mach number assume special phy-



sical significance. In either case, after some manipulation, it is poss-

ible to derive an ordinary differential equation for the specialized

function whi'ch applies to the specialized case. Exact solution of the

differential equation seems to be quite difficult. However, Simpson's rule

may be used for direct numerical integration. After values of the function

at each Mach number have been obtained, r is determined through an equat-

ion which will be presented in the text. Since the fluid properties are

expressed in terms of the Mach number and r in differential forms, these

properties can be obtained by a method of numerical integration once r is

found.



METHOD OF ANALYSIS

The analysis closely follows that of Shapiro (2), and Hicks, Montgo-

mery, and Wasserman (1)- Before carrying out the analysis, the following

assumptions are made:

1. The flow is steady and one-dimensional; i.e., all properties are

uniform over each cross section.

2. Changes in stream properties are continuous.

3« The fluid is a perfect gas.

4. The ratio of specific heats and the molecular weight are constant.

5» Body forces are neglected.

6. Heat is transferred continuously and completely hut only transver-

sely throughout the passage.

The conventional variables
( pressure, temperature, density, and vel-

ocity) in one-dimensional flow are connected by four relations derivable

from the first law of thermodynamics, the conservation of mass, the con-

servation of momentum, and the equation of state for a perfect gas. Con-

sider two consecutive sections which are separated by an infinitesimal

distance. Between the two sections, an infinitesimal amount of heat is;

added, wall friction is present, and the fluid undergoes a change in mom-

entum. The four governing differential equations describing the process

are i

Conservation of energy e pdT + i ^ '

- dQ (1)

Conservation of mass d(pv) - (2)

Conservation of momentum e AVdV + AdP +T«dAw -
(3)

Equation of state dp - Hd( 5 T) (4)

The first equation is divided by c pT, and by introducing the defin-

ition of the Mach number



M^ - ——
kRT

It can be written as

dT ' k-1 „2 dV2 dft— + "2-« TF2-- ^t
Dividing Equation (3) by the product, PA, with P kM? '

dP¥ * kM2 ai + r,
dA,.

(4a)

(5)

(6)p
T —. y

t ., pA

The drag coefficient, or the coefficient of friction, is defined as the

ratio of the wall shearing stress to the dynamic head of the stream. Thus,

f = w

fv2/2
The hydraulic diameter is defined as four times the ratio of cross-

sectional area to wetted perimeter,

D - 4 T7- dx
dAw

We now introduce the latter two expressions into Equation (6), which

gives

dP kM 2 dx kM 2 dV 2

T + T 4f T + ~ ~W - ° (7)

It may be seen that the terms, ^-^ and =p dx, in Equations (5) and

(7) are not in convenient forms; therefore, we introduce two new functions

H and F, defined by the equations,

and P

_dv2 dQ

dV 2
CnT

dx
V^ D

Finally, from Equations (5) and (8)

f.
- (H - (k - 1) M 2

)

and from Equations (7) and (9),

dV
V

dP
- kM2 (l + F)

dV

(8)

(9)

(10)

(11)

In order to solve for the fluid properties in terms of the Mach num-

ber, we introduce a new function, r, which is defined by the equation,

n-rnp+(l-r) n^,

where n is a function of the Mach number and depends upon the problem



concerned. It is found in Appendix A that

n
p

- 1 + (k - l) M 2

and nj - k II .

where nj. and n, denote the function, n, for the Fanr.o process and the flay-

leigh process, respectively. Therefore, n can be written as

n - r + (k - r) M 2
. (12)

Solving for r, Equation (12) becomes

n - kM 2
,,,.r " 1 - M^ ^

It is known from thermodynamics that

— - n y (14)

Only if n is a constant can Equation (13) he integrated to the form

p - ce
n

.

