
../A MUSICOLOGICAL RESEARCH TOOL:
AN EXPERT SYSTEM SOLUTION FOR SMALL PROJECTS

by

JEANNINE STAFFORD INGRAM

B.S., University of North Carolina-Greensboro, 1982

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Elizabeth KJ Unger

CMS?

C-2

1. OVERVIEW
A1130&

317S25

1.1 Introduction

The purpose of this project is to provide a research tool

for musicologists and small music archives in need of

cataloging assistance. Development of a tool to assist

in this specialized task requires that two areas of

musicological research be addressed: incipit matching and

document handling.

Typically, musicologists must search through vast

quantities of data attempting to gather sufficient

information to reconstruct the scope of a collection of

music, to ascertain the creative output of a particular

composer or group of composers, or to seek all of a

single compositional type dating from a specific period.

For example, dissertations have been written which survey

vocal compositions based exclusively on the "Salve

regina" text dating between 1410 and 1550. Similarly,

music archives routinely allocate years of staff time in

an effort to determine the interconnections between

manuscripts belonging to a collection of music developed

during a fifty-year span, attempting to link written

1

documents with musical manuscripts and correctly identify

the actual composers of the compositions within the

collection. Much of the success of a musicological

project is dependent upon the talent of the researchers

who sort through this frequently incomplete and often

misleading collection of data and, by virtue of their

expertise in the area and their knowledge of peripheral

data, ultimately reconstruct the most likely solution to

the puzzle.

Music historians must deal with a variety of documents in

order to complete a given project. Generally, these

include letters, music manuscripts, published music,

unpublished textual manuscripts, and books. While many

documents can be referenced by conventional methods used

by researchers in other disciplines, music manuscripts

and pre-1900 printed music create problems in the area of

erroneous ascriptions and rhythmic, melodic, or key

variances introduced by different copyists or publishers.

These discrepancies, along with the simple need to derive

all known sources of a composition, provide the impetus

for the primary thrust of this project — incipit

matching.

In addition to the benefits to be gained from an expert

system capable of incipit matching, the process of

musicological research can also derive obvious benefits

from a database system. The database structure would

provide storage and manipulation of data relating to a

single project while also assisting in the analysis of

this data via the incorporation of rules and inference

provided by historical musicologists.

This paper seeks to document a project whose objective is

to provide a research tool which will suffice for a

variety of musicological projects. The primary emphasis

of the system is to store the knowledge of a professional

musicological expert in a high-level representation and

then to use this information to assist, via incipit

matching, in the attribution of compositions to probable

composers.

The literature review which follows this section

addresses expert systems, the relation of expert systems

to musicological studies, and the role of database

systems in this arena. The report then continues by

describing the development of the musicological tool.

Chapter 2 discusses the process of musicological

research, describing a typical research project. Chapter

3 presents the requirements of the system being offered

as a research tool. This is followed by a description of

the design of the system in Chapter 4 . Chapter 5

documents implementation and testing of the software.

The report concludes with a presentation of conclusions

and suggested future enhancements in Chapter 6.

1.2 Literary Review

Resources germane to this project fall into three general

categories: (1) database design; (2) artificial

intelligence and its application in expert systems; and

(3) the integration of expert systems into the field of

musicological research. Of these, both expert systems

and the use of expert systems as a musicological research

tool are relatively new areas of study: indeed, little or

no work exists which harnesses the power of an expert

system for the benefit of musicology. Database design,

on the other hand, is a topic amply covered in computer

science circles.

1.2.1 Database Design

A database system is described as a computerized record-

keeping system — that is, a system whose overall purpose

is to maintain information and to make that information

available on demand. The sheer volume of data which must

be stored, retrieved, manipulated, and referenced as part

of any musicological research project makes such a

structure essential to the success of the musicological

research tool. C. J. Date, in his discussion of why one

would choose to employ a database system, summarizes the

usefulness of a database system over paper-based methods

of record-keeping. He lists (1) compactness, (2) speed,

(3) less drudgery, and (4) currency as the most obvious

advantages [Da87] . Clearly, the attribute of compactness

is welcome relief to the musicological researcher who not

only must deal with vast quantities of data, but also

must generate equally large quantities of intermediate-

level data. The ability to store findings in an easily-

retrievable, non-paper form would greatly reduce the

workload of musicologists. The attributes of speed, less

drudgery, and currency are equally desirable to the music

historian whose task neccessitates sifting through an

untold numbers of documents in the course of even the

smallest research project.

Organization of data within most database systems

developed within recent years has been based on

relational models. The distinguishing features of

relational databases are: (1) the data is perceived by

5

the user as tables and (2) the operators at the user's

disposal for data retrieval or manipulation are operators

which generate new tables from old [Da87] . Such a

relational model is an ideal storage method for the

project currently being described: the whole intent of

the system is to create new tables of probable matches or

close approximations of incipits based on the use of AI

technology.

1.2.2 Expert Systems

In some ways, expert systems seem to be especially suited

to musicological research. Certainly, if one accepts

Christopher F. Chabris's description of the essential

characteristic of an expert system, this is true. Chabris

states that expert systems are intended to solve problems

in difficult, unstructured domains where knowledge and

judgement rather than procedure guides the expert's

reasoning [Ch87] . As noted earlier, historical

musicology may be among the most unstructured domains

since it is, in fact, an interdisciplinary field which

requires in-depth knowledge in several areas of study and

where many of a scholar's decisions are based on educated

intuition rather than simple procedure.

Even clearer justification of the application of expert

systems in the field of musicology comes with an

examination of Richard Forsyth's description of what

makes a suitable candidate for an expert system. [F086]

states:

To decide whether a proposed application is
likely to benefit from the knowledge-based
approach to systems design, you should
consider the following questions: (1) Is the problem
diagnostic? (2) Is there no established theory?
(3) Are the human experts rare? (4) Is the data
"noisy" or uncertain.

Again, the field of musicological research can provide

resoundingly positive responses to each of these

questions.

The design intent of expert systems is to assist users

with domain-specific problem-solving expertise by

encoding the same problem-solving heuristics that are

used by the human experts. Previously-developed

successful systems have been employed in a wide spectrum

of problem areas including chemical spectrogram analysis

(Buchanan & Fergenenbaum, 1978), medical diagnosis

(Shortliffe, et al., 1979), mineral exploration (Duda, et

al., 1979), genetic engineering (Steefile, 1980), and

computer systems configuration (McDermott, 1980) . Lehner

and Barth [Le85] emphasize that it is clear from the

variety and success of these systems that implementing

expert systems on microcomputers is a serious option for

potential users of AI technology. Additionally, the use

of microcomputers guarantees other factors such as low

cost, availablility, and transportability: all these

features are essential in building a viable musicological

research tool as well.

If one accepts the premise that an expert system can

serve as a valid musicological research tool, one must

address the concept of expert systems in general

.

Numerous overviews of the topic are available for study.

Parker [Pa88] presents a concise overview of expert

systems, citing five elements of an expert system:

(1) facts in the form of rules

(2) an inference engine (procedural knowledge)

(3) an explanation generator

(4) a knowledge acquisition engine

(5) a natural language processor.

Other scholars vary slightly from this format. Forsyth

[Fo86] cites four essential components of a fully-fledged

expert system:

(1) the knowledge base

(2) the inference engine

(3) the knowledge acquisition module

(4) the explanatory interface.

According to Forsyth, all four modules are critical. A

knowledge-based system may lack one of them, but a truly

expert system should not. More recently, Vesonder [Ve88]

states that rule-based expert systems consist of three

components

:

(1) a database, more commonly referred to as the

working memory

(2) a set of rules, the rule memory

(3) the interpreter, referred to as the inference

mechanism.

1.2.3 Musicological Resources

Perhaps due to the "art" involved in musicological

research, i.e., the drawing together of knowledge from so

many disciplines which must occur in the research

process, musicologists have not turned to computers as a

true research tool. Robert Skinner, in a review of micro-

computer use in music libraries, ascertains that the

largest category of music software consists of programs

providing computer-assisted instruction. The second

largest category of software is that devoted to the

production of actual music: composition, music printing,

and musical performance [Sk88].

Clearly, musicologists and music librarians recognize the

potential of the computer as a storage medium. In fact,

Skinner [Sk88] notes that "CD-Rom and its successors seem

natural mediums for encoding composers ' complete works so

that they can be subjected to various sorts of software-

implemented analysis, such as searching for all

occurrences of a theme.... Although no music reference

works have yet to be published in this format, these may

become available in the not-too-distant future, enabling

us to search, say, a digital Bach thematic catalog by

melodic incipit."

Thus the thought is there, but is yet to be implemented.

Instead, the world of music tends to use the computer to

assist in teaching music theory or in generating music

itself.

While an expert system capable of executing a search and

compare mission among musical incipits is yet to be

developed, the power of expert systems has been harnessed

to invent musical incipits in the style of a particular

composer. Ranada [Ra89] describes a newly-completed

SUNY/Buffalo PH.D. dissertation by IBM researcher Kemal

10

Ebciogh, "Report on the CHORAL Project: An Expert System

for Harmonizing Four-Part Chorales" which automates the

harmonization of chorale melodies in the style of Johann

Sebastian Bach. However, even this project deals more

with the composition of music than with the historical

interpretation of music.

The idea of using computers as a musicological research

tool came about in the 1960's and 1970 's. Recently,

Walter Hewlett and Eleanor Selfridge-Field [He86]

initiated a directory listing all known computer-assisted

research in musicology in 1986 expressly "...for the

purpose of determining what had become of efforts

initiated in the 1960's and 1970' s to use computers in

the field of musicology." They, too, discovered that the

use of computers was confined to:

(1) printing music

(2) computer-assisted instruction

(3) cataloging efforts.

Thus the integration of expert systems into the field of

musicological research is, for the most part, an

unexplored area.

ll

The value of databases as a musicological research tool

has been recognized for some time. Yet this, too, is an

area besieged by problems. Many scholars point to the

lack of standardization and consolidation which limits

the usefulness of the research of their colleagues. Both

Charnasse [Ch84] and Drummond [Dr84] address the problems

encountered by researchers which relate to lack of

formalization of database design, structure, and

implementation. However, none who attack this problem can

offer a clear solution since the use of databases in

musicological research may involve diverse music

notations, as well as diverse literary and historical

references for which no clear-cut standard exists.

Warren Hultberg [Hu84], documenting his study of

relationships among Spanish music scores of the 16th and

17th centuries, most succinctly summarized both the need

and dilemma when he wrote:

As the study progresses, the pressing need for the
development of appropriate data bases becomes
increasingly apparent. Generally accepted designations
of stylistic features, theory as related to practice,
and the basic conventions of the period as seen in the
sources, tend to be overly simplified and based on
limited material. The development and utilization of
data bases designed for the study of the sources
considered here, offer possibilities for a greatly
enhanced understanding of not only relationships
among the Spanish sources, but also their
relationships to other literature and repertoires.
Quantification of certain aspects of study contributes

12

to qualitative understanding of the repertoire and its
underlying theories.... Appropriate software for
comparative studies dealing with analytical problems,
practical and theoretical positions, thematic
derivation and indexing, is not readily available...
for less expensive, micro systems.... Availability of
moderately-priced micro systems enhances opportunities
for information sharing among scholars in a manner
heretofore hardly imaginable, but considerable
software development and modification are required if
meaningful project advancement is to be achieved.

1 . 3 Summary

The objective of this project is to produce an online,

menu-driven system which will allow research

musicologists to build and query a database of

information pertinent to their current project. A

research tool of this nature has the potential to

significantly reduce research time for scholars and

students working in musicological research. In an effort

to build a more marketable product, implementation of the

project is in a format readily available to the personal

computer user-community. Ease of use is also a key factor

in the development of the product, since the ultimate

goal is to decrease the work load of the researcher via

improved access to material and computerized decision-

making.

13

2. THE PROCESS OF MUSICOLOGICAL RESEARCH

2.1 Musicology as a Discipline

Musicology, the scholarly study of music, was first

introduced as a discipline by Friedrich Chrysander in

1863. Chrysander 's intent was to encourage the same

high standards of accuracy in the historical study of

music as in other areas in the natural sciences and

humanities [Ap72]. In the past 125 years, this

discipline has become one of sound historical research

techniques. Like all historical research, it requires

that the professional have a broad knowledge base. A

second requirement is that music historians be able to

organize and assimilate vast quantities of data, all of

which may play some part in the final research product.

Relatively speaking, musicology is a young discipline

within the humanities: as such, it is frequently unknown

or misunderstood by the masses. For this reason, the

following description of typical musicological research

projects is provided as a means of establishing the

environment of the proposed musicological research tool

.

14

2.2 The Typical Musicologist

Scholars in historical musicology are generally trained

in languages, music theory and/or physics, history, and

specialized topics in music history. Another area of

musicology, that of ethnomusicology, requires additional

training in non-Western music theory and culture. Within

the arena of historical musicology, researchers

frequently specialize in the music of a particular era,

i.e., Medieval, Renaissance, Baroque, Classical,

Romantic, and Modern, in much the same manner as the art

historian. Further specialization will limit the

musicologist's area of study to the works of a single

composer or group of composers, musical compositions of

one genre or style, or compositions from a specific

geographic area. Thus, a research project can be devoted

to vocal settings of the "Salve regina" text attributed

to Franco-Flemish composers between 1425 and 1550. Or a

multi-membered research project may deal with the

reconstruction of the instrumental repertory of amateur

collegii musica functioning in American communities

between 1770 and 1830.

15

2.3 The Research Project

A review of the repertory reconstruction project cited in

the previous paragraph provides considerable insight into

the musicological research process. It also emphasizes

the potential value of a mechanized research tool such as

that proposed by this project. Between 1973 and 1982,

the National Endowment for the Humanities funded a

project which employed four full-time research

musicologists, two typists, and supporting staff. All

worked toward the reconstruction and documentation of the

repertory of the Salem [NC] Collegium Musicum and the

Bethlehem [PA] Philharmonic Society. Both communities

were insular Moravian communities whose strong church

ties guaranteed the preservation of a vast archive of

letters, diaries, musical compositions, manuscripts, and

printed documents which would allow an accurate

reconstruction of the musical repertory of these

performing groups during America's formative years.

The project was undertaken without computerized

assistance, instead using card files and the skill of the

researchers to recognize and relocate within those files

16

any matching incipits, paper watermarks, or references to

performances. Since there was no centralized storage

medium, problems of conflicting attributions and lack of

proper identifications were actually compounded by

multiple researchers dealing with a single topic. In

short, the project could have been completed much sooner

and in a far more thorough manner with the assistance of

a mechanized research tool.

2 . 4 Research Procedures

A typical work day for a researcher assigned to this

project included hours spent examining music manuscripts

and copying pertinent information on index cards. These

abbreviated references included:

1. Call number: a sequential number for subsequent

referencing

2. Identification: the composer attribution,

composer's dates, title (s)

3

.

Musical incipit

4. Material quoted from title pages, captions

5. Information about the composition: tempo,

key, length

6. Inventory of parts or scoring

17

7. Miscellaneous comments

8. Cross-references.

Illustration 2.1 shows a page of the final index produced

for the catalog of compositions belonging to the

relatively small Lititz Congregation Collection [St81]

.

194 BLUHER. [AUGUST]
(

Die mir Thranen saen

-1839)

? *

ChI:FII Oil: 51

N" 194. . . . 2 Chorig. Cat, pencil: Begrdbn.

Larghetto. E-tlat maj. 96m.

Pts: Ch I: S I,II,A;Vln I,II;Vla;Vci. Ch II: T I,II,B;F1 1.II;Vln

I,II;Vla;Vcl. Org.

195 REISSICER, [KARL GOTTLIEB] (1798-1859)

Das ist ein kostiich Ding

T p: iV° 19J. . . . Kapellmeister ReissigerJ [pencil] (/>

Dresden)! fur die Briider-Gemeine componirt .

Moderato ma poco. F maj. 156m.

Pts: S(io),A(3),T(i),B(3);Vln I,II,III;Vla:Vcl;Org.

Vln III and via pts identical.

Illustration 2.1

18

In addition to cataloging, researchers spent hours

conversing with colleagues who might have data in the

form of other attributions or references which pertained

to a special area of interest. Still more time was spent

scouring written documents from the era which might

contain references to composers, performances, or

compositions: such references were, again, meticulously

copied on index cards, indexed by date, and cross-

referenced by topic.

2 . 5 Research Product and the Proposed Research Tool

Periodically, an individual researcher would feel

confident enough about the data to produce a research

paper or article. At that time, the musicologist would

search the index file for information which might support

a hypothesis evolved during the research process. At

this point, as well as the initial information-gathering

stage, a musicological research tool could have been of

untold assistance. If available, the research tool could

identify and locate any duplicate compositions by

providing a mechanized search of incipits which would

reveal conflicting attributions and multiple copies. A

19

topical search of written documents could organize

literary references and assist in the actual structuring

of the researcher's final document. All these are

necessary steps in the preparation of an article and all

were done without mechanized assistance for the project

previously described.

20

3. REQUIREMENTS

3.1 Introduction

Research musicologists have recognized for quite some

time that the computer should be a valuable tool

;

however, they somehow have failed to develop an

integrated approach to the use of this powerful research

assistant. Clearly, all who have worked for months

amassing data for a research paper, attempting to

document and match partially-attributed or incorrectly-

attributed compositions or gathering all the necessary

literary references for a project, would welcome

mechanized relief. Among the many areas within the

humanities, musicology perhaps would most benefit from a

single, integrated system capable of assisting in the

completion of a multi-faceted project.

This system should consist of a user interface capable of

providing a straightforward method of accessing the

system. As a rule, musicologists are not particularly

familiar with automated systems, thus requiring that the

proposed system provide a clear set of instructions. In

addition to the user interface, the system should include

a minimum of four additional features:

21

(1) an expert system for incipit matching

(2) a graphics capability for entry of these

incipits into the system as well as for

subsequent displays to the user

(3) a file-handling interface to link the graphics

frontend to the database management system

(4) a database management system.

The objective of this project does not include the

graphics interface. This will be the design effort of

another Kansas State University master's project [Ha89].

Nevertheless, the two designs are closely integrated into

a complete system as shown by Illustration 3.1.

