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INTRODUCTION

Many functions can be represented in many different ways.

They can be represented by Fourier series, orthogonal poly-

nomials, infinite series, and infinite products. Infinite

products will be considered as the background for the develop-

ment of expansion of functions. The infinite product repre-

sentations of sin X and cos x will be considered.

The theory of infinite products is very closely related to

that of infinite series; so closely, in fact, that the test for

convergence of such products will actually be reduced to the

test for the convergence of certain infinite series.

The object of this paper is to begin with the basic defini-

tion of an infinite product and to take the study of infinite

products to the point where a basic understanding of infinite

products and how they can be handled is reached.

BASIC DEFINITIONS

An infinite product is of the form

8;^ . 82 . . . a^ . . .,

where a^ is a complex number, i = 1, 2, ..., n, ..., and is

denoted by

oc ""

7T 8k ~ ^1 ^2 • • • sjj. . .

k=l

The partial products p-^ are defined in the following manner:



Pi = n
_

P2 = a^^ . 82

Pk - ^1 • ^2 . . . a^^

where k = 1, 2, 3, . ,

.

With these preliminary comments on the form of infinite

products, convergence, divergence, and oscillation of an infinite

product will be defined'.

oo
Definition 1. The infinite product Tf a, converges if and

k=i
^

only if there exists a K such that

1 ' K+g
lira .^r r. ,^ J r^

g-*oo £k ^ "

K-1
If the infinite product converges, its value is A Tf a,^.

k=l
oo

Definition 2. An infinite product 7T a;^ is said to be
k=l

divergent if A in definition 1 is equal to zero for all K or

when A is infinite.

Definition 3- An infinite product is oscillating when A

does not approach any definite limit. An oscillating product

is not convergent.

The following examples will be presented in an attempt to

clarify the meanings of definitions 1, 2, and 3.

Example 1. The infinite product . 2 . .-2 ... where

^2k-l = and a2k = 2 for k = 1, 2, . .

.

is divergent because it contains an infinite number of zeros.



i.e., there does not exist a K such that

g->oo ,TC B^ = A ^ 0.
k=K

The infinite product

oo 1

Tf - = 1 • 1/2 . 1/3 . . . 1/k . .

.

k=l k
/

is divergent because, although it does not contain any zeros,

lim _ .
•

k-»co Pk - 0-

The infinite product, k=1.2.3...k...,is
divergent because limit p^ = oo .

k->oo
oo

The infinite product IT (-1)^ = -1 . i . -i ... (-i)k _
k=l

is oscillating because the product does not approach any defi-

oo
nite limit. Consider the partial products of Tf (-1) .

k=l

Pi = -1

Pg = -1

P3 = 1

It is seen that the infinite product is not approaching any

definite limit.

The infinite product O.O-l.l.l.i... where

a^ = for k = 1, 2

and
^i, = 1 for k = 3, if, 5, ...



^ -u limit irr-^IS convergent because „ .„ 7( a, = 1. The value of the

2

Infinite product is 1 . JC Qr^ - .

k=l

It can be seen from the above definitions and examples that

a convergent infinite product can contain a finite number of

oo
aj_'s equal to zero. If TT a, = 0, it is not known whether a

k=l
^

finite number of a^^'s are equal to zero and the infinite product

is convergent or if all a^'s are not equal to zero and

oo
TT ai^ = and the product is divergent. It can also be seen
k=l

^

that oscillating infinite products occur when some a- «= 0. To

simplify the theory to be presented, it will be assumed that

a-j_ > for every i = 1, 2, . . . .

CONVERGENCE OP INFINITE PRODUCTS ".

At this point, the characteristics of convergent infinite

products vjill be considered.

Theorem la. The sequence of the factors in a convergent

infinite product always tends to approach one.

The proof is as follows:

Pk-1 = ^1 • ^2 ••• ^k-l

Pk = ^1 • ^2 • • • sj^

since p^.-^ approaches A and p^ approaches A and A f^



Pk _ ai • 32 • •• ®k-l • ^k
' = Sk -> 1 •

Pk-1 ^1 • ^2 • •
• Sk-1

The following theorem is closely related to theorem la,

and hence will be ten^ied theorem lb.

Theorem lb. For the infinite product Tf a^ to converge.
CO

k=l

it is necessary and sufficient that for every £ =*
, a K >

exists such that for every k =• K and for every integer r ^ 1

^k+1 ^k+2 • • • ®k+r ~ " e .

The proof of theorem lb is as follows.

CO
If Tf a^ is convergent, then the sequence of the factors

k=l

in a convergent infinite product always tends to approach one.

Let

Pk+r
^k = •

Pk

Because p^ converges to a limit P,

lim _
k-^cx) ^k ~ '

which implies that

I ^k " ^
I

^ ^ ^o^ k => K.

But

^k = ^k+1 \+2 ' ' ' \+r

and hence

I ^k+1 ^k+2 • • • \+r ~ '•



6

and the necessity part of the proof is complete.

If

^k

and if the condition

Pk+r

Pk

^k
- 1 6" is satisfied, then

1 - e ^k e +

1

and

P

^k
k+r

Pk
^ 1

and

Pk+r-> Pk

which implies that for every €" > 0,

Pk+r - Pk e .

This is the Cauchy condition for the convergence of a sequence.

Therefore

CO

is convergent, and the theorem is proved.

This theorem gives the general convergence principle. On

the "basis of this theorem (let r = 1 and k + 1 = n) , it is

necessary that the

^^^ a = 1n->oo n -^ •

Therefore set the factors of the product equal to (1 + u ) and

the following form of the infinite product arises.

oo
TT (1 + uj = (1 + ui)(l + U2) ... (1 + uj ... .

n=l "

Because the assumption was made that every a- > 0, every



(1 + u^) =• 0, and \x^ =• -1.

