THE STRUCTURAL BEHAVIOR AND CRACK PATTERNS OF HIGHER STRENGTH CONCRETE BEAMS/

BY
ABDEL-AZIZ A. MAKKAWY

B.S., CAIRO UNIVERSTY, 1979

A MASTER'S THESIS
SUBMITTED IN PARTAN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
MASTER OF SCIENCE

DEPARTMENT OF CML ENGINEERING
KANSAS STATE UNIVERSTY MANHATTAN, KANSAS

1986

MAJOR PROFESSOR

TABLE OF CONTENTS

PAGE
List of Tables v
Liat of Figures. viii
Chapter 1 - Introduction. 1
Highor Strongth Concrete Uage. 2
Research Basia and Objectives 3
Chapter 2 - Selection of Materiala. 5
Introduction. 5
Steol Reinforcing Bars. 5
Highor Strength Concrete Ingredienta. 6
Cement. 6
Coarse Aggregates 6
Strength 7
Particle Shape and Surface Texture 8
Maximum Size and Gradation 8
Mineralogy and Formation 9
Aggregate-Paste Bond 10
Fine Aggregatea 11
Water 11
Water-Reducing Admintures 12
Chaptor 3 - Mir Proportioning 13
Introduction. 13
Cement Content 13
Water-Cement Ratio. 14
Aggregate Proportions 14

TABLE OF CONTENTS CONTINUED...
PAGE
Resestch Investigstion of the Mix Proportions. 15
Chapter 4 - Discnssion of Test Pnrpose sind Design 17
Introdnction 17
Strain at Ultimate Stress 17
Shspe of the CompressiveStress Block.18
Vertical Deflection 19
Maximum Bottom Crack Width. 21
Test Elements sind Techniqnes Used 22
Focis on Analysis Goals. 24
Strain Regression Model 25
Compressive Stress Block
Regression Modol 25
Moment Calcnlstion Based on Test Dsta 26
Momont Calcnlation Using Compressive Stress Block Regression Modol 26
Moment Csicnlation Using Rectangnlar Stress Block 27
Moment Cslenlation Using Triangnlar Stress Block 28
Vortical Deflection at Midspan 29
Maximum Bottom Crack width 30
Chspter 5 - Experimental Work sind Test Resints. 31
Mixing sind Placing 31
Caring 32

TABLE OF CONTENTS CONTINUED...

Page

Test Setnp. 32
Test Procedure. 33
Test Results, Geueral Discussion. . . 34
Straiu Data Analysis.......... 35
Compressive Stress B10ck. 36
U1timate Moment Calcnlations. . . . 38
Miđspan Vertical Deflection..... 38
Crack Confignration 39
Early Cracks 39
Middle Stage Cracks........... 39
Later Stage Cracks 40
Failnre Modes 40
TheRatio h_{2} / h_{1}. 42
Chapter 6 - Summary and Conclinsions 43
Summary 43
Couclisions 43
Appendiz I References. 45
Appendiz II Details of Some Calculatious. . . . 49
Numerical Example of the Preinminary Reinforcement Desigu Calculations for Beam \#1. Table 4.150

Numerical Example of the Revised Reinforcement Design Calculations for Beam \#1, Table 4.253

Numerical Example for the Ca1culation of Moment, Deflection, and Max. Crack Width of Beam \#1 at the Load Level of $87,3001 \mathrm{bs}$. . . 55

TABLE OF CONTENTS CONTINUED...

PAGE
Ultimate Shear Capacity of Beam \#1 and Beam \#2. 62
Appendix III-Tables and Figures. 64
Appendix IV - Notation. 184
Acknowledgements 186
Abstraot

LIST OF TABLES

TABLE

PAGE
2.1 Tenaile Test Resinlts for Steel Reinforcing Bars.65
3.1 Review of Mix Proportions of Some Previons Work 66
3.2 Mix Proportiona Used for Different Beams 67
3.3 3-Day Cylinder Test for Different Beams 68
4.1 Preliminayy Reinforcing Steel Design Calcalations 69
4.2 Revised Deaign Calcnlationa for Steel Reinforcing Bara Based on Actnal Yield Stresa of Steel 70
5.1 Compressive Strength Teat Resilta of 3 in. x 6 in. Cylinders for Beam \#1 (Age $=108$ Days) 71
5.2 Compreaaive Strength Test Reanlts of 3 in. $x 6$ in. Cylinders for Beam \#2 (Age = 108 Days). 72
5.3 Compressive Strength Test Reanlts of 3 in. $x 6$ in. Cylinders for Beam \#3 (Age $=84$ Days) 73
5.4 Compreaaive Strength Test Resnlts of 3 in. $x 6$ in. Cylindexa for Beam \#4 (Age $=70$ Days) 74
5.5 Average Compressive Strength Valnes for Different Beama 75
5.6 Load va. Strain Data for Beam \#l. 76
5.7 Load va. Absolnte Average Strain Data for Beam \#1 (Average of Side 1 and Side 2). 79
5.8 Load vs. Strain Data for Beam \#2. 80
5.9 Load vs. Absolinte Average Strain Data for Beam \#2 (Average of Side 1 and Side 2) 83
5.10 Load vs. Strain Data for Beam \#3 84
5.11 Load va. Absolnte Average Strain Data for Beam \#3 (Average of Side 1 and Side 2) 87

LIST OF TABLES CONTINDED...

Table

PAGE

5.12	Loadvs. Available Strain Data for Beam \#4.	88
5.13	Load vs. Absolnte Arerage Strain Data for Beam \#4 (Average of Side 1 and Side 2).	91
5.14	Properties of Cracked Section at Midspan of Beam \#l Baged on Regression Analysis.	92
5.15	Properties of Cracked Section at Midspan of Beam \#2 Based on Regression Analysis.	93
5.16	Propertiea of Cracked Section at Midspan of Beam \#3 Based on Regression Analysis.	94
5.17	Properties of Craoked Section at Midspan of Beam \#4 Based on Regression Analyais.	95
5.18	Compariaon Between Test Moment and Calcnlated Moment Using Different Methoda for Beam \#1.	96
5.19	Comparison Between Test Moment and Calcnlated Moment Using Different Methods for Beam \#2	97
5.20	Comparison Between Test Moment and Calcnlated Moment Dsing Different Methoda for Beam \#3	98
5.21	Compariaon Between Test Moment and Calcnlated Moment Uaing Different Methods for Beam \#4	99
5.22	Comparison Between Measnred and Calcnlated Vertical Deflection at Midspan for Beam \#1.	100
5.23	Compariaon Between Measnred and Calcnlated Vertical Deflection at Midspan for Beam \#2.	101
5.24	Comparison Between Measnred and Calcniated Vertical Deflection at Midapan for Beam \#3.	102
5.25	Comparison Between Measnred and Calcnlated Vertical Deflection at Midapan for Beam \#4.	103
5.26	Comparison Between Measnred and Calcalated Maximom Bottom Crack Width for Beam \#l.	104

LIST OF TABLES CONTINUED...

TABLE

PAGE
5.27 Comparison Botween Measuredand Calcnlated
Maximom Botom Crack Width for Beam \#2. . 105
5.28 Comparison Between Measured and Calculated $\quad 106$

LIST OF FIGURES CONTINUED...
FIGURE PAGE
5.32 Load vs. Vertical Deflection at
Midspan of Beam \#2............ 150
5.33 Load vs. Vertical Defleotion at Midspan of Beam \#3. 151
5.34 Loadvs. Vertical Defleotion at Midspan of Beam \#4. 152
5.35 Crack Pattern of Boam \#1(Side 1 and Side 2)153
5.36 Detaila of Crack Propagation of Beam \#1 Side 1 Part A 154
5.37 Details of Crack Propagation ofBeam \#1 Side 1 Part B155
5.38 Details of Crack Propagation of Beam \#l Side 1 Part C 156
5.39 Details of Crack Propagation of Beam \#l Side 2 Part A^{\prime} 157
5.40 Details of Crack Propagation of Beam \#l Side 2 Part B' 158
5.41 Details of Crack Propagation of Boam \#1 Side 2 Part C' 159
5.42 Crack Pattern of Beam \#2(Side 1 and Side 2)160
5.43 Details of Crack Propagation of Beall \#2 Side 1 Part A 161
5.44 Details of Crack Propagation of Beam \#2 Side 1 Part B 162
5.45 Details of Craok Propagation of Beall \#2 Side 1 Part C 163
5.46 Details of Crack Propagation of Beam \#2 Side 2 Part A^{\prime} 164
5.47 Details of Crack Propagation of Beam \#2 Side 2 Part B^{\prime}. 165
5.48 Detaila of Crack Propagation of Beam \#2 Side 2 Part C' 166

LIST OF FIGURES CONTINUED...
FIGURE PAGE
$\begin{array}{ll}5.49 & \text { Crack Patterin of Beam \#3 } \\ & \text { (Side } 1 \text { and Side 2). } 167\end{array}$
5.50 Details of Crack Propagation of Beam \#3 Side 1 Part A. 168
5.51 Details of Crack Propagation of Beam \#3 Side 1 Part B169
5.52 Details of Crack Propagation of Beam \#3 Side 1 Part C. 170
5.53 Detaila of Crack Propagation of Beam \#3 Side 2 Part A^{\prime}171
5.54 Details of Crack Propagation of Beam \#3 Side 2 Part B'. 172
5.55 Detaila of Crack Propagation of Beam \#3 Side 2 Part $C^{\prime} .$. 173
5.56 Crack Pattorn of Beam \#4 (Side 1 and Side 2) 174
5.57 Details of Crack Propagation of Beam \#4 Sido 1 Part B 175
$\begin{array}{lll}5.58 & \text { Details of Crack Propagation of } \\ & \text { Beam \#4 Side } 2 \text { Part B, } 176\end{array}$
5.59 Load va. Maximum Bottom Crack Width of Beam \#1 177
5.60 Loadva. Maximum Bottom Crack Width of Beam \#2 178
5.61 Load vs. Maximum Bottom Crack Width of Beam \#3 179
5.62 Load vs. Maximum Bottom Crack Width of Beam \#4. 180

$\begin{array}{llll}5.64 & \text { Max. Bottom Crack Yidth vs. } h_{2} / h_{1} \\ & \text { for Beam \#2. }\end{array}$
5.65 Max. Bottom Cract Width vs. h_{2} / h_{1}
for Beam \#3...................... 183

CHAPTER 1

INTRODUCTION

Abstract

Dnring the last century the mechanical strength of concrete varied littlo. Researchers paid more attention to decreasitug the design safety factor rather than increasing the altimate strength of concrete. The ratio between nltimate stress and service stress has decreased dne to a greater knowledge of the mechanical properties of the materials used and also better quality standards of these materials.

In the last decade there has beon a rapid growth in the intrest of higher streugth coucrete Becanse of the development of high range water-redncing admixtnres aud reliable machinery for mixitg and transporing, high strength coucrete has become a field product rather than a 1aboratory prodnct (24).

The development of higher strength coucrete has spanied a rise in many uses for a more viable prodnct. Dnring 1982 , water reducing chemical admixtnres of all typos, inclindigg high range water-redncing admixtnres, were used in an estimated 112 million cubic yards (85 million cnbic meters) of concrete in the United States. This is the equivalent of abont 71 porcent of all concrete nsed in this conatry (15).

In this investigation, the classification of higher strength concrete according to its niaxial compressive strength is as follows:

$$
\begin{array}{cc}
6,000 \rightarrow 12,000 \mathrm{psi} & \text { Higher Strength } \\
(41.4-->82.7 \mathrm{MPa}) & \text { Concrete } \\
\text { Greater than } 12.000 \text { psi } & \text { High Strength } \\
(>82.7 \mathrm{MPa}) & \text { Concrete }
\end{array}
$$

Higher Strength Conorete Usage

Builders were quick to see the advantages of using higher strength concrete. High rise binildings and long span bridges have especially benefited from the latest resesrch and designs. The cost faotor is also advantageons. Examples are as follows.

1. In tall concrete bnildings the nse of higher strength concrete provides the following:
a. It prodnces smaller colomins in lower floors. Conseqnently there is more income-prodncing floor area.
b. It rednces the total bnilding weight and height for a given nnmber of stories. These reduotions are significant in seismic design where mass and height are critical variables.
2. For long-span bridges, the combination of high-strength concrete rednces dead load sind with prestressing to control deflection, has extended the range of concrete bridge spans to over 900 feet (274m) (24).

Researoh Basis and Objectives

Important design eqnations fonnd in the ACI 318-83 Code (32) are derived from tests of materials and members for Which the compressive strengths were mostly less than 6,000 psi (24). Cantion shonld be exercised in extrapolating data from lower strength to higher strength concrete (38). This problem led to an enlarged research area for stndying the mechanical properties as rell as the structiral behavior of higher strength concrete.

Several research programs have been carried out in different niversities aronnd the conntry. The research reported herein is part of an extensive program at Kansas State University. The objectives of this work are the following:

1. To study the compressive stress block of higher strength concrete beams with different stecl ratios, made using locally - available aggregates. The nominal compressive strength is $12,000 \mathrm{psi}(87.2 \mathrm{MPa})$.
2. To determine the strain corresponding to the nltimate compressive strength f_{c}^{\prime}.
3. To stindy the changes in the maximam bottom crack width and crack propagation at different load increments.
4. To verify the validity of different formilas that oalcnlate vertical deflection and maximam crack width (based on normal strength concrete) for higher strength concrete.

CHAPTER 2

SELECTION OF MATERIALS

Introduction

Strength, cost, and field performance are the govering factors in developing the optimam mixture for higher atrength conorete (5). It reqnires the highest quality of materials which should be parchazed locally for economic reasons. Becanse of the variance in day to day nse of materiala in the field, carefnl consideration mast be taken with quality control (35).

In designing higher atrength concrete atructural elements, it is more appropriste to uae steel reinforing bars with a higher grade. This combination increases the load carrying capaoity of the strictiral element.

Steel Reinforcing Bara

Deformed bars of Grade 60 were considered for design. Samples of \#3, \#4, \#7, and \#9 bara were tested to find the yield point. Resnlts are shown in Fignre 2.1 and Table 2.1 .

Highor Strength Concrete Lugredieuts

Cement

There are many factors that are important when dealiag with the coutrol of quality and nuiformity of cement prodnction. Even thongh Portiand Cement is the recommended choice for higher strength coucrete, chemical composition (ASTM C-114), cement fineness (ASTM C-115), and cube strength (by ASTM C-109), are the most important for quaity control.

Cement is one of the major factors attribnted to coucrete strength. Varions cementa have differeut effects on concrete compressive strength. This is shown in fignre 2.2 . Experiments such as Blick's (2) show resulta indicating that there is an agremeut between the compressive atrength valnes for mortar cabes and concrete cabes when ning the same type of cement. Even with these test results, it is recommended that periodic sampling and testing be doue during the conrse of project.

Coarse Aggregates

Coarse aggregates occapy a relatively large portion of coucrete volnme and therefore their selection is important. Different types of aggregates with the same mix proportion resilted in variations of the compressive strength as mech as twenty nine percent (12).

The basis for aelecting cosrae aggregates for higher strength concrete is different from that of normal strength concrote. In normal strength concrete, the quality of hsrdened cement paate has a grester offect on the compressivo strength than coarse aggregatea (5). In higher strength concrete the cement psste and coarso aggrgstes have almoat the same compressive strength.

The following are important factors to be conaidered when selecting conrse aggregstes for higher strength concrete:

1. strength
2. particlo shape and surfsce textnre
3. maximum size sind gradation
4. mineralogy and formation
5. aggregate-paste bond

Strength

In normsl strength concrete, the mechsinical interlocing of the coarse sgregatea contributes to the comprossive strength of the concrete (12). This is verified by the shape of the fsilure snrface which is highly irrognlar and inclindea a large smonnt of bond failure (7).

In higher strength concrete cosrse aggregates with a compressive strength eqnal to or greater than that of the hardened cement are required.

```
Most quality aggregates available today have a crishing strength of over 12,000 psi ( 82.7 MPa ).
```


Particle Shape and Sucface Texture

The workability of fresh concrete and the mechanical interlock of hardened concrete are affected by the particle shape of the coarse aggregates. Crished stone aggregates with a cnbic angnlar shape and a minimum content of flat and elongated particles, are the best choice for higher strength concrete (35). Crished stone coarse aggregates prodnce stronger concrete than a ronnded coarse aggregates. Fignre 2.3 showa a comparison between two types of conrse aggregates on the basis of compressive strength.

Changes in particle shape and textnre also affect the mixing water reqnirement. Freedman (8) proposed the nae of the void content as an index of differnce in particle shape and textnre of aggregates of the same grading.

Maximum Size and Gradation

The water reqnirement for the concrete mix is affected by the sinface area of coarse aggregates which is a finction or the mazimom aggregate size. Several researchers (3, and 14) have conclinded
that in higher strength concrete mixtires, the compressive strength increases as the aggregete size decreases. There mist be some limitations to this conclision in order to avoid excessive secondary effects sinch as shrinkage and creep.

At each strength level there is an optimum size for the different types of aggregates. It is recommended that trial batches be performed for each specific job application. A maximum valne of 0.4 in. (10 mm) is nsinaliy acceptable for most applications (39). Fignre 2.4 shows the maximum size aggregate for strengthefficiency envelope.

A nniform grading is preferable to obtain the densest mix and enhanse the degree of compaction. It is important to have the coarse aggregates free from detrimental dnst coatings that may affect the water reqnirements of the miz and also the strength. It is always recommended that the crished stone aggregetes be washed before nse (36).

Mineralogy gnd Formation

Parrot (21) conclinded that the rock formation has an offect on the compressive strength of concrete. As the Concrete ages, the effect is more prononnced. An example of the mineralogy
effect on concrete strength was stest nsing granite rock. A concrete strength of 17,000 psi (117 MPa) was achieved (28).

Aggregste-Paste Bond

Bond strength depends on the paste strength as well as aggregste properties. Better bonding is nsmally obtained wofter, porons and mineralogically heterogeneons aggregste particles. Bond strength is also affected by the chemical properties of the sggregstes.

