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Abstract

When studying geometrical objects less regular than ordinary ones, fractal analysis be-

comes a valuable tool. Over the last 40 years, this small branch of mathematics has devel-

oped extensively. Fractals can be defined as those sets which have non-integer Hausdorff or

Minkowski dimension. In this report, we introduce certain definitions of fractal dimensions,

which can be used to measure a set’s fractal degree. We introduce Minkowski dimension

and Hausdorff dimension and explore some examples where they coincide, as well as other

examples where they do not.
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Chapter 1

Introduction

Everyone knows that the dimension of a line, a square, and a cube are one, two, and three,

respectively. Also, we can measure the length of a line, the area of a square, and volume of a

cube. Though, if we need to measure the dimension of the brain or lungs, then we need the

notion of fractal dimension. Fractal dimension is very important in mathematics because

it allows us to measure the complexity of non-smooth objects. The notion of dimension is

central to fractal geometry. Roughly, dimension indicates how much space a set occupies

near each of its points. In this report, we look at the two most common types of fractal

dimensions, which are known as Minkowski dimension and Hausdorff dimension. Then we

explore some of their important properties, as well as intriguing examples. One of the

essential examples for both types of fractal dimensions is the middle thirds Cantor set. This

example leads to the introduction of the Mass Distribution Principle, which helps calculate

the lower bound for the Hausdorff dimension.

Most of the material in this report is quite standard for geometric measure theory and

can be found in the well known books by Falconer? and Bishop and Peres? .
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Chapter 2

Minkowski and Box Counting

Dimensions

In this section we will discuss a type of Fractal dimension called Minkowski dimension.

Minkowski dimension is also known as the box dimension, box-counting dimension, fractal

dimension, metric dimension, capacity dimension or entropy dimension. It is commonly used

and popular because it tends to be easier to calculate or estimate.

2.1 Definitions

Below we often consider subsets of Euclidean space Rn even though most of the definitions

work in a general metric space X. The distance between points x = (x1, x2, ..., xn) ∈ Rn and

y = (y1, y2, ..., yn) ∈ Rn will be denoted by

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2. (2.1)

Recall that a metric d on X is a function d : X ×X → R such that for all x, y, z ∈ X:

i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

ii) d(x, y) = d(y, x) (symmetry);

iii) d(x, y) ≤ d(x, z) + d(z, x) (tringle inequality).
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A metric space (X, d) is a set X with a metric d defined on X.

If (X, d) is a metric space, y ∈ X, and radius r > 0 then the Open Ball and Closed Ball

centered at y with radius r are defined, respectively, as follows:

B(y, r) = {x ∈ X : d(x, y) < r}. (2.2)

B(y, r) = {x ∈ X : d(x, y) ≤ r}. (2.3)

Recall also that the diameter of a set E in a metric space X is defined as follows:

diam(E) = sup{d(x, y) |x, y ∈ E}. (2.4)

We say E is a totally bounded set in a metric space X if for any ε > 0, it can be covered

by a finite number of sets of diameter ε. This means that for every ε > 0 there is a number

M = M(ε) ∈ N and sets Ui ⊂ X, i = 1, . . . ,M, such that E ⊂ ∪Mi=1Ei.

Definition 2.1.1 (Minkowski Dimension). Let (X, d) be a metric space and E ⊂ X be a to-

tally bounded set. The upper and lower Minkowski dimensions of E are defined, respectively,

as follows:

dimM(E) = lim sup
ε→0

logN(E, ε)

log 1
ε

dimM(E) = lim inf
ε→0

logN(E, ε)

log 1
ε

,

where N(E, ε) is the smallest number of sets with diameter ε needed to cover E.

If dimM(E) = dimM(E), then the common value is called the Minkowski dimension of E

and we write

dimM(E) = lim
ε→0

logN(E, ε)

log 1
ε

.

Remark 2.1.2. From the definition it follows that to estimate dimM E (if it exists) from

above, one only needs to take an arbitrary covering of E by sets of diameter ε. Indeed, if
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E ⊂
N⋃
i=1

Ei where Ei ⊂ X, then N(E, ε) ≤ N . Lower bounds are harder to obtain, because

to estimate N(E, ε) from below we need to consider all the covering and find the “optimal”

one (i.e. the one with fewest possible members of the covering) for each ε > 0.