22

User Interface

Database Management

System

Graphics Interface Expert System

Illustration 3.1

A description of each of these elements, as well as

general requirements of the research tool follows.

3.2 General Requirements

The general research requirements of the musicological

research tool are three-fold. It should be economical.

23

Musicologists, like other scholars working in the

humanities, are not highly-paid despite the fact that

their training must be extensive and broad in scope. For

reasons of economy and convenience, the system must run

on a personal computer. In addition, personal computers

are more familiar to the proposed user since they are

frequently employed as word processors by this group of

scholars.

A second general requirement of the system is that it

should employ non-technical (with regard to computers)

language in dealing with the user. When developing the

system, the design intent is to never lose sight of the

user's needs: musicologists, while they deal in logical

relations and decisions which utilize deductive

reasoning, are not mathematicians. Often, they are not

skilled in technical matters.

A third general requirement of the system is that it

should provide the user with extensive storage

capacities. Large research projects frequently reference

hundreds of documents and music manuscripts. It is

essential that the musicologist have a method of storing

references to information which might be cited in the

24

final research product. To do this, the user of the

system must be able to add, delete, update, or query the

information stored.

3.3 Specific Requirements

This section addresses three requirements of the

musicological tool: the user interface is addressed in

section 3.3.1; the expert system in section 3.3.2; and

the database management system in section 3.3.3.

3.3.1 User Interface

The user interface must be capable of providing the user

with simple, easy-to-use menus, interpreting the commands

entered by the user, and interfacing with the files

provided by the graphics portion of the package. It must

respond to user queries with appropriate responses, error

messages, or additional user options. It must offer a

simple, straightforward set of user instructions,

requiring a minimal number of responses from the user.

3.3.2 Expert System

The expert system portion of the system must store high-

level representations of the rules that professional

25

musicologists unconsciously use to interprete their

materials. This knowledge will be customized for use by

an individual researcher or musicological project to

contain specific information for a particular research

domain.

The musicological knowledge will be stored in a simple

rule-based system. This knowledge base and its use as a

research tool will be activated whenever an incipit is

added to the data store or modified in any way.

While the basic tenets of the expert system are

predefined by the research tool, additional rules may be

added to the knowledge base in order to allow

customization of the system. This feature is essential

since the style considerations of the era which the

musicological project is investigating may seriously

alter the nature of the rules.

Furthermore, the expert system will allow user

interaction: that is, the musicologist may contribute to

the final decision of the expert system at break points

in the decision process. In addition, the expert system

will also communicate with the database system which

serves as storage for the knowledge base and incipits.

26

3.3.3 Database Management System

The relational database management portion of the system

must provide storage for the knowledge base of the expert

system which consists of the complete set of rules

constituting the general knowledge of the expert system.

It must also store the domain-specific knowledge of the

individual user's application.

Activation of the database management system will be

initiated via three methods:

(1) a direct request by the user for retrieval,

storage, or updating of information

(2) interaction with the graphical interface

(3) interaction with the expert system.

The database portion of the product must also allow the

user to query or update information related to the

composers and sources. Stored information will include

such data as general information related to sources,

probable composer, date of composition, location of

manuscript or publication, and the musical incipits

themselves.

27

4. DESIGN

4.1 Introduction

The primary issue addressed by the design chapter is that

of integrating the expert system and database technology.

This effort, combined with the research efforts of

another Kansas State University project [Ha89] which

addresses the integration of this design with a graphical

interface, produces the research musicological tool. The

design chapter concentrates on the incorporation of

intelligence into the database processing environment so

that the musicological data provided by the user can be

intelligently and correctly stored in the musicological

database. A second objective of this intelligence

incorporation is that decision options can be offered to

the user which assist in their research process.

Section 4.2 provides a general discussion of the research

musicological tool and presents the structural elements

of the design effort. Section 4.3 addresses the specific

design of the expert system. Section 4.4 addresses the

design of the database of musicological information:

incipits, composer information, manuscript and literary

28

references which may be utilized by the expert system.

Section 4.5 discusses the interaction of the graphics

interface with the expert system and the musicological

database. This is followed by a brief summary of the

system in section 4.6.

4.2 The Research Musicological Tool - An Overview

The purpose of the research musicological tool is to meet

the needs of the independent research musicologist and

the small music archives. The needs of this group

include:

(1) a clear, concise, easy to use interface

(2) a means to store and manipulate textual data

relating to composers and compositions

(3) a facility to enter, store, retrieve, and

update musical incipits

(4) assistance in analyzing the data related

to their project.

The research musicological tool addresses these needs by

providing the following components: a menu-driven user

interface which provides access to the musicological

project database and the expert system; the musicological

29

database itself; the graphical interface; and the expert

system with all its related maintenance facilities.

Section 4.2.1 discusses the basic structure of the tool.

The structure of the music database facility is presented

in Section 4.2.2. Finally, the structural division of

the expert system maintenance subsystem is discussed in

Section 4.2.3.

4.2.1 A Structural Overview

The user interface is the primary method whereby the user

communicates with the system. It is, in essence, a

scheduler for the system. Communication is maintained

via simple-to-use menus and sub-menus. The initial menu

offers the user access to the musicological database as

well as the expert system maintenance facility.

The system is divided into three layers: (1) the high

level menus; (2) the music database facility; and (3) the

expert system maintenance facility. The first layer is

represented in Illustration 4.1 which identifies the

three primary menus.

30

Illustration 4.1

MAIN contains the primary menu, it is the user's first

introduction to the system, offering two options: DBFAC,

which is the music database facility, and ESMAIN, the

expert system maintenance facilities.

DBFAC is a secondary menu which provides the user with

add, update, delete, and inquiry functions for the

database of musical information.

ESMAIN serves as a secondary menu providing access to the

rules employed in the expert system. The user is allowed

to add rules, to activate or de-activate rules within the

expert system, and to reorganize those rules within the

31

system as a means of customizing the system to meet the

needs of the individual researcher.

4.2.2 DBFAC: The Music Database Facility

The music database facility is scheduled by the user

interface whenever a user specifically requests to add,

update, delete, or query entries in their file of

musicological information. All incipit data is keyed by

a system-assigned unique call number for simple

retrieval. Source data is keyed by source title.

Composer data is keyed by last name, first name, middle

initial. Within DBFAC, both the graphics portion of the

project and the expert system are key factors. If the

intent of the user is to alter only textual data, neither

the expert system utility nor the graphics portion of the

project is invoked. Textual updates are the sole domain

of the database facility. If, however, the user wishes

to add, insert, update, or query an incipit, the graphics

portion of the system is invoked in order to interface

with the user. The add and update functions require

that the expert system utility also be invoked as a means

of checking for duplicate musical incipits. Thus, a

researcher's direct request for a database function could

32

involve the graphics segment of the system, the expert

system segment of the system, and the actual database

facility as well.

The music database facility function includes four

subdivisions: DBDEL, a delete function; DBADD, which

provides an add function; DBUPD, an update function; and

DBQUERY, the inquiry function. This relationship is

shown in Illustration 4.2.

Illustration 4.2

4.2.2.1 DBADD

DBADD is a sub-menu which provides access to three

separate functions: ADDINC allows the user to add an

33

incipit and its associated source and composer

information; ADDCOMP allows the addition of an individual

composer; and ADDSRC provides for the separate addition

of information relating to sources. Illustration 4.3

represents this substructure.

Illustration 4.3

Within this group, ADDINC is the heart of the system.

The researcher's request to add an incipit schedules

ADDINC. This function then schedules the graphics

interface to allow entry of an incipit. Upon scheduling

the interface, ADDINC builds an initial file to be used

by the interface. This file consists of a function

indicator ("A" for add); the proposed next system-

34

generated call number which will be assigned to the

incipit if all expert system checks are sucessfully

passed; space for the time signature; key signature; a

major-minor indicator; and ten occurrences of associated

notes, pitches, and accidentals.

Upon completion of the execution of the graphics

interface module, the ADDINC module analyzes the incipit

data via INFER, the inference engine. INFER itself

schedules six additional modules to assist in the

process:

(1) CHGNOTES changes all pitches to a common

pattern, converting sharps or flats by adding or

subtracting numeric values from the

original numeric value of the pitch

(2) RHYTHM looks for rhythmic differences between

the proposed incipit and all other incipits

in the database, storing the result in a memory

variable for later comparisons

(3) NOTES looks for actual pitch differences, storing

this data in a memory variable for later

comparisons

(4) TIME compares the time signature of the proposed

addition to those of other incipits in the

35

database, storing the result in a memory variable

(5) TRANSP employs CHGNOTES, translating each of the

incipits in the music database into a common form

prior to examining them for possible

transpositions

(6) Finally, RCHECK processes each of the rules

stored in the knowledge base, allowing the

researcher the ultimate decision concerning

whether or not the incipit should be added to

the database.

An analysis which produces no other similar incipits in

the database allows the researcher to store this incipit.

When similar incipits are found, the user is allowed to

scroll through these incipits prior to making a decision

to add the current incipit. At that point, both source

and composer segments may be added to the database via

the INCSADD and INCCADD segments. The flow of data

through the total ADDINC process is shown in

Illustration 4.4.

36

ADDINC

GRAPHICS

INFER

CHGNOTES RHYTHM NOTES TIME TRANS

P

RCHECK

INCCADD

INCSADD

Illustration 4.4

37

ADDSRC and ADDCOMP add source and composer segments to

the music database independent of the ADDINC all-

inclusive model.

4.2.2.2 DBUFD

DBUPD, like DBADD, is a sub-menu program. Here the user

is offered the opportunity to perform updates of incipit

data, source data, or composer data. The structure of

the database update function is shown in Illustration

4.5.

UPDINC

DBDPD

UPDSRC UPDCOMP

Illustration 4.5

Again, the incipit-processing module UPDINC interfaces

with both the graphics program and the inference engine,

38

screening any changes which might result in a match on an

existing incipit within the system.

4.2.2.3 DBDEL

DBDEL is also a sub-menu. All delete processing within

the music database is done within this group, similar in

nature to DBUPD, this module allows delete processing for

incipits, source records, and composer records. Unlike

both ADDINC and UPDINC, DELINC schedules the graphics

interface in retrieval mode as opposed to entry mode.

During the delete process, the graphics interface allows

the researcher to verify the incipit prior to deletion.

As seen in Illustration 4.6, DBDEL provides access to the

deletion of incipits and their associated sources and

composers (DELINC) , as well as the separate deletion of

source segments (DELSRC) and composer segments (DELCOMP)

.

39

Illustration 4.6

4.2.2.4 DBQUERY

The final function within the music database facility is

that of DBQUERY, a module which returns all the sources

and composers associated with a given call number within

the system.

4.2.3 ESMAIN: Expert system Maintenance

While both the database subsystem and the integrated

expert system utility access the graphical interface, the

second subsystem, that of expert system maintenance, has

no ties to the graphical interface. Nor does it have

strong ties to the musical incipit/composer database.

40

Rather, this subsystem controls its own database of

musicological facts and rules. These form the heart of

the decision process for the expert system. The basic

rules of musicological research are predetermined by the

knowledge engineering which must be accomplished prior to

the implementation of the project; however, additional

rules and fine tuning of the system are at the discretion

of the user. In this way, the basic musicological tool

can successfully be used by researchers working in a

variety of musical eras. Without the ability to alter,

add, delete, and restructure the importance of the

various rules, the system would be inflexible and,

consequently, less useful.

4.2.3.1 ESMAIN components

Dynamic knowledge engineering must be part of a

successful musicological tool: this is the role of

ESMAIN, the expert system maintenance portion of the

project. ESMAIN is essentially a subsystem which allows

the user access to the knowledge base via five methods:

(1) ESADD provides the user with the capability to

add rule types to the existing knowledge base

(2) ESRADD allows the addition of individual rules

41

within these rule types

(3) ESACT allows the user to activate or de-activate

the various rule types — a method of virtual

insertion or deletion of the existing rules

(4) ESRACT allows this same activation/de-activation

function to be performed on the rules within rule

types

(5) ESREORG provides a sub-menu to rule reorgani-

zation functions.

This relationship is shown in Illustration 4.7.

Illustration 4.7

4.2.3.2 ESREORG

ESREORG, represented in Illustration 4.8, is the only

sub-menu within this group. It provides access to two

42

reorganizational features within the expert system:

PRERULE1, which allows the researcher to designate the

ordering of rule types within the knowledge base, and

PRERULE2, which provides this same function for the rules

within rule types.

ESREORG

PRERULE1 PRERULE2

Illustration 4.8

4.3 The Expert System Structure

William R. Arnold and John S. Bowie, in their discussion

of artificial intelligence, point out that while AI

systems are diverse in their areas of expertise, all have

(1) a knowledge base generally made up of rules, (2) an

inference engine which performs the tasks that give the

system intelligence, and (3) a maintenance engine which

43

is a program to update the knowledge base or inference

engine or both [Ar86] . ESMAIN and its associated

functions provide the maintenance engine for the

research musicological tool. INFER and its related

functions provide the inference engine. The knowledge

base itself is provided by a database of rules.

4.3.1 Design of the Knowledge Base

The expert system database stores the knowledge base of

musicological rules and musical facts gleaned from a

close examination of the process whereby musicologists

make intelligent decisions about the materials with which

they work. These basic rules and facts may be

supplemented by the individual musicologist using the

system via the use of the expert system maintenance

menus. The database is simple in design, reflecting the

method employed by musicologists during the research

process. Basically, the database consists of rules

organized within rule types, each rule being tagged with

the following attributes:

(1) an active-inactive tag which specifies

whether the user wishes this rule type to be

used in the decision process

44

(2) a sequence number tag which establishes

priorities among the different types of rules

(3) a type indicator tag which indicates the basic

category of rule

(4) a second active-inactive tag which allows

individual rules within a type to be used

(5) a second sequence number tag which establishes

the position of rules within each category

(6) the rule itself.

The combination of rule type, rule type sequence number,

and rule sequence number allows each record to be unique.

It also allows the researcher to specify that the same

general rule be examined multiple times within the

decision process, simply by allowing it to exist in

multiple type categories. Suppose, for example, that a

rule of type NOTES specified the range of note

differences allowable between compositions before a match

might be identified. This same rule might also exist

within the type structure of COPY FAULTS and thus be

reconsidered at the time that rule type was scheduled for

examination.

Categories of rules might include:

(1) melodic configuration

45

(2) rhythmic configuration

(3) key considerations

(4) accidentals

(5) manuscript/print data

(6) composer data

(7) probable musical era data.

Obviously, the ideal system should allow new categories

to be added by the user to customize the application.

Multiple rules exist in each area, all ordered according

to their importance. The user has the option of

accepting the standard knowledge base provided by the

system. Optionally, the individual user may reorder the

rules to suit his own application, insert additional

rules, delete rules from the system, or build a new

expert based on (1) his own rules, (2) a new ordering of

existing rules, or (3) a mixture of existing and new

rules. The goal is to provide the musicologist with

total flexibility so that the tool can be tailored for

each individual application.

46

4.3.2 Design of the Inference Engine

There are three general designs which typify expert

system inference engines: (1) the forward-chaining, or

data-driven, method in which a forward-chaining inference

engine starts with some information and then tries to

find an object that fits the information; (2) the

backward-chaining, or object-driven, method whereby a

backward-chaining inference engine starts with a

hypothesis (an object) and requests information to

confirm or deny it; and (3) the rule-value method in

which a rule-value inference engine requests as its next

piece of information the one which will remove the most

uncertainty from the system [Sc87].

Vesonder, discussing rule-based programming in the UNIX

system, states that today, most expert systems are built

using a rule-based approach [Ve88]. A rule-based

methodology, such as that chosen as the basis of the

research musicological tool inference engine, is useful

for two reasons

:

(1) it allows the representation of units of

knowledge in the form of rules

47

(2) because the chunks of knowledge are

independent, they can be easily changed

without altering the rest of the system.

Vesonder continues his discussion of the rule-based

approach by saying that many expert systems have been

built using rule-based tools because expertise stated in

the form - "If this is the situation, then take this

action" - is readily coded into the IF-THEN format of

rules.

This format seems especially suited to the design of the

research musicological tool. The inference engine

designed for this project employs consecutive IF-THEN

rule formats, grouping the rules in large chunks of

knowledge which may actually be totally bypassed in the

logic flow if that is the desire of the user.

4.4 The Database of Musicological Information

The database of musicological information, like that of

the expert system rules, is simple in design.

It consists of a incipit segment keyed by a system-

generated numeric call number linked to one or more

composer segments keyed by composer name. The incipit

48

segments are also linked to one or more source segments

which are uniquely keyed by a source title. An example

of the source segment key might be Munich Bayerische

Staatsbibliothek 5130. All three segments are linked to

one another by the combination of call number, source

title and composer name. Illustration 4.9 depicts the

entity -relation structure of the musicological

information database.

49

Illustration 4.9

4.5 The Graphical Interface and Expert System

The graphical interface provides the data which feeds the

expert system. Whenever multiple similar versions of an

incipit exist, the expert system presents these to the

researcher via the graphical interface. The graphical

interface also allows the user to enter new musical

50

incipits as part of the musicological database add and

update capabilities of the system. The expert system

then allows the user to pick and choose which incipits

should remain in the working set when break points occur

in the expert system logic and user interaction is

required. Basically, the graphical interface accepts

input from the user and converts this input into a record

format which can be transferred to the expert system

portion of the design. Once within the realm of the

expert system utility, this same data is examined and

tested for compliance with the criteria established by

the knowledge base database. The graphical interface is

never directly called by the user, yet it is an integral

part of the total design.

4 . 6 System Summary

The research musicological tool consists of three primary

elements, each of which could become a project in its own

right: (1) the expert system; (2) the musical

information database; and (3) the graphical interface.

Soon after beginning the project, the enormity of the

complete system became apparent. For this reason, the

system is implemented with a "bare bones" approach. All

51

facets of the design are addressed; however, the expert

system may not possess all the possible rules and rule

combinations. Finally, the interaction between the

graphical interface and the remainder of the system is

addressed in a complete, yet abbreviated fashion. It is

the intent of this project to offer the research

musicologist a working model of what can be a useful

addition to the world of musicological research.