A stronger aggregate-psste bond is necessary in prodncing higher strength concrete. The nse of quality crished stone meeting ASTM C-33 reqnirements provides adeqnate bond strength properties (36). Alexander (1) conclinded that the nse of angnlar shaped crished stone aggregates With a maximum size of $1 / 2$ inch prodnces the best resints of bond strength.

In this investigstion, qnartzite stone with $3 / 4$ inch maximum size, from Lincoln, Kansas was nsed. A previons stindy involving the sieve analysis and physical properties of quartzite was completed by Nikaecn (18) at Kansas Stste University.

Fino Aggrogatos

The nse of fine aggegates in higher strength concrote is noceasary to improve workility and snrface finishing. This is important becanse the crished stone commoniy nsed for aggrogates redncos workabality and resilts in a rongh snrface.

Abstract

Ronnded and smoother particlea of sand are more appropriato than sharp, angnar, sind rongh sands for higher strength concrete (16). Natnral sands are better than mannfactnred sand becanse they prodnce higher strengths in concrete (5).

Gradation of fine aggegates for higher strength concrete is governed by the offect on water reqnirements of the mir (38). Aggregates with a finenesa modnins of 2.7 - 3.2 have boon most satisfactorly nsed in highor strength concrete (29). In this investigation, Eaw River sand pssed throngh sieve nnmber fonr was nsod. The characteriatics of this sand wore reported by Nikaeen (18).

Water

Water quality requirements sie the samo for both higher strength and conventional concrote (38). Mixing water is specified to be of potable quality. At times when mixing water of poor quality mat be naed, specimens made with this water shonid bo compression tested at sevon and twonty
oight days. The water is aceptable if the loss of compressive streugth does not exceed ten porcent of the strength of specimens made nsing distilledwater (ASTM 94), (34).

Water-Roducing Adnixtures

Water redncing admintirea rednce the water reqnirements of the concrete mix or increase the siump of freshly mired coucrete. Superplasticizers, (high-range water-reducing admintines) are commonly used in the prodnction of higher streugth concrete. Their nse greatly roduces the water required to prodnce a fresh concrate mix. This is particularly important in higher atragth coucrete dne to the requirement of a 10 water-cement ratio and the nse of crushed stoues in the mixtare. The above requirements decrease the orkability of fresh concretemix.

It is recommended that testing of trial mires be coudncted to determine the amonut of superplasticizer to be nsed in higher strength coucrete. Snperplasticizers mist be used with caution dne to side offecta with ame types of comeut (33). Iu thia iuvestigatiou, a Sikament type superplasticizer was nsed.

MIX PROPORTIONING

Introduction

The mix proportion is more important in higher strength than in normal atrength concrete (38). The two major factora that direct higher strength concrete mir design are the workability of the fresh concrete and the compresive strength of hardened concrote. A very low water-cement ratio is nsialig nsed to satisfy the atrongth reqnirement. The use of snperplasticizers is necesaary to maintain the workability and for compaction pnrposes.

The mix design must satiafy both strength and workability requirements. Cement content, water content and aggregate proportion are factors that affect the final mix characteristics. Many trial batches of concrete are often reqnired to identify optimam mix proportions.

Cenent Content

In each mix design there is an optimum cement content. The strength of concrete may decrease if the cement content is lower or higher then the optimam value. This valne dependa on aggregate type, aggregate size, mixing conditions, cost, slump level, cement fineness, and the amount of entrainedair (5).

Water-Cement Ratio

Abstract

The relationship between water-cement ratio and compressive strength for lower strength concrete is valid for higher strength concrete. A rednction in the watercement ratio increases the compressive strength. However, the minimam valne of the water-cement ratio is governed by the minimum amonnt of water reqnired for the hydration process and the workability reqnired for good compaction (5).

The nse of sinperplacticizers has provided for the nse of lower water-cement ratios and higher slumps. Water-cement ratioa, by weight, have ranged from 0.27 to 0.5 (38). The Water-cement ratio sometimes inclindea the qnantity of snperplasticizer nsed.

Aggregate Proportions

Fine aggregates have considerably more impact on themir proportions of higher strength conorete than coarse aggregatea. The particle shape and gradation of fine aggregates play an important role in the properties of fresh as well as hardened concrete. The amonnt of sand insed in the concrete mix providea for the necessary vorkability and the highest strength for a given paste (38).

The proportion of fine to coarse aggregates has a direct quantitative effect on the paste required. The optimam
amonnt and size of coarse aggregates for a given sand dependa to a groat extent on the fineness modulus of the anad (38).

In conclnsion, aggregate content and the fine to coarse aggrogate ratio for a given mir are determined so that the required characteristics of fresh concrete as woll as hardened concrete are satisfied. Trial batches are recommended as the best way to find these ratios.

Resoarch Invostigation of the Mix Proportions

Previons investigations ($10,17,18$, and 23), have gielded four mix proportions that sucessfaly satiafied strength reqniroments ranging from 8,400 to 12,000 psi (57.9 to 82.7 MPa). Table 3.1 shows the different mix proportions used for the concrete strength levels. I_{n} this research, the ame types of materials were used to provide for similar concrete strength levels (12,000 psi) which was required.

The change in the properties of mir ingredients with age made it necessary to determine the mir proportions by making trial batches. The mix proportions preaented in table 3.1 for the atrongth lovel of 12,000 psi were appropriate values to begin with.

Ten trial mixes were created using the same cement, quartzite, and sand content. Assorted water-cement ratios were nsed for differont trials. Different amounts of superplasticizer (inclided in water-cement ratio calculation) were also used. The water-cenent ratio in the mir trials ranged from 0.28 to 0.3 . The ratio of superplasticizer to the water content ranged from 0.12 to 0.17 , by weight.

A rednction in the sinmprom 2.75 in. to 0.25 in. was observed as the water-coment ratio decreased from 0.3 to 0.28. During this time the 3-day cyinder compressive strangth indicated an increase of 5,300 to 6,100 psi, (36.5 to 42 MPa), as the water-coment ratio docreased from 0.3 to 0.28 .

The water content was sightiy adjusted to meet workability reqnirements due to the difference in characteristics between the small mixer nsed in trial mixes and the iarge mixer nsed for the test specimens. The water content was also adjusted due to the different conditions of tompratire, humidity, atc. The mix proportions used for different beam test specimens are presented in Table 3.2. The 3-day cyinder test resilts are shown in Table 3. 3 .

CHAPTER 4

DISCUSSION OF TEST PURPOSE AND DESIGN

Introdnction

Extensive experimentation at several research centers have provided a fnndamental understanding of the behavior of higher strength concrete. However, different concinsions have been obtained at different phases of experimentation. Becanse of this, it semed likely that fincther work needed to be done in this field to verify the different conclinsions. The nltimate compressive strain and the shape of the compressive stress block are two of the questionable areas for stndy.

Strainat Otimate Stress

The nltimate strain valne of 0.003 in. $/ i n$, specified by the ACI Code (32) is based on testing concrete of normal strength. Different valnes for nlimate strain have been obtained for higher strength concrete. Hognestad (11) reported that with increasing concrete strengths, the maximum concrete strain becomes progressively smaller. Fang, Shah, and Naman (30) observed that the marimam concrete compressive strain was always higher than 0.003 . Carrasquillo, Nilson and Slate (6) reached the same conclnsion. The state-of-therart report on higher strength

Abstract

concrete (38) concinded that 0.003 in./in. seamed to represent satisfactorly the nltimate compressive atrain of higher strength concrete, althongh it is not a oonservative Valne for the nltimate oompressive strain. 0ther researchers (10, 17 , and 23) have recommended that 0.0025 in./in. is a good estimate for nse.

The above mentioned differences may be concinded from the nse of different types of mix ingredients which will definitely change the concrete characteriatics. However, the stidy of the nltimate compressive strain was part of this research.

Shape of the Compressive Stress Block

A rectangnlar compressive stress block with a β_{1} factor varying from 0.85 to 0.65 was specified by the ACI Code (32). B1 hada specified constant valne for all concretes With compresaive strength above 8,000 psi (55.1 MPa). It was this fact that enconraged reaearchers to investigate the validity of the rectangnlar stress block for higher atrength concrete. Different investigators made different singestions for the shape of the compressive stresa block for higher strength concrete.

Lealie, Rajagopalan, and Everard (13) snggested that the triangalar streas block will predict the behavior of overreinforced beams better than the ACI Bnilding Code. Narayanan (17) siggested a parabolicestras block for over-

Wang, Shah, and Naaman (30) concluded that the rectangular stress distribntion gave a sufficiently accurate prediction of the altimate loads and moments for reinforced concrete beams and columis made with higher strength concrete. Based on the wide variety of conclisions and anggeationa, the shape of the compressive stress block was chosen to be investigated in thia research.

Vortical Defleotion

The ACI Code formala for vertical deflection is based on the effective moment of inertia of a concrete section and also concrete elastic modilns. The effective moment of inertia is, function of the modnlus of roptare of the concrete. Zia (31) siggested that the ACI formala for eatimating vertical deflecton is valid for higher strength concrete bint needs the nse of appropriate expresions for the elastic modalis and the modnlis of riptire of concrete. These expressions are resplts of research at Cornell University (6).

$$
\begin{align*}
& E_{c}=40,000 \sqrt{f_{c}^{\prime}}+1,000,000 \mathrm{psi} \tag{4.1}\\
& \text { for } 3,000 \mathrm{psi}<\mathrm{f}_{\mathrm{c}}<12,000 \mathrm{psi}
\end{align*}
$$

or
$\left(E c=3320 \sqrt{f_{c}^{\prime}}+6900 \mathrm{MPa}\right.$
for $21 \mathrm{MPa}\left(\mathrm{f}_{\mathrm{c}}^{\prime}\right.$ (83 MPa$)$
$\mathbf{f}_{\mathbf{r}}=11.7 \sqrt{\mathbf{f}_{\mathbf{c}}^{\prime}} \quad \mathrm{psi}(4.2)$
for 3,000 psi< $f_{c}^{\prime}<12,000 \mathrm{psi}$

OI
$\left(\mathbf{f}_{\mathbf{I}}=0.94 \sqrt{\mathbf{f}_{\mathbf{c}}^{\prime}} \quad \mathrm{MPa}\right.$ for $21 \mathrm{MPa}\left\langle\mathrm{f}_{\mathrm{c}}^{\prime}\right.$ (83 MPa)

Pretorins (22) has presented a simplified approach based on the cracked moment of inertia. His expression for the short -term deflection of singly reinforced beams was:
$\Delta \quad=\mathrm{K} \cdot \mathrm{M}_{\mathrm{max}} \cdot \mathrm{L}^{2} /\left(\mathrm{E}_{\mathrm{c}} \cdot \mathrm{I}_{\mathrm{cr}}\right) \cdot . \quad . \quad .(4.3)$
where
$\Delta \quad=$ midspan vertical deflection, in. $K=23 / 216$
$M_{\text {max }}=$ maximum moment, in. $-K$

L $\quad=\operatorname{span}$ length, in.
$E_{c} \quad=\operatorname{modulna}$ of elasticity of concrete, ks
$I_{c r} \quad=\quad$ cracked monemt of inertia, in. 4

It is intended here to compare the vertical deflections naing test data against those calculated valines nosing both the ACI Code and the Pretorins simplified approach.

Maximum Botton Crack Iidth

Gergely and Littz (9) suggested an oxpression for the maximom bottom crack width for concrete:

$$
\begin{equation*}
w \quad=0.091 \cdot \sqrt[3]{t_{b A}} \cdot R \cdot\left(f_{s}-5\right) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { w maximam bottom crack width, in. } 10^{-3} \\
& t_{b}=b o t t o m \text { clear cover, in. }
\end{aligned}
$$

$$
\mathbf{A}=\mathbf{A}_{\mathbf{e}} / \mathbf{m}
$$

$$
A_{e}=2 b(t-d), i n .^{2}
$$

$$
m=n o . \text { of steel bars }
$$

$$
\mathbf{R}=h_{2} / h_{1}
$$

$$
f_{s}=s t e ⿻ l
$$

aigensional Notation

This expression was based on specimens made of normal strength concrete. The validity of the expression for higher strength concrete is investigatedin this research.

Based on the previons discussion, the research has been organized into the following fnnctional steps:

1. To design fonr beams with different stecl ratios, ($0.75 P_{b}, 0.5 \quad P_{b}, 0.25 \quad \rho_{b}$, and $200 / f_{y}$). 2. To test the beams nnder symetric loading at the third points and collect strain data at each loading stage.
2. To measnre the vertical deflection at the conter line of each test specimen for each different load stage.
3. To trace the crack propagation and measnre the maximum crack width on both sides of the test specimen at ach load stage.

Test Elements and Techniques Used

The availability of a wooden form shownin fignre 4 . 1 and also a steel loading beam shown in fignre 4.2, made it convenient to choose rectangnlar beams with a total length of 7.5 ft. (2286 mm) and cross-sectional dimensions of 8 i 12 in. (203 x 305 mm).

The beams were designed with the above mentioned ateel ratios. The stindy of the bending behavior of nnderreinforced beams was the target of this investigation. Stirrnps were nsed in the onter thirds of the beam to avoid diagonal tension failnre.

The preliminary beam design based on the nse of grade 60 steel is reported in Table 4.1. Fignre 4.3 shows the reinforcement details of beam \#1 with a steel ratio of 0.75 Pb. Fignre 4.4 shows the reinforcement details of beam \#2 with a steel ratio of $0.5 \quad P_{b}$. Fignre 4.5 shows the reinforcement details of beam \#3 with a steel ratio of 0.25 P_{b}. Fignie 4.6 ahows the reinforcement details of beam \#4 With a steel ratio of $0.07 \mathrm{P}_{\mathrm{b}}$.

The calcilation was revised based on the actnal jield stress of different stefl reinforcing bars. Table 4.2
presents the revisod design calcnlation. The revised valne for the stirrnp spacing for boam \#2 tnrind ont to be smaller than the actnal valne nsed for the beam. Becanse of this, a diagonal tension failnre was predictod for thia boam.

The revisod valno of the steel ratio for beam \#l was eqnal to P_{b}. The rovisod stirinp spacing was sifigty smallor than the actnal spacing nsed for this beam. A balanced failnro (simnltanoons comprossive-tenaile failnre), or a diagonal tonsion failnre was predictod for boam \#l. Both preliminary and revised calcnlations are shown in Appondix II.

Strain valnos woro moasnred with olectrical resiatance strain gages, type EA-06-240LZ-120. The characteristics of this typo of gage aro shown in ref. (37). The same arrangemont of twonty fonr gagos shown in Fignre 4.7 was nsed for all tost boams. Two, short,gage-length gages wore placed 2.5 in. apart at each gage location. This was done to avoid the offect of coarge aggregate size which conld provide misieading data if longer gage was nsed. Dnring the testing operation, strain gages were connectod to a high-spood data aqnisition system in order to record the strain data at oach load stage.

Fignre 4.8 shows the test setnp and loading arrangement that was nsed for different beams. With tho asemblage of the strain data for the wholo toating conrse, a complete

Abstract

pictnre of the actual strain distribntion at the test specimen's center line can be visnalized.

To measure the compressive strength of concrete, 3 in. x 6 ine cylinders were used. A dial gage was used to measure the strain corresponding to different stress levels.

A magnifying measnring tool with an accuracy of 0.02 mm (0.0008 in.) wss nsed to measire the maximam crack indthat different losd stages. Auother tool with a relatively smaller magnificstion factor was ased to trace the propagations of cracks at each load stage.

Focns on Aualysis Goals

The previons seotion discnssed different techniques nsed to obtain the necessary data ueeded for analysis. The analytical part of this research was based in part on statisticsi sualysis using the Statigtical Aualysis System (SAS) available on the main frame compnter at Kansas Stste University.

The main goals of analysis were, to obtain a mathematical model for the stress-strain relationship as a basis for stressestrain transformations, to find reasonable regressiou models for both strain and stress distribntions for different loading stages, and to compare with resilts obtained from different expressions for vertical deflection and maximon bottom crackwidth.

Strain Regression Model

An important part of the snalyais wss to fit a straight line model nsing least sqnsreregression throngh the actnsl strain data obtained at esch load stage for different test beams. This step is important becanse straight 1 ine strain distribntion ia a bsic assnmption for all formnlas of analysis in this ares.

Compressiye Stress Block Regression Model

A part of this resestch was to find the compressive stress block based on the actnal strsin dats and the stresstrain model derived from testing cylinders. and also to find a regression model for the compressive atreas block based on the straight line strain regression models and the stressestrsin model derived from cylinder testing. It is clear that both rectangnlar and triangnlar stress diatribntions can be obtained provided one finds the position of the nentral axis from the strain straight line regression model sind determines the nltimate compressive stress fond in the compressive stress block regression model. Valnes corresponding to each load level csn be derived nsing thia process.

Moment Calcalation Based og Test Data

The Figure sbove shows that the maximum moment stesch losd stsge is PL/6. A linest load-monemt rolstion is obtsined for all loading stages bssed on test dats.

Moment Calculation Using Compressive Stfoss Bleck Regrossion Model

Linear Strain
Reg. Model

Stress Cubic
Reg. Model

The calculstion of moments using the compressive stress block regression model ws based on integrating the functions obtsined by regrossion in order to find the resnltant force. The line of action of this force was determined by integrating the first moment of ares of thestress
block aronnd the nentral axis. The lover arm then can be determined and conseqnently the internal moment valne. More details abont this procedire are in Appendix II.