The partial product P^ is defined as

P^ = (1 + U]_)(l + U2) ... (1 + Uj^) for n = 1, 2, 3, ...

00
The infinite product 7T (1 + u^^) is convergent if and

n=l

only if there exists a finite ? ^ such that ^^^q -^n
~ -^

exists; otherwise the infinite product is said to be divergent.

00
If the infinite product Tf (1 + a„) is convergent, then

n=l

by the general condition of convergence of a sequence

C , n > N, p = 1, 2, 3, ... ,

and also there exists a g such that

Pn

for every n, where g is a positive constant. The condition

P - Pn+p n

n * g implies that ^n ^ *-* -^°^ every n for a convergent

product.

Sufficient background has been developed so that the fol-

lowing theorem for convergence can be considered.

Theorem 2. A necessary and sufficient condition for the

convergence of the infinite product

CX)

TT (1 + u^)
n=l

n'

is that, for any arbitrary small 6 =* 0, an N > can be found

such that for n S n^ "^

pn+p

n

where p is a positive integer.
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Suppose first that the product is convergent, then since

n ^n+p " ^n

n+p

6 can be divided by n getting

1

n

i = e.

The condition is therefore necessary.

If now the condition

^n+p

n.

is satisfied, for any assigned C , the inequality can be written

(1 + %+i)(l + u^^2) ••• (1 -^ ^n+p) - 1^ ^

for n > N, and for every p, and by theorem lb the infinite

product is convergent.

If in the above theorem p is set equal to 1,

P.n+1

n

= 1 + un+1

and un+1
£

, n > N, which gives the next theorem.

Theorem 3- A necessary condition for convergence of the

= 0.infinite product TT (l + u„) is that J"™
^"

n=l " n->oo

This condition is not in general a sufficient condition.
1

This is shown by the example of Uj^ = + -
, for

n

n 1 111 1n (1 + -) = (1 + -)(i + -)(i + -) ... (1 + -)
i=l i 12 3

3 i; 5

2 3 li^

n+1
n

= n + 1

and



n 1 11 1

ff - = (1 - -)(1 - -) ... (1 - -)

1=2 i 2 3 n

123i| n-11
2 3 i| 5 n n

so that both infinite products are divergent, since for the

lim u
oofirst P^ -» oo and for the second P^ "^ ^' ^^'^ y®^ n-^c'^^ ~ ^

for both.

RELATING CONVERGENCE OF INFINITE PRODUCTS
TO CONVERGENCE OP INFINITE SERIES

Definitions and theorems on the convergence of infinite

products have been given. The next step is to relate the con-

vergence of infinite products to the convergence of an infinite

series. To develop an equivalent series, consider the partial

product P^ with the additional condition that Pq = 1 and the

recursion formula

Pi = (1 + Ui)Pi_i = Pi-1 + ^i Pi-1 •

It follows that

^n = Pn-1 + % Pn-1

= ^n-2 + ^n-1 Pn-2 + ^n ^n-l

= Pn-3 ^ ^n-2 Pn-3 "^ ^n-1 ^n-2 + ^n ^n-l

Therefore

(I)
?n = 1 ^ L Vi-1 •

1=1

If the infinite product converges, then
n"^^"Ji)* ^n exists, and
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hence the series

1=1

is convergent with sum equal to the value of the product. Con-

versely, if the series is convergent, then j^^^^ Pj-, exists

and the product is convergent with value equal to the sum of

the series:

oo ^
IT (1 + U^) = 1 4- 2. U^P^_i ,

n=l n=l

therefore

Definition ij., the series

CO

n=l

is called the series equivalent to the infinite product.

By means of the formula

oo oo

Tf (1 + uj = 1 + I u^P^.i (1)
n=l n=l

an infinite product can be transformed into an infinite series.

Conversely, the partial sum U^ of a series U^ = u^ + U2 + ...

+ u^ can be transformed into a product. Prom the identity

^1 ^1

^1-1 Ui-1

it follows that

, i > 1

n u-L
^ ^n = ^1 • Tf (1 + ) (2)

1=2 Ui_i

Formulas (l) and (2) are not in general practically appli-

cable, since it would be difficult in most cases to express the
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partial products P^^ and the partial sums U in simple form.

However, they are of theoretical value.

Before the theorem which reduces the problem of the con-

vergence of infinite products to the convergence of infinite

series is stated, a theorem on inequalities due to Weierstrass

must be considered to aid in the proof of the theorem.

Theorem L. Weierstrass' Theorem on Inequalities.

If u-,. Up, ..., u , ... are all positive and <= 1, n = 1,

2, ..., and P-j^ is excluded,

(a) (1 + u-l)(1 + U2)(l + U3) ... (1 + u^) > 1

+ (u-[_ + Ug + ... + u^) ,

(b) (1 - ui)(l - U2)(l - U3) ... (1 - u^) > 1

- ( U-]_ + Ug + ... + u^) ,

n
and if V u- <: 1,

i=l

(c) (1 + u-l) (1 + ug) ... (1 + u^)

I
1 - (u;L + U2 + . . . + u^)J ,

(d) (1 - u^)(l - ug) ... (1 - u^)

[ 1 + (u-j_ + U2 + ... + u^)]
"'.

Part (a) can be proved by using mathematical induction.

For n = 2, (a) becomes

(1 + u-|_)(l + U2) = 1 + u-L + U2 + u-j_U2 > 1 + (u2_ + U2)

Assume that (a) is true for n = k.

(I) (1 + u^)(l + U2) ... (1 + u^) > 1 + (u3_ + U2 + ... + u^)

Then (a) must be true for n = k + 1.

(II) (1 + ui)(l + U2) ... (1 + ui^+i)=>l +(ui + U2 + ... + Ui^+i).

Multiply both sides of (I) by (l + u^+j)

.
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(1 + u-l)(1 + U2)...(l + Uj^) (1 + ^k+1^ > (1 + u-j_ + U2 + ...+ ujj.)

