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NOMENCLATURE

A = diraensionless temperature gradient, equation (5-l8-D )

2 v k
a = (jj, H /p )

*" = Alfven wave speed, meter/second
e y

Bn _ = B = applied magnetic field density, weber/square meter

C = specific heat at constant pressure, Joules/kilogram K

D = defined by equation (5-l8a)

E = electric field intensity vector, volt/meter

E = applied electric field intensity in z-direction,
volt/meter

E. , = induced electric field intensity vector, volt/meter

F = F(Y) = defined by equation (5-26a)

F. , = induced Lorentz force, Ampere-turn
"~ma.

H = magnetic field intensity vector, ampere-turn/meter

H , H = x-, y-components of H, ampere- turn/meterx y

K~ = H /H , dimensionless numberx y

H = H , amoere-turn/meter
o y

h = wall thickness, meter

I =• total current in Z-direction, ampere

I* = l/(o>u 3 L), dimensionless current
i my

= electric current density vector, ampere/square meter

J., , = induced current density vector, ampere/square meter

k = thermal conductivity, Joules/second meter °£

L = half depth of the channel, meter

M = |i H Ljcr/pv = aL/CH v ) = Hartmann number

? = - r* = oressure gradient, Newton/cubic meterOX * c » /

3 2F = - (L /p v ) (dp/dx) = dimensionless pressure gradient

ii



p = pressure, Newton/square meter

pr = v/a = —r— = Prandtl number

p„_ = vA> = electromagnetic Prandtl number
•* r<= !/

, T
°

= —p ^2 = —2 ilmenslonJLess heat-flow number

q = - k(^— ) = wall heat flux, Joules/second square meter

R = defined by equation (5-35)

R = u^L/v = Reynolds number

Rv = aL/v = magnetic Reynolds number

r = $/§ , voltage ratio
' open'

T = temperature, degree Kelvin

T = bulk temberature, equation (5-32a), K
b

"O

t = time, second

U = u/u , equation (5-1)

u = velocity component in x-direction, meter/second

Tn = initial bulk temperature, K

= u/a dimensionless velocity

m 2i. « -l

= fluid velocity vector, meter/second

lf.ii,
= pT J

udy = mean velocity, meter/second

= k/p C = thermal diffusivity, square meter/second

X = x/L, dimensionless longitudinal coordinate

Y = y/L, dimensionless transverse coordinate

a

7] = 1/crp, = electromagnetic diffusivity , square meter/second
e

p = density, kilogram/cubic meter

h, = voscosity, kilogram/meter second

n = magnetic permeability, Henry/meter

iii



p
v = n/p = kinematic viscosity, meter /second

a = electrical conductivity Mho/meter

§ = 2 / u 3 , dimensionless voltage number
z my

$ open= (*) t_q > equation (5-11)

$.,$
2
= dimensionless parameters, equation (4-16), (4-19)

?1 =
c
1V CT

f
L

'
<?
2
=a

2V a
f
L

G s? T/(m.u /k) = dimensionless temperature
m

9v = dimensionless bulk temoerature
b

8 = initial dimensionless bulk temperature
o ^

Subscripts

1, 2 = lower, upper wall

w = wall

f = fluid

lv



INTRODUCTION

Magnetohydrodynamics (KHD) is the science of the motion

of an electrically conducting incompressible fluid in the pre-

sence of a magnetic field. It is a special case of the study

of plasma phenomena. Many names have been applied to the

phenomenon. The subject of MHD includes five classes of the

engineering sciences, namely, fluid-mechanics, thermodynamics,

mechanics, materials, and the electrical science.

Consider an electrically conducting fluid with a velo-

city V I 1j . Perpendicular to this a magnetic field with

field density B,.„ is applied (Fig. 1). Assume that steady
ap

flow conditions have been attained. Because of the inter-

action of these two fields, an electric field 2. . is induced
' —ind

oerpendicularly to both V and Bj — —ap

This electric field is given oy the following equation:

^Ind = 2 X SaP ^
For simplification assume that the electrical conduc-

tivity, a
, is constant in spite of the magnetic field.--" By

Ohm's law the current density induced in the conducting fluid,

and denoted by J.ini » is:

-ind -md

fisld, tne conductivity oecc~es a tenser quantity,
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Simultaneously occurring with the induced current is

the induced Lorentz force F, , which is given by the following:

F, , = J x 3 (1-3)-ma —ind "~ap

The force F, , occurs because the conducting fluid cuts
—ind

the lines of the magnetic field. Because the vector product

of equation (1-3) yields a vector perpendicular to both J.in^

and 3 , the induced force is parallel to V but op-oosite in
—ap

'

—

direction.

For the more general case, consider an electric field

£ oerpendicular to both B and V, but opposite in direction
~ap -ap

to J^ n^« The current density due to this applied electric

field is J„ j. The net current J through the conducting

fluid is then

J =<KSap
+ I x Bap )

The ponderomotive or Lorentz force associated with this

current is then

' = J x B._ = a (2 n-
" x 3 ) x 3 (1-5)— — —ap ^—ap — —ap' —ap s

If in equation (1-5) £ \ V x B_„ the system is an—ap/ — —ci.p

accelerator (or a pump) which may be used as a thrust-producing

device. If 2 „

/

v x 3 , it is a generator.—dp \ — —ap
The purpose of this report is to present the detailed

as well as critical review of some mathematical and physical

aspects of the RHD flow. This review should benefit the



beginning investigators in this field.

First, the details of the pioneering work by Hartmann

and Lazarus on the subject of channel flow I 2 \ are described.

The modified Hartmann flow with the electrical conductance

of walls investigated by Chang and Lundgren [4 1 , and by

Chang and Yen j5 I
are then reviewed. The effect of electri-

cal conductance of the walls for both the thermally and

hydrodynamically fully developed region was investigated

r i r ni r
"i

very recently by Alpher |7j , Yen |8| , and Snyder i 9j .

tfhile their treatments are reviewed generally, only Snyder's

approach [_9 J
is presented in detail.



THE FUNDAMENTAL EQUATIONS OF lvIAC-^ETOKYDHODYI\Ti-^lICS

The equations of MHD of continuous fluid media are the

ordinary electromagnetic! and hydrodynamics equations, modified

to take account of the interaction between the fluid motion

and the magnetic field.