By logarithmic differentiation of the equation of state, the contin-

uity equation, and the definition of the Mach number,

dP df « , .T - T + T ' U5)

d? dv „,,T T ' ( l6 )

. dM^ dV dT
, ,and ¥2" " 2 — " T (17)

Equating the right-hand sides of Equations (11) and (14), we have

kM 2
(1 + F) f . - n f (17a )

From Equations (12), (16) and (17a), the function of F is given by

F -
r (1 - M 2

)

kP (18)

Eliminating -^- and — in Equation (15) by substitution from Equations

(16) and (11), we have

f -(l-kM2 (l + F))f
_



Substituting Equation (18) for P and equating the right-hand side of

the resulting equation to the right-hand side of Equation (10),

(S 1 (k - 1) M2
) f = ((1 - r ) - (k - r) M 2

) f
Thus, the function, H, is given by

H - (1 - r) (1 - M 2
) (19)

It is seen that if — can be related M and r, the rest of the fluid

properties can be expressed in terms of the Mach number and r»

Prom Equations (10), (17) and (19), "e have

((1 + r) + (k - r) M 2
) f (19a)

dM 2W

dM 2 (k - r)dM2 ,--,
(1 + r)M* " (1 + r)((l + r) + (k - r)u^)

{i0
>

With Equation (19a), Equation (17) becomes

dT 1 - r dM 2 2 (k - r)dM 2

T "
1 + r ~W 1 + r ((1 + r) + (k - r)M 2

_)

Combination of Equations (15), (16), (20) and (21) gives

(21)

IE f £ iM 2 1 (k - r)dM 2 "\, , .

P " " \l + r W * 1 + r (1 + r) + (k - r)M' J
*• '

The differential equations for the total temperature and the total

Av y Ay
pressure can be found by adding the terms -p and —r ^ to Equations (21)

and (22), respectively, where K - 1 + i (k - 1) M 2
. Therefore,

dTo. _ 1-r dw£ 2 (k-r)dM 2 (k-l)dM 2 ,„.
T 1 + r M? " 1+r (1+r) + (k-r)M^

+
2 + (k-l)M^ l

'
25

•
,

and

Po k-1 2 + (k-l)M2 -[l+T P" + I7? CU+ ^) +
'

{k. T
)M 2) j (24)

Next we want to determine the friction-distance parameter which is.

defined as

D~ ^ax -J Y" dx (2 5 )

if ^ _
O^ax^j.



where

Jo

1 f
Lcax /<-

max
,

From Equations (9)> (18), and (20), we have

£f . 2r(l - M2
) dM2

^

, ,,.

D
dX "

kM2 1,1^(1 + r) + (k - TftlQ
Kda)

After rearrangement, Equation (26) can.be written as

At. 2r fl+r k+1 (k+1) (k-r) 1 „,? ,,,«
D

dx " k(l+r)2 (mT " IS" +
(i+r) + (k-_Vj " (27 >

The entropy change is defined by

._ „ dT R dP
AS m

°V T - j— (28)

If r is equal to some constant — such as r = 1 for the Fanno-line pro-

cess — Equations (20) to (28) can be integrated to give

v r (k + 1) m2 "i r^-
V*" "

{
(1 + r) + (k - r) M2J

i+r

(k + DmUt) \~
(1 + r) + (k - r) -.V

T

P " |(U + r) + (k - r)jM2i

To f 2 + (k - 1)M2"1 f (k + l)M X - r ^ tt
2-

tZ I k + i J i (i ; r ) + "k - r) Maj 1+r

lS-+_i] 1^

Po [ 2 + (k - l)lH k-lJ k + 1 \l7x
P/"kk + l / !(_(! + r) + (k - r)K^/M2rj

fW - kTI
2

fTF {(1 r)^ * <* D^ (l + rSV(^yr)Mj
1-r ^-2-

M
X r

1 1+r R
,

k + 1q q* T_) (k+1):.
S - S - CpLn^^j

~'
+ h

where the limits of integration are taken from the initial state where

(k-r)M2/ " (1+r) J
Ln

((,l+r) + (k-r ):,:->>-



the Maoh number is M to the final state where the flow is choked.

If r is not a constant, Equations (20) to (28) cannot be integrated

unless r is a known function of the Mach number. On the other hand, num-

erical integration of the equations cannot be carried out unless, values

of r for corresponding Mach numbers have been found. At. this point, the

remaining problem is to determine r.