52

5. IMPLEMENTATION

5.1 Introduction

This chapter addresses the implementation of the research

musicological tool, it does not include references to

the implementation of the graphical interface segment of

the system: the design of this portion of the

musicological tool was addressed in detail in another

Kansas State University master's project [Ha89] . Those

segments of the research musicological tool addressed in

this chapter include: (1) the music information

database; (2) the expert system with its associated

inference engine, maintenance engine, and knowledge base;

and (3) the interface between the graphical segment of

the project and the database subsystem.

A brief overview of the implementation is given in

Section 5.2. Section 5.3 addresses the implementation

issues associated with the various databases employed in

the research musicological tool. Section 5.4 provides a

brief description of the implementation of the expert

system itself. Section 5.5 addresses the interface to

53

the graphical segment of the project. Finally, Section

5.6 discusses the extent of the implementation.

5.2 Implementation Overview

One of the original requirements of the research

musicological tool was that the system be implemented on

a personal computer. In accordance with this

requirement, the project was implemented on a AT&T 6300

personal computer using dBASE III+ Version 1.0. The

graphical interface segment of the project [Ha89] used

Turbo Pascal Version 5.0. Implementation of the project

required two files (an input file and an output file) to

pass data between the graphical interface and the

database subsystem, a total of eight dBASE files, thirty-

five dBASE III+ programs consisting of approximately

1880 lines of code and a Turbo Pascal program [Ha89]

.

5.3 Database Solutions

Databases were required for three separate parts of the

total design effort: (1) the storage of information

related to the musical incipits, sources, and composers;

(2) the storage of the rules which form the knowledge

54

base for the expert system; and (3) the intermediate

storage of data passed as a file between the graphical

interface and the database portion of the project.

The storage of information related to music incipits,

sources, and composers required six files. Three of

these were used for actual storage of information input

by the researcher using the tool. An additional three

were used to establish linkage between the data provided

by the user. The tool established six separate database

work areas with files active in each. Implementation of

the research tool did not address null values in the key

fields. The files employed for the implementation of the

database of musical information are listed in Table 5.1.

TABLE 5.1

MUSICAL INFORMATION DATABASE: STRUCTURES

Database

MUSIC

Field Name Type

Call num Numeric
Key Character
Title Character
MM Character
Timel Numeric
Time 2 Numeric
Inc_dl Numeric
Incpl Numeric
Inc al Character
Inc_d2 Numeric
Inc_p2 Numeric

Width

5

2

80
1

1

1

5

2

1

5

2

55

Inc a2 Character 1

Inc_d3 Numeric 5

Inc_p3 Numeric 2

Inc a3 Character 1
Inc d4 Numeric 5
Inc_p4 Numeric 2

Inc a4 Character 1
Inc_d5 Numeric 5
Inc p5 Numeric 2

Inc a5 Character 1
Inc d6 Numeric 5

Inc p6 Numeric 2

Inc_a6 Character 1
Inc d8 Numeric 5
Inc p8 Numeric 2

Inc_a8 Character 1
Inc_d9 Numeric 5
Inc p9 Numeric 2

Inc a9 Character 1
Inc_dlO Numeric 5
Inc_plO Numeric 2

Inc alO Character 1

COMPOSER Comp_bdate Character 4
Comp_ddate Character 4
Comp loc Character 40
Comp_lname Character 20
Comp_fname Character 10
Comp -init Character 1

SOURCE Src type Character 40
Src_title Character 40
Srcdate Character 4

WRITTEN Call_num Numeric 5

Comp_lname Character 20
Comp_fname Character 10
Comp_init Character 1

REFER_IN Call_num Numeric 5
Comp lname Character 20
Comp_fname Character 10
Comp_init Character 1

LINK Call num Numeric 5
Comp_lname Character 20
Comp fname Character 10
Comp_init Character 1

56

Src_title Character 40

The index structures associated with the database are

listed in Table 5.2.

TABLE 5.2

MUSICAL INFORMATION DATABASE: INDEX STRUCTURES

Database Index Name Database Fields

MUSIC Call num Call_num

SOURCE Sources Src-title

COMPOSER C_Lname Comp_lname
Comp_init

+ Comp _fname +

WRITTEN Callw Call_num
Cnamew Comp_lname

Comp_init
+ Comp fname +

REFER-IN Callr
Srcr

Call_num
Src_title

LINK Calll Call _num
enamel

Srcl

Comp_lname
Comp init
Src title

+ Comp fname +

The expert system required a single database. The

structure of this database and the index associated with

it are shown in Table 5.3.

57

TABLE 5.3

EXPERT SYSTEM DATABASE AND INDEX: STRUCTURES

Database

RULE

Database

RULE

Field Name

Type
Seq_numl
Seq_num2
Act_flagl
Act_flag2
Fieldl
Oper
Field

Index Name

Numl
Num2
Types

Type Width

Character 20
Numeric 3

Numeric 3

Logical 1
Logical 1
Character 39
Character 2

Character 39

Database fields

Seq_numl
Seq_num2
type

Finally, the temporary database which was required by

dBASE III+ as a means of communicating with a file is

shown in Table 5.4 with its associated index structure.

TABLE 5.4

TEMPORARY DATABASE AND INDEX: STRUCTURES

Database

GRAPHF

Field Name Type

Act Character
Call Numeric
Key Character
MM Character
Timel Numeric
Time2 Numeric
Inc_dl Numeric
Incpl Numeric

Width

1

5

2

1

1

1

5

2

58

Inc al Character l
Inc_d21 Numeric 5
Inc p21 Numeric 2

Inc a21 Character l
Inc_d31 Numeric 5
Inc_p31 Numeric 2

Inc a31 Character 1

Inc_d41 Numeric 5
Inc p41 Numeric 2

Inc a41 Character 1
Inc d51 Numeric 5
Inc_p51 Numeric 2

Inc a51 Character 1

Inc_d61 Numeric 5
Inc_p61 Numeric 2

Inc a61 Character 1
Inc_d71 Numeric 5
Inc_p71 Numeric 2
Inc a71 Character 1
Inc_d81 Numeric 5
Inc p81 Numeric 2

Inc a81 Character 1
Inc_d91 Numeric 5
Inc p91 Numeric 2
Inc a91 Character 1
Inc_dlO Numeric 5
Inc_plO Numeric 2
Inc_alO Character 1

Database Index Name Database Fields

GRAPHF Callg call

A study of the tables of database structures reveals one

of the problems inherent in dBASE III+: there are no

arrays. This, coupled with the 254-characters-per-line

restriction imposed by dBASE III+, proved to be a true

impediment since it was necessary to pass long lists of

note duration and pitch parameters between programs. In

addition to the lack of array structures, dBASE III+ has

59

a restriction regarding the number of files which can be

open at one time. Since each program and database

structure or index structure is considered to be a file,

this was a particular problem. In order to circumvent

the files issue, all the programs were placed within one

large procedure. Thus, the restriction that only one

procedure be active required all parameter passing to

occur program to program rather than via the use of

additional procedures.

5.4 Expert System Solutions

A large part of any design involving an expert system is

knowledge engineering. In order to devise a system which

can do the work of the expert, care must be taken to

thoroughly understand the steps taken by a musicologist

during the research process. Several years experience

spent by the author working on a National Endowment for

the Humanities research project simplified this process.

One of the more interesting problems associated with the

project was that of devising a method whereby the

researcher could actually influence the structure of the

expert system, dynamically altering the rules within the

60

knowledge base. Within dBASE III+, a feature exists

which allows field names to be used as macros. This

instigated the division of the rule itself into three

segments: fieldl, operator, and field2 . These were then

treated as macros. By limiting the user to selected

field names and operators, the system actually provides

the user with the capability to set acceptable limits of

pitch variations, rhythmic differences, and time

signature variations.

5.5 Graphical Interface Solutions

At the outset of the project, the problem of

communicating between the database subsystem and the

graphical interface seemed insurmountable. However, the

ultimate solution was surprisingly simple: it involved

employing two files and a temporary dBASE database which

was required to match the structure of these two files

exactly and the execution of a DOS command within a dBASE

program. Whenever an add or update of an incipit is

requested by the user, the database subsystem builds a

temporary GRAPHF database record with information from

the permanent MUSIC database. This database record is

used to generate a file. At that point, a DOS command is

61

issued within a dBASE program to execute the Pascal-based

graphical interface. Upon completion of execution, the

dBASE program regains control, reading the second file

which is generated by the graphical interface and storing

it in the temporary GRAPHF database for comparison to

existing incipits stored in the MUSIC database.

5.6 Extent

The intent of the implementation was to provide a working

tool for the researcher in musicology. In order to do

this, all features of the project were implemented with

two exceptions:

(1) The TRANSP module within the expert system was not

implemented. The logic necessary for this was also used

as the basis for the NOTES module. This, implementation

of TRANSP was deemed non-essential.

(2) The SCROLL capability within the ADDINC module was

not implemented. This feature is useful, but not

essential. The design intent of SCROLL was to allow the

user to view multiple similar versions of incipits

residing on the database prior to choosing to override

the expert's decision to not add another similar incipit.

62

Conclusions and Extensions

6.1 Introduction

The motivation of this project was to provide an

automated research tool for musicologists and small music

archives and to explore the usefulness of expert systems

as a potential research tool for music historians.

6.2 Project Conclusions

In the course of completing this project, the following

results were achieved:

* Analyzed the problem of providing a research

tool for the computer-novice professional

musicologist.

* Designed a simple-to_use interactive

system employing expert system functions

to assist in incipit matching and a database

management system to store musicological

research information.

63

* Implemented the research musicological tool

for the personal computer using dBASE III+

and a rule-based inference engine.

* Achieved a successful integration of dBASE

III+, expert system functions, and a graphical

interface to produce a useful tool for scholars

in the field of historical musicology.

6 . 3 Future Enhancements

The research musicological tool can be viewed as a

beginning point — a first step toward mechanized aids

for musicologists. In light of that, there are several

topics within the scope of the project which would

benefit from additional research. The following are

recommended areas for further research and development:

* The addition of free form notes to the database

subsystem would be particularly beneficial to

researchers in any historical discipline.

* The porting of the system to FoxBASE+ or

dBASE IV would provide flexibility for the

64

development of a more functionally-rich

product, allowing the features of dBASE without

restrictions on array processing and files.

The design of the current project did not

include report capabilities, yet this is an

important tool for the research musicologist.

Printed lists of incipits and associated

composers/sources would be especially helpful

during the preparation of articles and papers

based on data stored in the research

musicological tool.

A help function which would allow the user to

enter an incipit, then view all similar

incipits within the system should be

implemented to increase the usefulness of

the tool

.

65

REFERENCES

[Ap72] Apel, Willi. Harvard Dictionary of Music .

Cambridge, Massachusetts: Harvard University
Press, 1972.

[Ar86] Arnold, William R. and John S. Bowie.
Artificial Intelligence: A Personal.
Commonsense Journey . Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1986.

[Ba87] Bartle, Barton K. Computer Software in Music
and Music Education . Metuchen, New Jersey:
Scarecrow Press, 1987.

[Br86] Bratko, Ivan. Prolog Programming for Artificial
Intelligence . Workingham, England: Addison-
Wesley Publishing Company, 1986.

[Br88] Brachman, Ronald J. "The Basics of Knowledge
Representation and Reasoning." AT&T Technical
Journal . 67, No. 1 (1988), pp. 7-24.

[Ch84] Charnasse, Helene. "Les bases de donnees en
musicologie." Fontes Artis Musicae . 31, No. 3

(1984), pp. 153-159.

[Ch87] Chabris, Christopher F. Artificial
Intelligence and Turbo Pascal . Homewood,
Illinois: Dow Jones-Irwin, 1987.

[Da87] Date, C. J. An Introduction to Database
Systems . Reading, Massachusetts: Addison-
Wesley Publishing Company, 1987.

[Dr84] Drummond, Philip J. "Developing Standards for
Musicological Databases." Fontes Artis Musicae .

31, No. 4 (1984), pp. 172-176.

[Fo86] Forsyth, Richard. "The Anatomy of Expert
Systems." In Artificial Intelligence:
Principles and Application . Edited by Masoud
Yazdani. London: Chapman and Hall, 1986.

66

[Go84] Gooch, Bryan N. S. "Catalogues and Computers or
Bibliography and the Beast." Fontes Artis
Musicae . 31, No. 1 (1984), pp 38-41.

[Ha89] Harmon, Karen LuAnne. "A Graphical
Interface for Musicological Research Tools".
Master's Report, Kansas State University, 1989.

[He86] Hewlett, Walter and Eleanor Selfridge-Field.
Directory of Computer-Assisted Research in
Musicology . Menlo Park, California: Center
for Computer-Assisted Research in the
Humanities, 1986.

[Ho88] Hofstetter, Fred Thomas. Computer Literacy for
Musicians . Englewood Cliffs, New Jersey:
Prentice-Hall, 1988.

[Hu84] Hultberg, Warren E. "Data Bases for the Study
of Relationships among Spanish Music Sources of
the 16th-17th Centuries." Fontes Artis Musicae .

31, No. 3 (1984), pp 162-167.

[Le85] Lehner, Paul E. and Stephen W. Barth. "Expert
Systems on Microcomputers . " In Applications in
Artificial Intelligence . Princeton, N.J.:
Petrocelli Books, 1985.

[Le86] Levine, Robert I., Diane E. Drang, and Barry
Edelson. A Comprehensive Guide to AI and
Expert Systems . New York: McGraw-Hill Book
Company, 1986.

[Li84] Lincoln, Harry B. "A Description of the
Database in Italian Secular Polyphony Held at
SUNY-Binghamton, New York." Fontes Artis
Musicae . 31, No. 3 (1984), pp 159-162.

[Mo84] Morehen, John. "Thematic Cataloging by
Computer." Fontes Artis Musicae . 31, No. 1
(1984) , pp. 32-38.

[Pa88] Parker, Barbara S. "Incorporating Expert System
Technology into a Professional Genealogical
Information System." Master's Thesis, Kansas
State University, 1988.

67

[Pe89] Pedersen, Ken. Expert Systems Programming:
Practical Technique for Rule-Based Systems .

New York: John Wiley & Sons, 1989.

[Ra89] Ranada, David. "Music from Machines - Part I:
Harmonizing Bach-style Chorales: IBM does it
all." Musical America . March (1989),
pp. 95-96.

[Sc87] Schildt, Herbert. Artificial Intelligence Using
C. Berkeley, California: Osborne McGraw-Hill,
1987.

[Sk88] Skinner, Robert. "Microcomputers in the Music
Library." Notes: Quarterly Journal of the Music
Library Association . 45, No. 1 (1988), pp. 7-
14.

[St81] Steelman, Robert. Catalog of the Lititz
Congregation Collection . Chapel Hill, North
Carolina: University of North Carolina Press,
1981.

[Ve88] Vesonder, Gregg T. "Rule-Based Programming in
the UNIX System." . AT&T Technical Journal . 67,
No. 1 (1988) , pp. 69-80.

[Wi84] Winston, Patrick Henry. Artificial
Intelligence . Reading, Massachusetts: Addison-
Wesley Publishing Company, 1984.

68

1. OVERVIEW 1
1.1 Introduction 1
1.2 Literary Review 4

1.2.1 Database Design 4
1.2.2 Expert Systems 6
1.2.3 Musicological Resources 9

1.3 Summary 13
2. THE PROCESS OF MUSICOLOGICAL RESEARCH 14

2.1 Musicology as a Discipline 14
2.2 The Typical Musicologist 15
2.3 The Research Project 16
2.4 Research Procedures 17
2.5 Research Product and the Proposed Research Tool 19

3. REQUIREMENTS 21
3.1 Introduction 21
3.2 General Requirements 23
3.3 Specific Requirements 25

3.3.1 User Interface 25
3.3.2 Expert System 25
3.3.3 Database Management System 27

4. DESIGN 28
4.1 Introduction 28
4.2 The Research Musicological Tool - An Overview 29

4.2.1 A Structural Overview 30
4.2.2 DBFAC

The Music Database Facility 32
4.2.2.1 DBADD 33
4.2.2.2 DBUPD 38
4.2.2.3 DBDEL 39
4.2.2.4 DBQUERY 40

4.2.3 ESMAIN
Expert System Maintenance 40
4.2.3.1 ESMAIN Components 41
4.2.3.2 ESREORG 42

4.3 The Expert System Structure 43
4.3.1 Design of the Knowledge Base 44
4.3.2 Design of the Inference Engine 47

4.4 The Database of Musicological Information 48
4.5 The Graphical Interface and Expert System 50
4.6 System Summary 51

5. IMPLEMENTATION 53
5.1 Introduction 53
5.2 Implementation Overview 54
5.3 Database Solutions 54
5.4 Expert System Solutions 60
5.5 Graphical Interface Solutions 61
5.6 Extent 62

6

.

