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Abstract
Many calls to improve science education in college and university settings have focused on

improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergo-

ing significant changes as a result of the emphasis on scientific and engineering practices,

crosscutting concepts, and disciplinary core ideas. This framework of “three-dimensional

learning” is based on the literature about how people learn science and how we can help

students put their knowledge to use. Recently, similar changes are underway in higher edu-

cation by incorporating three-dimensional learning into college science courses. As these

transformations move forward, it will become important to assess three-dimensional learn-

ing both to align assessments with the learning environment, and to assess the extent of the

transformations. In this paper we introduce the Three-Dimensional Learning Assessment

Protocol (3D-LAP), which is designed to characterize and support the development of

assessment tasks in biology, chemistry, and physics that align with transformation efforts.

We describe the development process used by our interdisciplinary team, discuss the valid-

ity and reliability of the protocol, and provide evidence that the protocol can distinguish

between assessments that have the potential to elicit evidence of three-dimensional learn-

ing and those that do not.
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Introduction
From “A Nation at Risk” to “the Gathering Storm” to “Engage to Excel”, there is a clear need to
improve STEM education for both the preparation of future STEM professionals and for the
development of a scientifically literate citizenry [1–4]. In response to these reports, several
national level initiatives in K-12 and higher education were devised and implemented. For
example, three sets of science education standards were developed for K-12 science education,
the most recent being the Next Generation Science Standards (NGSS) [5–8]. While there is not
a coherent approach to the design and implementation of curriculum reform in higher educa-
tion, there are a number of influential reports. The recent “Discipline-Based Education
Research” report summarized the current state of science and engineering education in higher
education, described the existing research on education in science and engineering fields, and
specified areas of research that should be expanded [9]. A following report, “Reaching Stu-
dents,” discussed research-based classroom pedagogy strategies for practitioners [10]. Other
national- level initiatives include the “Vision and Change” report for undergraduate biological
sciences and the reinvention of Advanced Placement (AP) courses in biology, chemistry, and
physics [11–15].

To date, much of the research on transformation of higher education STEM courses has
focused on incorporating research-based pedagogies in college classrooms, laboratories, and
discussion sections. It is now clear that “active learning” can improve overall course grades and
retention in STEM courses, particularly for underprepared and underrepresented students
[16], but what is less clear is what students are learning in these courses. There is ample evi-
dence that students (even graduate students) emerge from STEM courses (even those using
“active learning” techniques) with profound misunderstandings of important ideas in many
disciplines, and there is little evidence that students are able to transfer their knowledge to new
situations [9]. Our work considers not only what students should know, but also how they
know it and how they can use that knowledge. We are considering ways in which both the cur-
riculum and assessment of student learning should be transformed in addition to incorporating
research-based pedagogical strategies.

We (and others) have previously argued that one way forward is to use the best available
synthesis of evidence about student learning and the resultant vision for the future of science
education [17,18]. Advocates suggest that we use the National Research Council’s (NRC)
report “A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core
Ideas” (herein referred to as the Framework) to help us restructure our science curricula,
instruction, and the ways we assess student learning in higher education [19]. The Framework
supports the idea of building scaffolded curricula around progressions of disciplinary core
ideas, using scientific practices, and emphasizing crosscutting concepts (herein referred to as
three-dimensional learning, and defined in more detail below). At Michigan State University
(MSU), we are engaged in such a transformation effort. Here we report the development of a
protocol to determine the extent to which assessments from gateway courses in biology, chem-
istry, and physics provide opportunities for students to engage with the three dimensions
defined in the Framework. This protocol can be used to evaluate assessment tasks, characterize
entire assessments, and guide faculty in developing three-dimensional assessment tasks.

Three-Dimensional Learning
The Framework synthesized much of the literature about how students learn science into a
vision for how science and engineering education should be implemented. The three dimen-
sions outlined in the Framework are:
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• What students should be able to do with their knowledge. The Framework describes eight “sci-
entific and engineering practices” that can be thought of as the disaggregated components
of inquiry. These include ideas such as Developing and Using Models, Constructing Explana-
tions, Planning and Carrying out Investigations, and Engaging in Argument from Evidence. It
is precisely these practices that can engage students in the processes of science and engineer-
ing, by using their knowledge to model systems, explain phenomena, and design solutions to
problems.

• Ideas common across scientific disciplines. The Framework identified seven “crosscutting
concepts” that span science disciplines. The concepts include ideas such as Cause and Effect,
Systems and System Models, and Structure and Function. These concepts can be thought of as
“ways of thinking” about phenomena that have the potential to allow students to make con-
nections across disciplines.

• Concepts essential to the study of a discipline. The third dimension in the Framework suggests
that students should develop their knowledge around “disciplinary core ideas” rather than
try to assemble their understanding of important ideas from a large number of disparate
facts and fragments of knowledge. We know that disciplinary experts have a great deal of
knowledge at their disposal, and it is organized and contextualized around a few important
concepts [20]. By focusing learning around the core ideas of the discipline, students are given
more support to make connections among the concepts and build a more robust framework
of knowledge. Evidence suggests that disciplinary core ideas should be developed over time
with carefully scaffolded progressions of learning activities and formative assessments [20].

The authors of the Framework emphasized that the three dimensions should not be taught
separately, but should instead be integrated in all aspects of learning, which includes instruc-
tion, curriculum, and assessment.