Remark 2.1.3. If the Minkowski dimension exists and is equal to d, then it follows from

the definition that the smallest number of sets with diameter ε needed to cover E grows like

(1
ε
)d+o(1) →∞ as ε→ 0.

Remark 2.1.4. It follows immediately from the definition that

dimM E = dimM(E) (2.5)

where E is the closure of E.

By using coverings by balls instead of arbitrary coverings we can define a similar concept

as follows.

Definition 2.1.5 (Box-counting dimension). Let E be a bounded set in a metric space and

let NB(E, ε) be the smallest number of closed balls of radius ε required to cover the set E.

The limits

dimB(E) = lim sup
ε→0

logNB(E, ε)

log 1
ε

dimB(E) = lim inf
ε→0

logNB(E, ε)

log 1
ε

,

are called the upper and lower box-counting dimensions of E, respectively. If the limit

dimB(E) = lim
ε→0

logNB(E, ε)

log 1
ε

.

exists, then we call it the box-counting dimension of E.
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Lemma 2.1.6. For every bounded set E in a metic space we have

dimB(E) = dimM(E).

Proof. First, observe that

NB(E, ε) ≤ N(E, ε) ≤ NB(E,
ε

2
) (2.6)

Strict inequalities can occur in general metric space. Indeed, the first inequality is true

because for every set there is a ball with the same diameter that contains that set. So every

ball can contain several sets with the same diameter. Therefore we have

dimB E = lim
ε→0

logNB(E, ε)

log 1
ε

≤ lim
ε→0

logN(E, ε)

log 1
ε

= dimM E.

On the other hand, N(E, ε) ≤ NB(E, ε
2
), for dimM E ≤ dimB E we use the second

inequality (2.6),

dimM E = lim
ε→0

logN(E, ε)

log 1
ε

≤ lim
ε→0

logNB(E, ε
2
)

log 1
ε
.2
2

= lim
ε→0

logNB(E, ε
2
)

log 2
ε

+ log 1
2

= lim
ε→0

logNB(E, ε
2
)

log 2
ε
[1 +

log 1
2

log 2
ε

]

= lim
ε→0

logNB(E, ε
2
)

log 2
ε

= dimBM,

and the proof is complete.
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The following remark will be quite useful in estimating Minkowski dimension of many

sets.

Remark 2.1.7. If X is a set such that if x, y ∈ X the dist(x, y) ≥ ε, then we say that X is

ε− separated. Let Nsep(C, ε) be the number of elements in a maximal ε− separated subset

X of C. Obviously, any set of diameter ε
2

contains at most one point of an ε − separated

set X, so Nsep(C, ε) ≤ N(C, ε
2
). Conversely, every point of a set C is within ε of a maximal

ε − separated subset X. Thus N(C, ε) ≤ Nsep(C, ε). Therefore, if we replace N(C, ε) with

Nsep(C, ε) then the upper and lower Minkowski dimensions will give us the same values, just

as in the proof of Lemma 2.1.6.

2.2 Minkowski dimension of finite sets

Lemma 2.2.1. If E is a finite set then dimM(E) = 0.

Proof. Let E be a finite set {ai}ni=1 in a metric space (X, dX). Clearly we have N(E, ε) ≤ n

for all ε > 0. On the other hand, if

δ := min
i,j

dX(ai, aj)

and if ε < δ/2 then we can see that N(E, ε) ≥ n. Indeed, if we have two points whose

distance is δ then they cannot belong to a single ball of diameter δ or equivalently of radius

ε < δ/2. So if the diameter of a ball is small enough then every single ball can have at most

one point. Therefore, for ε < δ/2 we have N(E, ε) = n and

dimM(E) = lim
ε→0

logN(E, ε)

log 1
ε

= lim
ε→0

log n

log 1
ε

= 0.
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2.3 The interval

Lemma 2.3.1. If E = [0, 1] then dimM E = 1.

Proof. Let E = [0, 1]. We need at least d1
ε
e intervals of length ε to cover E. Since d1

ε
e < 1

ε
+1,

i.e. N(E, ε) ≤ 1
ε

+ 1, we obtain

dimM(E) = limε→0
logN(E, ε)

log 1
ε

≤ lim
ε→0

log(1
ε

+ 1)

log(1
ε
)

=

= lim
ε→0

log(1+ε
ε

)

log(1
ε
)

= lim
ε→0

log(1 + ε)− log(ε)

− log(ε)

= 1− lim
ε→0

log(1 + ε)

log(ε)
= 1.

