
^DATA ALLOCATION

IN A

DISTRIBUTED DATABASE ENVIRONMENT

by

Klmberley Ann Johnson

B. S., Western Dlinois University, 1979

A MASTER'S REPORT

submitted in partial Fulflllment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE LTMVERSITY
Manhattan, Kansas

1988

1.4 Report Organization

This report is organized into i chapters. Chapter 2 provides an overview of the problems

encountered in data distribution and reviews the relevant literature in this area. Chapter 3

provides an overview of the project's design, Qiapter 4 contains an extensive CKample to

demonstrate the functionahty and use of the tool. Chapter 5 gives concluding remarks and

suggests possible extensions.

-2-

CHAPTER 2

THE DATA DISTRIBUTION PROBLEM

2.1 Objective

The objective ot this chapter is to summaiize the many problems addressed in the literature

concerning data distribution. A high level understanding of these problems and their

interdependencies will familiarize the reader with the complexity these problems introduce into the

distributed database design, even when addressed individually. A great deal of research has been

done to address different parts of the data distribution problem. Some of the significant work in

these areas will be reviewed. To date however, there has been no overall solution that successfully

addresses all of the problems under one combined methodology. Further research continues to

look for optimal solutions to these issues.

2.2 Why Distribute ?

In a distributed environment there are clear benefits to be derived in distributing data. One

obvious advantage is the ability to store the data at the location(s) where it is most frequenUy

used. This will achieve a faster response time and reduce communication costs in a querj'

intensive apphcation. A second advantage in distributing data is the potential to store what might

be a very large database on smaller machines through partitioning ot splitting the data

(partitioning will be reviewed in detail in a later .section). As a final example, the distiibution of

data increases the overaU reUabiUty of the system by tiie simple fact that all data is not stored on

one machine (i.e., subject to single site failure) [ROTH8!]. Each of these points demonsti-ate

clear advantages, but maximizing these benefits requires important tradeoffs.

2.3 Distribution Schemes and Associated Problems

Consider the optimal allocation of a file in a distributed environment. Intuition would tell you to

store the data where it is most frequently used. !f each site o\vned and used the data exclusively

(i.e., no other site needed any of this data) there wouid be no design problem. All data updates

and queries at this node could be handled locally, tn reality though, this is not the case as

applications have data that is shared among several users. These applications may also have strict

requirements as to response time, reliability and consi.stency of the data they require. For this

reason, careful analysis of the distribution scheme to be used is required.

Diso-ibutior. schemes generally fall into two main categories: partitioned systems and replicated

systems [DRAF80).

2.3. 1 Partitioned Systems

Partitioning is the process of "assigning a local object (relation) from the logical schema of the

database to several physical objects (files) stored in the database" [BRAY81]. A pure partitioned

system has no duplication or replication of data items. Vertical partitioning (or partitioning by

structure) divides the data by columns or attributes. Apphcation of vertical partitioning wouid be

desirable in cases where only certain attributes of the logical record are needed at locations. An

example taken from [DRAF801 wiU help illustate this point. This example considers a relation

for orders of parts as follows:

ORDERS (CUST #,CNAME,PART NO.PART DESCQUANTTTY ORDERED)

One site may only be concerned with the PART_NO and PART_DESC, while another site may

maintain the CUST^NG and CUST.NAME. In this instance there are benefits derived from

partitioning the data vertically, as each user can locally conOxil the information with which they

are directly concerned.

Horizontal partitioning divides a relation by occunence or tuple. This type of partitioning is

valuable in cases where files can be distributed based upon given data values. Again, using the

ORDERS relation, each site may need ail infonnation in the relation but may only deal with one

type of part, in this case all tuples associated with a given part are assigned to that particiilar

node.

2.3.2 Replicated Schemes

Replication is the allocation of a single file of the database to multiple sites. If there is no

replicacon the distributed database problem is significantly reduced in the area of concurrency

control and synchronization, but the cost of doing a transaction may increase significantly when

the transaction must access data from a number of sites. The opposite extreme is full redundancy

where each file is present at every node. This method will optimize response time in the case of

queries, but will severely impact update performance and cost as all updates must be propagated

to every site. Partial redundancy is the balance between these two extremes. Redundancy is

important in achieving much of the promise of distributed systems. Without redundancy

reliability goals can only partially be met as the unavailability of even a single file may be .seen as

"total failure" to some applications. Without redundancy the choice of where to store data is an

all or nothing situation. Finally, in reality updates tend to be small and simple where queries tend

to be quite complex and involve large amounts of data [R0TH81]. In this type of situation

redundancy would have clear benefit but again would increase the complexity of the system from

a concurrency and synchronization point of view.

2.3.3 Summary

There are several generalizations that have been made concerning the file allocation and

replication issues.

•5-

Champine reviews the problem in regard to the size of the file and the percentage of exception

rate (or remote request). Figure 2.1 summarizes his view [CHAM81]:

Exception Rate File Size Distribution .Scheme

small replicate

small large partition

laige large centralize

Distribution Scheme
Figure 2.1

His view simply states that if the file size is small, rephcate the file and propagate updates. If the

exception rate is small but the file size is large, the best solution is to partition the data in order to

place the fragments where they are most frequently used. Finally, if the file size is large and

exhibits a high exception rate it may be necessary to centralize the file. In other cases where the

size of the file has not been considered, studies have indicated that the maximum number of

copies of a file should be one unless the ratio of queries to updates is greater than or equal to 50%

(ratio=.5) [MUR085], [CASE72]. Although tiiese views are gross simplifications of the data

distribution problem, they appeal to intuition when considering the trade-offs between update

costs, communication costs and response time. In addition, they serve to highlight the importance

of understanding an application's use of data. It should be clear from the discussion thus far that

one cannot reasonably decide where to put data unless they know where it will be accessed from

and how often.

In summary, the data distribution problem involves a clear understanding of an application and its

use of data. Data allocation however is only one aspect in the design of a distributed processing

system. The allocation of hardware and software must be considered in the overall design, along

with the allocation of data. The number of design factors increa.ses substantially as decisions must

-6-

include such things as network topology, channel bandwidths, number of processor, storage

capadties, program locations as well as data locations [frEVN84]. All of these decisions are

highly interdependent and involve trade-offs in the areas of reliability, performance, development

complexity (synchronization and recovery), growth and overall system cost (MARI841. Due to

the complexity of modeling all of these factors concurrently, most research has considered only

individual design problems or the combination of only a ff,w [HEVN84].

The remainder of this chapter will first review the research done in the area of "pure" file

allocation and then survey extensions to these earlier models, which take mto account hardware

considerations and file interdependencies.

2.4 File AJlocation Solutions

The first attempts to deal with the problem of optimal file placement used mathematical

programming techniques. Nearly all of these models were Unear integer programming problems

to find optimal solutions. Most of these models were driven by system requirements as to

performance, cost, minimum access delays, data management overhead and storage. Specific data

models were assumed, with variants appUed to different system resources. Generally however,

these models worked under the following requirements [CHAM81]:
f

Given: A description of user demand for service stated as volume of requests from each
node of a network to each file

Given: A description of resources available, such as network topology, link capacity, cost
of storage, communications cost, etc.

Determine: An assignment of files to nodes which minimizes total costs.

2.4.1 'Pure' File Allocation Models

The simpliest file allocation model was introduced by Casey [CASE72]. His model looks for the

optimal node assignment of a single file which minimizes the total communications cost, under the

assumption of a fully connected network with no response rime or memory restrictions imposed.

-7-

One important contribution of liis model is the distinction made between update and query

requests. In the case of queries it is assumed that the copy of the file wh:ch minimizes total

communication costs is chosen, whereas updates arc propagated to all file copies. Tlie model

represents the total communication cost as a sum of the cost over individual nodes that result from

a given file allocation. Casey's cost equation is paraplirased below [CASE72];

where: ^ '" "'

I = index set of system nodes

j
= index for nodes

k = index for file locations

STR = fixed cost of storage for locating files

at kth node

QT = query traffic (emanating from node j)

UT = update traffic (emanating from node j)

QC = cost of unit of communication from node j

to k for query

UC = cost of imit of communication from node j

His model demonstrated that query costs decreased as the number of copies of the file were

increased; however, a penalty is paid for storage and update costs. Rephrased, if storage costs

were low and there were no updates, complete duplication would be cost effective. If storage

costs were hi^ and update activity was high, ^hca one copy of the file would be optimal. Casey

analyzes this trade-off by examining the cost function as the number of fife" copies is inaeased.

This is done using a directed graph (referenced as "cost graph") where each vertex is a file

assignment and has an associated value from the cost function. The edges of the graph are paths

corresponding to the addition of a single file. Casey demonstrates the monotonicity of this gi^aph,

implying that it is "sufficient to follow every path of the cost graph until the cost increases, and no

more" [CASE72]. This bounds the number of computations in both breadth and depth

(commonly referred to as a Branch and Bound Search). Therefore, only a subset of the original

tree (of 2 to the power of "n" nodes) needs to be tested. Even with this property, Casey's model

-8-

was proven by Eswaran to be NP-complete suggesting that heuristics were needed to efficiently

deal with the probtem [HEVN84].

Another approach to the problem was introduced by Chu. His model sought to minimize overall

operdring costs by determining the optimal placement of files under the constraints of response

time and storage capacity. No distinction was made between query and update requests

[CHU691, This model again introduced a very large number of variables for even small problems,

making it very costly, and in large problems computationally infeasible [CERI83].

Several comprehensive reviews of other models which address the pure file allocation problem can

be found in [CERI83a], [HEVN84], [LEVI79]. Most of the proposed solutions apply different

heuristic measures to reduce the computational complexity of the models. In general all of the

models in this category assume a completely connected network topology and a completely

defined distribution scheme in terms of storage capacity, storage costs, communication costs,

frequencies, and user requests [HEVN84]. With all of these parameters well defined they attempt

to obtain an optimal design for a very specific problem, namely the allocation of a single file.

One model which was introduced by Morgan and Levin deserves special note, as it points out

another weakness in the models discussed so far.

Morgan and Levin's model distinguishes itself from others by considering both program and data

allocation. Their work points out the importance of considering the dependencies between

programs and data in a heterogeneous environment. The dependency points out tfiat while data

can move easily from node to node, programs cannot, as in a heterogeneous environment different

hardware and system software will exist. In this environment, program execution is limited to

certain nodes. This is important as a transaction at one node may invoke a program at another

node, which in turn needs data from a third node. Their model considers this restriction, by

analyzing the optimal placement of botii data and programs. In addition their model also

considers dynamic behavior and uncertain demand. Most of the previous models assumed "static"

behavior, meaning that once the frequency of requests was determined they would not change.

Also assumed was the complete availability and accuracy of access patterns. Morgan and Levin's

model deals with dynamic behavior and incomplete information by minimizing costs over a

number of different time periods during which allocation may change [LEVI79]. The practicality

of changing the disoibunon over time has been debated however. As pomted out by [GRO.S80],

once a distribution scheme is set up it remains fairly static in practice as redistribution could

involve a tremendous amount of effort.

Ceri. et. al. and Hevner review similar work done by Fisher and Hochbaum

[CERI83a],[HEVN84]. This model is an optimization algorithm for placing multiple copies of

programs and databases over a network. They improve the work done by Morgan and Levin by

developing several heuristics to generate feasible solutions to the problem and report practical

experience.

2.4.2 File and Hardware Allocation Models

Various extensions have been made to the file allocation models discussed above, which explore

different sets of assumptions and problems. These approaches relaxed some of the restrictions of

other models by addressing such things as channel capacities and network topologies.

Mahmoud and Riordan consider the combined problem of optimal file allocation and channel

capacity determination given a fixed network topology. The objective of the model is to minimize

communication cost and storage cost subject to network delay and average file availability. The

model was a nonlinear integer programming problem making it quite expensive; thus, an efficient

heuristic was developed [MAHM76]. Their results have produced reasonably good allocation

solutions [HEVN84].

10-

Irani combines the file allocation, network topology and channel capacity allocation into a single

problem. The model minimizes the total cost of file storage and communication capacities over

different channels. The constraints imposed on the model include a maximum communication

delay, minimum availability of single files and a minimum level of network reliability [1RAN79].

As a final example, Hevner reviews the work done by Casey [HEVN84]. Casey extended his

original model by including optimal selections of network topology and channel capacities. Due

to the size of the problem the topology considered is restricted to tree networks. Again, Casey

developed heuristic techniques to solve the problem as the onginal model was nonlmear and

contained integer and continuous variables.

2.4.3 Summary

In summary, earlier models developed in this category focused solely on the file allocation

problem, leaving all other factors invariant. Extensions were made to these moiJels to deal with

program allocation and hardware allocation design choices. Several generalizations can be applied

to these models. Most of these solutions were integer linear programming problems (i.e., each

design parameter had a or 1 allocation). These were far too costly, and hence iafeasible to run

for systems of any real size. Heuristic techiuques were therefore developed to deal with the

problems. These heuristics sacrifice optimality for practicality of use. Even with the use of these

heuristics, the complexity of the problem has limited most research to dealing with the

optimization of at most two resources at once [HEVN84].

Other major drawbacks of these models include their assumptions in regard to file usage and

partitioning. These models do not address interdependencies between files which appear in

realistic databases. They assume access of a given file from a given node, and do not reflect the

demand for data access involving more than one file. As pointed out by [ROTH81], consider a

join where each of two nodes has a file used in the new relation. A join request involving these

two relarions could involve substantial communication costs. A file allocation scheme that places

both relations involved in this query at a single site may be far more advantageous than if

distributed (Although true in principal, this view may be slightly exaggerated as the amount of

data involved couid be reduced by a query optimization technique that utilizes semi-joins

[HEVN84]). Finally, these models assume that complete files should be the unit of assignment of

data to nodes. There is no consideration given to partitioning the files in order to reduce access

and storage costs. While these models are important, they often obtain the optimal design for a

very specific problem. The use of these models may be highly advantageous after the partitioning

problem has been addressed and the physical distributed system is designed.

2.5 File Dependency Methodologies

As stated above, one of the major problems with the pure file allocation models is the assumption

of a single file being the imit of distribution with no consideration given to file dependencies.

Research in this area proposes methodologies and solution methods that consider the entire

database schema as opposed to individual files. Some of the research presents guidelines and

classification schemes to be followed during logical distribution design (non-automated). A

notable contribution in this area is the work done by Baiter [BAKE]. His methodology points out

the major issues that must be addressed during logical design. Other contributions propose

theoretical models and heuristic algorithms to determine the logical distribution. Examples from

each category are reviewed below.