While the Framework was written for a K-12 audience, the findings almost certainly apply
to college classrooms, as there is little reason to believe that students completing high school
learn in a different way than beginning college students (who, in many cases, were completing
high school a few months earlier).Recent changes to AP courses have shifted to the idea of
blending scientific practices and core ideas [13–15]. Additionally, both the DBER Report and
Vision and Change have highlighted elevating scientific practices to the same level as content
[9,11]. The primary reason for the restriction of the Framework to K-12 was that the commit-
tee’s charge was limited to the K-12 education system. The approach outlined by the Frame-
work contrasts sharply with the topics-driven curriculum aligned with chapters in textbooks
currently found in many college science classrooms.

Drawing from the Framework, we have argued that the idea of three-dimensional learning
has the power to address a number of shortcomings that exist in higher education [17]. It
allows departments to address the “mile wide, inch deep” problem by first determining the cen-
trally important ideas and then focusing the curriculum on those goals [21]. Using the Frame-
work as a guide for curriculum development or revision has the potential to change the
conversation from asking questions about what can be removed from the curriculum, to what
must we teach for students to achieve the goals we have set for them, a fundamental idea in
backward design [22].

By identifying and focusing on the centrally important concepts within (core ideas) and across
(crosscutting concepts) the disciplines, we can help students build a robust understanding of sci-
ence. This organization of understanding around core ideas mirrors how experts think about their
disciplines [20]. Additionally by engaging students with these concepts in the same ways that sci-
entists do (scientific practices), students learn to apply their knowledge to new situations, a key
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goal in higher education [9]. This approach allows students the opportunity to develop an under-
standing of the nature of evidence, models, and explanations in science, capabilities that can serve
them well in a world where scientific competence is increasingly necessary [23,24]. Engagement
with all three dimensions also allows students to gain insight not only into the concepts that scien-
tists deem important, but also into why scientists decided these concepts are important in the first
place, which has implications for affecting students’ epistemology toward science [25].

The research presented here focuses on how course assessments in biology, chemistry, and
physics can be used to elicit evidence of student engagement with the three dimensions of the
Framework, which requires identifying characteristics of assessment tasks that align with cer-
tain criteria.

Focusing on Assessment
The Framework was designed to provide a vision for how science and engineering education
could build on accumulated research and evidence from the learning sciences. It also provided
the basis for the NGSS, operationalized as a set of performance expectations of increasing
sophistication over time. Each performance expectation provides a three-dimensional descrip-
tion of what students should be able to do with their knowledge [8]. The transformation efforts
at MSU follow this approach by working to blend the scientific practices, crosscutting concepts,
and core ideas into the gateway science courses. To incorporate more opportunities for three-
dimensional learning in our courses, we must communicate to our students the importance of
these ideas, which means we must change the ways that student performance is assessed
[26,27]. The assessments must match the expectations we have for students, meaning that
assessment systems focused on the three dimensions must be developed.

At the introductory level in higher education, assessments tend to focus on factual recall,
procedural knowledge, and algorithmic problem solving [28]. While there have been a number
of approaches to changing the types of assessments used, none address three-dimensional
learning. For example, beginning in the late 1980’s with the development of diagnostic tests,
followed by the more famous concept inventories (e.g. the Force Concept Inventory in physics,
the Chemistry Concepts Inventory in chemistry, and the Genetics Concepts Assessment in biol-
ogy), attempts to develop selected response tests based on research on student thinking resulted
in multiple choice questions about concepts along with distractors that encompass typical
incorrect student ideas or misconceptions [29–32]. These tests and inventories are productive
for investigating when students learn more scientifically normative ideas or concepts [16,33].
However, these types of assessments were never designed to determine if students can use
these ideas in the same ways that scientists do, nor do they assess whether students can use
their knowledge. In short, while experts certainly can do well on these tests, doing well on such
a test does not provide evidence that students can use those ideas to predict or explain phe-
nomena (i.e. to do science). Therefore, while diagnostic tests and concept inventories are
important and have proven useful in the past, their appropriateness for assessing three-dimen-
sional learning is likely limited and should be evaluated (see Discussion).

Another approach to the development of assessments in order to provide information about
student understanding is to invoke Bloom’s taxonomy [34,35]. This approach involves design-
ing questions to align with a set of hierarchical levels using action verbs such as “select” for low
levels and “construct” for upper levels. Indeed, Bloom’s taxonomy is widely used, especially in
post-secondary biology education research and faculty professional development as well as in
chemistry and physics [36–41]. However, the meaning of Bloom’s descriptors can be unclear
(particularly from the perspective of students completing the assessments), fine distinctions
between the levels are difficult to justify, and faculty value more than just the level of a question
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[42,43]. Further, recent reports of research on science teaching and learning do not include
Bloom’s taxonomy as a useful construct for developing learning objectives or assessing student
learning [9,11,19,44,45]. Yet Bloom’s taxonomy is useful to clarify the distinction between
learning facts and deeper conceptual understanding. However, the scientific practices outlined
in the Framework are based on observation and analysis of actual scientific practice, suggesting
that they can be used to more systematically characterize what we want students to know and
be able to do with that knowledge.

More recently, the NRC report “Knowing What Students Know” proposed the idea of
assessment as an evidentiary argument [46]. An assessment should elicit evidence about the
construct that is being assessed, and from that evidence, an argument about student learning
can be constructed. One approach to assessment as an evidentiary argument is Evidence-Cen-
tered Design [47]. In this approach, one defines a construct to be assessed, decides what is con-
vincing evidence that students understand this construct, and designs assessment tasks that
can elicit this evidence. The student responses can then be analyzed using a range of methods,
such as using a rubric or applying item response theory. The result is an iterative process that
guides the development of assessment tasks that address the outcomes of interest

Our work treats assessment as an evidence-based argument; the constructs of interest are
the Framework’s three dimensions and our objective is to be able to recognize assessment tasks
that can elicit evidence of three-dimensional learning. As we discuss later, our intent is to assess
the potential of assessment tasks to elicit such evidence; what we cannot do is evaluate the qual-
ity of the evidence that might be produced from that task, because we cannot know what stu-
dents will do when faced with such tasks. Evaluation of the evidence is left to the developers of
the assessment tasks.