Moment Calcniation Using Rectaggulat Stress Bloct

$$
\begin{gathered}
\text { Rectangular Stress } \\
\text { Distribution }
\end{gathered}
$$

The ACI Code 318-83 (32) singests the rectangilar stress block for moment calcalation. In the illnstration fignre above, the valne of c can be obtained from the strain regression model. The valige of the compressive stress at the top fibers, can be obtained from the comprosive stress block regression model. Then the following eqnation can be nsed to ovalnate the compressive force C.

$$
\mathrm{C}=\left(0.85 \mathrm{f}_{\mathrm{c}}\right) \cdot(0.65 \mathrm{c}) \cdot \mathrm{b} \quad \cdot \cdot .(4.5)
$$

Also the moment can be calcnlated nsing this formina:

$$
M=(d-0.325 \mathrm{c}) . \mathrm{c} \text {. (4.6) }
$$

Moment Calculation Using Triangular Stress Block

The stress -strain relationship is more linear for higher strength concrete (19). Consequently. a more linear compressive stress block can be predicted. Then, the ne of a triangular stress block is a convenient and simple approach. A triangular stress block yields a smaller val no of the compressive force C than a parabolic stress block does. However, it also slightly increases the lever arm in moment calculation.

The following equations are need to obtain the compressive force C and the moment M, nosing a triangular stress block.

$C=0.5 \mathrm{f}_{\mathrm{c}} . \mathrm{c} . \mathrm{b}$
where
$f_{c}=\operatorname{compressive} s t r e a s$ the top sinface
obtained by regression
c = depth of the central axis obtained by
regression
$M=(d-0.33 c) . C$

Yectical Dofloction at Midspan

The test data obtained for vortical dofiection Wore intended to bo compared with calcilated values using the ACI Code formala (32) and also Pretoriua' simplified approach (22). The ACI equation ia at followa:
$\Delta_{\text {max }}=\beta_{a} \cdot H_{\text {max }} \cdot L^{2} /\left(E_{c} \cdot I_{e}\right) \quad i n_{n} \cdot .(4.9)$

> Cracked Section Notation
> Gross Section Notation
> $\beta_{a}=23 / 216$
> $M_{\text {max }}=$ maximam moment, ia. $-\mathbb{I}$
> $M_{\max }=P L / 6$
> $I_{\text {e }}=$ offective momert of inextia, in. 4
> $\left.=\underset{M_{\text {max }}}{M_{c I}}\right)^{3} \cdot I_{g}+\left[1-\left(-\underset{M_{\text {max }}}{M_{c I}}\right] \cdot I_{c x} \leqq I_{g}\right.$
> $M_{c I}=\operatorname{cracking}$ momont, in. $-X$
> $=f_{r} \cdot I_{g} / Y_{t}$
> $f_{r}=\operatorname{modalaz}$ of rapture of concrete, ksi
> $=7.5 \sqrt{f_{c}^{\prime}}$
> $I_{g}=$ gross moment of inertia, in. ${ }^{4}$
> $=\mathrm{b} \cdot \mathrm{t}^{3} / 12$

$$
\begin{aligned}
\mathbf{I}_{\mathbf{c r}} & =\mathrm{cracking} \text { moment of inertia, in. } 4 \\
& =\mathrm{b} \cdot \mathrm{c} 3 / 3+\mathrm{a}_{\mathrm{s}} \cdot \mathrm{~h}_{1} 2 \\
\mathrm{n} \quad & =\text { modular ratio } \\
& =\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} \\
\mathbf{E}_{\mathrm{c}} \quad & =\text { modulus of elasticity of concrete, ki }
\end{aligned}
$$

The ACI Code equation for deflection
can also be witter as follows:
$\Delta_{\text {max }}=\beta_{\mathrm{a}} \cdot \mathrm{P} \cdot \mathrm{L}^{3} / 6\left(\mathrm{E}_{\mathrm{c}} \cdot \mathrm{I}_{\mathrm{e}}\right) \cdot \cdot(4.10)$

Pretorius equation (4.3) is the same as the ACI Code equation (4.10) except that Pretorius used the cracked moment of inertia rather than the effective moment of inertia.

Maximum bottom crack width

The use of the Gergely and Lati equation (4.4), provides values of the maximum bottom crack width to compare with those observed during testing.

CHAPTER 5

EXPERIMENTAL MORK AND TEST RESULTS

Preparation for the experimental work involved bnilding the steel cages for different beams. The fine aggregates were placed in the oven for three days to evaporate the snrface moiatnre. Special consideration was taken toremove dist and fine particles from the coarse aggregates. Trial mix batches were tested to determine the optimummix design. The mix ingredients were weighed directly before casting to avoid any change in moistnre content that might affect the mix characteristics.

A weekly casting program was planned so that all beams wonld be casted within one month. There were no acnte weather conditions dnring the casting of different beams.

The experimental process before testing inclindedmixing. placing, and cnring of concrete. The fixing of the strain gages was nsially performed immediatly prior to the testing Of the beam.

Mixing and P1acing

The mixer naed had a capacity of throo cnbic feet. The volume of concrete reqnired for each beam was greater than five feet. Two batches weremixed for each beam. A regnlar mixing procednro was implemented. Dry ingredients were
firat mixed and then water was added slowly. The rate of adding water proved to have a direct effoct on the consistency of themix. A good oompaction was achieved by naing a rod vibrator.

A al ump test was performed for each batch and 3 in. x in. cylinder samplea were prodnced and vibrated dnring the same time period. The concrete top surface waa smoothed with the nse of a trowl.

Cnring

The framomork was removed after trenty fonr honra. A cnring techniqne was maintained by covering the beam with a plastic sheot with holes pnnched ont. A continnons water flow was appliod throngh the pniched ont sheot. Thia cining proceaa lasted two months. Then the beams were pittina room where the hamidity is maintained at 75 percent. Beams were nsinally removed to room with normal humidity abont a wook before testing in order to affic the strain gages. A similar coring process was provided for the matching oylinders.

Tast Setip

A nniversal testing machine (Tinins 01sen) with maximum loading capacity of 200,000 lbs. (890 kN) was nsod for testing the beams. Two rocking, roller edges were nsed to snpport the beam. Two bearing plates of 3 in. zi2 in. $x 1$ in.
(76 $305 \times 25 \mathrm{~mm}$) were placed betweon the beam edges and the roller supports to avoid stress concentration.

Hydro-stone mortar was placed between the top sinface of the beam and the 1 oad appilication points of the steci loading beam. It was also placed between the bottom surface of the beam at the edges and the bearing piates. This was done to gnarante a niform and effective load transfer at these critical points and also to avoid any torsional effects dining the testing.

The strain gages were connected to the data aquisition system. The efficiency of the strain gages was checked before testing the beam. The test setup is shown in fignre 4.8.

Test Procedure

Predetermined nniform load intervals were applied. The loading intervals provided a fairly uniform increase in the measnred strain data. However, at nitimate stages this interval rate was decreased. The measnred strain data were printed by the data aqnisition system at each load increment. The vertical defiection was also reported at each load increment. A thorongh investigation of cracks was done at each load stage. The cract propagation was traced and the maximum width was carefilly measired after each load stage.

There were uo serious problems during the testing procednres. The strsin dsts obtsined during the testing of cylinders nsing a disl gse were uot accurste. For this reason, strain dsta for cyinders made with the ssmemix proportions aud the ssme type of msterials used in previons work were adapted for analysis nse in this resestch. The plot of the stressestrsin data sind the cnbic regression expression are shown in fignres 5.1 and 5.2.

Test Results, General Discussion

Cyliuders for each beam were tested withiu the same twenty-fonr hour period. Compressive strength resilts of cylinders corresponding to besm \#l sre reported in Table 5.1. Table 5.2 shows cyinder test results for besm \#2. Resints for cylinders of beam \#3 are in Table 5.3. Results of cylinders for besm \#4 sre in Table 5.4.

Cyliuder test results of beam \#3 expressed the highest coefficient of vsifation of all the beams (4.6\%). The compressive strength average valnes for beams \#1, \#2, and \#3, (shown in Tsble 5.5) ressonably agree with the uominal compressive streugth of 12,000 psi nsed in the primary design shown in Table 4.1 .

Beam \#l had a compressive mode of failine in the pine bending zone (middie third). Beam \#2 had a diagonal tensiou failnre ss predicted. Beam \#3 had a tension mode failure with minor cracking iuthe onter thirds. Fonr major crscks
occured in the middle third section of beam \#4 withont any cracks on the onter thirds.

Strain Data Aualysis

The strain data was recorded for cach load stage dnring testing. Table 5.6 reports the strain data obtained for beam \#l. The strain values at zero load were subtracted from the correspouding strain data in order to get the absolute value of strain.

The absolute strain values were averaged for each side of the beam. Then an average of both sides was obtained. Table 5.7 presents the absolnte average strain data for beam \#1. Similar calculations were performed on the remaining threo beams. The actual strain and the absolnte average strain for beams \#2, \#3, and \#4 are reported in Tables 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13. The nse of tro, short, gagelength gages provided cousistent data.

The strain distribntions for each side of the beam and both sides together are diagramed. Figure 5.3 shows the average strain distribntion for side one of beam \#l. Figure 5.4 shows the distribution for side two of beam \#l and Fignce 5.5 shows the strain distribntion based on the average values of both sides for beam \#1.

In order to validate the linear strain distribntion wheh is a basic assumpion, a straight line was fitted through the average strain data (average of both sides) for each
load level. A least square regression was noed in this linear fitting. The compnter SAS pactage and its mannals (25, 26, and 27) were nsefnl for accomplishing the statistical work. Fignre 5.6 shows the average strain for beam \#l nsing the least sqnare straight line regression. The scattered valnea in this fignre represent the strain data provided from Fignre 5.6.

The ame analysia was performed on the data for the other three beama. Fignres 5.7, 5.8, 5.9, and 5.10 show the processfor the atrain data on beam \#2. Fignres 5.11, 5.12, 5.13, and 5.14 show the atrain data analysis of beam \#3. The available strain data analysis for beam \#4 is shown in Fignres $5.15,5.16,5.17$, and 5.18 . It was observed that the actnal valnea of the maximum strain at the nltimate stress in the top sinface were always in the range of 0.0023 to 0.003 in./in.

Thronghont the strain straight line regression models, the depth of the nentral axis and the maximum strain were obtained for each load atage. These valnea are ahown in Tables $5.14,5.15,5.16$, and 5.17 for beams \#1, \#2, \#3, and \#4.

Compreasive Stresa Block

The cnbicexpresaion ahown in Fignre 5.1 is the one that best fits the actnal cylinder data. The compressive strength of this cylinder was 11.500 psi. It was
appropriate to use this cylinder for analysis of beams \#1, \#2, and \#3 becanse the average compressive strength of cylinders for these beams was close to the value of 11,500 psi.

A similar cubic expression with differeut coefficients was used for the analysis of dats for beam \#4.

The geueral stress-strain equatiou is as follows:

$$
f_{c}=A 1 \cdot(\epsilon)+A 2 \cdot(\epsilon)^{2}+A 3 \cdot(\epsilon)^{3} p s i .
$$

where

$$
\epsilon=\text { concrete straiu iumicro in./in. }
$$

The following coefficietts (see Figntes 5.1 and 5.2) were used for the analysis of strain dsts for beams \#1, \#2, and \#3:

$$
\begin{aligned}
& \mathrm{A} 1=7.174513 \\
& \mathrm{~A} 2=-0.000434 \\
& \mathrm{~A} 3=-1.85455 \times 10^{-7}
\end{aligned}
$$

And the following coefficients were used for beam \#4.

$$
\begin{aligned}
& \mathrm{A} 1=6.582399 \\
& \mathrm{~A} 2=0.000714 \\
& \mathrm{~A} 3=-6.91179 \times 10^{-7}
\end{aligned}
$$

The above expression was nsed to calcnlate the stresses corresponding to the strain dsts providedin fignre 5.5 for beam \#1. The compressive stress distribntion using this analysis is shown in Figure 5.19.

The compressive stress block based on equation 5.1 and the linear strain data obtaiued by regression (Figure 5.6) is shown in Figure 5.20 for beam \#1. A similar analysis was performed for the data of beams \#2, \#3, and \#4. The results are shown in Figures 5.21, 5.22, 5.23, 5.24, 5.25, and 5.26.

Ultimate Momeut Calculations

The ultimate moment was calculated usiug the test data, the rectangular stress block, the triaugular stress block and the compressive stress block obtained by regressiou. The different methods of calculation are discussed in Chapter Four. An illustrative example is provided in Appendix II.

The moments calculated using differeat methods were plotted agaiust the load value. Figures 5.27, 5.28, 5.29 and 5.30 show these plots for beams \#1, \#2, \#3, and \#4. The ratios between the test moment and the calculated momeut using different methods are presented iu Tables $5.18,5.19$, 5.20. and 5.21.

Midspau Vertical Deflectiou

Figures 5.31, 5.32, 5.33, and 5.34 show a comparison between the measured vertical deflection and the calculated values using the ACI Code and Pretorits approach for different beams. These methods are discussed in chapter Four. It is concluded that both the ACI Code (32) approach
and the Pretorios epproach ere somewhat nnconservetive in calcnleting the verticel deflection for these higher strength concrete beams.

The ratio between the measined and celcalated valnes for vertical deflection et midspan for the different beams are presented in Tables 5.22, 5.23, 5.24, and 5.25.

Crack Confignration

The stndy of cracks dnring the conrse of testing can be clessified into three cetegories: early crecks, midde stage crecks, and leter stege cracks.

Early Craoks

Initial crecks were alweys verticel and close to the center line of the beem. They elways started from the bot tom surface. The cracks had a rapid creck propegetion but there were minor changes in their meximum width. The meximam bottom width observed for the early cracks was abont 0.001 inch to 0.002 inch.

Middle Stage Cracks

New cracks were observed with each load increese. They were observed in both the middle third and the onter sides. Most cracks thet shaped the final crack patterin were created during the middle stage of loeding.

Later Stage Cracks

Nev sets of inclined cracks in the outer sides were observed in beam \#1,\#2, and \#3. Few cracks were initiated in the middle third. At the nitimate load, there was a rapidincrease in mayimum crack width. Also at of hairline cracks initiated from the major cracks that spreadin the tension zone.

It was noticed that the maximum bottom widh for a new crack was very small as compared to its maximum width at the nltimate stage. On the other hand, the length of new crack was, in most cases, greater than 50 percent of its total length at the nitimate stage.

Failnre Modes

In beam \#1 (over-reinforced beam), triangnlar wedge in the middle third (compressive zone) seperated from the beam to create a failure mechanism. This was accompanied by a horizontal set of cracks at the level of reinforcement. No cracks propagated through the compression failnre zone dnring the conrse of testing beam \#1.

In beam \#3 and \#4 (under-reinforced beams), excessive crack propagation reached the top surface of the beam. Also excessive increases in the crack widths of the horizontal cracks were observed at the level of reinforcement for both beams.

For beam \#2 (diagonal tension failnre), the failnre sinface occnred between one of the loading points and the snpport. No cracks at the level of the reinforcement accompanied failnre. Appendix II inclindes calcniations of the shear stress at nltimate load of beam \#1 and beam \#2.

The crack propogations and widths were investigated dnring most of the loading stages for the test beams. The complete details of the crack propagations and widths for the different loading stages of the beams are presented in Appendix III. Fignres 5.35 , to 5.58 cover this section of the investigation. The fignres show the shape of the cracks nsing different symbols to distingnish crack propagation for esch load stage. The load valne and the measnred maximam crack width are stated at the end of the crack propagation corresponding to each load stage.

In the middle third, crack propagations were always directed npward at the different load valnes. At the later stages, cracks close to the load appication points propagated or tnried towards these points.

In the onter thirds of the beam, some cracks initiated at the mid-depth. These cracks then extended at both ends dnring the different loading stages. The maximnm widhs of these cracks were in the middle section, not at the ends. All cracks propagated towsrds the loading point in the last loading stages.

A comparative stady of the mazimom crack width was baaed on the test data and the calcnlated values nsing the Gergely and Lintz formnla as described in Chapter Fonr. Fignres 5.59.5.60, and 5.61 show that the Gergely and Lntz formala is more conservative in predicting the maximom crack width for higher strongth concrete. Fignre 5.62 shows the relationship between the load and the maximum bottom crack width for beam \#4. The ratio between the measured and calcnlated valnes of the maximum bottom crack idth for different beams are presented in Tables 5.26. 5.27, and 5.28.

The Ratio h_{2} / h_{1}

Fignre 5.63 shows the relationship between the maximom bottom crack width and the ratio h_{2} / h_{1} for beam \#1. The test data along with the calcnlated valnes nsing the Gergely and Lotz equation (4.4) are compared in this diagram. Similar diagrams for beams \#2 and \#3 are shown in Fignres 5.64 and 5.65 .

Figures 5.63 and 5.64 show that the rate of changein the calculated values for the maximom bottom crack width is greater than that of the measnred valuea as the ratio h_{2} / h_{1} decreased. This is true for the service stress testing margin. However, Fignre 5.65 shows a similar rate of change in the maximom bottom crack width, with the variation of h_{2} / h_{1} for both measured and calculated values of beam \#3.

CHAPTER 6

SUMMARY AND CONCLUSIONS

Summaxy

Abstract

Concrete with nominal compressive strength of 12,000 psi (82.7 MPa) Was used to build fonr reinforced beams with different steel ratios. Beams were tested at the third points in order to stindy the stractiral behavior and crack propagation of higher strength concrete.

Conclusiona

Analyais of the test data leads to the following conclinsions:

1. The actual strain corresponding to the altimate compressive stress was always in the range of 0.0023 to 0.003 in. $/ i_{n}$. for higher strength concrete.
2. The \quad ace of two, short, gage-length gages at oach gage location providedmore consistent atrain data for analysis.
3. The rectangnlar stress distribntion gives sufficiently accurate predictions of the moments of higher strength concrete beams. However, a parabolic or a triangalar stress block is more realistic in predicting the moment at the pltimate load.
4. Both the ACI Code (32) approach and the Pretorins (22)
approach in calcnlating midspan vettical deflection provide valnes that are leas than the measnred test valnes. This indicates that the two methoda are not conaervative in evalnating vertical deflection for higher strength concrete. Thia also indicatea that the ACI Code formnlas for the modnlns of rnptnge and the effective moment of inertia need to be re-examined for higher strength concrete appications.
5. Steel ratio, ateel stress and reinforcement distribntions are major factors that govern crack patteris in higher strength concrete beama.
6. The data show that the maximum bottom crack width for the experimental beams is abont $40-70 \%$ of the calcnlated valnes naing the Gergely and Lntz eqnation. This indicates that this formnla is conservative in evalnating the maximmm bottom crack width for higher atrength concrete.