On the assumptions that: (1) the fluid is incompressible,

(2) the displacement current is negligible (as in most elec-

tromagnetic problems), i.e., no oscillations of very high

frequency occur, (3) the permeability and conductivity are

constant scalar quantities, and (4) the Lorentz force is the

only body force on the fluid, the MHD equations are 3

Maxwell's equation in MKS units system:

curl H = J (2-1)

div J = (2-2)

curl : = n °- (2-3)
e St

div K. = 0; (2-4)

Ohm's law for a moving fluid:

J = a(E = V xu
e

H)}.

the equation of continuity:

div V^= 0;

and the modified Javier-Stokes equation:

^.r

1 1/,
T£ + (Y. ' E'^adjV = - - grad p + vV V + — ( J x \j, H")

(2-5)

(2-6)

(2-7)
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The usual procedure followed to obtain equations for

H and V is to eliminate the electric field E and the current

density J among equations (2-1), (2-3), (2-5) and (2-7).

Making use of the divergence relations as represented by

equation (2-4) and (2-6), one obtains the resulting equation

in the forms (c.f. Appendix I):

,2V (2-6)
at

av

- curl (V x H) . T] V'H

tt + (V • grad) " - -S (H • grad)H
oX ~ ~ p ~ —

a(£
U
e u 2 \ v;

2^ (2-9)= - grad(^ + T~ H + vV V N ^

'

In equation (2-6), T) is written for 1/ay, . These

equations, together with equation (2-6), are sufficient to

determine all the variables V, H, and p.

HARTMANN FLOW'

The proposed investigation is mainly concerned with the

transport and rate processes in steady, two-dimensional,

laminar, magnetohydrodynamic flow of incompressible fluid

media between two parallel plates. Therefore, the solution

of the flow equation for this type of flow, originally ob-

tained by Hartmann |_2 and well summarized in Cowling I 3 I ,

is presented in detail.

Referring to Fig. 2, the two electrically non-conducting

infinite parallel plates are at rest at y = + L. It is then

permissible to assume that



V = (u, o, o) (3-D;

H = (H
x , H

y>
o) (3-2)

are functions cf y only. In other words the flow has only

the x-directlon component, and a uniform magnetic field H

is imposed perpendicular to the bounding walls, i.e., H is

parallel to y-axis. Because the fluid near the median plane

y = moves faster than that near the walls, it tends to pull

out the lines of force in its direction of motion. Thus, the

field acquires a component H parallel to the motion.
x

Applying equations (3-1), and (3-2) to equations (2-1)

through (2-7), and remembering that u = on the walls, the

velocity profile is obtained as p (c.f. Appendix II)

p,. cosh M-cosh ( j )

u - TT2 (—siHiTT } ^-3)
^e

CTH
o

The velocity profile is presented in Fig. 3. The average

value of u between y = ± L is u where:

u
k = ~T~2 (M COth iVl_1

^ (3 " 4)

*e o

Then, the dimensionless velocity is,

cosh M - cosh (M ^)
U = — = M ( —

)

(1-%)
u VM cosh M - sinh M ' ^ Di
m

The corresponding value of H is found to be
x

s± =

sinh C^f)

(r^rh - f) (3-6)x '"
u, H_ v sinh M L
*e
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where

/ K
M = y. H L /-— , Hartmann number, a dimenslonless number.

e o j pv

£P
P =--r£ , a constant which is the pressure gradient in

the x-direction.

MODIFIED HARTMANN FLOW WITH THE EFFECT.
OF WALL ELECTRICAL CONDUCTANCE

Extending the work of Hartmann, who investigated the

case of walls that were electrically non-conducting, consider

the steady flow of conducting fluids through ducts with elec-

trically conducting walls under transverse magnetic field
(_
4

J

An electrically conducting incompressible fluid flows

in the x-direction through a duct (Fig. 4) with constant wall

thicknesses, h, , hot and electrical conductivities, o o

The conductivity a, is zero outside of the duct. The system

is composed of the flowing fluid and the conducting walls.

Equations (2-6) and (2-7) are valid in the fluid only. The

other equations (2-1) to (2-5) are valid everywhere in the

complete system. As in Hartmann flow the assumptions are:

(1) the flow is fully developed, (2) the magnetic field in

the y-direction is assumed to be constant, H = H , and (3)

the magnetic field in the z-direction is zero, i.e., H = 0.

Then equation (2-7) will be reduced to the following equation

which corresponds to equation (AII-8):



1 BJ? 5 u *e
H

x

p Bx '

a
2 p o By

Taking the curl of equation (2-5), one obtains

8

(4-1)

V x J = V x a(E + V x p, H)

V x u E = u,— ^e — e

£ 1 k

H
X

H

Vxa(E+Vxu H) = a

From equation (2-1)

i JL &

a K u. k
*e o -

|
i j k

_L _L JL
Bx By Bz

E E (E + v. H u)
x y v z e o /

J = V x K =
> B B

B~x B"y B~z

H H
x y

BH

- (0 * - •£ k)

V x J =

i i fc

a

Bx B"y B~z\,
BH

-

(4-2)

(4-3).

(4-4)

Substituting equations (4-3) and f4-4) into equation (4-2)

one obtains for the x-component,

3
2
H
X

BE *2
„ (

z yV
ii equation (2-3)

,

curl E = - ^j^r

i A k

V x E =
B B

Bx B~y Bz
E E E
x y z

=

hi

(4-5)

= for steady motion
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The x-component gives

as as
z y -

Therefore, equation (4-5) becomes

£ = o^ K 2L (4-6)

Introducing the following dimensioniess variables,

u
u = -

a.