As we have mentioned in the introduction, by defining a friction-dis-

tance parameter, we may ignore the nature of the local friction effect on

the fluid properties. Under these assumptions, the nature of heat addition

dominates the whole problem. For different patterns of heat addition, the

function of r can be determined through the mathematical interpretation

of the problem. The following cases serve as illustrations of the applic-

ability of this method for the determination of r, either by exact solut-

ion or by numerical method.
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Case 1. Constant Heat Flux

This is the case where the heat flux per unit of wall area is the

same for all values of x.. Such a situation results, for example, when a

tube is heated electrically by passing current either through the wall of

the tube itself, or through resistance wires wrapped uniformly around the

tube.

Consider an infinitesimal length of a duct. The rate of heat transfe-

rred from wall to' fluid is equal to the rate at which heat is absorbed by

the fluid. This can be written as

W dQ - fAVcp dTo - h (Tw - Taw ) dAw (29)

The recovery factor is taken as unity, i.e., Taw " T . Thus, Equation

(29) becomes

Furthermore, Reynolds' analogy, which relates the friction factor and

the coefficient of heat transfer, is assumed to be valid. This gives

h f .

evcp "
2 Ul)

Introducing Equation (31) into (JO) results in

dTp 2f , , ,

T„ -? " T dX (32)

Equation (32) shows the relation between the change in total temper-

ature and the length of the flow passage.

Assuming that the coefficient of heat transfer, h, is constant, it

follows from Equation (29) that Tw - To is independent of x for constant

heat flux. Therefore, from Equation (32), we have a very important relat-

ion

d'f„-^ - constant
(53)
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From Equation (32)

dTo - (Tw -T ) 2£ dx (34)

if and T
Dividing both sides of Equation (34) by To, and substituting Equations

and -}r-dx have been expressed in terms of the Mach number and r.
i "

(23) and (26) for ~fl and ^-dx, we have
lo -U

T« - To . 2kM 2 (l - r^

T r(2 + (k - l)M<y (35)

Let

n _ tw ^-
x n

i K . 2 + (k - l)M2
, 7 - m? (36)

To

where U is a function of the Maoh number. With Equation (36), Equation

(35) becomes

Solving for r, Equation (37) gives

2k?
r ' KU I 2k? (38)

Keeping in mind that Tw - T is a constant, logarithmic differentiat-

ion of Equation (36) with respect to M gives

T - -(^)/« (39)

where U' - — . Substitution of Equation (23) for —^ results in

ILL -4 4_
U Mfr(l -f ) + ky+ 1)

+
MK

Solving this last equation for r, we have

r 4(1 -7)U.+ (k? + PMKU' . ,

(1 - //)(4U - MKL") .
(40)

Since the functions of r expressed in Equations (38) and (40) have the

same physical meaning, i.e. they represent the same form of heat addition,

they must be equal to each other. Equating Equations (56) and (40), we
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have

or

4(1 -?)U + (k? + 1)MKU' 2k7
(1 - f)(4'J - KKU' ) " UK + 2k5

?

(k? + 1)MKUU' + 2k?MKU' + 4(1 - 7)U2 •= (41)

Again, the general solution of Equation (41) cannot be given in a

closed form; therefore, it is necessary to obtain the solution by a num-

erical method. Solving Equation (41) for U', gives

n, = 4(? - I)U 2
, .

2k?? MK + (kf + 1)MKU ^>

If the initial value of U is known, Equation (42) can be integrated

immediately by numerical methods. From Equation (36), it is possible to

determine the initial value for U, since the initial conditions of Tw

and T can be determined by direct measurement. It is also practically

possible to assign an initial value for U as a parameter. Ui = 4, 3, 2,

1 and 0.5 have been assigned; families of curves of the fluid properties

are presented in Appendix B.

The method employed to solve Equation (42) uses Simpson's rule (3).

The interval of the Maoh number chosen is 0.01. With the initial value of

U, the slope of U at the first point is found by substituting U, into

Equation (42). Since each subdivision of the Mach number is small, it is

possible to assume that the slope of U between \J 1
and U~ is constant, thus

U, is given by

u
2 " u

l
+ *m

i (43)

as a first approximation. Here, the superscript denotes the number of the

iteration. Substitution of U* into Equation (42) determines the slope of

U at the second point. Using the mean value theory (4), the second appro-

ximation of U at the second point is given by



Ui- U
i"
1+ TT^' + 8U"-

1 '

1 - <;l

u
i " u

i

_1
+ TT^T

1 '

* <i' - 4:\
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i u
i

+ ^r ^l' + ViJ (44)

where AM is the subdivision of the Mach number.

