
'Recommendations Towards a Direct Manipulation Interface
for Three-Dimensional Computer Animation/

by

CRAIG ARTHUR ORCUTT

B.S., Kansas State University, 1987

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Computer and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by;

(JUI^smU^,.
Majpr Pro

TABLE OF CONTENTS AllSQfl BDllSti

cmsc
1^^ 1 . Introduction 1

Q'73 1.1. Overview and Purpose

^^2. 1.2. Traditional Animation and the Computer

2 . Survey of Current Animation Systems 6

2.1. CRAMPS
2.2. ASAS
2.3. DIAL
2.4. TWIXT
2.5. MIRANIM

3 . Interface Design Goals 12

3.1. Expert Opinions
3.2. Specific Design Goals

4. Tlle

.1.

Interface
4 Scene Window
4 .2. Actor Window
4 .3. View Window
4 4. Track Window
4 5. Pull-Down Menus
4 6. Hardware Requirements

17

5

.

Creating Actors 34
5.1. Attributes
5.2. Objects
5.3. Actors

6

.

Animating Actors 65
6.1. Window Functionality
6.2. Attribute Animation
6.3. Orientation Animation
6.4. Position Animation

7 . Conclusions 81
7.1. Recommendations
7.2. Weaknesses
7.3. Future Directions

Bibliography 90

LIST OF FIGURES

Fig. 4.1. The Scene Window 20

Fig. 4.2. The Actor Window 23

Fig. 4.3. The View Window 25

Fig. 4.4. The Track Window 27

Fig. 5.1. The Object Type Selection Window 37

Fig. 5.2. Object Size Selection 38

Fig. 5.3. The Color Selection Window 39

Fig. 5.4. The Pattern Selection Window 41

Fig. 5.5. The Pattern Editor Window 41

Fig. 5.6. The Displacement Selection Window.... 4

3

Fig. 5.7. The Image Rendering Attributes
Selection Window 45

Fig. 5.8. The Control Point Selection Window 49

Fig. 5.9. The Photometric Attributes
Selection Window 52

Fig. 5.10. Focus and Magnification Selection. .. 55

Fig. 5.11. The Lens Filter Selection Window 58

Fig. 5.12. 3-D Solid Object Connection Point
Selection 60

Fig. 7.1. Animatable Model Hierarchy 83

11

I thank Dr. William J. Hankley

for his careful guidance; Drs. John J.

Devore and Virgil Wallentine for their

helpful suggestions; and my wife,

Cheryl, without whose patience and

criticism I would not have been able

to finish this work.

Ill

1. Introduction

1.1. Overview and Purpose

The art of animation has seen many technological break-

throughs in the past. From the advent of the first filming

of cartoons through the development of new techniques and

practices, the art has grown in popularity and complexity.

Not the least important advance is the usage of computers to

aid in the animation process. There have been several ani-

mation systems [3,4,6-9,16,19] written for computers, with

varying degrees of success. These systems were either aids

used in the traditional activities of the animator, or were

the medium for the animation itself. The latter class of

systems appears more interesting because they allow the

animator to perform tasks in animation that were not previ-

ously or physically possible. One drawback of these sys-

tems, however, is that the animator must be more aware of

the computer than is necessary. This problem is usually

manifested in the form of a computer director's language

that the animator must either partially or fully use to

perform the desired motion. This is neither an intuitive

nor cognitively bound technique to the activity to which

animators are familiar. Animators typically manipulate

models, not program computers.

The direct manipulation interface is a recent design

technology, and valuable interface tool [20], through which

actions performed on the computer are directly analogous to

actions performed, physically, in the real world. Natural

activities are transferred to the interface so that people

can use the computer in a fashion that is immediately recog-

nizable and intuitive to them. This makes the learning

process much quicker and more efficient. Also, people tend

to enjoy working with this type of interface more than with

a simple command driven interface.

The major contribution of this work is to present a

functional union of the direct manipulation interface ideol-

ogy with three-dimensional computer animation through a

detailed set of recommendations that may be used towards an

eventual design. No effort was made to provide a structured

design, nor to suggest usable data structures.

The paper is organized in the order of increasing de-

tail. The remainder of the introduction details the tradi-

tional practices of both two and three-dimensional animation

and the advantages and hindrances of computer systems for

animation. Chapter two details how several different anima-

tion-oriented computer systems have implemented these prac-

tices. Chapter three covers goals that were considered and

are followed throughout this paper. The presentation of the

recommendations begins with chapter four, where the basic

look and feel is discussed. Chapter five annotates the

procedures for the static manipulation of the animatable

models. Lastly, chapter six proceeds with the dynamic ma-

nipulation of those models. Chapter seven presents major
2

conclusions and directions for future research.

1.2. Traditional Animation and the Computer

Experts [1,2] agree that computer assisted animation is

well divided into two main areas, two-dimensional and three-

dimensional. The computer itself assists in functions of

these two divisions in a wide array of positions from man-

agement tools to fully integrated animation systems; from

computer-assisted animation to computer-controlled anima-

tion. This section covers the traditional practices of two-

dimensional animation, and then proceeds on to the three-

dimensional variety.

Classical two-dimensional animation is performed using

a time-proven series of steps. First, a storyboard is cre-

ated depicting the major scenes. The storyboard consists of

a series of key frames: raw, unfinished drawings which actu-

ally are to be incorporated into the finished product. Once

the general flow of animation has been decided upon, several

levels of assistant animators draw the frames that exist in

between each of the key frames. This process, called in-

betweening, is the most tedious and costly, thus the most

likely candidate for computer assistance. After all of the

individual frames have been drawn, they are either manually

or electronically transferred to clear sheets of acetate

called eels. The eels are then opaqued, or colored in,

another time consuming process. After all of the eels are

ready, they are mounted in an animation stand and photo-

graphed. Cels can be placed on top of others to form com-

plex images.

Computers can and have been used in this process for

each of the above steps, and in each step either as an as-

sistant, or as the medium of animation. Most particularly,

the in-betweening and opaquing phases have seen the most

computer integration in the past. Some systems, as well,

have been designed for both the transfer and opaquing steps

[3], and for the photographing step [4].

The major problems with either computer-assisted or

computer-controlled, two-dimensional animation are basically

caused by the fact that this type of animation only has two

dimensions [5]. For example, in the in-betweening phase it

is necessary for the computer to be able to interpolate one

or more intermediary frames in between two given key frames.

The interpolated frames would represent the animated charac-

ters in various stages of motion. For most types of motion

such as rotations, however, not enough information is lo-

cated in the available key frames for effective interpola-

tion, ie. arms that are covered by bodies in key frames

could be extended through in-between frames, yet the com-

puter does not have enough information about the arm to

compute interpolations, because it only has the key frames

to work with. Several solutions to this problem have been

proposed [5], yet none work in all cases, and most require

the animator to define more of the picture; to tell the

computer the information which it needs to know. This extra

requirement of the animator is neither welcomed nor ex-

tremely useful. This continues to be an research topic at

this time.

For the large part, many of these problems simply do

not exist for animators working in a three-dimensional

medium [1]. In classical three-dimensional animation, real

models are created for each character in motion. For each

successive frame of animation, the animator painstakingly

adjusts each model a slight amount, so that when the film is

played back, the models appear to be moving.

This type of animation is very amenable for integration

and control by computers. Since the models are three-dimen-

sional and not two, the computer has all of the information

it needs to perform the in-betweening steps of animation.

Models, also, are well representable by computers, and even

complex three-dimensional wire-frame animation can be

achieved in real time by powerful processors. The animator

is relieved of the burden of hand-adjusting models, and is

simply asked to inform the computer as to what motion the

models are to undergo. The method by which the animator is

to inform the computer about animation is the main focus of

this paper.

2. Survey of Current Animation Systems

This chapter covers five of the most notable computer

animation systems actively available and currently in use.

They are arranged by order of appearance. As a brief over-

view, programming languages are currently the most prevalent

medium for the control of animation by a computer. These

languages are most often concerned with three-dimensional

animation because it is inherently more controllable by a

computer.

2.1. CRAMPS

In 1981, a computer animation language was introduced

by a national chemistry research organization to be able to

display even the most complex chemical reactions and trans-

formations on a video screen in real time. This language,

called GRAMPS [8] for GRAphics for the Multi-Picture System,

utilizes an assembler-like language and specialized hardware

to let a user adjust the display image. This configuration

actually makes GRAMPS more versatile and capable of handling

more than just chemistry-oriented animation. By manipulat-

ing dials, a joystick and a graphics tablet, a user can

interactively view any stage of a chemical process desired.

Being one of the first attempts at writing an animation

language, GRAMPS is oriented specifically towards program-

mers. Professional animators cannot use the system unless

they are, themselves, programmers. Most of this problem

arises from the fact that the language is strictly proce-

dural and not pictorial. Also control statements are miss-

ing, so that only simple animation sequences can be viewed

and manipulated. Also, no image rendering is provided for

the viewer. GRAMPS does, however, allow real-time interac-

tion with the animation.

2.2. ASAS

Reynolds' language, ASAS [7] (Actor/Scriptor Animation

System,) is one of the first animation languages to be used

for professional production of movies. The movie TRON was

created using animation effects generated using this lan-

guage. ASAS is actually an extension to the LISP program-

ming language, introducing various data types and control

statements to facilitate the creation of three-dimensional

animation. This language is, again, procedural, yet this

time parallelism is introduced by allowing the declaration

of actors, discrete animated units, before they are actually

animated. Several actors could then be animated during

similar time spans; time being represented strictly using

frame numbers. ASAS also introduces message passing for

explicit synchronization. Like GRAMPS, use of this system

by professional animators would be difficult since the lan-

guage is strictly procedural and not pictorial. The author

states that this is a necessity for professional looking

computer controlled animation, but the statement does not

seem necessarily true.

2.3. DIAL

One of the first efforts to create an animation lan-

guage that is more pictorial is DIAL [6], for Diagrammatic

Animation Language. In this language, each animated object

is still declared procedurally, but are executed in parallel

using a pictorial syntax. This syntax is a slight extension

to the GANTT chart methodology, and is actually very analo-

gous to music scores. Starting and stopping times are ex-

plicitly shown and intuitively more obvious to the program-

mer. Even though the professional animator must still know

how to program, the requirement is not as stringent with

DIAL, and the animator does have some analogous indication

to what he is used to in his art: parallelism of animated

objects.

2.4. TWIXT

TWIXT [19] is an interactive, computer graphics anima-

tion system that is currently in use at the Computer Graph-

ics Research Group of the Ohio State University. The system

was created in response to the fact that prior animation

systems require the use of a high-level programming language

to implement motion. TWIXT allows the animator to visually

and interactively modify the animation sequences at any

8

point in time. This permits the animator to see images as

they are dynamically modified.