Conclusions and Extensions 63
6.1 Introduction 63
6.2 Project Conclusions 63

LIST OF ILLUSTRATIONS

Illustration 2.1 Examples of Muslcological Project. .. .18

Illustration 3 . 1 System Design 23

Illustration 4.1 High Level Menus 31

Illustration 4.2 Database Facility Structure 33

Illustration 4 . 3 DBADD Subsystem 34

Illustration 4 . 4 Expert System Data Flow 37

Illustration 4 . 5 DBUPD Subsystem 38

Illustration 4 . 6 DBDEL Subsystem 40

Illustration 4.7 Expert System Maintenance Structure. .42

Illustration 4 . 8 ESREORG Subsystem 43

Illustration 4.9 E-R Structure of Musical Information. 50

LIST OF TABLES

Table 5.1 Musical Information Database Structures 55

Table 5.2 Musical Information Database Index

Structures 57

Table 5.3 Expert System Database and Index:

Structures 58

Table 5.4 Temporary Database and Index: Structure 58

RELATIONAL SCHEMAS MUSIC DATABASE

Incipit (Key, Call_num, Title, MM, Timel, Time2,
Inc_dl, Inc_d2, Inc_d3, Inc_d4, Inc_d5, Inc_d6,
Inc_d7, Inc_d8, Inc_d9, Inc_dlO/ Inc_pl, Inc_p2,
Inc_p3, Inc_p4, Inc_p5, Inc_p6, Inc_p7, Inc_p8,
Inc_p9, Inc_plO, lnc_al, Inc_a2, Inc_a3, Inc_a4,
Inc_a5, Inc_a6, Inc_a7, Inc_a8, Inc_a9, Inc_alO)
key: Call_num

Source (Src_type, Src_title, Src_date)
key: Src_title

Composer (Comp_bdate, Comp_ddate', Comp_loc, Comp_lname,
Comp_fname, Comp_init)

key: (Comp^lname, Comp_.fname , Comp_init)

Written_by (Call_num, Comp_lname, Comp_fname , Comp_init)
key: (Call_num, Comp_lname, Comp_fname, Comp_init)

Refer_in (Calljnum, Src_title)
key: (Call_num, Src_title)

Link (Call_num, Src_title, Comp_lname, Comp_fname

,

Comp_init)
key: (Call_num, Src_title, Comp_lname, Comp_fname

,

Comp_init)

DATA DICTIONARY

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_dl
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Inc_d2
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note

ii

Responsibility
Security
Availability
Frequency
Dependencies
Comments

01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_d: i

None

5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Inc_d4
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note

iii

Responsibility
Security
Availability
Frequency
Dependencies
Comments

01250
00625

eighth note
sixteenth note

Originally received from
graphical interface

Data Name Inc_d5
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibil ity
Security
Availability
Frequency
Dependencies
Comments OriginalLly received from

graphical interface

Data Name
Aliases
Data type
Format
Range

Inc d6
None
Numeric
5 numer.ics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note

01250 == eighth note
00625 = sixteenth note

Responsibility -

Security
Availability
Frequency
Dependencies
Comments Origin;illy received fr

graphical interface

Data Name Inc_d7
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security
Availability
Frequency
Dependencies V " *'

Comments Origina:Lly received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Inc d8
None
Numeric
5 numerics-, ' !

10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500'.= quarter note
01875 = dotted eighth note

01250 = eighth note
00625 = sixteenth note

Responsibility
Security
Availability
Frequency
Dependencies
Comments Origina:Lly received fn

graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_d9
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Inc_dl0
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note

vi

Responsibil ity
Security
Availability
Frequency
Dependencies
Comments

0250.0 = quarter note
01875*'= dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_pl
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security

Inc_p2
None
Numeric
2 numerics
00 = rest
90' = blank pitch
99 = bar
02 - 22 = notes, in even
increments

vii

Availability
Frequency
Dependencies
Comments Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p3
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibil ity
Security
Availability
Frequency
Dependencies
Comments

Inc_p4
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p5
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p6
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Inc_p7
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar

ix

Responsibility
Security
Availability
Frequency
Dependencies
Comments

02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p8
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies

Inc_p9
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Comments Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_plO
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_al
None
Character
1 character
+ = sharp

flat
= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases

Inc_a2
None

xi

Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Character
1 character
+ = sharp

flat
= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a3
None
Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency

Inc_a4
None
Character
1 character
+ = sharp
- = flat

= natural

xii

Dependencies
Comments Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a5
None
Character
1 character
+ = sharp

flat
= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a6
None
Character
1 character
+ = sharp

flat
= natural

Originally received from
graphical interface via
temporary database

Data Name Inc_a7

xiii

Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

None
Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a8
None
Character
1 character
+ = sharp
- = flat
= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency

Inc_a9
None
Character
1 character
+ = sharp

flat
= natural

xiv

Dependencies
Comments Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_alO
None
Character
1 character
+ = sharp
- - flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Key

Character
2 characters
First character: A - G
Second character: #, b, blank

Data Name
Aliases
Data type

Call_num

Numeric

xv

Format
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments

5 numerics
00000 through 99999
System-generated

Generated by the system for
means of having unique number
system

Data Name
Aliases
Data type
Format
Range

Timel

Numeric
1 digit
1-9

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Created by graphical interface

Denotes the first number in a
time signature

Data Name
Aliases
Data type
Format
Range

Time 2

Numeric
1 digit
1-9

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Created by graphical interface

Denotes the second number in a
time signature

Data Name
Aliases

MM

xvi

Data type Character
Format 2 characters
Range blank - major

m = minor

Responsibility
Security
Availability
Frequency
Dependencies
Comments Indicates major or minor key

Data Name Title
Aliases
Data type Character
Format 80 characters
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments Title of the composition

Data Name Src_type
Aliases
Data type Character
Format 40 characters
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments Indicates type of source, whether

a manuscript (copied by hand) or
printed version of the music

Data Name Src_title

xvii

Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Character
40 characters

Title of the manuscript or print

Data Name
Aliases
Data type
Format
Range

Src_date

Character
yyyy
0000 <= yyyy <= (current year)

Responsibility
Security
Availability
Frequency
Dependencies
Comments Year of manuscript or print

origin

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Compbdate

Character
yyyy
yyyy <= (current year)

Birth year of composer

Data Name Comp_ddate
Aliases
Data type Character
Format yyyy
Range comp_bdate <= yyyy <=

(current year)

Responsibility
Security
Availability
Frequency
Dependencies
Comments Death year of composer

Data Name Comp_loc
Aliases
Data type Character
Format 40 characters
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments Geographical location of composer

Data Name Comp_lname
Aliases
Data type Character
Format 20 characters
Range

Responsibility
Security
Availability
Frequency
Dependencies Combination of last name, first

name, and initial must be unique

xix

Comments
key-

Composer's last name

Data Name
Aliases
Data type
Format
Range

Comp_fname

Character
10 characters

Responsibility
Security
Availability
Frequency
Dependencies

Comments

Combination of last name, first
name, and initial must be unique
key
First name of composer

Data Name
Aliases
Data type
Format
Range

Comp_init

Character
1 character

Responsibility
Security
Availability
Frequency
Dependencies

Comments

Combination of last name, first
name, and initial must be unique
key
Middle initial of composer

RELATIONAL SCHEMAS RULE DATABASE

Rule (Act_flagl, Act_flag2, Seq_numl, Seq_num2 , Type,
Fieldl, Oper, Field2)

key: (Type, Seq_numl, Seq_num2)

DATA DICTIONARY

Data Name
Aliases
Data type
Format
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments

Act_flagl
None
Logical
1 character
"Y" for active, "N" for inactive

Designates whether the entire
family of rules of that "type"
is active (that is, to be used
in the decision process) or not

xxi

Data Name
Aliases
Data type
Format
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments
this

Act_flag2

Logical
1 character
"Y" for active, "N" for inactive

Designates whether a rule of

specific type is active or
active

Data Name
Aliases
Data type
Format
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments

Seq_numl

Numeric
3 digits
001 through 999

Order of importance for the
rule types. All rules with a
sequence number of 3 would be
examined prior to rules with a
sequence number of 4.

Data Name
Aliases
Data type
Format
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments

Seq_num2

numeric
3 digits
001 through 999

Order of importance of rules
within a single rule type

xxii

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Type

Character
20 characters

Subject matter with which
each rule deals

Data Name
Aliases
Data type
Format
Range

Responsibil ity
Security
Availability
Frequency
Dependencies

Comments

Fieldl

Character
39 characters
TYPEDIF, NOTEDIF, TIME,
RHYDIF, all numbers

Must be used as first macro in
group of three: Fieldl Oper
Field2
These will be converted to macros
in DBase III+, then used in
IF-THEN statements (IF Macrol
Macro2 Macro3 THEN format)

Data Name
Aliases
Data type
Format
Range
Responsibility
Security
Availability
Frequency
Dependencies

Oper

Character
02 characters

Must be used as second macro in

xxiii

Comments

group of three: Fieldl Oper
Field2
These will be converted to macros
in DBase III+, then used in
IF-THEN statements (IF Macrol
Macro2 Macro3 THEN format)

Data Name
Aliases
Data type
Format
Range

Responsibility-
Security
Availability
Frequency
Dependencies

Comments

Field2

Character
39 characters
TYPEDIF, NOTEDIF, TIME,
RHYDIF, all numbers

Must be used as third macro in a
group of three: Fieldl Oper
Field3
These will be converted to macros
in DBase III+, then used in
IF-THEN statements (IF Macrol
Macro2 Macro3 THEN format)

xxiv

RELATIONAL SCHEMAS GRAFHF DATABASE

Temp (Act, Key, Call, MM, Timel, Time2, Inc_dl, Inc_pl,
Inc_al, Inc_d2, Inc_p2, Inc_a2, Inc_d3, Inc_p3,

Inc_d4, Inc_p4, Inc_a4, Inc_d5, Inc_p5,
Inc_d6, Inc_p6, Inc_a6, Inc_d7, Inc_p7,
Inc_d8, Inc_p8, Inc_a8, Inc_d9, Inc_p9,

Inc_a3

,

Inc_a5

,

Inc_a7

,

Inc_a9

,

key:
Inc_dlO, Inc_plO, Inc_alO)

Call

DATA DICTIONARY

Data Name
Aliases
Data type
Format
Range

Inc_dl
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note

XXV

Responsibility
Security
Availability
Frequency
Dependencies
Comments

00625 sixteenth note

Originally received from
graphical interface

Data Name Inc d2
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibi lity
Security
Availability
Frequency
Dependencies
Comments OriginalLly received from

graphical interface

Data Name Inc_d3
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security

xxvi

Availability
Frequency
Dependencies
Comments Originally received from

graphical interface

Data Name Inc_d4
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security
Availability
Frequency
Dependencies
Comments Origina:Lly received from

graphical interface

Data Name Inc_d5
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security

xxvii

Availability
Frequency
Dependencies
Comments Originally received from

graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibil ity
Security
Availability
Frequency
Dependencies
Comments

Inc_df
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name Inc_d7
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security

xxviii

Availability
Frequency
Dependencies
Comments Originally received from

graphical interface

Data Name Inc d8
Aliases None
Data type Numeric
Format 5 numerics
Range 10000 = whole note

07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security
Availability
Frequency
Dependencies
Comments Oriqina:llv received from

graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibility

Inc_d9
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 - dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

xxix

Security
Availability
Frequency
Dependencies
Comments Originally received from

graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibil ity
Security
Availability
Frequency
Dependencies
Comments

Inc_dlO
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Originally received from
graphical interface

Data Name
Aliases
Data type
Format
Range

Responsibility
Security

Inc_pl
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Availability
Frequency
Dependencies
Comments Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p2
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p3
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

xxxi

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p4
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p5
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Inc_p6
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar

Responsibility
Security
Availability
Frequency
Dependencies
Comments

02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p7
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p8
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_p9
None
Numeric
2 numerics
00 = rest
90 = blank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

IncplO
None
Numeric
2 numerics
00 = rest
90 = b.lank pitch
99 = bar
02 - 22 = notes, in even
increments

Originally received from
graphical interface via
temporary database

Data Name
Aliases

Inc_al
None

Data type
Format
Range

Respons ib i 1 ity
Security
Availability
Frequency
Dependencies
Comments

Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a2
None
Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency

Inc_a3
None
Character
1 character
+ = sharp
- = flat

= natural

Dependencies
Comments Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a4
None
Character
1 character
+ = sharp

flat
= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsib i 1 ity
Security
Availability
Frequency
Dependencies
Comments

Inc_a5
None
Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a6
None
Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibil ity
Security
Availability
Frequency
Dependencies
Comments

Inc_a7
None
Character
1 character
+ = sharp

flat
= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability

Inc_a8
None
Character
1 character
+ = sharp
- = flat

= natural

Frequency
Dependencies
Comments Originally received from

graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_a9
None
Character
1 character
+ = sharp
- = flat

= natural

Originally received from
graphical interface via
temporary database

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Inc_alO
None
Character
1 character
+ = sharp
- = flat
= natural

Originally received from
graphical interface via
temporary database

xxxviii

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Key

Character
2 characters
First character: A - G
Second character: #, b, blank

Data Name
Aliases
Data type
Format
Range
Responsibility
Security
Availability
Frequency
Dependencies
Comments

Call_num

Numeric
5 numerics
00000 through 99999
System-generated

Generated by the system for
means of having unique number
system

Data Name
Aliases
Data type
Format
Range

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Timel

Numeric
1 digit
1-9

Created by graphical interface

Denotes the first number in a
time signature

Data Name
Aliases
Data type
Format
Range

Time2

Numeric
1 digit
1-9

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Created by graphical interface

Denotes the second number in a
time signature

Data Name
Aliases
Data type
Format
Range

MM

Character
2 characters
blank = major
m = minor

Responsibility
Security
Availability
Frequency
Dependencies
Comments Indicates major or minor key

xl

SOURCE CODE

* AAA
*

set procedure to main
do menu

* ADDCOMP
*

PROCEDURE ADDCOMP

*********** composer add subsystem**

more = .t.

do while more
clear
* Init memory variables
************* present composer add subsystem.
8 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD COMPOSER
INFORMATION"
m_compf = space (10)
m_compi = space (1)
m_compl = space (20)
m_cloc = space (40)
m_bdate = space (4)
m_ddate = space (4)
@ 08,1 say "COMPOSER INFORMATION"
@ 10,01 say "Last name:" get m_compl picture »@!"
@ 11,01 say "First name:" get m_compf picture "@!"
@ 12,01 say "Initial:" get m_compi picture "@!"
read
error = .f.
if m_compl = space (2 0)

xli

error = .t.
endif (m_compl = space(20))
if .not. error
****before you do this must have opened the database,
****look for entered composer
select 3

use composer index c_lname
seek m_compl
if found ()

if comp_init = m_compi .and. comp_fname = m_compf
@ 22,1 say "This composer already exists on database"
m_ans = .t.

@ 23,1 say "Do you want to try again? (Y/N) " get m_ans
i

picture "Y"
read
if .not. m_ans
more = .f.

endif (.not. m_ans)
endif (comp_init = m_compi .and. comp_fname = m_compf)

endif (found())
if .not. found ()

§ 13,1 say "Birth year:"
@ 13,15 get mjodate
@ 14,1 say "Death year:"
@ 14,15 get m_ddate
6 15,1 say "Birthplace:"
@ 15,15 get m_cloc picture "@!"
read
error = .f.
if val(m_bdate) > 1989

error = .t.
endif (val (m_bdate) > 1989)
if (val (m_ddate) < val(m_bdate) .or. val(m_ddate) >

1989) ;

.and. m_ddate <> space (4)
error = .t.

endif (m_ddate checks)
if .not. error
append blank
replace coirtp_fname with m_compf
replace comp_init with m_compi
replace comp_lname with m_compl
replace comp_bdate with m_bdate
replace comp_ddate with m_ddate
replace comp_loc with m_cloc

xlii

answer = . t

.

@ 23,1 say "Do you want to add another composer?" ;

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer)
else

§ 22,1 say "Error in date entry."
mans = .t.
@ 23,1 say "Do you want to try again? (Y/N) " get m_ans

f

picture "Y"
read
if .not. m_ans
more = . f

.

endif (.not. m_ans)
endif (.not. error)

else
if comp_init <> m_compi .or. comp_fname <> m_compf

@ 13,1 say "Birth year:"
@ 13,15 get m__bdate
@ 14,1 say "Death year:"
@ 14,15 get m_ddate
@ 15,1 say "Birthplace:"
@ 15,15 get m_cloc picture "@!"
read
error = .f.
if val(m_bdate) > 1989
error = ,t.

endif (bdate checks)
if (val(m_ddate) < val (m_bdate) .or. val (m ddate) >

1989) ;

.and. m_ddate <> space (4)
error = .t.

endif (ddate checks)
if .not. error
append blank
replace comp_fname with m_compf
replace comp_init with m_compi
replace comp_lname with m_compl
replace comp_bdate with m_bdate
replace comp_ddate with m_ddate
replace comp_loc with m_cloc
answer = ,t.

@ 23,1 say "Do you want to add another composer?" ;

get answer picture "Y"
read

xliii

if .not. answer
more = .f.

endif (.not. answer)
else
@ 2 2,1 say "Error in date entry."
m_ans = .t.

@ 23,1 say "Do you want to try again? (Y/N) " get
m_ans ;

picture "Y"
read
if .not. mans

more = . f

.

endif (.not. m_ans)
endif (.not. error)

endif (comp_init = m_compi .and. comp_fname = m_compf)
endi f (. not . found ()

)

else
§ 22,1 say "Composer's last name must be greater than

spaces.