2.5.1 Baker's Model

Baker proposes a methodology in which logical distribution is defined as a "partition of a

collection of related applications and their data into a maximum number of groups that have a

specified low level of interdependence". 'Intemodal dependencies' arise when an application

tiansaction (or program) requires data from a remote node. The goal then is to minimize the

•12-

intemoda! dqx;ndencies and move toward 'nodal autonomy' or 'nodal interdqwndency' [BAKE].

In Bakers model, transaction or intergroup dependencies have an orientation, meaning an

ownership of the transaction. Several quantitative measures are outlined that can be used in

different combinations to classify intergroup dependencies. These include frequency of use,

pattern of usage, required currency, level of consistency and timing required and the degree of

remote data needed. In addition other classifications can be used to rate the dependenaes, such

as read versus update requests (where read would have a weaker dependency) or dcferrability of

the transaction.

Baker's approach to the design is iterative in nature and follows through six steps. These steps

and their associated activities can be summarized as follows:

1. Data Gathering: Determine the number and types of databases, database structures,
relations among the databases and information regarding the applicarion make-up (i.e., split

geographically or by function)

.

2. Define Application Groupings: Define application group structure such as order entry,
production planning, etc.

3. Assign Applications to Groupings: Here a complete application which consists of a set of
application programs is assigned to one group only.

4. Assign Databases to Application Groupings: Based upon knowledge of die applications and
the data they require, assign databases to each application group (i.e., applications that
make the most updates to data).

5. Assign Transactions to Databases: Here step 4 is ignored, and each transaction is assigned
to the group that contains the data that are most closely related to the program or
n-ansaction. This is included to overcome the possibility of being assigned to an application
group where the data the program most frequendy uses is in another group.

6. Analyze Dependencies and Evaluate Distribution: The objectives of diis step are to minimize
the communication traffic and minimize the amount of data tiiat must be copied between
nodes. This step will be further described below.

In analyzing dependencies and evaluating the distribution (step 6), the dependency of each pair of

groups is calculated from die set of transaction dependencies that occur between groups. These

dependencies are characterized on a single transaction type by a) an orientation which relates the

local to remote group; (b) the active component, or number which gives the frequency of use of

13-

the transaction per day and (c) the passive component, or number which represents the number of

bytes of remote data accessed by the transaction. When dependencies between groups are due to

more than one transaction type, the dependencies are combined by adding the active components

and measuring the union of passive components. Thresholds are tlien established judgementally to

allow transactions to be categorized into four groups; (HH) meaning it is used frequently and

accesses a large quantity of data, (HL), (LH) and (LL).

One constraint placed in Baker's model is that a logical distribution may not contain any HH

dependencies. The dependency between two groups is then described using an orientation and

three consolidated dependencies (HL, LH and LL). Values of these thresholds determine the

number of groups in the logical distribution, the extent of the group's autonomy and the strength

of the dependencies. Baker continues to discuss two types of dependency support, namely data

communications when data currency and integrity are important or data duplication which yields

good response time, management control and system availabihty.

Although Baker's approach may take several iterations to reach a satisfactory distribution, it

highlights the importance of placing the data processing functions and associated data close to

their asers. Only in this way can a successful degree of nodal autonomy or an acceptably low level

of interdependency be obtained, allowing the benefits of distributed processing to be utilized.

2.5.2 Theoretical Models

In contrast to Baker's trial and error approach, some research proposes theoretical methods to

obtain logical distributions. Similar to the data allocation models, these approaches generally

require heuristic techniques to make their use practical [NAVA84]. Many of these models are

concerned with affinity among attributes and attribute clustering [CERI85],[NAVA84]. The

work done by Navathe, Ceri , Wiedertiold and Dou will be reviewed in some detail, so that an

understanding of the clustering techniques can be achieved.

• 14-

Navathe et.al. propose a set of algorithms to deal with the vertical partitioning problem (VPP).

The approach consists of two phases where i:i the first phase the design is independent of specific

cost information. The second phase performs cost optimization from knowledge of a specific

application environment. The model also deals with three environments for the vcrrical

partitioning problem; a single .site with one memory level, a single site with multiple memory

levels and multiple sites [NAVA84]. The multiple site allocation is most relevant to this review.

The inputs to the model are the logical accesses of the transactions to the attributes (i.e., ntmiber

of accesses to object instances for one occurrence of a transaction at a site) and the relevant design

parameters such as cost of storage, access and transmission. The steps in the first phase are

summarized below [NAVA84):

1

.

Construct Attribute Affinity Matrix (AA Matrix): The objective of this function is to construct

an AA matrix which records the affinity or imaginary bond between attributes. The affinity

measure is based on the logical access information which has been obtained. This includes
whether or not a transaction uses a particular attribute, whether the transaction is retrieval

or update and the number of accesses to the object for one occurrence of the tiransaction.

The affinity measure recorded is the sum of these accesses per time period (i.e., per day).

2. Cluster the Attributes: The objective of this function is to group tiie AA matrix so that

attributes with high affinity are clustered together as are attributes with low affinity. This is

accomplished through a heuristic algorithm tiiat diagonalizes the AA matrix to produce
blocks of jointiy accessed data items.

3. Partitioning: The authors provide two mechanisms for partitioning. The first provides
partitioning for non-overiapping fragments. This attempts to find the ideal location on the
matrix to form the partition of two non-overiapping fragments, so that the fragments aie
balanced with respect to transaction load, [n general terms, if 'n' is die number of
atiributes, 'n-l' points on the diagonal are considered. At each point, the matrix is "split"

into an Upper and Lower fragment. A count is made of the total number of access of
transactions that need only fragments in the current upper block (labeled (CU)) and current
lower block (labeled (CL)), and a count of the number of O-ansactions that need both
fragments (Q). The goal then is to select the point in the matrix .such that the goal function
(z) is maximized: max z = CLxCU -Cl'

The second mechanism allows for partitioning with overlapping fragments. This requires
die use of two points on the diagonal, xl and x2 where attributes between xl and x2
constitute the intersection. The goal ftmction is the same for the non-overiapping case
however consideration is given to read only versus update requests. In the case of read only
there are advantages to sharing the data among the two fragments whereas updates need to
be directed to both fragments for consistency.

- 15-

The process as presented is iterative, as it is most likely that the vertical partitioning will result in

several fragments. In order to reduce the computational complexity of the problem, the authors

chose a suboptimal approach whereby each application of the VPP produces two fragments.

These fragments then become independent subproblems or fragments on which the algorithms are

repeated to further split the fragments. Tfiis is repeated until no further benefits are gained

[NAVA84].

The final phase of the methodology deals with the allocation of these fragments to sites. Four

cost factors are considered in this stage. These include the cost of irrelevant attributes accessed

within a fragment, cost of accessing fragments for retrieval and update, storage cost and

transmission cost. These cost factors are then assigned weights according to their importance in

the overall optimization model. In a distributed environment the transmission costs receive the

highest weight in their model. To summarize, a table of partitions versus allocations is

maintained and for each possible partition the algorithm attempts all possible fragment allocations

(m2 cases for m sites). The 'least cost" pair is selected. In die case of replicated sites, a final

algorithm is invoked. This algorithm looks at each fragment independently and allocates

additional copies to sites until no further benefit is gained [NAVA84].

Other optimization models exist which address horizontal and replication issues

[CERI83a,CERI83b]. These models analyze the logical distribution in terms of objects and links

and the relationships between them. They assume explicit knowledge by the user in terms of

potential uses of the database, 0-ansaction frequencies and cardinalities (number of instances) of

objects and links, etc. Given these inputs they produce fonnal solutions to the design problem.

2.5.3 Summary

The methodologies and solution methods which have just been reviewed address the distribution

problem from a higher level than the pure file allocation models. This is done by assessing the

16-

dependencies between transactions or the affinity or bonding between attributes. These

approaches highhght the many issues that must be taken into account during logical design. It is

important to note that there does not appear to be any one model that addresses horizontal and

vertical partitioning under one methodology, due to the complexity involved.

2.6 Related Work

As a final note, Hevner has pointed out the importance of combined research in the areas of data

allocation and query optimization. As he states, the data allocation problem generally assumes a

given data access pattern and the query optimization problem assumes a fixed data allocation. If

these assumptions were generalized, designers could develop models that combine die aUocation of

files and the support of query processing in the most efficient manner [HEVN84].

Hevner reviews some of the recent work done in this area. The work of Elam minimizes the

amount of data sent for a specified set of query processing strategies, under the consttaint that one

file is stored separately from others in the query to promote parallel processing. Another

approach by Apers develops an algorithm to minimize data ti-ansmission costs by clustering

relations. The constraint placed on this model is that only one copy of each relation is stored in

the system (i.e., no redundancy) [HEVN84]. In agreement with Hevner, further research in this

area is needed.

2.7 Conclusions

This chapter enumerated the many issues associated with the dislribution of data and file

allocation in a distributed environment. Several attempts to deal with these problems have been

addressed in the literature. Eariy models focused solely on the optimal placement of files, with

extensions added later to address program and hardware allocation in paraUel. The major

weakness of these models was the assumption of a file being the unit of allocation with no

incorporation of file partitioning or file interdependence. Other methodologies and solutions were

- 17-

presented that address these issues. These methodologies focused on transaction dependencies and

bonding between attributes when analyzing the placement of data.

In summary, in a distributed environment a database designer will be faced with many different

problems, including how to partirion files, where to place these partitions and what degree of

redundancy should be incorporated. Although an optimal solution to aU of these problems is not

realistic at this time, various models exist for different classes of these decisions. Integration of a

solution to some of these problems into an interactive tool, would greatly reduce the complexity

involved. Such a tool would provide a building block on which the designer could utilize his

judgement, to design a feasible distribution scheme.

18-

CHAPTER J

DESIGN

3.1 Objectives

The objective of this project is to design a tool that can be used to aid the database designer in the

distribution of data. TotaJ optimajity and automation of all aspects of the distribution problem

still requires a great deal of research. A tool therefore can only expect to provide guidance and

recommend solutions, as ultimately the design process still relies to a large extent on the designer.

In that regard, the distribution algorithms developed should be integrated into an interactive

design tool. With such a tool, the designer can review the steps that have been taken and modify

the results as desired.

3.1.1 Design Overview

The tool being designed is an extension to two automated tools in existence today. The first is the

"document_handler" program which processes application documents and determines the

functional dependencies (FD's) they represent. The FD's are used as input to the "bernl"

program, which produces a database in third normal form (3NF). The data distribution tool

(hereafter referred to as "dist.data") then deals with the question, what if 1 now want to distribute

the data ? A high level overview of the functionality of these tools is required in order to

underetand the interdependencies between them.

3.1.1.1 Document.liandler Program

In dstiibuted processing, one of the fundamental keywords is document. A collection of the

documents used in an organization will tell you a great deal about the database schema required.

A complete set of user's documents should supply all of the data items used by an organization.

Problems arise though, as different user documents refer to the same data item by different names

(synonyms) or the same name is applied to different data items on different documents

•19-

(homonyms). Another problem arises when analyzing these documents, as some data items

names appear on a user document but are not actually stored in the database. Tliese are derived

data items that may be computed from other data values. Tlie database designer must examine

these documents to generate a nonambiguous list of data items for the database [WOEL71J. This

can be an arduous task.

The document handler tool was developed to provide automated assistance in interpreting these

documents. The tool takes as input all user documents and their associated columas, along with a

specification of their use as input, resident or output documents. The documents and columns are

scanned one by one, and the following activities take place [COHE79]:

— Deletion of synonym/homonym names

— Removal of insignificant columns (some columns may not be included in the database due
to their nature. A signature field for example)

— Solve undeclared output

These activities are accomplished by interactive dialogue with the user. The system contains a

sophisticated mapping between all documents and columns. This allows a cross reference listing

of any column to any document as well as a listing of any document, it's type and all columns it

contains. This information is stored and maintained by tiie program.

Once a unified list of document names and attributes has been derived, keys are specified for each

document. These keys are then used in conjunction with the columns in a document to form

functional dependencies. These functional dependendes are then used as input into die bem2

program.

3.1.1.2 Bem2 Program

The bem2 program is a tool which automates the steps of Bernstein's algorithm, that produces a

database schema which is in third normal form (3NF) with a minimal number of relations. A

database in 3NF contains no extraneous attributes, no partial dependencies and no transitive

• 20-

dependendes (a tnmsitive dependency exists when you can get from a key to a non-key to a non-

prime). The removal of extraneous attributes and redundant FD's is particularly applicable to the

FD's introduced by the document.handler program, as many documents will use the same keys

and contain a great deal of data items in common.

The steps of Bernstein's algorithm can be summarized as follows [COHE79|:

1. Eliminate fiom the functional dependencies those data items that can be derived from other
functional dependencies (extraneous attributes)

2. Eliminate from the set those functional dependencies that can be derived from the
remaining set of FD's (redundant FD's)

3. Group the remaining functional dependencies into sets with equivalent left hand sides

4. Merge the groups that have equivalent left hand sides (i.e. , keys)

5. Remove transitive dependencies from the data items

6. Construct relations based on the groups of functional dependencies.

3.1.1.3 Data Distribution Tool

The dist_data tool is the focus of this project. It extends the work of the tools just reviewed, by

addressing the fact that the resultant database may be used in a distributed environment. It

utilizes much of the information obtained in the document_handler and bem2 programs.

Speafically, the document_haiidler provides critical information about an application which is

needed to make intelhgent distribution decisions. This information includes application

transactions in the form of input ajid output documents.

The bem2 program removes all extraneous attributes and transitive dependencies to produce a

database in 3NF. These relations coupled with the information on customer documents provide

the basis for defining meaningful partitions and file placement onto nodes in a network.

As previously discussed, there are two main concerns when deaUng with data distribution. The

first is to evaluate the utility of partitioning data objects into fragments, and the second is, once

partitioned how these fragments are allocated to nodes on a network. This tool addresses both

these issues. The intent is not to promise tine optimality, but to provide a feasible solution to

•21 -

these complex issues.

3.1.1.4 Limitations

Some of the requirements originally outlined for an automated docum.ent handle; [WOELSI],

were not implemented in prototype document_handler program. Specifically, an indication of the

frequency of use on a per document basis and the ownership of data items (i.e., what document(s)

own each particular data item). These pieces of information are required in the distribution

algorithms presented. As these modifications would not prove difficult to make, they wi'J be

assumed as input for the purpose of this project.