Substituting Equation (44) into (42) gives an improved value for the

slope at the second point. Repeating this process gives more and more

accurate values for U and U' at the second point. Following the same pro-

cedure, it is possible to obtain values of U and U' at each succeeding

point within the interval under consideration.

Since the value of U' at each point has been determined, Simpson's

rule is used for numerical integration to find highly accurate values of

U» Simpson's rule is given by:

For even points u" - U
n- X

* 9 v ^
-I _ I ill '

For odd points

If we substitute the values of U obtained by Simpson's rule into

Equation (42) and integrate again, we may get even better results. Such

an operation can be done many times, depending on how accruately we would

like to determine the value of U. As a matter of fact, computer results

show that no further improvement in U can be made with more than three

iterations of integration by Simpson's rule and three iterations of the

previous approximation method.

Once U has been found, r is determined through the relation given by

Equation (58). Simpson's rule is used to integrate Equation (26) for the

friction-distance parameter, -=j-L . The total temperature ratio is deter-

mined by Equation (56), since T„- T
q

is equal to a constant for the case

of constant heat flux. Therefore, from Equation (}6)

In Ul

Tol " U (45)

After the total temperature ratio is determined, the rest of the



T 2a- Kl

Tl * T01 K

V M /~T

Vi " MlV Tl

P VJL T

Pi " V Tl

la. . I. {JL^ici
P 1 PI lK^ k

*

T
S - S

1
- c p

Ln— R , P

J
Ln
Pl
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fluid properties can be obtained by the following relations:

(46)

(47)

(48)

(49)

(50)

Case 2- Constant Wall Temperature

An example of this type of heating can be found in condensers where

tubes with good conductivity are surrounded by condensing steam.

As in the case of constant heat flux, Reynolds' analogy is assumed

to be valid and the recovery factor is taken as unity. In order to find

an expression for r in terms of the Mach number only, we introduce a

new function of the Mach number such that

Loo-a^r-ia (5i)

Therefore, Equation (32) can be written as

dTo 2f
L(M) T " T dx (52)

With Equations (23) and (26), Equation ($2) becomes

Hi - V) 1

i . "? 'hn + r) + (k - tW
L(M) 2 k-1 1

?(£l + r) + (k-r)yj "
K "

f

JL rK
L " 2k? (1 - r)

Solving for r, we have

2k?
r " KL + 2k^ (53)
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Equation (51) can be written as

T (L + 1) - T„ (54)

Taking logarithmic differentiation with respect to M on both sides

of Equation (54) results in

*)/« " jfe (55)

With Equation (23), Equation (55) becomes

4 _4_ L'

M((l + r) + (k - r)7J
" MK " " L + 1

where L' - -777 • Solving the above equation for r, we have

_ 4(1 - 7)(L + 1) + MK(k7 + 1)L' ,_,.r
- (1 - fJau ; i)-mklo

—
(56)

Equations (53) and (56) represent the same r for the case of constant

wall temperature, and they are equal to each other. Thus, equating Equat-

ions (53) and (56), there results the differential equation for L

4(1 - 7)(h + 1) + MK(k?+ 1)L' 2k?
(1 - >7)(4(L + 1) - MKL'_) " KL + 2k? *

After simplication and rearrangement, it becomes

MK(kf+ 1)LL' + 2kfMKL' + 4(1 - ?7)(L + 1)L « (57)

As in the previous case, the general solution of Equation (57) can

not be given in closed form. Therefore, a numerical method is necessary

for obtaining values of L. If we take a closer look at Equation (57),

it is found that Equation (57) has a form similar to that for the case

of constant heat flux. In Equation (51), initial pipe section for para-

metric values of Li were chosen as 4, 3, 2, 1, and 0.5 for numerical

integration process.