APPENDIX I

REFERENCES

1. Alexander, K. M., Faetors Controlling the Strength and the Shrinking of Conerete, "Constrinetin Review, Vol. 33, No. 11, November 1960, pp. 19-29.
 Conerete," Modern Conerete, April 1973,pp. 38-41, 47 .
2. Bloem, D. L. and Gaynor, R. D., "Effect of Aggregate Properties on High - Strength Conerete," ACI Jonrnal, Vol. 60, Oetober 1963, pp. 1429-1455.
3. Bnrgess, A. J., Ryell, J. and Bnnting, J., "HighStrength Conerete for Willows Bridge, ACI Jonrnal. Vol. 67. No. 8, Anginst 1970,p. 611.
4. Carrasqnilio, Ramon L.," The Prodnetion of High-Strength Conerete," Report No. 78-1, Department of Civil Engineering, Cornell University, Ithaea, N. Y., May 1978.
5. Carrasqnil1o, Ramon L., Nilson, A. H. and Slate, Floyd O., "properties of High Strength Conerete Sibjeet to Short Term Loading," ACI Jonrnal, May-Jnae 1981., pp. 177-178.
6. Carrasquillo, Ramon L., Slate, Floyd O., and Nilson, A. H. , "Microcracking and Behavior of High Strength Snbjeet to Short - Term Loading, "ACI Jonrnal, May-Jnne 1981., pp. 179-186.
7. Freedman, Sidney, "High-Strength Concrete, " Modern Conerete, Vol. 34, No. 6, Oet. 1970, pp. 29-36, No. 7, Nov. 1970, pp. 28-32; No. 8, Dee. 1970,pp. 21-24; No. 9, Jan. 1971, pp. 15-22; and No. 10, Feb. 1971, pp. 16-23. Also Pnblieation No. FSi76T, Portland Cement Association.
8. Gergely, P., and Lntz, L. A., "Maximam Craek Width in Reinforced Conerete Fiexnral Members, Canses. Mechanism, and Control of Cracking in Concrete, "Sp-20, Ameriean Conerete Institnte. Detroit 1968, pp. 87-117.
9. Hiremagalnr, N.. "The Strietnral Behavior of Higher Strength Conerete, "Master's Thesis, Kansas State University, 1985 .
10. Hognestad, Eivid., Hanson, N. W., and MeHenry, Donglas, "Conerete Stress Distribntion in Ulitimate Strength Design," Jonrial of the American Conerete Institnte., Vol. 27, No. 4, Deeember 1955., pp. 455-479.
11. Keplan, M. F., "Flexnrel and Compressive Strength of Concrete as Affected by the Properties of Coarse Aggregate," American Concrete Institnte Jonrnal, Vol. 5 S, May 1959. pp. 1193-1208.
12. Lesife, Keith E., Rajagoplan, K. S., end Everard, Noel J., "Flernral Behavior of High - Strength Concrete Beams." ACI Jonriel, Vol. 73, No.9, September. 1976., pp. 517-521.
13. Mather, Katharine., "High - Strength, High Density Concrete," (ACI Summery Paper), ACI Jonrial, Proceedings, Vol. 62, No 8, Angist 1965, pp. 951-962.
14. Mielenz, Richard, " History of Chemical Admirtnres for Concrete," Concrete International, Vol. 6, No. 4, April 1984, Pp. 40-53.
15. Morgan, Anstin H., "High - Strength Reedy - Mixed Concretel paper presented to 41 st Annial Convention of the National Reedy Mired Concrte Associetion, Jannery 1971, 18pp.
16. Nareyanen, P. " Behavior of Reinforced Higher-Strength Concrete Beams in Bending end Shear," Masteris Thesis, Gansas Stete Uinversity, 1985.
17. Nikaeen, Ali," The prodnction and Strinctirel Behevior of Higher Strength Concrete," Master's Thesis, Kansas State University, 1982 .
18. Nilson, Arthir H., Siate, Floyd O. " Strinctinal Properties of Very High-Strength Concrete," Second Progress Report, Eng. 76-08752, Department of Strictinel Engineering, Cornell University, Ithaca, N. Y., Jannery 1979.
19. Orchard, D. F.," Concrete Mix Design and Qnality Contral," Concrete Technology, Fonrth Edition., Vol. 1, Applied Science Pnblishers Ltd.. London., 1079. . p. 146.
20. Parrot, L. J., "The Selection of Constitinents end Proportions for prodncing Workable Concrete With a Compressive Cnbe Strength of 80 to $110 \mathrm{~N} / \mathrm{mm}$ (11600 to 15900 1b./in. ${ }^{2}$),' Technical Reports, No. 416, Cement and Concrete Association, May 1969, pp. 12.
21. Pretorins, Pieter, C. "Deflections of Reinforced Concrete Members: A Simple Approech," Jonrinel of the American Concrete Institnte, Vol. 82, Proceedings, No. 6, Nov.-Dec. 1985, pp. 805-812.
22. Refei, T. M. " The Strictiral Behavior of Higher Strength Concrete," Master's Thesis, Kensas Stete University, 1984.
23. Russell, Henry G., "High Strength Concrete," American
Concrete Institnte, SP-87. Detroit, Miehigan, 1985. Concrete Institate, SP-87, Detroit, Miehigan, 1985.
24. SAS/Graph User's Guide., SAS Institute Inc., Cary, North Carolina, 1981 .
25. SAS User's Gnide: Basies, 1982 Edition., SAS Institnte Iuc., Cary, North Carolina, 1982 .
26. SAS User'a Gnide: Statisties, 1981 Edition., SAS Inatitnte Ine.. Cary. North Carolina, 1982.
 Preaent, Futnre," Conerete Interiational, ACI, Vol. 2, No. 6, Juue 1980, pp. 46-50.
27. Smith, E. F., Tyneca, W. D., and Saneier, K. L., " High Compressive - Strength Couerete, Development of Conerete Mixturea," Teehnieal Doenmentary Report No TDR 63-3114, U. S. Army, Corps of Engineera, Waterways Experiment Station, Vieksbirg, Mississippi, Febriary, 1964 , p. 44.
28. Warg, Pao-Tsan, Shah, Snreudra P., aud Naaman, A. E., "High-Strength Conerete in Ultimete Strength Design," Jonrual of the Strinetnral Divisiou. ASCE, Vol. 104 , No. ST11, 1978, pp. 1761-1773.
29. Zia, Panl.. "Review of ACI Code for Design With High Strength Conerete," Conerete International. Vol. 5, No.8, Angust 1983, pp. 16-20.
30. "ACI 318-83, Bnilding Code Reqnirementa for Reinforced Concrete," Ameriean Concrete Inatitnte, Detroit, Mieh., 1983
31. "Admixtnrea for Conerete," Conerete Internatioual, Vol. 6, No. 4, April $1984, ~ p .56$.
32. "Conerete and Mineral Aggregates (inelnding Mannal of Conerete Teating)," Annnal Book of ASTM Standards, Part 14, 1974.
33. "High-Strength Conerete," Firat Edition, Manual of Concrete Materials-Aggregates, National Crished Stone Association, Janury, 1975 , p. 16.
34. "High Strength Conerete -- Crished Stone Makes the Difference," Third Draft, presented at the Jaunary 1975 Natioual Crished Stone Assoeiation Convention in Fiorida, November 1974 , p. 31.
35. Micro Measnrements Division, Measurements Gronp, Catalog 400, Strain Gage Listings, Raleigh, N. C. Angnst 1, 1984.
36. "State-of-the-Art Report on High-Strength Concrete," Report by ACI Committee 363. ACI Jonrial. Vol. 81, No. 4, Jaly-Angrst 1984, pp. 364-411.
37. "Tentative Interim Report on High-Strength Concrete", American Concrete Institute Journal, Procecings, Vol. 64, No. 9, September 1967, pp. 556-557.

APPENDIX II

DETAILS OF SOME CALCULATIONS

NOMERICAL EXAMPLE OF THE PRELIMINARY REINFORCEMENT design calculations of beam \#1, table 4.1

The purpose of these calcalations is to design a cross section with a steel ratio of $0.75 \mathrm{P}_{\mathrm{b}}$ which is the maximam value accepted by the ACI Code 318-83 (32).

DATA

$$
\begin{array}{ll}
\mathrm{b} & =8 \mathrm{in} . \\
\mathbf{t} & =12 \mathrm{in} . \\
\mathbf{L} & =84 \mathrm{in} . \\
\boldsymbol{\epsilon}_{\mathrm{ca}} & =0.0025 \mathrm{in} . / \mathrm{in} . \\
\mathrm{f}_{\mathrm{c}}^{\prime} & =12 \mathrm{ksi}(\text { nominamed) } \\
\mathbf{f}_{\mathrm{y}} & =60 \mathrm{ksi} \\
\mathbf{E}_{\mathrm{s}} & =29 \times 10^{3} \mathrm{ksi}
\end{array}
$$

The steel strain at the yield stress can be calcalated as followed:

$$
\begin{aligned}
\boldsymbol{\epsilon}_{\mathbf{y}} & =\mathbf{f}_{\mathbf{y}} / \mathrm{E}_{\mathrm{s}} \\
& =60 / 29 \times 10^{3} \\
& =0.002069 \mathrm{in} . / \mathrm{in} .
\end{aligned}
$$

The strain distribution in abanced section gields the following relation, (see figure).

Strain Distribution in a इelancea Section

$$
c_{b} / \mathrm{d}=0.0025 /(0.0025+0.002069)
$$

$0:$

$$
\mathrm{c}_{\mathrm{b}} \quad=0.547 \mathrm{~d} . \quad . \quad . \quad . \quad . \quad .(I I .1)
$$

From the equilibrinm of the balanced section and using a triangular stress block, the balanced steel ratio can be obtained as follows:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}} \cdot \mathbf{f}_{\mathbf{y}}=0.5 \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{c}_{\mathrm{b}} \cdot \mathrm{~b} \\
& 60 \mathrm{~A}_{\mathbf{s}} \\
& \mathrm{A}_{\mathrm{s}} / \mathrm{b} \mathrm{~d} \\
& =0.5(12) \cdot(0.547) \mathrm{b} \cdot \mathrm{~d} \\
& =0.0547
\end{aligned}
$$

or

$$
\mathrm{P}_{\mathrm{b}} \quad=0.0547 \text {. (II.2) }
$$

Assume that the depth of the beam is 10 in., reinforcing bars can be chosen as follows:

$$
\begin{aligned}
A_{s} \quad & =0.75 \cdot(0.0547) \cdot(10) .(8) \\
& =3.28 \mathrm{in} .2
\end{aligned}
$$

2\#9 and $2 \# 7$ are the suitable steel bar choice. Their arrangement is shown in Figure 4.3.

$$
\begin{aligned}
& A_{s}(\operatorname{actual})=3.2 \text { in. } \\
& \mathrm{d}(\operatorname{actual})=9.8 \mathrm{in} .
\end{aligned}
$$

The following calculations are to find the beam ultimate carying capacity of load, moment, and shear.

$$
\begin{aligned}
& \text { c }
\end{aligned}
$$

$$
\begin{aligned}
& =0.5 \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b} \cdot \mathrm{c} \\
& =0.5 .(12) .(g) .(4) \\
& =192 \mathrm{~K}
\end{aligned}
$$

Using \#3 stirrups with a cross sectional area of 0.11 in. ${ }^{2}$ and yield stress of 50 ksi , the stirrup spacing can be obtained.
$A_{s}(s t i r r u p)=2 \times 0.11$
$=0.22$ in. ${ }^{2}$ (two branches)
s

$$
=\mathbf{A}_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \mathbf{d} / \mathbf{V}_{\mathbf{s}}
$$

$$
=0.22 .(50) .(9.8) / 40.8
$$

$$
=2.6 \mathrm{in} .
$$

sused
$=2.5$ in.

$$
\begin{aligned}
& M_{u} \quad=\quad C \cdot\left(d-\frac{c}{3}\right) \\
& =192 .(9.8-1.33) \\
& =1626 \text { in. }-\mathrm{K} \\
& \mathrm{P}_{\mathrm{n}} \quad=6 \mathrm{M}_{\mathrm{n}} / \mathrm{L} \\
& =6 .(1626) / 84 \\
& =116 \mathrm{~K} \\
& \mathbf{v}_{\mathbf{u}} \quad=\mathbf{P}_{\mathbf{u}} / 2 \\
& =58 \mathrm{~K} \\
& \mathbf{v}_{\mathbf{c}} \quad=2 \sqrt{\mathbf{f}_{\mathbf{c}}^{\prime}} \quad \mathrm{b} \cdot \mathrm{~d} / 1000 \\
& =2 \sqrt{12,000} \text { (8).(9.8)/1000 } \\
& =17.2 \mathrm{~K} \\
& \mathrm{~V}_{\mathrm{s}}=58-17.2 \\
& =40.8 \mathrm{~K}
\end{aligned}
$$

NUMERICAL EXAMPLE OF THE REVISED REINFORCEMENT DESIGN CALCULATIONS FOR BEAM \#1,TABLE 4.2

The revised calcnlations are based on the data provided by testing cylinders, steel bars, and beam specimen.

DATA

$$
\begin{aligned}
& \epsilon_{c n} \quad=2,272 \text { microin./in.. Table } 5.7 \\
& \mathrm{f}_{\mathrm{c}}^{\prime} \quad=11,400 \mathrm{psi}, \mathrm{Table} 5.5 \\
& \mathrm{E}_{\mathrm{s}}(\# 9)=30.9 \times 10^{6} \mathrm{psi} \\
& \mathrm{E}_{\mathrm{s}}(\# 7)=30.2 \times 10^{6} \mathrm{psi} \\
& \mathrm{~A}_{\mathrm{s}} \quad=3.2 \mathrm{in} \mathrm{~m}^{2},(2 \# 9,2 \# 7) \\
& \mathrm{d} \quad=9.8 \mathrm{in} \text {. } \\
& \mathrm{b} \quad=8 \mathrm{in} \text {. } \\
& \mathrm{t}=12 \mathrm{in} \text {. } \\
& \mathrm{f}_{\mathrm{y}}(\# 9)=64 \mathrm{ksi}, \text { Table } 2.1 \\
& \mathrm{f}_{\mathrm{y}}(\# 7)=70 \mathrm{ksi}, \text { Table } 2.1 \\
& \mathrm{~L} \quad=84 \mathrm{in} \text {. }
\end{aligned}
$$

Steel bars insed for beam \#1 are $2 \# 9$ and $2 \# 7$

$$
\begin{aligned}
& A_{s}(2 \# 9)=2 \mathrm{in}^{2} \\
& A_{\mathrm{s}}(2 \# 7)=1.2 \mathrm{in} .^{2}
\end{aligned}
$$

For the steel nsed in beam \#1

$$
\begin{aligned}
\mathrm{E}_{\mathrm{s}} & =(30.9 \times 2+30.2 \times 1.2) \times 10^{6} / 3.2 \\
& =30.6 \times 10^{6} \mathrm{psi} \\
\mathbf{E}_{\mathbf{y}} & =\mathrm{f}_{\mathrm{y}} / \mathrm{E}_{\mathrm{s}} \\
& =70,000 /\left(30.6 \times 10^{6}\right) \\
& =2,288 \text { micro in./in. }
\end{aligned}
$$

$$
\begin{aligned}
c_{b} & =d . \epsilon_{c u} /\left(\epsilon_{c u}+\epsilon_{y}\right) \\
& =9.8 \times 2,272 / 4,560 \\
& =4.9 \mathrm{in} .
\end{aligned}
$$

Using a triangular stress block

Using \#3 stirrups with steel area of 0.11 in. and f_{y} of 50 ksi
$\mathbf{s} \quad=A_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \mathbf{d} / \mathbf{v}_{\mathbf{s}}$

$$
=0.22 .(50) .(9.8) / 48
$$

$$
=2.2 \mathrm{in} .
$$

s used $=2.5$ in.

$$
\begin{aligned}
& \mathbf{C} \quad=0.5 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{c}_{\mathrm{b}} \cdot \mathrm{~b} \\
& =0.5(11.4) \cdot(4.9) \cdot(8) \\
& =224 \mathrm{~K} \\
& A_{s}\left(\mathrm{bal}_{\mathrm{al}}\right)=\mathrm{C} / \mathrm{f}_{\mathrm{y}}=3.2 \mathrm{in}^{2}{ }^{2} \\
& P_{b} \quad=A_{\delta}(b a l .) /(b-a) \\
& =3.2 /(8 \times 9.8) \\
& =0.0408 \\
& M_{u}=C .(d-1.63) \\
& =224(9.8-1.63) \\
& =1830 \text { in. }-K \\
& \mathbf{P}_{\mathbf{u}} \quad=6 \mathrm{M}_{\mathbf{u}} / \mathbf{L} \\
& =6 \cdot(1830) / 84=131 \mathrm{~K} \\
& \mathrm{~V}_{\text {U }}=131 / 2=65 \mathrm{~K} \\
& v_{c} \quad=2 \sqrt{f_{c}^{\prime}} \cdot b \cdot d \\
& =2 \sqrt{11.400} \times 8 \times 9.8 / 1000 \\
& =17 \mathrm{~K} \\
& V_{s} \quad=65-17=48 \mathrm{~K}
\end{aligned}
$$

NUMERICAL EXAMPLE FOR THE CALCULATION OF MOMENT, DEFLECTION, AND MAX. CRACK wIDTH OF BEAK \#1 AT THE LOAD LEVEL OF 87,300 LBS.