3.2 Detailed Design

This section presents the detailed design of the dist_data tool. The design algorithm involves four

basic steps that can be summarized as follows;

1

.

Identify application structure and network topology

2. Create Partition&Tiles

3. Determine File Placement

<1. Analyze Profitabihty of Replication (Branch and Bound)

5. Sensitivity Analysis

The steps of the algorithm are iterative in nature; step 2 is repeated for all relations produced

from bem2, and steps 3, 4 and 5 are repeated for each file or partition generated. Figure 3.1

provides a flowchart of this activity. The remainder of diis chapter will discuss each step of tiie

design algorithm in detail.

•22-

Identif)' Appl. Struci

and

Nerwork Topology

HT Create Partitions

Determine File

Placement

Anal>"ze Profit.

of Replication

Sensitivity

Analysis

END

Flowchart of Dist_data Process

Figure 3.1

23-

3.2.1 Step 1 : Identify Application Structure and Network Topology

Data distribution cannot begin without undenitanding the organizational structure and distribution

scheme for any particular application, 'llie firet step in the design process is to gather this

information from the user. For ease of use the tool will prompt the user for the needed

information, which includes;

1

.

Number of nodes on the network

2. Identification of organizational groupings (i.e., INVENTORY, BII.LING, etc.)

3. On a per organization basis:

— Wliich node the organization resides on

— A list of nodes which interconnect with this organization and the associated

communication costs of each interconnec-non

— A list of the documents used by the organization

With this information in hand, several required pieces of information can be compiled. First, the

application network topology has been defined. The system may now build cost tables which

reflect the transmission costs incurred for queries and updates. It is important to point out one

requirement of the system which is needed by later algorithms. The file placement algorithm (step

3) and replication algorithm (step 4) require cost figures to be associated between any two pairs of

nodes on the network (i.e., a fully connected network). The problem can be demonstrated as

follows. Consider a system with three nodes, where nodes 1 and 3 are connected to node 2, but

no connection exists between nodes I and 3. This topology is illustrated in figure 3.2.

Node(l)

Node (2)

\
Node (3)

Example Network Topology

Figure 3.2

•24-

The cost tables which need to be buiit require that a cost be associated with nodes 1 and 3. In the

example above, this can be accomplished by taking the sum of the communication costs between

nodes I and 2, and nodes 2 and 3. In a situation where multiple paths are available, the least cost

path should be associated with the "imaginary" link. ITie system should detect these missing links

and compute the cost factor. Once a cost is associated with all of the nodes in the network, the

cost table can be buiit. Figure 3.3 shows an example of a cost table for three nodes. Reading the

table across tells you that the cost of communication between node I and itself is zero, node 1 and

2 is 8 and between nodes 1 and 3 is 12. Tliis information is required in steps 3, 4 and 5 of the

algorithm.

1 2 3

1 8 12

2 8 20

3 12 20

Network Cost Table

Figure 3.3

The other piece of infonnation obtained from the user deals with the application structure. The

system now knows on which nodes each document or transaction resides. This node identifier

must be stored in conjunction with the document entries as it is vital in determining a meaningful

partitioning of relations (tihis will become clear after reviewing the algorithm for step 2).

The information obtained in this step serves as a framework for all other steps. It should be noted

that this is the only step which requires information from the user (all other steps of the algorithm

make use of the information provided by the document_handler and beni2 programs).

Appropriate error detection and recovery will be provided when parsing the user input. This

includes syntactic checks as well as checks for invalid document names or im^alid interconnect

nodes.

-25-

3.2.2 Step 2: Create Partitions/Files

Step 2 of the algorithm is a key step in the distributed design process. In this step, the relations

produced by the bem2 algorithm arc analyzed to determine if partitioning should be applied.

Recall that initialiy the application has a list of documents wliich they own and execute. The

document_handler program removes ail homonyms, syTionyms and insignificant columns to insure

that the data in the document is interpreted correctly. The bem2 program then takes these

documents (represented as FD's) and produces a 3NF database. 'Ilieso relations do not reflect

customer usage however, as one relation may now contain pieces of data from several different

documents. Chapter two reviewed the importance of analyzing the applicadon's use of data
,

particularly in regard to the dependency which exists between files. Tliese dependencies may

reveal clusters of data which belong together or that could form meaningful partitions. Once these

partitions are identified, the file allocation algorithms can deal with the physical placement of

these fragments onto sites in a network.

Several different approaches which have been taken in dealing with partitioning were discussed in

Chapter two. The heuristic chosen for this design process, is to analyze the frequency of use of

each attribute in the relation on a per node basis, and cluster these attributes together into a file.

This approach, although simplified is very similar to the approach used by Baker. Ihe

justification for this algorithm is as follows:

— The grouping of attributes by frequency of use agrees with the underlying message in the

literature; store the data where it is most frequently used.

— Partitioning the data in this manner usually results in partitions being stored at the same

node as the owner of those attributes. This proves beneficial, as most of the time people

are "greedy" in the sense that they want to maintain control over the data they own.

— Availabihty of information: The document_handler program contains all the needed

information to analyze the relations in this manner. Each document entry contains all

related data items and the frequency of use. Step 1 of the distribution algorithm also

associated a node with each document. All of this information is readily available and

feasible for the scope of this project.

-26-

In order to accomplish the partitioning, three steps are needed. These steps build a document

table associated with the relation and sort it by node, analyze the data frequencies and then form

partitions based on this frequency. At the conclusion of this step the designer may review the

partitioning which has taken place, and make modifications if desired. These functions work on

one relation from the bem2 algorithm at a time. They are therefore repeated until all relations

have been processed.

The phases of this step are reviewed in detail below.

3.2.2.1 Build Document Table

Figure 3.4 and 3.5 contain one relation produced by beni2 and three document entries as they

would look after step i of the distribution process.

RELl (KEY_ATTR, ATTRl, ATTR3, ATTR5)

Bem2 Relation

Figtire 3.4

NODE FORM KEY_ATTR ATTRl ATTR2 ATTR3 ATTR4

1 forml 10 10* 10 10 10*

NODE FORM KEY.ATTR ATTRS ATTR8

3 form2 10 10 10

NODE FORM KEY.ATTR ATTRS A1TR8

3 forni3 5 5 5

Document Entries

Figure 3.5

The first step is to build a document table which corresponds to the relation being examined. In

this example, only those documents using the key attribute and attributes 1,3 and 5 are of

27-

concern. This table is then sorted by node for ease of processing in the next step. Figure 3.6

shows the document table at the conclusion of this step. Note that attributes 2,4 and 8 used by

the forms, do not appear in this table.

NODE DOC KEY_ATTR ATTRl A'lTR? ATTR5 ATTR?

1 forml 10 10* 10

3 form2 10 10

3 form3 5 5

Document Table

Figure 3.6

3.2.2.2 Analyze Frequency of Use

In this step, each data item or attribute is examined individually and an aggregate usage at each

node is determined. Two important assumptions are included in this step:

1. Keys are not analyzed, as the key to this relarion is required in any partition created (i.e.,

the key must be duplicated for access)

2. An access to an attribute by the owner is taken as an update transaction (recall that an
owner(s) of a data item must be indicated. This is represented by a

'*'
in these examples.

It is possible for more than one owner to exist for any given attribute.) These accesses

represent exception rates such as new customers being entered, etc

Using the example in Figure 3.6, the following data would be compiled:

- ATTRl
- ATTR3
- ATTRS

10 updates node 1

10 queries node 1, 3 queries node 3

10 queries node 3

3.2.2.3 Create Partitions

This step processes the frequencies above to determjne the partitioning. In most cases the

aggregate total of query and update requests from a node is used to determine the owner. In the

case where a query count from one node equals the update count from another node, the update

access is given the higher priority (It is recognized that further heuristics could be applied when

-28-

queries are vei-y close to updates, etc. Further heuristics are not addressed in this design). Each

attribute is therefore associated with the node which contains the highest frequency or use. The

final step combines all attributes from the same node into one file.

The final parritions resulting from the example above are:

FTLEl = (KEY^ATTR, ATTRl, ATTR3)
FILE2 = (KEY.ATTR, ATTR5)

3.2.2.4 Query User

After the paititions have been formed, the results should be displayed to the user. At this point

the user will be allowed to modify the partitioning if desired. Three ojwrations mil be allowed:

1. MOVEATTR to FILE

2. CREATE FILE (This will create a new partition, which may then be populated
through a series of MOVE requests)

3. MERGE FILE and FILE

These operations will again be prompted for, so that minimal effort is required on the user's

behalf.

3.2.3 Step 3: Determine File Placement

Once the relation has been partitioned into files, each of these files needs to be analyzed

individually to determine where on the network they should be placed. The objective ftmction

chosen is to place the file at the location which minimizes the oveiall communication costs in

regard to update and query requests. To accomplish this, ti-ansacrion tables must be built to

indicate the frequency of requests issued against this file. Query and update tables are then built

and analyzed to determine the optimal placement of the file.

3.2.3.1 Build Transaction Table

A transaction table needs to be built for each partition or file produced in step 2. The table

contains a count of the number of queries and updates issued against this file from each node.

-29-

This informatio!! was previously gathered for all attributes. This step however is only concerned

with those attributes associated with the partition being analyzed. The same rules for

distinguishing between query and update requests in step 2 , also apply to this step. In addition,

one other assumption is made:

— It is assumed that all attributes in a document/file are accessed together (i.e., cannot access
individual attributes out of a file, the entire file is retrieved). This implies that if a form has
some queries and some updates against the relation, an update transaction is assumed. It

would not seem appropriate to consider these as two separate accesses, so one access is

assumed with updates weighing more heavily.

The output of this process will be a transaction table which holds the associated access

frequencies.

Figure 3.7 shows an example of a transaction table (an additional node has been added from

previous examples).

Nodes Query Update

1 10 10

2 30 10

3 15

Transaction Table

Figure 3.7

3.2.3.2 Build Cost Table

Cost tables must now be created to reflect the query and update costs that would result from

placing the file on any given node. These costs are computed using the transaction table and the

network cost obtained in step 1.

30-

For example, assume the following entries exist in the transaction table and network cost table for

Nodel:

Transaction Table Network Cost

Node Query Update

1 10 10.2 30 10

3 15

The query costs associated with placing the file at node 1 can be computed as follows:

1

.

Node I to itself: cost =

2. Node 2 to node 1: cost = 240 (30 query requests from node 2 at a cost factor of 8)

3. Node 3 to node I: cost = 180 (15 query requests from node 3 at a cost factor of 12)

4. Total query costs incurred = 420

The same algorithm is used to determine update costs. The total cost associated with each node is

the sum of query and update costs. These costs are computed for every node on the network.

The node representing the minimum cost is chosen for file placement.

3.2.4 Step 4: Determine Profitability of Replication

The next step of the distribution is to determine the profitability of repUcation. This is

accomplished by building a decision tree and performing a branch and bound search.

In theory, the branch and bound search looks for an optimal solution by defining initial upper and

lower values of the objective function (in this case the objective function is the minimization of

communication costs). From the feasible solutions, the best solution is made the upper value (U)

of the problem. All other solutions are matched against this solution in an attempt to find a

better solution. Any solution which produces a value higher than (U) are deleted, as further

branching would not lead to a better solution. This process continues through a series of

iterations in an attempt to find the optimal solution [GREEN78].

31

The branch and bound search technique was reviewed briefly in Qiapter two. This discussion

highlighted the fact that even though Uiis search procedirre bounds the number of required

computations, heuristics are still needed to reduce the potential computational requirements. In

this light, ttie hueristic identified for this design is a simple "greedy" heuristic. At any given point

in the search, only the best solution is kept. Although it is reahzed that this can not guarantee the

true optimal placement of the file, it provides a reasonable placement within the scope cf this

project.

To correlate the above discussion to the file allocation problem, consider the placement of a file

on a network consisting of three nodes. Three levels of the decision tree are depicted in figure 3.8

for purposes of this discussion.

\
(level 1) 1.0,0 10 0,0 1

(Level 2) 110 10 1 I I

(Level 3) I 1 1

Partial Decision Tree

Figure 3.8

At the first level, each vertex represents a file assigimient to a given node (denoted by I's in those

positions corresponding to file nodes, O's elsewhere). The file placement algorithm discussed in

step 4, determines the optimal placement of one copy of the file to the network. For this

example, assume this is node 1 (represented by a 100 at level 1 on the graph). With the "greedy"

-32-

hueristic applied, the search will now only be concerned with replication schemes that involve

node 1. The search proceeds to level 2. where the replication choices are a copy of the file at

nodes 1 and 2, or a copy at nodes 1 and 3. The cost associated with each of these choices is

analyzed. Obtaining the cost figure is very similaj- to the file placement algorithm; however, it is

modified slightly to account for the replication. For example, when analyzing the costs associated

with file copies allocated to nodes I and 2 the following changes will be made. The cost

associated for queries at both node 1 and node 2 are zero, as each node will now have a local

copy. A query from node 3 can now be satisfied from either node I or 2, .so the lower cost is

assumed. Update costs aie increased however, as updates must be propagated to all file copies.

In this case, the update cost associated with the rephcation would be the sum of update costs

associated with nodes 1 and 2. Again, the total cost is the sum of query and update costs. If this

cost is less than the cost assodated with only 1 copy of the file, then this choice is now considered

the "best" placement and the search continues to level 3 (which represents total rephcation in this

example). If the costs associated with replication is higher, the search has ended (after both nodes

are tested).

3.2.5 Step 5: Sensitivity Analysis

As the rephcation decision may be far from optimal, a sensitivity analysis is being provided. The

intent of this step is to allow the designer to modify the communication costs associated with a

given topology and re-analyze the file placement. In other words, the designer will be able to

request a reiteration of the branch and bound search with the communication cost increased by

some specified amount. If the result after this run differs significantly from the first, tiiis may

indicate that replication is desirable in either case. For example, if a 5% increase in

communication costs shows that replication is desirable this would indicate that the file placement

is very sensitive. This type of sensitivity may imply that replication is in order.

33-

At the conclusion of this step, the file allocation process has been completed for one file or

partition. Each original relation may be split into several partitions. Steps 3, A and 5 (if desired)

will need to be repeated for each partition.