H

y

f - - (-^=5) <&>
pv L

Y = J

equations (4-1) and (4-6) become

,2- dH „
d u R / x x ^
-^2

+RK ^dT"^ IT" (4-7)

(4-8)

where

p
re

d
2
E
X

,
2

+

ay
EK

/ du
k dy

EM'= aL/v

re
Tl/V

= (u H /p)^ , Alfven velocity

cru
e
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Within the wall (outside the fluid region), u = and

TH7 = 0, and thus equation (4-8) becomes^
,
2,-

a h

—r = °

dY^

At the boundary between the fluid and the wall,

E=VxB = CxB =

E

From equation (2-1)

i

a

J = V x H =

1 k

bx by Tz~

H K
x y

bE

T^ k
dy -

Substituting this into equation (4-10),

- 3H2* . o
a dy

(4-9)

(4-10)

(4-11)

Therefore, at the boundary between the fluid and upper

wall, where y = +L, equation (4-11) becomes

dEdH

a
f

K dy ; (
*

)^ dy ; (4-12)

or

1
dH dH

From equation (4-9)

dHY
= constant

=
(4-12a)

Therefore, Hx varies linearly across the duct wall from

(^v-)v m h2v= at the outer boundary of the wall to

L

H ) y at the inner wall boundary. Thenx Y=r
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dH H

(*#> =
X

ay
2 h

2A
h
2

where h
2

is the thickness of the upper duct wall. Substituting

this into equation (4-12a), one obtains

, dH . LH

dn

ai a
2
h
2

x

or

***
* ± g = n «t y = +i (4-13)

dY T
<?_ x

where
a
2
h
2

Similarly, for the lower duct wall

dH
* . JL S =0 at I - -I (^-U)

dY ©- x

where
CT
l
h
l

The solution of equations (4-7) and (4-8) for the boundary

conditions represented by equations (4-13) and (4-14), and for

which u = 0, at Y = + 1, can be written as f5
]
(c.f. Appendix III)
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f*x-) = c— ) (coth m -
cos

f;
**) (4-15)

^ TT ;v - ' v M % sinh M
vL P

H , , r^i sinh MY - -•

JL JL. JL M + «„ (4r - coth M ) " Y (4-16)*
YT 5

"
R 2 L sinh M + *2 V T* 'J

J - $ M cosh MY

e y M

where M = aL(Tv)" 2 = u, H L / — , Hartmann number
e o V P v

cp
2

+" cp-^ + 2

1 ' ^cp +cp
i

; M coth M + 2
(4-18)

^2 - V rc
(4.19 )

$
2 " Ccp

2
+cp

i
; M coth M + 2

From the above solutions the following conclusion can be

made

:

1. From equations (4-15) and (4-17), the velocity profiles

and the electrical current distribution are symmetrical with

respect to the center line. They depend not on the individual

values of <p and cp p , but only on the sum co + cp and on the

Hartmann number M.

2. An increase in the sum of cd_ and co , or an increase in
1 2

the Hartmann number, flattens the velocity profile and increases

the electrical current (See Figs. 5 and 6).

•^-Equation (4-16) is given in References [5] and [Q |
as follows:

* J- = -LP-1
. , ... (1 - coth M) - Y) 1

K e „2 L sinh h+? v M 'J
y P R, T 2J M

However, it obviously contains a typographical error (c.f.

Appendix III).
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3. When cp-, = co2
= °» equation (4-15) reduces to equation

(3-3), which is the Hartmann velocity profile.

THE INFLUENCE OF WALL CONDUCTANCE ON MAGNETOHYDRODYNAMIC.
CHANNEL-FLOW HEAT TRANSFER

There have been increasing efforts, in recent years,

to investigate the heat transfer in channel MHD flow. The

literature is well reviewed by Romig .6
|

. The effects of

the electrical conductance of walls on the heat transfer

were investigated by Alpher nl , Yen j8~l , and Snyder
f
9 I.

Because of the mathematical complexity, the assumptions that

the flow is thermally and hydrodynamlcally fully developed

were made in their investigations.

Alpher IT 7| considered only the open circuit conditon.

Since the effects of Ohmic heating of the walls and viscous

dissipation of the flow on the temperature distribution were

neglected, his analysis does not adequately account for the

wall influence.

Yen 8
j
considered the same problem as Alpher but in-

cluded viscous dissipation and unequal wall electrical

conductivities. However, Yen's analysis is also based on

the open-circuit case.

Snyder 'i 9 attempted to generalize the analysis of Alpher

and Yen. His analysis accounts for the effect of Joule heat-

ing whithin the walls on the temperature distribution within

the fluid. It is also based on arbitrary external electrical
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loading and is valid for both the generator and accelerator

modes of operation. Snyder's analysis is followed in this

section. However, the author of this report has found some

points in the physical interpretation of the phenomena that

are in disagreement with Snyder's.

Assume the flow (Fig. 7) to be thermally and hydrody-

namically fully developed, with constant heat flux boundary

conditions applied at the outer surfaces of the walls and

with the applied magnetic field perpendicular to the walls.

Constant properties of the fluid and walls are assumed 9 .

Referring to the section of the modified Hartmann flow,

the velocity and electrical current are given as

<ra><-ir> - (-tH"** «
- SSHF )

(*-i5)

,J - $ M cosh KY

Define the dimensionless velocity profile U as follows:

U . JL
u

1

m
L

where u = -rrr f u dy

Then, from equation (4-15),

--1-/ *^ v cosh hY\
1 (ccth M - —!

—

. . >

)

x
v
i

v sinh i
v
;

T
h r

'l
1 P V / j.u vr COsh KY\

_£_ |

v (coth h - . , .. ) dy

—

L
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„,/ , , , r cosh MY N2L(coth M - . , ., )

T 4-V, V L Slnh hY1Ly coth h - « . , ..,

L M sinh i
v
i J

sinh M

Pi
-L

ot ( i.1. \a\ / •, cosh KY -v

2L (coth h) (1 - . . ., rr-r?/
[__ sinh E coth h

T .. v L sinh h T .. .. L sinh M
L coth M - , :—r—r- + L coth M - * 1

—

-.—

«

i
v
i sinh h h sinh n

2L(coth M)(l -
COsh kY

)v '* cosn i\

2L(coth M - -4—)

/ M \ /, cosh KY ^

" M'^-tanh h ' U " cosh K '

.

The energy equation Is

(5-1)

o t
2

o C u BT , S^T z / du N 2 (5-2)
P "5 k ;r + + \i (- J^*

Sy
2 a W

where J = a(E + uB )
z z y'

The three terms on the right side of equation (5-2) are

contributed by outside heat flux, Joule heating, and viscous

dissipation.

Applying equation (5-2) into the lower and upper walls,

where u=0. and J =<$E
' z • z

2
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k
2 pr + °z< -° (5 "4)

o
y

The boundary conditions are

v
?y 1 ?y

at y - -L, u - 0, T - T
x
k |i. - k

x
-g-i (5-5)

y = L, u . 0, T = T_ k

y = - (L + h
x )

2
k

ST
"57 = k

2

8T
2

"~y

k
l

M
l

"ST - q i

k
2 77

* !