Therefore, dimM(E) ≤ 1.

Similarly, using the fact that N(E, ε) ≥ 1
ε
− 1, we obtain

dimM(E) = limε→0

logN(E, ε)

log 1
ε

≥ lim
ε→0

log(1
ε
− 1)

log(1
ε
)

=

= lim
ε→0

log(1−ε
ε

)

log(1
ε
)

= lim
ε→0

log(1− ε)− log(ε)

− log(ε)

= 1− lim
ε→0

log(1− ε)
log(ε)

= 1.

Therefore, dimM(E) ≥ 1 and the two inequalities give the desired result, that is ,

dimM(E) = lim
ε→0

logN([0, 1], ε)

log 1
ε

= 1.
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2.4 The Middle-Thirds Cantor Set

Consider the following collection of intervals,

C0 = [0, 1] ,

C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
,

C2 =

[
0,

1

9

]
∪
[

2

9
,
3

9

]
∪
[

6

9
,
7

9

]
∪
[

8

9
, 1

]
,

..............

Thus, at every step the new intervals are obtained by removing at each step the middle-third

of every interval remaining from the previous step. By induction, Cn is a union of 2n closed

intervals In,1, . . . , In,2n and the middle-thirds Cantor set is defined as the following infinite

intersection,

C =
∞⋂
n=0

Cn =
∞⋂
n=0

2n⋃
k=1

In,k,

Where Cn =
2n⋃
k=1

In,k. As an intersection of closed sets C is closed.

Lemma 2.4.1. If C is the middle-third cantor set then

dimM C = log3 2.

Proof. By construction, C has a covering with 2n intervals of length 1
3n

. Therefore,

N(C,
1

3
) ≤ 2,

N(C,
1

32
) ≤ 22,

.....

N(C,
1

3n
) ≤ 2n
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Fix ε > 0 and choose n so that 3−n ≤ ε < 3−n+1. From the construction it follows that

for ε ≥ 3−n we have N(C, ε) ≤ 2n . Therefore,

dimM(C) ≤ lim sup
ε→0

logN(C, ε)

log 1/ε

≤ lim
n→0

log 2n

log 3n−1

=
log 2

log 3

= log32.

Conversely, for ε < 3−n+1 we have Nsep(C, ε) ≥ 2n see Remark 2.1.7, hence

dimM(C) ≥ log 2

log 3
= log32

Since the upper and lower Minkowski dimensions are equal, the Minkowski dimension exists,

and dimM(C) = log32.

2.5 Generalized Cantor sets

Let 0 < α < 1. Let Cα be the Cantor set obtained by removing the middle α′th part at each

stage. Namely, at every step the new intervals are obtained by removing from every interval

I remaining from the previous step an interval of length α|I| from the middle of I.

Lemma 2.5.1. If Cα is the Cantor set corresponding to α ∈ (0, 1) as above, then

dimM(Cα) =
log 2

log 2 + log 1
1−α

.

Proof. Note that 2n intervals of length (1−α
2

)n cover Cα, by construction. That means if

ε ≥ (1−α
2

)n, then 2n intervals of length ε will cover Cα. Therefore, N(C, ε) ≤ 2n.

So, N(C, ε) ≤ 2n for ε ≥ (1−α
2

)n and we can estimate the upper Minkowski dimension, as
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follows

dimM(C) ≤ lim sup
ε→0

logN(C, ε)

log 1
ε

= lim sup
n→0

log 2n

log( 2
1−α)n

= lim sup
n→0

n log 2

n log 2
1−α

=
log 2

log 2 + log 1
1−α

.

On the other hand, if we have ε < (1−α
2

)n, then each interval of diameter ε will not be

able to cover an interval of generation n. So, we need at least 2n intervals of length ε to

cover the interval. Therefore, Nsep(C, ε) ≥ 2n, and the lower Minkowski dimension of E can

be estimated as follows

dimM(C) ≥ log 2

log 2 + log 1
1−α

.

Therefore, the Minkowski dimension exists and is equal to log 2

log 2+log 1
1−α

.