TWIXT is not a key-frame system, one that rapidly plays

30 still frames per second to produce the animation. This

type of animation is not amenable to modification. Rather,

a multiple track system was used. Each object in motion,

and each attribute of these objects, can each be given its

own unique track. The tracks represent dynamic changes in

display parameters, such as position, orientation, color,

etc. When all of the active tracks are played at the same

time, animation occurs. This also means that more computa-

tion is required to play back the animation. The animator,

then, is given the choice of real-time, wire-frame playback

or full image-rendered playback via some recording device.

The time unit used in TWIXT is the frame number. Sec-

onds is not used as a time unit because it is not tradition-

ally used in the field. Tracks are created using frame

number references. In-between frames are then interpolated

using a variety of interpolation schemes.

The user interface is interactive, inasmuch as what the

animator is currently controlling is dynamically visible on

the computer screen. However, the animator must still learn

a large list of command words to manipulate the viewed ob-

jects. This is only a one-step improvement over the usage

of a high-level animation language.

2.5. MIRANIM

In 1985, a great advance was made towards creation of a

truly user-oriented computer system for the control of ani-

mation. This system, Miranim [9], was created specifically

for the animator, not the programmer. Through the interac-

tive use of menus, the animator can create objects using

geometric and parametric shapes. Several shapes can be

combined together to create a background, or to create an

actor, which is an entity of motion. The animator can then

define one or more cameras, which are capable of special

effects, and one or more light sources, each with their own

diffusion and spectrum characteristics. After the above

entities are defined, each is given motion directions, start

and finish times and position requirements and then the

animation can be viewed. If the desired motion parameters

are too complex to describe in the limited fashion offered

the animator, he can give the motion specifications to a

programmer who will be able to use a computer animation sub-

language to mathematically, and non-intuitively, describe

the action. The interactive user-oriented aspects of Mi-

ranim are good and admirable, but still require the command

driven interface. The animator is still required to learn a

director syntax, and know the complex mathematical equations

which define motion.

In one example [17] of creating animation using a pro-

cedural language offered by Miranim, Magnenat-Thalmann men-

10

tions that creating animation using an animation language is

extremely time consuming. She states that a 13 minute ani-

mated film, Dream Flight, took 14 months to produce. How-

ever, they also point out that user-friendly interactive

systems decrease the amount of time to create an animated

sequence, but also limit the creativity of the animator.

This is probably a limitation of the interactive system,

however, not of the animator. A well designed interface

should not have this problem.

11

3. Interface Design Goals

The ideal interface for a user-oriented computer con-

trolled animation system must be designed and developed

using the following goals. One expert [1] notes that the

best user-interface for animation is the one that the anima-

tor is already used to. A system should be developed around

the artist, not the programmer.

3.1. Expert Opinions

Some general goals in the creation of an effective user

interface are covered by Foley et al [15]. Interactive

graphics should be benign, responsive and graphic; it should

behave well. Also, a good interface removes the computer

system from conscious concern by the user, letting the art-

ist concentrate on art. Some of the measures of the quality

of a user interface design are the time a user must spend

accomplishing a task, the accuracy with which that task is

completed and the pleasure the user derives from using the

system.

Some specific goals for the design of an interactive

animation system are presented by Csuri, et al in [16].

They recommend, first, that the interaction used to create

the animation should ideally be in real-time, even though

current hardware capabilities often fall short of satisfying

performance requirements. Second, they state that a lan-

12

guage is required to control the transformation and interac-

tions of the objects being animated. The main emphasis of

this paper is to present a list of recommendations towards a

future design using a direct-manipulation interface which

makes this requirement less emphatic if not totally unneces-

sary.

As a third design consideration, the authors suggest

using procedural models to describe complex objects. (PHIGS

is an example of such a model.) They mention that, when

interacting with the creation of the animation, usually a

lower resolution image of the object (s) should be used to

facilitate their real-time manipulation. Fourth, the system

should have editing capabilities to adjust the animation.

Fifth, the display algorithm should be able to handle the

intersections of objects in three-dimensions to provide

depth cues to the animator. Lastly, they mention that the

display algorithm should be tightly associated with the

hardware to increase performance and reduce complexity.

Swezey and Davis [18] offer the following human factors

guidelines for computer graphics, in general. They note,

interestingly, that there are no current guidelines specifi-

cally for computer animation.

The authors mention that the time that is required by

the user to find information on the screen is directly re-

lated to the number of objects that are being displayed.

They recommend that only the most relevant information

should be on the screen at any time. Other information
13

should be removed once it is no longer needed. Then, users

should be able to recall objects onto the screen. When the

screen does become cluttered, or when symbols are similarly-

shaped, the system should offer zoom functions to concen-

trate on a single object or group of objects. This feature

also separates the contiguous symbols which can later be

viewed using a scrolling function. A selectable button (or

any selectable area on the computer screen) should be at

least 0.25 inch square.

3.2. Specific Design Goals

The following are specific, personal goals towards the

creation of an effective user's interface for three-dimen-

sional computer animation:

3.2.1. Pictorial Display

The creation of objects to move around, the relation-

ships between objects, the definition of motion of these

objects, etc., should all be done graphically as if the

animator were actually performing these tasks. As many

actions as possible that can by represented pictorially

should be. No syntax, no matter how intelligent should be

used.

3.2.2. Intuitive Display

Similar to the point above, the system should take real

actions of the director and transfer them to the animation

14

system. If the director motions the actor to move a certain

way, that same control should be offered in the animation

system. If the director wishes a particular camera angle or

special effect, or a particular lighting scheme, it should

be made available. The view of the computer animation

should also represent the view of reality as much as pos-

sible.

3.2.3. Production Time Improvement

One of the main reasons that computers are used in any

production process is to decrease the amount of time re-

quired to perform a specific task. The ideal system should

make the production of animation as quick as possible with-

out compromising its quality.

3.2.4. Quality Improvement

With the integration of the computer, so comes the

integration with all the power of the computer. Special

effects and controls should be allowed the animator that are

not normally available. The animation system should be as

usable and as powerful as possible.

3.2.5. Extensibility

The system should be expandable, with no limits on any

possibilities of animation the animator may desire. This

probably would mean the integration of a computer sub-lan-

guage as part of the system. If this is necessary, then the

15

sub-language should be as powerful as possible, but still

intuitive and learnable by the animator. The definition of

such a language has been covered elsewhere [6-9,14], and is

beyond the scope of this paper.

16

4. The Interface

The purpose of this paper is to present a list of rec-

ommendations towards a design for an interface that will

allow animators to naturally create their art on the com-

puter. This is primarily possible through the concept of

the direct manipulation interface. Since the most effective

interface system currently in use that enhances this concept

is the windowing system, it will be the basis for these

recommendations. No effort was made to provide compatibil-

ity with nor to conform to any existing windows interface

implementation. This was done to provide a more general

format for the discussion of the proposed windows.

The windowing system was chosen for several reasons.

For instance, any number of windows can be viewed at a time.

This is a necessary requirement, since several perspectives

of an animated scene will be possible. Also, much informa-

tion will be provided through these windows, and at times it

may become desirable to limit the amount of perceived infor-

mation to ease the burden on the animator. This will be

possible by simply removing any given windows from view.

Another reason is that the individual windows have

dynamic characteristics. They can be adjusted in size, and

even moved around on the computer screen, so that the anima-

tors will be able to organize the available information in a

17

manner that will be most convenient to them.

The windowing system is not, however, perfectly ideal.

The system shares a basic quality with all computer dis-

plays. The quality is that the computer display is neces-

sarily static. At any given point in time, the current

state of the animation in progress is still. The problem

becomes apparent when the animator will wish to edit an

animation sequence, but will only be able to manipulate a

single instance in time, not a moving scene. This may gives

rise to some confusion, and the problem must be considered

during the entire design process.

Every window in the interface will have certain common

characteristics. This will mainly allow for the transfer-

ence of knowledge from one aspect of the interface to all

others, and is a basic methodology behind all windowing

interfaces, in general. Each window will include the stan-

dard buttons, for expanding, closing, and positioning the

windows. Also included in each window will be the scroll

bars to adjust the current viewed scope.

The images viewed in each of the windows should ideally

be in full image-rendered form, with color, texture and

patterns included. This, however, is beyond the power and

capability of current hardware, so simple line-drawings with

hidden lines and surfaces removed should be adequate.

The individual differences in the appearances and pur-

18

poses of the windows is discussed below. Following that

will be a presentation of the pull-down menus, offered as a

supplement to the power of the windows in the interface.

Lastly, an overview of the perceived hardware requirements

will be given.

4.1. Scene Window

Each window described in this and following sections

will be useful to the animator, but the scene window (Fig.

4.1) is easily the most beneficial. This window will be

used to view the area upon which the animation is performed.

It is also here that the gross manipulation of the ani-

matable models will be accomplished. In the scene window,

the animator will be limited to describing simple position-

ing motions with the models. He will be able to move the

models through space, but not be able to adjust the models,

themselves. This is necessary, since with all but the most

simple animation sequences, there are many models, each of

which can be finely adjusted. There will simply be too much

information visible in the scene window to be able to

quickly and easily perform those fine adjustments. This

task, rather, will be performed in the actor window, which

will be discussed shortly.

Every scene will be given a name, which is also the

file name used when saving the scene. The label field at

19

the top of the scene window will contain the word ^^ Scene:"

and the name of the scene. More than one scene should be

incorporatable into an animation sequence.

n Sbb: ^aiple m

J,.

jl^^iiiiiiijliii^iiii^iiii/iniiiiiiiiiiiiiiiiiiiiiiMiiiiijriMriiiirii

Lf •

'"

» '

,

i
i

> "i >m» >m imi <
}

i
j

iju i
j
iii nii i

El

Fig. 4.1: The Scene Window

Through the scene window, the entire scene could be

viewed, even those areas which are not the focal interests

of the cameras. This will allow the animator to both set up

the animation easily and view the progress of the entire

scene. The potential degree of information overload, again,

will be large in this window, so the animator will also be

given the power to view part of the scene, but at a larger

magnification. This is accomplished through the facility of

a third scroll bar which will most conveniently be placed

along the left side of the window. This scroll bar will let

the animator adjust the viewing distance from the actual

models, and otherwise has the full functionality of the two

20

•f .*V''

normal scroll bars. The closer the viewing distance, the

less that can be viewed, but also, the larger the models

appear. The arrow buttons for this scroll bar must point

first into and then out of the plane of the computer screen.

If the resolution of the monitor is not great enough to show

these clearly, then the words ^^in" and ^^ouf' may be

substituted for the arrow symbols. If a windows interface

implementation is used that cannot accommodate the third

dimension scroll bar, then pull-down menu options could be

used instead.

The selection of objects in the scene window could be

easily performed with a two-dimensional selection device, in

all cases except the one where the object of interest will

be behind another and not viewable, and thus it would be

impossible to point to it. The third dimension scroll bar

could help in this matter by allowing the animator to zoom

past the closer object. This will allow the object of

interest to be viewable, and thus selectable.

