
SEQUENTIAL LIFE TESTIKG

by

LORIN LEROY PETERSON

B. S., Bethany College, 1963

A IIASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

lASIER OF SCIENCE

Department of Statistics

KAi\[SAS STATE UNIVERSITY
Manhattan, Kansas

196ft

Approved by:

/kSi
!-Iajor Professor



h L L

11

r
^4^S^ TABLE OF CONTENTS

INTRODUCTION 1

CHAPTER I: UNDERLYING DISTRIBUTIONS AND RELATED THEOREl-IS 2

CiiAPTER II: HYPOTHESIS TESTING 10

CHAl'TER III: ESTBIATION OF PARAi-iETERS 28

CONCLUSION 45

AQCNOWLEDGMENTS 46

REFERENCES ....'... 47



INTRODUCTION

The purpose of this paper is to show so;r.e of the aspects of se-

quential life testing. This area of statistics is relatively new. Host

of the V70rk has been done since 1953.

The major contributor to sequential life testing has been Benjamin

Epstein, of Wayne University. Epstein has had the following papers

published: "Truncated life tests in the exponential case," (1954), "Simple

estimators of the parameters of exponential distributions when samples

are censored," (1955), "Exponential distribution and its role in life

testing," (1958), "Tests for valididty of the assumption that the

underlying distribution of life is exponential," (1960a), "Statistical

life test acceptance procedures," (1960b), and "Estimation from life test

data," (1960c). Epstein also has done some work with Milton Sobel of the

University of Minnesota. Together they have had the follox-'ing papers

published: "Life testing," (1953), "Some theorems relevant to life testing

from an exponential distribution," (1954), and "Sequential life tests in

the exponential case," (1955).

Life testing is used where the data which we are concerned v;ith is

the length of life of the product, machinery or anything which discontinues

because of failure. There are several types of failure. An item can fail

through normal constant vjear, fail only when a force is exerted on the

item, or fail because of an accident which damages or destroys the item.

The first chapter of this report deals with the underlying distribution

of sequential life testing and some related theorems. Both the pros and

cons of using the exponential distribution are given. Chapter II is concerned

with hypothesis testing. This is usually in terms of the mean life of the



population under study. Tiie usual hypothesis to be tested is

E : 6 = 8 vs
o o

E, : 6 = e, < G .

1 1 o

In Chapter III, various procedures are given for estimating the parameters

such as the mean life, the expected tiae, T, it will take until a decision is

made, and the expected number of iteas which vv^ill fail, r, before a decision

is reached,

CHAPTER I

UKDEELYIKG DISTRIBUTIONS

Most of the work which has been done in the field of sequential life

testing, has been done on the assumption that life situations follow the

exponential distribution. Tiiis distribution is sometimes referred to as

a random failure pattern.

From Epstein (1953), let t = life time of an item.

? ;
- E(t) = r t f (t;e) dt (1)

o

= r ^ exp f^) dt

A random failure pattern means that the cause of failure occurs

according to a Poisson process with rate X. The distribution of tine

between failures is given by the probability density function (p.d.f.)

Xe~^^ X > 0, t > . (2)

Let the random variable (r.v.) T be defined by



?r(T > t) = Pr(no failure occurs between and t)

Now assuming the failure process is Poisson, the following can be shown.

Pr(T > t) = e
-Xt

Pr(T < t) = 1 - e

-Xt

-Xt
whose p.d.f. is

(3)

(4)

f(t) = Xe 7 (5)

The above is used v/hen the item can fail only at certain times when

forces are placed on it. So then it is desirable to knov; the probability

of failure, given a force has been exerted.

Define

p = probability of a failure given a force has been
exerted.

1 P 1 1

q = 1 - p .

Now we have the situation where a force has been exerted once on the

item and the item hasn't failed, the force has been exerted twice and the

item hasn't failed, etc. Symbolically, this is given by

Pr(T > t) = e-^^ 4- q(Xt) e-^^ + ^ S]^ ^-Xt
^ ^^^ ^ ^ ^X^ ^-Xt

^ ^^^

= e
-Xt

(-Xt + qXt)= e ^

-Xpt= e ^
'

I,.

\ i

(6)

Therefore



Pr(T < t) = 1 - e-^P*^ (7)

V7ith a p.d.f. -

f(t) = Xp e-^P'
. (8)

All of Epstein and Sobel's work has been done on the assumption that

time until failure follows the exponential distribution. Let's now look

at some theorems (Epstein and Sobel, 1954) which are relevant to life testing

under the exponential distribution.

The distribution of the life length of any single item is assumed to

have the following density

^l^-(x- A)/8
for allx> A

6

p(x; e, A) =
|

(9)

othenj'ise .

Suppose N items are divided into k sets S with each set con-

taininf^ n > items. Each set is observed only until there are r

failures

< r. < n.3-3 *

There are three different cases which we can consider.

1. Tlie n. items in each set have a common known A (j = l,2,...,k).
3 -^

2. All N items have the same unkno\m A.

3. The n items in each set have a common unknown A (j = l,2,...,k).

A is a constant, and can be interpreted two different ways.

1. A is the minimum life, which is taken as zero,

2, A is the "time of birth," life is measured from time A,

« . \. '
.



Let
k

R = y r. (10)

3=1 '

where

X, <X-<...<X , l<r.<n.1-2- - r.» - J- J

denotes the r samllest ordered observations. This set of n. r.v.'s

represents a typical set S .

.

The following properties can be shown to be true (Epstein and Sobel,

1954) . Let

r,

V. = y (X.. - A.) + (n. - r.)(X - A.)
, (11)

J >1 Ji J J ^ j ^

Then 2V./e is distributed as a chi-square with 2r. degrees of freedom

[x2(2r^)]. Let . :

r.