Solving for L', Equation (57) gives

,, 4(7 - 1)(L + 1)1
" MK(k'f + 1)L + 2k ^MK (58)

The method of numerical integration mentioned previously is used.
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With zero as a starting value for the friction-distance parameter, the

numerical integration formular is given by Simpson's rule

jj- T,n T,n-1 -^M /c„i>-1' Q T,n-l' _n-l', / ,

For odd points F
jl

- F
±

+ —(5^^ + 8F
±

- F
i+1 ) (59)

„n „n-l AM,.„n-l' „ n-1' _n-l'v irr^\For even points F. - F. + -yo-(5F. + 8F. , - F. „ ) (.60;

Since the wall temperature is a constant, the total temperature ratio

is given by

h- - ¥-*•£ (61)
T ol L + 1 ^

0±
'

After the total temperature ratio is determined, the rest of the

fluid properties can be found by substituting Equation (61) into (46) and

by using the relations from Equations (47) to (50)*

Case J. Constant Ratio of Wall Temperature

to Total Temperature

In the present case, it is assumed that the wall temperature is given

by the relation

Tw - C 7 T (62)

where C^ is a constant.

Again, Reynolds' analogy is assumed to be valid and the recovery

factor is taken as unity. Thus Equation (32) can be written as

dT 2f , ,, ,

(C
?

- 1)
" T dx («3)

From Equations (34) and (35)

^)/(2I dx )
. 2k?(l - r)

v To ln D
ax)

rK

2J^r^- - (c
7

- 1) (64)

Solving for r, we have
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(C
y

- 1)K + 2kf ^ 65 ^

C8'

2^2-
(66)

and, if we let C„ - C_ - 1,

C K + 2k?

It may be seen from Equation (63), that the plotting of T /T i versus

the friction-distance parameter, 4fx/D on a semi-logarithmic paper gives

a straight line. Prom Equation (13) r has the value of unity for the Fan-

no-line process. Thus from Equation (66), ve have C
fi

» or C_ = 1, we

find that the wall temperature is equal to the total temperature, as seen

from Equation (62). The physical meaning of T - T implies that the wall

of the passage is insulated or implies- an adiabatic process, which is the

case of the Fanno-line process.

Next we want to examine what the value of C- would be for the Rayle-

igh-line process. It is found from Equation (66) that C = 00 or C -co
8 7

with r - 0. From Equation (62), we have T -co, which is impossible. On

the other hand, we know that- the recovery factor is defined as the ratio

of the frictional temperature increase of the wall to that due to adia-

batic compression, or

R.F.
2(Tw - T)
T(k rjf (67)

As the Rayleigh-line process deals with no friction, Equation (67)

implies the recovery factor equals zero. As we recall, the analysis of

the present case is under the assumption that the recovery factor is taken

as unity. Thus we may conclude when the wall temperature is proportional

to the total temperature, friction must present.
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DISCUSSION

It is known from the Far.no-line process that the flow is "choked" at

sonic velocity. The behavior of choking for the Fanno-line process is

characteristic of a reduction in mass flow rate if an additional length

of the flow passage is added to the section where sonic velocity has been

reached. The phenomenon of choking also exists in Rayleigh-line process

when sonic velocity has been reached; an increase in the heat flow will

cause the mass flow rate to decrease. As for the present case when the

flow is under the simultaneous effects of friction and heat transfer, it

is desirable to study whether such a phenomenon exists. In order to do

so, we start with the basic equations which are given 'below.

(4a)

(2)

(7)

(5)

(15)

From Equation (4a)

dV ,,4? dT» ,,
,— - H-f- + —

)

(63)

From Equations (5) and (68)

From Equations (15) and (68)

l d? dP dT . ,

? Y~ + T "
2T " ° (70)

From Equations (7) and (68)

M2 = f kRT

dV
T +

dP
?

-

kM
2

;

3V dP
P

" kM 2

2 f<-
(k - i)»,2

dV
V

dT
T

iSL
c pT

- dP
P

+
dT dP
T

+
e

«

edz
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-¥¥-£-*?¥ -«* (n)

where the dimensionless quantities d£ , and d/^ have been introduced to

simplify the following analysis.