2.6 A countable set of positive Minkowski dimension

Lemma 2.6.1. If E = {0} ∪ {1, 1
2
, 1
3
, 1
4
, ...}, then

dimM E =
1

2
.

Proof. Notice that for every n ≥ 1, we have

1

n− 1
− 1

n
=

1

n(n− 1)
>

1

n2
(2.7)
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Also, for every ε > 0, there is a number n such that,

1

(n+ 1)2
< ε ≤ 1

(n)2

Note that since ε ≤ 1
n2 , from (2.7) it follows that we need at least n intervals of length ε

to cover E ∩ [ 1
n
, 1]. Moreover, since ε > 1

(n+1)2
, to cover E ∩ [0, 1

n+1
] we only need

1
n+1

ε
<

1
n+2
1

(n+1)2

= n+ 1 ≤ 2n.

intervals of length ε. Therefore,

N(E, ε) ≤ n+
1
n

ε
≤ n+

1

n
· n2 ≤ 2n.

for n large.

Therefore ,

dimM(E) ≤ lim sup
ε→0

logN(E, ε)

log 1
ε

≤ lim sup
ε→0

log(2ε
−1
2 )

log(1
ε
)

= lim sup
ε→0

log 2 + log ε
−1
2

log(1
ε
)

= lim sup
ε→0

log 2 + 1
2

log ε−1

log(1
ε
)

= lim sup
ε→0

log 2

log(1
ε
)

+
1

2

=
1

2
.

Conversely,

N(E, ε) ≥ N

(
E ∩

[
0,

1

(n+ 1)

])
≥

1
n+1

ε
≥

1
2n

ε
≥ 1

2
· 1√

ε
.
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So, just like above, we get dimM(E) ≥ 1
2
. Therefore, the Minkowski dimension exists and

is equal to 1
2
.

2.7 Sets defined by digit restrictions

In this section we define a large class of Cantor sets which in particular give an example of

a set whose in upper and lower Minkowski dimension are not equal.

Recall that for every point x ∈ [0, 1] its dyadic (or binary) expansion is the following sum

x =
∞∑
k=1

xk
2k
.

Let S ⊂ N, and define

AS =

{
x =

∞∑
k∈S

xk
2k
|xk ∈ {0, 1}

}
. (2.8)

Thus, AS is the collection of points in [0, 1] with dyadic expansion such that if k ∈ S

then xk can be either 0 or 1, while if k /∈ S then xk = 0, or that the corresponding fraction

does not appear in the sum.

Accordingly, we can construct AS geometrically by removing certain dyadic intervals from

[0, 1]. More precisely we may proceed by performing the following steps.

Step 0. • Let AS,0 = I0 = [0, 1].

Step 1. • Divide I0 into two equal length subintervals [0, 1/2] and [1/2, 1].

• If 1 ∈ S then keep both intervals. If 1 /∈ S keep only the left interval, [0, 1/2].

• Let AS,1 be the union of the remaining intervals.

Step 2. • Divide every interval I of length 1/2 left after Step 1 into two equal length closed

subintervals IR and IL.

• If 2 ∈ S then keep both intervals. If 2 /∈ S then keep only the left inferval IL.

12



• Let AS,2 be the union of the remaining intervals.

...

Step n. • Divide every interval I of length 1/2n−1 left after Step n− 1 into two equal closed

length subintervals IR and IL.

• If n ∈ S then keep both intervals. If n /∈ S then keep only the leftmost IL.

• Let AS,n be the union of the remaining intervals.

...

Finally, let

AS =
∞⋂
i=0

AS,n.

Note, that AS is a compact set, since it is an intersection of closed subsets of [0, 1]. It

is easy to see that the two definitions of the set AS given above are equivalent, however

for computing the Minkowski dimensions of the set it is more convenient to work with the

geometric definition given above. This definition allows us to show that the Minkowski

dimension of AS can be calculated using the densities of the set S ⊂ N.

Definition 2.7.1. Given S ⊂ N, we define the upper and lower densities of S, as

follows:

d(S) = limN→∞
#(S ∩ {1, ..., N})

N
.

d(S) = limN→∞
#(S ∩ {1, ..., N})

N
.

If d(S) = d(S), then the limit exists and is simply called the density of S and we write it as

d(S).