V.' =
I (X.. - X. .) + (n. - r.)(X -X,.) (12)

J >1 ji Ij J J r Ij' •

Then 2V.'/6 is distributed as y^ (2r. - 2). Let

r.

^i*
= ^ (X - c) + (n - r )(X - c) . (13)

Then 2V. /e given X > c is distributed as x (2r.) ,

The maximum likelihood estimator of 6 for cases 1, 2, and 3

respectively, is given as follows:

* k ^ k .^ ^ k
6 = J V,/R, e =

};
V 7r, and Q. =

I V.'/R
" j=l -^ j=l ^ -^ i=l J *



Theorem 1. The distribution of G depends only on R, 6, and, in case 3,

also on k. The random variable 2RO/0 is distributed as x^(2R), x^(2R-2),

and x^(2R-2k) in cases 1, 2, and 3 respectively.

The following properties are given by Epstein and Sobel, (1954);

k

^1 "^ }
j=i L

y X., + (n. - r.) X.

i=l J^ J J J^i

Re + y n.A. (14)

h = ^"20
'
^21> (15)

T = T
2o 1

T-. = min X
21 . Jl

^3 " ^"30' ^31' • • • » ^3k^
(16)

3o 1

T„. = X.^
3j jl j— 1,2, ..,,k ,

Observations through T. ( i = 1, 2, 3) are all that is needed to estimate

6..
1

Theorem 2. T^ is sufficient for estimating 6 .

Theorem 3. T = (T„^, T ) is sufficient and complete for estimating

the pair (9, A)

.

Theorem 4. T„ is sufficient and complete for estimating (G,A,k).

Ifnile Epstein and Sobel have been using the assumption that the

exponential distribution is the one which should be used in life testing.



others have sho\m that the exponential distribution only follows if the

failure rate is terr.ied constant. If the failure rate is non-constant,

then the Weibull distribution or the gaiama distribution (Tate, 1959) tend

to fit the failure data more closely.

Zelen and Dannemiller (1961) stated.

We have tried to show that dogmatic use of life testing procedures
without a careful verification of the assumption that failure
times follow the exponential distribution nay result in a high
probability of accepting "poor quality" equipment.

It has been sho\m (Zelen and Dannemiller, 1961) that vrhen the

Weibull distribution is used instead of the exponential, the estimate of

the mean life does not have to be as high for the Weibull, in order to

get the same say 90 or 95% lower limit. In other words, if one wishes to

make a statement that at least 95% of the items will live for a certain

length of time, the mean life under the Weibull distribution does not have

to be as high as it would be for the exponential distribution.

Further attacks on the use of the exponential as the underlying

distribution for life situations were made by Bimbaum and Saunders (1958).

They developed a model which is a compromise with the exponential, Weibull

and gamma distributions. They stated.

The usefulness of the exponential distribution is sharply limited
due to the following property: one can prove that if the life
length T of a structure has the exponential distribution, then
previous use does not affect its future life length.

For some things such as jeweled bearings in watches, the previous

use does not seem to have any affect on the failure at a given time. But

most functional items become weaker or more susceptible to failure the

longer they are in use.

If the damage or wear on an item is defined as 6, and the effect of 6

on the item being tested, at time t, is



6(t).

One can reasonably assuue that 6 should have an effect on the distribution

of the life length. Let's vjrite the cumulative distribution function (c.d.f.)

and the p.d.f. as

Pr(T ^ t|6) = F(t;6) for all t ^ (17)

"'^dt^^
= f(t;<S) forallt>.0 ^ (18)

The failure rate at time t is now defined as

^6^^^ 1-F(t;6) ' ^^^^

Epstein (1960a) wrote an article defending the use of the exponential

distribution. If a distribution is exponential and the c.d.f. is

F(t) =0 t < (20)

—1/6
F(t) = l-e t>_0, 0>O (21)

define

° V.l-F(t)J
y = lo

= t/6
^ (22)

aiid if we plot y against t, we get a straight line with slope l/G .

This procedure gives a graphical technique for testing the validity of the

exponential.

Another method for testing the validity of the exponential distribution

is by dividing the horizontal axis on a graph into k intervals. Observe



the number of failures in each interval, then calculate the expected number

of failures for each interval r

Then find

e . = np

.

1 1

k (0. - e.)'

i=l i

(23)

and compare this result with x^(ct»k-l), where x^Cci^-l) is the value exceeded

a% of the time by a x^(k-l) r.v. If the x^ < X^ (oi»k-l)f then there is no

reason to reject the exponential as the underlying distribution.

Lomax (1954) looks at a different type of failure than the ones which

vje have been discussing; this is the failure of a business. In general it

can be said that the longer a business is able to survive, the smaller the

probability of a failure becomes. Tlie data given below is on business

failures in Poughkeepsie from 1844-1926.

Correlation Coefficients for Functions
Fitted to Data on Conditional Probability

Type of Business Exponential Hyperbola

detail 0.91 0.99

>v"nufacture 0.96 0.S3

Craft 0.93 0.99

Service 0.91 0.98

The function

c,

t"
c > 0, t >



10

for the hyperbola is easier for calculating purposes than the function

1 -t/6

for the exponential.

Much of the early work, in life testing was done on electron tubes.

There are two classifications of failures in electron tubes; catastrophic

or sudden failures, and wear-out or delayed failures. It was from this

work with electron tubes that the exponential distribution was found to best

fit the failure distribution.

Even though there has been much discussion on the validity of the

exponential distribution throughout the rest of this report, the time till

failure will be assumed to be distributed exponentially, unless otherwise

stated. .
>

CdAPTER II

HYPOTHESIS TESTING

One of the main reasons for performing a sequential life test is to

test the hypothesis

"

- H : e = e vs
o

1 1 o

These hypotheses apply, for example, if a company has developed a new product

and vjants to know if the mean life is at least a certain length of time.

