MISSING PLOT TECHNIQUES
Lo "d
by =g S83I9

CHING-LAN WU

B. A., National Taiwan University, 1969

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1973

Approved by:

A2 r—

Major Professor &/



THIS BOOK
CONTAINS
NUMEROUS
PAGES WITH
THE ORIGINAL
PRINTING ON
THE PAGE BEING
CROOKED.

THIS IS THE
BEST IMAGE
AVAILABLE.



II.

II1.

IV.

v.

VI,

VII,

VIII.

LD '

2&6?* . ii
Ry

1973

W77

B2 ! TABLE OF CONTENTS

Dreywen™ FRES

INTRODUCTION v assnsnsssonannanantnasansasoncnannsasasnonsnrses ]
ANALYSIS OF COVARIANCE TECHNIQUE......esesesosoaevronnnennssns '6
LEAST SQUARES ANALYSIS TECHNIQUE FOR LINEAR MODEL..vevevseee.. 13
ANALYSIS OF COVARIANCE TECHNIQUE FOR LINEAR MODEL..s.sveoeeevs 17
NUMERTGAT, TLLUSTRATIONS .o s sammmus s s wnwensssswumns s st wawaseas 90
DISCUSSION . 4t uveensasnsesnnsensesnnsenessnesnssnessnneennes 29
REFERENCE: suwns o 5 o 5b0emns 1 5 % wusus ¢ 4§ » S0EwA S 1§ ASWndd 54 sbitha s 31

ACKNowLEDGb‘jENTUI.CIIIl.!llllllll'lllllll.O..I'.‘II!I.I.II.II.I 33



I. INTRODUCTION

The occurrence of missing data in a statistically designed experiment
requires some modification of the usual statistical techniques because the
orthogonality, or balance, of the design is destroyed.

One of the first papers on the subject of estimating the yield of a
missing unit in the field experimental work is stated by Anderson (1) to
have been pubiished by Allan and Wishart. They derived formulae and
illustrated their uses for a single missing plot in a randomized block and
in a latin square experiment. These estimation methods were expénded by
Yates (16) to cover several missing units in a given experiment. The pro-
cedure he used is to minimize the error variance cobtained when unknowns are
substituted for the missing yields. The formula given by Yates for esti-
mating the yield of a single missing unit in a randomized complete block

experiment is

__TB+ tT -G
YT -D (£ -1

where r the number of blocks, t = the number of treatments in the experi-

I

ment, B = the total yield of the remaining units in the block where the
missing unit appears, T = the total of the yields of the treatment with
missing unit, and G = the grand total. Similarly for a single missing unit

in a latin squares,

_r(R+C+7T) -2
YT e - 1) (- 2)

where r = the number of rows, columns, or treatments; and R, C, and T
represent the total yields of the remaining units in the row, column and
treatment containing the missing unit. G is the grand total. He used

these formulae for several missing units by means of iterative methods.



Yates also showed that in a complete analysis of variance of the augmented

data, the treatment sum of squares is overestimated but may be corrected by
subtracting a correction for bias. The formulas for correction for bias in
two designs with one missing unit are given. For a randomized block experi-

ment, the correction for bias is

(8 - (t - )y)?
t(t - 1) !

which is subtracted from the treatment sum of squares.

The correction for bias in a latin square experiment is to subtract

{c-R-Cc- (r - 1)T1)?
- D% - 2)?

from the treatment sum of squares.

Anderson (1) derived some formulas for missing plots in split-plot
experiments by minimizing the error variance. His covariance methods are
used in the derivations which follow in order to furnish an easy means for
correcting the bias in the treatment sum of squares, and of estimating the
migssing data. We assume that we have a split-plot experiment with r repli-
cations, a whole-plot, and b sub-plot treatments so that the total number of
units is N = rab. Let the single missing sub-unit be that for the whole-plot
treatment ap» sub-plot treatment bl and replication - Also let Al be the

total yield of all existing units with treatment a the total yield of all

1* B
1’ R1 the total yield in replication r
the total yield of all existing units with both ay and bl, (RlAl) the total

yield of all existing units with both ry and ay and G the grand total. Set

existing units with treatment b 1’ (AlBl)

x=0 and y= the actual yileld for the existing units and x=-1 and y=0 for the



missing unit. In the analysis of covariance table, any sum of squares,
S(xz), equals its degrees of freedom divided by N, in all cases. The best
estimate of the yield of the missing unit in order to minimize the sub-plot
error mean square is simply the error b) regression coefficient,

_ r(RlAl) + b(AlBl) - Al
L -1 -1 -

As this yield is used for the missing unit, all sums of squares except that

for error'b) are over—estimated. The unbiased estimate of any sum of squares

is found by computing a new S(xi) and S(xly). Where S(xi) and S(xly) are the
S(xz) and S(xy) plus error b) respectively. Then the new regression coefficient

is

_ S(xly)
Y1

S(xi)
The bias in estimating the sum of squares under consideration is:
(y - yl)ZS(xi). The bias is always positive; that is, the sum of squares is
always over—estimated in the analysis of wvariance.