3.3 Summary

This chapter presented the design for the dist^data tool. Iliis tool takes the information regarding

customer documents coupled the 3NF relations they represent, and automates a distribution

analysis. This analysis includes recommended partitioning for the relations based on file

dependencies and frequency of use, and the allocation of these partitions onto the nodes in a

network. The allocation scheme is based on minimizing communications costs for update and

query transactions. The process is iterative, examining one relation at a rime and then each

resulting partition in that relation. This process is repeated until all relations have been analyzed.

The interface to the tool is interactive in natiire, allowing the designer/user to make modifications

if desired to appropriately steer the distiibunon design. A minimum amount of error detection

and recovery has been provided.

Chapter four contains a detailed example of the dist_data operation.

•34-

CHAPTER 4

EXAMPLE DESIGN

4. 1 Example Design/Results

This chapter presents a complete design, following the steps outlineJ in Chapter three. The

system used in this example, models a manufacturing firm which consists of three organizations:

OJST.REL, ORDER/BILLING and INVE^f^ORY. These organizations will be distributed

across a three node network.

The example starts by showing a logical listing of the documents, as they would appear at the end

of part one of the document.handler program. Appendix I contains a list of these documents.

Each document is labeled with a type (i.e., INPUT, RESIDENT or OUTPUT) and has a

document key specified. An owner is also indicated for each data element (denoted by a '").

Appendix II contains the FD's as produced by the documentjiandler. These FD's are used as

input into the beni2 program. At the conclusion of the bem2 run, two 3NF relations are

produced.

The dist_data tool commences after the results from the above programs have been obtained.

Appendix III contains a step-by-step example of the procedures used. The remainder of this

chapter will summarize the processing that occurs at each step.

llie first step of the dist.data tool, is to identify the application structure and network topology

((in.l). This notation will be used throughout the chapter for Appendix ni, point 1).

Information is solicited from the user regarding the organizational structure, the documents used

and the network topology. Note that in the example, the system must detect the missing node

interconnection between nodes 2 and 3, and search for the least cost connection (in this case theiB

is only 1 path between nodes 2 and 3). At die conclusion of this step, a network cost table has

•35-

been built and each node has a list of associated documents that are resident at the node.

Tlie next operation examines the utility of partitioning (III. 2). This step of the algorithm deals

with one relation at a time, which in this case is REI.l produced by bem2. The table is

constructed by identifying all documents which use the attributes associated with this particular

relation. The owner of a data item is indicated by a '*', and the numbers in the table represent

the frequency of use. These frequencies are then analyzed on a per data item basis to determine

the owner (i.e., node) of that data item (denoted by an 'X'). All data items with a common

owner are then merged to form a partition. In this example, Node 1 exhibited the highest

frequency of use for all data items and therefore no partitioning was done. At this pomt the

designer may display the partitioning that has been created and perfonm modifications if desired

(see section 3.2.2.4).

Step 3 of the algorithm determines the placement of all partitions/files produced. It deals with

one partition at a time, so it is repeated for each partition produced in step 2 (in the example so

far, only 1 partition has been created). Step 3 begins by building a transaction table (ni.3). This

table represents the aggregate usage of this file from all nodes. Recall from section 3.2.3.1, there

are two critical assumptions used when building this table. The first is that access by an owner is

interpreted as an update transaction. Secondly, a document or file is assumed to be accessed in

entirety. The importance of these assumptions can be highlighted by examining the HIST_FILE

document. This document accesses c_no and part_no as a query request and tot_price as an

update. This transaction from node 1 is interpreted as an update request of frequency 30. The

remainder of the requests from node 1 are query only, so the table is populated with 30 query

requests and 30 updates.

Once the transaction table has been built, the cost for query and update resulting from placing the

file on any given node, can be determined. The network cost table (from step 1) is used in

-36-

combination with the transaction table, to compute these costs. For example, Node 1 issues 30

queries and 30 updates. If this file were placed on Node 1, there would be no cost for queries or

updates fi'om Node 1. as all the information is local. However, there are quei-y and update

requests to this file from Nodes 2 and 3. Node 2 issues 6 queries and 5 updates with a cost factor

of 8. Reading the query, update and network tables down the Node I column, this means if the

file were placed at Node 1, a cost of 48 would be incurred in queries and 40 in updates from

Node 2. The computation continues in this manner in order to analyze the total cost from any

node. The node which represents the minimum cost is recommended for the file placement (Node

1, in this example).

After a single file placement is recommended, the tool looks at the profitability of repUcation

(III.4). This represents step 4 of the distribution algorithm. As previously discussed in section

3.2.4, the tool progresses only with the 'Twst choice" at any given time. From the preceding step,

node I is chosen for the file placement. Rephcation options at level two of the cost graph include

two copies of the file, at either nodes 1 and 2, or node 1 and 3. The costs are recalculated under

the assumption of repUcation, to determine if either option results in a lower cost. In the

example, replication proves profitable at nodes 1 and 3. Therefore, the final recommendation for

file 1 is to replicate the file at nodes 1 and 3, at a total cost of 572.

The final step of the algorithm (step 5) aUows the designer to perform sensitivity analysis (111.5).

This has not been illustrated in the example, but would involve receiving a cost increase parameter

from the user (i.e., 5%), and recomputing the cost tables and reanalyzing the distribution.

Appendix m.6 displays the network after the placement of file 1. The communication traffic

resulting from this placement is also iUustrated. In analyzing this placement, there are two points

of interest. A general view taken by [ROTHSl] discussed in Chapter two, stated that in reality

queries tend to be large and complex whereas updates tend to be small and simple. A file

-37-

placement that minimizes query traffic is therefore beneficial. The file placement produced in this

algorithm has modeled this assumption. The major query requests have been fulfilled at both

nodes 1 and 3. Updates do incur communication expense but these updates are small (part_no and

tot_price). The frequency of access to this file at Node 2 is so low, that further replication would

not prove advantageous. The .second theory discussed in the literature, is that a single copy of a

file suffices under most conditions, if the ratio of query to updates is more than or equal to 50%

[CASE72]. Looking back at the n-ansaction table for file 1, the ratio of query to update (77

queries, 37 updates) is 48%. The results of this algorithm, have stayed within these guideUnes (it

should be noted, that this comparison holds throughout the remainder of this example. All file

placements meet these guidelines).

Processing now returns to step 2 of the algorithm, to begin analysis of the next bem2 relation

(tlt.7) At the conclusion of this step, REL2 has been partitioned into two files.

Step 3 of the algorithm: determine file placement, is once again invoked for File 2 (recall that this

step analyzes a single partition at a time). Ihe processing steps are identical to that of file 1 ; the

node that minimizes the total costs is found (in.8) and then replication is analyzed (in.9). The

final recommended placement for file 2, is again two copies of the file residing at nodes 1 and 3.

The total cost for this placement is 264. 111.11 shows the overall view of the network with both

files 1 and 2 allocated.

To complete the processing, one partition is left to analyze (File 3). The algorithm returns to step

3, to determine the single file placement for this partitioning (HI. 12). Again, the processing is

identical to that of file 1 and 2 and is iUustrated in 01.12 - in.l4. In the case of file 3, replication

is not profitable and therefore a single copy of the file is placed at node 3. The cost associated

with this placement is 0.

-38-

Appendix III. 15 shows the final results after the dist.data program has processed all relations and

partitions. To summaiize, file 1 and 2 are replicated on nodes 1 and 3, and a single copy of file 3

exists at node 3, The overall cost resulting from these allocations is 836.

39-

CHAPTER 5

CONCLUSIONS

5.1 Discussion of Results

The goal of the system presented in this paper is to assist the database designer in finding

solutions to the problems of file partitioning and file placement in a distributed system. The basic

premise of the system is that user documents contain the needed information to make reasonable

distribution decisions. A complete set of user documents supply the data items used by an

organization and model the transactions (in the form of input and output documents). This

information, coupled with an understanding of the ownership of these documents, allows file

partitioning and file placement to be made based on the frequency of use and ownership of the

data items. By automating the analysis of this data and proposing solutions, a great deal of

complexity is removed from the designer. This is not to suggest that this is the optimal solution

nor the only solution to the problem, as there are many issues which can impact these design

choices. As such, the system was designed to be interactive in nature, allowing the designer to

make modifications as required to appropriately steer the design process.

Research continues to address the key problems of file partitioning, file placement and

redundancy considerations, in an effort to find optimal solutions. The underlying message in all

these solutions is clear however; a major determinant in the increased use of distributed processing

will be an increased ability to get data where it is needed, and used most frequently.

5.2 Extensions

Numerous enhancements could be made to increase the benefits derived from this system. These

include extensions to the partitioning and file allocation heuristics, as well as the overall user

interface to the system.

-40-

The partitioning scheme developed for this system does not directly address partitioning by

occurrence, or horizontal partirioning. Although the system will handle the same organizations

existing at multiple nodes and maintaining ownership of the same documents, it will assign the file

to one of the two nodes only. For example, there is nothing to preclude the user from entering

the ORDER/BILLING organization on two different nodes, each owning the same documents. If

the frequency of use were the same against each document, the system will arbitrarily designate

one node as owner. The single file allocation of this file would result in the node that represents

the minimum communication cost. In this case the algorithm will most often conclude that

replication is profitable at the second node, imless the communication costs vary significantiy.

The algorithm will not however, correctiy address the other remote requests to this file, as it

assumes both files are identical. The second problem arises when the frequency of access varies

between the two locations (i.e., more activity with certain part numbers than others). In this

case, the algorithm will cater to the node which exhibits the higher access rate. These problems

point out the importance of allowing input from the designer, as the designer can easily remedy

this situation by creating and allocating new partitions. A more sophisticated method of detecting

and deahng with horizontal partitioning would be desirable however.

Anothei specific enhancement that could be applied to the partitioning algorithm, is to supply an

improved heuristic for differentiating between updates and queries. The current design gives

weight to an update in the case where query and update rates are identical, but does nothing

more. It would be desirable to further analyze this difference and extend the heuristic (i.e., if

there were only 10% more queries than updates, should the algorithm still favor updates ?).

Other hmitations of the system exist in the file allocation and replication heuristics. The model is

very restrictive, in that it only considers query and update communication costs. No consideration

is given to such things as storage restrictions and costs, communication channel load, etc. Chapter

-41-

two highlighted several different models which take various system resources into consideration.

The integration of any one (or more) of these issues into the model would certainly provide a

more refined file allocation.

Finally, limited attention was given to the design of the user interface to the tool. A primitive

method of displaying and modifying the information was described, that although is sufficient,

could be greatly enhanced. One could envision a menu driven system with graphical display

capabiUties, in which the designer could control the total execution of the system, requesting any

of the steps to be run in any order. The graphics would allow a cleaner display of the processing

at any given step, or a visual view of the network topology and file placement.

-42-

[BAKE] Baker, Charles T., "Application Analysis for Nodal Autonomy", International
Business Machines Corporation, Poughkeepsie. New York.

[BRAY81] Bray, Olen H. "Distributed Database Design Considerations", IEEE Tutorial on
Disiribured Processing. Third Edition, IEEE Computer Sodevy Press, lOP.i (ppgs
4,51-464)

[CASE72] Casey, R.G., ".'Vllocation of Copies of a File in An Information Network", AFIPS
Conference Proceedings. Vol. 40, Spring 1972 (ppgs 617-624)

[CER!83a] Ceri, Stefano, Navathe, Shamkant and Wiederhold, Gio "Distribution Design of
Logical Database Schemas", IEEE Transactions on Software Engineering, Vol. SE-9
No. 4, 1983 (ppgs 487-503)

[CERI83bJ Ceri, S. and Navathe, S.B., "A Methodology for the Distribution Design of
Databases", Compcon. Spring 1983 (ppgs 426-431)

[CERB.'i] Ceri, S. and Pemice, B., T)ATAID-D: Methodology for Distributed Database
Design", Computer-Aided Database Design: The DATAID Project, A. Albano, V.
DeAntonellis, and A. Pileva (editors), Elsevier Science Publishers D.V., 1985

[CHAM81] Champine, G.A., "Six Approaches to Distributed Databases", IEEE Tutorial on
Distributed Processing, Third Edition, IEEE Computer Society Press, 1981 (poes
480-483)

[CHU69] Chu, Wesley W., "Optimal File Allocation in a Multiple Computer System", IEEE
Transactions on Computers, Vol C-18, No. 10, Oct. 1969 (ppgs 885-889)

[COHE81] Cohen, Meir, "A System for Automatic Generation of Relational Databases", A
Master's Report, Kansas State University, 1981

[DRAF80] Draffan, I W. and Poole, F., 'The Qassification of Distributed Database
Management Systems", Distributed Databases, Cambridge University Press 1980
(pgs 57-81)

[GAVI86] Gavish, Bezalel and Pirkul, Hasan, "Computer and Database Location in Distributed
Computer Systems", IEEE Transactions on Computers, Vol. c-35, No. 7, 1986 (ppss
583-589)

[GROS80] Gross, J.M., Jackson, P.E., Joyce, J and McGuire, K.A., 'Distributed Database
Design and Administration", Distributed Databases. Cambridge University Press
1980 (ppgs 285-322)

[HEVN84] Hevner, Alan R., 'Data Allocation and Retiieval In Distributed Systems", Advances
in Data Base Management, Vol. 2, E.A. Unger, P.S. Fisher and J. Slonim (editors),

Wiley Heyden Ltd, 1984 (ppgs 225 -252)

[IRAN79] Irani, Keki B; Khabbaz, Nicholas G, "A Model for a Combined Communication
Network Design and File Allocation for Distributed Databases", 1st International

Conference on Distributed Computing Systems, Computer Society Press 1979 (ppgs
15-21)

[LEVr79] Levin, Dan K. and Morgan, Howard Lee, "Optimizing Distiibuted Databases - A
Framework for Research", Distributed System Design, IEEE Computer Society Press
Oct. 1979 (ppgs 321-326)

43-

[MAHM76] Mahmoud, Samy and Riordon, J.S., "Optimal Allocation of Resources in

Dismbuted Information Networks", ACM Transactions on Database Systems, Vol 1

No.l, 1976 (ppgs 483-497)

[MARI841 Mariani, M.P.. 'XHstributed Data Processing: Technology and Cntical Issues", TRW
Series on Software Technology, Vol. 4, 1984 (2.17 ppgs)

[MUR0851 Muro. Shojiro; Ibaraki, Toshihide, Miyajima, Hiachiro and Hasegawa, Toshihara,
'T.valuation of the File Redundancy in Distributed Systems", IEEE Transactions on
Software Engineering, Vol. SE-11, No. 2, 1985 (ppgs 199 -204)

[NAVA84] Navathe, Shankant; Ceri, Stefano; Wiederhold, Gio and Dou, Jinglie, "Vertical

Partitioning Algorithms for Database Design", ACM Transactions on Database
Systems, Vol. 9, No. 4, 1984 (ppgs 680-710)

[PEEB81] Peebles, Richard and Manning, Eric, "System Architecture for Distributed Data
Management", IEEE Tutorial on Distributed Processing, Third Edition, IEEE
Computer Society Press, 1981 (pgs 451-464)

[PURK83] Purkayastha, S., Kar, G., Berelian, E., Wong, P., Casey, R.L., Farmer, L., Lo, P.

and Chen, D., 'Designing a Database Management System for Distributed Real
Time Engineering Applications". IEEE Transactions on Computers, 1983 (ppgs 432-

439)

[ROTH8I] Rotiinie, J.B. and Goodman, N., "A Survey of Research and Development in

Distributed Database Management", IEEE Tutorial on Distributed Processing, Third
Edition, IEEE Computer Society Press, 1981 (pgs 484-498).