If the determinant formed by the coefficients of d 7 /7 , dp/p and

dT/T in Equations (69), (70) and (71) is not identically zero, the equat-

ions may be solved uniquely for these three differentials. The solution

is obtained as follows.

d?/? - (1 - 7)
-1

((l + k?)d0 + Kd^) (72)

dP/p - (1 - 7)" 1
[-k?7d5 - (l + (k - 1)7} d^} (73)

dT/T - (1 - ?)
-1

((i - k^) d e - (k - i)y$uj (74)

Equations (72) to (74) can be rewritten as

7 1 - ? c
p
T Q +

1 - 7 RT
Z W5)

p' P
_

k? ' P 1 + ( k - 1)? „' ,„ ,,

1 - ? c pT
y

1 -
7J RT

Z

where the primes indicate differentiation with respect to x. Solutions

of this system of equations exist at all values of V , except ? » 1.

The Phenomenon of Choking . The general Equations (6°) to (71) impose

restrictions on the relations among the flow variables, and Q and Z. When

these restrictions take the form of upper or lower limits on the value of

the Mach number, the associated phenomena are termed "choking" processes.

As an exanple, it is well known that the ideal nozzle has for given sub-

sonic entry conditions a maximum muss flow beyond which the discharge can

not be increased no matter how much the exit prosinuro in lowtfii .

The nature oT ohoking may be studiod with the help of Equation (75),
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which was derived simply from the basic equations. It will be shown that

unless heat and friction variations are. such that (1- 7£) times the right-

hand side of Equation (75) changes from positive to negative as x increa-

ses, the Mach number in the tube cannot become greater than unity if the

entrance velocity is subsonic and cannot become less than unity if the

entrance velocity is supersonic, provided that the flow variables remain

continuous.

For convenience, designate by Y the factor (1 - 77) times the right-

hand side of Equation (75) The quantity Y is seen to consist of a sum

of terms in Q' and Z' multiplied by functions that are always positive.

Suppose now that Y is always negative. Then, if the entering flow at

xi is subsonic, d ^ /dx - l/(l - V)-^0, and the Mach number decreases; if

the entering flow is supersonic, d V /dx = Y/(l - 7)7'0, and the Mach

number increases.

Suppose now that Y is always positive. Then, if the entering flow at

x-l is subsonic, d ^/dx. - Y/(l - f)>0, and the Mach number increases.

But ^ cannot increase past unity as x increases. For suppose J=l at x-x

and is greater than unity in the right-hand neighborhood of x ( exclusive

of x ); then d^/dx is negative in this neighborhood, because (1 - 77) is

less than aero and Y is greater than zero. Now V is equal to unity at

x - x , is continuous, and has a negative derivative in the neighborhood

mentioned. Hence 7? i3 less than unity in this neighborhood, which contra-

dicts the assumption. Therefore, 77 cannot be greater than unity if Y is

always positive, 7) ± s continuous, and '^( x l) is leES than unity. In gen-

eral, a non-continuous solution exists for values of x = x if y is always

positive. This statement, and the foregoing proof, are valid even if 7?'

at x " x
o

does not exist. An analogous development may be made for 7( x l)
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greater than unity with the conclusion that, with Y positive and ^ con-

tinuous, ^ cannot be less than unity.

If Y changes from positive to negative at x - x , however, the value

of 7 "ill cross unity at that point, but if Y is initially negative, 7/

goes away from unity as previously shown and can only turn toward unity

if Y changes from negative to positive; this change must be made at some

value of ^ other than unity. After Y has changed to positive, the situa-

tion reduces to the case that Y is always positive, ( described by the

paragraph beginning on line 10, page 20) in which the V where Y changes

sign is now taken as the entrance V .

It has been shown that up to some fixed point in the tube, which is

either the exit or the point at which Y changes from positive to negat-

ive, ^? and the Mach number do not become greater than unity if the enter-

ing velocity is subsonic, nor less than unity if the entering velocity

is supersonic. Furthermore, if Y is positive up to the point at which V

is limited, the derivative off before this point is always positive if

the entering flow is subsonic, and is always negative if the entering

flow is supersonic. Thus, for positive Y and subsonic entrance velocity

^ cannot exceed the limiting valie of unity, for ^ is always increasing

from its initial value and cannot exceed unity, by analogous considerat-

ions for positive Y and supersonic entrance velocity 77 cannot be less than

some limiting value greater than unity. This limitation is essentially the

choking phenomenon.