-*2

(5-6)

(5-7)

y - l + h
2

k
2 ^ - -q

2
(5-b)

where q and q are positive if the walls are being cooled.

Introducing the following dimensionless variables for convenience,

X . -£- , Y - -X
'

, K = B L /-2
L ' L ' y v

\i

E
z T Q

q l

L
q 2

L

0" »
a = T" ' 1 ..,,2 ' ^2 „„2

ru
m y ^ ~ ^m ^m (5-9)

k

the total current per unit length in x-direction becomes

L L
L+h

2
1 - G

l .riCL+l^)
E
z
dy + C

f -
r-L <

E
z

+ uV dy + Q
2

r
L

£
z
a^ ^5-i;0a)

= a. Eh- + a„(2LE + By2Lu ) + cr E h,
l z i i z y m 2z<

E
—r r = 2 + —= v- (2aJj + c.h.. + cr_h_)
ajb u L a J3 uL v f 112 2'
f y m f y m

I
,

E
z ,, °l

h
l

a
2
h
2.

f y m y m f f
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or

I* = 2 + $ (2 + <p + co
2

) (5-10b)

CT
i
h
i

a
?
h
?where I* = i_. « = -±J: , cp = -^J-

o„u B L 1 a^L ' v2 afL
f m y f

Under the open circuit condition, I* = 0, and from equation

(5-10b)

$ . _ 1 (5-11)
*open 2 + q^ +r?

2
^ ±XJ

Defining a voltage ration as,

r = 5-2- (5-12)
open

then
?

5 - "
2 + ei + ,f2

(5-13)

Integrating equations (5-3) and (5-4), one obtains

ST
k
l §3T + ^^ = c

i
(5-l4a)

ST
2 2

k2T7 + a
2V = °2 C5-14b)

Substitution of equation (5-7) into equation (5-14-a) gives

ql
+ a

l
E
l

(" L -h
i) - c

i

ST.

:

1 T7 + Q
l
E
z
y = ql " a

l
E
z

(L + h
l }

Substituting y = -L into the above equation, one obtains

- T
l 2

k
l — " *1 - a

l
E
z
h
l
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L
BT

1 L L _2.
-5- k

i "T"
= — q i " -^" G

i "A

E
2

L
2
a„B

2
r

a,h-

"^Y" ; Y=-1
=

*1
u
2
B
2 p. ^pr

m y

Similarly

*e x /« ,2^2

(5-15)

?>y ) Y=1 - - (Q
2

- #tt cp
2

)

(5-16)

Equations (5-15) and (5-16) are the boundary conditions for

equation (5-2). The thermally fully developed flow implies

that ~ = constant, which is determined from the following

over-all energy balance;

- u2 - -A> (5"17)

The left side of equation (5-17) expresses the rate at

which the fluid acquires energy in the x-direction. The

first term of the right side of equation (5-17) is the total

rate of thermal energy generation in the fluid which includes

the Joule heating and viscous dissipation. The last two terms
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express the difference of the heat flux and the Joule heating

in the walls. Dividing equation (5-17) by 2pC lxu /k
f and

1 31 1 f f ^ I/a ABT 1 P / p
L L'ct/ u'B.Yn L /dux i.

lxu „ ' _p m -L ^ m . m u *

"kT k ^

+ ^ (CT
l
E
z
h
l

+ a
2
E
z
h2> " 5u? (ql

+ q2 }
]

In dimensionless form, the above equation is

~ = A = constant
oX

1 f f»l -n2 T 2 a ( z u n L /dux "1 , v= FTT" U , V 5 (u-T" + r } + T ^ } i
dY

"r e -1 ^ ^ m y m u *

m

2 2 2
2 B L a a,h, tf^ho -i

Introducing m y

D = M
2(V + U)

2
+ (§) (5-l8a)

the temperature gradient equation is

'1 ™. *2 TvT
2

J^ Ddy + |*lf (cd
1

+ cp
2

) - (Q
1

+ Q
2

)

oX 2 Pr Re
(5-18b)

where

pu L nC ._ _ »

Re - -^-
, Pr = ^ C 5-180)

Equation (5-2) can be written as

Pr Re u M _-i!e 2,
}
2

(
dU

2

^ * e u
ax ~

3Y
2 + » v» + «;

.
+ \ dY ;

(5-19)

(5-20)

e - e = ax + f(Y) (5-21)

From equation (5--18b)

ae
ax

" A = icons;t ant

and thus
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Substitution of equation (5-21) into equation (5-19) gives

^ = ARePrU.L < 5"22 >

dY

Integrating equation (5-22), one obtains

|| -
f

Y
(A Re Fr U - D) dY + C (5-23)

l

Using equations (5-15) and (5-16), and recalling that

dY
=

3Y» ^e f°H°win£ is obtained

- U?
- *

2
M
2
q> ) - J (A Re Fr U - D)dY + (^ (5-24a)

(Q, - S
2M2

9l
) . f ' (A Re Fr U - D)dY +

± ^^
Adding equation (5-24a) and 5-24b), and noting that

(A Re ?r U - D) is an even function of Y, one obtains

C
l = ~2 [

(Q1 * Q
2 } + ^^ " V] (5-25)

The integration of equation (5-23) ;
by parts gives

Y
df(Y) = jQ

(A Re Fr U - D)dY dY + C^dY

f(Y) = Y / (A Re Fr U - D)dY -J* Yd
[ J*

(ARe Fr Q -D) dYj

= G
1

dY

f(Y) = Y f (A Re FrU -D)dY- f

Y
Y OlReFrU-D)dY + C

n
Y + C 9'0 L ^

Changing the variable Y to S results in

f(Y) = Y f (AReFrU-D)dS -
J*

Y
S (AReFrU - D)dS + C-J + C

2

= /
Y

(Y - S) (A Re Fr U - D)dS + C^Y + C
2 {5-26)

f(Y) = P(Y) + C Q
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where

Y
F(Y) = P (Y - S)(A Re Pr U - D)dS + C..Y (5-26a)

• x

The substitution of equation (5-26) into equation (5-21) gives

8 - e
Q

= A X + P(Y) + C
2 (5-27)

Go is evaluated from an overall energy balance between the

points x = and x = x, the equation for which is

pC
p J

l
u(T-T

o
)dy = x J_

l
[a(E

z
+ uB

y
) + u(g) j dy

or, dimensionless form,

R
e
P
r /.!