Since the typical scene with which an animator works is

three-dimensional, then so must be the scene which is per-

ceived through the scene window. The window, however, is

only two-dimensional, so a third dimension cuing model must

be incorporated. The model incorporated for these recommen-

dations is similar to that described by Thatch and Myklebust

in [10]. The model uses a combination of four cues to allow

21

the animator to easily perceive his work in three dimen-

sions. The first of these cues will be the coordinate axes

that are drawn on the scene, but not viewable through the

cameras. The axes will consist of orthogonal X and Y axes,

and an origin intersecting, oblique Z axis. This is the

most common view of a three-dimensional coordinate system,

and thus seems the most appropriate.

The axes will be used to facilitate the perspective

viewing enhanced by the next two cues. Both of these cues

will show the position of an object of interest, which will

most often be a selected model to be manipulated. The first

of these is the axial cue, which will highlight a point on

each of the three axes corresponding to the selected objects

position. The other cue is planar, and will show a point on

each of the XY, XZ and YZ planes corresponding to the posi-

tion of the selected object. Each point will be connected

to the selected object with a dotted line. Also, a dotted-

line box, parallel to each of the axes, will be drawn around

each planar point for emphasis.

The fourth cue will be provided in the form of the

hidden line and surface removal performed in real-time in

all visible windows. Objects that will be behind other

objects appear to be behind them. This will perhaps be the

most effective form of depth cue.

One major inconvenience to this cuing model will be

22

that the coordinate system is drawn along with the scene.

The confusion that this may introduce can be eliminated

simply by offering a pull-down menu option to hide the axes.

The other two cues are only visible while an object is se-

lected, so they can be turned off simply by deselecting all

objects. An accompanying pull-down menu option to show the

axes, should also be incorporated, since the other two cues

are less effective without them.

4.2. Actor Window

The actor window (Fig. 4.2) can be simplistically

thought of as a magnification of one of the models in the

scene window. It will have this function, but it will also

allow the animator to adjust the model of interest in a wide

array of possibilities and with fine precision.

Pdar. Haie Q

E2

Fig. 4.2: The Actor Window

23

If possible, the model will be viewed fully in the

actor window without necessitating clipping. This will

eliminate the need for scroll bars. If the model is too

large or too complex, however, for the easy selection and

manipulation of even the most diminutive parts, then as much

of the model will be displayed as possible, and the scroll

bars will be included. The capability of dynamically re-

sizing the actor window will, of course, be of great value

in this respect.

Every model, or actor, will be given a name. While a

model is viewed in the actor window, the label field will

contain the word ' 'Actor: " and the name of the actor.

While an object is selected in the scene window, it

will be viewed in the actor window. It is through the actor

window that most of the fine animation will take place.

Note, however, that all changes performed to an model while

it is in the actor window, will also be dynamically per-

formed to the model's image in the scene window. This con-

cept of dynamic updating will be incorporated throughout the

interface. For instance, even during pencil tests of the

animation, if an object is selected and viewed in the actor

window, not only will the camera view be dynamically up-

dated, but also the scene and the model in the actor window.

This should greatly enhance the detailed perception of even

the most complex animation sequences.

24

4.3. View Window

Even though the scene will be readily viewable using

the scene window, animators will wish to select special

perspectives and viewpoints using different cameras. In the

actual art of animation, the animator may have any number of

cameras filming different areas of the scene, or with dif-

ferent parameters. This interface is designed to allow any

number of different cameras to film a scene.

'VfevRrnr CaiHaC Q

Scene as
Viewed Through
Camera: Camera C

Fig. 4.3: A View Window

As will be discussed later, any number of logical cam-

eras can be dynamically created. Each of these cameras

could be used to view a scene differently, so each must have

its own view window. A view window (Fig. 4.3) will be a

dynamically updated representation of that portion of the

scene at which its associated camera will be aimed. Again,

this representation will probably only be a line drawing

25

approximation, because of hardware limitations. Any number

of the view windows can be visible on the screen at a time.

Every camera will be given a name. While a view window

is visible on the screen, the label field will contain the

word ^ ^Camera:" and the name of the camera.

4.3.1. Global View Window

There will be one view window that will not be dedi-

cated to just a single associated camera. This window will

be called the Global View Window, and its label field will

show ''Global View:'' which will be followed by the names of

all of the current cameras. This window will give a line-

drawing representation of the scene as it will appear on

final film. This is different than the normal view windows,

in that they will always show the scene as viewed through

their associated cameras. At different times, different

cameras may be selected to be the ones currently filming the

scene. The global view window represents this final image.

It also facilitates the viewing of special camera effects

which are not viewable elsewhere in the interface.

Every view window, including the global view window,

shows the image as it will be viewed at a given point in

time. This time reference is part of the track window and

will be discussed below. If the current time, or frame

number, is adjusted in the track window, the images in all

26

view windows will be dynamically updated to reflect the new

current states of the models in the scene.

4.4. Track Window

Many of the most recent and most powerful animation

systems have utilized the multiple track concept of anima-

tion [6,19]. Through this concept, any number of model

attributes can be assigned unique tracks and thus animated

separately. This allows the animator more freedom with the

art, and makes the editing of animation sequences simpler.

As an added benefit, the multiple track concept facilitates

n TlaJs Q
CLoB-tHaie; BZ74

7 HSBSB 22^ 22ED EE7L 'BHl JEBB 13Z5 132JS 3SE77 3SEB

33:23

aaB— Zxnt CaisaB— Z Chlm rfertdcTi— Cbkx: ftctian—

FUtp: E^— fUTPz E/

tkn Haie— Qjgtaticn: Hane— Odsrtdtkn: Haie— Cdotd±n: Bbcb— Ql

mmmr

to.,.

Fig. 4.4: The Track Window

the parallel motion of objects.

The multiple track concept will be incorporated into

this interface through the use of the track window (Fig.

27

4.4.) The window consists of all the common attributes, and

some added functionality. The top portion of the window

will contain the frame indicators. This will be directly

analogous to the film of an actual recording. Each frame

will succeedingly numbered to act as references during the

editing of the animation. This portion of the window should

only be horizontally scrollable, and not vertically. The

track indicators below the frame indicators should be verti-

cally scrollable when desired.

Frame number references are used as the medium of time

rather than minutes and seconds. This follows a long stand-

ing custom in the animation industry, and other systems

[7,19] have shown that animators prefer it. However, minute

and second designations will also be given. The typical

speed of film is either 24 or 30 frames per second [19], but

could be adjusted easily through the use of a pull-down

menu.

A very important notion will be that of the current

time. Every view window will display a representation of

the scene at the current time. At all times, one of the

frames must be designated as being the current one. It

could be shown by darkening the area indicated on the frame

indicators. Since the current view of the track window may

be several frames away from the current frame, it could

become difficult to find. For this reason, the current

28

frame number will also be displayed directly above the frame

indicators.

The tracks, themselves, will be displayed below the

frame indicators. Any number of tracks could be created and

edited dynamically. Also, the animator should be able to

save individual or groupings of tracks to a secondary stor-

age device to be used later as a type of macro substitution

process to make the entire routine of repetition in anima-

tion more manageable. The main purpose of the scroll bars

will be to allow the scanning of the possibly large number

of tracks in the window. The left side of a given track

corresponds to the time frame when that particular animation

will start. The animation will continue until the frame

indicated by the right-most end of the track. In each track

will be text that will give a description of the type of

animation that is designated by that track. During the span

of time that a particular animation is to occur, the com-

puter will mathematically interpolate in-between positions

for the object of interest. This is the one major factor

that will save animators time. Several interpolation

schemes should be offered, such as linear, ease-in, ease-out

and ease-in-ease-out. These could be selectable from a

pull-down menu. An animation that starts and stops on the

same frame will be instantaneous, and no interpolation will

be required. The track, itself, will contain all of the

29

pertinent information to perform the interpolation schemes.

The individual tracks will make the process of editing

simple. The left and right ends of the tracks will be se-

lectable, and the track could be stretched either direction

in time. It could be deleted, as well.

4.5. Pull-Down Menus

Pull-down menus were incorporated into the standard

windows interface to add functionality to the power of the

windows themselves. These menus allow the user to perform

filing, housekeeping or other actions. Several pull-down

menus will be incorporated into this interface. Included in

the list of menus will be those offered below and collec-

tions of other options designated throughout this paper.

The first pull-down menu will be for filing functions.

It is here that animation seguences, scenes, tracks and

actors could be saved to and loaded from a secondary storage

device. When an actor is saved, no orientation or position

information will be saved with it. On the other hand, when

a scene is saved, all actors and objects in the scene, as

well as all of their attributes will be saved. When a track

is saved, only the time span and the action will be re-

corded, but when an entire animation seguence is saved, not

only will all the information from the track window be

saved, but also all of the information pertaining to the

30

actors and objects, as well.

In the filing menu, the user will also be able to open

any of the scene, actor, view or track windows that were

previously closed.

Also available in the filing menu are the options for

actually animating the sequences. There will be two modes

of animation, the pencil-test and fully image-rendered

modes. These are the typical options offered on other sys-

tems [9,16,19]. The advantages of the pencil-test mode are

that, in this mode, the animation could be viewed in real-

time on the computer screen, itself. This will allow the

animation to be quickly and easily seen, so that editing

actions could follow. The disadvantages are that only line

drawing approximations to the models will be seen, albeit

with hidden line and surface removal. The fully image-

rendered mode will incorporate all of the shading, lighting

and coloring functions, but will take much longer to calcu-

late, and given current hardware capabilities, will be im-

possible to perform in real-time. The output from animation

in this mode must be recorded to some media which could

later be viewed in real-time.

Another required pull-down menu will host the editing

functions. Such popular commands as undo, cut, copy and

paste should be made available. Any of these edit commands

should be made usable during any portion of the animation

31

process.

The two other required pull-down menus will be for

attribute and object selection. Through these windows, the

characteristics of the individual attributes and objects of

interest could be selected. Attributes, objects and the

characteristics thereof will all be detailed in chapter

five.

4.6. Hardware Requirements

Current window systems implementations have exhibited a

definite tendency to require a large degree of hardware

capacity. It would be unrealistic to assume that any future

implementation of this animation system will require any

less power and functionality. Therefore, the following

inventory of hardware should seem reasonable and will most

likely be necessary. It should also serve as a basis for

further hardware requirements.

First of all, a CPU of adequate performance must be

selected. Much of the functionality of this interface calls

for the real-time display of objects with hidden line and

surface removal. The CPU must have access to a significant

amount of primary memory, also, since the models to be ani-

mated and the algorithms involved will be complex. Next, a

high-resolution monitor must be chosen. The fine adjust-

ments that animators must make to models necessitate the

32

viewing of small differences in the position and orientation

of the models. The monitor must have resolution fine enough

to easily facilitate the viewing of the possibly many win-

dows of interest. Also, it should have color capability to

accurately designate and animate the colors of each manipu-

latable model.

A keyboard is required to aid in naming. Many of the

objects the animator must contend with can be utilized much

more efficiently by their names.