"

m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;

picture "Y"
read
if .not. m_ans
more = .f.

endif (.not. m_ans)
endif (.not. error)
enddo (do while more)
return

xliv

* ADDINC
*

PROCEDURE ADDINC
******** database add subsystem*****
more = .t.
do while more
clear
m_key = space (2)
* Create underline variable, uline.
************* present database add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD MUSIC RECORD"
m_dl =
m_pl =
m_al = " "

m_d2 =
m_p2 =
m_a2 = " "

m_d3 =
m_p3 =
m_a3 = " "

m_d4 =
m_p4 =
m_a4 = " "

m_d5 =
m_p5 =
m_a5 = " "

m_d6 =
m_p6 =
m_a6 = " "

m_d7 -
m_p7 =
m_a7 = " "

m_d8
m_p8 =
m_a8 = " "

m_d9 =
m_p9 =
m_a9 = »

m_dl0 =

xlv

m_plO =
malO = " "

temp_num = OOOOO
new_num = OOOOO
old_call = OOOOO
m_compl = space (20)
m_compf = space (10)
m_compi = space (1)
m_stitle = space(40)
c_link = . f

.

slink = .f.
select 1

use music index call_num

do while .not. EOF()
skip

enddo (.not. EOF())
if .not. BOF()

skip -1
store call_num to temp_num

endif (.not. BOF())
temp_num = temp_num + 1
new_num = temp_num + 10000
@ 09,1 say "Please wait to input incipit for call #"
@ 09,41 say temp_num
erase \tp\gfilel.doc
erase \project\gfilel.doc

select 2

use graphf index callg
append blank
replace act with "A"
replace call with new_num
* send file to graphics interface
copy to \tp\gfilel.doc sdf
*copy to \project\gfilel.doc sdf

* delete record from graph database so won't
clutter
zap
*

* run executable version of graphics program
run cd \tp
run grapintf
run cd \demo
* retrieve file
title = " DATABASE SYSTEM: ADD MUSIC RECORD"
do titles with title

xlvi

select 2

use graphf index callg
append from \tp\gifile.dat sdf
*append from \project\gfile2.doc sdf

temp call = call - 10000
store temp_call to m_call
store mm to m mm
store timel to m timel
store time2 to m time2
store key to m key
store act to ret act
do stnotes with m dl, m_pl, m al,
m_d2 , m_p2 , m a2 ,

m_d3 , m_p3 , m a3

,

m_d4 , m_p4 , m a4

,

m_d5, m_p5, m_a5,
m_d6, m_p6, m a6,
m_d7, m_p7, m a7,
m_d8, m_p8, m a8,
m_d9 , m_p9 , m_a9

,

m dlO, m plO, m alO
if ret act = "A"

okflag = .t.
store to difcter
do infer with m_dl, m pi, m al

m_d2 , m_p2 , m_a2

,

m_d3 , m_p3 , m_a3

,

m_d4 , m_p4 , m a4

,

m_d5 , m_p5 , m_a5

,

m_d6, m p6, m a6,
m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9, m_p9, m a9,
m_dl0, m_pl0, m_al0, ;

okflag, mcall, difcter, m_timel, m_time2
if okflag

m_title = space (80)
§ 20, 1 say "Enter title of composition:

m_title ;

picture "@!"
read
select 1

use music index call_num
append blank
replace call_num with m_call
store call_num to old_call
replace key with m_key

get

xlvii

replace title with m_title
replace timel with m_timel
replace time2 with m_time2
do rpnotes with m_dl, m_pl, m_al,

m_d2, m_p2, m a2

,

m_d3, m p3, m_a3,
m_d4,
m_d5,
m d6,

m_p4,
m_p5,
Itl p6,

ma4

,

m_a5,
m a6,

m_d7,
m_d8,

m_p7,
m_p8,

m_a7,
m a8,

m_d9, m_p9, m_a9,
m_dlO, m_pl0, m_alO

endif (okflag)
close databases
@ 22,1 clear
@ 23,1 clear

store .t. to m_ans
6 22,1 say "Do you wish to add a composer now?" get

mans ;

picture "Y"
read
if m_ans

if old_call = 00000
@ 23,1 say "What call number do you wish to

use?" ;

get old_call picture '99999'
read

endif (old_call = 00000)
do inccadd with old_call, m_compl, m_compf,

m_compi , c_l ink
close databases

endif (mans)
store .t. to m_ans
@ 22,1 clear
6 22,1 say "Do you wish to add a source now? " get

m_ans ;

picture "Y"
read
if m_ans

if old_call = 00000
@ 23,1 say "What call number do you wish to use?"

;

get old_call picture '99999'
read

endif (old_call = 00000)
do incsadd with old_call, m_stitle, s_link

xlviii

close databases
endif (m_ans)
if o_link .and. s_link

select 8

use link index calll, enamel, srcl
append blank
replace call_num with old_call
replace comp_lname with m_compl
replace comp_fname with m_compf
replace comp_init with m_compi
replace src_title with m_stitle

endif (c_link .and. s_link)
else

6 20,1 say "Add is not indicated by graphics
interface"
endif (retact = "A")
answer = .t.
@ 22,1 clear
@ 22,1 say "Do you want to add another incipit?" ;

get answer picture "Y"
read
if .not. answer
more = .f.

endif (.not. answer)
select 2

use graphf index callg
zap
enddo (more)
close databases
return

xlix

* ADDSRC
*

PROCEDURE ADDSRC

*********** source add subsystem***

more = . t

.

do while more
clear
* Init memory variables
************* present rule type add subsystem.
6 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
6 2,60 say dtoc(date()) + " " + time()
6 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD MUSIC SOURCE"
select 5

use source index sources
m_stitle = space (40)
m_stype = space (40)
m_sdate = space (4)
@ 08,1 say "SOURCE INFORMATION"
@ 10,1 say "Enter source:" get m_stitle picture "@!"
read
error = . f

.

if m_stitle = space (40)
error = .t.

endif (m_stitle = space())
if .not. error
****before you do this must have opened the database,
****look for entered source
seek m_stitle
if found ()

@ 22,1 say "This source already exists"
m_ans = .t.

@ 23,1 say "Do you want to try again (Y/N)?" get m_ans
i

picture "Y"
read
if .not. m_ans
more = . f

.

endif (.not. mans)
endif (found())

if .not. found ()

@ 11,1 say "Source type:"
6 11,15 get m_stype picture "@!"
§ 12,1 say "Source date:"
@ 12,15 get m_sdate
read
error = .f.
if .not. (val (ni_sdate) <= 1989)
error = .t.

endif (date checks)
if .not. error
append blank
replace src_type with m_stype
replace src_title with m_stitle
replace src_date with m_sdate
answer = .t.

§ 23,1 say "Do you want to add another source?" ;

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer)
else
@ 22,1 say "Error in date entry."
m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get m ans
picture "Y"
read
if m_ans
more = . f

.

endif (.not. m_ans)
endif (.not. error)

endif (.not. found())
else

@ 22,1 say "Source title cannot be spaces."
m_ans = .t.

§ 23,1 say "Do you want to try again (Y/N)?" get m ans
picture "Y"

~

read
if .not. m_ans

more = . f

.

endif (.not. mans)
endif (.not. error)
enddo (do while more)
return

li

* CHGN0TE2
*

PROCEDURE CHGNOTE2
parameters inc_pl, inc_al, inc_p2, inc_a2, inc_p3,
inc_a3 , ;

inc_p4, inc_a4, inc_p5, inc_a5, inc_p6, inc_a6, inc_p7, ;

inc_a7, inc_p8, inc_a8, inc_p9, inc_a9, inc_plO, ;

incalO, x_pl, X_p2, X_p3, x_p4, X_p5, X_p6, X_p7, x_p8,
x_p9 , ;

x_plO
x_pl = inc_pl
if inc_al = "+"

x_pl = x_pl + 1
endif (+)
if inc_al = "-"

X_J3l = xpl - 1
endif (-)

x_p2 = inc_p2
if inc_a2 = "+"

x_p2 = x_p2 + 1

endif (+)
if inc_a2 = "-"

x p2 = x_p2 - 1
endif (-)

x_p3 = inc_p3
if inc_a3 = "+"

X_p3 = x_p3 + 1
endif (+)
if inc_a3 = "-"

x_p3 = x_p3 - 1
endif (-)

x_p4 = inc_p4
if inc_a4 = "+"

x_p4 = x_p4 + 1
endif (+)
if inc_a4 = "-"

x_p'4 = x_p4 - 1
endif (-)

lii

X_p5 = inc_p5
if inc_a5 = "+"

X_p5 = X_p5 + 1

endif (+)
if inc_a5 = "-"

x_p5 = x_p5 - 1

endif (-)

x_p6 = inc_p6
if inc_a6 = "+"

x_p6 = x_p6 + 1

endif (+)
if inc_a6 = "-"

x_p6 = x_p6 - 1

endif (-)

x_p7 = inc_p7
if inc_a7 = "+"

x_p7 x_p7 + 1

endif (+)
if inc_a7 = "-"

x_p7 = x_p7 - 1
endif (-)

x_p8 = inc_p8
if inc_a8 = "+"

x p8 = x_p8 + 1
endif (+)
if inc_a8 = "-"

x_p8 = x_p8 - 1
endif (-)

x_p9 = inc_p9
if inc_a9 = "+"

x_p9 = x_p9 + 1
endif (+)
if inc_a9 = "-"

x_p9 = x_p9 - 1

endif (-)

x_plO = inc_plO
if inc_alO = "+"

x_plO = x_plO + 1

endif (+)
if incalO = "-"

x_plO = x_plO - 1
endif (-)
return

liii

* CHGNOTES
*

PROCEDURE CHGNOTES
parameters m_pl, m_al, m_p2 , m_a2 , m_p3 , m_a3, m_p4,
m_a4 , ;

m_p5, m_a5, m_p6, m_a6, m_p7, m_a7, m_p8, m_a8, m_p9,
m_a9, m_plO, ;

malO, cpl, c_p2, C_p3 , c_p4 , c_p5, C_p6, c_p7 , c_p8

,

c_p9, ;

C_plO
c_pl = m_pl
if m_al = "+"

c_pl = c_pl + 1
endif (+)
if m_al = "-"

c_pl = c_pl - 1
endif (-)

c_p2 = m_p2
if m_a2 = "+"

c p2 = c_p2 + 1

endif (+)
if m_a2 = "-"

c_p2 = c_p2 - 1

endif (-)

c_p3 = m_p3
if m_a3 = "+"

c_p3 = c_p3 + 1

endif (+)
if m_a3 = "-"

C_p3 = C_p3 - 1
endif (-)

c_p4 = m_p4
if m_a4 = "+"

C_p4 = c_p4 + 1
endif (+)
if m_a4 = "-"

c_p4 = c_p4 - 1
endif (-)

liv

c_p5 = m_p5
if m_a5 = "+"

cp5 = c_p5 + 1

endif (+)
if m_a5 = "-"

C_p5 = C_p5 - 1
endif (-)

c_p6 = m_p6
if m_a6 = "+"

c_p6 = C_p6 + 1
endif (+)
if m_a6 = "-"

c_p6 = c_p6 - 1
endif (-)

c_p7 = m_p7
if m_a7 = "+"

c_p7 = c_p7 + 1
endif (+)
if m_a7 = "-"

C p7 = C_p7 - 1
endif (-)

c_p8 = m_p8
if m_a8 = "+"

C_p8 = c_p8 + 1
endif (+)
if m_a8 = "-"

c_p8 = c_p8 - 1
endif (-)

c_p9 = m_p9
if m_a9 = "+"

c_p9 = c_p9 + 1
endif (+)
if m_a9 = "-"

c_p9 = c_p9 - 1
endif (-)

c_plO = m_plO
if m_alO = "+"

c_plO = c_plO + 1
endif '(+)

if malO = "-"

c_plO = c_plO - 1
endif (-)

lv

return

* DBADD
*

PROCEDURE DBADD

*********** dbadd menu*********

************* present add menu and get user's choice.
choice =
do while choice # 4

clear
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79

text
DATABASE ADD MENU

Available selections include:

1. Add An Incipit/Schedule Expert
2

.

Add A Source Record
3

.

Add A Composer Record
4

.

Return To Previous Screen
endtext
§ 20,1 say "Enter choice " get choice;
picture "9" range 1,4

read
* branch to appropriate
program

.

if choice < 1 .or. choice > 4

@ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-4 "

@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case

case choice = 1

do addinc
case choice = 2

lvi

do addsrc
case choice = 3

do addcomp
endcase

endif (choice < 1 .or. choice > 4)

enddo (while choice # 4)
close databases
return

* DBDEL

PROCEDURE DBDEL

*********** dbdelete menu*********

* Create underline variable, uline.
************* present delete menu and get user's choice.
choice =
do while choice # 4

clear
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
>

text
DATABASE DELETE MENU

Available selections include:

1. Delete An Incipit/Schedule Expert
2

.

Delete A Source Record
3

.

Delete A Composer Record
4

.

Return To Previous Screen
endtext
@ 20,1 say "Enter choice " get choice;
picture "9" range 1,4

read
* branch to appropriate
program

.

lvii

if choice < 1 .or. choice > 4

@ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-4 "

@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case

case choice = 1

do delinc
case choice = 2

do delsrc
case choice = 3

do delcomp
endcase

endif (choice < 1 .or. choice > 4)

enddo (while choice # 4)
close databases
return

* DBFAC
*

PROCEDURE DBFAC

*********** database facility menu*****

* Create underline variable, uline.
************* present database submenu and get

user's choice,
choice =
do while choice # 5

clear
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
§2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
?

text
DATABASE FACILITY

Available database functions include:

1. Add a new record
2

.

Update an existing record

lviii

3

.

Delete an existing record
4

.

Query
5. Exit to previous screen

endtext
@ 20,1 say "Enter choice (1-5) " get choice;
picture "9" range 1,5
read
* branch to

appropriate program.
if choice < 1 .or. choice > 5

@ 2 3,1 say "CHOICE MUST BE WITHIN RANGE OF 1-
5"

@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case
case choice = 1

do dbadd
case choice = 2

do dbupd
case choice = 3

do dbdel
case choice = 4

do dbquery
endcase

endif (choice < 1 .or. choice > 5)

enddo (while choice # 5)
close databases
return

lix

* DBQUERY
*

PROCEDURE DBQUERY

*********** database query subsystem***

temp_numl =
@ 22,1 say "Enter call number for inquiry:" get temp_numl
temp_num = temp_numl
* set up loop for query
more = .t.
first = .t.
do while more
clear
************* present database add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: QUERY EXISTING RECORD"
* initialize temp_num to
select 1

use music index call_num
seek temp_num
if .not. found ()

if .not. first
@ 22,1 say "This call number is not found"
m_ans = . t

.

6 23,1 say "Do you want to try again (Y/N)?" get m_ans
I

picture "Y"
read
if .not. mans
more = . f

.

endif (.not. m_ans)
endif (.not. first)

endif (.not. found())
if found ()

@ 08,1 say "COMPOSITION INFORMATION"
@ 09,1 say "Call number:"
@ 09,15 say call_num
@ 09,30 say "Key signature:"
@ 09,45 say key

lx

@ 10,1 say "Title:"
@ 10,15 say title
answer = .t.
store call_num to m_call_num
@ 22,1 say "Do you wish to see sources (Y/N)?" get answer

picture "Y"
read
if answer

select 6

use refer_in index callr, srcr
seek mcallnum
if found ()

@ 12,1 say "SOURCE INFORMATION"
list while call_nunt = m_call_num

else
% 24,1 say "No sources have been added for this

composition"
endif (found ())

endif (answer)
answer = .t.

@ 22,1 say "Do you wish to see composers (Y/N)?" get
answer ;

picture "Y"
read
if answer

select 4

use written index callw, cnamew
seek m_call_num
if found ()

@ 12,1 say "COMPOSER INFORMATION"
list while call_num = m_call_num

else
@ 24,1 say "No composers have added for this

composition"
endif (found ())

endif (answer)
endif (found())
m_ans = .t.
if .not. first

§ 22,1 say "Do you wish to inquire again?" get m ans
picture "Y"

read
else

first = .f.
endif (.not. first)
if m_ans

@ 22,1 clear

lxi

@ 22,1 say "Enter next call number for inquiry:" get
temp_num

read
else
more = . f

.

endif (m_ans)
enddo (more)
return

* DBUPD
*

PROCEDURE DBUPD

*********** dbupdate menu*********

* Create underline variable, uline.
************* present update menu and get user's choice.
choice =
do while choice # 4

clear
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
?

J

text
DATABASE UPDATE MENU

Available selections include:

1. Update An Incipit/Schedule Expert
2

.

Update A Source Record
3

.

Update A Composer Record
*• 4 . Return To Previous Screen
endtext
@ 20,1 say "Enter choice " get choice;
picture "9" range 1,4

read
* branch to appropriate
program.

if choice < 1 .or. choice > 4

lxii

@ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-4 "

@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case

case choice = 1

do updinc
case choice = 2

do updsrc
case choice = 3

do updcomp
endcase

endif (choice < 1 .or. choice > 4)

enddo (while choice # 4)
close databases
return

* DELCOMP
*

PROCEDURE DELCOMP

*********** composer delete subsystem**

more = ,t.
do while more
clear
* Init memory variables
************* present composer delete subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: DELETE COMPOSER
INFORMATION"
m_compf = space (10)
m_compi =. space (1)
m_compl = space (2 0)
@ 08,1 say "COMPOSER INFORMATION"
@ 10,1 say "Last name:" get m_compl picture "@!"
@ 11, i say "First name:" get m_compf picture "@!"
@ 12,1 say "Initial:" get m_compi picture "@!"
read

lxiii

select 3

use composer index c_lname
seek m_compl
if .not. found()

@ 22,1 say "This composer does not exist on database"
m_ans = ,t.

@ 23,1 say "Do you want to try again (Y/N)?" get m_ans

picture "Y"
read
if . not . m_ans

more = .f.
endif (.not. m_ans)

endif (.not. found())
if found ()

if comp_init = m_compi .and. comp_fname = m_compf
store comp_bdate to m_bdate
store comp_ddate to m_ddate
store comp_loc to m_cloc
@ 13,1 say "Birth date:"
@ 13,15 say m_bdate
@ 14,1 say "Death date:"
@ 14,15 say m_ddate
@ 15,1 say "Birthplace:"
@ 15,15 say m_cloc
store .f. to m_ans
@ 19,1 say "Delete this composer?" get m ans picture

fly" —

read
if m_ans
recnumb = recno()
delete record recnumb
pack

* now delete all written records with this composer-

select 4

use written index cnamew, callw
delete for comp_lname = m_compl .and. ;

comp_fname = m_compf .and. ;

comp_init = m_compi
pack
select 8

use link index enamel, calll, srcl
delete for comp_lname = m_compl . and . ;

comp_fname = m_compf .and. ;

comp_init = m_compi
pack

endif (m_ans)

lxiv

answer = .t.

@ 23,1 say "Do you want to delete another composer?"
7

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer)
else

§ 22,1 say "This composer does not exist on
database.