[SCHN84] Schriederjans, Mark J.,

67-109).

[WOEL81] Woelk, Darrell W., 'The Generation of Entity-Relationship Diagrams from User
Documents", A Master's Report, Kansas State University, 1981.

[YU83] Yu, C.T., Siu, M.K., lam, K. and Chen, C.H., "Adaptive File Allocation in Star

Computer Network", IEEE COMPSAC, Nov 7-11, Computer Society Press, 1983
(ppgs. 537-545)

,
Linear Goal Programming, Petrocelli Books, Inc., 1984 (pgs

-44-

APPENDIX I

EXAMPLE DESIGN: DOCUMENT.HANDLER OUTPUT

Each DOajMENT is labeled witli a type (INPUT, OUTPUT, RESrDENT),frequency of use
(i.e., per day), and has a document key

Each DATA_ELEMENT has an owner(s) associated with it (indicated by '*').

NEW_CUST Doaoment Attributes:

Location.output

Frequency: 5

*cust_no (doc.key)

•c_name

•c_str

*c_cty

*c_.sta

*c zip

•c_ph

CUST.FILE Document Attributes:

Location, resident

Frequency; 5

c_no (doc.key)

c_name

c_str

c_cty

c_sta

c_zip

c_ph

-45-

CUST.LIST DocumenE Attributes:

Location. output

Frequency: 1

c_no (doc. key)

c_nanie

c_str

c_cty

c_sta

c_zip

c_ph

NEW_PART Document Attributes;

Location. input

Frequency: 2

*part_no (doc. key)

*part_desc

*part_price

PART_SUP Document Attributes:

Location. input

Frequency: 10

part_no (doc. key)

part_desc

•qty_made

*made_date

part_price

CALC.INV Document Attributes:

Location, resident

Frequency: 30

part_no (dix.key)

qty_made

made.date

*niade_to_date

qty_ord

cord_date

•ord_to_date

*qty_reni

-46-

INV_REPT

part_no (doc. key)

part_desc

made_.to..date

ord_to_date

qty_rem

Document Attiibutes:

Local!on. ourput

Frequency; 1

CUST.ORD

c_no (doc. key)

c_name

c_str

c_cty

c_sta

c_zip

c_ph

part_no

*qty_ord

*cord_date

Document Attiibutes:

Location. input

Frequency: 20

HIST_FILE

c_no (doc. key)

part_no (doc. key)

cord_date (doc. key)

qty_ord

pait_price

*tot_price

Document Attributes:

Location resident

Frequency: 30

-47-

INVOICF Document Attributes;

I-X>cati on. output

Frequency: 10

c_no (doc. key)

c_name

c_str

c_cty

c_sta

c_zip

c_ph

paTt_no

part_price

qty_ord

tot_price

cord_date

-48-

APPENDIX n

EXAMPLE DESIGN: FUNCTIONAL DEPEM5ENCIES/BERN2 OLTPUT

** FUNCTIONAL DEPENDENCIES CREATED FROM DOCUTVIENT.HANDLER ••

cust_no --> c_name, c_str, c_cty, c_sta, c_zip. c_ph

part_no ~> part._desc

part_n<) --> part.desc, qty^made, made_,date, part_price

part.no --> qty_made, made_date, made_to_date, qty_ord, ord_to_date, qty_rem

part_no --> part_desc, made_co_date, ord_to_date, qty_rem

c_no --> c^name, c_sn, c_cty, c_sta, c.zip, c_.ph, part_no, qty_ord, cord_date

c_iio, part_no, cord_date --> qty_ord, part_price, tot_price

c.no -> c_name, c_str, c_cty, c_sta, c_zip, c_ph, part_no, part_price, qty_ord tot_price,

cord_date

*• 3NF RELATIONS PRODUCED BY BERN2 ••

RELl : c_no -> c_namc, c_str, c_cty, c._sta. c_2ip, c_ph, part_no, tot_price

REL2 ; part_no -> qty_made, made_date, qty.ord, cord_date, part.desc, made.to_date,
ord_to_date, qty.rem, pan_price

-49-

APPENDIX m
EXAMPLE DESIGN: DIST_DATA

1) Identify Application Structure and Networlt Topology
(Algorithm Step I)

PART A:

Enter No. Nodes on Network: 3

Enter No. of Organizations: 3

Enter Org. Name: ORDER/BILLING INVENTORY
ORDER/BILLING on Node? 1 3

Enter Interconnect Nodes & Cost: 2,8 1,12

3,12

CUST_REL
i-

1.8

Enter Documents Owned: CUST_ORD N"EW_PART
HIST.FILE PART_SU?
INVOICE CA1.C_INV

INV.REPT

NEW_CUST
CUST.FILE
CUST LIST

Part B: Logical View of Networlc:

/ Node 2 A
y\(OJST_REL) J

8 y^

C Node 1 \
i^ORDER/BILLINGy

12 \^^

N/" Node 3 A
^(EMVENTORVy

-50-

Part C: Build Cost Tables

(Nodes)

1 7
>.

1 8 12

2 8 20

3 12 20

-51-

2) Create Partitions/'Files: Relation 1

(Algorithm Step 2)

Part A: Build Document Table (Sort by Node)

c c c c c c c part tot

Node: Doc no name str cty St zip ph no price

1 CUST_ORD 20 20 20 20 20 20 20 20

1 HIST.FILE 30 30 30*

1 INVOICE 10 10 10 10 10 10 10 10 10

2 NEW_CUST 5' 5* 5* 5- 5* 5* 5'

2 CUST_FTLE 5 5 5 5 5 5 5

2 CUSr.LIST I 1 1 I 1 1 1

3 NEW.PART 2*

3 PART_SUP 10

3 CALC_INV 30

3INV_REPT 1

Part B: Analyze Frequency of Use, Determine "Owners

'

c_name

c_str

c_cty

c_st

c_zip

c_ph: 30 queries, updates - Node 1 (X)

6 queries, 5 updates - Node 2

part_no: 60 queries, updates - Node 1 (X)

41 queries, 2 updates - Node 3

tot_price: 10 queries, 20 udpates - Node 1 (X)

Part C: Merge Attributes by Owner to form Partitions:

File 1 = (c_no, c_nanie, c_str, c_cty, c_st, c_zip, _ph, part_no, tot_price)

(No partitioning done for this file)

Part D: Modify Partitions (if desired)

•52-

3) Determine File Placement (Algoritlim Step 3): Relation 1 , File Name = 1

PART A: Build Transaction Table

Queries Updates

1 30 30

2 6 5

3 41 2

PARI' B: Build Cost Tables

(Netivork Cost Table from Previous Step)

(Nodes)

I ? "1

1 8 12

2 8 20

3 12 20

Queries

1117 3

1 240 360

2 48 120

3 492 .820-
540 1060 480

Updates

1 ? 3

1 240 360

2 40 100

3 24 40
280" "460

Total Costs: Node 1: 540 + 64 = 604

Node 2: 1060+280 = 1340

Node 3; 480 + 460 = 940

*** Recommended File Placement at Node 1 *•

-53-

4) Determine PrnfiUbility of Replication (Algorithm Step 4): File 1

^000^

a) Node ! and 2;

Query Cost: Update Cost:

Node 1,2 = Node 1 = 240
Node 3 = 492 Node 2 = 40

Node 3 = 64

Total = 492 Total = 344

Total Cost = 492 + 344 = 836 (No replication)

b) Node 1 and 3:

Query Cost: Update Q>st:

Node 1,3 = Node 1 = 360
Node 2 = 48 Node 2 = 140

Node 3 = 24

Total = 48 Total = 524

Total Cost = 48 + 524 = 572 " Replicate •'

c) Continue to Branch, Nodes 1,2,3:

Query Cost: Update Cost:

Nodes 1,2,3 = Node 1 = 600

Node 2 = 140

Node 3 = 64

Total = Total = 804

Total Cost = + 804 = 804 (No RepUcation)

•" Recommended File Placement for File 1; NODE l.NODE 3 •••

TOTAL COST = 572

54-

5) Perform Sensitivity Analysts (if desired)

(Algorithm Step 5)

6) •* Final Placement for File I
*«

File 1

(30 querii

30 updates)

f Node 2 j

Network Trafflc:

Nodes 1-2: 6 queries

5 updates

(file 1)

Nodes 1-3: 32 updates

(file i)

File 1 (41 queries,

2 updates)

-55-

7) Create Partitions/Files: Relation 2

(Algorithm Step 2)

Part A: Build Document Table (Sort by Node)

made ord

part qty made qty cord part to to qty part

Node:Doc no. made date ord date desc date date rem price

1 CUST.ORD 20 20* 20*

I HIST.FFLE 30 30 30 30
1 rNVOICE 10 10 10 10

3 NEW_PART 2' 2* 2*

3 PART.SUP 10 10* 10* 10 10

3 CALC_INV 30 30 30 30 30 30* 30' 30*

3 nsrv_REFr 1 1 1 1

Part B: Analyze Frequency of Use, Determine Owners"

qty_made

made.date:

qty_ord

cord_date;

part_desc:

made_to_date

ord_to_date

qty_rem:

part_price:

30 queries, 10 updates - Node 3 (X)

40 queries, 20 updates - Node 1 (X)

30 queries, updates - Node 3

1 1 queries, 2 updates - Node 3 (X)

1 query, 30 updates - Node 3 (X)

40 queries, updates - Node 1 (X)
10 queries, 2 udpates - Node 3

Part C: Merge Attributes by Owner to form Partitions:

File 2 = (part_no, qty_ord, cord_date, part_price)

File 3 = (part_no, qty_made, made_date, part_desc,

made_to_ciate, ord_to_date, qty_rem)

Part D: Modify Partitions (if desired)

-56-

8) Determine File Placement: Relation 2, File Name= 2
(Algorithm Step 3)

Part A: Build Transaction Table: File 2 (algorithm step 4)

File 2 = (part_no, qty_ord, cord_date, part_price)

Queries Updates

I 40 20

2

3 40 2

PartB: Build Cost Tables

(Network Cost Table from Previous Step)

(Nodes)

1 2 3

1 8 12

2 8 20

3 12 20

Queries Updates

1 2 3

1 320 480

2

3 480 800

480 1120 480

1 2 3

1 160 240

2

i 24 40

24 200 240

Total Costs: Node 1: 480 + 24 = 504

Node 2: 1120+200 = 1320

Node 3: 480 + 240 = 720

• Recommended File Placement at Node I **

57-

9) Determine Profitability of Replication: File 2

(algorithm step 4)

100 010 001

110 iOl ' '

a) Node 1 and 2:

Ouerv Cost: Update Cost:

Node 1,2 = Node 1 = 160

Node 3 = 480 Node 2 = 200

Node 3 = 64

Total = 480 Total = 224

Total Cost = 480 + 224 = 704 (No replication)

b) Node 1 and 3:

Ouerv Cost; Update Cost:

Node 1,3 = Node 1 = 240

Node 2 = Node 2 =

Node 3 = 24

Total = Total = 264

Total Cost = + 264 = 264 " Replicate "
c) Continue to Branch, Nodes 1,2,3:

Oueiv Cost: Update Cost:

Nodes 1,2,3 = Node 1 = 400

Node 2 =
Node 3 = 64

Total = Total = 464

Total Cost = + 464 = 464 (No RepUcation)

• Recommended File Placement for File 2: NODE l.NODE 3 •

TOTAL COST = 264

-58

10) Perform Sensitivit}' Analysis (if desired)

(Algorithm Step 5)

11) •• Final Placement For File 1 and File 2 **

File 1

(30 qiieriesX

30 updates)

File 2

(40 queries,

20 udpates)

(Node 2
)

Network Traflic:

Nodes 1-2: 6 queries

5 updates

(file 1)

Nodes 1-3: 32 updates

(file 1)

30 updates

(file 2)

f Node 3 j

File 1 (41 queries,

2 updates)

File 2 (40 queries,

2 updates)

-59-

12) Determine Hie Placement: Relaiion 2, File Name= 3

(Algorithm Step 3)

Part A: Build Transaction Table: File 3 (algoritlim step 4)

File 3 = {part_no, qty_made, made_date, pait_desc,

made_to_date, ord_to_date, qty_rem)

Queries Updates

1

2 L
T^ 1 42

Part B: Build Cost Tables

(Network Cost Table from Previous Step)

(Nodes)

1 ? 3

1 8 12

2 8 20

3 12 20

Queries Updates

1 ? 3

1

2

3 .12.. -2Q, .0.
12 20

1 ? 3

1

2

3 504 840

504 840

Total Costs: Node 1: 12 + 504 = 516

Node 2: 20 + 840 = 860

Node 3: + =

**• Recommended File Placement at Node 3 ••

I'.