U(6 " 9 )dY = X
[JL1

MY + ^^l + q>
2

)

" (Q
1

+ Q
2

}
] (5-29)

Substituting equation (5-lSb) into (5-29), one obtains

ReFr J U(e - e
Q
)dY = X(2 Pr Re a)

r

1
U(9 - 9jdY = 2 AX (5-29a)

J -l

Substituting equation (5-27) into (5-29a) and

J
1 U(AX+ F(Y) + CJdY = 2AX

'

-1

AX f
1

UdY + J
1

UFdY + C J
1

UdY = 2AX
-1 -1 -1

wnere

f
1 n^v H pi / cosh MY n . v

J_
x

UdY " K - tanh K J^ (1 " cosh K )dY

= 2



22

Hence

C
2

= " 2 Ll UFdY (5 "30)

Finally, the temperature distribution is

e - e = ax + p(y) - \ J
1

u?dY (5-3D

Because of the algebraic complexity involved in this equation,

it is left in implicit form.

Define the fluid bulk temperature as

I-L
U ( T -T )dy

T
* " T =

— (5-32a)

9
b - 9

o - 2 fci
u(9 " e

o
)dY '

.

C5-32b)

Recalling equation (5-29a) one obtains

\ " 6
o

= AX (5-32o)

From equations (5-31) and (5-32c), one obtains the difference

between the fluid bulk temperature and the wall temperature at

the interfaces as

s
b

- OU) - I !\ »»Tf - »(U
. (5-33*)

6 V - 9(-l) = ^ r
1

UPdY - F(-l) (5-33b)
D ^ -1

ftumberical presentation:

One of the most important heat-transfer quantities is

the difference between the fluid bulk temperature and the

wall temperature. Considering the case with equal and constant
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heat fluxes at the outer surfaces of the two walls and equal

wall conductances cp
1
=cp

2
, one has,

C = (from equation 5-25)

F(l) = P(-l)

b w 2 <> ,

From this It is noted that there are four independent

external parameters to be specified; (1) the Hartmann number

M, (2) the voltage ratio r, (3) the wall heat fluxes Q, and

Q, , and (4-) the wall conductances cp and cp . It is interesting

that for the case of equal and constant heat fluxes, and equal

wall conductances, the wall heat fluxes appear as the sum

Q i
+ Qp» anci likewise the conductances appear as the sum cp + cp

From equation (5-l^b),

A He Fr =
\ [ J*^ DdY + A2

- (cp
1

+ cp,) - ^ + Q
2 )]

(|
__34)

The first two terms on the right side of equation (5-34)

represent the total energy dissipation, consisting of viscous

dissipation and Joule heating in the fluid and Joule heating

in the walls. The last term represents the heat transfer at

the outer surfaces of the two walls. It is convenient to

define the ratio R as

Q, + Q?
R =

^ DdY + §
2H2

(cp
1

+ cp ) (5-35)
-1

2. .2,
I M I

Equation (5-34) becomes

A Re Pr = - (l-R) [ J
1 MY + $

2
M
2

(cp
1

+ cp
2

)
J (5-36)
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If the total heat transfer equals the total dissipation

(R=l) then A = and the temperature is uniform in the

x-directlon.

Using equations (5-1), (5-13), (5-l8a), (5-26a), (5-33),

and (5-36), one obtains the evaluation of (6,-9 ). ( 6, - 9 )

is plotted as the ordinate of Fig. 8 for the following numeri-

cal data:

M = 10 , R - 1 , R = 10 , u
m

= lOOft/sec.

it = 2.6 x 10" 5 lb
f

sec/ft
2

k = 6 Btu/hr ft P.

The value of U- and k chosen correspond to mercury at

200 deg F. then

*1 + *2 T
b ' T

w
deg F

8.2

1 32.8

10 72.6

In Fig. 8, the range r)> 1 corresponds to the accelerator

mode. The range r <^1 corresponds to the generator mode. The

influence of the wall conductivity on the heat transfer is

opposite for the generator and accelerator modes of operation.

From equation (5-10a) it can be seen that when the net

current is equal to zero, i.e., when 1=0, E = (E ),. ~' open N
z 1=0

and jE^ I /u B
Tr , where E is in the negative z-direction

1 openly m y* open

(Fig. 9). Furthermore, the equality relation in IE I /\xr B
I openl s^ m y

holds when cp-, + cp
2

= 0, and the inequality relation holds'
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when (cp +cp
2
))o, noting that 9 N and fP \o

.

;/ith the above relationship the following correspondences

between the range of voltage ratio and the operating mode

exist. (I). For the generator mode of operation for which

the conditions that E_ is in negative direction and that

Fz I K. Fooen I
'
the followinS relation is obtained with the

help of equation (5-9), (See Fig. 10).

< i but y
E
z $

E §
open open

.*. 0<r<l
which agrees with that of Snyder! 9 1 .

(II). For the generator mode of operation under the condition

that ,E
Z

is in positive direction (Fig. 11)

E Q
open open

.*. r<0

which Snyder 9 I
states is for the accelerator mode.

(III). For the accelerator mode of operation under the conditions

that E is in negative direction and IE
|
\ |E___ I (Fig. 12)

Zi z
i / I opsn i

E §open open
>1

.*. r>l
which Snyder I 9

|

states as corresponding "to the application

of an external voltage larger than the induced open circuit vol-

tage and in the same direction as the induced voltage". Thus
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the author of this report is not in entire agreement with

Snyder's I 9 conclusions, and has co-authored a discussion

|

10
' on this disagreement.
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I. Derivation of equations (2-8) and (2-9)

From equation (2-5), one obtains

E = £ (J - a V x ^ H)
(AI.1)

Substituting (AI-1) into the left side of equation (2-3), one

obtains:

•

c-E

curl j± (J - a V x u
e H) J = - n

e ^ (AI-2)

From equation (2-1), one obtains

J = curl H (AI-3)

Then substituting this into equation (AI-2)

curl
j

- (curl E - a V x y, H)
J

= - u
e ^

BE -,

-r— - curl (V x E) = -' curl curl ]

3t _
°»e

~
(AI-4)