Although the NRC report “Developing Assessments for the Next Generation Science Stan-
dards” [8,45] summarizes existing literature and provides guidance for assessment developers
(including recommending Evidence-Centered Design), few examples of three-dimensional
assessment tasks are currently available. Notably, the authors of that report state that selected
response tasks should not be the sole method of collecting information about student learning,
as there is ample evidence that selected response tests overestimate the ability of students to use
their knowledge [48]. The NRC report further concludes:

“CONCLUSION 2–1 [. . .] assessment tasks will generally need to contain multiple compo-
nents (e.g., a set of interrelated questions). It may be useful to focus on individual practices,
core ideas, or crosscutting concepts in the various components of an assessment task, but,
together, the components need to support inferences about students’ three-dimensional sci-
ence learning. . .” [45]

Ultimately, the report’s authors recommend that a combination of constructed response
tasks, selected response tasks, and projects should be used to assess three-dimensional learning.
Much of this advice is directed towards assessment developers, or offered as a guide for devel-
oping formative assessments in small classrooms. However in college level science courses, fac-
ulty, typically disciplinary experts without formal experience in assessment design, write most
assessments. Particularly in large enrollment gateway courses, selected response assessment
tasks are most often used to assess fragmented bits of knowledge and basic skills (e.g. dimen-
sional analysis). If transformation efforts are to succeed, the assessments used in courses must
reflect the transformation goals. It is important to characterize how existing and future assess-
ment tasks have the potential to elicit evidence that the student engaged with a scientific prac-
tice, crosscutting concept, or core idea (for simplicity, the phrase “have the potential to elicit
evidence that the student engaged with” will herein be shortened to “elicit”). We also will need
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to provide guidance for faculty about ways to develop three-dimensional assessments. To help
meet these needs, we developed the Three-Dimensional Learning Assessment Protocol
(3D-LAP), which describes criteria for each scientific practice, crosscutting concept, and core
idea that define what is required for an assessment task to elicit that particular construct.
Potential uses for the 3D-LAP include 1) the identification of individual assessment tasks as
three-dimensional, 2) the characterization of course assessments, and 3) faculty development.

Our goal was to develop a protocol that allows users to identify assessments that can elicit
evidence of three-dimensional learning. In this paper, we describe how we developed the proto-
col and provide evidence that the protocol can distinguish between assessments that can elicit
the ideas in the Framework and those that do not.

Methods

The Three-Dimensional Learning Assessment Protocol (3D-LAP)
The development process began with a review of the Framework, NGSS, and supporting litera-
ture [8,19,49–52]. In the initial phase of this work, the development team (consisting of disci-
plinary experts, many of whom identify as discipline-based education researchers, in biology,
chemistry, and physics) focused its discussions on the scientific practices and crosscutting con-
cepts as outlined in the Framework (Table 1). The engineering-specific practices defined in the
Framework were excluded from consideration because of our interest in developing a protocol
that was applicable to assessments in science courses (and because we didn’t want to overreach
our expertise, which does not include engineering). Representation of experts from biology,
chemistry, and physics on the development team was essential for arriving at an understanding
of what it means for an assessment task to elicit a particular scientific practice that is applicable
across disciplines. In addition, the very nature of crosscutting concepts demands input from
across these three disciplines to reach a consensus on their key features that can be used to
identify their presence in assessments.

In parallel, members of the development team and colleagues from their respective disci-
plines began identifying and negotiating the core ideas of each discipline. Inclusion of faculty
beyond the development team in this part of the process provided an opportunity to consider
more diverse perspectives in the identification and elaboration of core ideas representative of
the views of disciplinary faculty at our institution. Furthermore, development of the 3D-LAP
was part of a larger initiative to transform the introductory science courses in each discipline
[53]. Faculty from each discipline identified a set of core ideas and criteria that assesses those
ideas. We anticipate that users of the 3D-LAP may choose to identify their own set of core
ideas and criteria, but provide our lists as examples of how the ideas can be operationalized.

Table 1. The scientific and engineering practices and crosscutting concepts as listed in the Frame-
work [19].

Scientific and Engineering Practices Crosscutting Concepts

1. Asking Questions (for science) and Defining Problems (for
engineering)
2. Developing and Using Models
3. Planning and Carrying Out Investigations
4. Analyzing and Interpreting Data
5. Using Mathematics and Computational Thinking
6. Constructing Explanations (for science) and Designing
Solutions (for engineering)
7. Engaging in Argument from Evidence
8. Obtaining, Evaluating, and Communicating Information

1. Patterns
2. Cause and Effect: Mechanism and
Explanation
3. Scale, Proportion, and Quantity
4. Systems and SystemModels
5. Energy and Matter: Flows, Cycles, and
Conservation
6. Structure and Function
7. Stability and Change

doi:10.1371/journal.pone.0162333.t001
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Initially, we used the descriptions of scientific practices and crosscutting concepts found in
the Framework to develop criteria for determining whether an assessment task elicits a particu-
lar scientific practice or crosscutting concept. These criteria were applied to a range of assess-
ment tasks, including textbook questions, tasks from reformed curricula, and tasks we
determined exemplified particular scientific practices, crosscutting concepts, or core ideas. By
using these assessment tasks, we were able to describe a range of tasks that faculty use for exam-
inations and refine the criteria. Discrepancies between our negotiated understandings of the
scientific practices, crosscutting concepts, and core ideas, and the evaluation of assessment
tasks using the criteria promoted revisions of the criteria. This process was repeated until the
development team was satisfied that the criteria were consistent with our negotiated under-
standings of the three dimensions. The result of this process takes a different form for each of
the three dimensions: each scientific practice includes a list of 2–4 criteria, all of which must be
met in order for a task to elicit that scientific practice; each crosscutting concept has a brief
description of what is necessary for a task to elicit that crosscutting concept; and each core idea
comes with a list describing ideas that must be involved in the task to qualify as eliciting a core
idea (only one item from the list must be aligned to count). The protocol itself can be found in
S1 Protocol.