Lemma 2.7.2. Let S ⊂ N, and AS be defined as above. Then we have

dimM(AS) = d(S). (2.9)

dimM(AS) = d(S). (2.10)
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Proof. AS,n is a union of 2s1+s2+...+sn(= 2#{S∩{1,...,n}) dyadic intervals of generation n, i.e. of

length 1
2n

, where

si =


0 if i /∈ S

1 if i ∈ S

Indeed, the number of dyadic intervals in AS,n is obtained from the corresponding number

for As,n−1 by multiplying by 1 if n /∈ S, or by 2 if n ∈ S. That is to write

2
∑n
k=1 χS(k),

where, χS(k) is the characteristic function of S, i.e., χS(n) = 1 for n ∈ S, and χS(n) = 0 for

n /∈ S. So,

N(S, 2−n) = 2
∑n
k=1 χS(k)

Therefore,

logN(S, 2−n) =

(
n∑
k=1

χS(k)

)
log 2

Thus,

dimM(AS) = lim sup
n→∞

logN(S, 2−n)

log 2n
= lim sup

n→∞

1

n

n∑
k=1

χS(k)

= lim sup
N→∞

#(S ∩ {1, ..., N})
N

= d(S).

Similarly, dimM(AS) = d(S), thus completing the proof.

It follows from the example above that there are Cantor sets which have different upper

and lower Minkowski dimensions. For this one merely needs to choose S so that the lower

and upper densities of S are not the same. In particular, Minkowski dimension does not
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exist. Next we show that for subset of R in fact the upper dimension can be as large as

possible, while the lower dimension can be as small as we wish. As the lemma above shows,

the idea would be to construct a set S such that 0 = d(S) < d(S) = 1 and consider the

corresponding set AS.

Lemma 2.7.3. There exists a set S ⊂ N such that

dS = 0 and dS = 1

Proof. Consider a subset of integer that has long gaps followed by even by longer intervals,

so let

S =
∞⋃
k=1

{(2k)!, ..., (2k + 1)!} .

So S consists of intervals of integers of length ((2k+ 1)!− (2k)!) followed by a gap of length

(2k + 2)!− (2k + 1)!. We first estimate the lower density, as follows

|S ∩ {1, ..., (2k)!}|
(2k)!

=
1

(2k)!

(2k)!∑
i=1

χS(i)

=
1

(2k)!

(2k−1)!∑
i=1

χS(i) +

(2k)!∑
i=(2k−1)!

χS(i)


≤ 1

(2k)!

(2k−1)!∑
i=1

1 +

(2k)!∑
i=(2k−1)!

0


=

1

(2k)!
(2k − 1)! =

1

2k
−→
k→∞

0.
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Therefore, dS = 0. Similarly,

|S ∩ {1, ..., (2k + 1)!}|
(2k + 1)!

=
1

(2k + 1)!

(2k+1)!∑
i=1

χS(i) =
1

(2k + 1)!

(2k)!∑
i=1

χS(i) +

(2k+1)!∑
i=2k)!

χS(i)


≥ 1

(2k + 1)!

(2k−1)!∑
i=1

0 +

(2k+1)!∑
i=(2k)!

1


=

1

(2k + 1)!
[(2k + 1)!− (2k)!]

= 1− (2k)!

(2k + 1)!
= 1− 1

2k + 1
−→
k→∞

1.

And therefore dS = 1.

Combining the last two Lemmas (2.7.2) and (2.7.3). We immediately get the following

corollary.

Corollary 2.7.4. There is a compact set E ⊂ R such that dim(E) = 1 and dim(E) = 0.

2.7.1 Disadvantages of Minkowski Dimension

As we saw above Minkowski dimension of a set does not necessarily exist. Another disad-

vantage of dimM E is that the equality dim(∪nEn) = sup dimEn, which one would expect

to hold for a natural notion of dimension does not hold for Minkowski dimension. Indeed,

as we saw

1

2
= dimM

(
{0} ∪ {1, 1

2
,
1

3
, ...}

)
6= sup

n
dimM

({
1

n

})
= 0.