Also, a large capacity, secondary storage device is

required. Animatable models, simple motions and even whole

sequences of animation will be storable and retrievable to

ease the burden on the animator.

Lastly, a special input device must be selected and

incorporated into the computer system. Since the animator

manipulates three-dimensional models in a three-dimensional

space, that paradigm is incorporated into these recommenda-

tions. The input device must be able to select a point out

of the three-dimensional space with a high degree of preci-

sion. Such selection devices are currently available today,

but a simple substitution might be the combination of a

mouse and a paddle with no end-stops. The mouse would then

be used for selection in the customary two dimensions while

the paddle would be used to indicate depth.

33

5. Creating Actors

Animators who work in the three-dimensional medium do

so with the use of movable models. These models can be

repeatedly adjusted in even the slightest of fashions and

filmed to create motion of any detail or precision. This

chapter is dedicated to the description of how animatable

models can be created using this proposed interface.

The term actor has seen much popularity with existing

animation systems [7,9,17], and so it is adopted for use

here. An actor in a computer animation system is the

equivalent of a model in the actual medium of three-dimen-

sional animation. Like a manipulatable model, an actor can

be given motion directions to follow. These directions will

be given in both the actor and scene windows. When an actor

is selected in the scene window, its image is transferred to

the actor window where it can be manipulated. All changes

performed on an actor's image in the actor window will be

reflected on the image in the scene window. On the other

hand, during the process of actor creation, its position

could be typically set at the origin of the cuing model of

the scene window. Once an actor is in the scene, it will be

a candidate for manipulating and photographing.

An actor will be, simply, an internal, structured rep-

resentation of a movable model by the computer. Such a

34

representation scheme is offered by the new proposed, hier-

archical, graphical standard, PHIGS [25]. Using PHIGS, an

actor can be composed of one or more interconnected objects.

The more objects that will be included in the definition of

an actor, the greater the detail and precision that will be

possible in describing the motion for that actor.

An object will simply be an instance of one of several

different classes of easily defined shapes. These will

include geometric, parametric, photometric, photographic,

and other, specialized classes of object. By connecting

objects, an actor will be formed. Objects of different

classes will have different characteristics, but also common

ones. These characteristics will be categorized into a

broad group of object-defining qualities, collectively known

as attributes.

An attribute will be a defining quality for an object.

Attributes will be grouped into two distinct sets, those

that are applicable for all object types, and those that

will only apply for certain classes of object. Attributes

will describe how individual objects appear and behave.

A thorough discussion of the attributes that should be

made available follows in the next section. Following that

will be overview of the description and usage of objects.

Detailed information on the editing of actors will be given

in the last section of this chapter.

35

5.1. Attributes

This section is organized by presenting a list of com-

mon attributes that will apply for all object classes. Each

attribute is described, and a proposed method for selecting

attribute values will be given. Certain attributes will be

omitted from this list. These attributes are concerned with

only a single class of object and will be covered with the

discussion of that class. This is done, because in all

cases certain information about the class is needed to grasp

the full import of the attribute.

Unless specified otherwise, an object must first be

selected before any attributes can be applied to it. This

should be done by simply pointing to it and pressing the

button on the selection device. Once an object is selected,

a surrounding selection area must be shown, as is the typi-

cal manner on existing windows implementations. Also, any

number of objects can be selected at a given time. This can

be accomplished by defining an area of selection around the

objects.

5.1.1. Object Type

This attribute of an object will define its type, which

could also be termed its shape. Among the geometric and

parametric classes, several different types of object exist.

36

This attribute will be included to differentiate between the

individual types. Within the discussion of the classes of

object in the next section is a list of object types.

This proposed selection method will be rather simple

and straight forward. Through an option in the attribute

menu discussed in the previous section, an icon list of

different object types should be presented to the user, so

that a selection can be made by pointing (Fig 5.1.). Once

an object type has been selected, an image of the object

will be sent to the actor window where further attributes

could be selected for it.

(hjads

aiai^ Sjae Qa

Fig. 5.1: The Object Selection Window

5.1.2. Size

The benefit of using objects of different sizes will be

of great value, and such an option must be made available.

A method of sizing objects, by which handles on a surround-

ing selection area are chosen and adjusted (Fig. 5.2,) is

prevalent in current window implementations, and is appli-

37

cable here. A ruler should be made available to ease the

burden on proportionalizing the sizes of different shapes,

Object solids would have to be rotated to shape all three

dimensions.

n McrrVfektt E

i'

ED

Fig. 5.2: Sizing an Object

5.1.3. Color

An object can be assigned a particular color value.

The are several systems that have been designed for the

selection of color [20]. Among these are RGB, HSV, HLS and

CNV, the most popular being HSV since it is a more natural

expression for the artist [2].

The proposed method for selecting colors uses the HSV

system and is one that should be intuitive to the user and

analogous to current color selection techniques. Figure 5.3

represents the color selection window that should be made

available when the appropriate option is chosen from the

38

attributes menu. This window will include two sections.

The first is the color hexagon as detailed in [21], which

will be used to display all of the combinations of se-

lectable colors, with some predetermined precision, which

are characterized by having a value of one only. The user

could use a pointing device to select the desired hue and

Fig. 5.3: The Color Selection Window

saturation. Once this is done, the second part of the color

selection window, the value bar, will be updated to repre-

sent all of the possible colors, again with some predeter-

39

mined precision, that are selectable by adjusting the value

parameter. The left side of the bar will always be black,

and the selected shade will be on the right. The color that

is selected off the value bar will be given to the selected

object or group of objects. At all times a box will be

shaded with the current color.

If the color capabilities of a particular hardware

system are unfortunately limited, then obviously a simpler

selection scheme can be chosen.

5.1.4. Pattern

An object that is shaded with only one color, can be a

very limiting factor on the scope of creativity desired by

an animator. Also, perhaps color will not be what is de-

sired for an object, rather stripes or dots, for instance.

If selecting a color for an object is not sufficient, then

the artist should be able to select a pattern. A pattern

will simply be a predetermined matrix of colored points.

The pattern will be repeated over the entire expanse of any

particular object selected.

The selection of patterns should proceed analogously to

the selection of object types. An option from the attribute

menu should reveal a window containing available patterns to

choose from (Fig. 5.4). Several standard patterns should be

made available to the user. The user will select a pattern

40

using a pointing device, but if the pattern of choice is not

made available, the user must be allowed to create it using

a pattern editor.

Mlt-fJb Q

HE
xx//. mm -w

Rttan ESito:

Fig. 5.4: The Pattern Selection Window

n RttHTc Qds&<:ir:s Q

m
Fig. 5.5: The Pattern Editor

Used in conjunction with the Color
Selection Window of Fig. 5.3.

This pattern editor (Fig. 5.5) should allow the user to

select colors as mentioned above, and place those colors

41

into a pattern matrix. Not only will the user have control

over the color coding of the pattern, but also over the size

of the pattern. A pattern of larger size will seem more

natural when viewed on an object after being fully image-

rendered.

5.1.5. Texture

Texture can be considered a more complex variation on a

pattern. As colors will be defined for individual points in

a pattern, a texture will also contain attributes for dis-

placement and reflectivity. This is the scheme adopted by

Csuri, et al. in [16]. Since a displacement factor is in-

cluded, the textures can also appear to be three-dimensional

after full image- rendering, even .though they are only de-

fined in two dimensions.

Selection of a texture for an object should proceed

similarly as for the selection of patterns. If a desired

texture is not made available, then a texture editor, iden-

tical to the pattern editor but for the selection of dis-

placement and reflectivity attributes, must be made avail-

able.

Displacement values can be selected using the following

scheme (Fig. 5.6). A series of line segments can be dis-

played, each slightly longer than the next. Each of these

line segments will be selectable and will refer to the dis-

42

placement value for any of a number of selectable points in

the texture matrix. A small, selectable, movable pointer

should be included to denote the current displacement value.

Also, a numerical input box should be included to enter the

displacement value directly. Regardless of the method of

selection, all areas involved in displacement selection

should be dynamically updated. The selection of reflectiv-

ity values proceeds below.

ni!T)1aH iut E
artHt
DifplriHmL

0.238

Fig. 5.6: The Displacement Selection Window

5.1.6. Reflectivity

Reflectivity can be termed the degree at which light is

bounced after it has hit an object. An object can have a

reflective value between zero and one inclusive. A reflec-

tivity of one designates that all light is reflective and

the object will be seen vividly, perhaps with the image of

43

other objects reflected in it. If a zero value is chosen,

however, the object will appear black. This attribute is

strictly an image rendering attribute and it, like the other

attributes of this class discussed below, can only be viewed

during the fully image rendered recording option that will

be offered in the file menu.

The selection of all image rendering attributes will be

similar. To choose a value for one of these attributes, a

window must be made available after choosing the appropriate

option from the attributes menu. This window (Fig. 5.7)

will contain all of the selection areas for the three image

rendering attributes. For each attribute, a theoretical

surface will be displayed upon which rays are shown with the

different attribute characteristic which denotes the degree

of the appropriate attribute. This degree will be repre-

sented, in each case, pictorially upon the surface and also

numerically. The pictorial display will be accompanied by a

manipulatable scroll bar. Either the scroll bar or the

numerical representation could be selected, and a new value

for the attribute could be chosen respectively by scrolling

the percentage greater or lesser, or by simply typing in the

new value. Regardless of which is chosen, all areas of the

screen are simultaneously updated.

For reflectivity, the pictorial representation will

show the amount of light reflectivity by proportional line

44

thicknesses. The greater the reflectivity, the thicker the

reflected ray line will be.

iBce fetfciiTT MrixtEs Q
R=flfTtTvity:

0.823 1 I

RY"rrt 1 ivily:

0.196

'Bai-^HtHiy:

0.637

imma

mum

Fig. 5.7: The Image Rendering Attributes Selection Window

5.1.7. Refractivity

The degree to which light bends after traveling through

a surface is the degree of refractivity. An object can have

a refractive value between zero and one inclusive. A re-

fractivity of one designates that the light is bent to par-

allel along the surface. If a zero value is chosen, the

original path of the light before encountering the object

45

will not be altered after having passed through it. This is

another image rendering attribute, and as such, can only be

viewed during the fully image rendered recording option that

will be offered in the file menu.

The selection scheme for refractivity is also offered

in the image rendering attribute window in Fig. 5.7. For

refractivity, the pictorial representation will show the

amount of light refracted by a drawn vector showing the path

of the light after passing through the surface.

5.1.8. Transparency

The degree to which light is admitted through a surface

is the degree of transparency. An object can have a trans-

parent value between zero and one inclusive. A transparency

of zero designates that no light is allowed to travel

through the surface; it is totally opaque. If a one value

is chosen, then all light hitting the surface is transmitted

through it; barring other attributes such as color, pattern

and texture, the object would be invisible.

The selection scheme for transparency will also be

offered in the image rendering attribute window in Fig. 5.7.