Throughout the development process, we encountered examples of assessment tasks that
satisfied some but not all of the criteria for a particular scientific practice, or did not fit the
description of a particular crosscutting concept or core idea. This was especially common for
scientific practices that include reasoning as a central element, such as Developing and Using
Models and Constructing Explanations. Despite meeting most criteria for the practice, the rea-
soning component was often absent in assessment tasks. To distinguish between assessment
tasks that fully met the criteria for a particular scientific practice and those that satisfied most
of the criteria, we experimented with “explicit” and “implicit” subcategories. Likewise, we char-
acterized the presence of a particular core idea (or crosscutting concept) as “explicit” or
“implicit” based on whether the assessment task had the potential to get students to use the
core idea (or crosscutting concept) or was simply related to the core idea (or crosscutting con-
cept). However, it became clear that this approach was ineffective because the ultimate goal is
to help faculty construct assessment tasks aligned with three-dimensional learning. Hence cod-
ing assessment tasks that could, at best, invoke “implicit” evidence are not meaningful in this
context. Therefore, the possible classification of assessment tasks as “implicit” or “explicit” was
abandoned as an element of the 3D-LAP.

Below, we discuss the development of the criteria for each of the three dimensions separately
and the implications for developing and characterizing assessments.

Scientific Practices
Development of the criteria for identifying the scientific practices in assessments was guided by
the question “What specific components must be present in a task in order for it to potentially
elicit evidence of student engagement with a given practice?” The development team consid-
ered what it means to engage in each of the eight scientific practices (Table 1) defined in the
Framework and negotiated an understanding of what each of the practices entails. The engi-
neering-specific practices of defining problems and designing solutions were not considered in
development of the 3D-LAP as our focus was assessments in biology, chemistry, and physics.

During the development of the 3D-LAP, it became apparent that separate criteria were
needed to determine if an assessment task elicited a scientific practice depending on whether
students were asked to construct or select a response. While assessment tasks that require a
constructed response provide the strongest evidence of three-dimensional learning, large
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enrollment college courses and a concomitant lack of resources for scoring often necessitate
the use of selected response (e.g. multiple choice) tasks. Because the scientific practices typically
require that students “construct”, “develop”, or “engage”, we developed parallel criteria for the
scientific practices for both constructed response and selected response assessment tasks. The
development team both recognizes and supports the idea that selected response tasks are not
sufficient to provide strong evidence of student engagement with scientific practices as noted
in the NRC report, “Developing Assessments for the Next Generation Science Standards”,

"Traditional approaches [. . .] which heavily rely on selected-response items, will not likely
be adequate for assessing the full breadth and depth of the NGSS performance expectations,
particularly in assessing students’ proficiency with the application of the scientific and engi-
neering practices in the context of disciplinary core ideas." [45]

Separate criteria were developed for constructed and selected response tasks because the
ways in which students can engage with the scientific practices differ significantly. Table 2
compares the criteria for Developing and Using Models to illustrate the differences between
constructed- and selected-response tasks that elicit scientific practices. Selected response tasks
that meet these criteria do not provide strong evidence of three-dimensional learning, however,
we included these criteria because selected responses are widely used in assessments.

Adaptation of the scientific practices presented in the Framework became necessary as we
defined what students would be asked to do to provide evidence of engaging with the practices
on assessments and then actually applied the criteria developed to assessment tasks. For exam-
ple, we found significant overlap in the criteria generated for the scientific practices of Con-
structing Explanations and Engaging in Argument from Evidence. It was sufficiently difficult to
produce criteria that clearly distinguished between the two practices over the range of assess-
ment tasks analyzed across the three disciplines that we ultimately merged the two sets of crite-
ria into a single practice in the 3D-LAP: Constructing Explanations & Engaging in Argument
from Evidence. The distinction between explanation and argumentation is unclear as research-
ers in the field continue to discuss whether or not explanations and arguments need to be dis-
tinguished [49,54,55].

The 3D-LAP does not distinguish between summative and formative assessments but is
applicable to both types. Hence, we adapted several other scientific practices. For instance,
Obtaining, Evaluating, and Communicating Information was reduced to simply Evaluating
Information because in the summative assessment tasks collected from introductory biology,
chemistry, and physics lecture courses, we found no examples where students were asked to

Table 2. Constructed and selected response criteria for the scientific practice ofDeveloping and
UsingModels from the 3D-LAP.Differences are highlighted in bold.

