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INTRODUCTION

The design of a fastening in which two or more members are bolted

together by a bolt or group of bolts appears at first to be a simple

problem, nevertheless, little fundamental information is available on

which to base a rational design procedure. Ihring the past war

complexities of the problem were emphasized by the many failures of

connecting rod bolts and cylinder head bolts encountered during the

development of new aircraft engines.

In the design of an assembly of two or more metal sections fastened

together by bolts, some designers assume that the compression members

of tho assembly aro rigid and do not deform when the bolts are tightened.

However, no metal is incompressible though it may be very stiff and the

interactions which occur should be considered in the design.

The extent to which the load on a bolt is increased by the application

of an external force to the joint depends partly upon the magnitude of

the external force and in part upon the relative stiffness of the bolt

as compared with that of the members joined by the bolt. Relative

stiffness depends upon the effective area, modulus of elasticity, and the

effective length of bolt and parts.

Of all the factors affecting the bolted connections, the effective

area of the part is the only one not well-defined. Thus, it is the object

of the investigation in this report.
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EQUATION PROPOSED FOR BOLTED COMECTIONS

A nunber of approaches have been used in analyzing a bolted connection.

The earlier equations were baaed on certain simplifying assumptions which

reflected the general understanding of the problem. As more was understood

about the n:aterial properties and the elasticity of the taateriala, other

equations were developed to better reflect the true situation.

In the equations to follow the symbols are:

F - Total load on bolt (lb.)

_ F. - Initial load due to tightening (lb.)
1

F - External or applied load (lb.)
e

E. - }j:odulus of elasticity (psi.)

Aj « Cross-sectional area (sq. in.)

- Length parallel to center line of bolt (in.)

Subscript j refers to the bolt or any one of bolted parts, i.e.,

j - b, g, 1, 2, or 5.

Figure I shows a bolted joint illustrative of that found frequently

and will be used in explaining the equations applied to such connections.

The earliest equation used is that given by Kimbal and Bar (l).

The total load acting on the bolt is assumed to be the sum of the initial

and external load. In the analysis it is assumed that the bolted parts

are rigid.

The initial load is obtained from the equation

Fj_ - 16,000 D

where D is the shank diameter of the bolt (in.)



Fig. 1

FL.lNCrE JOIIJT

Part 1 - Gasket
Part 2 - Flange
Part 3 - Cover Plate

(a) Effective area of part for each bolt by
Radziravosky equation (see page 8).
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Initial load due to tightening is a function of the bolt diameter.

It depends upon the mechanic, how experienced he is, the length of wrench

used, as well as the condition of bolt and nut. The above equation is

given for average conditions.

The external load for the flanged cor^iection, Figure I, is

° n

where p » Internal pressure (psi.)

2-

A - 0.7854 (D^)g(8q. in.)

(D^)g = Inside deameter of the gasket (in.)

n - Number of bolts ' '

According to this approach the total load on the bolt is

Fx - F. + F - eq. (A)tie
- 16,000 D + £A

n

Doughtie and Carter (2) developed an expression assuming the bolt and

gasket to have elastic behavior, but the flange and plat© members remained

rigid. The deformations of the bolt and gasket are directly proportional

to the load. The total load on the bolt is

eq. (B)

The quantity m will have values ranging from zero to one depending

upon the gasket used. If the gasket is hard, thin, and of large area,
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the term ^Mj will be large compared to ('^j^ and m will approach zero.

For gaskets that are soft the term becomes small compared to (^)t'

then the value of m approaches one. Tho absence of the gasket between

the members is the same as having a gasket of infinite stiffness, that is,

—] becomes infinite, then m becomes zoro and the equation reduces to

?^ . This implies the bolt load is independent of the external load.

Equation (B) is valid only as long as the gasket remains in contact with

the other members of the connections.

Vallance and Doughtie (?) give the following values for m

Type of Joint E_

Soft packing with stud 1.00

Soft packing with through bolt 75

Asbestos 60

Soft copper with long through bolt 50

Hard copper gasket with long through bolt. .25

Metal to metal with roug-h bolt 00

The most recent development is that of Radzimovsky (4) and presented

in present machine design books such as Faires (5). The elasticity of all

the parts is considered.

The total load on the bolt is

F^ - F^ + kFg eq. (0)

where



In general fore

where n = 1, 2, 5, 4 N

N - Total number of bolted parts.