The first type of problem which will be discussed is one that was

explained by Epstein and Sobel (1953). From a given population, n items

are draxra at random. ^[Then there is a failure of one item, it is not replaced.

In the future, this will be called -the nonreplacement case. The life test
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will be terminated at which ever comes first of two preassigned values r, a

certain number of failures, r _< n, or T , a given length of time. This will

be denoted by

rain (r, T )
* o •

If there are r failures before time T , then the null hypothesis is

rejected. If time T occurs before r failures, then H is accepted.

The above procedure was derived from the following; test

H : e = vs
o

H,: 6=6, <
1 1 o •

Accept K if 6 > C and reject H if 6 < C, where
o r,n •'

o r,n '

X + X + . . . + X + (n-r) X
i,n 2,n r,n r,n

e =
(24)

and X , j = 1, 2 r represent the life length of the jth failure.

The next question which arises is, "How do we find r and C?"

If we are given 6 and 6 we can find r and C for chosen values of a

and 6 . These values for r and C may be found from tables by Eisenhart

(1947). First we form the ratio /6 and then choose the values from the

table for r and C which correspond to this ratio and our chosen values

for a and S .

L(e^) = Pr(accept 6=0 given 6 true) = 1 - a (25)

L(ep = Pr(accept 9 = 6^ given 6 true) <_ 3 . (26)

miat would happen if we would use only the last item which failed?

Since there is so much emphasis given to x , it is only reasonable to assumer,n
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that this value is worth more than the previous values. It can be show that

we can choose n large enough, using the same r, so that our power for ac-

cepting H if

r,n 1

is almost identical to the curve based on

e > C
r,n o

Let's look at an example of this situation. Let

e^ = 1500, Q^ = 500, a = S = .05

From the table, (Eisenhart, 1947) we find that r = 10. Using r = 10, the

power curve is nearly as good using x^^^^, as it is using
6^ ^, as long as

n 1 14 . In this particular example, C = 540 . Suppose that a sample of

size n = 20 is taken. We now look at x and if

^10.20 ' 5^0

we accept II , and if
o

^10,20 ^ 540

we reject H^. The situation which we discussed earlier is now evident. If

any

^j,n > 5^° J = 1. 2. . . . . r-1,

we can stop the experiment and accept H .

Tlie expected values of r and T are given by Epstein (1954)
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If the probability of an item failing before T is given by

T /e
, o

p = 1 - e

then from the binomial law, we find that the probability of making a

decision with exactly k failures is

(27)

Pr(r = k|6) = bn(k;n,p^)

(k)^o (1 - p^)"""^ k = 0. 1, r -1
o

(28)

r -1
o

Pr(r = r^Ie) = 1 - I bn(k;n,p^)
k=0

E(r) =
I k Pr(r = k|e)

k=0

(29)

(30)

From the above statement, we can simplify to a form which is easier to

calculate.

E(r) = np^

r -1
o

I bn(k;n-l, p ) + r

r -1
o

1 -
I bn(k;n,p )

k=0L k=0

Now by using binomial tables or tables of the incomplete beta

function, we can determine the expected value of r for any given

n, T and r. Let's show that

(31)

E(T) = I Pr(r = k|6) E(x ) ,

k=l
^'"^

The proof is as_ follows

E(T) = T I bn(k;n,p)
k=0

+ I bn(k;n,p) E(x „ | r=k)
k=r

r -1
o

^(^T- n^
" I bn(k;n,p) E(x „ |

r=k)
'^o*'^ k=0 ^^o'"^

(32)

(33)
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n
+ I bn(k;n.p) E(x „|r = k)

k=r ''o'''
o

r -1
o

E(T) = E(x „) + I bn(k;n,p)
^o'" k=0

T -E(x r-k)
o ^ r ,n'

o*

(34)

(35)

From (32) , we get the following result

E(x |r=k) = T + E(x
, ,

) k = 1, 2, . . . , r -1 . (36)
r ,n' o r -k,n-k ' ' ' o
o* o '

since E(x , , ) is the unconditional expected waiting time to get the

(r-k)th failure in a random sample of size n-k. It has been shown (Epstein,

1954) that for

1 < k < n

^(\.n> n n-1 • • • ^ n-k+1 (37)

Therefore

E(x
, , ) = E(x ) - E(x, ) 1 < k < r

r -k,n-k r ,n ^ ic,n — — o
(38)

E(x^ „|r=k) = T + E(x ) - E(x, )r ,n' o r .n" k,n'

r -1
o

E(T) = E(x ) + I bn(k;n,p^)
^o'" k=0 °

r -I.
o

E(x ) - I bn(k;n,p )

o' k=0

-E(x, ) + E(x^ )
k,n r.n'

E(x ) + E(x, )
r,n k,n

(39)

(40)

Now we will consider the case where an item fails and it is replaced

by a new one (replacement case). Now we will always have n items on test.
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Tiie same procedure as before will be followed; stop the experiment at

min (x , T ). The replacing of failed items now makes the life test
o

a Poisson process with failures occurring at the rate

\ = ? C41)

Tne probability of reaching a decision in exactly k failures now

becomes

Pr(r = kje) = p(k; X^, T^)

1
""^'^ /^ t

(42)

k = 0, 1, 2, . . . , r - 1

r -1

Pr(r = r le) = 1 -
I p(k; X T )

k=0 ° °
(43)

E(r) =
I k

k=l

, -nT /e

I
k=l

^-—- ° (nT /e)^^-^
o(k-1)

!

X T
o o

= I k Pr(r = k|e) .

k=l
(44)

Again we simplify for the purpose of calculations

E(r) = X T
o o

r -2
o

I p(k; X^, T
k=0

o' o
+ r

r -1
o

r I P(k; X ,T )

k=0 ° °
(45)



/
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From any preassigned values of n, T and r, we can find E(r) from

Molina's tables of the Poisson distribution (1949).