Constructed Response Criteria Selected Response Criteria

1. Question gives an event, observation, or
phenomenon for the student to explain or make a
prediction about.

1. Question gives an event, observation, or
phenomenon for the student to explain or make a
prediction about.

2. Question gives a representation or asks student to
construct a representation.

2. Question gives a representation or asks student
to select a representation.

3. Question asks student to explain or make a
prediction about the event, observation, or
phenomenon.

3. Question asks student to select an explanation
for or prediction about the event, observation, or
phenomenon.

4. Question asks student to provide the reasoning
that links the representation to their explanation or
prediction.

4. Question asks student to select the reasoning
that links the representation to their explanation or
prediction.

doi:10.1371/journal.pone.0162333.t002
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Obtain information from an external source. We also were unable to produce exemplar tasks
for Obtaining Information suitable for summative assessment. We eliminated Communicating
from the practice because, arguably, every response could be construed as communicating
information, although not necessarily in keeping with the vision of the Framework. Planning
and Carrying Out Investigations was reduced to Planning Investigations because it was unlikely
that students in a lecture course would be asked to carry out an investigation as part of a sum-
mative assessment task. Finally, we removed Asking Questions from the scientific practices for
selected response tasks because we found no tasks nor could we construct tasks that addressed
this practice in a meaningful way. The most closely related task asked, “Which of the following
is a scientific question?” Such a task, however, provides no evidence that students can generate
productive scientific questions when presented with data, observations, or phenomena. Our
adaptations of the scientific practices outlined in the Framework reflect differences in purpose
between the Framework and the 3D-LAP. The scientific practices and their descriptions in the
Framework are intended to guide curriculum development, instruction, and both formative
and summative assessment, whereas the 3D-LAP was developed as a tool to identify the poten-
tial of summative and formative assessment tasks to engage students in three-dimensional
learning.

The final list of scientific practices in the 3D-LAP and the associated criteria can be found in
S1 Protocol.

Crosscutting Concepts
In the initial negotiations of the crosscutting concepts, we followed an approach similar to that
for the scientific practices. We defined criteria for each of the crosscutting concepts found in
the Framework (Table 1) based on descriptions found therein. These criteria were used to char-
acterize existing and new assessment tasks across the three disciplines and were then iteratively
revised based on feedback as the development team applied them to assessment tasks. As with
the practices, it was important to reach agreement among the disciplines about the meaning of
each crosscutting concept and how that meaning would be operationalized. Over time, it
became clear that using a list of criteria, all of which must be satisfied to identify the presence
of a crosscutting concept (similar to the scientific practices), was limiting. There were multiple
instances of assessment tasks that members of the development team thought aligned with a
particular crosscutting concept yet failed to meet all of the criteria. This prompted the develop-
ment team to rethink the appropriateness of using a list of criteria to define the knowledge
encompassed by crosscutting concepts that span disciplines.

In contrast with the scientific practices, which provide ways for students to use their knowl-
edge (actions), the crosscutting concepts are elements of that knowledge with explanatory
value across the disciplines (ideas). We ultimately developed brief descriptions of what is
needed to elicit each crosscutting concept to help coders identify components that should be
present. No differentiation was made in the descriptions for constructed and selected response
tasks. An example of these descriptions is

To code an assessment task with Structure and Function, the question asks the student to
predict or explain a function or property based on a structure, or to describe what structure
could lead to a given function or property.

We made one modification to the crosscutting concepts found in the Framework (Table 1).
In the Framework, the ideas of scale, proportion, and quantity are combined in a single cross-
cutting concept: Scale, Proportion, and Quantity. The development team determined that the
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concept of scale is sufficiently different from the ideas associated with proportion and quantity
to merit independent consideration. Hence, we separated scale from proportion and quantity
to create two independent crosscutting concepts in the 3D-LAP: Scale and Proportion and
Quantity. The complete set of criteria for the crosscutting concepts developed for the 3D-LAP
is found in S1 Protocol.

Core Ideas
A different approach from the one used for the scientific practices and crosscutting concepts was
required for the development of the core ideas criteria in the 3D-LAP. In the cases of scientific
practices and crosscutting concepts, we were able to use those found in the Framework with minor
adaptations. In contrast, the disciplinary core ideas for the Physical Sciences and the Life Sciences
in the Framework, even for grade bands 9–12, do not align directly with the content or organiza-
tion by discipline of many university science courses. Consequently, the development team deter-
mined that new lists of the centrally important ideas for each discipline were needed. In the
3D-LAP, we refer to these as “core ideas” to distinguish them from the “disciplinary core ideas”
contained in the Framework. The requirements that our core ideas should satisfy were informed
by the criteria outlined for the disciplinary core ideas on page 31 of the Framework. In order for a
concept to qualify as a core idea in the 3D-LAP, it must have 1) disciplinary significance, 2) the
power to explain a wide range of phenomena, and 3) potential for generating new ideas.

Development of the 3D-LAP was part of a larger effort to transform the gateway science
courses at our institution, and as such, it was important to engage a broad sample of disciplin-
ary faculty beyond the development team, particularly those involved in teaching these courses.
Shifting the focus in assessment from what students know to how students use their knowledge
to explain and predict phenomena begins with discussions among faculty about what knowl-
edge they value. Disciplinary faculty were invited to participate in defining the core ideas for
their discipline so that the resulting product would be valued and potentially used by faculty
beyond the development team as we try to expand the incorporation of three-dimensional
learning into assessment and instruction [56]. In all three disciplines, groups of faculty at MSU
worked together to reach agreement on the core ideas within each discipline, guided in part by
national efforts [11,13–15]. Members of the 3D-LAP development team participated in this
process as peers. The ways in which faculty outside the 3D-LAP development team were
involved in identifying and defining cores ideas played out differently in each discipline: One
discipline had broad participation from its faculty in discussions about the core ideas; another
created committees responsible for the two gateway courses that worked to develop the core
ideas; the third discipline had a small working group develop the core ideas and then solicited
feedback from disciplinary faculty. Examples of one core idea developed by each discipline are
provided in Fig 1. In order for a task to elicit a core idea, the task must align with either the
main definition or one of the bullets under it.