CD

T » Tightening tongue (in. lb.)

C m Friction factor

The equation is based on the following assunptions; (a) the load is

distributed uniformly over the area, (b) all parts are elastic, and

(c) bolted parts are in compression.

If the bolt used is not of uniform cross-section then that term in

the equation for k must be modified as follows

(^)b
"

Where M is the total number of different bolt cross-sections.

The terms in k are defined satisfactorily except for the effective

area of the parts. Some work has been done in an attempt to define it,

however, only specific cases have been considered. This means that for

most joints the designer must make assumptions in selecting the area of

the parts.
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PREVIOUS INVESTIGATIONS

Radzimvosky (4) stated, that for two plates of infinite area bolted

together, the cross-section can be represented by compression cones as

shown in Figure 2a, which cut the bearing surfaces under the nut and the

head at an angle of 45 degrees. Elasticity of the double cone can ba

determined approximately by replacing the cone with a hollow cylinder

using the mean cone diameter as the outside diameter and the same inside

diameter, d, as the cone (bolt hole). Thus, the effective cross-section

area is obtained from the following equation:

where

e
2

n Diameter of the washer face of the nut (in.)

If a gasket is placed between the flange and the cover plate as

shown in Figure 2b then

In general form

n

where n - 1, 2, 5, 4

N - Total number of bolted parts.
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Figure 2(a) Schematic representation of infinite

plaiGs undergoing compressive
def orrriation.

Figure 2(b) Infinite plates with^gasket undergoing

compressive deformation.



RadziEVOsky also suggested that the stiffness and therefore effective

area cay have to be found experimontly if the machine member is complex

in form such as the connecting rod. Thum and Dabas (6) tested a connecting

rod joint and found the ratio betv/een bolt stiffness and stiffness of the

corrospondir.g parts of the rod to be 1:1. 5« The bolt used was 0.697^ in.

shank diajneter. For this particular case the effective area of the parts

was 0.950 sq. in.

In the previous discussion it has been assumed that the bolt load is

distributed uniformaly over the entire gasket flange area. In an actual

case the load acts under the bolt head. Considering the load acting at a

point, Robert (7) presented an expression for deflection on the basis of

the theory of a beam on an elastic foundation. Deflection varies from a

maxissam value at the bolt to a minimum at a point midway between conseotive

bolts, '

Figure 5(a) represents the combination of flange and gasket.

Figure ^{h) represents the combination of flange and gasket on the

elastic foundation with a series of loads - P - representing the bolts,

having spacing!^ between the bolts.

Figure 5(a)
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Z

•<V'.<V-<y'><',

Figure 5(b)

Deflection of a beam on an elastic foundation is

y " - ji^x (Cos/ X + Sin f^ x)
2X e

where P » Applied load (lb.)

t
2.

eq. (E)

X Distance from point of concentrated load

K - Modulus of foundation

K .

^f^f hh

I - Moment of inertia of beam

12



by eubstitution

where S . ^^f^f

db -

In the case where t o o, i.e., metal to metal joint,

S - and = --^^^ which is the result obtained by Soderberg (8).

d

For analysis oi"* leakage evidence Robert also tested four i''lange

joints to varify his analytical work. Two joints were designed not to

leak according to theory. Tests showed no evidence of leakage on these

joints. The other two joints, designed for use in a refinery, should

have leaked according to the theory. Leakage occured and in order to make

one of the joints tight it v/as necessary to remove the gasket and solder

the flanges together.
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DETERMINING THE EFFECTIVE AREA OF BOLTED PARTS

Most bolted connections are not of infinite plates as considered by

Radziavosky. The flange connection shown in Figure 1 is more common. No

investigation has been reported for determining an actual effective area of

the pa'rts for this type of joint. Using the idea of a beaa on an elastic

foundation suggested by Robert an attempt was made to determine the effective

area of the parts. One of the flange joints designed and tested by Robert

was used for this development. It was modified by removing the gasket.

The flange area per bolt for the joint was 24 sq. in.. One procedure

would be to use this as the effective area.

The first approach was to determine an average deflection and use

it in equation (F) to determine an effective area.
^

A = eq. (F)

.
' /

where L - Effective length of parts (in.)

y - Average deflection of beam (in.)