"

m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get
m_ans ;

picture "Y"
read
if .not. m_ans

more = . f

.

endif (.not. m_ans)
endif (comp_init = m_compi .and. comp_fname = m_compf)

endif (found())
enddo (do while more)
close databases
return

lxv

* DELINC
*

PROCEDURE DELINC
********database incipit delete****
more = .t.
do while more
clear
* Init memory variables
* in order to delete a music record
* 1 schedule graphics interface with call #
* and activity indicator - "D" for delete
* 2 graphics interface displays incipit
* 3 if want to delete this one
* delete the record
* else
* try another call number???
*

m_call = 00000
new_num = 00000
************* present incipit delete subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: DELETE MUSIC RECORD"
m_dl =
m_pl =
mal = " "

m_d2 =
m_p2 =
m_a2 = " "

m_d3 =
m_p3 =
m_a3 = " "

m_d4 =
m_p4 =
m_a4 = " "

m_d5 =
m_p5 =
m_a5 = " "

m_d6 =

lxvi

Itl_p6 =
m a6 = " "

m_d7 =
m_p7 =
m_a7 = " "

m_d8 =
m_p8 =
m_a8 = " "

m d9 =
m_p9 =
m a9 = " "

m_dlO =
m plO =
m_alO = " "

select 1

use music index call num
@ 10,1 say "Enter the call number you wish to delete:" ;

get m_call picture 19999c 1

read
seek m call
if .not. found ()

@ 22,1 say "This call number does not exist 11

m ans = .t.
@ 23,1 say "Do you want to try again(Y/N)?" get m_ans

picture "Y"
read
if .not. m_ans
more = . f

.

endif (.not. m_ans)
endif (.not. found())
if found ()

store title to m_title
store timel to m_timel
store time2 to m_time2
store key to m_key
store mm to m_mm
do stnotes with m_dl, m_pl, m_al,

m_d2 , m_p2 , m_a2

,

m_d3 , m_p3 , m_a3

,

m_d4 , m_p4 , m_a4

,

m_d5, m_p5, m_a5,
m_d6 , m_p6, m_a6,
m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9 , m_p9 , m_a9

,

m_dl0, m_pl0, m_al0
@ 22,1 say "Please wait to verify incipit"

lxvii

select 2
use graphf index callg
append blank
replace act with "D"
new_num = m_call + 10000
replace call with new_num
replace key with m_key
replace mm with i_mm
replace timel with m_timel
replace time2 with m_time2
do rpnotes with m_dl, m_pl, m_al,

m_d2 , m_p2 , m_a2

,

m_d3

,

m_p3

,

m_d4

,

m_p4

,

m_d5

,

m_p5

,

m_d6, m_p6,
m_d7,
nt_d8,
m_d9,
m_dl0

m_p7,
m_p8
m_p9

m_a3,
m_a4

,

m_a5,
m_a6,
m_a7,
m_a8,
m_a9,

m_plO, m_al0
—send file to graphic interface

* erase \project\gfilel.doc
erase \tp\gfilel.doc

* copy to gfilel.doc sdf
copy to \tp\gfilel.doc sdf

* SIMULATE GRAPHICS INTERFACE HERE
run cd \tp
run grapintf
run cd \demo
title = " DATABASE SYSTEM: DELETE MUSIC RECORD"
do titles with title
close databases
store .t. to m_ans
@ 22,1 clear
@ 22,1 say "Is this the incipit you wanted to delete?" ;

get m_ans picture "Y"
read
if m_ans

select 1

use' music index call_num
seek m_call
delete for call_num = m_call
pack
close databases

* now delete any written or refer in segments for call
#

select 4

use written index callw, cnamew

lxviii

seek mcall
delete for call_num = m_call
pack
close databases
select 6

use referin index callr, srcr
seek m_call
delete for call_num = m_call
pack
close databases
select 8

use link index calll, enamel, srcl
seek m_call
delete for call_num = m_call
pack
close databases

endif (m_ans)
answer = .t.
@ 22,1 clear
@ 22,1 say "Do you want to delete another incipit?"
get answer picture "Y"
read
if .not. answer
more = .f.

endif (.not. answer)
endif (found ()

)

select 2
use graphf index callg
zap
enddo (more)
close databases
return

lxix

* DELSRC
*

PROCEDURE DELSRC

*********** source delete subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present source delete subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: DELETE MUSIC SOURCE"
m_stitle = space (40)
select 1

use source index sources
@ 08,1 say "SOURCE INFORMATION"
@ 10,1 say "Enter source:" get m_stitle picture "@!"
read
****before you do this must have opened the database,
****look for entered source
seek m_stitle
if .not. found ()

@ 22,1 say "This source does not exist"
m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get mans
t

picture "Y"
read
if .not. mans

more = .f.
endif (.not. m_ans)

endif (.not. found ())
if found ()

store src_type to m_stype
store src_date to m_sdate
store src_title to m_stitle

8 11,1 say "Source type:"
§ 11,15 say m_stype
§ 12,1 say "Source date:"

lxx

@ 12 , 15 say m_sdate
store . f . to m_ans
@ 22,1 say "Delete this source?" get m_ans picture "Y"
read
if m_ans
delete for src_title = m_stitle
pack

* now delete all refer_in records with this source
select 6

use refer_in index srcr, callr
delete all for src_title = m_stitle
pack
select 8

use link index srcl, calll, enamel
delete all for src_title = m_stitle
pack

endif (m_ans)

answer = .t.
@ 22,1 say "Do you want to delete another source?" get

answer ;

picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer
)

endif (.not. found())
enddo (do while more)
close databases
return

lxxi

* ESACT
*

PROCEDURE ESACT

*********** rule type activate subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present rule type active/inactive*****
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
g 3,0 to 3, 79
@ 5,10 say " EXPERT SYSTEM UTILITY: ACTIVATE RULE
TYPE"
m_type = space (20)
m_act_flagl = .t.
select 7

use rule index types, numl, num2
@ 8,1 say "The following rules exist as active/ inactive:

"

@ 9,1 say "Rule"
@ 9,20 say "Act/Inact"
@ 9,30 say "Rule"
@ 9,50 say "Act/Inact"
prcter = 11
testtype = space (20)
do while prcter < 18 .and. .not. EOF()

if type <> testtype
@ prcter, 1 say type
@ prcter, 20 say act_flagl picture "Y"
store type to testtype
do while type = testtype .and. .not. EOF()

skip
enddo (type = testtype .and. .not. EOF())
if .not. EOF()

@ prcter, 30 say type
@ prcter, 50 say act_flagl picture "Y"
store type to testtype

endif (.not. E0F())
prcter = prcter + l

endif (type <> testtype)

lxxii

if .not. EOF()
skip

endif (.not. EOF())
enddo (prcter < 18 .and. .not. EOF())
@ 20,1 say "Enter rule type:"
@ 20,20 get m_type picture "8!"
read
****before you do this must open the database,
****look for entered rule
select 7

reindex
seek m_type
if .not. found ()

m_ans = .t.

@ 22,1 say "This rule does not exist"
@ 2 3,1 say "Do you wish to try again (Y/N)?" get m_ans

i

picture "Y"
read
if .not. m_ans
more = .f.

endif (m_ans)
else
store act_flagl to m_act_flagl
@ 21,1 say "Activate this rule type (Y/N)?:"
@ 21,35 get m_act_flagl picture "Y"
read
store . f . to mans
@ 22,1 say "Make these changes?" get m_ans picture "Y"
read
if m_ans

replace act_flagl with m_act_flagl for type =
m_type

endif (m_ans)
answer = . t

.

6 23,1 say "Do you want to activate another rule type?"

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (answer)
endif (.not. found ()

)

enddo (do while more)
close databases
return

lxxiii

* ESADD
*

PROCEDURE ESADD

*********** rule type add subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present rule type add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
§2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: ADD RULE TYPE"
m_type = space (20)
m_act_flagl = .t.
select 7
use rule index types, numl, num2
@ 8,1 say "The following rule types already exist:"
prcter = 9

testtype = space (20)
do while prcter < 18 .and. .not. E0F()

if type <> testtype
@ prcter, 1 say type
store type to testtype
do while type = testtype .and. .not. EOF()

skip
enddo (type = testtype .and. .not. EOF()
if .not. EOF()

@ prcter, 40 say type
store type to testtype

endif (.not. EOF()
prcter = prcter + 1
endif (type <> testtype)

if .not. EOF()
skip
endif (.not. EOF())

enddo (prcter < 18 .and. .not. E0F())
m_ans = .t.

@ 18,1 say "Do you want to add another rule type(Y/N)?" ;

lxxiv

get m_ans picture "Y"
read

if m_ans
@ 19,1 say "Enter rule type to add:" get m_type

picture "@!"
read
error = .f.
if m_type = space (20)
error = .t.

endif (m_type = space (2 0)
if .not. error

****before you do this must open the database,
****look for entered rule
reindex
seek m_type
if found ()

@ 22,1 say "This rule already exists"
m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get
m_ans ;

picture "Y"
read
if .not. m_ans
more = .f.

endif (.not. m_ans)
else
@ 20,1 say "Activate this rule type (Y/N)?:" ;

get m_act_flagl picture "Y"
read
store .t. to m_act_flag2
set order to 2

go bottom
if E0F()

store to last_seq
else

store seq_numl to last_seq
endif (E0F())
next_seq = last_seq + 1

store next_seq to m_seq_numl
store 000 to m_seq_num2
@ 21,1 say "Sequence of rule will default to last."
append blank
replace act_flagl with m_act_flagl
replace act_flag2 with m_act_flag2
replace seq_numl with m_seq_numl
replace seq_num2 with m_seq_num2
replace type with m_type
answer = .t.

lxxv

@ 22,1 say "Do you want to add another rule type?" ;

get answer picture "Y"
read
if .not. answer
more = .f.

endif (answer
)

endif (found ()

)

else
@ 22,1 say "Rule type must be greater than spaces."
m_ans = .t.

§ 23,1 say "Do you want to try again(Y/N)?" get mans
r

picture "Y"
read
if .not. m_ans

more = .f.
endif (.not. m_ans)

endif (.not. error)
else
more = . f

.

endif (m_ans)
enddo (do while more)
close databases
return

lxxvi

* ESMAIN

PROCEDURE ESMAIN

*********** expert system maintenance subsystem******

* Create underline variable, uline.
************* present expert system maintenance submenu.
choice =
do while choice # 6

clear
§ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
6 2,60 say dtoc(date()) + " " + time()
§ 3,0 to 3,79

text

include:

type .

.

type

within a type

EXPERT SYSTEM MAINTENANCE

Available expert system functions

1. Add a new rule type
2

.

Add a new rule within an existing

3

.

Activate/Inactivate existing rule

4

.

Activate/Inactivate existing rules

5. Reorganize existing rules
6. Exit to previous screen

endtext
@ 20,1 say "Enter choice (1-6) " get choice;
picture "9" range 1,6

read
* branch to appropriate
program

.

if choice < 1 .or. choice > 6

§ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-6"
@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case

lxxvii

case choice = 1

do esadd
case choice = 2

do esradd
case choice = 3

do esact
case choice = 4

do esract
case choice = 5

do esreorg
endcase

endif (choice < 1 .or. choice > 6)

enddo (while choice # 6)
close databases
return

* ESRACT
*

PROCEDURE ESRACT

*********** rule activate subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present rule activate subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: ACTIVATE RULES
WITHIN TYPE"
m_type = space (20)
mactflag2 = . t

.

@ 08,1 say "Enter rule type:"
@ 08,20 get m_type picture "@!"
read
****before you do this must open the database,
****look for entered rule
select 7

use rule index types, numl, num2

lxxviii

reindex
seek m_type
if .not. found ()

m_ans = . t

.

@ 22,1 say "This rule does not exist"
@ 23,1 say "Do you want to try again (Y/N)?" get m_ans

r

picture "Y"
read
if .not. mans
more = . f

.

endif (.not. m_ans)
else
do while .not. EOF() .and. type = m_type
if seq_num2 =
skip

else
store act_flag2 to m_act_flag
store fieldl to m_fieldl
store oper to m_oper
store field2 to m_field2
@ 12,1 say "Rule field 1:"
@ 12,17 say m_fieldl
@ 13,1 say "Rule operator:"
@ 13 , 17 say moper
6 14,1 say "Rule field 2:"
§ 14,17 say m_field2
§ 16,1 say "Activate this rule (Y/N)?:" get

m_act_flag2 picture "Y"
read
store .f. to mans
@ 22,1 say "Make these changes?" get mans picture "Y"
read
if m_ans
replace act_flag2 with m_act_flag2

endif (m_ans)
skip

endif (seq_num = 0)
enddo (type = m_type .and. .not. E0F())
answer = .t.

@ 22,1 say "Do you want to activate rules within another;
type?" get answer picture "Y"

read
if .not. answer

more = . f

.

endif (answer)
endif (found())
enddo (do while more)

lxxix

close databases
return

* ESRADD
*

PROCEDURE ESRADD

*********** rule add subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present rule add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: ADD RULE WITHIN
TYPE"
m_type = space (20)
m_act_flag2 = .t.
select 7

use rule index types, numl, num2
§ 8,1 say "The following rule types exist:"
prcter = 9

testtype = space (20)
do while prcter < 18 .and. .not. EOF()

if type <> testtype
§ prcter, 1 say type
store type to testtype
do while type = testtype .and. .not. EOF()

skip
enddo (type = testtype .and. .not. EOF())
if .not. EOF()

@ prcter, 40 say type
store type to testtype

endif (.not. EOF())
prcter = prcter + 1
endif (type <> testtype)
if .not. EOF()

skip
endif (.not. EOF())

lxxx

enddo (prcter < 18 .and. .not. EOF())
m_ans = .t.

@ 18,1 say "Enter rule type:"
@ 18,20 get mtype picture "@!"
read
****before you do this must open the database,
****look for entered rule
reindex
seek mtype
if .not. found ()

@ 22,1 say "This rule does not exist"
m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get m_ans

picture "Y"
read
if .not. m_ans
more = .f.

endif (.not. m_ans)
else

clrcter = 7

do while clrcter < 22
@ clrcter, clear
clrcter = clrcter + 1

enddo (clrcter < 22)
store act_flagl to m_act_flagl
store seq_numl to m_seq_numl
m_fieldl = space (39)
m_oper = space (2)
m_field2 = space (39)
@ 11,1 to 11,50
6 12,1 say "Valid entries for rule fields are:"
@ 13,1 say "'rhydif 'notedif 'timedif any

number"
@ 14,1 say "Valid entries for rule operator are:"
@ 15,1 say "<> = <= >= "

@ 16,1 say "A sample entry would be "

§ 17,1 say "Field 1 : notedif"
@ 18,1 say "Operator: >="
@ 19,1 say "Field 2 : 5"

@ 20,1 say "which prevents adding an incipit matching
by ;

more than 5 notes .

"

error = .f.

@ 07,1 say "Rule type = "

@ 07,14 say m_type
@ 08,1 say "Enter desired rule field 1:" ;

get mfieldl picture "@!"

lxxxi

@ 09,1 say "Enter desired rule operator:" ;

get m_oper picture "@!"
§ 10,1 say "Enter desired rule field 2:" ;

get m_field2 picture "@!"
read

****must be sure rule hasn't already been entered***
error = .f.

do while type = mjtype .and. .not. EOF()
if fieldl = m_fieldl .and. oper = m_oper ;

.and. field2 = m_field2 .and. seq_num2 >
exist = seq_num2
error = .t.
endif (checks for duplicates)
skip

enddo (type = m_type .and. .not. E0F())
if .not. error

if .not. (m_fieldl = "RHYDIF" .or. m_fieldl = "NOTEDIF"

.or. m_fieldl = "TIMEDIF" .or. (m_fieldl >= "0"
;

.and. m_fieldl <= "9999999999"))
error = .t.

endif (m_fieldl checks)
if .not. (m_field2 = "RHYDIF" .or. m_field2 = "NOTEDIF"

7

.or. m_field2 = "TIMEDIF" .or. (m_field2 >= "0"
;

.and. Itl_field2 <= "9999999999"))
error = .t.

endif (m_field2 checks)
if .not. (m_oper = "=" .or. moper = "<=" .or. ;

m_oper = ">=" .or. moper = "<>" .or. moper = "<" .or.
i

m_oper = ">")
error = ,t.

endif (m_oper checks)
if .not. error
clrcter = 11
do while clrcter < 24

@ clrcter, clear
clrcter = clrcter + 1

enddo (clrcter < 24)
@ 11,1 say "Activate this rule type (Y/N)?:" get

m_act_flag2 ;

picture "Y"
read
do, while type = m_type .and. .not. E0F()

skip
enddo (type = m_type .and. .not. EOF())

lxxxii

skip -1
next_seq = seq_num2 + 1
store next_seq to m_seq_num2
@ 12,01 say "Sequence of rule will default to last."
append blank
replace act_flagl with m_act_flagl
replace act_flag2 with m_act_flag2
replace seq_numl with m_seq_numl
replace seq_num2 with m_seq_num2
replace type with m_type
replace fieldl with m_fieldl
replace oper with m_oper
replace field2 with m_field2
answer = .t.
@ 2 2,1 say "Do you want to add another rule?:" get

answer ;

picture "Y"
read
if .not. answer
more = . f

.

endif (answer)
else

§ 22,1 clear
@ 23,1 clear
@ 22,1 say "Error in specifying fields."
m_ans = .t.

@ 2 3,1 say "Do you want to try again (Y/N)?" get m ans ;

picture "Y"
read
if .not. mans
more = . f

.

endif (.not. m_ans)
endif (.not. error)

else
@ 21,1 clear
? " This rule already exists as rule #", exist
m_ans = .t.

e 23,1 say "Do you want to try again(Y/N)?" get m ans ;

picture "Y"
read
if .not. mans

more = . f

.

endif (.not. m_ans)
endif (.not. error)
endif (found())
enddo (more)
close databases
return

lxxxiii

* ESREORG
*

PROCEDURE ESREORG

*********** expert system reorganization subsystem***

************* present expert system reorg submenu.
choice =
do while choice # 3

clear
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " » + time()
e 3,0 to 3,79
9

text

include

:

types

EXPERT SYSTEM RULES REORGANIZATION

Available reorganization features

1. Set precedence of rule types
2

.

Set precedence of rule within rule

3 . Exit to previous screen
endtext
@ 22,1 say "Enter choice (1-3) " get choice;
picture "9" range 1,7

read
* branch to appropriate
program.

if choice < 1 .or. choice > 3

@ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-3"
@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case

case choice = 1

do prerulel
case choice = 2

do prerule2
endcase

lxxxiv

endif (choice < 1 .or. choice > 3)

enddo (while choice # 3)
return

* ESUTIL
*

PROCEDURE ESUTIL

*********** expert system utilities subsystem******

* Create underline variable, uline.
************* present expert system maintenance submenu.
choice =
do while choice # 3

clear
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79

text

include:

EXPERT SYSTEM UTILITIES

Available expert system utilities

1. Match an incipit
2. Query all similar incipits
3

.