DATA

$$
\begin{array}{ll}
\mathrm{b}=8 \mathrm{in} . & \epsilon_{\mathrm{c}}=992 \mathrm{micro} \mathrm{in} . / \mathrm{in} . \\
\mathrm{d}=9.8 \mathrm{in} . & \mathrm{A}_{\mathrm{s}}=3.2 \mathrm{in} . \\
\mathrm{t}=12 \mathrm{in} . & \mathrm{E}_{\mathrm{s}}=30.6 \mathrm{x} 10^{6} \mathrm{psi} \\
\mathrm{c}=4.82 \mathrm{in} . & \mathrm{f}_{\mathrm{c}}=11.400 \mathrm{psi} \\
\mathrm{~b}_{1}=4.98 \mathrm{in} . & \beta_{\mathrm{a}}=0.1065 \\
\mathrm{~b}_{2}=7.18 \mathrm{in} . &
\end{array}
$$

The values of ϵ_{c}, c, h_{1}, and h_{2} are found in Table 5.14. These values are based on the strain regression formula.

Mo프료 Calcriatigns

A. Using test data

$$
\begin{aligned}
M_{\text {max }} & =P L / 6 \\
& =87,300 \times 84 /(6 \times 1000) \\
& =1222 \mathrm{in} .-\mathbb{K}
\end{aligned}
$$

B. Using triangular stress distribution

$$
\begin{aligned}
\mathbf{Y}_{\mathbf{c t}} \quad & =9.8-0.33(4.82) \\
& =8.19 \mathrm{in} .
\end{aligned}
$$

Triangular Stress Distribution

Using stress-strain eqnation 5.1.p. 37, the stress at the top fibers can be obtained.

$$
f_{c}=A 1 \cdot(E)+A 2 \cdot(E)^{2}+A 3 \cdot(E)^{3} \cdot \cdot \cdot \mathrm{psi}
$$

Snbstitnting the valne of 992 micro in./in.for C, fcan be obtained.

$$
\begin{aligned}
f_{\mathrm{c}} & =6.510 \mathrm{psi} \\
\mathrm{M}_{\mathrm{max}}(\mathrm{tri}) & =(8.19) \cdot 0.5 \cdot(6.51) .(4.82) . \text { (8) } \\
& =1028 \mathrm{in}-\mathrm{X}
\end{aligned}
$$

C. Using rectangnlar stress distribntion

$$
\begin{aligned}
Y_{c t} & =9.8-0.325 .(4.82) \\
& =8.23 \mathrm{in} .
\end{aligned}
$$

$$
\mathrm{M}_{\text {max }}(\text { rect. })=8.23 .(0.85) .(6.51) .(0.65) .(4.82) .(8)
$$

$$
=1141 \text { in. }-K
$$

D. Using stress distribntion obtained br regression

The erpression for the compressive stress block can be derived from eqnation 5.1 as follows:
$\left(f_{c}\right)_{y}=Z 1 \cdot(y)+Z 2 \cdot(y)^{2}+Z 3 \cdot(y)^{3} \cdot \operatorname{psi}$

Where y is an arbitrary distancemeasnred from the nentral axis, and the valnes of $Z 1, Z 2$, and Z3 can be obtained as follows:

$$
\begin{aligned}
\mathrm{Z} 1 & =\mathrm{A} 1 \cdot \epsilon_{\mathrm{c}} / \mathrm{c} \\
& =(7.174513) .(992) / 4.82 \\
& =1477.2 \\
& =\mathrm{A} 2 .\left(\epsilon_{\mathrm{c}}\right)^{2} / \mathrm{c}^{2} \\
& =-(0.000434) .(992)^{2} /(4.82)^{2} \\
& =-18.4 \\
\mathrm{Z} 3 & =\mathrm{A} 3 .\left(\epsilon_{\mathrm{c}}\right)^{3} / \mathrm{c}^{3} \\
& =-\left(1.85455 \times 10^{-7}\right) .(992)^{3} /(4.82)^{3} \\
& =-1.6
\end{aligned}
$$

By integration the compressive force can be expressed as follows:

$$
\begin{aligned}
c & =b \cdot \int_{0}^{c}\left(Z 1 \cdot y+Z 2 \cdot y^{2}+Z 3 \cdot y^{3}\right) \cdot d y \\
& =8 \cdot\left[0.5 \cdot(Z 1) \cdot c^{2}+0.33 \cdot(Z 2) \cdot c^{3}+0.25 \cdot(Z 3) \cdot c^{4}\right] \\
& =130 \mathrm{Z}
\end{aligned}
$$

By integration, the line of action can be obtained:

$$
\begin{aligned}
\bar{y} & =8 \cdot \int_{0}^{c}\left(Z 1 \cdot y^{2}+Z 2 \cdot y^{3}+Z 3 \cdot y^{4}\right) \cdot d y / 130,000 \\
& =\left[0.33 \cdot(Z 1) \cdot c^{3}+0.25 \cdot(Z 2) \cdot c^{4}+0.2 \cdot(Z 3) \cdot c^{5}\right] / 16250 \\
& =3.19 \text { in. }
\end{aligned}
$$

$$
Y_{c t}=d-(c-\bar{y})
$$

$$
=9.8-(4.82-3.19)
$$

$$
=8.17 \mathrm{in} .
$$

$$
\begin{aligned}
M_{\max }(\text { model }) & =8.17 \mathrm{I} 130 \\
& =1062 \mathrm{in} .-\mathrm{K}
\end{aligned}
$$

The ratios between the teat moment and different calcnlated valnea are as follows:

$$
\begin{aligned}
& M_{\max }(\text { teat }) / M_{\max }(t r i .)=1.19 \\
& M_{\max }(\text { test }) / M_{\max }(\text { rect. })=1.07 \\
& M_{\max }(\text { teat }) / M_{\max }(\text { model })=1.15
\end{aligned}
$$

These values are reported in Table 5.18, for the 10ad $87,300 \mathrm{lbs}$.

Midspen Yertical Deflection Calculation

A. Test Data

Measired vertical deflectionat the load 87, 300 lba. is 340 in. 10^{-3}, Table 5.22
B. ACI Codes Approsch

The following calcnlationa are to obtain the modnlar ration.
$0.45 \mathrm{f}_{\mathrm{c}}^{\prime}=0.45 .(11,430)$

$$
=5,144 \mathrm{psi}
$$

The correaponding strain for thia stress value is 764 micro in./in., (Fignre 5.1). Then the modnlua of elasticity of concrete (the secant modulns) can be calculated aa follows:
$\mathrm{E}_{\mathrm{c}} \quad=0.45 \mathrm{f}_{\mathrm{c}}^{\prime} / \epsilon_{\mathrm{c}}$ (corresponding)
$=5,144 /\left(764 \times 10^{-6}\right)$
$=6.734 \mathrm{x} 10^{6} \mathrm{psi}$

Then the modnlar ratio can be obtained.

$$
\mathrm{n} \quad \mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathbf{c}}
$$

$$
=30.6 / 6.734=4.545
$$

$$
\text { n. } A_{s}=14.54 \mathrm{in} .2
$$

$$
\mathbf{f}_{\mathrm{r}} \quad=7.5 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}=802 \mathrm{psi}
$$

$$
I_{g} \quad=8 \mathrm{x} 12^{3} / 12=1152 \text { in. }^{4}
$$

$$
\mathbf{I}_{\text {cr }}=8 .(4.82)^{3} / 3+14.54 \cdot(9.8-4.82)^{2}
$$

$$
=659 \text { in. } 4
$$

$$
\mathrm{M}_{\mathbf{c r}} \quad=\mathbf{f}_{\mathbf{r}} \cdot \mathbf{I}_{\mathbf{g}} / \mathbf{y}_{\mathbf{t}}
$$

$$
=802 .(1152) /(6 \mathrm{x} 1000)
$$

$$
=154 \mathrm{in},-K
$$

Cracked Section

Snbstitnting for $M_{\text {max }}=1222$ in. $-K$

$$
I_{e} \quad=660 \text { in. } 4
$$

$$
\Delta(A C I)=\beta_{a} \cdot M_{\mathrm{max}} \cdot L^{2} /\left(E_{\mathrm{c}} \cdot I_{\mathrm{e}}\right)
$$

$$
=\frac{(0.1065) \cdot(1222) \cdot(84)^{2}}{(6.73) \cdot(10)^{3} \cdot(660)}
$$

$$
=206.5 \text { in. } \times 10^{-3}
$$

C. Pretorins Approach

$$
K=\beta_{a}=0.1065
$$

Pretorins equation for short-term deflection:

$$
\begin{aligned}
\Delta_{(\text {Pret. })} & =\mathrm{K} \quad \begin{array}{l}
M_{\text {max }} \cdot L^{2} \\
E_{c} \cdot I_{c r}
\end{array} \\
& =0.1065 \quad 1222 \times 84^{2} \\
& 6.73 \times 10^{3} \times 659 \\
& =207 \text { in. } 10^{-3}
\end{aligned}
$$

Notation

From the previons calcilation, the ratio betwen the measired and calculated valnes are as follows:

$$
\begin{aligned}
& \Delta(\text { test }) / \Delta(\text { ACI })=1.65 \\
& \Delta(\text { test }) / \Delta(\text { Pret })=1.64
\end{aligned}
$$

Comparative values for different beams are provided in Tables $5.22,5.23,5.24$, and 5.25 .

Maximan bottom crack vidth

A. Measgred test value

The observed marimam bottom crack midth of beam \#1 at load level of $87,300 \mathrm{lbs}$. Was 3.9 in . 10^{-3}

B. Calcalated value

Using the Gergely and Lutzexpression (4.4), p. 21

$$
\pi \quad=0.091 \cdot \sqrt[3]{t_{b} A} \quad R \cdot\left(f_{s}-5\right)
$$

The maximam bottom crack widh is calcilated as follows:
$t_{b}=0.875+0.375+0.5 .(0.875)$

$$
=1.69 \mathrm{in} .
$$

$$
A=A_{e} / m
$$

$$
A_{e}=2 b(t-d)
$$

$$
\mathrm{m}=\mathbf{A}_{\mathrm{s}} / 1.0
$$

$$
=3.2
$$

$$
A=2 .(8) .(12-9.8) / 3.2
$$

$$
=11 \mathrm{in} .2
$$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{h}_{2} / \mathrm{h}_{1} \\
& =7.18 / 4.98 \\
& =1.44, \text { Table } 5.14 \\
\mathbf{f}_{\mathrm{s}} & =\mathrm{C} / \mathrm{A}_{\mathrm{s}} \\
& =130 / 3.2 \\
& =40.6 \mathrm{ksi} \\
& =0.091 . \sqrt[3]{(1.69) .(11)} .(1.44) .(40.6-5) \\
& =12.4 \mathrm{in} . \times 10^{-3}
\end{aligned}
$$

The ratio between measuredand calculated values
is as follows:

$$
\begin{aligned}
w(t e s t) / v(G / L) & =3.9 / 12.4 \\
& =0.315
\end{aligned}
$$

A comparison between test data and calcalated values are listed in Tables 5.26. 5.27, and 5.28 for beams \#1, \#2, and \#3.

ULTIMATE SHEAR CAPACITY OF BEAK \#1 AND BEAM \#2

A. Bean \#1

DATA

According to the ACI equation 11.3

$$
\begin{aligned}
\mathrm{V}_{\mathrm{c}} & =2 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{b} \cdot \mathrm{~d} \\
& =2 \sqrt{11,400} \cdot(8) .(9.8) \\
& =17 \mathrm{~K} \\
\mathrm{~V}_{\mathrm{s}} & =78-17 \\
& =61 \mathrm{~K}
\end{aligned}
$$

Using 2.5 in. spacing between \#3 stirraps of beam \#1, the shear reinforcoment ultimate stress can be calculated as follows:

$$
\begin{aligned}
f_{s}(\mathrm{slt}) & =\frac{\mathrm{s} \cdot \mathrm{~V}_{\mathrm{s}}}{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{~d}} \\
& =\frac{2.5 \times 61}{0.22 \times 9.8} \\
& =70.73 \mathrm{ksi}
\end{aligned}
$$

This indicates that the shear reinforcement passed the yield point and was very close the its oltimate strength (72.72ksi). Beam \#1 failedin a compression failnremode.

B. Beaㅗㅍㅛ \#2

DATA

d	= 10.13 in., Fignre 4.4
s	$=4.0$ in.. Table 4.1
A_{V}	$=0.22$ in. ${ }^{2}$
$\mathbf{P}_{\mathbf{n}}$	$=112,6001 \mathrm{bs} ., \mathrm{Table} 5.5$
$\mathbf{V}_{\text {I }}$	$=56,3001 \mathrm{bs}$.
$\mathrm{f}_{\mathrm{c}}^{\prime}$	$=11,200 \mathrm{psi}$

According to ACI eqnation 11.3:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{c}} & =2 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{b} \cdot \mathrm{~d} \\
& =2 \sqrt{11,200} \cdot(8) \cdot(10.13) \\
& =17 \mathrm{~K} \\
\mathrm{~V}_{\mathrm{s}} & =56.30-17.15 \\
& =39.15 \mathrm{~K}
\end{aligned}
$$

Using 4 inch spacing between \#3 closed stirrnps, the stress of the shear reinforcement at altimate load is as follows:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{s}}(\mathrm{nlt.}) & 4 \times 39.15 \\
& =0.22 \times 10.13 \\
& =70.27 \mathrm{ksi}
\end{aligned}
$$

A diagonal tension failnre occnred for this beam at the specified load.

APPENDIX III

TABLES AND FIGURES

TABLE 2.1 : Tensile Test Results for Steel Reinforcing Bars

DESCRIPTION	\#3	\#4	\#7	\#9
Cross Sectional Area (in. ${ }^{\text {2 }}$)	0.11	0.20	0.60	1.00
Yield Load (lbs.)	5,500	11,300	42,000	64,000
Yield Stress (psi)	50,000	56,500	70,000	64,000
Ultimate Load (lbs.)	8,000	16,200	59.700	98,600
Ultimate Stress (psi)	72,720	81,000	99,500	98,600
Young's modulus (psi m 10^{6})	29.6	28.6	30.2	30.9

TABLE 3.1 : Review of Mix Proportions of Some Previous Work (given weights per cubic foot)

REFERENCE NUMBER	$\begin{aligned} & \text { MIX PROPC } \\ & \text { (weight ir } \end{aligned}$	$\begin{aligned} & \text { RTION } \\ & \text { lbs.) } \end{aligned}$	W/C	NOMINAL STRENG TH
18	cement	27.470	0.350	8400
	quartzite	49.650		
	sand	60.880		
	water	9.390		
	$\begin{aligned} & \text { super- } \\ & \text { plasticizer } \end{aligned}$			
		0.229		
23	cement	27.470	0.336	9600
	quartzite	49.650		
	s and	60.880		
	water	8.810		
	super- plasticizer			
		0.423		
10	cemert	31.930	0.288	12000
	quartzite	49.650		
	satd	60.880		
	weter	8.280		
	$\begin{aligned} & \text { super- } \\ & \text { plasticizer } \end{aligned}$			
		0.900		
17	cement	31.930	0.282	12000
	quartzite	49.650		
	sand	60.880		
	water	8.280		
	super- plasticizer			
		0.740		
1 in. $=$	5.4 mm, 11 b	$=4.45$	psi $=$	kPe

TABLE 3.2: Mix Proportions Used for Different Beams*
(Weightin lbs. per cu. ft.. Volume in cn. in.)

$\begin{gathered} \text { BEAM } \\ \text { No. } \end{gathered}$	MIX PROPORTIONS			$\begin{aligned} & \text { SPRCIFIC } \\ & \text { GRAV ITY } \end{aligned}$	W/C	$\begin{aligned} & \text { SLUMP } \\ & \text { (iu.) } \end{aligned}$
	INGREDIENT	Weight	Volume**			
1	cement	31.93	285	2.432	0.292	3.8
	quartzite	49.65	519			
	saud	60.88	639			
	water	7.95	220			
	super- plasticizer		32			
		1.37				
	TOTAL	151.78	1695			
2	cement	31.93	285	2.432	0.292	3.5
	quertzite	49.65	519			
	sand	60.88	639			
	water	7.95	220			
	$\begin{aligned} & \text { snper- } \\ & \text { plasticizer } \end{aligned}$		32			
		1.37				
	TOTAL	151.78	1695			
3	cement	31.93	285	2.432	0.291	1.2
	quertzite	49.65	519			
	sand	60.88	639			
	veter	7.93	220			
	super-		32			
	plesticizer	1.37				
	TOTAL	151.76	1695			
4	cement	31.93	285	2.427	0.301	2.9
	quertzite	49.65	519			
	sand	60.88	639			
	water	8.02	222			
	super-					
	plasticizer	1.59	37			
	total	152.07	1702			

* Calcnlation is based on the following specific gravities: cement=3.1, quartzite=2.65, sand=2.64, snperplasticizer=1.2
* ${ }^{2}$ \% air coutent for beams \#1, \#2, and \#3. 1.5% air conteut
for beam \#4
$1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{lb} .=4.45 \mathrm{~N}, 1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 3.3: 3 - Day Cylinder Test

For Different Beams

$\begin{aligned} & \text { BEAM } \\ & \text { NO. } \end{aligned}$	CYLINDER DATA			AVERAGE STRENGTH (psi)
	$\begin{aligned} & \text { CYL INDER } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { LOAD } \\ (\mathrm{lbs} .) \end{gathered}$	COMPRESSIVE STRENG TH (psi)	
1	1	40,500	5,700	6,000
	2	44,000	6,200	
	3	42,200	6,000	
2	1	46.000	5,500	6,100
	2	41,100	5,800	
	3	43,200	6.100	
3	1	41,200	5,800	6.200
	2	46,100	6,500	
	3	43,200	6.200	
4	1	37.100	5.300	5,000
	2	34,200	4,800	
	3	35,200	5,000	

TABLE 4.1 : Preliminary Reinforcing Stecl
Design Calculations*

DESCRIPTION	B \#1	\# 2	B \#3	B $\# 4$
$\boldsymbol{P / P} \mathrm{f}_{\mathrm{b}}$ required	0.75	0.50	0.25	0.07**
As needed (in. ${ }^{2}$)	3.21	2.21	1.10	0.33
Bar choice	2\#9+2\#7	1\#9+2\#7	6\#4	3\#3
A_{s} actial (in. ${ }^{\text {a }}$)	3.20	2.20	1.18	0.33
Depth d (in.)	9.80	10.13	10.04	10.44
P used	0.0408	0.0271	0.0147	0.0040
P / P_{b} used	0.75	0.50	0.27	0.07
c (in.)	4.00	2.75	1.48	0.34
	1626	1216	686	170
$\mathrm{P}_{\mathbf{1}}$ (E)	116	87	49	12
V_{n} (K)	58.0	43.5	24.5	6.0
V_{c} (X)	17.2	17.8	17.6	18
V_{8} (E)	40.8	25.7	6.9	--
s calc. (in.)	2.6	4.34	20.4	--
s used (in.)	2.5	4.0	5.5	9.5

- Calcalations are bascd on the use of grade 60 steel bars and also a triangular stress block assumption
** Minimum steel ratio $=200 / f_{y}$

TABLE 4.2 : Revised Desigu Calculations for Steol Reinforcing Bars Based on Actual Yield Stress of Steel*

DESCRIPTION	B \#1	B \#2	B \#3	B \#4
$\epsilon_{c u}($ microin./in.)**	2,272	2,810	2,414	2,500
$\mathrm{f}^{\prime} \mathrm{c}$ (psi)	11,400	11,200	11.600	10.000
$E_{s}\left(p s i \times 10^{6}\right.$)	30.6	30.5	28.6	29.6
P_{b}	0.0408	0.0456	0.0565	0.0597
$\boldsymbol{P / P}{ }_{\text {b }}$	1.000	0.594	0.260	0.067
c (in.)	4.9	3.4	1.4	0.4
$M_{n}(\mathrm{in},-\mathrm{K})$	1,830	1,384	637	170
$\mathrm{P}_{\mathbf{u}}$ (K)	131	99	46	12
v_{u} (X)	65	49	23	6
$\mathrm{V}_{\mathrm{c}}(\mathrm{X})$	17	17	17	17
V_{s} (E)	48	32	6	--
s calc. (in.)	2.2	3.5	20.2	--
s nsed (in.)	2.5	4.0	5.5	9.5

* Calculations are based a triangnlar stress block assumption
** Ccy of beam \#1, \#2, and\#3 are obtained from Table 5.7, 5.9. and 5.11 respectively. The value is assumed for beam \#4.