Since

1 x (£ x E) = V(V . H) - V • V H

and using equation (2-4), one obtains equation (2-8):

SE
1 p- - curl (V x E) =— V E (2-8)
e

where

1

i

-3

- 71

cry

Substituting equation (AI-3) into the last term of equation

(2-7), one obtains equation (2-9):

- (J x y K) = - (curl H) x ]i E
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= — (curl H) x K
P

= ~ [(S • grad)H - \ V H
2

J

in which the following vector indentifications are employed:

1(1 ' I) =2 '11 + 1 'ZH + Ux (£ x V) +Vx (£xU)

Let U = V = H then

1 (H
2

) = 2(E • V)H + 2H x (V x K)

2(V x H) x H = 2(H • V)H - V(H
2

)

II. Jerviation of equations (3-3), (3-4), (3-5) and (3-6).

From equation (2-4)

div H =

Bx

Therefore

BH

*V
constant = H. (AII-1)

It is assumed that the induced magnetic field, H , is inde-

pendent of the x-direction, i.e., = 0. From equation (2-1)

J = curl H

ilk
AAA
Bx By Bz

H H
x o

BH

T"^ k
By -

According to Ohm's law, equation (2-5)..

J = u(E + io.
V x H)

= - E
o —
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V x H

i 1 k

u

H H.
x

= uH
Q

k

Therefore

BE

From equation (2-7)

(AII-2)

SI
x 2 1 / x

rr + (V • grad)V = - — grad p + vV V + — ( J x y, H)

oY
^— = for steady motion

(V • grad)V = grad - V - V x curl V=u^j.-u^
A - o

grad p = (i ^ + i^ + k^

9 * 2 *
2

*
2

k —)p = 1^ + 2^:Bx

. B
2
u

, 2
T

. 2
T

,, 2
ox By oz 3y'

X (i = p.

BH
0-

Sy

H H_
x

BK BH
= u, (i EL t— - A H ^—-)p e v- By -^ x By '

(AII-3)

(AII-4)

(AII-5)

(AII-6)

(AII-7)

Substituting equations (AII-3) through (AII-7) into equation

(2-7) and equalizing the components, one obtains

1 Bjp B u
BH

= - - r* + v
p ox

ay
2

+
p

H
By

1 32 J ii £
p By p x By

(AII-8)

(AII-9)
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Taking the first derivative of equation (AII-8) with respect

to x, one obtains

4- (£2.)

p- = constant = - P (AII-10)
^x

p = - F x + constant (All-lOa)

Integrating equation (AII-9) with respect to y, one obtains

p - . JLi + f(x)

A comparison of equation (All-lOa) with the above equation gives

u, H
2

n ex
p = - P x ^

The pressure gradient in the x-direction is a constant -P,

but the pressure, which is different from the case of ordinary

viscous flow, has its change in the y-direction. (The pressure

gradient in the y-direction is balanced by the value of the

y-component in the Lorentz force.

)

Substituting equations (AII-10), (A.II-2) into (AII-8), one

obtains
t- j 2 crp,
? d U e rr f-c tj \ '

- - = V r— + -7T HrA En " l* U Hj

or

o
' ,2 p.

K ^e 0'

d
2
u % H P + ° "e

E E
U = -

dy2 VO pV

with boundary conditions

B.C. (1) u = at y = i L,

B.C..(?)|^ = at y =

(AII-11)
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The complementary function, u , and a particular solution,

u , of equation (AII-11) are

2 - 2 „ 2 J2.

e . i e U
u = A, cosh y + A smn y
c 1 p 2 o

u =

P + a ^ H
Q

E
Q

P 2 2

The general solution is

2 t-2 2 2
a u, hA a u n

e . , e
u = A, cosh y + a. smh y

1 2 p

2 „2
(AII-12)

Applying boundary condition (2), one obtains: A
2

= 0. Let
i
—

-

M = n,A Hn L/-2-= Hartmann number, which is a dimensionless^ fe U v cry

number. Applying boundary condition (1), one obtains

F
E

= A. cosh M + (
=—5 + T~^~~ '

1
CT U H^ ^"0

e

f
r ^0_ )

1 cosn M 2 T.2 u Hna u n_ e
e u

Therefore, the solution of equation (AII-11) with the given

boundary conditions is

-V

E
Q

cosh (-££)
U = ( o 5 + ^ ^ ~ ppqV i»:

'

2 tj2 tt cosn i*i

a
^e

L
^e (AII-13)

For open circuit condition, it is assumed that the uniform

field E
Q

in equation (AII-13) is adjusted so that the total
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electric current f J dy flowing between y = -L and y = +L

will vanish. Then

L L

= f J
z
dy = - / a (2

Q
- u

e
uH )dy

— L "-L

i My
L L E_ tj cosh -p-

. ; aVy - aa
e
H
Q

f ( ° + -^(1-^g^ *
-L -L *e au n~

e

= aE_ 2L - an K. (

—

r + —jt-*-)
| y - v „„ v v sinh (-*£-

e u n_ 2 Tr2 L h cosh M L J ,

e au, HA -L

E
= aEA 2L - au HA (—2- + j? ) ( 2L - «—~-« sir̂ M)

' e
N
u £u 2„2 ' h cosh M '

e

Multiplying both sides oy —^— , one ootains

a u HAE_M - (a u HnEA + P) (M - tanh M) =
e e

(a u HAEA + P) tanh M = PM
e

P(M - tanh H)
E " a u K„ tanh k (AII-14)

Substituting equation (All 14) into equation (AII-13), one

obtains

cosh (?&)
/ P P(H - tanh K) , ,_

cosn ^ ,

U =
( ~T-T +

2.2 . . ,

/

> ^ - cosh h >

au H_ au H_ tanh M
e e
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or

Mv
„ ., cosh M - cosh -~-

U = g-^ ( )

an hA sinh M
e ° (3-3)

The average value of u between y = + L, i.e., um , is given

as:
L ,

p uay
' -L 1 PM /cosh M „, 2L

u
m L 2L

f dy
a u

e
H

-L

o—n l—1—cnr 2L - « :—r—« sinh MJ
2 TT2

v smh M M sinh M '

P
2u2
e

(M coth M -1) (3-4)

..cosh I-! - cosh (- t
-)

U = — = M -
u l_k cosh M - sinh M

f^ ) (3-5)