Exit to previous screen
endtext
§ 20,1 say "Enter choice (1-3) " get choice;
picture "9" range 1,3

read
* branch to appropriate
program

.

if choice < 1 .or. choice > 3

@ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-3"
@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read

else
do case

case choice = 1

lxxxv

do esmatch
case choice = 2

do esguery
endcase

endif (choice < 1 .or. choice > 3)

enddo (while choice # 3)
close databases
return

* INCCADD
*

PROCEDURE INCCADD
*

parameters old_call, m_compl, m_compf, m_compi, c_link

*********** incipit/composer add****

clear
* Init memory variables
************* present composer add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " « + time()
@ 3,0 to 3,79
6 5,10 say " DATABASE SYSTEM: ADD COMPOSER
INFORMATION"
m_cloc = space (40)
m_bdate = space (4)
m_ddate = space (4)
@ 08,1 say "COMPOSER INFORMATION"
@ 10,01 say "Last name:" get mcompl picture "@!"
@ 11,01 say "First name:" get m_compf picture "@!"
@ 12 ,.01 say "Initial:" get m_compi picture "@!"
read
error = . f

.

if m_compl = space (40)
error = .t.

endif (m_compl = space (40)
if .not. error
****before you do this must have opened the database,
****look for entered composer

lxxxvi

select 3

use composer index c_lname
seek m_compl
if found ()

if comp_init = m_compi ;and. comp_fname = m_compf
@ 20,1 clear
@ 21,1 clear
@ 20,1 say "This composer already exists on database"
store .t. to m_ans
@ 21,1 say "Do you wish to associate him/her ;

with this composition?" get m_ans picture "Y"
read
if m_ans

select 4

use written index callw, cnamew
append blank
replace call_num with old_call
replace comp_lname with m_compl
replace comp_fname with m_compf
replace comp_init with m_compi
c_link = .t.
select 3

endif (m_ans)

endif (comp_init = m_compi .and. comp_fname = m_compf)
endif (found())
select 3

if .not. found ()

@ 13,1 say "Birth year:"
@ 13,15 get m_bdate
@ 14,1 say "Death year:"
@ 14,15 get mddate
@ 15,1 say "Birthplace:"
@ 15,15 get mcloc picture "@!"
error = .f.
if val(mbdate) > 1989

error = .t.
endif (bdate checks)
if (val(m_ddate) > val (m_bdate) .or. val(m_ddate) >

1989) ;

.and. mddate <> space (4)
error = .t.

endif (ddate checks)
if .not. error
read
append blank
replace comp_fname with m_compf
replace comp_init with m_compi

lxxxvii

replace comp_lname with m_compl
replace comp_bdate with m_bdate
replace comp_ddate with m_ddate
replace comp_loc with m_cloc
select 4

use written index callw, cnamew
append blank
replace call_num with old_call
replace comp_lname with iti_compl
replace comp_fname with m_compf
replace comp_init with m_compi
clink = .t.
select 3

else
@ 22,1 say "Error in date entry."
m_ans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get m_ans

picture "Y"
read
if .not. m_ans
error = .t.

endif(.not. m_ans)
endif (.not. error)

else
if comp_init <> iti_conipi .or. comp_fname <> m_compf

8 13,1 say "Birth year:"
@ 13,15 get m_bdate
@ 14,1 say "Death year:"
@ 14,15 get m_ddate
e 15,1 say "Birthplace:"
§ 15,15 get mcloc picture "@!"
read
error = . f

.

if val(m_bdate) > 1989
error = .t.

endif (bdate checks)
if (val(m_ddate) < val(m_bdate) .or. val (m_ddate) >

1989) ;

.and. m_ddate <> spaces
error - .t.

endif (ddate checks)
if .not. error

append blank
replace comp_fname with m_compf
replace comp_init with m_compi
replace comp_lname with m_compl
replace comp_bdate with m_bdate

lxxxviii

replace comp_ddate with m_ddate
replace comp_loc with m_cloc
select 4

use written index callw, cnamew
replace call_num with old_call
replace comp_lname with m_compl
replace comp_fname with m_compf
replace comp_init with m_compi
c_link = .t.
select 3

else
@ 22,1 say "Error in date entry."
mans = .t.

@ 23,1 say "Do you want to try again(Y/N)?" get
m_ans ;

picture "Y"
read
if .not. mans

error = .t.
endif (.not. m_ans)

endif (.not. error)
endif (comp_init = m_compi .and. comp_fname = m_compf)

endif (.not. found ())
endif (.not. error)
return
*

lxxxix

* INCSADD
*

PROCEDURE INCSADD
*

parameters old_oall, m_stitle, s_link

*********** incipit/source add****

clear
* Init memory variables
************* present rule type add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD MUSIC SOURCE"
select 5
use source index sources
m_stype = space (40)
m_sdate = space (4)
@ 08,1 say "SOURCE INFORMATION"
@ 10,1 say "Enter source:" get m_stitle picture "@!"
read
error = . f

.

if m_stitle = space (40)
error = .t.

endif (m_stitle = space(40)
if .not. error
****before you do this must have opened the database,
****look for entered source
seek m_stitle
if found ()

store src_title to m_stitle
@ 20,1 clear
6 21,1 clear
@ 20,1 say "This source already exists"
store .t. to mans
@ 21,1 say "Do you wish to link it to this

composition?" ;

get m_ans picture "Y"
read
if m ans

select 6

use refer_in index callr, srcr
append blank
replace call_num with old_call
replace src_title with m_stitle
s_link = .t.
select 5

endif (m_ans)
endif (found ())
select 5
if .not. found ()

@ 11,1 say "Source type:"
@ 11,15 get m_stype picture "@!"
@ 12,1 say "Source date:"
@ 12,15 get msdate
read
error = .f.
if .not. (val(m_sdate) <= 1989)
error = .t.

endif (m_sdate check)
if .not. error
append blank
replace src_type with m_stype
replace src_title with m_stitle
replace src_date with msdate
select 6

use refer_in index callr, srcr
append blank
replace call_num with old_call
replace src_title with m_stitle
s_link = .t.
select 5

else
@ 22,1 say "Error in date entry."
m_ans = .t.

@ 23,1 say "Do you wish to try again(Y/N)?" get m_ans
r

picture "Y"
read
if .not. m_ans

error = .f.
endif (.not. m_ans)

endif (.not. error)
endif (.not. found ())
endif (.not. error)
return

xci

* INFER
*

PROCEDURE INFER
parameters m_dl, m_pl, m_al, ;

m_d2 , m_p2 , m_a2

,

m_d3 , m_p3 , m_a3

,

m_d4 , m_p4 , m_a4

,

m_d5 , m_p5 , m_a5

,

m_d6 , m_p6 , m_a6

,

m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9 , m_p9 , m_a9

,

m_dlO, m_plO, m_alO, ;

okflag, m_call, difcter, m_timel, m_time2
newdif =
**
*********** checks for inference engine *********
**
select 1

use music index call_num
reindex
if .not. BOF()

go top
@ 18,1 say "Please wait while the expert checks the

following:

"

do while .not. EOF()
* init all variables

newdif =
*** how many differences in notes?

notedif =
*** for check to see if time sig is multiple of itself
*** possibilities: "S" = same, "M" = multiple, "D" =
different

toptime = "S"
lowtime = "S"
timedif = o

*** how many differences in rhythm
rhydif =

*** check for transposition??
store .f. to trans
store .f. to sameflag
c_pl = m_pl

xcii

c_p2 = m_p2
C_p3 = Itl_p3

C_p4 = m_p4
c_p5 = m_p5
c_p6 = m_p6
C_p7 = m_p7
C_p8 = Itl_p8

C_p9 = m_p9
c_plO = m_plO
do chgnotes with m_pl, m_al, m_p2, m_a2, m_p3, m_a3

;

m_p4, m_a4, m_p5, m_a5, m_p6, m_a6, m_p7 , m_a7 , m_p8,
m_a8 , m_p9 , ;

m_a9, m_plo, m_alO, c_pl, c_p2, c_p3, ;

C_p4, C_p5, C_p6, C_p7, C_p8, C_p9, C_pl0

************* checks ************

do notes with c_pl, c_p2, c__p3, c_p4, c_p5, ;

c_p6, c_p7, c_p8, c_p9, c_plO, notedif
do rhythm with m_dl, m_d2, m_d3, m_d4, m_d5, ;

m_d6, m_d7, m_d8, m_d9, m_dlO, rhydif
do time with m_timel, m_time2, toptime, lowtime,

timedif
* do transp with mdl, cpl, m_d2 , c_p2 , m_d3, c_p3,
*m_d4, c_p4

; m_d5, c_p5, m_d6, c_p6, m_d7 , c_p7, m_d8 , ;

*c_p8, m_d9, c_p9, m_dlO, c_plO, trans
* if notedif = .and. rhydif =
* if timedif =
* sameflag = .t.
* else
* if trans
* if timedif = o
* sameflag = .t.
* endif (timedif = 0)
* endif (trans)
* endif (timedif = 0)
* endif (notedif = .and. rhydif = 0)
* if sameflag
* okflag = .f.
* else

do rcheck with notedif, rhydif, lowtime,
toptime, newdif

select 1
if newdif > difcter
store newdif to difcter

endif (newdif > difcter)
* endif (sameflag

)

if .not. EOF()
skip
endif (.not. EOF())

enddo (. not . EOF ()

)

endif (.not. BOF())
m_ans = .t.
if difcter > 5

okflag = .f.
endif (difcter > 5)
if .not. okflag

clrcter = 18
do while clrcter < 24

@ clrcter, clear
clrcter = clrcter + 1

enddo (clrcter < 24)
@ 21,1 say "Based on an evaluation of the rules, the

expert "

@ 22,1 say "recommends that you NOT add this incipit."
@ 23,1 say "Do you want to override this

recommendation (Y/N) ?"
;

get m_ans picture "Y"
read

if mans
okflag = .t.

endif (mans)
endif (.not. okflag)
clrcter = 18
do while clrcter < 24

@ clrcter, clear
clrcter = clrcter + 1

enddo (clrcter < 24)
return

xciv

* MENU
*

PROCEDURE MENU

*********** user frontend menu*********

set help off
set talk off
set status off
set score off
set safety off
set bell off
set exact on
* Create underline variable, uline.
************* present user frontend menu and get user's
choice.
choice =
do while choice # 3

clear
§ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79

text
PRIMARY MENU

Available selections include:

1. Database Facility
2. Expert System Maintenance
3. Exit Research Musicological Tool

endtext
§ 20,1 say "Enter choice " get choice;
picture "9" range 1,3

read
branch to appropriate

program.
if choice < 1 .or. choice > 3

e 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-3 "

@ 24,1 say "PRESS ANY KEY TO CONTINUE"

xcv

*

read
else

do case
case choice = 1

do dbfac
case choice = 2

do esmain
endcase

endif (choice < 1 .or. choice > 3)
enddo (while choice # 3)
close databases
clear
*quit

* NOTES
*

PROCEDURE NOTES
parameters c_pl , c_p2 , c_p3 , c_p4 , ;

c_p5, C_p6, CJ7, C_p8, C_p9, ;

c_plO, notedif
x_pl = inc_pl
x_p2 = inc_p2
x_p3 = inc_p3
X_p4 = inc_p4
x_p5 = inc_p5
x_p6 = inc_p6
x_p7 = inc_p7
x_p8 = inc_p8
x_p9 = inc_p9
xpio = inc_plO
do chgnote2 with inc_pl, inc_al, inc_p2, inc_a2, inc_p3,

inc_a3 , inc_p4 , inc_a4 , inc_p5 , inc_a5 , inc_p6 , inc_a6 , ;

inc_p7, inc_a7, inc_p8, inc_a8, inc_p9, inc_a9, inc_plO,

inc_alO, x_pl, x_p2, x_p3, x_p4, x_p5, x_p6, x_p7, x_p8,

x_p9 , x_plO
if x_pl <> c_pl

notedif = notedif + 1
endif (x_pl <> c_pl)
if x_p2 <> c_p2

xcvi

notedif = notedif +
endif (x_p2 <> c_p2)
if x_p3 <> c_p3

notedif = notedif
endif (x_p3 <> c_p3)
if x_p4 <> c_p4

notedif = notedif
endif (x_p4 <> c_p4)
if x_p5 <> c_p5

notedif = notedif
endif (x_p5 <> c_p5)
if x_p6 <> c_p6

notedif = notedif
endif (x_p6 <> c_p6)
if x_p7 <> c_p7

notedif = notedif
endif (xjp7 <> c_p7)
if x_p8 <> c_p8

notedif = notedif
endif (x_p8 <> o_p8)
if x_p9 <> o_p9

notedif = notedif +
endif (x_p9 <> c_p9)
if x_plO <> c_plo

notedif = notedif
endif (x_plO <> c_plO)
@ 20,1 clear
§ 21,1 clear
@ 20,1 say "NOTES"
? "Difference in notes is
return

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

notedif

* PRERULE1
*

PROCEDURE PRERULE1

*********** rule type reorder subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present rule type reorder subsystem***
6 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
6 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: REORDER RULE
TYPE"
mtype = space (20)
m_seq_numl = 000
@ 08,1 say "Enter rule type you wish to reorder:";
get m_type picture "@!"

read
****before you do this must open the database,
****look for entered rule
select 7

use rule index types, numl, num2
reindex
seek m_type
if found ()

@ 09,1 say "This rule type is currently ordered as
number "

@ 09,48 say seq_numl
store seq_numl to o_seq_num
§ 10,1 say "Change this order to:" get m_seq_numl
read
error = . f

.

need to know last seq_numl
do while .not. EOF()

skip
enddo(.not. EOF())
if BOF()

store to last_one
else

skip -1
store seq_numl to last_one

endif (BOF()

)

if m_seq_numl > last_one
error = .t.

endif (m_seq_numl > last_one)
if .not. error
store .f. to mans
@ 19,1 say "Make this change?" get m_ans picture "Y"
read
if m_ans

if m_seq_numl < o_seq_num
replace seq_numl with m_seq_numl for type = m_type
replace seq_numl with seq_numl + 1 for ;

.not. (type = m_type .or. seq_numl < m_seq_numl ;

.or. seq_numl > o_seq_num)
else

if m_seq_numl > o_seq_num
replace seq_numl with m_seq_numl for type =

m_type
replace seq_numl with seq_numl - 1 for ;

.not. (type = m_type .or. seq_numl > m_seq_numl
;

.or. seq_numl < o_seq_num)
endif (m_seq_nunil > o_seq_num)

endif (m_seq_numl < o_seq_num)
endif (mans)
answer = .t.

§22,1 say "Do you want to reorder another rule type?"
!

get answer picture "Y"
read
if .not. answer
more = .f.
endif (answer)

else
@ 21,1 clear
? "New sequence number cannot exceed " , lastone
m_ans = . t

.

@ 23,1 say "Do you want to try again (Y/N)?" get m_ans ;

picture "Y"
read
if .not. m_ans

more = . f

.

endif (.not. mans)
endif (.not. error)

else
m_ans = ,t.

xcix

@ 22,1 say "This rule does not exist."
6 23,1 say "Do you want to try another (Y/N)?:" get

m_ans ;

picture "Y"
read
if .not. m_ans

more = . f

.

endif (.not. m_ans)
endif (found())
enddo (do while more)
close databases
return

* PRERULE2
*

PROCEDURE PRERULE2
**
*********** rule reorder subsystem***

more = ,t.
do while more
clear
* Init memory variables
************* present rule within type reorder
subsystem***
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: REORDER RULES
WITHIN TYPES"
m_type = space (20)
m_seq_num2 = 000
m_fieldl = space (39)
m_oper = space (2

)

m_field2 = space (39)
@ 08,1 say "Enter rule type you wish to reorder:";
get m_type picture "@!"

read
****before you do this must open the database,
****look for entered rule
select 7

use rule index types, numl, num2

reindex
seek m_type
if found ()

@ 09,1 say "Change the order of what rule?"
@ 10,1 say "Enter Rule Fieldl :" get m_fieldl picture

it g j ii

@ 11,1 say " Rule Operator:" get m oper picture
"§!

"

@ 12,1 say " Rule Field2 :" get m field2 picture
HA

J
II

read
ds_rule =

do while type = m_type .and. .not. EOF()
if fieldl = m_fieldl .and. oper = m_oper .and.

field2 ;

= m_field2
store seq_num2 to ds_rule
store seq_num2 to o_seq_num2

endif (matches the rule parameters)
skip

enddo
skip -1
store seq_num2 to last_one
rule_fd = .t.
if ds_rule =

****must act like not found***
rule_fd = .f.

endif (ds_rule = 0)
if rule_fd
@ 14,1 clear
? " This is currently rule "

, ds_rule
? " Rules of this type total", last_one
m_ans = .t.

§ 17,1 say "Do you wish to change the order of this
rule?" ;

get m_ans picture "Y"
read

if m_ans
@ 18,1 say "New order of this rule is: " get

m_seq_num2
read
error = .f.
if m_seq_num2 > last_one .or. m_seq_num2 < 1

error = .t.
endif (m_seq_num2 > last_one .or. m_seq_num2 < 1)
if .not. error

if m_seq_num2 < o_seq_num2

ci

use rule index num2, numl, types
seek o_seq_num2
replace all seq_num2 with m_seq_num2 for type =

m_type ;

.and. seq_num2 = o_seq_num2
use rule index types, numl, num2
replace all seq_num2 with seq_num2 + 1 for type =

m_type ;

.and. (seq_num2 > m_seq_num2 .or. (seq_num2 = m_seq_num2

.and. (fieldl <> m_fieldl ;

.or. oper <> m_oper .or. field2 <> m_field2)
)) .and. ;

(seq_num2 = o_seq_num2 .or. seq_num2 < o_seq_num2)
else

if m_seq_num2 > o_seq_num2
use rule index num2, numl, types
seek o_seq_num2
replace all seq_num2 with m_seq_num2 for type =

m_type ;

.and. seq_num2 = o_seq_num2
use rule index types, numl, num2
replace all seq_num2 with seq_num2 - 1 for type

= m_type ;

.and. (seq_num2 < m_seq_num2 .or. (seq_num2 = m_seq_num2
f

.and. (fieldl <> m_fieldl ;

.or. oper <> m_oper .or. field2 <> m_field2))) .and. ;

(seq_num2 >= o_seq_num2) .and. ;

seq_num2 <>
endif (m_seq_num2 < o_seq_num2)

endif (m_seq_num2 > o_seq_num2)

answer = .t.