TABLE 5.1 : Compressive Strength Test Resilts of 3 in. x $6 i n$. Cylinders for Beam \#1 (age = 108 days)

CYLINDER NUMBER	U1TIMATE LOAD (1bs)	ULTIMATE STRENGTE (psi)
$1-1$	80,000	11,300
$1-2$	86,000	12,200
$1-3$	80,200	11,400
$1-4$	81,150	11,500
$1-5$	77,000	10,900
$1-6$	79,700	11,300
$1-7$	79,300	11,200
$1-8$	82,700	11.700

1 in. $=25.4 \mathrm{~mm}$
$1 \mathrm{lb} .=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.2: Compressive Strength Test Results of 3 in. x $6 i n$. Cyinders for Beam \#2

$$
\text { (age }=108 \text { days) }
$$

CYLINDER	ULTIMATE LOAD NUMBER	ULTIMATE STRENGTH (psi)
$2-1$	76,000	10,800
$2-2$	80,100	11,300
$2-3$	77,200	10,900
$2-4$	77,600	11,000
$2-5$	80,300	11,400
$2-6$	83,600	11,300

$1 \mathrm{in} .=25.4 \mathrm{~mm}$
$12 \mathrm{~b} .=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.3: Compressive Strength Test Results of 3 in. x 6in. Cylinders for Beam \# 3
(age $=84$ days)

CYLINDER NUMBER	ULTMMATE LOAD (1bs)	ULTIMATE STRENGTH (psi)
$3-1$	82,000	11,600
$3-2$	82,000	11,600
$3-3$	75,000	10,600
$3-4$	86,000	12,200
$3-5$	83,800	11,900
$3-6$	83,100	11,800

$1 \mathrm{in}=25.4 \mathrm{~mm}$
$1 \mathrm{ib}=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.4: Compressive Strength Test Results of 3 in. x 6 in. Cylindere for Beam \#4 (age = 70 daye)

CYLINDER NUMBER	ULTIMATE LOAD (1bs)	ULTIMATE STRENGTH (psi)
$4-1$	73,000	10,300
$4-2$	75,000	10,600
$4-3$	71,000	10,000
$4-4$	71,500	10,100
$4-5$	67,000	9,500
$4-6$	68,000	9,600
$4-7 *$	105,000	9,500
$4-8 *$	113,500	10,300

* 3.75 in. $\quad 8$ in. Cylinders cit from the beam after testing with area $=11.04 \mathrm{in} .^{2}$
$1 \mathrm{in} .=25.4 \mathrm{~mm}$
$1 \mathrm{lb} .=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.5: Average Compressive Strength Valnes for Different Beams

BEAM	AVERAGE COMPRESSIVE (psi)	STANDARD DEVIATION (psi)	COEFFICIENT OF VARIATION
1	11,400	380	3.3%
2	11,200	360	3.2%
3	11,600	530	4.6%
4	10,000	420	4.2%

1 in. $=25.4 \mathrm{~mm}$
$11 \mathrm{~b}=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.6: Load vs. Strain Data for Beam \#1
(strain data in micro in./in.)

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \# 1 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 2 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 3 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 4 \end{gathered}$	GAGE \# 5	$\begin{gathered} \text { GAGE } \\ \# 6 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 7 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 8 \end{gathered}$
	0	21	21	13	14	1	-18	31	28
1	7885	-57	-57	-45	-81	-72	-72	2	0
2	15700	-130	-130	-103	-179	-146	-124	-27	-21
3	23500	-202	-202	-161	-276	-217	-178	-47	-44
4	32450	-265	-265	-211	-353	-273	-219	-67	-61
5	39775	-326	-326	-272	-440	-340	-267	-89	-80
6	47650	-426	-426	-342	-544	-415	-321	-118	-110
7	55500	-510	-510	-404	-621	-476	-366	-135	-130
8	63450	-598	-598	-470	-703	-538	-416	-157	-150
9	71300	-696	-696	-552	-795	-616	-470	-186	-176
10	79400	-773	-773	-618	-871	-672	-517	-204	-194
11	87300	-864	-864	-702	-957	-741	-574	-228	-223
12	95300	-952	-952	-779	-1035	-805	-627	-252	-247
13	103500	-1066	-1066	-887	-1136	-886	-696	-283	-282
14	111200	-1155	-1155	-969	-1215	-946	-748	-307	-306
15	119000	-1254	-1254	-1080	-1303	-1022	-816	-338	-338
16	125650	-1311	-1311	-1135	-1353	-1060	-849	-350	-353
17	130800	-1424	-1424	-1248	-1453	-1132	-916	-378	-383
18	137500	-1587	-1587	-1376	-1587	-1187	-961	-344	-350
19	142200	-1985	-1985	-1671	-1808	-1256	-1018	-229	-254

TABLE 5.6: Continned

$\begin{aligned} & \text { LOAD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \# 9 \end{gathered}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#10 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#11 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 12 \end{aligned}$	$\begin{array}{r} \text { GAGE } \\ \# 13 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \text { \#14 } \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 15 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 16 \end{array}$
-	0	20	29	85	69	-54	-19	-10	75
1	7885	-30	11	84	72	-150	-98	-78	-1
2	15700	-80	-2	81	70	-247	-183	-140	-75
3	23500	-118	-14	83	74	-359	-275	-210	-105
4	32450	-142	-17	84	80	-455	-351	-269	-178
5	39775	-167	-21	93	96	-575	-442	-334	-200
6	47650	-189	-33	85	94	-714	-544	-413	-49
7	55500	-195	-35	87	95	-838	-637	-477	-187
8	63450	-208	-41	83	83	-960	-727	-540	-259
9	71300	-247	-55	73	73	-1096	-838	-611	-312
10	79400	-262	-58	75	72	-1198	-926	-668	-378
11	87300	-298	-72	71	62	-1309	-1034	-773	-389
12	95300	-319	-81	71	61	-1416	-1128	- 792	-457
13	103500	-365	-102	56	40	-1556	-1259	- 864	-667
14	111200	-382	-105	56	39	-1676	-1359	- 924	-740
15	119000	-427	-124	52	34	-1828	-1488	- 986	-691
16	125650	-435	-126	52	38	-1909	-1555	-1026	-742
17	130800	-461	-136	50	30	-2082	-1698	-1089	-863
18	137500	-358	- 51	49	33	-2316	-1931	-1174	-1007
19	142200	-134	59	31	19	-2830	-2319	-1314	-1111

TABLE 5.6: Continued

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{array}{r} \text { GAGE } \\ \text { \#17 } \end{array}$	$\begin{array}{r} \text { GAGE } \\ \text { \#18 } \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 19 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 20 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 21 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 22 \end{array}$	$\begin{aligned} & \text { GAGE } \\ & \# 23 \end{aligned}$	$\begin{aligned} & \text { G AG E } \\ & \text { \#24 } \end{aligned}$
-	0	-17	-49	-32	14	18	7	70	21
1	7885	-60	-112	-84	-30	0	-11	70	19
2	15700	-92	-169	-114	-63	6	-14	93	54
3	23500	-128	-233	-159	-99	4	-18	99	191
4	32450	-161	-284	-198	-129	-3	-29	100	229
5	39775	-197	-348	-240	-172	-7	-40	102	312
6	47650	-242	-420	-297	-225	-26	-65	87	339
7	55500	-282	-480	-339	-264	-35	-72	87	404
8	63450	-321	-536	-379	-298	-40	-81	82	494
9	71300	-367	-608	-437	-351	-59	-96	79	543
10	79400	-404	-663	-473	-380	-60	-100	78	644
11	87300	-456	-731	-526	-432	-75	-113	78	678
12	95300	-495	-787	-560	-463	-77	-115	79	842
13	103500	-560	-876	-623	-522	-95	-130	72	839
14	111200	-611	-938	-664	-562	-103	-137	70	454
15	119000	-676	-1029	-732	-620	-125	-156	72	312
16	125650	-711	-1070	-756	-646	-130	-161	72	320
17	130800	-779	-1163	-819	-702	-145	-176	69	301
18	137500	-818	-1232	-788	-652	-72	71	64	82
19	142200	-871	-1336	-660	-493	-38	104	48	202

[^0]TABLE 5.7: 1oad vs. Absolute Average
Strain Data for Beam \#1
(Average of Side 1 and Side 2)
(strain data in micro in./in.)

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { LOAD } \\ (\mathrm{lbs.}) \end{gathered}$	DEPTH FROM THE BEAM TOP SURFACE					
		0	1 in .	2 in .	3 in.	4 in.	5 in.
1	7885	-83	-74	-63	-38	-26	0
2	15700	-165	-147	-122	-67	-41	13
3	23500	-252	-211	-183	-98	-55	51
4	32450	-326	-276	-232	-124	-66	62
5	39775	-410	-335	-290	-156	-77	90
6	47650	-520	-360	-357	-198	-97	90
7	55500	-616	-445	-413	-227	-103	107
8	63450	-713	-516	-467	-256	-111	124
9	71300	-824	-591	-536	-298	-133	131
10	79400	-910	-657	-587	-323	-139	156
11	87300	-1010	-718	-651	-363	-158	161
12	95300	-1104	-789	-707	-391	-167	202
13	103500	-1229	-912	-786	-438	-192	191
14	111200	-1329	-985	-844	-470	-200	94
15	119000	-1448	-1038	-921	-517	-227	56
16	125650	-1514	-1087	-959	-537	-323	59
17	130800	-1647	-1186	-1036	-581	-248	51
18	137500	-1845	-1309	-1090	-544	-121	-4
19	142200	-2272	-1499	-1164	-419	7	14
20	156000			FAI			

1 in. $=25.4 \mathrm{~mm}, 11 \mathrm{~b} .=4.45 \mathrm{~N}$

TABLE 5.8: Load vs. Strain Data for Beam \#2
(strain data in micro in./in.)

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 2 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 3 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 4 \end{gathered}$	GAGE \# 5	$\begin{gathered} \text { GAGE } \\ \# 6 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 7 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \text { \#8 } \end{gathered}$
-	0	9	2	10	4	4	5	5	4
1	5850	-60	-53	-80	-48	-36	-27	-23	-19
2	12175	-139	-119	-183	-104	-80	-61	-52	-41
3	17985	-215	-179	-274	-161	-121	-94	-76	-60
4	23765	-297	-251	-377	-225	-165	-127	-97	-79
5	29675	-376	-323	-475	-287	-201	-158	-114	-92
6	35795	-444	-387	-572	-351	-238	-189	-126	-103
7	41645	-531	-471	-667	-421	-284	-225	-148	-120
8	47685	-611	-533	-758	-487	-326	-259	-167	-134
9	53325	-682	-615	-839	-557	-366	-294	-186	-150
10	59500	-758	-696	-922	-626	-407	-329	-205	-165
11	65580	-843	-780	-1004	-701	-454	-365	-227	-183
12	71535	-929	-865	-1094	-782	-506	-407	-251	-203
13	75515	-985	-923	-1143	-828	-533	-433	-259	-213
14	79450	-1036	-981	-1191	-873	-560	-455	-270	-223
15	83670	-1109	-1068	-1257	-935	-603	-487	-291	-328
16	87640	-1165	-1132	-1308	-989	-636	-514	-305	-251
17	91435	-1219	-1193	-1359	-1037	-668	-542	-317	-265
18	95260	-1275	-1255	-1410	-1087	-700	-570	-333	-276
19	99425	-1353	-1342	-1480	-1159	-745	-607	-356	-294
20	56400	-1363	-1507	-1445	-1162	-763	-640	-379	-316
21	105850	-2055	-2304	-1777	-1539	-716	-598	2	185
22	108250	-2491	-2843	-1993	-1820	-724	-604	59	841
23	109815	-2806	-3185	-2135	-1975	-659	-560	75	1069

TABLE 5.8: Continued

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \# 9 \end{gathered}$	GAGE \#10	$\begin{aligned} & \text { GAGE } \\ & \# 11 \end{aligned}$	$\begin{array}{r} \text { GAGE } \\ \# 12 \end{array}$	GAGE \#13	GAGE \#14	GAGE \#15	GAGE \# 16
-	0	8	4	4	4	5	6	0	-1
1	5850	-13	-15	-6	0	-59	-34	-51	-36
2	12175	-30	-29	-12	0	-133	-75	-103	-81
3	17985	-44	-40	-13	1	-208	-104	-158	-123
4	23765	-55	-36	-17	216	-296	-124	-219	-169
5	29675	-64	-23	-22	850	-382	-169	-276	-211
6	35795	-70	-20	-25	1309	-458	-209	-342	-254
7	41645	-82	-10	-30	2110	-546	-273	-410	-299
8	47685	-89	1	-30	2798	-631	-334	-472	-339
9	53325	-102	0	-32	3168	-708	-396	-532	-375
10	59500	-107	2	-22	3508	-795	-467	-603	-420
11	65580	-112	8	-5	3995	-887	-542	-667	-466
1	71535	-124	-1	14	4201	-987	-622	-751	-516
13	75515	-113	-3	27	4368	-1047	-672	-799	-545
14	79450	-105	-4	25	4551	-1103	-721	-838	-574
15	83670	-108	-13	19	4692	-1174	-782	-895	-589
16	87640	-107	-18	15	4847	-1235	-833	-936	-623
17	91435	-103	-22	10	4951	-1293	-885	-977	-654
18	95260	-101	-24	1	5103	-1351	-935	-1020	-684
19	99425	-100	-34	-5	5112	-1488	-1004	-1084	-725
20	56400	-90	-61	54	3553	-1468	-1099	-1088	-768
21	105850	1911	-41	53	13633	-2128	-1741	-1351	-954
22	108250	1409	-58	59	12873	-2490	-2126	-1539	-1082
23	109815	1156	66	58	12473	-2820	-2407	-1660	-1179

TABLE 5.8: Continned

LOAD No.	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{array}{r} \text { GAGE } \\ \# 17 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 18 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 19 \end{array}$	GAGE \#20	GAGE \#21	GAGE \#22	GAGE \#23	GAGE \#24
-	0	6	5	5	2	5	3	6	4
1	5850	-38	-17	-16	-27	-7	-4	6	3
2	12175	-88	-44	-41	-60	-21	-15	9	3
3	17985	-131	-67	-64	-95	-28	-22	12	3
4	23765	-177	-94	-83	-124	-27	-27	9	-7
5	29675	-220	-116	-101	-155	-23	-30	2	-14
6	35795	-264	-135	-117	-189	-11	-29	9	-2
7	41645	-307	-161	-133	-222	-8	-36	10	-1
8	47685	-342	-185	-146	-248	-4	-31	20	26
9	53325	-378	-209	-159	-274	0	-29	19	79
10	59500	-413	-236	-175	-302	2	-22	22	127
11	65580	-448	-264	-189	-327	-1	-13	17	216
12	71535	-488	-298	-214	-362	-12	-8	16	279
13	75515	-513	-320	-225	-380	-12	0	18	307
14	79450	-535	-338	-233	-393	-15	5	16	281
15	83670	-569	-364	-252	-418	-21	8	14	263
16	87640	-590	-387	-263	-434	-22	12	16	259
17	91435	-614	-410	-273	-446	-22	14	18	246
18	95260	-635	-430	-281	-459	-22	18	17	237
19	99425	-666	-458	-295	-480	-25	25	20	217
20	56400	-703	-489	-590	-476	-15	7	92	109
21	105850	-595	-338	1962	544	7	5872	41	48
22	108250	-546	-277	-204	762	11	14507	55	106
23	109815	-490	-203	203	825	7	9562	48	116

1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{Ib}=4.45 \mathrm{~N}$

TABLE 5.9: Load vs. Absolute Average
Strain Data for Beam \#2
(average of side 1 and side 2)
(strain data inmicro in./in.)