For transparency, the pictorial representation will show the

amount of light transmitted by proportional line thick-

nesses. The greater the transparency, the thicker the

transmitted ray line will be.

46

5.1.9. Other Attributes

The above list contains the recommended minimum of the

possibly vast number of attributes that can be assigned to

objects. Special attributes of any kind could be added to

the list, particularly other image rendering attributes.

The technology of rendering images is growing rapidly both

in power and in scope, and doubtlessly, some algorithms may

require additional object attributes.

There are two innate attributes that every object has:

position and orientation. These attributes will not be

selected nor manipulated like the others and so will not be

included in the same list. These attributes are intimately

and logically linked to the actor and scene windows, and so

are detailed in the next chapter.

Also, there are a number of object classes which re-

quire unique attributes. These are introduced during the

discourse on the individual object classes.

5.2. Objects

This section details the different classes of object

that should be made available in a future implementation.

Because of the large numbers of widely disparate object

classes, this is by no means an exhaustive list. Rather, it

is open-ended, so that object types and even object classes

47

can be added.

5.2.1. Geometric Object Class

This class will include the simple, easily-defined

objects of plane geometry. These will include triangles,

squares, rectangles, circles and regular polyhedra. Also

included in this list will be the regular three-dimensional

counterparts of each of these: pyramids, cubes, spheres, and

so on. Even more complex, ruled-surface shapes should be

included in this list, such as cylinders and cones. Fi-

nally, this class of object could be further expanded by

including such objects as parabolic cones, revolution sur-

faces, and swept volumes. All of the simple object types

have been used successfully in existing animation systems

[6-9,19], as well as the more complex shapes [9].

All of the attributes mentioned in the above section

will be relevant in describing the appearance of any object

of this class.

5.2.2. Parametric Object Class

This class will include those objects which must be

defined using a series, or matrix, of control points. They

are easily more complex than objects of the geometric class,

but they will also potentially lend a degree of freedom to

48

the creativity of an artist. These objects include polygon

meshes such as those used in [19], and the Bezier surfaces

and beta-splines offered in [9]. There are several more

examples of usable parametric objects and they may be in-

cluded in a future implementation, if desired.

5.2.2.1. Control Point Attribute for Parsunetric Objects

The control points of a parametric surface define the

shape of the surface. They must be defined in a three-

dimensional space, so the cuing model of the scene window

must also be incorporated in the window for selecting con-

trol points (Fig. 5.8). This window should be made avail-

able after the parametric object is selected from the object

type select window. Once a predetermined sufficient number

Fig. 5.8: The Control Point Selection Window

of control points have been designated, then the polygon

mesh should be drawn in line form to be editable, also in

49

the fashion of the scene window. Each control point should

be made selectable and movable.

5.2.3. Photometric Object Class

The objects of this class will be the logical light-

emitters used in conjunction with the image rendering algo-

rithms to produce simple or complex lighting effects. The

possibility of including any number of these objects in a

scene should be made available, and they should be manipu-

lated identically as with geometric objects.

These lighted objects are defined to have volume, so

that more complex effects are possible. Each light should

also have the attributes of size and color. In addition to

these, two other, unique attributes will be required to

define a photometric object: intensity and diffusion.

5.2.3.1 Intensity Attribute for Photometric Objects

Intensity can be termed the degree to which the lumi-

nosity of a light source is not dampered. A photometric

object could have an intensity value between zero and one,

inclusive. An intensity of one will designate that the

maximum luminosity will be emitted from the light source,

the maximum being at some predetermined level. If a zero

value is chosen, then the light source will not emit any

50

light. The degree of intensity of a light source will only

be viewable during the fully image rendered recording option

that will be offered in the file menu.

To choose a value for intensity, a window must be made

available after choosing the appropriate option from the

attributes menu. This window (Fig. 5.9) will contain both

the selection areas for intensity and for diffusion. The

area for intensity selection will include an icon image of a

light source, with variable length line segments represent-

ing light rays and the current degree of intensity. A

scroll bar should be made available to dynamically adjust

the current intensity level, and a numerical entry box

should also be made available to enter the value directly.

Regardless of which selection device is chosen, all areas of

this window are to be updated dynamically.

5.2.3.2. Diffusion Attribute for Photometric Objects

Diffusion can be termed the degree at which the light

disperses from the initial point of the light source. A

photometric object could have a diffusion value between zero

and one, inclusive. A diffusion of one will designate that

the light disperses equally to all points in a sphere sur-

rounding the source. If a zero value is chosen, then the

light rays will all be parallel with no distance between

them; a laser effect. The degree of diffusion of a light

51

source will only be viewable during the fully image rendered

recording option that will be offered in the file menu.

D litt Fhmp fttrblEs eg

IlHtiily:

0.820
^ ' '*

niffJKim:

0.398 ^ ^ 1^

Fig. 5.9: The Light Source Attributes Selection Window

To choose a value for diffusion, a window must be made

available after choosing the appropriate option from the

attributes menu. The diffusion selection area of this win-

dow (Fig. 5.9) will contain an icon image of a light source,

with differing numbers of line segments, dispersed about the

source, representing light rays and the current degree of

diffusion. A scroll bar should be made available to dynami-

52

cally adjust the current intensity level, and a numerical

entry box should also be made available to enter the value

directly. Again, regardless of which selection device is

chosen, all areas of this window are to be updated dynami-

cally.

Since diffusion will assume that the emitted light rays

have a direction, the orientation attributes of the photom-

etric object will be very important. When orienting one of

these objects, a vector indicating the direction of the

light should be temporarily viewable.

5.2.3.3. Ambient Light

There will exist one more general type of photometric

object which defines the ambient light characteristics for

an entire scene. This ambient light will be the light that

is in evidence that is not attributable to any given light

source, and so cannot be attached to a photometric object.

Rather, the attributes for ambient light will be included in

the scene, itself. The only attributes that will be rele-

vant for ambient light are color and intensity.

5.2.4. Photographic Object Class

This class of object will include the cameras that are

used to photograph the scene. Since any number of different

53

perspectives of a scene will be possible, the capability of

creating and manipulating any number of these cameras should

be made available. Each camera has its very own view win-

dow. Since there may be a large number of cameras viewing a

single scene, not every view window must be viewable at all

times. However, at all times at least one of the cameras

and its associated view window, will be designated to be

currently active by the global view window, and should be

made appear on the monitor.

These cameras are logical cameras, only, and occupy no

volume. Each camera will be defined to be only a single

point. However, since cameras must be selectable and since

a point is not selectable, each camera must be given a name.

When a camera must be selected, the following practice

should be used. An appropriate option from the objects menu

can be selected which displays all of the names of the ac-

tive cameras. The camera of interest can be selected by

choosing its name from this list. While a camera is se-

lected, a small camera icon and its view pyramid (Fig. 5.10)

will appear in the scene window to designate its position.

At the same time, the icon will appear in the actor window.

This icon can then be oriented and positioned just like any

other object.

54

5.2.4.1. Focal and Magnification Attributes for
Photographic Objects

A camera's view pyramid will be used to designate the

focal and magnification settings of the camera. The view

pyramid (Fig. 5.10) will be a dotted-line, rectangular py-

ramidal shaped area, with the apex at the camera. Along its

length, from the center of the base to the apex will be

another dotted line. The heighth of the cone will represent

the focus. Those objects at the camera's focus will be seen

clearly, while those nearer or farther away will gradually

StHE: Baiple

:::::::^^^%Ji^^

;<!••

',./»'^'?'' A^

^"""' ''..•.''''.'''.''.'''..'.'.'.'.'''':''.''.'.'.

|
f..i t..„

a«r; .1 ED

Fig. 5.10: Focus and Magnification Selection

blur. The magnification will be represented by the size of

the base of the pyramid. All of the area within the pyramid

base will be what is shown in the camera's view window, and

subsequently, on the recorded medium for viewing. The

larger the base, the more information that must be placed

inside the view window, so the image appear smaller. If the

55

size of the view pyramid's base were reduced, then the image

would be appropriately magnified. Also, since the base of

the view pyramid is rectangular and not square, each dimen-

sion could independently manipulatable for special effects.

The size of the pyramid base as well as its height are

both selectable and manipulatable. To adjust the focal

length, the base-end of the center line mentioned above may

be selected and move either closer to the camera, or farther

away. Motion of this point could not only be strictly lin-

ear, but should also be movable to any point in the scene.

This could not only be the fashion to adjusting a camera's

focus, but for orienting it as well. The magnification

could be adjusted by manipulating handles around the base of

the view pyramid. These should be manipulatable just as a

normal rectangular geometric object. As an added special

effect proposal, it mustn't necessarily be the case that the

middle line be at right angles to the base plane of the view

pyramid. For effect, part of the view could be closer, the

rest farther away. Regardless of the form in which camera

animation is utilized, all changes performed on a camera in

the scene or actor windows will be automatically updated and

represented in that camera's view window.

To facilitate the usage of this camera of fair complex-

ity, the lens and aperture model described by Potmesil and

Chakravarty in [13] could be used.

56

5.2.4.2. Orientation Attribute for Photographic Objects

In addition to the orientation possibilities offered by

the view pyramid, the camera should also be orientable in

the normal fashion like other objects. Another orientation

tool might also be for linking the base-end point of a cam-

era to a given object on an actor. This would make the

camera automatically follow that particular object through-

out an animation sequence. To do this, an appropriate op-

tion from the object menu could be selected along with a

camera and that camera's object of interest.

5.2.4.3. Filter Attribute for Photographic Objects

The choice of a filter for any given camera must also

be made available for this interface. Filters will add

special effects to camera views and have been successfully

utilized in existing animation systems, such as [9,12]. A

camera could have zero or more of these filters logically in

front of the camera lens at any time. Some of the filters

used in [12] are mentioned below:

A color additive, subtractive and replacement filters

could be used to modify the colors viewed through a camera.

A fog filter could be used to make a scene dim and hazy. A

stereoscopic filter films a scene in two, slightly different

perspectives, one in cyan, the other in red. When the scene

57

is viewed through special glasses, it appears three-dimen-

sional. Another special filter that could be used is a

matte. A matte blocks part of a scene from view. Depending

upon the shape of the matte, particular special effects may

be achieved.

Regardless of the type of filter required, a list of

filters (Fig 5.11) must be made available, through an at-

tribute menu option, so that one or more may be chosen.

Also, an editor must be made available to custom design

mattes of any shape. This editor would be very similar to

that used to create patterns.

n EDtas

© © ©
0±r (3±r C2iD

AHithe .Sitra.tive I^

© A.
5^ St t-TH K I piC

Fig. 5.11: The Lens
and Filter Selection
Window

5.2.5. Freune Object Class

Frame objects are two-dimensional, bit-mapped images.

These have successfully been incorporated into [9] and have

the potential for introducing several special effects.

58

Frame objects must be manipulatable identically as with

other object classes. The only attributes that are appli-

cable to frame objects, however, are size and the image

rendering attributes: reflectivity, refractivity and trans-

parency.