Tlie proof of

E(T) = (|) E(r) (46)

is done in the same fashion as the one for the nonreplacement case

(Epstein, 1954).

Suppose that at a certain time t, there have been exactly k failures,

v;ith observed total life V(1t) , where

k
V(t) == I X, ^ + (n-k)t < k < r-1 (47)

i=l
''''

and where t is the elapsed time from time zero until the kth failure.

Since V(t) is raonotonically increasing, we should calculate V(t) at each

failure and do one of three things

1. Continue the experiment as long as V(t) < rC and £ k <_ r-1 .

2. Stop the experiment and accept H as soon as V(t) > rC and <_ k <_ r-1 .

3. Stop the experiment and reject H at the time x if V(t) < rC.

Some properties of the above rules based on V(t) are presented.

Define
1

X =0
o,n

r r
Then T x. + (n-r) x

i=l
^»^ r,n

=

J,
(n-i-i-l)(x.^^-x._^^^). (48)

A new random variable is introduced as

C. = (n-i+l)(x. - X.
1 i,n X-l,n^

i = 1. 2, . . . , r . (49)
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Therefore

) > C
r,n

where 6 is given by (26) can now be written as

r

I C. > rC • (50)
i=l

^

All 5. are mutually independent random variables with common p,

d.f. (Epstein, 1954)

J e"^^^ X > 0, > . (51)

5. is the time interval between the (i-l)st event and the ith

event in a Poisson process with mean occurence rate

then

r

I 5 > rC

i=l

if and only if

^ k <_ r-1 ,

Tne probability of reaching a decisioji in exactly p=k failures is

Pr(p = kje) = p(k; y) , k = 0, 1, 2 r^-1 (52)

r-1
Pr(p = r|e) = 1 -

I p(k;y) (53)

k«0

where, for (52) and (53),
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rC

and

p (k; y) = y e /k! . (54)

Define

r r-2

E(p) -
I kPr(p-k|e)-y I p(k; y) + r

k=0 k=0

r-1

1 - I p(i^;m)

k=0
(55)

i.

E(T) =
I Pr(p = k|e) E(3c )

k=l
^*^

(56)

r-1

L(e) I p(k; y) .

k=0
(57)

It can be shown (Epstein, 1954) in the replacement case that the

"best" region of acceptance when testing

H : = e vs
o o

1 1 o

based on the first r failures is

e > C
r,n

with

6 = nx /r
r,n r,n

(58)

The region of acceptance for H is

X > C
r,n

rC

a
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Terminating the test at

min(x , C )
r.n'

(59)

gives us the same test as before with

r = r and C = T
o o

A method for finding r and n when T is previously assigned

is; r is the smallest integer so that

e
X^(l-a.2r) ^ _o ^ ^ q

X^(3.2r) - ^1 ° ^ •

(60)

Since

T = C

rC

n

e^ X^(l-a.2r)

2n

(61)

and

n =
e^ x2(l-a,2r)

2T

(62)

In the nonreplacement case there is a method which is not as exact,

but much easier than using binomial tables. Here, n and C are calcualted

in the following manner.
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n =

1 - e

T /C
o

(63)

Let

2r

B

'^o*" '^\»r?
(64)

Then a rule for accepting H could be to accept H^ when

e X > C . (65)
r ,n r ,n
o' o'

This rule gives an operating characteristic (O.C.) curve which is almost

the same as the O.C. curve obtained from the rule of accepting H^ when

where

e > C

T = c/e
r .n

(65)

When n is large.

3
log

r .n

n
n-r

(66).

An example of the testing procedure that has been covered is to

find a replacement plan for T = 500 hours which will accept a lot with

mean life = 10,000 hours at least 95% of the time and reject a lot with
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mean, life = 2,000 hours ;at least <?5% of the time. Epstein (1954) computes

L(e) , E(T]1 and E(r) at 9 = 10,000

9 =
o

r =
o

n =

and 2,000

10,000 ,

a = S =

V^i
= '

e /T =20

(1.97) (20)

hours, as

9^ = 2,000

.05

= 39 .

Tiierefore the plan is to stop the experiment at

rainCx^ 39.500) •

Tne equation for L(e) is given by

L(9) = 1 - Pr (r =
;r e) .

From Epstein (1954) for 6 = 10,000

XT = 1.95

L(e) = .952

,

E(r) = 1.93

E(T) = 495

and :for e = 2,000,

XT =

L(e) =

E(r) =

E(T) =

9.75

,034

4.95

254 .

Referring to the same problem as above, Epstein (1954) again finds the

values for the L(e), E(T) , and S(r ) for the nonreplacement case.

From the appropriate equations, the following
;
results are obtained

>
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r = 5

n = 42 .

For 6 = 10,000, the following results are calculated.

T /G - .05
o

-T /6

p = 1 - e ° = .049 .

Using the tables from the National Bureau of Standards (1950) , and the

appropriate equations.

L(e) = .946

E(r) = 2.02

E(T) = 494

and for 6 = 2,000

L(e) = 0.031

E(r) = 4.91

E(T) = 248 .

Epstein (1960c) gives two nonparametric tests for sequential life

testing. The first test is set up on the basis of testing n items for

* *
a predetermined length of time t . At the end of t time we can say with

100 (l-a)% confidence that at least 100b% of the population survives for

length of time t , where _

b = 1 + -^ F (2r+2, 2n-r)
n-1 a '

-1

(67)

and F,(r^, r.) is the value exceeded a% of the time in the F distribution.