LOAD	LOAD	DEPTH FR		THE B	AM TOP	SURFA	
No.	(Ibs.)	0	1 in.	2 in.	3	4 in.	5 in.
1	5850	-57	-57	-37	-25	-15	4
2	12175	-122	-121	-78	-53	-29	-5
3	17985	-182	-182	-115	-78	-39	-4
4	23765	-248	-251	-155	-100	-41	46
5	29675	-318	-316	-189	-120	-40	200
6	35795	-380	-383	-224	-138	-38	318
7	41645	-460	-453	-264	-160	-39	518
8	47685	-533	-517	-300	-178	-36	699
9	53325	-606	-579	-335	-196	-38	804
10	59500	-685	-646	-371	-216	-36	904
11	65580	-769	-713	-410	-235	-35	1051
12	71535	-856	-789	-454	-262	-41	1123
13	75515	-912	-832	-480	-273	-37	1176
14	79450	-966	-872	-503	-284	-35	1213
15	83670	-1038	-922	-539	-304	-39	1243
16	87640	-1096	-967	-567	-317	-39	1278
17	91435	-1153	-1010	-595	-330	-38	1301
18	95260	-1210	-1054	-621	-341	-37	1335
19	99425	-1302	-1115	-658	-360	-39	1332
20	103200	-1365	-1119	-684	-444	-45	948
21	105850	-2063	-1409	-596	669	1929	3439
22	108250	-2493	-1612	-573	361	3962	3269
23	109815	-2810	-1741	-508	539	2693	3169
24	112600			FAILURE			

$1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}$

TABLE 5.10: Load vs. Strain Data for Beam \#3
(strain data inmicro in./in.)

$\begin{aligned} & \text { LOAD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \text { \#1 } \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \text { \#2 } \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 3 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 5 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 6 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 7 \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \text { \#8 } \end{gathered}$
-	0	-17	-19	-42	-5	-7	1	-18	0
1	4000	-56	-60	-90	-31	-29	-19	-45	-20
2	8150	-100	-104	-138	-60	-52	-36	-76	-38
3	12100	-170	-175	-235	-109	-91	-64	-134	-71
4	15800	-241	-250	-305	-141	-118	-80	-149	-76
5	19865	-345	-362	-420	-198	-145	-100	-150	-79
6	23850	-420	-447	-433	-240	-169	-117	-154	-76
7	27775	-494	-523	-512	-282	-194	-131	-158	-76
8	31725	-568	-586	-355	-330	-225	-151	-164	-83
9	35650	-683	-703	-454	-407	-268	-185	-183	-102
10	39650	-707	-728	-479	-422	-274	-187	-177	-99
11	41750	-744	-766	-532	-450	-291	-200	-181	(\%) -1
12	43850	-784	-800	-664	-471	-303	-211	-182	-111
13	45750	-824	-844	-810	-501	-320	-225	-191	-117
14	46825	-839	-858	-874	-507	-323	-228	-187	-118
15	47825	-855	-875	-908	-519	-329	-236	-192	-122
16	48815	-873	-895	-940	-532	-337	-240	-195	-125
17	49925	-896	-920	-984	-550	-342	-246	-193	-124
18	50775	-919	-939	-1020	-561	-2	-251	-179	-124
19	51750	-1171	-1220	-1142	-636	-246	-163	-134	-86
20	52750	-1679	-1783	-1264	-726	-11	20	-90	-44
21	53700	-2275	-2244	-1161	-708	77	117	-58	-37
22	55650	-2620	-2505	-1104	-714	39	128	-47	-28

TABLE 5.10: Continued

$\begin{gathered} \text { LOAD } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \# 9 \end{gathered}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#10 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#11 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#12 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 13 \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#14 } \end{aligned}$	GAGE \#15	$\begin{aligned} & \text { GAGE E } \\ & \text { \#16 } \end{aligned}$
-	0	6	10	8	13	5	0	7	-3
1	4000	-9	0	1	9	-36	-39	-20	-36
2	8150	-25	-8	-8	7	-71	-75	-46	-69
3	12100	-45	-21	-8	7	-124	-128	-81	-116
4	15800	-34	-8	28	35	-180	-195	-119	-166
5	19865	34	24	109	73	-260	-295	-158	-220
6	23850	60	39	101	72	-330	-381	-188	-268
7	27775	62	43	82	64	-398	-461	-220	-317
8	31725	72	38	61	61	-468	-542	-254	-362
9	35650	73	36	33	56	-573	-655	-308	-430
10	39650	79	40	10	60	-598	-685	-314	-444
11	41750	83	41	9	62	-644	-733	-338	-474
12	43850	78	40	-12	59	-682	-772	-352	-495
13	45750	78	43	-19	62	-722	-804	-371	-518
14	46825	78	43	-22	63	-734	-811	-373	-523
15	47825	77	44	-24	64	-747	-822	-380	-529
16	48815	80	44	-27	67	-764	-836	-386	-538
17	49925	84	47	-31	67	-786	-856	-391	-549
18	50775	88	49	-35	68	-805	-868	-396	-554
19	51750	34	39	-75	50	-1027	-1075	-391	-545
20	52750	-4	22	-123	35	-1555	-1486	-335	-490
21	53700	-18	17	-126	37	-2203	-1864	-95	-371
22	55650	-5	25	-122	46	-2534	-2027	162	-321

TABLE 5.10: Continued

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \# 17 \end{gathered}$	$\begin{array}{r} \text { GAGE } \\ \# 18 \end{array}$	$\begin{array}{r} \text { GAGE } \\ \# 19 \end{array}$	GAGE $\text { \# } 20$	GAGE \#21	GAGE $\text { \# } 22$	$\begin{aligned} & \text { GAGE } \\ & \text { \#23 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 24 \end{aligned}$
-	0	15	10	11	16	22	21	32	24
1	4000	-15	-9	-7	-2	8	5	27	20
2	8150	-40	-25	-22	-15	-2	-7	26	21
3	12100	-71	-41	-37	-25	-2	-2	40	47
4	15800	-102	-62	-45	-36	1	9	57	83
5	19865	-109	-68	-22	15	26	443	34	696
6	23850	-120	-76	-10	54	35	629	36	713
7	27775	-132	-84	-3	107	42	405	62	813
8	31725	-154	-99	-6	157	43	302	66	763
9	35650	-182	-118	-3	206	54	234	36	570
10	39650	-181	-115	6	233	61	206	10	405
11	41750	-194	-127	6	248	61	199	-8	385
12	43850	-197	-132	16	281	51	194	-30	380
13	45750	-200	-141	20	320	61	192	-44	372
14	46825	-195	-140	27	372	76	188	-46	19
15	47825	-195	-139	29	402	76	187	-47	292
16	48815	-194	-141	31	436	77	186	-48	284
17	49925	-193	-141	35	510	71	180	-52	252
18	50775	-188	-140	39	566	68	176	-55	234
19	51750	-109	-22	2	596	21	129	-83	220
20	52750	-56	103	-21	521	-14	69	-108	210
21	53700	64	72	-25	495	-41	69	-109	201
22	55650	57	76	-21	491	-41	74	-103	192

$1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{lb} .=4.45 \mathrm{~N}$

TABLE 5.11: Load vs. Absolute Average
Strain Data for Beam \#3
(average of side 1 and side 2)
(strain data inmicro in./in.)

LOAD	LOAD		EPTH	M THE	AM T	SURF	
No.	(1bs.)	0	1 i	21	3 i		5 in .
1	4000	-40	-34	-23	-21	-14	-5
2	8150	-80	-68	-45	-40	-25	-8
3	12100	-142	-125	-76	-69	-32	
4	15800	-209	-172	-103	-78	-23	32
5	19865	-308	-238	-120	-61	117	209
6	23850	-387	-272	-136	-49	176	211
7	27775	-461	-322	-154	-35	123	236
8	31725	-533	-315	-179	-26	99	219
9	35650	-646	-389	-212	-23	85	155
10	39650	-672	-404	-214	-1.2	82	102
11	41750	-714	-438	-229	16	81	93
12	43850	-752	-485	-247	-2	76	80
13	45750	-791	-539	-248	6	79	74
14	46825	-803	-559	-248	21	82	-16
15	47825	-817	-573	-251	27	81	52
16	48815	-834	-588	-255	35	82	50
17	49925	-857	-608	-257	55	81	40
18	50775	-875	-622	-86	73	81	34
19	51750	-1115	-668	-159	92	41	9
20	52750	-1618	-693	4	90	4	-16
21	53700	-1618	-573	70	92	-8	-19
22	55650	-2414	-484	50	97	-2	-16
23	56100	FAILURE					

$1 \mathrm{in}=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}$

TABLE 5.12: Load vs. Available Strain
Data for Beam \#4*
(strain data in micro in./in.)

| LOAD
 NO.
 (1bS $)$ | GAGE
 $\# 1$ | GAGE
 $\# 2$ | GAGE
 \#3 | GAGE
 \#4 | GAGE
 \#5 | GAGE
 \#6 | GAGE
 \#7 | GAGE
 \#8 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 0 | -31 | -13 | 0 | -2 | 7 | 2 | 2 | 0 |
| 1 | 1000 | -47 | -26 | -8 | -15 | -2 | -7 | -7 | -8 |
| 2 | 2000 | -63 | -39 | -15 | -27 | -9 | -15 | -14 | -12 |
| 3 | 3230 | -81 | -51 | -26 | -39 | -18 | -24 | -24 | -22 |
| 4 | 4175 | -157 | -125 | -42 | -82 | -27 | -43 | -27 | -18 |
| 5 | 5800 | -183 | -149 | -51 | -97 | -35 | -57 | -36 | -22 |
| 6 | 6150 | -194 | -158 | -56 | -104 | -39 | -60 | -39 | -26 |
| 7 | 7150 | -224 | -182 | -70 | -124 | -54 | -71 | -52 | -34 |

TABLE 5.12: Continued

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { LOAD } \\ (1 \mathrm{bs} .) \end{gathered}$	$\begin{gathered} \text { GAGE } \\ \# 9 \end{gathered}$	$\begin{aligned} & \text { GAGE } \\ & \# 10 \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#11 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#12 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#13 } \end{aligned}$	$\begin{gathered} \text { GAGE } \\ \text { \#14 } \end{gathered}$	$\begin{array}{r} \text { GAGE } \\ \# 15 \end{array}$	GAGE \#16
-	0	3	-5	-6	-32	-5	-26	-32	-9
1	1000	-4	-10	-11	-37	-17	-40	-44	-21
2	2000	-10	-14	-13	-40	-27	-55	-55	-32
3	3230	-13	-19	-18	-46	-42	-72	-69	-44
4	4175	-2	-5	-4	-26	-96	-176	-113	-110
5	5800	-1	-3	2	-17	-118	-213	-129	-130
6	6150	-6	-4	1	-17	-124	-225	-138	-139
7	7150	-8	-7	-5	-18	-143	-253	-157	-155

TABLE 5.12: Continued

$\begin{aligned} & \text { LOAD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & (1 \mathrm{bs} .) \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 17 \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#18 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 19 \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 20 \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#21 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \text { \#22 } \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 23 \end{aligned}$	$\begin{aligned} & \text { GAGE } \\ & \# 24 \end{aligned}$
-	0	-2	-4	-4	-40	0	-5	-22	-10
1	1000	-10	-16	-11	-48	-4	-11	-26	-16
2	2000	-17	-24	-18	-58	-5	-14	-32	-17
3	3230	-26	-34	-25	-65	-11	-18	-36	-19
4	4175	-44	-61	-26	-63	-2	3	-19	-26
5	5800	-55	-78	-33	-66	-2	5	-14	-19
6	6150	-58	-83	-36	-71	-4	5	-16	-19
7	7150	-61	-85	-47	-39	-6	2	-2	2

* Missing data due to printer malfunction.

1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}$

TABLE 5．13：Load vs．Absolnte Average Strain Data for Beam \＃4
（average of side 1 and side 2）
（strain data in micro in．／in．）

LOAD	LOAD	DEPTH FROM THE BEAM TOP SURFACE					
No．	（1bs．）	0	1 in 。	2 in 。	3 in 。	4 in 。	5 in 。
1	1000	－14	－11	－10	－8	－6	－5
2	2000	－27	－22	－17	－15	－9	－8
3	3230	－43	－34	－26	－24	－14	－12
4	4175	－120	－76	－42	－23	0	－1
5	5800	－147	－91	－53	－29	2	6.
6	6150	－157	－99	－57	－33	－1	5
7	7150	－181	－116	－66	－33	－3	12

$1 \mathrm{in},=25.4 \mathrm{~mm}, 11 \mathrm{~b}=4.45 \mathrm{~N}$

TABLE 5.14 Properties of Cracked Section at Midspan of Beam \#1 Based on Regression Analysis

$\begin{aligned} & 10 \mathrm{ad} \\ & (1 \mathrm{bs} .) \end{aligned}$	$\begin{gathered} c \\ \left(\mathrm{in}_{.}\right) \end{gathered}$	${\stackrel{h_{1}}{1}}_{\left(i_{0}\right)}$	$\binom{h_{2}}{i_{n}}$	$\underset{-}{h_{1}}$	$\begin{gathered} \mathbf{f}_{s} \\ \mathbf{s} \end{gathered}$	Top Snrface	
						$\boldsymbol{E}_{\mathbf{c}}{ }^{*}$	$f_{c}(p s i)$
7885	5.83	3.97	6.17	1.55	4.52	87	619
15700	5.30	4.50	6.70	1.49	8.22	174	1234
23500	5.15	4.65	6.85	1.47	11.93	261	1841
32450	5.05	4.75	6.95	1.46	15.12	339	2377
39775	5.00	4.80	7.00	1.46	18.59	423	2941
47650	5.04	4.76	6.96	1.46	22.41	508	3508
55500	4.90	4.90	7.10	1.45	26.01	609	4169
63450	4.82	4.98	7.18	1.44	29.42	705	4780
71300	4.84	4.96	7.16	1.44	33.80	811	5437
79400	4.79	5.01	7.21	1.44	36.78	898	5961
87300	4.82	4.98	7.18	1.44	40.60	992	6509
95300	4.78	5.02	7.22	1.44	43.81	1086	7043
103500	4.79	5.01	7.21	1.44	48.88	1221	7776
111200	4.76	5.04	7.24	1.44	52.10	1320	8289
119000	4.80	5.00	7.20	1.44	56.16	1423	8799
125650	4.78	5.02	7.22	1.44	58.18	1489	9108
130800	4.76	5.04	7.24	1.44	62.32	1620	9697
137500	4.33	5.47	7.67	1.40	62.60	1824	10520
142200	3.90	5.90	8.10	1.37	65.19	2197	11703

* Strain in microin. / in.
$1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}, 1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.15 Properties of Cracked Section at Midspan of Beam \#2 Based on Regression Analysis

$\begin{aligned} & 1 \mathrm{og} \mathrm{~d} \\ & (\mathrm{Ibs} .) \end{aligned}$	$\left.\begin{array}{c} c \\ \left(\mathrm{in}_{.}\right. \end{array}\right)$	$\stackrel{h_{1}}{i_{n}}$	$\binom{\mathbf{h}_{2}}{\mathrm{i}_{\mathrm{n}},}$	$-\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}$	$\underset{(\underline{k} \mathbf{f}}{\mathbf{f}_{\mathbf{s}}}$	Top Surface	
						$\boldsymbol{E}_{\mathrm{c}}{ }^{\text {* }}$	$\mathrm{f}_{\mathrm{c}}(\mathrm{psi})$
5850	5.29	4.84	6.71	1.39	4.23	61	439
12175	5.24	4.89	6.76	1.38	8.91	131	932
17985	5.17	4.96	6.83	1.38	13.12	196	1389
23765	4.99	4.14	7.01	1.36	17.34	270	1898
29675	4.77	5.36	7.23	1.35	21.07	344	2409
35795	4.68	5.45	7.32	1.34	24.79	414	2883
41645	4.56	5.57	7.44	1.34	28.97	498	3444
47685	4.48	5.65	7.52	1.33	32.64	574	3942
53325	4.41	5.72	7.59	1.33	36.22	650	4430
59500	4.35	5.78	7.65	1.32	40.02	732	4945
65580	4.30	5.83	7.70	1.32	43.91	817	5473
71535	4.29	5.84	7.71	1.32	48.38	908	6017
75515	4.26	5.87	7.74	1.32	50.82	964	6350
79450	4.22	5.91	7.78	1.32	52.98	1019	6662
83670	4.21	5.92	7.79	1.32	56.29	1089	7061
87640	4.19	5.94	7.81	1.31	58.77	1148	7384
91435	4.17	5.96	7.83	1.31	61.17	1205	7690
95260	4.15	5.98	7.85	1.31	63.51	1263	7994
99425	4.12	6.01	7.88	1.31	66.88	1351	8445
103200	4.32	5.81	7.68	1.32	71.71	1383	8601
105850	2.44	7.69	9.56	1.24	59.54	2201	11713
108250	2.62	7.51	9.38	1.25	70.41	2519	12358
109815	2.50	7.63	9.50	1.25	72.15	2822	12626

* Strain in micro in. / in.