Hausdorff dimension, which we will study below, behaves much nicer, in this respect. In

particular, it will be shown that dimH(E) ≤ dimM(E) for every set E ⊂ RN . Therefore, in

the example of corollary 2.7.4, even though dimM(E) does not exist, Hausdorff dimension is

in fact equal to 0.
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Chapter 3

Hausdorff Dimension

Our next notion of dimension is Hausdorff dimension. Hausdorff dimension is probably the

most useful and most commonly used notion of fractal dimension. Recall, that Minkowski

dimension can only be defined for totally bounded sets, which in Rn implies that the set

has to be bounded, see Definition 2.1.1. On the other hand, Hausdorff dimension has the

convenience of being defined for any set. Moreover, the definition of Hausdorff dimension is

based on measures, which eliminates several of the disadvantages Minkowski dimension has.

Namely,

• Hausdorff dimension of every metric space exists.

• dimH(E) 6= dimH E , i.e. the Hausdorff dimension of a set is not the same as the

Hausdorff dimension of its closure, in general.

• dimH(∪nEn) = supn dimH En.

Recall, from Chapter 2, that none of properties above hold for Minkowski dimension. In

particular, Corollary 2.7.4 shows that there are Cantor sets whose Minkowski dimension

does not exist. The last property above implies, in particular, that Hausdorff dimension

of any countable set is zero, while Example 2.6.1 shows this is also not true for Minkowski

dimension.
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Nevertheless, one drawback of Hausdorff dimension is that it often tends to be quite

difficult to calculate or to estimate. In this chapter, after defining the Hausdorff dimension we

will prove a simple yet powerful method to obtain lower bounds called the Mass Distribution

principle.

3.1 Definitions

Definition 3.1.1. Given any set E in a metric space X and α ≥ 0, we define the α -

dimensional Hausdorff content of E, by

Hα
∞(E) = inf

{
∞∑
i=1

(diam(Ei))
α|E ⊂

∞⋃
i=1

Ei

}
(3.1)

where {Ei} is a countable cover of E, and as usual diam(Ei) is the diameter of Ei.

Definition 3.1.2. The Hausdorff dimension of a set E is defined to be

dimH(E) = inf{α : Hα
∞(E) = 0}. (3.2)

More generally, we define for every ε > 0

Hα
ε (E) = inf

{
∞∑
i=1

(diam(Ei))
α|E ⊂

∞⋃
i=1

Ei, diam(Ei) < ε

}
(3.3)

It turns out that Hα
ε (E) is an outer measure.

Definition 3.1.3. The α- dimensional Hausdorff measure of a set E is defined as

follows,

Hα(E) = lim
ε→0

Hα
ε (E), (3.4)

where the limit exits because Hα
ε (E) is a decreasing function in ε.
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It turns out that Hα is a metric outer measure and all the Borel sets are Hα measurable

for every α ≥ 0. Before continuing we recall these definitions.

Definition 3.1.4. Let X be a nonempty set. An outer measure or exterior measure

on X is a function µ∗ : P (X)→ [0,∞] that satisfies the following properties:

(a) µ∗(∅) = 0.

(b) Monotonicity: If E1 ⊂ E2, then µ∗(E1) ≤ µ∗(E2).

(c) Countable subadditivity: If E1, E2, ... ⊂ X, then

µ∗(
⋃
k

Ek) ≤
∑
k

µ∗(Ek).

Definition 3.1.5. Let µ∗ be an outer measure on a set X. Then a set E ⊆ X is µ∗-

measurable, or simply measurable for short, if ∀A ⊆ X,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

Definition 3.1.6. Let (X, d) be a metric space. An outer measure µ on X is called a metric

outer measure if

dist(A,B) > 0 =⇒ µ(A ∩B) = µ(A) + µ(B)

where A and B are two subset of X.

The following result is well known and can be found in? .

Theorem 3.1.7. Let µ be a metric outer measure. Then all Borel sets are µ-measurable.

The next result allows one to define the Hausdorff dimension in terms of a “critical

exponent” for the Hausdorff measures, rather that for the Hausdorff content of a set.
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Lemma 3.1.8. Consider E ⊂ X. If 0 ≤ α < β <∞ then

1. if Hα(E) <∞ then Hβ(E) = 0,

2. if Hβ(E) > 0 then Hα(E) =∞.