El

Substituting equation (AII-14) and (3-3) into equation

(AII-2), and integrating between the interval of + L, results in

- ! i& ^ - -
-

r a ^ Eo " ^
e
uH

o
}dy

My
C-afyji u ?t\ mur COsh M - COS —'z— _,

tj
p j

P(ri - tanh MJ ^h / L_n ^
x ~ < La ii E. tanh M "'

ou n_ * sinh M J
e e

Mv
n/M v. r-\ t~>- i ™ LPM sinh -~-
P(M - tanh h) Piv

. cosh M L „
= —v ' y — .— y + . + Q

u. h~ tanh M • * u H^sinh M M a H^ xinh M
e e *e

Since F^ = at y = L, C =

and

_
T sinh (-$-) .^ r\

H = -fL (
" _ X) (3-6)

x n HA sinh M L
e
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III Derivation of Equations (4-15), (4-16), and (4-17)

Integrating equations (4-7) and (4-8), one obtains

,
— m

£iL + r h = - — Y + C. (AIII-l)
ay m x R 1 N

'

P ZJi + R u - 0,
(AIII-2)

re ay n 2

or

H
X

1 du P
C
l

= ~ R dy " 2
X +

R
m R m

m

dH
X

dY

R C_
m 2

re re

(AHI-la)

(AIII-2a)

Substituting equations (AHI-la) and (AIII-2a) into equa-

tions (4-13) and (4-14), and recalling that u=0 at Y=+l, one

obtains

C
P
i + i r. i ii) . JL + jli . o (aiii-3)

+
cp„ L R dy ; Y=1 D 2 R I

U
re ^2 "- m J R m

i r' i tev p. °n n
(AIII"4)

vl m R m
P
re

m

From equations (AIII-3) and (AIII-4) one obtains

/_1_ _1\ fl _1_ /JL. du> _1_ /_1_ du>,

^o
+

co-/ R " R ^co dY ;Y=l
+

R V dY ;Y=-l•21m m 2 in
Yl

+ 4 ^ " ^ Ulll-5)
R ^2 ^1
m
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Substituting G , given by equation (AIII-5) , into equation

(AIII-3), one obtains

C
2 1 oun P_ 1 pL. /_1_ §&)

? " Rv9 . dY ; Y=l
+

p 2 '
5 /_l. JLv Uv V dY ;Y=l

re lv2 RvCDr, 21— + — J M 2h 2
v
cp
2

cp
1

+ H~ C^ dY ;Y=-l
+

R
2

l o
2

" cd/J (AIII-6)
1 / 1 du N P_ ,_1_ _L

Substituting equation (AIII-2a) into equation (4-7),

one obtains

2
u _ ,

RM -
C
2 s P— + k (- — u + — ) = - —

dY re re M

-2- R
2

R T, «

,v2
" P

U " " P °2 R
T

.

aY re re M

where

2

M . L 2 T 2 /_ ,,2— = —2- = a L /T]v = M
re v T)

• Jifi . 1.2 -
,
. 5L c . 2.

' * v2 ~ P 2 RMdY re H
(AIII-7)

The complementary function, u , and a particular solution,

u , of equation (AIII-7) are
P

u = A, cosh MY + A„ sinh MY
c 1 2

— -\ °2 P
u = — +
* '

A
2
P K

2
Rrre M
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The general solution is

R
M

C
2 P

u = A. cosh MY + A„ sinh MY- + — +
1 ^ MP M R

T
.

re M

with boundary conditions u = at Y = + 1, one obtains

7> r -ttM 2 P
= A, cosh M + A~ sinh M + —7; +

1 z MP ML
re M

R
M C

2 . P
= A., cosh M - A_ sinh M + —7 +*

1 Z MP ML
Hence, re M

H- °

A, » -
1 A C

2

1 cosh M (1 + ~2~"^
MP HL

re M

Therefore, the solution of equation (AIII-7) is:

cosh MY /

R
M °2 P x

R
M °2 P

U " " co=?h E ^ 2 '

+
2 '

+
2 '

+
2cosn ii * ^ ^ *

re M re M

f

R
^ °2 —L-Wn cosh kY

^
(AIII-8)= v P mVu ~ coshK;

re M

du M sinh MY /

R
M °2 P n (iIII-9)

dY " " ooshM ^2
P Vhmre M

Substituting Y = + 1 into equation (AIII-9), one obtains

dux M sinh M ,

R
M °2 P N

dPY=l
=

" cosh M (~2~~ + T^ (AIII-10)
M Pr i*i R.

e M

du
x M sinh M / M 2 P N

dY }Y= -l " cosh M (~2— + TZT* (AIII-11)
M Pr M R.

u e M
Hence,

du \ du \

dY ;Y=l = " dY^Y=-l (AIII-12)
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Substituting equation (AIII-12) into equation (AIII-6)

to evaluate Co, one obtains

2 1 qun ? 1 f"_l_ /_1_ JLn oun
Pr

e
" H^

2
«r'Y-l

+^ " (^ + cp
2

) LEM S2
"

»!
J « J *-1

P / 1
N
CPo cp/J4 92 *1

r_L £u^ _L1 ^1 /_1_ _L\f"_i. du\
LRM

dY ;Y=l
+

R
2j "

(c?
x

+ c?
2

) > 2
" 9! LRM dY ;Y=l-

J. 1 du

CO, 4-

UK dY ;Y=l
+

R
2j Lcp

2
" c?