1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}, 1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.16 Properties of Cracked Section at Midspan of Beam \#3 Based on Regression Anelysis

* Strain inmicro in. / in.
$1 \mathrm{in}=.25.4 \mathrm{~mm}, 1 \mathrm{lb} .=4.45 \mathrm{~N}, 1 \mathrm{psi}=6.89 \mathrm{kPa}$

TABLE 5.17 Properties of Cracked Section at Midspan of Beam \#4 Based on Regression Analysis

TABLE 5.18 Comparison Botween Test Moment and Calculated Moment Using Different Methods for Beam \#l

$\begin{aligned} & 10 \mathrm{ad} \\ & (1 \mathrm{bs}) \end{aligned}$	M (test)	M (test)	M (test)
	M(rect.)	M(par.)	M(tri.)
7885	0.88	0.97	0.97
15700	0.94	1.04	1.04
23500	0.97	1.07	1.07
32450	1.05	1.16	1.17
39775	1.05	1.15	1.16
47650	1.05	1.15	1.16
55500	1.05	1.15	1.16
63450	1.06	1.15	1.18
71300	1.04	1.13	1.16
79400	1.07	1.15	1.19
87300	1.07	1.15	1.19
95300	1.09	1.16	1.21
103500	1.07	1.13	1.19
111200	1.08	1.14	1.20
119000	1.08	1.14	1.20
125650	1.11	1.16	1.23
130800	1.09	1.13	1.21
137500	1.14	1.16	1.26
142200	1.16	1.13	1.28

$11 \mathrm{~b} .=4.45 \mathrm{~N}$

TABLE 5.19 Comparison Between Test Moment and Calcalated Moment Using Different Methods for Beam \#2

load	M (test)	M(test)	M(test)
(1bs.)	M (rect.)	M (par.)	M(tri.)
5850	0.95	1.05	1.05
12175	0.94	1.04	1.04
17985	0.94	1.04	1.04
23765	0.93	1.03	1.04
29675	0.95	1.05	1.06
35795	0.98	1.07	1.08
41645	0.97	1.06	1.08
47685	0.99	1.08	1.09
53325	0.99	1.08	1.10
59500	1.00	1.09	1.12
65580	1.01	1.09	1.12
71535	1.01	1.08	1.12
75515	1.10	1.09	1.12
79450	1.02	1.10	1.13
83670	1.02	1.09	1.13
87640	1.02	1.09	1.14
91435	1.03	1.09	1.14
95260	1.04	1.10	1.15
99425	1.03	1.08	1.14
103200	1.01	1.06	1.12
105850	1.25	1.22	1.38
108250	1.14	1.06	1.26
109815	1.18	1.05	1.31

TABLE 5.20 Comparison Between Test Moment and Cafaleted Moment Using Different Methods for Beam \#3

10ad	M(test)	M(test)	M(test)
(1bs.)	M(rect.)	M(par.)	M(tri.)
4000	1.06	1.18	1.18
8150	1.11	1.23	1.23
12100	0.95	1.06	1.06
15800	0.94	1.03	1.04
19865	0.94	1.04	1.04
23850	0.99	1.08	1.09
27775	0.99	1.09	1.10
31725	1.05	1.15	1.17
35650	0.99	1.07	1.09
39650	1.07	1.16	1.18
41750	1.05	1.14	1.17
43850	1.04	1.13	1.15
45750	1.01	1.10	1.12
46825	1.02	1.10	1.13
47825	1.02	1.11	1.13
48815	1.03	1.11	1.14
49925	1.03	1.11	1.14
50775	1.03	1.31	1.35
51750	1.03	1.10	1.14
52750	0.96	0.99	1.06
53075	0.89	0.89	0.99
54250	0.86	0.83	0.95

$1 \mathrm{1b}=4.45 \mathrm{~N}$

TABLE 5.21 Comparison Between Test Moment and Calculated Moment Using Different Methods for Beam \#4

102 d	M(test)	M (test)	M (test)
($1 \mathrm{bs}$.)	M (rect.)	M(par.)	M(tri.)
1000	0.59	0.66	0.66
2000	0.67	0.74	0.74
3230	0.69	0.77	0.77
4175	0.49	0.55	0.55
5700	0.55	0.62	0.62
6075	0.54	0.61	0.61
7075	0.55	0.61	0.61
116.	5 N		

TABLE 5. 22 Comparison Between Measured and Calculated Vertical Deflection at Midspan for Beam \#l (deflection in in. $\quad 10^{-3}$)

$1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{lb} .=4.45 \mathrm{~N}$

TABLE 5.23 Comparison Between Measured and Calculated Vertical Defiection at Midspan for Beam \#2 (deflection in in. $\times 10^{-3}$)

$\begin{aligned} & 10 a d \\ & (1 \mathrm{bs}) \end{aligned}$	$\underset{(t \operatorname{ses})}{\Delta}$	$\underset{(A C I)}{\Delta}$	$\underset{\left(P_{r e t .}\right)}{\Delta}$	(test)	(test)
				$\Delta(\mathrm{ACI})(32)$	$\Delta\left(P_{\text {ret. }}\right)(22)$
5850	20	8	15	2.35	1.38
12175	42	19	31	2.19	1.36
17985	62	38	46	1.62	1.36
23765	86	57	62	1.50	1.38
29675	112	77	80	1.45	1.39
35795	141	95	98	1.48	1.44
41645	169	114	116	1.49	1.46
47685	197	132	133	1.49	1.48
53325	226	149	150	1.52	1.51
59500	262	167	168	1.57	1.55
65580	292	185	186	1.58	1.57
71535	324	202	203	1.60	1.59
75515	346	214	215	1.62	1.61
79450	366	226	226	1.62	1.61
83670	389	238	238	1.64	1.63
87640	410	249	250	1.64	1.64
91435	433	260	261	1.66	1.66
95260	458	272	272	1.69	1.69
99425	485	284	284	1.71	1.71

$1 \mathrm{in} .=25.4 \mathrm{~mm}, 11 \mathrm{~b} .=4.45 \mathrm{~N}$

TABLE 5. 24 Comparison Between Measured and Calculated Vertical Deflection at Midspan for Beam \#3 (deflection in in. $x 10^{-3}$)

$108 d$ (1bs)	$\Delta_{(t \in s t)}$	$\underset{(\mathrm{ACI})}{\Delta}$	${\underset{(P r e t .)}{\Delta}}_{\Delta_{r}}$	$\frac{(\text { test })}{\Delta(A C I)(32)}$	$\begin{gathered} \text { (test) } \\ \hdashline \Delta(\text { Pret.)(22) } \end{gathered}$
4000	13	5	14	2.39	0.90
8150	25	11	31	2.26	0.82
12100	44	19	48	2.27	0.91
15800	62	39	69	1.58	0.90
19865	95	66	95	1.43	0.99
23850	120	92	116	1.30	1.03
27775	150	116	135	1.29	1.11
31725	178	139	154	1.28	1.15
35650	207	161	173	1.28	1.19
39650	240	183	193	1.31	1.24
41750	257	194	203	1.32	1.26
43850	273	205	213	1.33	1.28
45750	287	215	223	1.33	1.29
46825	298	221	228	1.35	1.30
47825	305	226	233	1.35	1.31
48815	313	231	238	1.36	1.32
49925	320	237	243	1.35	1.32

TABLE 5.25 Comparison Between Measured and Calculated Vertical Deflection at Midspan for Beam \#4
(deflection in in. $\left.\quad 10^{-3}\right)$

$1 \mathrm{ing}=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}$

TABLE 5.26 Comparison Between Measured and Calculated Maximum Bottom Crack Width for Beam \#1*

LOAD	W (test)	w ($\mathrm{G}^{(L \mathrm{~L}}$)	w (test)
($1 \mathrm{bs}$.)	in. $\times 10^{-3}$	in. 110 $^{-3}$	W (G / L)
55500	1.6	4.8	0.33
79400	2.4	10.0	0.23
87300	3.9	12.4	0.32
142200	11.8	19.9	0.59

- Calculations are based on the Gergely and Lutz equation (4.4)
$1 \mathrm{ing}=25.4 \mathrm{~mm}, 1 \mathrm{lb}=.4.45 \mathrm{~N}$

TABLE 5. 27 Comparison Between Measuredand Calculated Maximum Bottom Crack Width for Beam \#2*

LOAD	- (teat)	W (G/L)	W (tost)
(1bs.)	in. 110^{-3}	in. $\times 10^{-3}$	w (G/L)
29675	2.8	5.6	0.49
35795	3.1	6.9	0.46
41645	3.9	8.3	0.48
59500	5.5	12.0	0.46
79450	7.1	16.3	0.43
99425	31.5	21.0	1.50
105850	47.2	17.5	2.69
Calculations are based on the Gergely and equation (4.4)$1 \mathrm{in}=25.4 \mathrm{~mm}, 1 \mathrm{lb}=4.45 \mathrm{~N}$			

TABLE 5.28 Comparison Betreen Measured and Calculated Maximam Bottom Crack Width for Boam \#3*

FIG. 2.1 STRESS-STRAIN CURVE FOR DIFFERENT STEEL REINFORCING BARS

FIG. 2.2: EFFECT OF VARIOUS CEMENTS ON CONCRETE COMPRESSIVE STRENGTH (2)

Age, days

FIG. 2.3: COMPRESSIVE STRENGTH OF CONCRETE USING TWO SIZES AND TYPES OF COARSE AGGREGATES FOR 7,500 PSI CONCRETE (36)

Mox. size aggregate, in., log scale

FIG. 2.4: MAXIMUM SIZE AGGREGATE FOR STRENGTH Efficiency envelope (8)

113

Hachine Head

FIG. 5.1: STRESS-SIRAIN CURVE BASED ON CYLINDER TEST DATA PRESENTED IN TA8LE 5.11,REF. 10,P. 50

FIG. 5.2: STRESS-STRAIN CURVE BASED ON CYLINDER TEST OATA PRESENTEO IN TABLE 5.10,REF. 10,P. 48

BEAM TOP SURFACE

FIG. 5.3: GAGE LOCATIONS VS. STRAIN FOR EEAM 1 SIDE 1

BEAM TOP SURFACE

FIG. 5.4: GAGE LOCATIONS VS. STRAIN FOR BEAM 1 SIOE 2

BEAM TOP SURFACE

FIG 5.5: GAGE lOcATIONS VS. AVERAGE STRAIN FOR BEAM 1
(average of Side 1 AND SIDE 2)

FIG. 5.6: gage locations vs. average strain FQR EEAM 1 USING LEAST SQUARE REGRESSION (average of side 1 and side 2)

FIG. 5.7: GAGE LOCATIONS VS. STRAIN

BEAM TOP SURFACE

FIG. 5.8: GAGE LOCATIONS VS. STRAIN
FOR BEAM 2 SIOE 2

BEAM TOP SURFACE

fig. 5.9: gage locations vs. average strain

BEAM TOP SURFACE

FIG. 5.10: gage locations vs. average strain
FOR BEAM 2 USING LEAST SQUARE REGRESSION (AVERAGE OF SIDE 1 AND SIDE 2)

FIG. 5.11: GAGE LOCATIONS VS. STRAIN FOR BEAN 3 SIDE 1

BEAM TOP SURFACE

FIG. 5.12: GAGE LOCATIONS VS. STRAIN FOR BEAM 3 SIOE 2

FIG. 5.13: GAGE LOCATIONS VS. AVERAGE STRAIN

BEAM TOP SURFACE

FIG. S.14: GAGE LOCATIONS VS. AVERAGE STRAIN FOR BEAM 3 USING LEAST SQUARE REGRESSION (AVERAGE OF SIDE 1 AND SIDE 2)

BEAM TOP SURFACE

FIG. 5.15: gage locations vs. avallagle strain

FIG. 5.16: GAGE LOCATIONS VS. AVALLABLE STRAIN OATA FOR 8EAM 4 SIOE 2

BEAM TOP SURFACE

Fig. 5.17: GaGE locations vs. available strain

BEAM TOP SURFACE

FIG. 5.18: GAGE LOCATIONS VS. AVERAGE STRAIN FOR BEAM 4 USING LEAST SQUARE REGRESSION (AVERAGE OF SIDE 1 AND SIDE 2)

BEAM TOP SURFACE

FIG. 5.19: GAGE LOCATIONS VS. AVERAGE COMPRESSIVE STRESS FOR 日EAM 1 EASED ON CUBIC REGRESSION MODEL (AVERACE OF SIDE 1 AND SIDE 2)

BEAM TOP SURFACE

FIG. 5.20: COMPRESSIVE STRESS BLOCK OF BEAM 1 bASEO ON CUBIC REGRESSION MODEL AND LINEAR STRAIN ASSUMPTION

FIG. 5.21: GAGE LOCATIONS VS. AVERAGE COMPRESSIVE STRESS FOR BEAM 2 BASED ON CUBIC REGRESSION MODEL (AVERAGE OF SIDE 1 ANO SIDE 2)

BEAM TOP SURFACE

FIG. 5.22: COMPRESSIVE STRESS BLOCK OF BEAN 2
BASED ON CUEIC REGRESSION MOOEL
AND LINEAR STRAIN ASSUNPTION

BEAM TOP SURFACE

FIG. 5.23: GAGE LOCATIONS VS. AVERAGE
COMPRESSIVE STRESS FOR BEAM 3 BASED ON CUBIC REGRESSION MODEL
(average of side 1 and side 2)

BEAM TOP SURFACE

FIG. 5.24: COMPRESSIVE STRESS BLOCK OF BEAM 3
BASED ON CUBIC REGRESSION MODEL
AND LINEAR STRAIN ASSUMPTION

F10. 3.25: gage locations vs. average
COMPRESSIVE STRESS FOR GEAM 4 bASED ON CUBIC REGRESSION MODEL (AVERAGE OF STEE I AND SIDE 2)

BEAM TOP SURFACE

FIG. 5.26: COMPRESSIVE STRE5S BLOCK OF BEAM 4
BASEO ON CUBIC REGRESSION MOOEL
AND LINEAR STRAIN A55UMPTION

FIG. 5.27: MONENT AT MIOSPAN VS. LOAD VALUE OF BEAM 1

FIG. 5.28: MONENT AT MIOSPAN VS. LOAO VALUE

FIG. 5.29: MOMENT AT MIO5PAN VS. LOAO VALUE OF BEAM 3
CTEST MOMEN AND CNCUATED MOMENT USNG
PARABLG, TIANGUER NNO RECINGILAR stress rocks

Fig. 5.30: monent at miospan vs. loao value

FIG. 5.31: LOAO VS. VERTICAL OEFLECTION at miospan of bean 1

FIG. 5.32: LOAD VS. VERTICAL DEFLECTION AT MID5PAN OF BEAM 2

FIG. 5.33: LOAD VS. VERTICAL OEFLECTION AT MID5PAN OF BEAM 3

FIG. 5.34: LOAO VS. VERTICAL OEFLECTION AI MIOSPAN OF GEAN 4

(1)

Side 1 rart B

Side 1 Part c

(n)

Side 2 Part B^{\prime}
(4)

Fig.

(1)
©

(2)-4

7oug HPIM y>e八刀 mamixed *
at the Beas Bolforn Surface
*

FIG. 5.59: LOAD VS. MAXIMUM BOTTOM CRACK WIDTH OF BEAM 1

FIG. 5.60; LOAO VS. MAXIMUM BOTTOM CRACK WIDTH OF BEAM 2

FIG. 5.61: LOAD VS. WAXINUM BOTTON CRACK WIDTH OF BEAM 3

FIG. 5.62: LOAO VS. MAXIMUM BOTTON CRACK WIOTH

FIG. 5.63: MAXIMUM BOTIOM CRACK WIDTH VS. h_{2} / h_{1}
OF GEAM 1

FIG. 5.64: MAX. BOTHOM CRACK WIDTH VS. h_{2} / h_{1}

FIG. 5.65: MAX. BOTTOM CRACK WIOTH VS, h_{2} / h_{1}
OF BEAM 3

APPENDIX IV

NOTATION

ACENOWLEDGEMENTS

Many friends and colleagnes have helped me snccessfilly complete my investigation. Some have been by my side every step of the way, others have assistedme at different stages of my work. Everyone has my heart-felt-thanks, bnt a few people are ontstanding. They are listed below.

A large thank yon to Dr. Stnart E. Swartz, for his help, gnidance, and attention above and beyond what is necessary for a major professor. The knowledge he passes on to his stindents stays with them for years to come.

A thank yon to Dr. Robert R. Snell, Head of the Department of Civil Engineering, for his faith in my work and showing this faith with financial backing. Yes, compnter time is expensive bnt I feel the resilts are worth it. Withont his help, this project wonld not have been completed.

A thank yon to Mr. David Abell of the Qnartzite Stone Company, Inc. for his donation of quartzite for this project. Also a thank yon to the Sika Company of Lyndhnrst, New Jersey, for their generons donation of snperplasticizer.

Thanks To Mr. Ali Nikaeen for the care he took in his gronnd-breaking work that provided a gnide for me. Also to Mr. Tarek Refai for his help.

Special thanks go to Dr. Best, Dr. Cooper, Dr. Hn, Dr. Hodges, Dr. Williams, Mr. Jeff Crabb for all their care and help when I needed it.

Thanks are for Rnssell Lillespie, civil enginefing technician, withont his help - no telling what wonld have happened in the 1 ab . And a thank yon for Peggy Selvidge and Rosemary Visser.

And last bnt not by any means the least, to Cheryl Shatbona who helped me in any way she conld. Without her help, nothing would have been the same. Thank you.

THE STRUCTURAL BEHAVIOR AND CRACK PATTERNS OF HIGHER STRENGTH CONCRETE BEAMS
 BY
 ABDEL-AZIZ A. MAKKAWY
 B.S., CAIRO UNIVERSTY, 1979
 AN ABSTRACT OF A MASTER'S THESIS
 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
 MASTER OF SCIENCE

DEPARTMENT OF CNIL ENGINEERING KANSAS STATE UNIVERSTTY MANHATTAN, KANSAS

1986

The many differences in conclnsions abont the behavior of higher strength concrete make it appropriate for further investigation. The stindy of the shape of compressive stress block, the nltimate concrete strain, the vertical deflection and the crack propagation and width are the main objectives to be investigated in this research.

Concrete with nominal compressive strength of 12,000 psi was nsed to binild four reinforced beams with a span of seven feet and a cross - sectional dimension of 8 inch 12 inch. The beams were reinforced with grade 60 steel reinforcing bars. Fonr different steel ratioa; P_{b}, $0.59 P_{b}$. $0.26 P_{b}$ and $0.07 \mathrm{P}_{\mathrm{b}}$ Were nsed for the different beams.

From the test resnlts it was conclinded that the rectangnlar stress block can be nsed in moment calculations for higher strength concrete beams. Test data indicated that the nltimate strain for higher strength concrete was always in the range of 0.0023 to 0.003 in./in. Both the ACI approach and Pretorins approach for calcniating vertical deflection are not conservative. It is also conclinded that the Gergely and Lintz formnla for maximum bottom cract width gives conservative ∇ alnes for higher strength concrete.

[^0]: $1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{ib} .=4.45 \mathrm{~N}$