E - Modulus of elasticity of flange (psi.)

P m Applied load (lb.) '

Using a unit load for ? the deflection y was calculated for different

positions between load application by use of equation (E) (See Appendix l).

Figure 4 shows the defection from the point of load application to the

::;idpoint between loads. The average deflection was 0.475 (10~^'^) in..

Substituting this value in eq. (F), the effective area of the part is

5.52 (lO'^^) which is many orders of magnitude greater than the flange area.



0.2 0.4 0.6 0.8 1.0 1.2

x-POSITION (in.)

rig. 5. Energy distribution - beam on an elastic foundation
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Since the effective area obtained by using the average deflection was

too large the idea of a root-mcan-square value of deflection was considered.

By using the root-Kean-square value of y = 5.77 (10~^) in. in equation (F)

the effective area of the part is 4.45 sq. in. This value is more realistic

The next approach was by use of an er.orgy method. By the strain

energy method the percentage of energy absorbed in the beam as a function

of position from the point of load application to the midpoint between

loads was determined (Appendix II ) and is plotted in Figure 5« This

figure shows that 99.8/j of the energy is absorbed in the beam within

O.po in. from the point of load application. Using this the effective

area is 2 (x) (b^O = 2 (O.56) (1) = 1.12 sq. in..

According to Radzimvosky equation, the effective area would be

0.049 sq. in. assuming a point load. However, if it is assumed that

5/8 in. bolts were used the area becomes 0.4075- sq. in..
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SUMMARY .^KD REC0^5MENDATI0NS

Five deffe rent effective areas were determined by applying the

following different approaches; (1) the area of flange itself,

(2) using the average deflection for the beam on an elastic foundation,

(?) using a root-r^ean-square value of deflection of a beaa on ftn elastic

foundation, (A) by strain energy method and (5) by using Radzircvosky'

s

equation for infinite plates.

The first approach to find the effective area of parts was on the

basis that the whole area of the flange between two consecutive bolts

will be effective. This value is a maximum limit that can be taken for

consideration.

In the next approach the effective area was found by using an

average deflection for the beam on an elastic foundation. Since the value

obtained by this approach was many orders of magnitude greater than the

area of the flange, this method is not satisfactory.

Using the root-mean-square value of deflection for the beam on an

elastic foundation, the area was of smaller magnitude than the area of

the flange. This area may be taken into consideration.

Strain energy method seems to be more realistic approach. The

effective area was that portion of beam which contains 99,&% of the

strain energy. This seems to be a reasonable value.

The Radzimvosky equation gave a very small effective area for a

point load. Assuming a 5/8 in. diameter bolt a more realistic value

was calculated.

The following are recommendations based on the results of this study.



1. An expericental investigation of this flange joint should be

undertaker, to determine the effective area as a check of the different

methods presented.

2. Apart from this experiment, work may be conducted for bolted

joints such as infinite, circular and square plates, long narrov/ parts and

also Kith gaskets of various stiffness between the parts to develop a

general analytical equation for determining the actual effective area

of parts. . ,
• , :• ..'

'
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APPENDIX I

Calculation of effective area of parts by using average deflection of

bea=i on an elastic foundation. Figure 6 represents the flange as a beam

on an elastic foundation with a series of point loads ? representing the

bolts h&ving a spacing "7^

Data obtained from Robert's experiment are:

X= Bolt spacing = 2k in.

d m Thickness of flange = in.

b^ » Width of flange = 1 in.

» Modulus of elasticity » JO x 10^ psi.

P « Applied load = 1 lb.

Deflection of a beam on an elastic foundation is

(cosyi'x + sin^x)



where K = Kodulus of foundation, psi.

- ^ = 2.4 (10^) psi.
d

I = KoEient of inertia of beam

d^ 4
I = - 0.015 in.

12

./» 6.26

by substitution

y = 1.505(10"^) e"^*~^^(cos 6.26x + sin 6.26x)

where x » Distance from point of concentrated load (in.)

Values of y are given in table I for different positions x.



TABLE I

X (in.) : y (in.)