I'Jhere the underlying distribution is known to be exponential, a 100(l-a)%

confidence interval for 6 is given as
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G > t*| log |l + [^^ F^ (2r+2, 2n-r)J

-1

(68)

The second nonparametric test is designed in the following manner;

items are drawn one at a time from the population and each item is tested

separately until either the item fails or the length of time t has oc-

curred. This is done until r items have failed. Again we have

100(l-a)% confidence that at least 100b% of the population survives for

k
a length of time t , where

1 +/^-^^ F (2r, 2n-r)
^n-r J a

-1

(69)

Again a one-tailed confidence interval of 6 is given as

[log (l H- (^) F^(2r. 2n-r)}j
"^

^

>t llog -51 +/-^^ ^ F (2r. 2n-rKl " (70)

Confidence intervals have also been devised for the parametric

estimation of 9 (Epstein, 1960c). A two-tailed confidence interval on

9 is given as follows;

2T
< 6 <

2T

x2(a/2,2r+2) x^(l-a/2,2r)

where r = number of failures up to time T. A one-tailed confidence

interval on is given as

. . 2T

(71)

x2(a,2r4-2)

(72)

Another method for testing hypotheses is by regular sequential

analysis methods which are discussed by Epstein and Sobel (1955). Tlie

maximum likelihood estimate for this procedure is based on the following
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probability ratio

V^l)^2). . . , x^^. t; e^) "i=l^(^li' V
1 - F(t, ep

1 - F(t, Sq)

n^-r^

.(73)

This ratio is used for the nonreplacement case, and if the ratio is between

A and B, where

and

a

a decision is not made from the first sample, and additional samples are

drawn until a decision is made. (73) may be set up in another manner so

that both replacement and nonreplacement cases may be handled.

B <
e.

exp
e.

v(t) (74)

In the nonreplacement case

V(t) = I (n-i+l)(x^ - x^_^) + (n-r)(t-xp
i=l

^ I X + (n-r)(t-x^)
1=1

^ ^

and for the replacement case

(75)

V(t) = nt . (76)

Any time the inequality of (74) is violated, the experiment is stopped.

If the value is less than B, K is rejected, and if it is greater than A, H
o o

is accepted.
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According to Wald (1947) , in order to have a test with exactly the

* *
strength (a, 6), A and B should be replaced by A <_ and B ^ B, Formulae

for computing these values plus 0. C, and average sample number curves are

given in Burman (1946) and Dvoretsky, Kiefer and Wolfowitz (1953).

If we wish to graph the data continuously, (74) can be written as

- h + rs < V(t) < h + rs (77)
o o

where

h = zlo2_B__
o 1/e, - 1/6

h 2£SJL
1 1/e - i/c

1 o

and

log (QJ\)
^ "

1/6, - 1/e^ •

1 o

The o.c. curve which represents the probability of accepting H when

is the true parameter is given approximately by the following two

parametric equations

A^-1
L(6) - V\

(6^/6^)^-1

® " h(l/e, - 1/6 )1 o

letting h run through all real values. It turns out that if five particular

values of L(e) are found.
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e = 0, e^ , s, 6 , and "

the entire curve can be sketched.

The following terms are given by Epstein and Sobel (1955),

E(r) ^ (
L(e) 10. B + [i - L(e)1 lo.. A ^

^-Uexh^ + h^)
^^^

log [e^/ej - o(i/e^ - i/e^) ^ " ^

If

and

then

- log A log B o 1

log (e^/6^) ^ s^

e = s (80)

k = e /0,
o 1

e = e , s, or e (8i)

[b log B + (1-e) log a]

Flog k - (k-l)/k1

E (r)^ - ^°^ ^ ^°^ ^
(82)

^
(log kr

o

r)^ Ld-g) log B + alog A 1 ^

log k - (k-l)/kj

An example of hypothesis testing using the above method is to find

a sequential replacement procedure for testing

(83)



27

H : e = e = 7500 hours vs
o o

H : 6 = e = 2500 hours

a = 6 = .05

n = 100 .

An approximate solution is

_i<3r,-V(t)/3750^^g

with

v(t) = loot ,

For this test,

a' = .032 and 8' = .051.

In the case being considered, B = B , since the acceptance of H involves

no excess over the boundary. The exact solution (B,A ) is

_1_ ^ _r -lOOt/3750 ^ ,, „
Yg < 3 e < 13.25

a = 8 = .05 .

Now find E(r) and E(T) for

9=0, 6^(= 2500), S(= + 115), 9 (= 7500), and

3 S 9,
o 1

E(r) =
J 2.97 7.22 6.21 using (B, A) rule

3.03 8.10 7.00 using (B,A*) rule

m

E(T)

^1 S 9
o

175 333 227 using (3, A) rule

155 297 220 using (B,A') rule
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-loot /3750 1
6 = " for e "^

To"

t = E (t) = 110
00 00

In terms of B, n, 6 , and k
' ' o'

-6 log B

n(k-l)

If no items fail by t , we stop the experiment and accept H .

aiAPTER III

ESTIMATION OF PARAMETERS

Now assume that the mean life of our population is unknown but the

population is distributed exponentially. The purpose of the life test now

is to estimate the mean life after observing a certain nuBiber of failures or

at some specific time,

Bartholomew (1957) looks at a true industrial situation. Suppose that

we have records of the installation dates of certain pieces of equipment.

Some of the equipment has failed and has not been replaced, and others are

still in use.

In this particular experiment, the experimenter does not have complete

control over the life test. The equipment has not all been installed at

the same time, and he may be required to estimate its mean life at any time,

no matter what stage the experiment is in.