CONCLUSION

The flow of steady, one-dimensional compressible fluid in constant-

area passages under the simultaneous effects of friction and heat addit-

ion was investigated. A function r denoting the proportionality of the



two effects was introduced. Making use of the principles of conservation

of mass, energy and momentum, as well as the equation of state and the

definition of the Mach number, it was possible to express the fluid pro-

perties in terms of the Maoh number and the function r in logarithmic

differential forms.

In order to simplify the investigation, a friction-distance parameter

was defined as the mean wall friction over the length of the flow passage

under consideration. With this parameter, the nature of the local wall

friction could be ignored; therefore, the whole problem was dominated by

the nature of heating process. Thus, the specification of the heating

process is essential to the determination of the function r as well as to

the integration of the fluid properties.

Three particular cases of subsonic heating, i.e., constant heat flux,

constant wall temperature, and constant ratio of wall temperature to total

temperature were surveyed under the assumptions of the validity of

Reynolds ' analogy and the recovery factor equal to unity. Through the

physical and mathematical mea.ning of the individual problem, it was possi-

ble to determine the function r. Thus, the logarithmic differentiation of

the fluid properties could be integrated, since r was determined. Owing to

the fact that the function r could not be represented in an exact form,

Simpson's rule was used for numerical integration. Arbitrary Mach numbers

of 0.1 and O./J were taken an the initial conditions, and the initial ratio

of wall temperature to the total fluid temperature wan chosen as a para-

meter and a starting value for numerical integration.

The changes of r with Mach number art; shown in figures 1-a through

J-c. Jt is found Uin 1. r increases with the Mach number in the subsonic

region, and that the rate of increase of r decreases with increase in
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Mach number as M approaches unity. PhysicRlly, this means that the frict-

ional effect is less important in comparison with that of heat addition

at low Maoh'numbers and becomes more important at higher Mach numbers.

It was found that all the fluid properties change very rapidly as

choking is being reached, i.e., as M approaches unity. Pressure loss is

very noticeable at high Mach numbers and also for high ratios of T , A? ,.
wl' ol

The frictional effect becomes less significant as the amount of heat add-

ition is increased.

Finally, an attempt to solve for the function r in an exact form was

made by the writer, but without success. He hopes that it will be invest-

igated further by those who are interested in this subject.
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APPENDIX A

Derivation of n and n
r K

Consider an expansion process of a perfect gas. If the process is

reversible, we know from thermodynamics that the work done by a unit

pound of the fluid is given by

d W - P dv/j (A-l)

But in practice no process is reversible , therefore the actual work

output must be less than that of the ideal. For this reason we define a

fraction factor as the ratio of the actual work over the ideal work*

e e - dWaot/diS (A-2)

where

Next we introduce a thermal efficiency factor which is given by

^ - e9 (2|2.)/dQ (a-3)

or

dQ - ^l
(A-4)

Consider an irreversible diabatic expansion process of a perfect gas.

From the first law of thermodynamics

dQ - du + dW

V/ith (A-2) and (A-4), it can be written as

e n pdv/j e ePdv
<j)

°v rti +
J

The differential of the equation of state gives

RdT - Pdv + vdP

Combining equations (A-5) and (A-6)

e^Pdv Pdv + vdP

"T k - 1
+ e^dv

a perfect gas

.

(A-5)

(A-6)

(A-7)



After rearrangement, we have

vdP + e (k - 1)(1 - V$)pdv +1=0 (A-8)

Let

n - 1 + e
e
(k - 1)(1 - y$) (A-9)

Therefore, Equation (A-8) becomes

vdP + nPdv = (A-10)

If n is a constant, integration of Equation (A-10) gives

Pv - constant

Rayleigh Line . This is a reversible diabatic process for which

e - 1. Thus, Equation (A-9) gives

nj, - i + (k - i)( i -y<p)
( A -ii)

Solving (A-7) for
<f>

, with e = 1, we have

j k - 1

r vdP/Pdv + k (A-12)

dV dv
Since — = — , with r - o, Equations (20) and (22) became

dv dM 2

T" M 2 (l + kt^) (a-13)

dP -kdM 2

P 1 + kM^

Dividing Equation (A-14) by (A-1J) yield

vdP/Pdv « -kM 2

Substituting (A-15) into (A-12), we have

k - 1

(A-14)

(A-13)

A £ - 1

Y " k(l - M-') (A-16)

Equationn (A-ll) and (A-16) give

.?