While these core ideas are useful to our transformation effort and to the work of the devel-
opment team, we readily accept and encourage the possibility that other groups may develop
and use a set of core ideas that is relevant to their project or discipline. As with the crosscutting
concepts, the criteria with which we characterized the core ideas are descriptive because they
have a negotiated meaning within their respective disciplines. Research demonstrates that dis-
ciplinary experts are able to readily identify the underlying principles that govern an assess-
ment task; principles from which most of our core ideas stem [57]. This is likely a result of
disciplinary experts having negotiated the meaning of these concepts as part of the process of
joining their community of practicing scientists [58]. Our complete set of core ideas and their
criteria are found in S1 Protocol.
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Using the 3D-LAP

Characterizing Assessments
The first goal for the 3D-LAP is to characterize existing assessment tasks in biology, chemistry,
and physics courses. An assessment task coded as eliciting a scientific practice, must meet all

Fig 1. Examples of the criteria found in the 3D-LAP for core ideas, one each from biology, chemistry, and physics.

doi:10.1371/journal.pone.0162333.g001
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the criteria for a particular practice. Assessment tasks coded as eliciting a crosscutting concept,
must align with the brief description given for the crosscutting concept. Assessment tasks
coded as eliciting a core idea, must align with either the primary description or one of its sub-
bullets. Fig 2 shows a constructed response assessment from introductory biology that was
characterized as eliciting each of the three dimensions (i.e. it is a “three-dimensional task”).
Numerous examples (13 from each discipline) of coded assessments from biology, chemistry,
and physics are provided in the S1 Supporting Information.

In each of the disciplines, there is at least one core idea that is similar to a crosscutting concept
(such as the ones in Fig 2). In these cases, there was some concern that certain tasks would “elicit
two dimensions for the price of one”. The development team determined that disentangling the
criteria for the crosscutting concept from the criteria for the core idea (and vice versa) was unnec-
essary because a task that elicits one can certainly elicit the other. In each case of overlap between
a crosscutting concept and core idea, the criteria are different between the two, so it is possible
for tasks to be coded with one and not the other, though they are often coded together.

Examining each assessment task on an exam (or similar assessment) using the 3D-LAP
allows us the opportunity to characterize entire assessments (our second goal). Fig 3 shows a
representation of two chemistry exams that were coded using the 3D-LAP. These exams were
specifically chosen because exam A was made up of assessment tasks like those found in most
textbooks, while exam B was taken from a course that employed a research-based curriculum.
These exams were chosen specifically because they were expected to emphasize the utility of
the 3D-LAP: to identify assessments that have the potential to elicit evidence of three-dimen-
sional learning. When comparing the Chemistry A and B exams, the differences detected by

Fig 2. Assessment task from an introductory biology course that elicits evidence of three-dimensional learning. Panel A shows the parts of the task
that meet each of the criteria for the Developing and Using Models scientific practice (see Table 2). Panel B shows the parts of the task that meet the criteria
for both the crosscutting concept (Structure and Function, given in the text above) and core idea (Structure and Function, see Fig 1). Further analysis of this
task is provided in the S1 Supporting Information.

doi:10.1371/journal.pone.0162333.g002
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the 3D-LAP are apparent. The Chemistry A exam has few tasks that elicit one or more dimen-
sions whereas the Chemistry B exam has more examples of tasks coded with one to three
dimensions, with several coded with all three dimensions.

Characterizing assessments in this way can be used to compare courses over time (e.g., to
gather evidence that a course transformation was successful), to compare exams within a
course (e.g., to characterize what is being assessed in a course), and to compare exams between
courses within a discipline (e.g., to characterize where students are assessed on each scientific
practice within a degree program).

As part of our analysis, we tracked the percentage of total points associated with each task in
addition to the codes we obtained using the 3D-LAP. We argue that the number of points
assigned to certain tasks on an exam by instructors informs students about the relative impor-
tance of those tasks. We use this relative importance to demonstrate what percentage of points
on each exam elicits the three dimensions. Fig 4 shows the difference between two exams we
coded in each discipline. Like those in Fig 3, these exams were specifically chosen because the
A exams were made up of canonical assessment tasks, while the B exams were taken from
research-based curricula to emphasize the utility of the 3D-LAP. The exams shown in Fig 3 are
the same exams shown in the Chemistry portion of Fig 4, now scaled by the number of points
assigned to each task. Fig 4 shows that in each of the A exams, most of the points on the exam
are given to tasks with little potential to elicit more than one dimension. In contrast, each of
the B exams is dominated by tasks that might elicit evidence of two or three dimensions, with
at least 40% of the points being awarded for three-dimensional tasks.

Fig 5 shows another representation of the data, specifying the percentage of points on each
exam that are associated with tasks that might elicit each of the dimensions. We found that in
the A exams, all three disciplines award few points for tasks that elicit any dimension, with the
exception of the Physics A exam, where core ideas appeared in many assessment tasks. The
most likely explanation for the difference is that the physics core ideas are more fine-grained
that the biology and chemistry core ideas. As was discussed above, the core ideas were inten-
tionally developed to be meaningful and align with the discipline at our institution. Faculty in
physics argued that the governing principles that appear in introductory physics (e.g., New-
ton’s second law, Conservation of Energy) were prevalent in many assessment tasks including
those that asked students to solve canonical numerical problems. However, they conceded that
few problems of that type gave students opportunities to engage with scientific practices or

Fig 3. Comparison of two exams characterized using the 3D-LAP. The first row of each diagram shows the question number. In the last three rows,
blue, green, and red shaded cells, indicate there is evidence for a scientific practice, crosscutting concept, or core idea, respectively. Questions 21–23 on
the Chemistry B exam are constructed response. All other questions shown are selected response.

doi:10.1371/journal.pone.0162333.g003
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crosscutting concepts. Across all three disciplines, we see that the B exams assign substantially
more points to tasks that elicit scientific practices, crosscutting concepts, and core ideas.