5.3. Actors

This section details how a future implementation should

allow an animator to manipulate the three-dimensional mod-

els, actors.

5.3.1. Linking Objects

Once the desired objects have been selected, they must

be logically connected together to form actors of varying

complexity. Any object of any class must be connectable to

any other, even if the two classes are not the same. This

should be done in the following manner. First, a point on

each of the two objects must be selected. If a photographic

object is being used, there will exist only one choice for a

selectable point since these objects have been defined to be

points, themselves. If a three-dimensional solid object is

being used, then the point must be selectable from anywhere

inside the volume or on the surface of that object. To

facilitate this, the three-dimensional cuing model could

59

again be used, this time with a superimposed image of the

solid object to visually indicate the animator of the exact

point of interest (Fig. 5.12). This cuing model would in-

clude highlighted points on each axis of the intersection of

the axis with the solid. If a parametric object is being

selected, since they are mathematically complex, perhaps

only the control points could be selectable as points of

connection, again using the cuing model.

Fig. 5.12: Three-Dimensional Solid Object
Connection Point Selection

Once points have been selected on the two objects, an

appropriate item from the objects pull-down menu will be

offered to logically connect the two objects at their re-

spective, chosen points. Connecting the objects, however,

will not be the only task at hand in building actors. As

60

another step, the two objects must be oriented relative to

each other. This orientation could occur either before the

connection or after. During the animation process, relative

object orientations will be made possible, and will be dis-

cussed further in chapter six.

5.3.2. Deleting Objects

Occasionally, the animation will require the removal of

objects from an actor. This option must be made available.

The actions to perform this operation should include select-

ing the object while the associated actor is in the actor

window and then using the familiar cutting tool from the

edit menu to remove it.

5.3.3. Positioning Actors

Once all of the objects comprising an actor have been

assembled in the actor window, the actor must still be posi-

tioned in the scene window before it can be viewed through a

camera. While an actor is being built for the first time, a

representation in the scene window of the actor will be

visible, but at the origin of the scene window's cuing

model. If an actor is being edited, those edits will also

be reflected on the actor's image in the scene window, but

wherever the actor was located before being selected. Re-

61

gardless of where the actor exists in the scene window, it

can be repositioned. This should be done simply by select-

ing the actor in the scene window and, using the cuing

model, place it somewhere else. The same orientation para-

meters will remain in effect, however.

5.3.4. Splitting Actors

At any time, objects comprising an actor could be sepa-

rated. This would be done simply by selecting a particular

object of interest and using an appropriate object menu

option to destroy one of the connection links it will have

with other objects. Once this is done, two actors will

exist where only one was. Since only one actor can exist in

the actor window at a time, the actor which contains the

selected object will remain and the other will be removed,

unselected, from the actor window. Any objects connected to

the object of interest will still retain the connection

links. If that situation will be that the two new actors

still have at least one link after the first has been sev-

ered, then two new actors are not created, until all have

been removed.

5.3.5. Joining Actors

Two actors or objects should also be joinable. To join

62

two actors, the same procedure should be taken as with join-

ing two objects. One object of each actor should be se-

lected, and then linked. Once this has occurred, one actor

will exist where two did previously. Since only one actor

can exists in the actor window at a time, however, object

selection must occur separately, and the link process must

be done via an object menu selection.

5.3.6. Deleting Actors

Occasionally, the animation will require that an actor

leave the scene. To remove an actor from the scene, it will

be simply selected from the scene window and cut. This is a

similar operation to removing objects from an actor.

5.3.7. Saving/Retrieving Actors

All actors must be savable on external storage. This

will allow both for the retention of complex actor parame-

ters and for the duplication of actors. When an object is

created, oriented, positioned or deleted from a scene, it

must be savable. When an object is saved, all information

pertaining the actor, including objects used, connection

points, relative and absolute orientations, actor position

and all current attribute values, will be saved with it, so

that it may be retrieved in an intuitive manner, identical

63

to the form it held when last saved.

To save or retrieve an actor, the appropriate option

should be made available in the filing menu.

64

6. Animating Actors

Now that the descriptions of actor creation and modifi-

cation have been given, the detailings towards the animation

of the actors will proceed in this chapter. A description

specifying the proposed usage and functionality of each of

the four main windows will be given first. Following that,

recommendations towards the animation of attributes, objects

and actors will be presented.

6.1. Window Functionality

This section establishes the main functionality and

proposed usage of each of the four main windows: the scene,

actor, view and track windows. For a description of the

appearance of each of these windows, refer to chapter four.

6.1.1. Scene Window

As mentioned before, the scene window will give the

entire view of the area that can be photographed using a

logical camera. Two main functions of the scene window will

be in evidence, not only to view the entire animatable area,

but also to select and position individual actors.

Since the scene window could accrue much detail during

a complex animation sequence, opportunities for viewing only

65

a portion of the window, but at a closer magnification, will

be given. This will be performed by using the third dimen-

sional scroll bar located on the left side of the window.

By moving completely away from the scene, the entire scene

will be made visible. Also, by moving closer, and perhaps

adjusting the other two dimensional scroll bars, close up

images of actors can be perceived.

To facilitate animation requiring the motion of actors

through space, the actor must first be selected and then be

repositioned in the scene window. A selected actor will be

easy to locate, since it will be the one denoted by the

planar and axial cues of the scene window. To select an

actor, one of the following two schemes could be used. The

first option would be to use only a two-dimensional pointer.

This will make the selection of an actor simpler, but only

in those cases where the actor of interest will not be par-

tially or even totally obscured by another. If this is the

case, the more complex method should be used. This would

require the usage of a three-dimensional pointing device.

As the pointer moves deeper into the scene, those actors

that are visible closer to the viewer would be temporarily

removed or dimmed so that a clear image of the desired actor

can be eventually perceived and then selected.

66

6.1.2. Actor window

The actor window will be used to gain immediate proxim-

ity to the detail of an actor so that it can be easily

changed or manipulated. There will be two main factors

involved in the functionality of this window. In addition

to providing a detailed image of an actor, it will offer an

avenue towards the selection and orientation of both the

individual objects and the actor itself.

When an actor is selected in the scene window, its

image will be immediately represented in the actor window.

At this point, the entire actor will be selected, not an

individual object. To select an object, one of the follow-

ing two methods could be used. If the object is immediately

visible in the actor window, a simple two-dimensional point-

ing device could be used very efficiently. If, on the other

hand, the object is either partially or totally obscured by

other objects, then the actor will have to be temporarily

rotated until the object of interest comes into view, where

it could then selected. Once the object is selected, the

actor could be returned to its previous orientation. To

visually locate the selected object, object handles should

be provided. These handles will also add functionality to

the manipulation of objects, and will be discussed further,

below.

Once an object is selected it can be oriented. To do

67

this, the following method should be used. The current size

of the window will be defined to be the area of orientation

denotation. If a pointing device is dragged from the left

side of the window to the right, that will denote a 360

degree right rotation about the Y-axis. If the pointing

device is dragged from the top side of the window to the

bottom, that will denote a 3 60 degree downward rotation

about the X-axis. The third dimensional pointing coordinate

would then be used to denote rotations about the Z-axis. By

not dragging the mouse completely across the window, partial

rotations can be achieved. Also, more complex rotations are

possible by dragging in diagonal directions. Whatever de-

gree or direction used, however, the selected object will

mimic the desired rotation.

Because of the logical model used in defining actors,

when one object is oriented, it will be a local orientation

and it will not affect other objects. This will be differ-

ent than when the actor is oriented. This global orienta-

tion will affect all of the objects of the actor. To orient

an actor, first no object can be selected. This means that

the actor itself will be chosen. The actor should be ori-

ented in precisely the same manner as are the individual

objects.

68

6.1.3. View Window

The view windows will be used to see images that will

be of interest by the logical cameras. Since they are a

view only, they don't have, themselves, any specific func-

tionality. Neither actors nor objects should be selectable

through a logical camera, since this is not an intuitive

process.

6.1.4. Track Window

The purpose of the track window will be to pictorially

denote the time frames in which different tracks of anima-

tion occur. To facilitate this purpose, several aspects of

functionality will arise in this window. With this inter-

face, should the animator perform any action to create, edit

or destroy an attribute, object or actor, the case must

exist that the action could be given a time span. Simply

put, this will allow the actions to be 'seen. Much of the

functionality of this window, therefore, will be dedicated

to the denotation of time spans. The rest of the function-

ality will be dedicated to the specification of the current

time frame.

Any action performed to an attribute, object or actor

could be linked to one or more time frames. The last cre-

ate, edit or delete action will be the candidate to which a

69

time could be given. To do this, the pointing device could

be used to select a time frame, and then dragged to another

time frame. The span between the two will be the track

specifying that particular action, and will be the time

allotted to perform it.

Any track is editable. First the track must be se-

lected using a simple pointing device. The start and finish

end-points of the track could then be adjusted forwards or

backwards to expand or contract the time span of the given

animation. Also, any track could be selected and then de-

leted by simply using the cutting tool from the edit menu.

A track could be of any size, but there will be at any

time a finite, current number of frames. Should a track be

dragged past the last frame, additional logical frames must

be created to accommodate the track, and thus a finished

product, of any size. At the beginning of the animation

process, only one frame will exist in the track window. No

track can be dragged before this first frame.

Many animation systems [6,7,9,14,19] have tackled the

difficult concept of synchronization. This aspect is incor-

porated into these recommendations in an intuitive and im-

plicit manner. If two actions need to start together, their

associated tracks would simply be started on the same frame,

and so on.

The other functionality aspect of the track window will

70

be that concerned with the current time. The frame that

will be designating the current time will be shaded with

some scale of grey. To select a current time, the user

should be able to quickly press twice the pointing device

button on a frame. The view from every window should be

updated to represent the state of the animation sequence at

this new current time frame.

6.1.4.1. Mathematical Interpolation

Since one or more frames may be designated the time

span for a particular animation, a scheme must be selected

to mathematically interpolate the in-between phases of the

transformation. The longer a track will be, the more in-

between images there will exist to interpolate. Should a

track be only one frame long, the animation will be instan-

taneous, and no interpolation would be necessary. There do

exist, however, a multitude of interpolation schemes as

mentioned in [19]. Each track should default to linear

interpolation, since this is the most obvious. Other inter-

polation schemes, though, should be selectable to provide

more complex animation without specifying that complexity

manually. Schemes such as ease-in and ease-out [19] should

be selectable from a pull-down menu. Other schemes should

also be offered, and perhaps an interpolation editor should

be provided, though will probably not be necessary except in

71

i

extreme cases.

6.2. Attribute Animation

This section details specifications on the implementa-

tion for object attribute animation. For each attribute, a

discussion concerning the selection of an animatable trans-

formation will first be given. Then, several examples will

be introduced, including citations of capabilities that

should be included in a future implementation that are not

obvious.