@ 22,1 say "Do you want to reorder another rule type?" ;

get answer picture "Y"
read
if .not. answer

more = .f.
endif (.not. answer)
else

@ 21,1 clear
? " New sequence number must be > 1 and < "

, lastone
m_ans = .t.
§23,1 say "Do you want to try again (Y/N)?" get mans ;

picture "Y"
read
if .not. mans

more = .f.

cii

endif (.not. m_ans)
endif (.not. error)
endif (m_ans)
else

@ 22,1 say "This rule does not exist."
m_ans = .t.

6 23,1 say "Do you want to try again(Y/N)?" get m ans ;

picture "Y"
read
if .not. mans

more = ,f.
endif (.not. m_ans)

endif (rule_fd)
else

@ 22,1 say "This rule type does not exist."
m_ans = .t.

@ 23,1 say "Do you want to try again (Y/N)?" get m_ans

picture "Y"
read

if .not. mans
more = .f.

endif (m_ans)
endif (.not. found)
enddo (do while more)
close databases
return

* RCHECK
*

PROCEDURE RCHECK
parameters notedif, rhydif, toptime, lowtime, newdif
select 7

use rule index numl, num2, types
reindex
if .not. BOF()

§ 20,0 clear
@ 20,1 say "RULE CHECKS"
go top
do while .not. E0F()
if seg_num2 > .and. act_flagl .and. act_flag2

ciii

macfldl = fieldl
macfld2 = oper
macfld3 = field2
@ 22,0 clear
@ 22,1 say macfldl
@ 2 2,15 say macfld2
§ 22, 20 say ntacfld3
if .not. (Smacfldl Smacfld2 Smacfld3)

if seq_num2 = 1

newdif = newdif + 5
else

newdif = newdif + 1
endif (seq_num2 = 1)
@ 22,40 say "STATUS = FAILED"

else
@ 22,40 say "STATUS = PASSED"

endif (Smacfldl Smacfld2 Smacfld3)
endif (seq_num2 > .and. act_flagl .and.

act_flag2)
if .not. EOF()
skip
endif (.not. EOF())

enddo (. not . EOF ()

)

endif (.not. BOF())
return

* RHYTHM
*

PROCEDURE RHYTHM
parameters mdl, m_d2, m_d3, m_d4, ;

m_d5, m_d6, m_d7, m_d8, m_d9, ;

m_dl0, rhydif
if inc_dl <> m_dl

rhydif = rhydif + 1
endif (inc_dl <> m_dl)
if inc_d2 <> m_d2

rhydif = rhydif + 1
endif (inc_d2 <> m_d2)
if inc_d3 <> m_d3

rhydif = rhydif + 1
endif (inc_d3 <> m_d3)
if inc d4 <> m d4

rhydif = rhydif + 1
endif (inc_d4 <> m_d4)
if inc_d5 <> m_d5

rhydif = rhydif + 1
endif (inc_d5 <> m_d5)
if inc_d6 <> m_d6

rhydif = rhydif + l

endif (inc_d6 <> m_d6)
if inc_d7 <> m_d7

rhydif = rhydif + 1
endif (inc_d7 <> m_d7)
if inc_d8 <> m_d8

rhydif = rhydif + 1
endif (inc_d8 <> m_d8)
if inc_d9 <> m_d9

rhydif = rhydif + 1

endif (inc_d9 <> m_d9)
if inc_dlO <> m_dlO

rhydif = rhydif + 1
endif (inc_dlO <> m_dlO)
@ 20,1 clear
@ 21,1 clear
@ 20,1 say "RHYTHM"
? "Difference in rhythm is ", rhydif
return

* RPNOTES
*

PROCEDURE RPNOTES

parameters m_dl, m_pl, m_al, ;

m_d2 , m_p2 , m_a2

,

m_d3, m_p3, m_a3,
m_d4 , m_p4 , m_a4

,

m_d5 , m_p5 , m_a5

,

m_d6 , m^_p6 , m_a6

,

m_d7, .m_p7, m_a7,
m_d8 , m_p8 , m_a8 ,

m_d9 , m_p9 , m_a9

,

m_dlO, m_plO, m_alO

* this replaces fields in the music database with
those —
* in the temporary graphf database

-used by addinc program-

replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
return

inc_pl
inc_dl
inc_al
inc_d2
inc_p2
inc_a2
inc_d3
inc_p3
inc_a3
inc_d4
inc_p4
inc_a4
inc_d5
inc_p5
inc_a5
inc_d6
inc_p6
inc_a6
inc_d7
inc_p7
inc_a7
inc_d8
inc_p8
inc_a8
inc_d9
inc_p9
inc_a9
inc_dlO
inc_plO
inc alO

with m_pl
with m_dl
with m_al
with m_d2
with m_p2
with m_a2
with m_d3
with m_p3
with m_a3
with m_d4
with m_p4
with m_a4
with m_d5
with m_p5
with m_a5
with m_d6
with m_p6
with m_a6
with m_d7
with m_p7
with m_a7
with m_d8
with m_p8
with m_a8
with m_d9
with m_p9
with m_a9
with m_dlO
with m_plO
with m alO

-end of storage routine-

cvi

* STNOTES
*

PROCEDURE STNOTES
*

parameters m_dl, m_pl, m_al, ;

m_d2 , m_p2 , m_a2

,

m_d3, m_p3, m_a3,
m_d4 , m_p4 , m_a4

,

m_d5 , m_p5 , m_a5

,

m_d6, m_p6, m_a6,
m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9 , m_p9 , m_a9

,

m_dlO, m_plO, m_alO
* this reads from the graphf database and store to
memory

—

*

-used by addinc program-

store inc dl to m dl
store inc_pl to m pi
store inc al to m al
store inc d2 to m d2
store inc p2 to m_p2
store inc a2 to m a2
store inc d3 to m d3
store inc p3 to m p3
store inc a3 to m a3
store inc d4 to m d4
store inc p4 to m p4
store inc a4 to m a4
store inc d5 to m d5
store inc_p5 to m p5
store inc a5 to m a5
store inc d6 to m d6
store incj>6 to m p6
store inc a6 to m a6
store inc d7 to m d7
store inc_p7 to m_p7

store inc_a7 to m_a7
store inc_d8 to m_d8
store inc_p8 to m_p8
store inc_a8 to m_a8
store inc_d9 to m_d9
store inc_p9 to m_p9
store inc_a9 to m_a9
store inc_dlO to m_dlO
store inc_plO to m_plO
store inc_alO to m_alO
return
* end of storage routine-

* TIME
*

PROCEDURE TIME
parameters m_timel, m_time2, toptime, lowtime, timedif
if timel = m_timel

toptime = "S"
else

if mod(timel,m_timel) =
toptime = "M"

else
toptime = "D"

endif (mod(timel,mtimel) = 0)
endif (timel = m_timel)
if time2 = m_time2

lowtime = "S"
else

if mod(time2,m_time2) =
lowtime = "M"

else
lowtime = "D"

endif (mod(time2,m_time2) = 0)
endif (time2 = m_time2)
if toptime = "S" .and. lowtime = "S"

timedif =
else

if toptime = "M" .and. lowtime = "M"
timedif =

else
timedif = 1

endif (toptime = "M" .and. lowtime = "M")
endif (toptime = "S" .and. lowtime = "S")

@ 20,1 clear
@ 21,1 clear
§20,1 say "TIME"
? "Difference in time is ", timedif
return

* TITLES
*

PROCEDURE TITLES
parameters title
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
65,10 say title
return

* TRANSP
*

PROCEDURE TRANSP
parameters m_dl, c_pl, m_d2, c_p2, m_d3, c_p3, m_d4,
c_p4 , ;

m_d5 , c_p5 , m_d6 , c_p6 , m_d7 , c_p7 , m_d8 , c_p8 , m_d9

,

c_p9 , ;

m_dl0, c_pl0, trans
@ 20,1 clear
@ 20,1 say "TRANSPOSITION"
@ 21,0 clear
@ 22,0 clear
return

cix

* UPDCOMP
*

PROCEDURE UPDCOMP

*********** composer update subsystem**

more = .t.
do while more
clear
* Init memory variables
************* present composer update subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: UPDATE COMPOSER
INFORMATION"
m_compf = space (10)
m_compl = space (1)
m_compl = space (20)
@ 08,1 say "COMPOSER INFORMATION"
@ 10,1 say "Last name:" get m_compl picture "@!"
@ 11,1 say "First name:" get m_compf picture "@!"
8 12,1 say "Initial:" get m_compi picture "@!"
read
use composer index c_lname
seek m_compl
if .not. found ()

@ 22,1 say "This composer does not exist on database"
m_ans = .t.

§ 23,1 say "Do you want to try again (Y/N)?" get m_ans
I

picture "Y"
read
if .not. m_ans

more = . f

.

endif (.not. m_ans)
endif (.not. found())
if found ()

if comp_init = m_compi .and. comp_fname = m_compf
store comp_bdate to m_bdate
store comp_ddate to m_ddate

ex

store comp_loc to m_cloc
@ 13,1 say "Birth date:"
@ 13,15 get m_bdate
@ 14,1 say "Death date:"
@ 14,15 get m_ddate
@ 15,1 say "Birthplace:"
@ 15,15 get m_cloc picture "@!»
read
error = .f.
if val(mbdate) > 1989

error = .t.
endif (bdate checks)
if (val(m_ddate) < val(m_bdate) .or. val (m_ddate) >

1989) ;

.and. m_ddate <> space (4)
error = .t.

endif (ddate checks)
if .not. error
store . f . to m_ans
@ 19,1 say "Make these changes?" get m ans picture

Hyll
—

read
if m_ans
replace comp_bdate with m_bdate
replace comp_ddate with m_ddate
replace comp_loc with m_cloc

endif (m_ans)
answer = .t.

§ 23,1 say "Do you want to update another composer?"

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer)
else

@ 22,1 clear
6 22,1 say "Invalid date entry"
mans = ,t.
@ 23,1 clear
@ 23,1 say "Do you want to try again(Y/N)?" get

m_ans ;

picture "Y"
read

if . not . m_ans
more = . f

.

endif (.not. m_ans)
endif (.not. error)

cxi

else
@ 22,1 say "This composer does not exist on

database.

"

m_ans = .t.

@ 23,1 say "Do you want to try again (Y/N)?" get
m_ans ;

picture "Y"
read
if .not. m_ans

more = . f

.

endif (.not. m_ans)
endif (comp_init = m_compi .and. comp_fname = m_compf)

endif (found())
enddo (do while more)
return

* UPDINC
*

PROCEDURE UPDINC
********* database Incipit update****
more = .t.
do while more
clear
* Init memory variables
* in order to delete a music record
* 1 schedule graphics interface with call #
* and activity indicator - "U" for update
* 2 graphics interface update incipit
* 3 double check that they want this update
* 4 if update to incipit is desired and ok return
* from graphics interface
* 5 schedule inference engine
* else
* try another call number???
*

m_call = 00000
new_num = 00000
************* present incipit update subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
§ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
§ 5,10 say " DATABASE SYSTEM: UPDATE MUSIC RECORD"
m_dl =
m_pl =
mal = " "

m_d2 =
m_p2 =
m_a2 = " "

m_d3 =
m_p3 =
m_a3 = " "

m_d4 =
m_p4 =
m_a4 = " "

m_d5 =
m_p5 =
m_a5 = " "

cxiii

m d6 =
m p6 =
m a6 = " "

m_d7 =
m_p7 =
m_a7 = " "

m_d8 =
m p8 =
m_a8 = " »

m_d9 =
m p9 =
m a9 = " "

m_dlO =
m_plO =
m_alO = " "

select 1

use music index call nun
6 10,1 say "Enter the

get m_call picture
read

call
19999c

number you wish to update:" ;

seek ni_call
if .not. found ()

@ 22,1 say "This call number does not exist H

m ans = .t.
@ 23,1 say "Do you want to try again(Y/N)?" get m_ans

picture "Y"
read
if .not. mans
more = .f.

endif (.not. m_ans)
endif (.not. found())
if found ()
* erase \project\gfilel.doc

erase \tp\gfilel.doc
store title to m_title
store timel to m_timel
store time2 to m_time2
store key to m_key
store mm to m_mm
do stnotes with m_dl, m_pl, m_al,

m_d2 , m_p2 , m_a2

,

m_d3 , m_p3 , m_a3

,

m_d4 , m_p4 , m_a4

,

m_d5 , m_p5 , m_a5

,

m_d6, m_p6, m_a6,
m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9, m_p9, m_a9, ;

mdlO, m_plO, malO
@ 22,1 say "Please wait to update incipit"
select 2

use graphf index callg
append blank
replace act with "U"
new_num = m_call + 10000
replace call with new_num
replace key with mkey
replace mm with m_mm
replace timel with m_timel
replace time2 with m_time2
do rpnotes with m_dl, m_pl, m_al, ;

m_d2, m_p2, m_a2,
m_d3 , m_p3 , m_a3

,

m_d4 , m_p4 , m_a4

,

m_d5 , m_p5 , m_a5

,

m_d6 , m_p6 , m_a6

,

m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9 , m_p9 , m_a9

,

m_dl0, m_pl0, m_al0
* send file to graphic interface
* copy to \project\gfilel.doc sdf

copy to \tp\gfilel.doc sdf
zap
run cd \tp
run grapintf
run cd \demo
* SIMULATE GRAPHICS INTERFACE HERE
title = " DATABASE SYSTEM: UPDATE MUSIC RECORD"
do titles with title
@ 22,1 clear
store .t. to m_ans
§ 22,1 say "Make these updates?" ;

get m_ans picture "Y"
read
if m_ans
select 2

use graphf index callg
* append from gfile2.doc sdf
append from \tp\gifile.dat sdf
new_num = 10000 - call
store new_num to m_call
store mm to m_mm
store m_timel to m_timel
store m time2 to m time2

store key to mkey
do stnotes with m_dl, m_pl, m_al,

m_d2, m_p2, m_a2,
m_a3,
m_a4,
m_a5,
m_a6,
m_a7,
m_a8,
m a9,

m_d.3 , m_p3

,

m_d4 , m_p4

,

m_d5 , m_p5

,

m_d6 , m_p6

,

m_d7 , m_p7

,

m_d8 , m_p8

,

m_d9 , m_p9

,

m_dlO, m_plO, i_alO
if act = "U"

okupd = .t.

store to difcter
do infer with mdl, m_pl, mal,

m_d2 , m_p2 , m_a2

,

m_d3, m_p3, m_a3,
m_d4 , m_p4 , m_a4

,

m_d5, m_p5, m_a5,
ni_d6 , m_p6 , m_a6

,

m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9 , m_p9 , m_a9

,

mdlO, mplO, malO, ;

okupd, m_call, difcter, m_tiitiel, m_time2
if okupd
select 1

use music index call_num
seek i call
if found ()

replace key with mkey
replace title with m_title
replace timel with m_timel
replace time2 with m_time2
do rpnotes with m_dl, m_pl, mal,

m d2 , m p2 , m_a2 ,

m_d3, m_p3, m_a3,
m_d4 , m_p4 , m_a4

,

m d5, m_p5, m_a5,
m_d6, m_p6, m_a6,
m_d7 , m_p7 , m_a7

,

m_d8 , m_p8 , m_a8

,

m_d9 , m._p9 , m_a9

,

m dlO, m_plO, m all

endif (found

(

)

)

else
@ 22,1 say "Update is not indicated by graphics

interface"

endif (okupd)
endif (act = "U")

endif (m_ans)
answer = .t.
@ 22,1 say "Do you want to update another incipit?" ;

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer)
endif (found())
select 2

use graphf index callg
zap
enddo (more)
close databases
return

* UPDSRC
*

PROCEDURE UPDSRC

*********** source update subsystem***

more = .t.
do while more
clear
* Init memory variables
************* present source update subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
6 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: UPDATE MUSIC SOURCE"
use source index sources
m_stitle = space (40)
@ 08,1 say "SOURCE INFORMATION"
@ 10,1 say "Enter source:" get m_stitle picture "@!"
read
****before you do this must have opened the database,
****look for entered source
seek m_stitle
if .not. found ()

@ 22,1 say "This source does not exist"
m_ans = .t.

@ 23,1 say "Do you want to try again (Y/N)?" get mans
i

picture "Y"
read
if .not. mans
more = .f.

endif (.not. a_ans)
endif (.not. found())
if found ()

store src_type to m_stype
store src_date to m_sdate
store srctitle to m_stitle

@ 11,1 say "Source type:"
@ 11,15 get m_stype picture "@!"
§ 12,1 say "Source date:"
6 12,15 get m_sdate
read
error = . f

.

if val(m_sdate) > 1989
error = .t.

endif (date check)
if .not. error
store . f . to mans
@ 19,1 say "Make these changes?" get m_ans picture "Y"
read
if m_ans
replace src_type with m_stype
replace src_date with msdate

endif (m_ans)

answer = .t.

@ 23,1 say "Do you want to change another source?" ;

get answer picture "Y"
read
if .not. answer
more = . f

.

endif (.not. answer)
else
m_ans = .t.
@ 22,1 say "Invalid date entry."
@ 23,1 say "Do you want to try again (Y/N)?" get mans

i

picture "Y"
read
if .not. mans

more = . f

.

endif (.not. mans)

endif (.not. error)
endif (.not. found())
enddo (more)
return

A MUSICOLOGICAL RESEARCH TOOL:
AN EXPERT SYSTEM SOLUTION FOR SMALL PROJECTS

by

JEANNINE STAFFORD INGRAM

B.S., University of North Carolina-Greensboro, 1982

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Abstract

Musicology, the scholarly study of music, was first

introduced as a discipline by Friedrich Chrysander in

1863. In the past 125 years, this discipline has become

one of sound historical research techniques. It requires

that the professional musicologist have a broad knowledge

base and be able to organize and assimilate vast

quantities of data, all of which may play some part in

the final research product. Among the many areas within

the humanities, musicology perhaps would most benefit

from a single, integrated system capable of assisting in

the completion of a multi-faceted project.

The primary motivation of this project was to provide a

PC-based automated research tool for musicologists and

small music archives and to explore the usefulness of

expert systems as a potential research tool for music

historians.

The project will establish the need for a research

musicological tool, develop an expert system capable of

incipit matching and decision processing within the

environment of standard musicological research

techniques, and develop a database management system

suitable for the special needs of small projects in

musicology.