(1 + u^+i).

= 1 + u^ + U2 + ... + Ui, + u^+2_ + u-lUi,+-l + U2Ui,+-L + . . . ^

+ ^ic^k+1 =* 1 + (u2_ + U2 + ... + ^k+1^

which is (II) .

This completes the proof of (a) for all n > 2.

Similarly, part (b) can be proven as follows.

For n = 2,

(1 - Ut ) (1 - U2) = 1 - u-|_ - U2 + ^1^2 > 1 ~ (^1 "* ^2^

Assume (b) is true for n = k,

(III) (1 - u-j^)(l - U2)...(l - u-^) =» 1 - (uj + U2 +...+ u^) .

Then (b) must be true for n = k + 1,

(IV) (1 - u.^)(l - U2)...(l - u^+2_) > 1 - (u^ + Ug +...+
^k+1^ •

Multiply both sides of (ill) by (l - u^^-,_) ,

(1 - u-l) (1 - U2) ... (1 - u^) (1 - u^+j) =»
[ 1 - (u]_ + U2 + ...

+ ui,)] (1 - Uk+l)

=
[ 1 - U]_ - U2 - . . . uj^j

[ 1 - "^k+ll = (1 - U3_ - U2 - . . .

^k - ^k+1 + ^1%+1 + ^2^k+l + ... + ^k^k+l)

> 1 - (u]_ + U2 + . . . + u^4.2_)

which completes the proof.

Now for part (c)

1 - U.2 1

1 + Ui = — <
1 - Uj_ 1 - U.j_

hence

(1 + u^) (1 + U2) . . .(1 + u^)
(1 - u-l)(1 - U2)...(l - u^)

n
and since Y. ^i *= 1> using part (b),

i=l
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(1 + u-l)(1 + U2) . . . (1 + u^) < 1 - (u-]_ + U2 + ... + u^)]

Finally, for part (d).

-1

l-u,= ^
1 - u,2 1

-1

1 + Uj_ 1 + Uj_

Hence

(1 - u^)(l - ug) ...(1 - u^) <
[
(1 + U3_)...(l + u^)]" ,

and using part (a)

(1 - u-]_) (1 - U2)...(l - u^) < [ 1 + (u-]_ + U2 + ... + u^)]

Combining these results and taking limits, the following

inequalities are obtained:

®? -| CO OQ

n=l n=l "^ n=l
"

^ _-] 00 00
(f) (1 + I uj > n (1 - u^) > 1 - z % .

n=l n=l n=l

In addition to the Weierstrass' Inequalities needed in the

proof of the theorem relating the convergence of infinite

products to that of convergence of infinite . series, the follow-

ing definition and theorem are needed.

Definition 5- -A real sequence (uj^j each of whose terms is

greater than the preceding, that is, such that u^^ u^+]_ for

every n, is called an increasing sequence. If u^^ > ^n+1 ^°^

every n, the sequence is called a decreasing sequence.

If u^ -S U]^+3_ for every n, the sequence is called monotonic

increasing. If u^ > u^+3_ for every n, the sequence is called

monotonic decreasing.

Theorem 5- A bounded monotonic sequence is always con-

vergent.



lil-

The proof will be restricted to the case of a monotonic

increasing sequence, since just changing the signs of a mono-

tonic increasing sequence will give a monotonic decreasing

sequence

.

Suppose, then, that (uj^\ is monotonic increasing and

bounded from above. Let U be the least upper bound of the num-

bers u^. Then if £ => , TJ - £ -cz u^ for some n, say n = N, and

Un = U for every n. Since U|^ "i Uj^ for every n ? N, by virtue

of the assumption that u^ = ^n+1' ^^ ^^^ ^® seen that

U-C^^n=^i^N=n. Thus by definition, ^}^^ u^ = U.

All the material needed to present the. theorem relating the

convergence of infinite products to that of convergence of the

associated infinite series has now been given.

Theorem 6. If u-^, U2, ..., Uj^, ... all lie between

and 1, then the necessary and sufficient condition for the con-

vergence of the infinite products

CO 00
TC (1 + u^) and Tf (1 - u^)
n=l n=l

00

is the convergence of the series i, u-^ .

n=l

There are two ways to prove theorem 6. The proofs will

be presented as proof (l) and proof (2).

Proof (1) . Set

Pn = (1 + ui)(l + U2) .. . (1 + Un),

Qj^ = (1 - U2_)(l - U2)...(l - Uj^) .

It is evident that the sequence (Pn) is Increasing and the

sequence ( Q^j is decreasing since \x-^, ^2, >.>, u^, lie
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between and 1. •,
'

oo

First assiome that 1. u^ is convergent and then prove that
n=l

oo oo
the infinite products 7T (1 + u^) and Tf (1 - u^^) are

n=l n=l

therefore convergent.

oo

Since 2_ ^n -^^ convergent, an N can be found such that if
n=l

m

then

^- = %+l + %+2 +.••>!

f

1 - s^ 1 - (u^+i + ... + u^)

but

Pn— = (1 + u^+i) (1 + 1^+2) . . . (1 + u^) . (n > m) .

m

Now using the Weierstrass Inequality (c) of theorem ^, it fol-

lows that

P 1^n -^

and therefore

Pn 1

^m -'- " ^m

or

(g)- P^ <= (n=>m).
1 - ^m

Similarly,
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or (h) Q^=> Q^U - sj .