The time which has elapsed since the installment of a certain piece

of equipment is given as T , and the life length is given as t.. This is

known only if

t. < T. .
1 — 1
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The only thing which is exactly controlled by the experimenter is the size

of the sample. It is assumed that each item has the same life distribution

with a given density p(t). The probability that an item has failed at time

T is

P = / "• p(t) dt
^

0. = 1 - P,
"1 1

(8A)

Our estimate will be obtained by the maximum likelihood method which

is given by

^ n a.
^

1 «= n p.
"• Q/-~\ jp(t.) / p^

i=l L^

(85)

a. = 1 if item has failed
1

a. = if item has not failed
1

k= 1

L = log 1

i=l

ni=l ^
(1 - a^) log Q^ + a^ log p(t^) (86)

Since we are assuming all distributions to be exponential, an explicit

solution can be obtained.

p(t) = 1/e e
-t/e o<_t<", e>o (87)

n
L = - I

i=l

T./6

(1 - a^) " + a. (log e + tjB)

6L
setting rr *• we get

Oo

(88)

n

I
i=l

(1 - a.) T./e2 - a./9 + a.t./B^XI X XX (89)

e = 1/k I
i-l

a.t. + (1 - a.) T.XX XX (90)
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The variance for large n has been given by R. A. Fisher

Var (6) =
-r—T- (91)m

6fL ^ _k _ 2ke ^ .^2)

We will show later that

n
E(k, 9) = e j; P . (93)

i=l

Since k comes from binomial sampling with unequal probabilities,

P., the following is obtained.

n
E(k) = I P, . (94)

i=l

From these results.

n

66

Therefore in large samples

2

6'

Var(6) = n . (96)

i=l

Since 8 is unknown, we can estimate this by

Var (6) = -^ . (97)

I P.

i=l
^
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Because of (94), a quick estimate of the variance would be

Var (6) = •— . (98)

Since the maximum likelihood estimator is often biased in small

samples, let's investigate the bias of G;

A A A

Cov (k, e) = E(k; 6) - E(k) * E(9)

''^^^
E(k) E(k) ^ ^

A

ke can be regarded as the sum of n variates from the population.

Therefore

1 -^/^
p(x^) =- e <.x^ < T^

with a probability of

-T./9
e

^
X. = T. .

The expected value of the ith member of the sum can be shown to be

(eP. - Q.T.) + Q.T. .

i 11 11

Therefore

n
E(k; 6) = e I P. . (100)

i=l
^

Using (94),

EcS) = 6 - '7 <^' '^
. (101)

! P.

i=l
^
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Coy (k. 6)

n

i=l
^

Gov (k, 6)

. 1/2

<. [Var (k) Var(e)]

n 1/2

i=l ^ ^
(102)

Therefore

<.E(e) .

n 1/2
|E(6) - 0| < [I P.Q.]

1=1

since

E(e)

n

i=l
^

n n

1=1 1=1
(103)

Also by usins the limiting value of the standard error of 6, we obtain a

weaker result of our bias

|E(e) - 6| < ^j£^
! p.

i=l
^

which is approximately equal to
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(104)n

^ ^i
i-1

^

Exact values of E(e) may be obtained from tables by Grab and Savage (1954).

Let's look at an example of the previous discussion, A random sample of

size ten is drawn from a population of pieces of equipment. The dat;a is

recorded in the following table.

Results of a life test on Ten Pieces of Equipment

Item Lumber 123456789 10
11 21 22 2 21 31 31 1 2

Dates of Instl. June June June July July July July Aug. Aug.
10

Aug.

13 12 23 27 14 25 6
Dates of Fail. June - Aug. - Aug. Aug. Aug. Aug. Aug. -

Life in days 2 (119) 51 (77) 33 27 14 24 4 (37)

T^ 81 72 70 60 41 31 31 30 29 21

The estimate of the mean life is asked for on August 31.

6 = y (2 + 51 + 33 + 27 + 14 + 24 + 4 + 72 + 60 f 21)

= 44 days

std. dev. = 6/ / n

^ ^i
i=l

44
= — = 17.7

/6.15

Using all ten values instead of seven.

e = 38.8
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We tend to overestimate G by 9, as illustrated in the example where

e = 44. This should be intuitively true since we are using the life length

of all n items up to T^, whether the item has failed or not. All n values

are added together and divided by k. Tne true value of in the example is

40.8 .

Another type of problem which is encountered by engineers (Mendenhall

and Harder, 1958) is where failure is caused by more than one event. Suppose

we are studying the failure of electron tubes, and we want to determine the

portion of tubes which fail from gaseous defects or mechanical defects from

normal deterioration of the cathode. It would also be desirable to know

the distribution of failure for each cause. We are now studying a population

with s = 2 subpopulations , representing failure types, mixed in proportions

p and q where

q = i-p 0<_p_<l

Let's assume that the failure times for the ith subpopulation,

i = 1, 2, have a c.d.f.

-t/a.
F^(t) = l-e ^ 0<_t<<». (105)

If p is the proportion of units in subpopulation 1, then the c.d.f.

for the population is

F(t) = pF^(t) + qP^Ct) (106)

and the p.d.f. is

Define

f(t) = pfj^(t) + qf2(t) . (107)

G.(t) = 1 - F.(t) (108)

G(t) = 1 - F(t) . (109)
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G(t) is called the survival function or the probability that a unit

will survive until time t .

If all items of the population were put on test, the proportion in

each subpopulation would change from time to time. At time t they would

be in the proportions

p(t) : 1 - p(t) .

Define these two proportions as conditional mixture proportions

P(t) =

. G(t)
p(0) = p , (110)

Testing n items from the population, the test will be terminated at

the end of a predetermined time T. At this time there will be r failures,

r from subpopulation 1 and r^ from subpopulation 2 . If t.. is the failure

time of the jth item in the ith subpopulation, j =1, 2,

X = t/T

iJ

. , r
.

, then let

and

now

3, = a./T

-x/8.
F.(x) = 1 - e
1

< X < » .

(Ill)

(112)

(113)

Tlie probability of r. and r^ failures along with (n-r) survivals is

multinomial.