1
+ cp

2

V
co
2

" cp
1
'J

i f-L zH) 2.1 d i " ^2 1

LR
Tv ,

dY ;Y=l
+
^2J L <d, + cp Jo

2
LRM

2
j

_1_ duN _r_ i

Substitution of equation (AIII-10) into this equation yields

c „ , ... _,... .. P.. 0,
- + ~— J +

R T

'

2 2 r K sinh K / "Ii 2 P > _P_1

?
re

=
<p + c

2
L" RM

cosh M V p
+
H
2
r

t
/

+
P
2J

re H K

2I-. sinh K
H
K °2 / K sinh K x 2 P

(^ +>
2 ).\! cosh I,

M2p
"

+ "
M2 cQsh M Ccp

x
+ cp

2
) 2

re M

_2_ d +
2

P ^
(cDn + CD )h coth M

re v 1 '2'
ST) "

2h co oh K - 2

(cp-, + cdT)M coth M ^2Rh

2M coth H - 2

?
re

=

<<?1 + *2
)K COth K + 2

R
2 (AIII-13)

Substituting this result into equation (AIII-8), there results
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,\ 2 M coth M - 2 _J_ P w , cosh MY x

U
" \.2 (cp, + co )K coth M + 2 „2

+
\,2C

A cosh MJ

M w l ' 2 RM M RM

2M coth M-2 + (cp-, + cp )M coth M+2 , __.
r / 1 2 w , cosh i\Y/ x ^_ w. cosn im \

.2 ^ (cp, + cpp)^ coth M + 2 '^ " cosh M'MR
M

(co, + cp + 2)l-i coth M , ._,vvl /. cosh i'IY \

t
2_ / \,, , . .,. ,, cosh MM Rv (cp, + cp

2
Jh coth M+2

T5 CP, + C0 o + 2 , ,,„
r 1 2 / .. , cosh i-IY

x

= > -o
' 7 T~ -r—; r (coth M - —:—;—r—

)

M R
T

. (cp, .+ o Jr- coth L + 2 v sinn M

P x / .. . coshKYN
= r- 9. (coth M - . , v - jM RN 1 v sinh K '

(-^)(— ) = ^ (coth M -
cos

£ jf )

vlT
1

P
M sinh M (AIII-14)

(4-15)

wnere

cp
1

+ cp
2

+ 2

§
1

=
(cp

1
+ cp

2
)K coth M+2 (4-19)

The derivative of equation (AIII-14) is

,- - P §. sinh MY
du 1
dY " ' R„ sinh MM

(AIII-15)

Substituting equation (AIII-12) into equation (AIII-5), one

obtains

^ cp^ RM
" ^cp

2
" cp^ RM

dY^Y=l
+
R
2 ^

2
" ^M

M
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Substituting equation («.III-10) into this, one obtains

°1 * a
2 fl K sinh K ,^M 2 L coth M - 2 _|_ P x

c
1

- q>2
R ~ " RM cosh M V 2 (o

1
+ o

2
)k coth K + 2

R
2

+
2 ;

M
x

M

P
+"

2

4
(cp, + cp

2
+ 2) M ccth M

p
+

M R
T

2
coth M (o

x
+ cp

2 ) K coth h + 2 " R
2

rl JKL

~ ~ Q
l 2

+
2

fl ?1 " ?2
p

RM
"
9l

+ cp
2 (1 - §

1
) ~2
RH

cp^ - o
2

(o-, + qjp)M coth K+2 - (cp, + cp
2

+ 2) p

cp, + cp
2

(o, + cp
2 J M coth K +2 2

ft

cp
1

- c?
2

(M coth M - l)(cp
1

+ cp
2 ) p

cp^ + cp
2

(cp-, + cp
2

) I-i. coth X + 2
R
2

M

"K - 2 } K
, h coth ft - 1 . J.

(o
1

+ ©
2
)ft coth K+2 ^ M ;

R
2

M

§
2

(i - coth M) -|
RM (AIII-16)

where

$„ =
(cp

x
- cp

2
) M

2 (cp-, + cpp)l-i coth LI + 2
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Substitute equations (AIII-15) and (AIII-16) into equation

(AHI-la), one obtains

H
. - P $, sinh MY

p
= -

5J
( R

K
sinhJ. ) " 3

M

1 P
+ $ (- - coth MJ -p

P ! 1
§ n sinh MY

„2 L sinh M 2
V M

\
H , - r §, sinh MY - 1\^i^

I

X
. . M + § (± - coth M) - Y iHP -2 L sinh h 2

v h J
y r

t,-

(AIII-17)

(4-16)

If© = cp

2
=cpl.e.,$

2
= 0, then equation (AIII-16) becomes

H . . ,-$_ sinh MY

H = " 2 L sinh M
y P RM

- Y

•u~~~ * 2 CO + 2 rn + 1where $, = ttt m o = ~~
1 2oM coth n + 2 co M coth M + 1

5c 1 _L f ( fQ+1 ) sinh L-Y Y l
H ?

=
2 L(cpM coth K+l) sinh M "

J
y * ^M (AIII-18)

Equation (AIII-18) corresponds to equation (15) in Chane

and Lundgren's paper
L*

•
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From equation (2-1)

J = curl H
oy

K

(AIII-19)

\roin equation (AIII-17)

d S
x

dY
R

-MS. cosh MY

L sinh M
- 1 i

M

dH H d H
£ .. _£ x

dy L dY

E P -*!
V

If, cosh MY

LRK
r 1

: - - ii
L smh M J

(AIII-20)

Substituting equation (AIII-20) into equation (AIII-19), one

obtains

H P r *,M cosh MY,v
1 -

L R

_
(

linh M J

or

J =
2 " a a u, H

e y

H P r $. M cosh MY,
-J: 2_ fx _ -J 1
a

**e
H
y L R

2 L sinh M J

aL R. r

L au, — h
e v

$_ M cosh MY

(1 -^—TT-)sinh M

x p
§ n M cosh -MY

2^R^ (1 "sinhk

« §, M cosh MY
(1 -

1 ^ v v )

)

M2il
sinn !•]

M

(4-17)
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Magnetohydrodynamics (IviHD) is the science of the motion

of an electrically conducting incompressible fluid in the

presence of a magnetic field. The fundamental equations of

MHD are the modified electromagnetic and hydrodynamic equa-

tions. Hartmann first considered the steady, laminar, fully

developed flow of an incompressible electrically conducting

fluid between two electrically non-conducting infinite para-

llel plates. Perpendicular to these plates a magnetic field

is applied. Constant properties of the fluid and walls are

assumed. Modified Hartmann flow is the flow with the effect

of wall electrical conductance. The velocity profile is

solved with the modified Kavler-Stokes equation and the Ohm's

law for a moving fluid.

The heat transfer problems in walls and in the fluid

are solved simultaneously with appropriate matching conditions

at the fluid-wall interfaces. The influence of finite wall

electrical conductivity is considered also. The flow is as-

sumed to be thermally and hydrodynamically fully developed

and constant heat flux boundary conditions are applied at the

outer surfaces of the walls. It is shown that the influence

of the wall conductivity on the heat transfer is opposite for

the generator and accelerator modes of operation.