Now ( P^] is increasing and (g) shows that it is bounded from,

above, and [O.^^ ^^ decreasing and is bounded below by (h) ;

therefore both these sequences have limits

^mP^-
, Q^ Q™(1 - s^)

1 - ^m

and by theorem 5 are always convergent. Therefore the infinite

CO CO
products Tf (1 + u^) and JT (1 - Uj^) are convergent.

n=l n=l
CO

Next suppose l_ n^ is divergent, then an m can be found
n=l

such that for any positive number G, no matter how large,

i^2_ + U2 + ... + ^j^ =* G- (n => m) . Remembering that

P^ = (1 + u^) (1 + Ug) ...(1 + u^),

by inequality (a) of the Weierstrass Inequalities theorem,

(1 + u-^) (1 + U2) ...(1 + u^) > 1 + (u-L + U2 + ... + M^)

or

P^ > 1' + G.

Also remembering that

Q^ = (1 - u^)(l - Ug) ...(1 - u ),

by inequality (d) of theorem I4.,

(1 - u-l)(1 - U2)...(l - u^)
1 + (u-L + U2 + ... + Uj^)

or

Qn "= (n > m)
1 + G
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Hence V-]^ P^ = and ^f^ Qn =

so that both products are divergent.

It still remains to show that if

oo oo
TT (1 + u^) and 7T (1 - u^)
n=l n=l

are convergent, the series L u^^ is convergent.
n=l

CO
First, assume that 77 (l + u^^) is convergent. Since

n=l
c>o

TT (1 + u^) is convergent, _^^ ^n ~ ^' ^^®^®

Pj^ = ( 1 + U]_) (1 + U2) • . . (1 + U]^) . Since «s U5_ <= 1, this is an

increasing sequence, and hence

(1 + Vi-^) (1 + U2) ... (1 + u^) -=; P.

By inequality (a) of theorem i^, . •

(1 + u^) (1 + u^) ... (1 + u^) =» 1 + (u + U2 + ... + u ) .

Hence

1 + (u-, + Uo + . . . + u ) < P,12 n '

00

or Y. Uj_< P - 1 = R,
i=l

which says

n

X U^-: R.
1=1

n
Now since «= Uj_ -= 1 for all i, the series ^ Uj_ is monotonic,

i=l

and since it is bounded from above the series is convergent.

CO
A similar resul-t can be obtained if 7T {1 - u^) is

n=l
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considered to be convergent.

Proof 2. The second way to prove this theorem is by using

the equivalent series.

oo
Assume first that Y. ^n ^^ convergent, then when n in-

n=l

creases, P^ can only increase. To prove that P^^ approaches a

finite limit, the only thing that must be done is to prove that

P^ remains less than a fixed number.

It is known that

n
P^ = (1 + u-j_) (1 + ug) . . . (1 + u^) = 1 + Y. ^i^i-i (see

1=1
equation I) .

Putting

and

^n "^ ^1 ^ ^2 "*"
• • •

'^
^n'

limit ^
U = n-^oo ^n " ^ ^i'

i=l

-a ^ ^n ^n '^nr^ - 1 + + + . . . + <= e «: e"

,

'n ^n V^ ^ Jn ^ .U

li 21 nJ

hence P^ approaches a limit and the product is convergent.

Conversely, if the product is convergent, P remains

finite, and

Pn = 1 + t ^i^i-l = 1 + M I Ui
i=l

. i=l

where M is the least upper bound of the P-'s; therefore P can

n
only be convergent when the series ^ u^ is convergent.

i=l
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At this point it will be helpful to look at several ex-

amples to illustrate theorem 6. The following are two common

examples.

Example 1. The infinite product 7T ( 1 - l/n^) is con-
n=2

CO

vergent, since L l/n^ is convergent. This may be verified
n=l

since

1 (n-l)(n+l)
1 =

n2 n2

and Q, t can be written^n-1

1-3 2 . I4. 3- 5 (n-l)(n+l) 1 n.+l

n-l ~ ^Q ~~72 *
1 2 ' * * 2 o2'^ 3 14. n 2 n

,, ,
limit „

so that ^_^^ Qn-1 - - •

Similarly, 7T (l + l/n ) is convergent, although its
n.=l

value is not so easily calculated.

00 ]_

Example 2. Since 2_ — is divergent, the products
n=l n

00 00
Jt (1 + l/n) and 7T (1 - l/n) will also diverge.
n=l n=l

00
For • Tf (1 + l/n),

n=l

Pn = 2 . 3/2 . V3 . 5/i; ... (n+l)/n = (n+l/2

, , ,
limit T^ ,v^so that ^^^ p^ = 00 .
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Consider Q for the infinite product /f (1 - l/n)
. n=l

Q^ = 1/2 . 2/3 . 3/i^ ... (n-l)/n = l/n

and

n -jo oo ^n

This shows that they are divergent by the definition of diverg-

ence of infinite products.

Theorem 7 deals with the rearrangement of Infinite

products.

Theorem 7. When u-,, Up, Uo, ... are between and 1, the

values of the two infinite products P = (1 + u-|)(l + Up) ...

and Q = (1 - u-,)(l - Uo) ... , are both independent of the order

of the factors.

Proof .

Let the two rearrangements of P and Q be P ' and Q', re-

spectively. Now factors of P' and Q' must be taken in order to

include the first n factors of P and Q. Then

P ^ Pp' > P^, Q ^ Q^' < Q^, if r ? p.

Now n can be taken large enough to bring P and Q, as close to

P and Q, respectively, as desired.

Consequently,

limit p I _ p limit •

p, , _ <^

r->oo r ^'r'-^oo '^r ~ ^'

In like manner, if P diverges to infinity, so does P'; and if

Q diverges to 0, so does Q,' .

In all the previous work the assumption has been made that

u-j^, Ug, ..., u^, ... are all less than one. This assumption

can be made without any loss of generality, for there can only

be a finite number of u^ with value greater than one. If this
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v;ere not true, the product would diverge. Therefore these

factors can be omitted without affecting the convergence of

the product.