•60-

13) Determine Profitability of Replication: File 3

(algorithm step 4)

*' Cost is zero: replication not profitable
**

' Recommended Hie Placement for File 3: NODE 3 '

TOTAL COST =

14) Perform sensitivity analysis (if desired)

(Algorithm Step 5)

61-

15) •• FINAL OUTPUT OF DIST.DATA TOOL •«

File I : at Nodes 1 and 3 Cost = 572
File 2: at Nodes 1 and 3 Cost = 264
File 3: at Nodes 2 Cost i=

Total Ci)st 836

Node 2

Filel

(30 queries'

30 updates)

File 2

(40 qtjeries,

20 udpates)

Network Traffic:

Nodes 1-2: 6 queries

5 updates

(file 1)

Nodes 1-3: 32 updates

(file 1)

30 updates

(file 2)

File 1 (41 queries,

2 updates)

File 2 (30 queries,

10 updates)

File 3(1 query,

42 updates)

62-

APPENDIX W
CODE LISTING: DIST_DATA.C

41 10

in D > >. a;

(0-1 £! £1 ^

O 5 3 u ti

"

- E (U w
CI - u c u *-

D U - 13 13 t-

a s D U
c - *. o >
oia 1. (D L C- o Q. a
tfi -D r m u
(U c - (U C£ a
T3 (0 - Tl

- C
W C13 z
ID c a n
3 - L (D HJ w

C - i/i

E W 01 V) C
m - in u — Q)

t_ - m J E
Dl- -0 m 3

*' W o - U
L c r t- r
Q. «J j: a ^- -D

a a
(0 ^
-
0- E 0)

a — (5 0)

i>- t.

+' Ol
in - c— J t. (. U
13 a or

I. m o
CI L OJ

r r (r

c V. D - u Qj ^ a J Q L in -
— U - c C -" >

_- 3 D fL' - C in 2 ::

U -D 2 "" £! C' n D - J t:

c - ^ ~ L E Q, .-
OJ

- D = ? !_ - a C >> L c -
C « CJ I. — i- CI c

in <; " .0 Q n 'J >. -
13

U 3 ro u- - D Z) U
L 4- a; - c z :: cTTi c -

— I- :j — won c\ - a > :d

d D 0 - 0, Oj .- = ID (D— - - CJ u - in I. O
1 U -i- jD n: L- j;: r, ta QJ —

C D ,-= U 01 •' - "D r •a V D
n D C :- <D D c a u o- n: c z 11

c ~
Jin n c - 01 3 c. c - •- QJ

- C C 01 Q ra

w — u ID — t. CJ 0)

ai - in u- CifU - w r o u- n
(0 u <c il O ^ c *- c i. c *- -. - u u

c m u m — u o 0, - - OJ

0) c L U W ^ — o c "D " c Q) 3 (0 X)
a a — *- 0) i: D c in 3 3 - (1) CI

*' L ID [-3 — z: - "D ai a
Ik " (C C a- c u 13 01 O t- fl L
Z 1= *' N — Q, 3 - n -
o u (0 — Sl c u. ^ E - = E "D -Q u- OJ

D C C z xi - I- E :: C r - o L.

0) - IcC - u n re C ffl £ m 4- u U
r a - CT 01 — *- - a i- u - a a If! in 11 c
« t w (. J E E Q 01 c r Q in *- c

q: - o a n; Ol c ru a L - o tn C u - c" L C o in — E c *- m QJ c
*- w Ol U - (U

-
? (0 QJ C

c w in - 0) *- c •*- C: C e c o •- c r c
O) — Q) t. ij ro - C u U in ra

C E TD D a - c w u u— Q) i- o 0) 01 t. tl i -D in ** u in

c o •- c t- 0) i: I- Ol c :: t- 01 £ fl) D c
iC c m £ - - QJ in a; in t- u ra 3 u n

:x nj 01 E m *- (C QJ QJ E
« a U 1- in O E c D - c D t) E

a V in a — L a in £1
*- 01 C 3 01 - "D U Ell a; W m *- OJ - u
L — - Q. S- D t) C
(0 - — QJ in c 3 a c n c -
Q. u. *- C - 0) CO D «

u E CD m .- t. 11. U- 0.
D TJ c a C dJ o — Q. c
01 a z c - u — u — (U TJ
D -D r; fl! —— itn C tf)

c c o TJ - c — +- *- u D
ai O j: — t. a t. — w t. o O u

*- /3 w 0) at (0 c in Q Xl m 3 J3 1

e E o c a - 0) H t- c o m *• D-
Q C 3 - ai 1 1- 1. Q. r u c -
o u — IQ I. 0 -a It) ta

1 u 1 lOJ
a, c D E - — t) - a u c out. 3
a a c t. c - - n c c

_
J3

<U O y 13 D 3 - D t. t. 01

1 1 r m z c £1 u "^ n a •^ ii iZZ 5. c

r - D
• O 01

O C N
— — "^

- *- u

— c^n^mwr^camo — oiDTrinLOf^oaco— (Nr)vmu>h»eomO"'C*ri^iniDp»[noio~r^r!vifi(i!t-eo

•63-

II O Q
I/) II -D C -
u > O - O O
a w C O - '
o 1 .1 -M ^

U C 13 (D C
a a o e t. <u

z 3 E O D a u^ -cat.
o - "c -O « O 0)

1. o 0) o II t- a
1/1 11 a H *- (D -

o a L m ao -

O E Q. 11 LU
Q U E o o amm O 1 II — _l
o — ^ H in jt <
Z c c in tj w li.

r +- U (0 t. Ill

o - Q. - Q) fl] CN r^j

M O C o- a aoi
a. 11 1- II • iE (0

K i/> 0) jt o *- — Wl I/)

ID . 11 C - u-
1 1

< z X ocu -o -

(1 U O II HJ q: oD 1 -^ II am O Qzo c o - C >-_!
O |£- jc < ^"u

o - > Q. 11 ^ *- in u. ^ t- o
" ? Dl V - O C 1 1: t: -a

L. <0 - L Q) -- ci ni W a a
Hi (/] (0 D o o <D — a «3 c E E
a -J > II O (1) E - in (0

u en U m L *^ -4-

Z q: en u L t- L c t. L.

1 1
1. D) (D -1 (0 (Q ra n3 <0

a o (D L c c c c c c i: r r r
z z ^ nj u. u u u U U

ra ^

- — :3 *- -
tl-^-. <

64-

f in

*- QJ

(0

c —

-— ^ D
13 «_ ^ «_w -- II

O +' II- -M "4- Z '-

C C C C - -^
— (0 — to L

• e u t. U * O
-N^ Q.lOQ.in "v. It--

0) a
E E

.- (0 eo

O C C
Dl U

li L,

O t)

• (T o at
tx
a

1 a a^ 0) IV q: o
0) (- L

+- u u
ce:

0) 4- +J

I, m ui D
O ~'

t-ajoio-^MO-<Tinii>t-coa)0^cMCT5rin(flt^coa)0'-c^n^inu)i-too>o^tNn'fini£i--mmO'-c^o^

-65-

ro O
QJ -

t- (0

o o
u u
Q a
£ E

01 01

o o
c c

c a
01 E
E O
D U

O tJ
.. a a
72 ^ ^
o
C CU 0)

a E E
E (0 iO

*-< c c
O) (J

II '_ n
O "D

E

E c + 111 U "D
(0 -1 0 an o
z u E c

[V. .. L c •H C 1

(D^ 01 o cis a c
01 - n 01 c - E
L — o a c O o = 4- u -
O 01 C o u TJ^^O

£. c z (0 s^ m QJ II

(_ c a 1. 1 a
01 a E (U o O'^' 0 wlo 5 in

M E z M -0 4- eo (0

C *' » <« c 0)55 c C -H *- U
UJ jf? - D =

1 (0 W « D.
c = c = c 0— c U O E^ 01 ^D ^ C<^ m o o -^

« lr« = 5« |C u

;;;;; ;;;;

o C ni

u •1-

*J u- U m
c c C C c c- to - (D t.

(. fj i- U {- L
D. W aw aa

— o u
= 00
= -o V
a c

U E E

D,'*- 10

U C —

c c
C 0) 01 Q N

—, Q) 0) Z C
(D- Ol

+- Q) 01

N

4- O) in

0) (. I. >•

(o -r

!]>>+'
fo a D.C •.- o
t' u u (11 C.

— t. L
m "D

I. in in <_

*- •- -^ tf) in - —' -^ o —

-66-

*-< in ifiwoo
O u u
u a a
IE E

- i/i O II

lU _l II >.
to < E O
-I u. 3 C
< II C lU

L- t. 13
H D v O"
> C t. 0)

0) 3 nj (-

^ O Q.«-

D—— .1 , i^_.

Q) C"—
"O ^ 1*--

o«----- U)

C II CD 0) (1) 0)
!*- U

s: in n n i fl n
u ra (D •^ a CO

t- U f' *> (0

ra a w m (0 V) [0

01 e o D o o
in 4-. u o — o a

. Q) "D __^^
II 3 a-- D" tJO- C-- a 3 w 0) 0) 0) «
Q) 1 tee (. t. t. t.
L 1-

iro It 1-

Q) -M 4- <woo 1

3 " 4^ X
. . . < (U (U U 0)

i: X) i3 ja
ra ra (0 (0

Q) D QJ .. 4^ ^ V ^^

XI ^ J3 II 0) 0) «
(D (0 nj ^ t. [. C L

0) V <U

E >_.._^

O - *- 4-^

— L t. L "i-
-*'

o-Tifiuit^tDcng — cNr)'Vinu)r*(D<nO'-(NOTmy)r*cocj)0'-"n^inu)>-cocnO'-Mr]TTincDr^coa)0
0)0iCT)O0)0)aiOOOOOO0OOO*~'-'-'-'-'-*-'-»-'-oJMrMCMCMrMcvcNtNCNr)nnnnrjncnnn^

•67-

t- a
+-

I

Q.'D

T3 D

— II

IS n

Jt E
D

s' C
01

I. '

m (C

a a'
i-

u
1

in

C 1

t. (U 1

(0 E I

aoj

I/) — ,-, ^

Ul n
c l: 11

OJ n: II

c^ wo
i^-—
= in— c
lu (0

c c —
«)•—

- < OJ tn + uj
3 U. " !« ' 3

c _- q:

D <t C u) II 11

a ^ tN
cot - J^ C Ol
h- ai -^- Dim
L (D

*- 1^ « ti-

C C w
t. (J •4-

4- QJ Qin -
c —

L r
Q 3-~

*- 1. a ^-'
C (U bO -m "D^ *- - m c
t. C = O D
a uj 13 o

t-w — i:

c c 3 C

0) L

c i+j a u
H Q) C 0) c
(. - — m ro

ra '- 1. — c

i^Lnu)r-eoo>0'-cNnTrinu)p«-coo)0'-ojnvmiDi^coa)0--ojcnTLnu)p*coa)0-*o4nTTtn(i?i^oo
rT^^^v^ininLfiinininiomuiinipiotfltDi.DUJiDiDtD^Dt^r^r^t^^-t^t^r^t^f^cocOEoacoaocotooo
^CNO(Mi-^C>(rJOICJC^(NOJCSMCNCHlNCNr»;C^C>4<NC^CV<^C^C^(NC^MCiCNCNtNCNCJDI<NtN«CSCJOJe*ICJOI

•68-

t- U

- c •

rti O •

C -H *

o u *

IJ c •

r c

U -H •
3 1- »
era*

td I-.

u o - +. c
UJ C • t- flj 0.
-1 ra t. •-' \

*- a Q
U. *-" au a D w_

c u o O — £1 c
^- dJ V n +-
uj e D — 1- +- c <z
tA D Z W L. E
LU U '^ c D UJ 0)a iv ta C £ U iD
o Cl u £ 1 1

O c cv
•^ M- ii- * o a a* n

- D <-' C ,_,
+j OJ U t- c
u - a 3 1. -
c -

Q) a
D 10 U 01 n •*-

u- O o a 1*
i:— L
^ lU

3 r

tocnmoioimcnoimojooooooooooo '-'-'-'-(NCMeMoicvcNotcviNc^nnnDnrjn

69-

-J 3D '--J ^ _j L
« < cc c o< ly^ < nj

•>s Li. V- '- II U.
0) -^11 < II

r
u

1- II I. - I- U. (- a
(0 — + O CO II a

.-o a ^ 0) E * H r: 01 x:

u IC 3 E •- U (0 u • ro

0. ^ t. 0 — C D U " ^ — "D i >
u ra (0 >*. L C £- - «i li- - m
H c 0) •u >— 01

u OJ u C n L Q) +> Q) *-< ffi L O CO L
^ t. 01 -D ^^ > £) jt nj t. ra > X) J.: > £
Q) n

- oir II c
£. lu u t-x; Qi 01 Q. 0} QJ 0)

(D TJ 1C-' 10 tf) in

C 11 - r i: (0 <0 ra iC tc ni

u u U u u U U u
T3 Lr V*-

o h 3
j: u Q) £ V)-^

Tl '-

c D r
- r 3-

t^o)a)0'-oiDM-inu)r-coa)0'-cvDTrtnu)r*coaiO'~cMP)^inu)r*coo)0'-oinTjinu)r-coo)0'-tNDv
nnr)v^^Tr"T'T^'J'3"^inuimtntoinmmifiinifl(DCiJiDtDtDU)U)Uiuir~i^r^f-r*r^f*r^r~-t^to«)oo<o<o

-70-

E j3 r:
3 1] U 3 =

c .a: fJ -D (ft Q)
t- £:--.= ~
P Q) t. " + -
« i. 01 (0 + tt- r
ni3+'J3>—OS

c m w a U 3
c 0) m

QJ L U c i: <i-

c 3-^ a 3 "D
QJ *- D m C -M
0) Q) I, 01 ra in

3 £1 01 ll; O n o
<-' i^ > t. c t;
QJ r (0 c o
iH *-' Die -D 1— E

ra c a; r -M D
W Q. - O "D U U E
C tn -M CI I. (U -

= « (I) race- -t-- Q) £- C CI c -
M U) u fl) in E
U O "O 7) u
C.) O :- i- — ii
C Q. CI QJ = r
c -H m — C f'
W CO c - n a

O (0 +^ — n —

,

f!i Q C.