Validity and Reliability
Here we establish the validity and reliability of the protocol for the purposes of characterizing
assessments as part of the transformation efforts at MSU. It is important to note that the proto-
col itself should not be considered valid and reliable for all possible datasets, because validity
and reliability are characteristics of analysis tools and data, together [59,60]. Therefore, we
coded exams from our dataset to investigate the validity and reliability for this project. Groups
conducting other studies should establish validity and reliability for their datasets. We provide
a model for doing so below.

Many types of validity and reliability testing are available, but not all are appropriate for the
3D-LAP. We describe the evidence that supports the face and content validity of the criteria for
our data. In the case of the 3D-LAP, our team of disciplinary experts and discipline-based edu-
cation researchers in biology, chemistry, and physics developed the protocol together, which
allowed us to operationalize the criteria across all three disciplines. Extensive negotiation took
place as part of an iterative cycle among the development team to develop the criteria for each
of the scientific practices and crosscutting concepts. When creating the criteria for the practices
and crosscutting concepts, both theory (e.g. the Framework) and practice (i.e. existing assess-
ment tasks) were considered at each phase of negotiation. A similar process was established
with the disciplinary faculty teams (in addition to the development team), which worked to
ensure that all aspects of the core ideas were included. For these reasons, we claim that the pro-
tocol with our dataset has both face validity and content validity.

Fig 4. Comparison of the percentage of exam points assigned to tasks that were coded with each of
the three dimensions for two exams per discipline. The Chemistry A and B exams are the same ones
shown in Fig 3.

doi:10.1371/journal.pone.0162333.g004
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To assess the reliability of the protocol with our data, we coded two exams per discipline
from our dataset with representative assessment tasks. These exams were specifically chosen
because we expected one exam to include very few tasks that elicit the three dimensions and
the other exam to include many more. Researchers from the development team coded each
task in their discipline and percent agreement was used to evaluate inter-rater reliability. For
this comparison, we considered two coders to be in agreement as long as they both indicated
that the task could elicit evidence of a scientific practice, crosscutting concept, or core idea, or
agreed that they did not (Table 3 shows a summary of cases). We chose this definition of agree-
ment because tasks can meet the criteria for multiple scientific practices, crosscutting concepts,
or core ideas. For example, asking students to construct the chemical structure for a set of com-
pounds followed by ranking and explaining the boiling point trend for the compounds meets
the criteria for both Constructing Explanations & Engaging in Argument from Evidence and
Developing and Using Models. In this instance, coders may agree that the assessment task could
be coded as either of the two practices; however, unless the agreement is taken at a higher level
(“is there a practice?”) the coders disagree if one coded both practices and another selected just

Fig 5. Comparison of two exams from each discipline, displaying the percentage of exam points
assigned to tasks coded with scientific practices, crosscutting concepts, and core ideas. This
representation shows that although there are few zero dimensional tasks in physics, the vast majority of the
tasks address core ideas, and the other two dimensions are almost never elicited.

doi:10.1371/journal.pone.0162333.g005

Table 3. Possible coding of tasks by two coders and the resulting code for inter-rater reliability.

Coder 1 Coder 2 Result

Scenario 1 Developing and Using Models Developing and Using Models Agree

Scenario 2 No Practice No Practice Agree

Scenario 3 Developing and Using Models; Evaluating Information Developing and Using Models Agree

Scenario 4 Developing and Using Models Planning Investigations Agree

Scenario 5 Developing and Using Models No Practice Disagree

doi:10.1371/journal.pone.0162333.t003
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one (Scenario 3 in Table 3). Therefore, disagreements were only defined when one coder said
that the task elicited a scientific practice, crosscutting concept, or core idea, and another coder
determined that it did not (Scenario 5 in Table 3).

After coding the exams, we measured inter-rater reliability by looking at the percent agree-
ment between the coders within the discipline, setting our lower limit at 75%. For biology and
chemistry (the disciplines with>2 coders), the percent agreement was calculated for each pair
of coders and those values were averaged. Table 4 shows the number of coders for each disci-
pline, the total number of tasks coded in each discipline, and the values for the percent agree-
ment for each dimension in each discipline.

Discussion
The 3D-LAP can be used to characterize the potential of assessment tasks to elicit evidence
that students engage with scientific practices, crosscutting concepts, and core ideas in the con-
text of college level introductory biology, chemistry, and physics courses. The protocol can be
used reliably by researchers and differentiates exams that have the potential to elicit evidence
of three-dimensional learning from those that do not. This new protocol addresses the NRC
report, “Developing Assessments for the Next Generation Science Standards”, which states,
“new kinds of science assessments are needed to support the new vision and understanding of
students’ science learning" [45]. The 3D-LAP helps guide practitioners and researchers alike in
how to identify or author these new kinds of science assessments.

We demonstrated that the 3D-LAP can be used to characterize tasks as having the potential
to elicit evidence that the student engaged with a scientific practice, crosscutting concept, and/
or core idea. By repeating this process for every task on an assessment (such as a homework set
or exam), we can use the 3D-LAP to make comparisons between assessments. Such compari-
sons can be useful to evaluate the success of a transformation effort by comparing assessments
before and after the transformation, to identify what students are assessed on in a particular
course, and to investigate where students are assessed on various aspects of three-dimensional
learning as part of a degree program.

We are using the 3D-LAP to assess transformation efforts at MSU. By characterizing assess-
ments from both before and after the transformation, we will investigate whether or not the
transformation resulted in assessments that can elicit scientific practices, crosscutting concepts,
and core ideas. Additionally, the 3D-LAP will be used to explore the impact of three-dimen-
sional learning on students’ recruitment and persistence in STEM fields.