ABSOLUTE C ONVERGENCE

/

An absolutely convergent Infinite product Is not a product

oo oo
Tf Q]^ for which 7T

I

a, converges. Such a definition would
k=l k=l J

^

be of no value because all Infinite products would then be abso-

lutely convergent. The definition of absolute convergence Is

as follows.

oo
Definition 6. If the Infinite product Tf (l + u 1)11 ^^ I

oo
converges, then JT (1 + u^^)- is said to be absolutely con-

n=l

vergent

.

The definition of an absolutely convergent Infinite product

leads to the consideration of the following theorem.

oo

converges.Theorem _8. If the Infinite series Y. Pn
n=l

CO

(i.e., if l_ Uj^ converges al

n=l

oo
absolutely), then ft ( 1 + u^ )

n=l

oo
converges, and thus fC (l + u^) converges absolutely. The

n=l

converse theorem also holds.

The proof of theorem 8 is as follows.



22

oo
It follows directly from theorem 6 that if L

J
u^

n=l

oo .

converges, then Tf (1 + u ) converges.

Since TT (1 +
n=l

^n ) converges, by definition 6,

oo '

Tf (l + Uj^) converges absolutely.
n=l

The proof of the converse theorem is very similar and

therefore will not be shown.

It can be proved that if an Infinite product is absolutely

convergent, then its factors can be reordered without affecting

the value of the product. The following theorem deals with

this case.

oo
Theorem 9. If the infinite product Jf (l + u ) is

n=l

absolutely convergent, its value is independent of the order

of its factors.

Proof . Consider

oo
(!•) TT (1 + u

J

n=l

which is absolutely convergent. By theorem 8, the absolute con-

oo
vergence of (I.) implies that Y. u^ converges.

Let 2_ Vj^ be a series obtained by rearranging the terms
n=l

oo

°^ ^ % i" a^y order, being sure to include all the terms.
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Write un = a^ and
|

v^ | = b^, then

U^ = (1 + u-l)...(1 + u^), V^ = (1 + v^)...(l + v^)

A^ = (1 + a^)...(l + a^), B^ = (l + b^)...(l + b^)

.

Then choose p =• n so that Up contains the whole of Vj^ and

consequently Ap contains the whole of B^; on multiplying out it

Ap U
is evident that — - 1 contains every term in — - 1, but with

Bn Vn

the signs made positive. Hence

and

also

s
,

. ^., 1

Vn Bn

^n = ^n

Up - V,
1

f A - Bn

V

so that

n

Up - v^

Bn

= -"p -^n •

Now, as explained in theorem 7,

limit
B„ =

limit
n->oo n n->OQ A^ = A for < Uj_ <= 1, i = 1, 2, . . .

, n.

Consequently an nQ can be found so great that

A>Ap>B^>A--£, ifp>n>nQ.

Hence

and so

A„ - B^< -C , if n=. nQ

^P - ^n, , if n => nQ.
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But p'^So^ Up = U' Q^^ therefore if p > n > n-^,] U - Up «= - C •

2
p->oo ^p

Thus if n' => Hq and n' =» n-, ,

]u - V^|<=e , if n => n',

that is, }^'^ V„ = U, and the theorem is proved.

As in the case of infinite series, a non-absolutely con-

vergent infinite product may be made to converge to any value,

or to diverge, by altering the order of the factors.

THE ASSOCIATE LOGARITHMIC SERIES

Attention will now be turned to relating the theory of in-

finite products to the theory of infinite series by taking loga-

rithms. The following definition is needed before this can be

done.

Definition 7. The series L ln(l + u^) is called the
n=l

CO
associate logarithmic series of the infinite product ff (l+u ).

n=l

Now that this basic definition has been stated, the follow-

ing theorem will be considered.

CO
Theorem 10 . The positive infinite product Tf (l + u^^)

n=l

CO
and associate logarithmic series i. ln(l + u ) converge or

n=l

diverge simultaneously.
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Proof .

'

CO
Assume the convergence of ff {1 + Uj_) . Then the sequence

n=l

i=l 1 a

approaches a finite nonzero limit, say P. Put

/

i=l

then In P^ = X^

P = e^n
^n ®

CO
Because Jf (1 + u^) is convergent, P^^ approaches the finite

n=l

nonzero limit, P, and hence X^ approaches a limit, say A, and

P = e . Therefore L ln(l + u^^) , converges.
n=l

oo
If 2_ ln(l + u ) is assumed to be convergent, then

n=l

A = ^ ln(l + u.)
1=1

approaches X, a nonzero, finite limit. Then, because

CO

l_ ln(l + u ) is the associate logarithmic series of
n=l

oo
n (1 + u^), m p^ = X
n=l

and because ^^"'^^ A = X .

^^^^^^
P = Pn->oo n *n-^oo n

and In P = A.

The proofs involving the divergence of the product and its
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associate logarithmic series follow readily. For this reason

they will be omitted.

The next theorem relates the convergence and divergence of

the associate logarithmic series to the convergence and diverg-

ence of the associate infinite series.

Theorem 11. The positive series }_ n^ and
n=l

oo

Y. ln(l + Uj^) converge or diverge simultaneously.
n=l

Proof .

The power series expansion

2 . 3
^n V

ln(l + u^) = u^ - — +— + ...

^nis valid for

nating series it is known that

1. If i^n *^ ^' from the theory of alter-

^n ,, ^n . ^n
u„ > md + u„) > u^ - — = u^d -—)>_.

oo oo

Therefore the two series, I. u^, L ln(l + u^) converge
n=l n=l

or diverge together, by well known comparison tests.

The problem involved in the practical determination of the

oo

convergence of a series of the form c_ ln(l + xx-^) is usually
n=l

very difficult. The next theorem is a step in the direction of

reducing this difficulty.

oo

Theorem 12. If the series Y. ^n -^^ convergent, and the
n=l
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CO CO
series l_ u^^"^ is convergent, then Y. ln(l + u^) and with

n=l n=m+l

CO
it the infinite product ft (l + Uj^) is convergent.

n=ra+l

Consider the identity111
ln(l + Un) = u^ u 2 + _ u 3 uM- + . . . /

2 3 l^.