O (0 1- -H *- o or - -D-^ m 1= '4-HZ _
m *- ra . u m c L
Q. 01 (0 3 m (0 01

ji -- -.^ 0) e U -D
m H U t. 3 01-
0) - e ^ c o

Q) (U > c - L- - £:
w c rw c -^^ 01
(- - *- - 3 C OH E^^ 3 e H 0) nj

t. t. -H . 03 W-M oj m c c 01 a
ra ^ Q) 3 > I.r 0) T3 « c u- a 0)
+- -D Q) (0 tJ 0) r r

C C D [_ .H uCO Cm — L
o -H «. "D oj n •^ 0) in (0

QJ 01 -o - a:
+- - *- 3 - O U)
U ^ L (J t' <-- —' c r
C 1- - 01 (U c 'J 0)

3 o (a c ja a) « 0) — jr
•J- 3 a C E (U ^ r «-

^^ -D 01 3 +' 3
QJ Q) C U OJ U — c
> c 0) *^ a n: (fl *- —^ > > flj — > -^ in
u) 0) - .— a 1.
t. C 01— X x: o w
3 +- D 3 (I) 0)0 !•*-

U >.v m - 0 - c
01 C c in - c ^ -
a iTi (0 (0 **- -> 3 E yi

—
- o .—

.

r _

w -H » r in

(0 O
0) c. u

c • (0 c
i. * 01 —

T3 3 • in E
C

0) * -A lu

a. * - "O- o" c
*-

1

in r
c o o\ U L— T3 +- c * In
+> <D 3 c » *-• Q)
O — a3
C — ra
3 (D 3 0] « Zi -^
li- O o a •

inmr-ajOTO — cMD^inc
ncinnnr^nnnnnnnc 0) o — «

V ^ Tt ^

-71

n m M
o o

u u u

c U)

c
n?

c +^

u
u c

Ul in w
o II

U 1 u (J
C -D c 01 1- TJ o n +-

E <0 e tf!

C (0
**- in 10)

c —
U 1

01
1 (- x>

w 0
«J c

D flj
—

01 (0

o — -^

(U r:
yi U
L --

re j:

3 C- *
I. Q «

3 - ...—.r—1 ro -t-"

nj UJ—<N M j: O a
01 iiT rsi f/) </i u t.
c 0) -11/1

1 la*-a < IQ-O E *- ' uz o (0 tj- o 1- o D ro - *-<

a.
c

II o < Q n •

(0 .-. £_ ^ - M

i. (D

in U -f D II 0) Q. II

c "o "o n -^ jt £. E\ a — a a a u <*- +' c- T3 c - e E E 0) a — CO
t' 01 D C- (0 +- 1^ +- x: e >i:y- aD > ^ 'J 5 a oc — (U cic u a3 (D D 0) L I- ro ro (D -H .M t- e
u- U oq: 1 Oi c r i: r c c H D

T3 L — u u u — — (rt-D
L.

ta

D r c
» • * * iD o

CO o) o
I-- f^ 03
«r T V

•72-

<u -^

M
L

in

n Z
\n

1

2

Z TJ -' +-

E - fi]

t. D ^ 4_, £1\
i^- a c c a •

01 — m

s Zl JD
c: 1! o m
QJ— (. 0) « 01 r aa 0) u -

XI Ol5 [. n— 5 (0 ni n] (D -w
dl o in— L

C > L
i- OJ c
0, ^ >*.

E 4- *-
rtj

ni

c ^
m
u nj

Bx:

Q) Qi 0) m

ni 10 ffl (0

o u u o

"rT^rr^^^ininininininininininininmintfiininininLniriinininintninioin^TTTTTftj-iTTTtj-rr^

73-

£< 4^ V7
(0

a <
C c E t. u.

a O cu ri

u. c 0)
u > 3 flj

TI ao^ i- o t. *-

UJ N liJ (0 c
ID W Z) - 0)

a t. q: W E
m

r -M

L nj - i_ o <o

01 — + (0

c 1- * r — 10

3 - M N U 3
O ^ +- in n jt w =

L (0 (0 I- — (D Q
-H 0) 0) >*- in£*-«! L O -
(D JD -H +^ m > la 0)

HI 4^

D £1

-74-

? Oi

Cl
c D

c -D
tfl Q c
D - (.

r -H

r +'

> U - *- (0 ra^ - - -D (- t- •^
-t-- (u r £- (u ra uj S c c
c 1- 3 (u -^ at- K u
a> ra ji 0) < D. lU

3 t/l *- - 11) UJ

a U) 111 D Cl£ Cc c L
0) 0) +' 01 E *- U C3 t.

t. <-' 3 O o
«- 3 XI +' U >

i: — *' ra V
•^ - L T! C = a.' t.

(/I L. -^ 01 0) yi :: 0)

*' -"^ Q 0) C L >> -O
E •-' to H Q Q)

ni - rt 5
M — :. tn -f' D c c— Qj r- ni ro fi) n:

r (0 r u 01 t. c
H ^ 0) - :: ra L o n

- x: oi «- +- a 01

c -
0) -D 0) V V 0)

L. Q) — C c c 0 OJon £ O (U t- (.

^ in — 3 — (C o
3 01 H 0) D (0 a
U 0) - - ^ 0) 0) in

iDOU)x*-fi;>(- u nj c
D t- 3 - t. E fC o
a ^ — u r

c «- 0) . a ai Q. H
0) n -H If)

Q) L Q) 3 0) 3
i:n)>ci:(--Dxi -Q c
4-' O *- ID 0) ra

W C *' Ul Q) i. a
Q) 0) (0 (- D L iD^ *-- 3 Q) (0 (0

3 cr >*- (u a (0 o
Q) D ID — u- r in

c c
D L. 1- c — fD — r 0)

D ^^ 0) WD u
- 4-- > D 3 in 01 C
L (D JD Cr in ID > o r re 3
H (U C — t- — 3 L
H - ^ (_ - Q
d] ^ a' <*- - ffl ID t- L 0)

<o r *- r - +- ::
0) *- -M - C 1- C i- J3 0)

r t. 01 in -t^ — rtJ E r
^ 0) en o !- - - a 3 in

*j E n: *-' "O C c
= «- - 2. U O - o i.

in < "D c £- 4- 3 C in 01 3
C "D 0) D) J - L *->

O) 0) in c '4- in (0 i- re 03

- - a D — Qj aw ra i-

in D J E «n u nj a 3
10 OJ Q) 1-

" 3 a 1 au
nj « t. t. r >•- 0) lii m L
= D 0)« «- *-- t: E CE

in

c
o

Q. CL re

O ^ c
4-" I- 0) D £-

3 (J a.D
a c *- -tj

c D ra D Q)" u D q:

• ••* • # * # ' • < •

OlO'-CMOViniDr-COOTO „ CN O T in to r~ CO
LniQU)u>(ou]iou>cpu)U)r^ r~- r- r- r- r-
inLfitnLnuiinininininioininLDinininu-Jinin

=5 Q)

CC >
O
E

aO
<
a. 1-

10)

3 n
z D

C

1/^
«'

< 10 o
O II

XI

D) C
5 (3

c
3
(U m nj

O 0)

>'D C

cr D

(D Ca-
ICU

. Di/ioo _]
V- < oE V) M

Zi in
2 L W<N

i

Ira _J 01 t. Qi
Q.< ra flj

Q a<
O JD
Z E a-t o 0)

:: (3 n
o c - u D

i:
O -Diu i.

c k/1 fij

0) u £ -1 a
a -<

n :? o ra

c HI D)«- L in

D D (5 J(ra c
O - r a to

u c »*- u c

^ ro
c c c c L H— ~ - u

< ._ ^

1/1 I

a'—
< -^

X Q)

S (0

lU (0

a
< a

u o

ra ra

r-ro(DajtDtD(DB)eocooo(j)cno)0)aia)0)a>fDO)0000000000 — — '-'-'- — '-'-'- — tN(''rMc>jr^tNCN
u)[nininuiininifiintnininuiinininininuiLninii)ui(^uiu)U)icu)U)U)u)U3uitpti)ii)Uiii)U)iDU>U)toiDiPU)ifl

-75-

— <D O
' c z

13 C fl)

O 3
C II

o^_a
*- CT a
C tU 3

q I] UJ

D *< -
z ^ - +

I 0) (0 «

UJ L 0)

Q -^ 10

D *- —
z - at

D O "*

—— o L a'-

3 ovi -—^ u e

H-
I <u I

o £i * n (1) u 4- a <u I- t.

2 (0— cr r W 3 D ID (U
i' <»- (1 0) u 10 CO £]

o — *j (. vo aj EEC - e
« 2 d) C CT'*- H a (D ce 3
se V L '^ OJ 1 M D a t- c
c - w L e ^ O lO

I- a"*- ^ EEC < c
! .. lo m

— < —

(^ <o O) o
tN (N (M n .. ij
10 1.0 <£ 10 U (.D

nrrm(i)r-(00)0'-c<0"Tixiii>f-a30)0'-<Nn^ir)ior-cotnO'-(voTri/i(i)r^c)0)0 — (ndtt

lO(0l£l£U)tpC0U>l0C0WU}(£l£lfl<£(.DU>tDU>U)UU)U)<O(OWlDlfiU>lO(AU<£W<O*OU)U)U)(OU)

76-

n ce^
E <
D a c
C 0"^
'B' - Z t-

Q) +
1- w
_J •-

Q) *- Z) E_

i- L. m (a

u ra uj a
la o: 1

w 1 a
+^ n \- E
L E D 3
ro D C
a c

z'mM *-•

a t.
.-- a n

•.-a li-

p-r^r~r-r-coco©cocococoa3eceooiova)0)OiO)0)oiO)cnOOOOOOOOOO*-""~'"»*'-'-*~'*^tNc>iM

-77-

o c

1- - ffi ta

— -'' o i: -o (C 0)
= W — E a
C C w *-• t. o
-" — Ol — ^

. - Ql *- C in "
0) f' *- L " 01 uo

-

~ - D (D J£ On *^ £i a (0 (0 •
ra c — E«- >o— fl) (_ 3 O i/1 cv c— 0.+^ Q) ID _j ^ n
tz -K C C t_-^ •cj (. *- c
> ro 0) c U. IQ C. ^ c
< 3 flj T) £) a 10 =

*' C --- e - 1' - a
in (0 LU D '^ O 1

C uj 1- H 2 (0 oi a *' a
O O Ui < - L c (DUE C 1-- d: > UJ D L Q) o — — D - 3)

-+'ujOQ:craja «- *- C L aO « E E U *- W L — a
L 11 CoB (0 C fm-

II a II II t- ni a- —
a TT C

='
01

C O - CJ n = -'-o a
: = = = w= 5^ (U

r 10

,t] *- *- +^ t; u
I- c c c c c c c

a t_ L. L. t- I- L o 3aaaaaam W^

i, Q. '
1

flj ^ in tfj

a - *- •^ D
'- L 1. C£ 1-

01 *- (0 (0- £_ a a 11 a

CO U. M- >4- ^' II 14.

C *^ t^ +- « ^
«J c c c c —— -^ — — ic 1.

1. 1- 1- o o
0) a a o. « -4- -^

D^iniBt^comO'-cjn^iniDr-oooJO'^nn^incDr-comO'-MPifl'inior-aitnO'-pjnwintor-.tofTir^

78-

^ o e D"
O)'- N- L n <u

t' o- «
— tfl (D '^ [- D

L *-Xi
Jt < 0) 0) *- —
r. L. aj: < 1-

u o *- *-•

(- -
• fi tn c 0) nj

« t.

Dl E
« D- C
*-

!

^ 4-'

l> (0

II c +J ,< +J H.
to c c c c

en—
<o L. L. t. a— 4) a Q av)

« —
C j:

« a*-

r-t^r»r»t-r*r-f«-r*(DO)ooo30)eocooo(Dcoc)cno)0)0)aiffi(7iO)0)0000000000 — ^"- — '-*'- — -^
t«r~r~t^t«'r»'r^r-r^r*r*r-r-f^r-r-r^r~'r^r^r-f^f^r^r^r-r*-r-r-eoQ3(Oco(Ocoo3£ooocoeooocD€DCDcoeococo

-79-

c
A^
c

û
c

f
(0

L
0)

a
P

V
> 0)

a
s. 10

4- (.

"i "o •
- (fl « c

-. 01 J w
-i

C t- ra L CO
-^ 01 a m <

a
c -i- (0 u

q:
c

- XI O
~i

fc -a
ii a; I. in

ra til

ffl (0 Q. "O s o
c >i c z^ <

- CL X^ o
3 a oo
(U C uj ^ UJ

^0] C
« LU II

«s l/l tl II -

--li- fl) 0)+'
D • UJ > (0 L
q: UJ LO 11 C .- B
1- 13 _i It — ^_ Q.

q: < I ^ !

u. - w c —
o><»- g "u

II ,0 - w t^
— c c

CTO) Ol^- - ... -
Q Q (0 ^ t- ^ L

- r a a
M- O Q)

r c C >t- ^
O fl) flj - 0)

^ — 0) —

11 ffl „ D nj Z
a C ao

Zi 7i il --
1 3

(0 — e UJ n o <U £) \-
t- *- 3 D 1= c c E«
0) t- c a 3 1

1 3 H
a«o 3 t- c t: r. a UJ UJ
o a 0) .. II V L c >-'< 1/1 u1

c + £) - <0 3 T3Q.
••- E CL O 01 < <--u O D •• c t- » 3 + u. u.

i: r: c ceo 10 « oc m
1- 1- D 1 til 0) . II 11

: - o *- T3- L - II L
1- C^^ o — oiie en ni
10 D [- iQ a (0 10 -

^ i' o D. O O en +- a - u
c c — C H- *.— *' C 0) •1- u to U- <4- (0

L -^ 01 « E (U TD W 0)
[- t, r n i- C 3 t- O C t.aa J — --- aa 10 «0 CU E a 2

(.:•

0)O*~oir)*Tinu)r^a0(nO'-(Nr)vtnuir>a)(nO'-c<r)vinu>h-cQ(nO^t^n^inuir^<D(no^r4nvinu)
^clCl^4CJc>lc^lc^lclr>lc>lcon^]^)0(*lr>r)nn7v^V(r^^v^T^l^lnlnlnlntnlnlnlnl^tDu)u}il}u>wu)

scoeococoaocoGocGcocoiScocococoaooococDtDcoBcxococoncocoiotoaococacacococoeococDcocococoGocDQ

80-

< [-

+- u — ^ ^
s~ E

a c

U. D 01 ..

C C — m
SI *-

3 t.

<4- L. : ra
-M n: a
c a «- 1-

1 Oil
t. t- eaa T3 3

* ^ n

81-

C O)
-^ c
-D -

IX 01

o c

-H £. (

C *- ^ <*.

!~ C c w £1 r-
(0 C- L (0 n
a-H c *- (0

1-

= flj ta 01 ffi c
XI L i.