X-c^, r^, n-r|n) = -^--^L-^ [pF^ (1)
^1 -

qF2(i) G(l)

n-r

(114)

From the ordered observations, x.t,x.-, ...,x. ; given r. and x.. < 1
il' i2' ' xr. ° 1 . ij ~

is
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Pr (x.^. x.^, ... X.
I

; X. . < 1)
' ir. r. 11 —

x' 1

r » n^ f. (x. .)

(115)

[F^Cl)] i

From this it follows that the likelihood 1 is

1 = "01=7)7 ^(^> P ^ .^ ^i^^ij^ .\ f, (X,.) . (116)
3 = 1 ' j=l 2 2j

Taking the first partial derivatives of log 1 = L

r,x.
6L ^ k(n-r) _ _1 ^ 11
63

^1

(117)

{L ^ (1-k) (n-r) _ ^2 ^2^2

6e. So 3-
(118)

^j^
k(n-r) + r^ (1-k) (n-r) + r^

6p p

where (Mendenhall and Harder, 1958)

(119)

-1/e,

k =
-1/S^ (1/3^ - I/S2)

p e + q e

(1/6, - 1/80)

(120)

p(l) = k .

1 + (q/p)

Set the partials equal to zero, and, since the test has been termnated,

X = 1, to get

p = r. /n + k (n-r) /n

3^ = Xj^ + k (n-r)/r^

(121)

(122)
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B^ = x^ + (1-k) (n-r) /r^ (123)

r.
1

X. = y X. ./r, ;L = 1, 2 (124)

I
1

• (125)K =

1 + (q/p) exp -r-
^1

1

"^2

Solving (121), (122), (123), and (125) simultaneously, we get

k = g(k)
A

_< k <_ 1 •

A

A good first approximation to k can be obtained by using a modif-

ication of the maximum likelihood estimate obtained by Deeraer and Votaw

(1952).

The maximum likelihood estimate of 6.,, where the experiment has been

stopped at time T, comes from the solution

1/6..

of

(6. - X.) (e " - 1) = 1. (126)

3 can be obtained f;rom figure 1 in Mendenhall and Harder (1958), p. 507 .

In practical cases it is reasonable to say that 3. is eithe
1

;r very

large or p = when r. = 0. Let's say that 3. is very large when r. = .

But in experiments. both n and T should be large enough so that the

probability of r^ = or r„ = is very small.

Assume that in our example we know, for• some non-£itatistical reason.

that

•

<

%

'

- '
' "•'
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but the procedure we have been describing produces estimates where

So if

'iven

l^> 32 .

A A

V^2

'i^'z

we say that a crossover has occured. It is now reasonable to say that

A A

"1 ^2

when a crossover occurs. The maximiim likelihood estimate of

S^ = 62 = B

IS given as

and

r X + r X + (n-r)
3 = ^^-t ^-J

(127)

P = — . (128)

As an example of multiple failure classification, let's look at some

work which was done by Acheson and McEwlee (1951)

.

The data recorded in the tables (Mendenhall and Harder, 1958:508) refer

to failure times of ARC- 1 VHF communication transmit ter-recievers of a

single commercial airline. The data in the first table is confirmed failures

and the data in the second table is unconfirmed failures. An unconfirmed
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failure is defined as the unit being reported to have failed and taken from

the airplane, but after further testing it is recorded as still working

properly. Each unit is automatically removed from the plane after 630 hours,

so 630 is time T. It is desirable to estimate the proportion of unconfirmed

failures in the population,

n - 369, r^ - 107, r^ » 218, r - 325

- '^i
X = ^i^ = 0.3034862

T ,

x^ = 0.3644677

3^ = 0.3035 + 0.4112k

$2 = 0.5663 - 0.2018k

* A

p = 0.2900 + 0.1192k .
•

We can simplify the iterative solution by using the following table.

The first step is to estimate B from figure 1 in Mendenhall and

Harder (1958). For x^ = 0.303, the first estimate of S is 3 = 0.380 .

Tlie corresponding estimate of k is k =0.186, which is obtained by solving

for k in

6^ = 0.3035 + 0.4112k .

By using this value of k, we can quickly find ^^^ and p from the above

equation. These values are in row u =

\ 2\u hu Pu \ g(^u> \
0.186 0.380 0.529 0.312 4.622 0.1779 -0.0031

1 0,166 0.3718 0.5328 0.3098 5.024 0.1660 0.0000
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8(V
=

1 + ^%/Po'> '^XP

L

J^ 1_

^10 ^20

^ A

The value of k which occurs when D = is the one which corresponds to

the solution of the maximum likelihood estimate. Since D is positive
A

or zero for k =

A

< k < 0.136
.

A A

Tne change in k, d(k^), can be computed by the following formula

d(k^) =

1 + g i\r (dv^/dk^)

(-0.0081)

1 + (0.1779)^ (-19.04)

= - 0.02

k^ = 0.166

Since D^ = 0.0000, we now have the maximum likelihood estimates of the

parameters. The proportion of unconfirmed failures is

P-L
= 0.3098
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Going back to Chapter I, from Theorem 1, we again give the estimates

of 6 for cases 1, 2, and 3. For cases 1, 2, and 3 respectively, 6.(1=1,2,3)

is given as follows

k

e = ^^— . (129)
R

The V.'s are calculated according to (15) .

'2 "
'e = J . (130)

R

where the V. 's come from (17)
J

k

'3 "
'i=ll

(131)
R

where the V.'s come from (16) . ^.

Let's now look at a structure which usually requires more than one

failure within the structure before the entire structure fails. This type

of problem was considered by Bimbaum and Saunders (1958) ,

If it takes k failures for the structure to fail, then define

S^ - life length until k failures have occurred,

6 = instantaneous damage on a component of the structure,

with (17) and (18) being the c.d.f. and p.d.f. respectively.