Let 11 1 p

Kn = - - - ^n + - ^n + • •
•

2 3k
which converges if u 1. Then

ln(l + u^) = u^ - K^ u^^ .

CO
limitBecause }_ Uj^ has been assumed to be convergent,
_^"oo' ^n ~ ^

1
and because K^-^ - as u^^ -> 0, K^ has an upper bound, K.

Therefore for every integer p =- 0,

m+p iR+p m+p
j; md 4- uJ = I u„ - I K . u^2 ,

n=m+l n=m+l n=m+l

CO CO
Because }_ u^ and 2_ u^ have been assumed to be convergent

n=l n=l

and because the difference of two convergent series is con-

oo
vergent, Y ln(l + u^) in convergent.

n=m+lZOO
ln(l + u^) is convergent, then Jf (l + u )

n=ra+l n=m+l "

is convergent and the theorem is proved.
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UNIFORM CONVERGENCE

The concept of uniforin convergence of infinite products is

easily defined by analogy with infinite series or sequences in

general.

Definition 8. If

n

jr [i + u.(x)] = p„(x)

and
oo
TT

I

1 + u^U) = P(x)
n=l

P^(x) converges uniformly to P(x) in a region R if, given any

C > 0, there exists an N, depending only on £ and not on the

particular value of x in R, such that

P^(x) - P(x)|< 6

for all n > N.

The next theorem associates uniform convergence of infinite

products with the uniform convergence of the associate loga-

rithmic series.

Theorem 13 . The infinite product

/f fl + u„(x)] = P(x)
n=l ^ •'

is uniformly convergent in a region R if and only if the series

CO
X(x) = Y. In

[ 1 + u^Cx)]
n=l ^ ^

is uniformly convergent in R.

The proof is as follows. If the associate logarithmic
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CX)

series 2_ In 1 + u.^(x) is uniformly convergent, then in a
n=l n

region R if, given any € =» 0, there exists an N depending on

and not on the particular value of x in R, such that

I

\^{x) - X(x) < E for n =» N.

Put
r

I

so that

X{x) - X^(x) = M-j^(x)

and there exists an N and an C =^ such that for n > N

for every x in R. Then, because

In P(x) = A(x) and In P^(x) = X^(x)n n

so that

and

and

^f , ^(x) An(x)+tirj(x) Xn(x) M-n^^)
ir\x) = e =e =e ^e

= Pn(x) . e'^n(x)

P^(x) = P(x) . e'^r,^''^

P(x) + P^(x) + P(x) - P(x) . e'^^n^^)

1 - e-^-^^MP(x) - P^(x) = P(x)

Since there exists an N and an 6" =" 0, such that for n » N

|i^n(^)|-e

for every x in R, [i^ix] approaches its limit zero uniformly as

-u ( x)n approaches infinity, hence e " approaches its limit one

uniformly as n approaches infinity.
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Since P(x) is finite and e " approaches its limit one

uniformly as n approaches infinity

p(x) - Pj^(x)l < e

and the product

^ r 1

TT
I

1 + u„(x)]
n=l ^

•'

/

must be uniformly convergent in R.

Conversely, if the product is uniformly convergent in R,

there exists an N and an C =* such that for n => N

I

p(x) - p^(x)| < e

for every x in R. Put

P(x) = P^(x)
[
1 + ^^(x)] = P^(x) + P^(x)j^^(x)

then

p(x) - p^(x)| = \?^{x)\
I

^n(x)|<= e

Since |Pn(x) is finite and greater than zero, there exists an

N and an €3 > such that for n > N,
[
^^(x) < €^ for every

X in R. Then, because

In P(x) = \{x) and In P^(x) = \^{x)

on taking logarithms

P(x) = P^(x) [1 + ^^(x)]

bee ome s

X(x) = \^{x) + In [1 + ^^(x)]

and

.
X(x) - A^(x) = ln[l + ^^(x)] .

Since there exists an N and an C 2 > such that for n > N,

^n(x)| *: £2
for every x in R, ^^{x) approaches its limit zero uniformly as



31

n approaches infinity and

In [l + J^^(x)]

approaches its limit zero uniformly as n approaches infinity,

which implies that

In [l + ^^ix)]
3

for n > N, C^> for all x in R and

A(x) - Aj^(x) <: 6o

which proves that the series

c>o

I In
f
1 + u^Cx)]

n=l ^ *^

converges uniformly in R and the theorem is proved.

Uniform convergence of the infinite product

TT
I

1 + u^(x)
n=l *• •

will be related to the convergence of the series .,

00 •

n=l . .-

in the following theorem.

Theorem llj. . If the series of positive terms

CO

1
I

^n(x)
n=l '

is uniformly convergent in a region R, the infinite product

oo

n [i + u^(x)]
n=l

converges uniformly in R, provided none of the functions u (x)

takes the value -1 as x ranges over R.

The proof of this theorem makes use of the identity
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In [l + Un(x)j = Uj^Cx) . k^

where k^ is given in the following identity.

2 3 '
' ' "

"'

ln(l + u^ix) ) = u (x) + ...
2 3

, , n
T u„ x)

+ (_l)n-l _ii ^ ^,,

2 '

Un(x) u^(x)
= u (x) 1 - + "...

2 3

+ (-1) + ...