(A-17)

|l''1" no LiH£ • Thin is known as an irreversible adiabatic process for

which 4J - co , or Vf . 0. Thus, Equation (A-9) gives

ny - 1 + e
e
(k - 1) (A. 1Q)



Solving Equation (A-7) for e , with y<p 0, we have

1 + vdp/pdv
e k - 1

With r = 1, Equations (20) and (22) become

dv dK£
v

=

2M 2(1 + H-Z_i „2)

Equations (a-18) and (A-23) give

29

(A-19)

(A-20)

dP 1 + (k - 1)M 2 ' .„2
p" : S: {

— ^ (A-21)F
2M2 (1 + S-=-i M 2

)

Dividing (A-21) by (A-20), we have

vdp/pdv . - £l + (k - ljM 2
) (A-22)

Substituting (A-22) into (A-19) yields

e = M 2
(A- 2 3)

n
F

= 1 + (k - 1)M
2

(A_24 )
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APPENDIX B

(GRAPHS)
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The purpose of this report is to investigate the combined effects of

friction and heat transfer on the fluid properties of steady, one-dimen-

sional compressible flow in constant-area passages. A new function of the

Mach number r(M) is introduced which denotes the proportionality of the

two effects. When the flow process is effected only by friction, r takes

the value unity all through the process and thus becomes the Fanno-line

process. When the flow process is effected by heat transfer only, r takes

the value zero all through the process and thus becomes the Rayleigh-line

process.

In order to simplify the investigation, a friction-distance parameter

is introduced which is defined as the mean value of the wall friction over

the length of the flow passage under consideration. With the friction-dis-

tance parameter, the nature of the local wall friction can be ignored, and,

the nature or the form of heat transfer dominates the problem©

Making use of the principles of conservation of mass, energy and mom-

entum, as well as the thermal equation of state and the definition of the

Mach number, it is possible to express the fluid properties in terms of

the Kach number and the function r in logarithmic differential forms.

The function r must be determined before we can carry out the integrat-

ion for the fluid properties. The determination of r is impossible unless

the heat addition process has been specified, because for different forms

of heat addition will result in different funcions of r. As an ill-astrat-

ion of the applicability of this new method to combine the two effects,

three special forms of heat transfer were investigated, namely, constant

heat flux, constant wall temperature and constant ratio of the wall tem-

perature to the total temperature.

For the three cases, it is assumed that the recovery factor takes



the value unity and the Reynolds' analogy remains valid. For the first

and the second oases, another function of the Kach number is introduced

which is defined as the ratio of the difference between the wall and

total temperature to the total temperature. Through the physical meaning

of the individual problem, it is possible to obtain a differential

equation for this function. The author was not able to obtain a general

solution of this function in a closed form. However, numerical methods

are effective after a starting value is specified. The numerical method

involved is divided into two steps. In the first step, "successive

improvement" is used. The approximate value of the function is used for

the next step in which Simpson's rule is used for numerical integration.

With this procedure of numerical approximation, it is possible to obtain

values of the function as accurate as desired. After the new function has

been solved, r can be determined. With the values of r, the fluid pro-

perties can be solved by using Simpson's rule for numerical integration.

For the third case, a very simple relation between r and the Mach number

is obtained, and the fluid properties are determined by the same way

mentioned above.

Families of curves of the fluid properties are presented in Appendix

B. Arbitrary initial Mach numbers of 0.1 and 0.4 are used. It may be seer,

from the plotting of r versus the Kach number that the value of r increased

with the Mach number in the subsonic region, and finally tends to certain

value. Physically, this means that the frictional effect is less important

compared with that of heat addition near the initial section. As the Mach

number increases, the frictional effect becomes more important and finally

tends to a certain ratio with the heating effect up to a Kach number of

unity.