Referring to (19), let

S
r

o

Then U is a r. v. with density

U = 2 / ^ Y^ (t) dt (132)
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h(U; k) r U^~^ e~^'/^ U > (133)

(k-DlZ*^

which is a x^(2k) .

If e is estimated by (130) , this is said to be the "best" estimate

in the sense that it is unbiased, minimum variance, efficient and sufficient

(Epstein, 1956). The variance of Q is given by

Var (e) =
I »

A two-tailed confidence interval for 6 is given as follows

2r e 2r e
r,n r,n

< e < • (134)

X^(a/2,2r) . x^(l - ct/2, 2r)

The final estimating procedure is from Plackett (1959). Suppose that

we are going to bum 10 lamps for 2 months, and on the basis of the number

of failures in two months, we would like to predict the percentage of lamps

which will bum more than 6 months.

The underlying distribution is assumed to be normal, with mean and

standard deviation o .

At the end of 2 months, 7 lamps have failed, and their respective life

lengths are: 1050, 1089, 1272, 1302, 1345, 1380, and 1423 hours.

The first method of estimation is graphical (Plackett, 1959). From

this figure, it is possible to estimate 6 and o by using the end points

6 - 1.54a = 1050

6 + 0.38a = 1423

6 = 1349

*

a = 194
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The efficiency of these estimates compared to the "best" estimate is

A A

89.2% for 6 and 89.7% for a ,

Another method for estimating 6 and a is the following. To estimate

8, multiply each value by 0.0244, 0.0636, 0.0818, 0.0961, 0.1089, 0.1207,

and 0.5045 (Gupta, 1958) respectively and add the products,

= 1355

In the same manner, multiply each value by -0.3253, -0.1757, -0.1058,

-0.0502, -0.0007, 0.0470, and 0.6106 .

a = 200

The appropriate coefficients for samples of size n <_ 10 have been tabled

by Gupta (1958). For large samples (n > 50) (Plackett, 1959),

avcra,c;e rank
p. = u

n

t. = corresponding normal equivalent deviations.

For an example, let n = 300, sampling from the same population as above.
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Central Life

f Cum. f

Average
rank

Pi t.
1

975 2 2 1.5 0.0050 -2.576

1025 2 4 3.5 0.0117 -2.267

1075 3 7 6.0 0.0200 -2.054

1125 6 13 10.5 0.0350 -1.812

1175 7 20 17.0 0.0567 -1.583

1225 12 32 26.5 0.0883 -1.351

1275 16 48 40.5 0.1350 -1.103

1325 20 68 58.5 0.1950 -0.860

1375 24 92 80.5 0.2683 -0.618

1425 27 119 106.0 0.3533 -0.376

A method which uses the data in the table, is given by Plackett (1959), giving

the following results; ^ .

e = 1503 and a = 207 .

Tae approximate method using only the end points, gives these results

e - 2.576 a = 975

6 - 0.376 a = 1425

A A

e = 1502 and a = 205 .

The estimates obtained by solving awkward equations for the maximum

likelihood estimate gave

e = 1503 and a = 207

These results are not much different from the ones using the easier method,

using only the end points.
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\ COKCLUSION

Taere may be a good ansvjer to the question concerning the validity

of the exponential distribution being used in life testing situations.

There are those who favor using the exponential distribution in life testing

situations and those who are opposed. The answer may be that in a sense,

they are both right. For example, suppose the data appears to be non-

exponential due to early failures (Miller, 1960). Let's assume that the

failure rate of whatever is being tested is loiown to follow the exponential

distribution. A random sample is dra^m from this population and placed on

test. For some unkno\m reason there are many failures early in the experiment,

Because of these early failures, it is possible to show that the data does

not fit the exponential distribution, but on the other hand, after these

early failures, the other failures follow the exponential very closely. So

if this were an actual case, both sides would have a good argument.
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^^STRACT

Tne purpose of this paper is to show some aspects of sequential

life testing and their applications.

Life testing is used where the data being studied is the length of

life of the product, machine etc., which discontinues because of failure.

There are several types of failure. An item can fail through normal constant

wear, fail only when a force is exerted on the item, or fail because of an

accident which damages or destroys the item.

The first chapter of the report gives the underlying distribution of

sequential life testing and some related theorems. The distribution most

often used is the exponential distribution. Both the pros and cons of using

the exponential are given. Tlie distribution really depends on what is being

studied, but some authorities tend to use the exponential nearly all the

time. Some of the other popular distributions are the Weibull, Poisson, and

gamma. Although it is not mentioned in the first chapter, the distribution

of one method discussed in Chapter III, is assumed to be normal.

Chapter II is concerned with testing hypotheses. The most frequent

type of hypothesis which is tested is

H : 6 = e vs
o o

1 1 o

The first method is to determine the sample size, a number of failures

r, r <, n, and a time T. If r failures occur before time T, then H^ is

rejected, and if time T occurs and there have only been k failures,

k < r, then H is accepted,
o

Two nonparametric tests are given for determining the percentage of

items which will live a certain length of time.



Another method of testing hypotheses is by using the technique of

regular sequential analysis. This involves the evaluation of a function

inside inequality signs, after each failure. Whenever the inequality is

violated, the testing is stopped, and a decision is made concerning the

null hypothesis.

Chapter III of the report deals with estimation of parameters in life

testing situations. A typical problem would be that a company has developed

a new product, and the company officials would like to know the mean life of

the product.

One method of estimation is to use a design which is similar to one

used in hypotheses testing. From a sample of the. population, test the

product until r failures occur. Then from the information recorded,

estimate the mean life of the product.

There are various imcontrolled factors which may occur in life testing

situations, these factors should be taken into consideration while making

estimates.

Some methods of estimation are more exact, theoretically speaking, than

others. But in practice the approximate methods, which are easier to calculate,

seem to give almost as good results.