= u^(x) . k^

OO CO

Because )_ u^ix) is uniformly convergent, 2. u„(x) is con-
n=l n=l

vergent, therefore ^^^^^ u^(x) = 0. Also, k^^ converges for

< u^ -= 1, i = 1, 2, . . ., n. As [i^ -^ 0, k^ -^ 1, therefore

kj^ has an upper bound for each n. Call the greatest of these

upper bounds G. Then

n+p n+p
j; In 1 + Ui(x) ? G . Y u. (x) .

i=n+l ^ J I I ^J^^-^ 111
OO

Therefore 2. In
[ 1 + u^(x)] is uniformly convergent and by

i=l

OO r ,

theorem 13, Tf [l + Uj^(x)J is uniformly convergent in R.
n=l

Theorem 15 is the analogue of Weierstrass' M-test for
'

infinite series.
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o-o

Theorem 1$ . If. l_ Mj^ is a convergent series of positive
n=l

constants, and if for every n and for every x in a region R,
'-

'

oo p •,

the infinite product 7f 1 1 + u^(x)| will be uniformly con-
n=l

vergent for every x in R.

The proof will use the Weierstrass M-test for infiniteoo

series. If }_ M^^ is a convergent series of positive con-
n=l

stants, and if for every n and for every x in a region R,

Un(x)| ^ M^

oo
the infinite series Y. Uj^(x) will be uniformly convergent

n=l

for every x in R.

oo

Because 2^ u^(x) is uniformly convergent, by theorem Ik.
n=l

oo

TT
I

1 + un(x)
n=l •

is uniformly convergent for every x in R and the theorem is

proved.
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DEVELOPMENT OP TRIGONOMETRIC FUNCTIONS
•AS INFINITE PRODUCTS

Sin X and cos x will be the trigonometric functions to be

developed in this section. The development of sin x is as

follows. The identity

/

sin nx = aQsin^x + a]_sin (x) + ... + a^_-, sin x

where n is an odd integer and where the coefficients a. are

integers will be used for developing an infinite product repre-

sentation of sin X. ,

If sin X = t,
'

sm nx = F^(t) = aQ + + a^ + + ... + a^_^ +
,

n finite.

Since F^(t) is a polynomial of degree n, by the fundamental

theorem of Algebra, F^(t) must have n roots, which correspond

to the values of x between - - and - which make sin nx = 0, for
2 2

n finite, namely,

71 2% n-1 % . _

0, ± sin -
, + sin — , . . . , + sin • -

,

n n 2 n

Fj^(t) can now be written,

% % 2%
F^(t) = aQt(t - sin-)(t + sin-)(t - sin — ). . . .

n n n

= aot(t^ - sin^ -)(t2 - sin^ _)...( t^ . gin^ . _)
n

. n 2 n
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2 2 ^
2 2

2ti

= apiSin x(sin x - sin —){sin x - sin — ) ..."0'

n n

n-1 71

(sin^x - sin'^ • —

)

2 n

Multiplying and dividing the right side through by

% 2% n-1 Ti ,

sin — • sin — ... sin •
— /

n n

yields

sin nx = K . sin x

2 n

sxn'^ X
1 -

. 2sm^ X

%
sxw

n

271

...

sin'

/ V
n ;

. 2sm X

n-1 71

sm^
n

where K is a constant.

Dividing (1) by sin x, and observing that

sin nx
limit

x--^
= n

(1)

sm X

K is found to be equal to n. Now replace x by x/n, and insert

K = n.

sxn X = n . sxn
c/n

n-l/2
n
r=l

1 -

. 2
"^ N

sm/^ —
n

r7i

sin2 —
n /

Put

p(x) = TT (1
r=l

&o x2

2 2



oo
P(sin X, n) = Tf I

r=l ^

sm"^ —
n

1 -

axn"^

CO

A(x) = In P(x) = I In (l -

r=l

n /

2 \

2 2

and

oo
sm

X(sin X, n) = In P(sinx,n) = L In j

X

n
1 -

r=l
2sm

\ n

Write

where

X(sln x,n) = X^(sin x,n) + A^(sinx,n)

/ . 2 ""
\sm'^ —

m
X^iain x,n) = y In J

r=l ^

n
1 -

V

sin/^

rTi

n /

and
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oo
/ . 2 ^ ^

Aj^(sln x,n) = J In/ 1 -

r=iu+l ^

n

sm^
rn

n /

Using the same notation, write

A(x) = Xjx) + Xjx).
m'

Then
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A(sin x,n) - A(x)[ "^ Xj^( sin x,n) - ^^j^Cx) + A ( sin x,n)

+ m 'I

The next step is to prove that if x — , then
2

X
— -; sin X < X

^

/

1 sin X
which is the same as proving that — < < 1 .

2 X

sin X
Let f(x) = . Consider the derivative of f (x)

.

X

X . cos X - sin X cos x(x - tan x)
f'(x) = = =

x2 x2

Because f'(x) «= 0, f(x) is decreasing; therefore f(x) reaches

its maximum as x approaches and its minimum as x approaches

- . As X approaches 0, f(x) approaches 1. and as x approaches
2

71 2 2 1 ' .
;

.

''
:':

- , f(x) approaches -•->._; therefore > . . •

2 % % 2

1 sin X
_ < < 1
2 X .

•

; .

X '

.

and — < sin x < x .

71 X
SoifO<x<-,-«: sin x «: x; therefore if r is greater than

2 2

some 'm, . ^
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. 2
^

sm —
x^

? 2

Sin2
n

[j.r'^ii:
2^2

n^

X
therefore for m-, such that 1,

rrin

sm'

(I) In /

n
1 -

x'-

In 1 -

sm'^
rit

n /

ij.Ti'^r
2^2

1

.2

r > m.

Next, the inequality '

.

- ln(l - a) «= a + Ka'

will be proved for «= a < 1, K a constant.

Consider the identity

a2 a3 a^
-ln(l - a) =8+ — + — + — + ...

2 3 ij.

= a +
1 a a2
- + - + — + ...
2 3 if

Let

K =
n

1 a a2
- + - + — + . . .