6.2.1 Object Type

Perhaps the potentially most complex animation interpo-

lation domain that can be included in a future implementa-

tion would be that concerned with calculating in-between

phases for object type transformations, yet this capability

must exist. To specify an object type transformation, one

object must be selected from the actor window, and then

another selected from the attribute pull-down menu. The new

object type will replace the old on the actor, and then the

object type transformation could be linked to a track.

Not only should the system be able to mathematically

interpolate between two and three dimensional geometric

objects, but also between other object classes as well.

72

Some of the more complex examples of this type of transfor-

mation might include parametric objects, whose control

points dictate the phases of the interpolation. Converting

an object to and from a photometric object would also seem

complex. Not only must the physical aspects of the object

change, but also must the intensity and diffusion attributes

adjust mathematically. In addition, converting to and from

a frame object would entail, among other things, projection

calculations. The one object class that should be exempt

from transformation would be that for photographic objects.

This is because every logical camera must have its own view

window, and the potential complexity in managing a large and

dynamically varying number of view windows would be formi-

dable.

6.2.2. Size

Contrary to the interpolation for object type, that for

object size would seem the most simple. A selected object's

handles could simply be readjusted to represent a new size,

and then the transformation could be linked to a track.

6.2.3. Color

The transformations to change an objects color should

also be quite simple. To change an object's color, the

73

object must first be selected, and then a new color chosen

from the attribute menu. Once this has occurred, the color

change could be linked to an animation track.

The color transformations would probably best be accom-

plished at the lowest level, which would be the individual

red, green and blue components. Each of these components

would be mathematically interpolated in parallel to achieve

the effect. The capability of giving a separate track to

each of the three components of color is not recommended for

two reasons. First, it would be an unduly complex, non-

intuitive approach, and second, if the animator desires to

animate a single component only, then an intuitive approach

would be to select a target color that appears to have the

other two color components the same.

6.2.4. Pattern

To interpolate between two different patterns, the in-

between color of each point must be determined individually.

The specification for pattern animation should be identical

to that for color.

6.2.5. Texture

For texture, not only should the color attribute of

each point be individually interpolated, but also the dis-

74

placement and reflectivity attributes. To specify texture

animation, the same procedure as that used for colors should

be used.

6.2.6. Image Rendering Attributes

The image rendering attributes: reflectivity, refrac-

tivity and transparency, could be manipulated to reflect

animated change in the image quality of different objects.

To specify an image rendering attribute change, first the

object must be selected, and then new values for these at-

tributes could to be selected. Once this has occurred, the

animation could be linked to a track.

Interesting effects, such as fade-in, fade-out and

distortion are possible by adjusting one or more image ren-

dering attributes simultaneously.

6.2.7. Parametric Object Class Attribute: Control Points

To animate the shape of a parametric object, the con-

trol points which define its shape could be manipulated. To

do this, the parametric object must be selected, and then

the control points could be edited in the same fashion as

they were created. When a satisfactory new shape is

achieved, the change could be linked to a track.

75

6.2.8. Photometric Object Class Attributes

To animate the characteristics of the lighting model,

the specific photometric object class attributes, diffusion

and intensity, could be manipulated. This would be done

very simply by selecting the light source from the scene,

and then modifying the two attributes. After new values

have been selected, the changes could be linked to an ani-

matable track. The color of the light source, as well as

its shape, should also be animatable in the fashion de-

scribed above.

6.2.9. Photographic Object Class Attributes

The attributes of a photographic object are also ani-

matable. Each of the following examples first assume that a

logical camera was selected, and will be currently visible

in the scene window. After each of the changes have oc-

curred, the animation could be linked to a track.

First, the focus and magnification of a particular

logical camera can be adjusted using the method specified in

the previous chapter. Second, while the theoretical camera

image is in the actor window, its orientation in all three

dimensions could be modified. Third, a camera's filter

could be mathematically interpolated into a filter of an-

other sort simply by selecting a new filter and then linking

76

the change to a track.

There will be two other types of possible animation

concerned with the photographic objects that will not be

performed upon an individual camera. First, to select a new

current camera, either the label field of the global view

window could be selected and changed, or a menu option could

be used. Second, if the current camera change track happens

to be longer than a single frame, then image fades of vari-

ous speeds could be attained. Other types of special ef-

fects, such as wipes and cross dissolves as detailed in

[12], could also be used as special camera effects.

6.2.10. Freune Objects

The research and literature for two-dimensional, mathe-

matical interpolation is vast and widely varied [22,23].

There is, however, no currently adequate scheme, because of

several problems as detailed in [5]. Once an acceptable

method is discovered, it should be incorporated into these

proposals. The only alternative available at this time

would be to treat frame object interpolations as if they

were simply pattern attribute animation. This would suc-

ceedingly modify each point of one frame object until it

appeared as the second. This would be further complicated

by the fact that the two objects may be of different sizes

and orientations. Selection of frame object animation would

77

proceed in the natural way specified above.

6.3. Orientation Animation

All orientation motions will be described to actors and

objects in the actor window, as described above. If a

single object is selected, it will be the subject of the

orientation, but should an actor be selected, the entire

group of objects will rotate similarly. Once an object or

actor has been oriented a desired amount, the orientation

action could be linked to a track of any length.

6.4. Position Animation

All position motions will be directed in the scene

window, also as described above. When an object is posi-

tioned, its orientation will not change. To achieve the

animation effect of an actor moving in space while also

moving relative to itself, the position and orientation

motions given the actor would be each given synchronized

tracks. At the same time, synchronized tracks detailing

attribute animation could also be created.

6.4.1 Associated Motion

If a large amount of detail is to be synchronized on

individual tracks, possibly amongst several objects or even

78

??{;?•"•

actors, an alternative to the tedious task of manually syn-

chronizing them should be offered the animator. This alter-

native will be called associated motion, which is an aspect

that could be given to any actor, object or attribute. A

similar concept is discussed in [24]. When one of these is

associated with another then it will animate automatically

depending upon the current state of the latter. For in-

stance, should the color attribute of object be associated

with that of another object, then the first object's color

could reflect, automatically, the second's. This will be

further complicated since it may be desired that the range

of values of one attribute may not directly correspond to

that of another attribute.

This concept could also be expanded to include objects

and actors, as well. For instance, the position of one

actor could be automatically updated according to the posi-

tion of another. As one more level of complexity, the pros-

pect of associating attribute, objects or actors, not only

with other, identical types, but also with other types that

are not identical. A possibility would be associating the

orientation of an object on one actor with the intensity of

a photometric object of another actor.

To perform an association, first the guiding actor,

object or attribute must be selected, and one of that type's

parameters must be altered to reflect the range of motion or

79

change that is to be used as a guide. Second, the associ-

ated actor, object or attribute must be chosen and the range

of motion or change of one of it's parameters must be simi-

larly represented. Lastly, the association track must be

created and dragged in the track window. The association

will be active for as long as the track is. This whole

activity would be assisted through the use of pull-down menu

options.

When the guiding actor's attribute is at the low end of

its range, then the guided actor's attribute will also be at

the low end of its range. As the current value of the guid-

ing actor's attribute will adjust within its range, so will

a proportional, automatic adjustment be made to the guided

actor's attribute value within its own range.

80

7. Conclusions

This paper has presented a detailed set of recommenda-

tions towards a direct manipulation interface for three-

dimensional computer animation. These recommendations were

derived using a functional union from literature of both of

these fields. No effort was made either to provide a struc-

tured design of the proposed system, or to offer any insight

pertaining to the actual implementation of such a system.

Rather, the result is a complete series of ideas and con-

cepts that could be used to create a formal, structural

design and implementation for the system. The system con-

tains the important interface features found in existing

animation system which have proven beneficial to animators.

Presented below is a concise summary of the recommenda-

tions offered in this paper. Following, is a discussion on

the viewed weaknesses of the system, and then a list of

likely directions for future study in this area.

7.1. Recommendations

There exist many systems today that are used to produce

three-dimensional computer animation. Most are good, yet

remain excessively difficult for the average artist to use.

The direct manipulation interface is an ideology that is

used to cognitively bind normal practices to operations on

81

the computer, and thus makes the computer easier, friendlier

to use. If ideas from both of these fields were used, a

friendly computer system for developing three-dimensional

computer animation could be created. This paper is the

first step towards the realization of that system.

7.1.1. Use four different types of windows

The interface will involve the usage of four types of

windows. Each window type will have its own purpose and

functionality.

• The Scene Window. The scene window will be used to

view the entire area upon which the animation will occur.

This window includes both a three-dimensional cuing model

and a third dimension scroll bar to facilitate the natural

perception of the scene. It will be in the scene window

that actors are positioned.

" The Actor Window. The actor window will be used to

orient the individual actors. A separate window from the

scene window should be used for two reasons: first, to re-

duce the information overload potential of the scene window;

and second, to achieve a closer, magnified view of an indi-

vidual actor to facilitate selection of the possible minute

detail

.

" View Windows. The scene window will present the view

of the entire scene, but a perspective of the scene through

82

a logical camera will be displayed in a view window. This

window has no functionality, but is useful to preview the

image that will eventually be rendered to some recorded

medium.

" The Track Window. To implement the popular and pow-

erful tracking system of recent animation systems, the track

window will be included. A track is a designated length of

time in which some simple animation will occur. This window

will pictorially display each individual track and its rela-

tive times of animation.

7.1.2. Use a hierarchically-defined animation model

The concept of the manipulatable model will best be

incorporated using a hierarchically-defined animatable

model. This hierarchy is illustrated in Fig. 7.1.

Actor

Objects

Attributes

Fig. 7.1: The Animatable Model Hierarchy

Actors. An actor is the computer equivalent of an

animator's model. Each actor is created by logically con-

83

necting one or more objects together.

° Objects. An object is a member of one of a series of

classes previously defined in the literature. These classes

include geometric, parametric, photometric, photographic and

frame objects. Geometric objects are the simple shapes,

their three-dimensional equivalents and other shapes defined

by ruled surfaces, and even more complex surfaces. Paramet-

ric objects are those characterized by the use of control

points which include polygon meshes, surface patches and

splines. A lighting model is implemented using any number

of photometric objects which are only used in the image

rendering function of the proposed system. Logical cameras

are used to produce images of the animating scene are the

objects included in the photographic object class. Lastly,

frame objects are simply two-dimensional bit maps of the

classic variety.

° Attributes. Every object has a set of defining

qualities called attributes. A number of common attributes

will be used for most object classes. These include object

type, size, color, pattern, texture, and those for image

rendering. Some individual object classes, as well, will

have their own attribute types which will be used to accu-

rately and creatively define them.

84

7.1.3. Use the direct manipulation interface for actor
creation

Paradigms for the selection of objects and attributes

for those objects have been given, and are be consistent

with the direct manipulation interface. The selection of

attributes and of objects will be performed in a natural

fashion. In addition, complete control over the connection

of objects has been defined, including the possibilities of

connection points in three dimensions.