I. * ".
• — c
• z o
• D —

^ >•

E • 0} n C II • amz I- e m » < a
tfl « - D - an • a

w c • <DH D
t. m - C D

in la 1- O-U- C-u-
c a - C 1 -^u. —
o \m t. T3 1-'- TJ *-• C * +- *j 01 q;H Q) 3 1- • C (- -H C <
U — az * — fll <o nicL +'+'+'
C — m Q. c c c
3 <C D v* *•

1
*' in -H

U-O a en * L c c c L L [.

nj C - D- aaaa
1*-

i. c
• • # » • • a-^

at- •--•

.11 *j —

at- c w
Iff - t.H a t- o

L-— ai----

r
u

c
(D

Uj

tz u
HI ra

u
u c
(0 <0

L
>
L

i. ttlTS

(D 3 IS

Q. D"\ ta

0) 0)

(0 o
D U)

aw
(U J (H

C
0) Q)

H
c (0

O)
0) »
L u

j£ Ol
t. Dl

(0 3
» a

inu>t--o30)0--«p)^inu>r--cD(nO'^cvirjnioior-(DC)0"-cviriTrtnu)h-eoo)0— cNtT^inmt^tooio-cN

-82-

o o
c u

>. c
r)

n
r Ul

,n

m

(II

*-•

ft) r
U)

a E

o a;

u t-

F m t,

0) c •
(1

ffl

a o •

+- t.

C (0

01 a
*' c E -

3 I. 0) EaD 3
nj C

D Q)

o a QO)

9 9 o \A

><"D D ^-^
t. Cl— CJ
cr D ~ z,

1 1^ 1

t' -M > X
(0 <

E
in m
O

u u
n J3 c; 1 !

*- +- O >t3
1 1- (- a

« w +* a D
C C 3
nj ffl- L

t u — *>

E C c Jl
3 '- D rr
C 0) 0)

QJ t. u t.

D— 4-

E cr
C 3 0]

C t.— i- C Z3
0) CX

c *-

OJ to C 11

c ^ lyi

!d V 0) "2
dj <

£> - d:
01 c D 1-
— J n I

J3 0' *- Q
nj u — Q.

!q 41 3
11 O t' —
' *- Q) —

0) o <*

t5 U

C t.

> o
tfI «- —

Dvinipr-cooiO'-tNnrrintct^como — on-TintDr-oacno — o(n'3-in(X>(^cooiO'"tNr»<Tinu>r^cociO
u)U)iDCOtl)u>u)r--c^r--r--r--t--r--t~-r^r»a)coooff)coaDeoeoeoa)a)OioioioioiQcncriOiOOOOOOOOOO'-
(jimoiommtnoicncnajoicitnoimmmcncntnooiooiaitDOTaioioicnoicnoiaioiOOOOOOOOOOO

83-

" >
u c
c «

era
« c

u

tr«
£.

o o
u o

u a
a 3

I- a

II .-

C tn
> 1- a

t. «*- in < in II

1 D^ 1- ^ ID i/i o
O

I t

U) VI

c c

z -.

—

- - o t.

Z O >'D
V II t. a- -1 CT D

-- 0. +'
C *' — <*.

- C CQ

II 1.

0) [A Cf
>

flj TJ
II II

>TD It UJ

— O
1 [«Z

U U

ID flj

U U 1*^

Q (.

-^ u a

»-(Nnwinu)r-oo{nO'-c*P)»riniiir^oo(nO'-c4P)Trin(iir~-eoo)0--cMr)Trm(Of-Qoc)0 — cNn^inu>r-co

oo

84-

Q) eo O 0)

11

i
lo

c c
- >

W E

n - OJ (0 C D
C "O nr -H (0 in D
-TJ (D H r (U d]

c t' L >.
01 c 10

U E nj (0 in 0)

C i. 'n r m :: a
(C OJ (C OJ t-
C i-'

n 0) t- D D
T3 Q) 0)

« Oil: n 3J 0)

c c. (_ lO L
OKU ato no (0

C lU 0) n
-iJ 0) D ^ in

E i- (n 01 0-
10 - 13 C -- in

(0 O
*^i: a> C C OJ (. u
e o - Q.
OJ *- a
a c «^ M U TJ

0) (D r - q; V
> E 0) U •- - E
n OJ r :i Q) nj

u e
_* ™ ao ^T3 U

OJ ^
CL i- <0 W

in

- QJ in «- a 0) 10

nj — 11 o — c
u — - TJ

a c
o [fl Q

a (u u o = 01 n
m- u en r u
L cncN c

c 0) -
r r «- a in

W •- u o w >
cxo fl) - 10 (D

0) +- ;. ai .. C
- (. Ul C J3 - E flj

- 01 a3
' E c

O V.- a cu u- o
<0 < c

3 >*- Cn-
c C E 10

C (3 • u
r o in

t. o -M m ID 3
a t- «J ^ O a

ni u u a- 0) .

W 0) c > L L
0) n D — E M- (1) Q)

D L 0! W
>U E a il 3
- c «
(C D U C (n a CD

C £ x: '^ C
<t n +- 0) E U *' ^

* o *
1. •

>Q.*

^ o c *

-. - -a *- c
*j *' 0) 3 L
D o — a 3
a c— *- *-

o)0-^wn'<Tin'j)r-a)mO'^tNn»rinior^oooiO'-c^n'Tinu)^-oicnO'^cJO'^intflt^eomO':(NP>^in(0
in(S(pioi0(C(fi(D(£iDwr-r«h-r^'^h>r-r«i^h-cococococococococoa]0)G)O)CioO)OioC)O)OOOOOQOO-'- — '- — -'•

-85-

— Ifl

0)

w 0) a
C J

^ c IC I
nO 0) • z

U aO C D<

in - u
in Z

U O H-

lu 1-

c c z- - o
E E U

fl O
t- Z

C — — 1

O Q.

O O

r*coo)0'-cNn^iny>r-coajO'-(N(nTir*iDi^oooiO»-(NCT*Tin'i>r*-«)U)0'-oioijintDr-cocnO'-<Ncn'T

86-

to o o
L - Ul c

0) (Ti ra 01 t-"

i; a u "D o t

:: •2 c — PI

Q n m
E -D 01 01 c 1.

ifi "D " 01 01

o Q) o U) JZ
a u c 01 01

c (0 t.

L OJ ar
a Q. m 01

C 01 (. 01

o 01 01 C 13
c t. 01

3 01 "D "O
3r.

Z 01 c 3
c a O

a (U 3
SZ a r

o a M- "D
u (0 C

0) £ (0

C r or
a 0) L
01 01 L
;_ t_ 0>

u 0) >.r:
c 01 a
3 £l t.

<D u
01 OJ D

D 01 r u
c r T)
3 in 0) nj

O c 0
n J U " a

1 c 11 J
r "D r VI

U a- E 01 01

c a (13 n
ra ^ -D C in in (0

t. Q. D
i3 U 3 3 01 a in

C U D J
0) m -D c u E
r c ta

(t) ni 0) 01

t.

>> J) > (D

i: C- L c
01 CO 5 u

t! D QQJ Ci

01 u 0- — w *^ c

*
in *

(0 •

- [. - w^ XI

BJQ)r«-3O0*-
UC*'OtTC— o

in Q
o o
U Z

»^ a. "

*- C » ^ o
tJ *-• * n 1

3 ffl 3 01 •
O a •

C f
- c

mu>t-a>(nO'-(ND^uii£ir-co(j)0*~c'iPivinujr»eoo)0'-o(D«Tb')iDr^(DO)0'"<*irj*raiu>r^o3CiO'-w
inkninininu:(su>wiciciDU)U)(£r^r'r-r-r-r^r^r>r^h«coeDeococccoii)coooaoj)<no)7>cno)0)a)OioiOOO

-87-

Q —
Z U

^ * u

D a 0)

0) -J
t^ L l/l

C •"

QJ W I. D
U 01 Q) c
l_ -Q W (0

Q) D
a c-

a: TJ
(0 ui r <u

:: +j *
c n
o •*- « 0)a- « 3
D (0 cr
D U 01

TD 0) ^
(y - r
01 - O IT

rtj rtJ
- CI

£1 u r TJ enw J 0) a: c
tf) c. in (0

til m c — CD JZ
0) u

n « ai I.

ra o ---a u w
*- U TJ a)

..-

0) <u D r
*- C E 10

w O L CO c
- Qi or

U +' «- t.

CO t- 'J 01
-

OJ U (U (U Ul J
*. - ail
Q C \ Q) T3

"D 3 0) Q) -
'Ha E JD n

D E fO L m
O Q)

D O *- L u
c u c o
(0 c w c (0 Ul

m
> w 01 (0

L 0) >«-
Q) in — nj ai

D ra «j U J2
CT Q) C Q)

t_ CO 01 D
a o «i

r 0) >'^ T3 H C (U

-v.- 0) Dl
w > y •• «
a w — L
- « ^ OJ c c
— 01 — D. 01 QJ

D (- in - u
r(u c Q) in I.

01 c 01 jr 01

tt — (0 -H" < a
C -
OH' - o

in 01

c w
--n in 01

".^-

U- u o a • "
Til

ju. v^-cvnTTiniar-cooO-oJonintDr-como

OICSO(C>JCNWMMW«CN«W«CNC>JOICN(CNO^OfCvlCNrvlt>iO(CNCNC>tO(MCNr^C»jr^C>IWC>ICNr^t>|t^

-rjD^iDUir-eooiO'

88-

c c
HI

u u

c c
0) 0)

o o

H C
^ o

o c
- 0)

r >

« ID

o o
u u

I I

i~ Q.
0-3

o o
u u

t- a

0) >— c

- 6
(B 3

O O
U U

I I

>.T3
t- a
CT 3

o o
o u c a

C 01
O «3

O O
U U

I I>
t, a

HI in

o o
u u

I I

t- a
C7 3

3 -
f.

— ID

I- r

• Q (S *- C70

3 - E
IB D

3 t. C

r-

o -

.-~ a
C L O

— — — — — — ' — - — -I C4 c^ (s c>i fs c* <s c^ oi oi c* rn C4 <ri a a•i a noi ci c

ooo)0'-cjD^iDiflt^coCTO--<Nn^intflr-ai
f^f*-eooooocnajaococococoojoio)olfflO)OioiO)
CSCNCNCNOIO(tNCMC>JCNOIP*CNP<C*rJCNCtO(<NOJ

89-

0, 3 tr *--

~ a. a u

_^ £1 w w
ret.- «*-

c - c c
Q, — ^

(. I. t. m I.

a w a ifl a

OlOOOOOOOO(Nnnorjonon

90-

- .BT3
--*- at -a -0

c n: 3 - 0) 0) ID

w dj N J a- - 0)

Q) e - - c n D -
- 3 C I- (0 c C 13 "0

£- U T! * C (0 m 0) c
- Ol' c C — ID

C TJ L (5 Ul T3 C
QJ C <B W u) C

C C -M c C nj ui

U - C -^ 3 or*-
- 11 - cam m - 4- f W 0)\ [. in t. t. rtj - 0) E

01 T) 1- (D t' — ^ "D 3
1- c (0 j:: «- 0) LOO
o C U (D c 111 C

(OnJrtjiOfljtOrtiflj'O ^ --> 2 I— i/iS££££ZZZ£ -J '— --• E O a. < a.

• ••*•»•»• Q. (/1(/1 .-ClD'- CQ Uli—
•V.-v^-v.*^-^-v.-v,-v a II t. I^—• l/tt.<

Q. O tj - OJ - OJ *- CTt/) I/) UJ - Iao >- >CLa)Q: uj \- *'>x
O OQCfl] a)3fl]c-»-D: 3«ia)<
O 00000 —— Q> 13 ^Oa-*-!--- O (U Ji I -
Q* ooinino lii ..Qia)--Da <'~-i- mi.^i—

n— cj _i EEE^tTJO 4-.*J4-'+'i> 1/1 a Qt'uwi000 aa j«jflj<i)ii'u ccccxa i-rco-i
>nncNi/) ini/i o— < cccl^^dc -,-,-.,-^<(_ (_ o-"*'uj
a. atni-iuw i-iu tuoiuinifflu- 12 uj< 30;
t- i-_iaQo -I'oi-oa)*-'*-' —.ujuj_i fli
zrsjr'jrMKiij<oa z m 0OT3W00+' CTI-J CQ t' -^x
iuiyi(/itn<aQ.ZQ UJ O < C 3*'*-U Olx (U < O t-<l|ll|[|||UJVli-t>- t-L 3 C<<l-3 *'SXUOaxXXXX^-l I- l+'fllD+'-H+Jt. i^-S »- Z t. t'^-
<oq:i-<<<<<£i;< < _j c^cccc*' — z a ^ mo)SQO<SlllEi-u- -I Lu --UO — --in— --~i» a UJ ui— ^ —

UJ ae — UJ o] n
ajoiajaiataiaivaiiiiiVQ; ilea nCCCCCCCCCCC +- (0 4-" t'
, _^ — ,_,.,__-^^»o '•U c
M..i,-*-ii.i.->i-<^^-<.-*.-t--v.D ^\3 £_

aia)iiii]ja)i])a)iDa)(Dd) (- o l. o)

T3 T] D U T3 O n 13 T3 tJ 13 v L +- fl**»:*%%%*%%% (fl— _ m— ,^

»-e\nw(niDt^coo)0-cNn^iO(i3r-a)0)0--tMO^incDr-coaio*-cin^in(i)r^eo(j)0'-

91-

d a a
J a a

z,z

(/)

< <
Z X

ca
<
1" VI </>

Ul QQ
O

.. ..Q o z z
>-oo (J 1 1

t_ az X X
0-3

1 z < <
1 IX o I X* * <
X

u
c c- <- - Q iA u o

-z 1 1

1 < >73
irt a 1- a
c aj

_ CJ —

-92-

DATA ALLOCATION IN A

DISTRIBUTED DATABASE ENVIRONMENT

by

Kimberley Ann Johnson

B. S., Western Dlinois University, 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial rblfllinient of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UTSTVERSITY
Manhattan, Kansas

1988

Distributed information systems are systems which locally or geogieiphically distribute elements

within a computing system. In this environment the database designer is faced with many new

design problems, one of the most critical being the distribution of data which most accurately

reflects the processing needs of the organization.

The main focus of this report, is in the design of an interactive system that automates the

partitioning of files and their placement onto a distributed network. A review of the relevant

literature is first presented, followed by an overview of the system's design. Finally, an extensive

example is provided to demonstrate the fiuictionaUt> and use of the interactive system.

''V ?%