2 3 I|.

which is convergent for a a 1. Then, as was shown in

theorem 12, K^^ has an upperbound, K, and

-ln(l - a) < a + Ka^

for K a constant, «= a «= 1 . Therefore
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oo

-I
r=m-,

In (1 j^) < l^

oo

+ K L (4.)^
l^.'K^r'^ r=m-|_ i|.'n:2r2 r=m-, Ipi^r^

x2 V 1 x^ ^ 1

I|.at r=m-]_ r 16 7t^ r=mT rk

But

oo oo

^ and 2_, -
r=m]_ r' i|

are convergent, hence'
r=inn r

oo
X

r=mn 14.71 "^r
2^2'-

is convergent, which implies that

00 x"^

JJ- (1 )

r=ra2_ lj.T[2r2

is convergent, and because of inequality (I),

( (CO

XCsin x,n) = Z_i / In
r=mi

sm'^ —
n

1 -

sin.

VK
2

n

is convergent. Therefore if m is sufficiently large, it

follows that

A^(sin x,n)
I

<= - and|X^(x)[< -

The next step deals with showing that

(II)
j
A^(sin x,n) - A^(x)j < 6/3 .

Consider
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' 2 )sm'^ —
n

/ . 2 " ^
X

n

(III)
lira

n-^ CO

SIH'

71

2 _
)

•••
<

1 -

n /

sm'
imi

n /

(1 - —

)

%2

X'^

(1 - -T^)
•K^m.^

Looking at

? 2

iin'^ - sin'^ - . — . —
n . .2 .2

lira _ lim
n->oo

IX XJ li

n-^oo
Tt

'

ll2 x2 7i2

sin2 -
n

siri2
n2 n2 n2

_ lim

. 2
""

n

0.2

n2
•

t

x2

n2
-^

x2

n-»oo
x2

sin2
n

7l2

n2

ii2

and it can be seen that (III) approaches zero as n approaches

infinity. But (III) is equal to

lim
n-> c>o

>^(sin x,n) - ?^^(x)

which implies that

|x^(sin x,n) - A^(x)|< € /3

which is (II) . Then

I

X(sin x,n) - A(x)
|

3 3 3

= e

so that

lim
A (sin X, n) = A(x)
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It follows that

lim „, . > lim A(sin x,n) Xix)
n^oo P^sm x,n) = ^_^^ e = e = P(x)

Then

sin —

li;^
(n sin -) = \^™ X . = X

hence

oo x^
sin X = X . 7T (1

r=l r2g^2

The infinite product representation of cos x can be derived

from that of sin x. The identity sin 2x = 2 sin x cos x

will be used.

oo ij. x2

1 2x n=l n^%^
cos X = —

2 X oo x2
rr (1 )

n=l n^TiS

00x2
rn=l m'^Ti^ cx> ij. x^

?? x2 in=l (2in-l)2 ti^
/( (1

)

n=l n^Ti^

Therefore

oo ij. x2
cos X = TT (1 X—^)

n=l (2n-l)'^ 71^

There are many more things that could be said about infi-

nite products. More time could be spent on all the material

covered in this paper; discussions of the work done by Euler

-.--.i3-_v .-.
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and Weierstrass, discussion of the Gamma function, Beta func-

tion, Bessel function, Neiimann function, and Zeta function

could fill many pages; but the purpose of this paper was to

develop infinite products from the definition and to bring

them to the point where enough background is laid so that work

involving them can be understood. /



k3

ACKNOWLEDGMENT

/

The author wishes to express her thanks and apprecia-

tion to Professor R. G. Sanger for his helpful suggestions,

comments, and careful checking of this report.



kh

BIBLIOGRAPHY

1. Bromwlch, T. J.

An Introduction to the Theory of Infinite Series ^

London: Macmillan Company, I90BT

2. Chrystal, G.

Al£ebra, Edinburgh: Adaiti and Charles Black, l889.

3. Ritt, J. F.
Theory of Functions , New York: King's Crown Press,
191+7.

l^.. Small, Lloyd L.

Elements of the Theory of Infinite Processes ,

New York: McGraw-Hill Book Company, Inc., 1923.

5. Taylor, Angus E.
Advanced Calculus , Ginn and Company, 1955'

6. Titchmarsh, E. C.
The Theory of Functions , Oxford: Oxford Clarendon
Press, 1932.

7. Watson, G. N., and E. T. Whittaker.
A Course of Modern Analysis , Cambridge: Cambridge
University Press, 1915.

8. Wilson, Edwin Bidwell.
Advanced Calculus , Boston: Ginn and Company, 1912.



ON INFINITE PRODUCTS

by

ROSE KORDONOWY SHAW

B. S., Dickinson State College, 19614.

AN ABSTRACT OP A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OP SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966



The purpose of this report was to make a basic study of

infinite products. The study started with the definition of

an infinite product and continued on to definitions of converg-

ence, divergence, and oscillation of such a product. Examples

followed these basic definitions in an attempt to clarify their

meaning. Restrictions were introduced so that only infinite

products dealing with positive real numbers were to be dealt

with in the report.

Necessary and sufficient conditions for the convergence of

an infinite product were considered next. One of these theorems

was used to change the form of the infinite product to the

standard form.

The next step was to relate the testing for convergence of

an infinite product to that of certain infinite series. Before

the theorem which gives this reduction could be given, two

things had to be developed. The first was the development of

the equivalent series, and the second was the Weierstrass

theorem on inequalities.

As in the case of infinite series, some infinite products

are absolutely convergent. Hence the definition of absolute

convergence and theorems which made this definition meaningful

were considered.

The convergence and divergence of infinite products were

reduced to the theory of convergence and divergence of infinite

series by taking logarithms. The theory in this section was '

useful in the study of uniform convergence.



The last topic -considered was the development of the sine

and cosine in terms of infinite products. This last section

served as a demonstration of the use of infinite products in

the development of the expansion of functions.

/