Proof. Let ε > 0 be such that Hα
ε (E) ≤ Hα(E) + 1. Let E ⊂ ∪iEi with dim(Ei) ≤ ε and∑

i dim(Ei)
α ≤ Hα

ε (E) + 1. Then

Hβ
ε (E) ≤

∑
i

diam(Ei)
β ≤ εβ−α

∑
i

diam(Ei)
α (3.5)

≤ εβ−α[Hα
ε (E) + 1]. (3.6)

Since β − α > 0 we have that εβ−α → 0 as ε is decreasing. Therefore, since Hα(E) < ∞

we have Hβ
ε (E) → 0 as ε → 0. Part (2) is a restatement of (1) so the proof would be the

same.

Thus if we think of Hα(E) as a function of α, the graph of Hα(E) versus α shows that

there is a critical value of α where Hα(E) jumps from ∞ to 0. This critical value is equal

to the Hausdorff dimension of the set. More generally, we have, see? Proposition 1.2.6, the

following.

Remark 3.1.9. For every metric space E we have

Hα(E) = 0 ⇐⇒ Hα
∞(E) = 0 (3.7)

Therefore, Hausdorff dimension can also be defined as follows

dimH(E) = inf{α : Hα(E) = 0} = inf{α : Hα(E) <∞},

= sup{α : Hα(E) > 0} = sup{α : Hα(E) =∞}.
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3.2 Basic properties of Hausdorff dimension

Here are some of the main and well known properties of Hausdorff dimension.

Lemma 3.2.1. Let E,F and Fi be subsets of RN , then the following properties hold, see?

• 1. (Monotonicity) If E ⊂ F then dimH(E) ≤ dimH(F ).

• 2. (Countable Stability) If F1, F2, ... is a countable collection of sets, then

dimH ∪∞i=1Fi = sup
1≤i<∞

{dimH(Fi)}. (3.8)

• 3. For all E ⊂ RN ,

dimH(E) ≤ dimM(E) ≤ dimM(E). (3.9)

Proof. 1. . This is immediate from the measure property that Hα(E) ≤ Hα(F ) for each α

and the definition of Hausdorff dimension.

2. It is easy to see that dimH ∪∞i=1Fi ≥ dimH(Fj) for each j, from the monotonicity property.

On the other hand, if s > dimH(Fi) ∀i, then Hs(Fi) = 0, such that Hs(∪∞i=1Fi) = 0, giving

the opposite inequality.

3. Indeed, if Bi = B(xi, ε/2) are N(E, ε) balls of radius ε/2 and centers xi in E that cover

E, then consider the sum

Sε =

N(E,ε)∑
i=1

|Bi|α = N(E, ε)εα = εα−Rε ,

where Rε = logN(E,ε)
log(1/ε)

. If α > lim infε→0Rε = dimME then infε>0 Sε = 0. Strict inequality in

(3.9)are possible.

Property (3.9) is very useful because it often allows us to use the easily computable

dimM(E) for an upper estimate on dimH(E). Generally, Minkowski dimension is easier to

calculate because the covering sets are all taken to be of equal size.
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3.3 Examples

3.3.1 Countable and open sets

Lemma 3.3.1. If E is countable, then dimH(E) = 0.

Proof. If Ei is a single point then dimH(Ei) = 0. By countable stability, dimH ∪i=1Ei =

0.

Lemma 3.3.2. If E ⊂ RN is open, then dimH(E) = n.

Proof. Since E contains a ball of positive n-dimensional volume, dimH(E) ≥ n, but since

E ⊂ RN , dimH(E) ≤ n using monotonicity.

3.3.2 Middle thirds Cantor set: the upper bound

Let us revisit the middle thirds Cantor set C and calculate its Hausdorff dimension. We

start with the estimate from above.

Lemma 3.3.3. If C is the middle thirds Cantor set then

dimH(C) ≤ log3 2. (3.10)

Proof. Let α = log3 2. First we will show that dimH(C) ≤ α. We should show that if β > α,

then Hβ(C) = 0. Pick n ≥ 0 and let I0,1, ..., In,2n be the 2n intervals that comprise Cn, each

of length 1/3n in the construction of the Cantor set from Section 2.4. Since C ⊂ Cn, this is

a cover of C. We compute the β-length of the cover. It follows that

2n∑
k=1

diam(In,k)
β =

2n∑
k=1

(3−n)β = (2n)(3−βn)

=

(
2

3β

)n
.
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Since β > log3 2, we have ( 2
3β

) < 1 and

(
2

3β

)n
−→
n→∞

0.