1.505 (10-^)

• 1 0.258 (10-^°)

2 0.454 (10-^5)

5 0.790 (10-^°)

4 0.145 (10-lS)

5 0.261 (10-21)

6
"

0.475 (10"^^)

7 0.858 (10-27)

8
. 0.155 (10"^^)

9 0.280 (10~^^)

10 0.504 (10-55)

11 0.907 (10-5^)

12 0.162 (10"''^°)
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Ave lection

y = 0.475 (10"
) in.

Root-cean-square deflection

y =. 5.77 (10'^) in.

The effective area of part was obtained from the following equation:

where L = Effective length of parts

? = Applied load

y = Deflection of beam

E = Modulus of elasticity of flange

For average deflection

A =

0.475(10-^^ 50(10°)

- 5.52(10-^^) sq. in.

For root-mean-scuare deflection

A -

5.77(10"^) 50(10^)

- 4.45•5 sq. in.



.^PSNDIX II

Effective area of parts by using energy method

Strain energy stored in beaj:^ on an elastic foundation is

L 2

U»II r 1-y dx
2 j 2

o dx '
.

where y is the deflection of a beam on an elastic foundation given by

V e "/-^ + sin-;/x)
* "2K

EI

o L.

4K -

pA'
^ -JZ^x (sin^x - cos/Jx)

-2/x'

I
(1 +/) - e

whe

-2/x

re^ = e (sin 2/^x + cos 2y^x)

The percentage strain energy absorbed in the beam to position x.

0!
"Jo energy = (100)

OO

o

r —
-2/x

PSIP
2

- 1

2

(1 e

4K

PSI-/^

4X

- 1
2
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1 (1 - c-2^^j(ioo)

^ = 6.26 (from appendix I)

The energy distribution was determined and tabulated in table II.

The data are plotted in figure p.

Since 99.S>i of the energy v;as absorbed in the beaai within 0.5^ in.

froE the point of load application. The effective area of parts was

deterniined using 2(x)(b^) = 2(0.55)(l) = 1.12 sq. in.

TABLE II

J

2 X
/

O 1 i V e

2

P>^ "'T 1^ 1(1

: :
>

Energy X

1.0 2.0 1.0 -1.0

0.5 0.6251 1.8251 0.911 -0.606 0.505 60.1 0.04

1.0 0.5085 1.5035 0.704 -0.567 0.557 67.4 0.08

i.p 0.2534 1.2584 0.619 -0.2252 0.595 78.1 0.12

2.0 0.0667 1.0667 0.555 -0.155 0.598 79.6 0.16

2.5 -0.0166 O.9S54 0.4917 -0.032 0.4097 81.94 0.20

5.0 -0.0166 0.95s 0.4786 -0.0497 0.4291 85.8 0.24

5-5 -0.042 0.9611 0.4305 -0.0502 0.4505 90 0.28

4.0 -0.0509 0.9742 0.4871 -O.OI852 0.4688 95.76 0.52

A.

5

-0.0256 0.9368 0.4852 -0.01111 0.4721 94.42 0.56

5.0 -0.0152 0.995^ 0.4877 -0.00674 0.4810 96.2 0.40

5.5 1.0 0.5 -0.0041 0.4959 99.18 0.44

6.0 0.0017 1.0017 0.5000 -0.00248 0.4976 99.52 0.48

6.5 0.0016 1.0018 0.50000 -0.0015 0.4986 99.72 0.52

7.0 0.0015 1.0015 O.5OCO -0.0009 0.49915 99.85 0.56
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A number of approaches have been used in analyzing bolted connections.

The earlier equations were based on certain simplifying assumptions which

reflected the general understanding of the problea. As core was understood

about the material properties and elasticity of materials different equations

were developed to better reflect the true satuation.

The earliest equation which assumed the bolted parts rigid is that by

Kimbal and Bar,

Doughtie and Carter developed an equation on the assumption that the

bolt and gasket were the only elastic members.

+ m?
e

Radzinvosky developed an equation assuming all the parts elastic.

+ kF
e

I

In the above ecuations, Fj. F. and F^ are total load initial load and

external load per bolt, respectively.
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The terns ir. the exprestiion for k are satisfactorily defined except for

the area of the parts. This report discusses five different approaches for

deterriining the effective area; (i) The area of flange itself (2) using the

average deflection for a bear, on an elastic foundation (5) using a root-cean-

squaro value of deflection of a beac on an elastic foundation (4) by strain

energy Eethod (p) by using Radzinvosky equation for an infinite plate.

1