We are also investigating the utility of existing assessments (e.g. concept inventories) for the
purposes of evaluating students’ three-dimensional learning. By identifying or modifying exist-
ing assessments or developing new assessments, we can better assess students’ abilities to
engage in science using the core ideas of the discipline. We can begin to develop new types of
assessment tasks to measure student learning in higher education, which in turn can be used to
guide the development of instruction and curriculum. Ideally, students would achieve the goals
of three-dimensional learning at both local and national levels.

Table 4. The percent agreement values for each of the three dimensions, which we use to determine our inter-rater reliability using the 3D-LAP to
evaluate assessment tasks in our dataset.

Discipline # of coders # of tasks Scientific Practices (%) Crosscutting Concepts (%) Core Ideas (%)

Biology 3 63 95 93 95

Chemistry 4 48 86 78 77

Physics 2 31 93 87 87

doi:10.1371/journal.pone.0162333.t004
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We do not claim that all assessment tasks need to elicit all three dimensions, but if we
engage in course transformations where three-dimensional learning is central, then we must
also ensure that the course assessments align accordingly. To that end, we argue that assess-
ments similar to the A exams in Figs 3, 4 and 5 do not assess students’ abilities to engage in sci-
ence the way that scientists do. However, we recognize that instructors may want to directly
assess particular skills, such as drawing Lewis structures, constructing a Punnett square, or gen-
erating a free-body diagram (see S2 Supporting Information for more examples of such skills).
Tasks assessing these kinds of skills alone are often coded as being zero- or one-dimensional
using the 3D-LAP. Given the need to assess skills, coupled with the fact that higher-dimen-
sional tasks take more time to answer, it is necessary to think about balance when designing an
assessment. We make no claims about the optimal mix of tasks that makes an assessment
“good,” but do claim that an assessment should not be comprised almost entirely of zero- or
one-dimensional tasks (such as the A exams), but rather an array of multi-dimensional tasks
and skills (more similar to the B exams).

The 3D-LAP can also be used as a professional development tool to aid faculty in writing
assessment tasks capable of eliciting evidence that a student engaged with a scientific practice,
crosscutting concept, and/or core idea. Faculty interested in bringing the ideas of three-dimen-
sional learning to their classroommust have ways to assess this kind of learning. The 3D-LAP can
serve as a guide for faculty to develop assessment materials on their own, but they will likely need
to be trained to use the protocol in ways that align with the designers’ intent. We have run work-
shops at major conferences using the 3D-LAP in just this way. In two recent workshops (one in
physics, the other in chemistry), the participants were introduced to the 3D-LAP, then asked to
code existing assessment tasks, and finally used it to develop their own tasks. Anecdotally, the
response to the instrument is positive and the use by novice users aligns with our intentions.
Although workshops include a self-selected group of participants, we intend to determine the
extent to which other faculty need guidance in applying and using the 3D-LAP, both for identify-
ing tasks that align with three-dimensional learning and for developing new assessments.

The development of the 3D-LAP is based upon the existing research on student science
learning and assessment. More work needs to be done to explore how students engage with
and respond to three-dimensional assessments. Such work may result in modifications to the
3D-LAP or may reveal discipline-specific patterns that may need to be addressed in the future.

Limitations
The 3D-LAP provides information about the potential of assessment tasks to elicit evidence of
three-dimensional learning but does not consider how students actually respond to assessment
tasks. Furthermore, we have not taken into account particular features of assessment tasks that
influence how students respond, such as the structure of the prompt or question bias [46].
Therefore, tasks that we identify as potentially eliciting evidence of students engaging with the
three dimensions may, but do not necessarily elicit three-dimensional thinking. Also, we do
not infer what faculty intended for their assessment tasks, nor do we know the goals of courses
where these assessment tasks are given. Finally, the 3D-LAP was developed for use in evaluat-
ing assessments from introductory college-level biology, chemistry, and physics lecture courses.
Although we expect some components of the 3D-LAP to apply to other levels and types of
courses, the 3D-LAP has not been tested in those courses.

Conclusion
We developed the 3D-LAP, a protocol to identify assessment tasks that have the potential to
elicit evidence of three-dimensional learning. To demonstrate its utility, we characterized six

Characterizing College Science Assessments: The 3D-LAP

PLOSONE | DOI:10.1371/journal.pone.0162333 September 8, 2016 17 / 21



exams from our dataset; two each from biology, chemistry, and physics. These characteriza-
tions allowed us to identify assessments that have the potential to elicit evidence of what stu-
dents can do with their knowledge of science.

The 3D-LAP was developed primarily to evaluate the success of a transformation effort that
is focused on bringing three-dimensional learning into introductory courses in biology, chem-
istry, and physics at MSU. By characterizing how assessments change over time, we intend to
evaluate the success of those efforts in future publications. We provided evidence that the pro-
tocol is both valid and reliable when applied to our dataset.

While the 3D-LAP was designed with assessments in introductory biology, chemistry, and
physics courses in mind, it could be used in (or adapted to) other higher education courses or
disciplines, or even to K-12 science courses. Future work with the protocol will include charac-
terizing the extent to which our transformation efforts are successful, investigating how stu-
dents engage with assessments that were developed guided by the 3D-LAP, and using the
protocol as a professional development tool.

Finally, we include the full 3D-LAP and examples of characterizing tasks from biology,
chemistry, and physics in S1 Protocol and S1 Supporting Information and encourage others to
use it to characterize or develop their own assessments.

Supporting Information
S1 Dataset. Data.
(XLSX)

S1 Protocol. 3D-LAP.
(DOCX)

S1 Supporting Information. Exemplars.
(DOCX)

S2 Supporting Information. Skills.
(DOCX)
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