Therefore, Hβ(C) = 0 for every β > α, and we obtain that dimH(C) ≤ α = log3 2.

Next, we want to determine the lower bound to show that dimH(C) ≥ α = log3 2. To do

this, we will need to introduce a new technique known as the Mass Distribution Principle

3.4 Lower estimates of Hausdorff dimension

3.4.1 Mass Distribution Principle

Theorem 3.4.1 (Mass Distribution Principle). Suppose E ⊂ RN and α ≥ 0. If there is a

non-trivial measure µ on Rn, such that µ(E) > 0, and a constant 0 < A <∞ such that

µ (B(x, r)) ≤ Arα, (3.11)

for all balls B(x, r) with x ∈ RN and r > 0, then

dimH(E) ≥ α. (3.12)

Proof. Suppose that U1, U2, ... is a cover of E by balls with diam(Ui) ≤ δ. For r1, r2, ...

where ri > diam(Ui), consider the cover where we choose xi in each Ui and take open balls

B(xi, ri). Then by assumption,

µ(Ui) ≤ Arαi .
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We deduce that µ(Ui) ≤ Bdiam(Ui)
α where B = A · 2α, that is,

∑
i

diam(Ui)
α ≥

∑
i

µ(Ui)

B
≥ µ(E)

B
,

which is true from the properties of sub-additivity and monotonicity. Thus,

Hα(E) ≥ Hα
∞(E) ≥ µ(E)

B
> 0.

Therefore, dimH(E) ≥ α, as desired.

3.4.2 Middle-thirds Cantor set: lower bound

Lemma 3.4.2. Let C be the middle thirds Cantor set. Then

dimH(C) ≥ log3 2. (3.13)

Proof. We will show that there exists a measure µ on C such that there is a constant A <∞

such that for every I ⊂ R we have µ(I) ≤ A diam(I)log3 2. We will proceed in two steps.

First, we will show that µ(In,k) ≤ A diam(In,k)
log3 2 for every n and k. Then we will generalize

this and show that the same inequality holds true for any I, possibly with a different constant

A.

To define µ we let µ([0, 1]) = µ(I0,1) = 1. Next, we let

µ(I1,1) = µ(I1,2) =
µ(I0,1)

2
=

1

2
.

To define µ in general we proceed by induction and let µ(In,k) = 1
2n

, for every n > 1 and every

k ∈ {1, ..., 2n}. Recall from our construction in Section 2.4 that we have diam(In,k) = 1
3n

.
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Therefore, we have

1

2n
=

(
1

3n

)log3 2

=

(
1

3

)n log3 2

=

[(
1

3

)log3 2
]n

=

(
1

2

)n
.

We can take A = 1 and we obtain

µ(In,k) = diam(In,k)
log3 2. (3.14)

To show that in general, µ(I) ≤ A diam(I)log3 2, we will choose n so that 1
3n
≤ diam(I) < 1

3n−1 .

Since diam(I) < 1
3n−1 , and gaps between the intervals of generation n−1 are of length 1/3n−1,

I intersects at most one In−1,k. Therefore, I can intersect at most two intervals of the form

In,j and In,j+1. Hence, we have µ(I) ≤ 2µ(In,j) and using (3.14), we get

µ(I) ≤ µ(In,j) + µ(In,j+1) = 2 · diam(In,j)
log3 2 ≤ 2 · diam(I)log3 2.

Since this estimate holds for every I ⊂ R, the Mass Distribution Principal implies dimH =

log3 2.

Remark 3.4.3. Combining this with the upper bound obtained in lemma 3.3.3, we conclude

that

dimH(C) = log3 2.

25


	Table of Contents
	Acknowledgements
	Introduction
	Minkowski and Box Counting Dimensions
	Definitions
	Minkowski dimension of finite sets
	The interval
	The Middle-Thirds Cantor Set
	Generalized Cantor sets
	A countable set of positive Minkowski dimension
	Sets defined by digit restrictions

	Hausdorff Dimension
	Definitions
	Basic properties of Hausdorff dimension
	Examples
	Lower estimates of Hausdorff dimension