7.1.4. Use the direct manipulation interface for actor
animation

Paradigms for the animation of actors, objects and

individual attributes have been offered. The explicit con-

trol of orientation motion in the actor window, and position

motion in the scene window has been described. To animate

actors, objects or attributes, paradigms towards the linkage

of actions to the tracks in the track window have also been

given.

7.2. Weaknesses

There are a number of perceived weaknesses in this set

of recommendations. Many of these arise from limitations of

current hardware capabilities or of the direct manipulation

concept. None of these, however, should be sufficient to

85

significantly limit the scope and power of the proposed

system.

First of all, these recommendations do not fully attain

100% cognitive binding. It is simply not possible, under

current hardware capabilities, to provide a view of a scene,

or even a perspective in perfect WYSIWYG. The requirements

of image-rendering algorithms are too stringent now to ex-

pect fully rendered images in real-time.

One of the areas which is not touched upon in this

paper is that concerning the sound track. The sound track

is audible portion of an animation sequence. It is usually

created before any of the animation, so that motion can be

synchronized with it. A few notes about introducing a sound

track into an interactive animation system are presented in

[5]. The sound track was not included in this paper, be-

cause at all times the interface calls for the visual dis-

play of the animation sequence frozen in time. It would be

extremely ponderous to synchronize these frozen images of

the animation with sound, since sampled sound, at a given

time, is a non-discernable input. This remains a research

topic at this time.

Another perceived limitation of the proposed system is

the procedure for linking a particular type of animation to

a track. Using these recommendations, only the last anima-

tion action directly specified is a candidate to be linked.

86

Ideally, this is very restricting since it is improbable

that all desired actions could be expressed in a simple

sequential manner. Perhaps a list of previous actions could

be kept and the one that is most pertinent would be linked

to a track.

The last weakness is one that is involved with the

entire system, and is inherent with most animation systems

such as [9,19]. The designers of these systems found that

some of the most complex animation sequences that an anima-

tor may wish to create will simply be too difficult to ex-

press using an interactive or direct manner. Two solutions

to this problem exist. As one solution, the system design-

ers implemented an animation programming language or syntax

that could be used to describe animation concisely and ex-

actly. Also, because of the inherent structure of proce-

dural programming languages, animation sequences of any

complexity could be written. Giloth and Veeder in [11]

suggest that an artist will overcome any obstacles to be

expressive in a medium of interest, even if that medium is

the computer. For these reasons, the case will probably

occur that an animation language will nicely complement the

direct manipulation interface described in these recommenda-

tions. Attempts to describe such a language can be found

elsewhere in the literature [6-9,14,17,19], and are beyond

the scope of this paper.

87

As another but less exploited solution, an exhaustive

library of motion primitives could be created for the anima-

tor to use. Motion primitives are complex sequences of

animation that are difficult or impossible to accurately

describe directly. An example would be human ambulatory

movement which continues to be one of the most complex ani-

mations to realistically portray. These motion primitives

could exist as complex sets of tracks and could be merged

into the animation using simple copy and paste operations.

Using motion primitives, the animator would be able to de-

scribe complex motion in a very simple fashion without ne-

cessitating programming. However, the library of motion

primitives would have to be considerable to contain all of

the animations an artist is likely to require.

7.3. Future Directions

The most obvious direction to be taken from this point

is to provide a detailed, structured design for this pro-

posed system. Such a design would be lengthy and encompass-

ing. Following that would be an implementation.

A specific example of a possible enhancement to the

design would be the inclusion of a wider variety of object

class types and attributes, since these seem to be a very

real limiting factor on the spectrum of actor that could be

created.

88

The system should be designed to evolve. New break-

throughs in image rendering algorithms and direct manipula-

tion paradigms are occurring regularly, and will undoubtedly

introduce new ideas for incorporation.

Several ideas and questions have surfaced as to pos-

sible future implementations and uses for this interface.

Since there are many image rendering products available

commercially, duplicating that considerable amount of effort

would be wasteful. Rather the recommendations presented in

this thesis could be used to create an interface which could

be a front-end for an existing rendering product. This way,

the mathematical framework for each image could be computed

by the interface and given as input to the image renderer.

In addition, the interface could also be a pre-processor

front-end to an existing animation system. The animation

designated by the artist using the interface could be trans-

lated into an animation language which could be compiled

using the other system. This would also greatly reduce

development cost without compromising the quality of the

finished animated product. The system of the interface,

however, must still contain the pencil test animation mode

to greatly ease the complications of editing.

89

BIBLIOGRAPHY

1) Crow, F. C, ^ ^Shaded Computer Graphics in the
Entertainment Industry," Computer, Vol. 11, No. 3,
Mar. 1978, pp. 11-22.

2) Booth, K. S., D. H. Kochanek, M. Wein,
^ ^Computers Animate films and Video,"
IEEE Spectrum, Vol. 20, No. 2, Feb. 1983, pp. 44-51.

3) Stern, G., ^^SoftCel - An Application of Raster Scan
Graphics to Conventional Cel Animation, '

'

Computer Graphics (Proc. SIGGRAPH '79),
Vol. 13, No. 2, Aug. 1979, pp. 284-288.

4) Levoy, M. ^ ^A Color Animation system Based on the
Multiplane Technique," Computer Graphics (Proc.
SIGGRAPH '77), Vol. 11, No. 2, Slimmer 1977,
pp. 65-71.

5) Catmull, Edwin, ^^The Problems of Computer-Assisted
Animation" Computer Graphics (SIGGRAPH '78),
Vol. 12, Num. 3, July '78, pp. 348-353.

6) Feiner, S., D. Salesin, T. Banchoff, ^^Dial: A
Diagraunmatic Animation Language",
IEEE Computer Graphics and Applications,
Vol. 2, Num. 7, Sept. '82, pp. 43-53.

7) Reynolds, Craig W. , ^^Computer Animation with Scripts
and Actors," Computer Graphics, (Proc. SIGGRAPH
'82), Vol. 16, Num. 3, July 1982, 289-296.

90

8) O'Donnell, T. J., Arthur J. Olson, ^^GRAMPS - A
Graphics Language Interpreter for Real-Time,
Interactive, Three-Dimensional Picture Editing and
Animation," Computer Graphics (Proc SIGGRAPH 1981),
Vol. 15, Num. 3, Aug. 1981, pp. 133-142.

9) Magnenat-Thalmann, N. , Daniel Thalmann, Mario Fortin,
^^Miranim: An Extensible Director-Oriented System for
the Animation of Realistic Images,'' IEEE Computer
Graphics & Applications, Vol. 5, Num. 3, March 1985,
pp. 61-73.

10) Thatch, B.R., A. Myklebust, ^ ^A PHIGS-Based Graphics
Input Interface for Spatial-Mechanism Design,"
IEEE Computer Graphics & Applications,
Vol. 8, Num. 3, March 1988, pp. 26-38.

11) Giloth, Copper, Jane Veeder, ^^The Paint Problem,"
IEEE Computer Graphics & Applications,
Vol. 5, Num. 7, July 1985, pp. 66-75.

12) Magnenat-Thalmann, N. , and D. Thalmann, ^ ^Special
Cinematographic Effects With Virtual Movie Ccuneras,"
IEEE Computer Graphics & Applications,
Vol. 6, Nvim. 4, April 1986, pp 43-50.

13) Potmesil M., I. Chakravarty, * ^Synthetic Image
Generation with a Lens and Aperture Ceunera Model,''
ACM Trans. Graphics, Vol. i. No. 2, April 1982,
pp 85-108.

14) Magnenat-Thalmann, N. , and D. Thalmann, ^^Three-
Dimensional Computer Animation: More an Evolution
Than a Motion Problem," IEEE Computer Graphics &

Applications, Vol. 5, Num. 10, October 1985,
pp 47-57.

91

15) Foley, James D, Victor L. Wallace, Peggy Chan,

^^The Human Factors of Computer Graphics Interaction
Techniques.'' IEEE Computer Graphics & Applications,
November 1984, Vol. 4, Num. 11, pp 13-48.

16) Csuri, C; R. Hackathorn, R. Parent, W. Carlson and
M. Howard, ^ ^Towards an Interactive High Visual
Complexity Animation System,'' Computer Graphics
(Proc. SIGGRAPH 79), pp. 289-299.

17) Magnenat-Thalmann, Nadia and Daniel Thalmann,
^^The Use of High-Level 3-D Graphical Types in the
Mira Animation System, '

' IEEE Computer Graphics and
Applications, Vol. 3, num. 9, Dec. 1983, pp. 9-16.

18) Swezey, Robert W. , Elaine G. Davis, * *A Case Study of
Human Factors Guidelines in Computer Graphics,''
IEEE Computer Graphics and Applications,
Vol. 3, Num. 8, Nov. 1983, pp. 21-30.

19) Gomez, Julian E., ^^TWIXT: A 3D Animation System,"
Computers & Graphics, Vol. 9, Num. 3, 1985,
pp. 291-298.

20) MaGuire, M. C, ^ ^A Review of Human Factors Guidelines
and Techniques for the Design of Graphical Human-
Computer Interfaces," Computers & Graphics,
Vol. 9, Num. 3, 1985, pp. 221-235.

21) Hearn, Donald, M. Pauline Baker, Computer Graphics,
Prentice-Hall, Englewood Cliffs, NJ, 1986

22) Burtnyk, N. , M. Wein, * ^Interactive Skeleton
Techniques for Enhancing Motion Dynauaics in Key
Freime Animation," CACM, Oct. 1976

92

23) Stern, Garland, ^^GAS - A System for Computer Aided
Keyfreime Animation," PHD dissertation. University of
Utah, 1978.

24) Foley, James D., Charles F. McMath, ^ ^Dynamic Process
Visualization,'' IEEE Computer Graphics and
Applications, Vol. 6, Num. 3, March 1986,

pp. 16-25.

25) Shuey, David, David Bailey, Thomas P. Morrissey,
^^PHIGS: A Standard, Dyneunic, Interactive Graphics
Interface," IEEE Computer Graphics and Applications,
Vol. 6, Nxim. 8, August 1986, pp. 50-57.

93

Recommendations Towards a Direct Manipulation Interface
for Three-Dimensional Computer Animation

by

CRAIG ARTHUR ORCUTT

B.S., Kansas State University, 1987

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Computer and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

ABSTRACT

In recent years, several computer systems have been

developed to aid the artist in producing three-dimensional

animation. These systems have either become aids for the

creation of, or the actual medium of the animation. Most of

these systems, however, require the extensive use of complex

director's languages which the animators are forced to learn

and use. This is neither an intuitive nor cognitively bound

technique to the activity to which animators are familiar.

This thesis presents detailed recommendations towards the

design of a direct manipulation interface for three-dimen-

sional computer animation. The goal of this thesis is the

direct transference of concepts and practices from the field

of animation to the computer. These concepts include the

instantiation of actor, photographic and photometric objects

and the description of motion for those objects.