Thus, for the treatment B,

B ra(RlAl) + ab(AlBl) - aAl - bBl + G

17 (b -1) (ra-a+1) ’

5l S(xi) = < 1) feg = g e 1P

For the interation AB,

) ra(RlAl) + bBl - G
Y1 (ra - 1) b - 1) °

and S(xi) = (ra - 1) (b - 1)/rab.



One possibility of obtaining more exact estimates of the sums of squares for
treatment A and for error a) will be to minimize the sum of squares for
error a) and calculate the true sum of squaregs for treatment A on this basis.

The estimate of the missing value is

ra(RlAl) - rR1 - aAl + G

Ve TG ID G-1 '

However, the adjusted sum of squares is no longer independent of error sum of
squares; hence the F-test can not be used to test the significance of the A
differences.

Coons (3) pointed out that the usual work required to estimate the
missing values and correct the resulting bias may be very tedious. Also,
situations may arise for which no general formula is available. A general
method of handling missing observations in any situation is presented. The
technique employs the computational procedures of a covariance analysis using
a dummy X covariate. This method was originally given in a paper by Bartlett
(2) and also was described by Anderson, but had not been exploited fully by
them. The advantages of the covariance method are its generality of application
and the ease with which "exact' tests of significance may be obtained.

Wilkinson (15) presented methods for setting up and solving equations
for missing values of several experimental designs. Tables for determining
the coefficients for missing value equations are presented for some standard
designs, such as randomized block, latin square and lattice square designs.

A second paper (13) gives correction formulae for the treatment sum of squares
when estimated data are computed for the designs with a two-way restriction.
Also a basic procedure of analysis of covariance with incomplete data was

described in another paper (14). He assumed some observations on y are



missing and the corresponding measurements of p concomitant variates are
Xps Xpy ves xp. The analysis procedures are stated as follows:

1). discard all measurements of Xy Xyy e xp that correspond to
the missing observations on y,

2). fit a set of missing values for y as though for an ordinary
analysis (ignoring covariance),

3). with exactly parallel calculations fit sets for missing values
for Xys Xyy ees xp to replace those discarded,

4). carry out the covariance analysis on the completed data for y

and Xy X X .

2° " T
The steps provided the exact analysis, and formal justification of the
procedure is given in (13).

This report contains a presentation of an analysis of covariance
technique for analyzing univariate experiments with missing data. Also
a least squares analysis technique is described, and some general results
for linear model are given. Numerical examples of latin square experi-

ments with missing data will be analyzed by three techniques for illus-

trations,



II. ANALYSIS OF COVARIANCE TECHNIQUE
1). General Use of Covariance to Deal with Missing Data

Some properties will be listed here which give the justification for
"the computational procedures to be described., Property 1 is due to
Fisher, property 2 is due to Bartlett (2), property 3 has been implicitly
assumed by many authors, properties 4, 5, 6 have been obtained by
Kempthorne (see (3)), but probably are known to a number of workers.
Those properties are as follows:

1. If an analysis of variance is made with symbols Bl, 82, - Bq
in place of missing observations, then the best linear unbiased estimates

~

(BLUE's) of the missing observations are the quantities él’ éz, - Bq
which minimize the error sum of squares.

2. Let the data be the observed data where obtained, and be zero
where missing. Introduce a concomitant variable X (m=1... q) cor-
responding to the mth missing observations. Let Xm take the value -v

for the mth missing observation and zero for all others, missing or not.

If the error partial regression coefficients obtained from an analysis

~ ~ ~

of covarlance are denoted by BlE’ BZE’ . BqE’ then VSIE, VBZE, — quE
are the BLUE's of the missing observations.

3., Given that, with full data (yl, Yoo ae yn), the BLUE of some
linear function of the parameters is vi¥q + VoY, + ... F Ly then the
best estimate of that function with missing data is obtained by replacing
the missing y's with the missing value estimates.

4. Estimates of functions of data with missing observations, and of
variances and covariances for these estimates may be obtained by the

routine application of the formulae for adjusted means in the analysis



of covariance; i.e., by regarding the zero yields supplied in the
analysis of covariance procedure as having variances 02. The above
statement applies to functions of the augmented data; the variance of a
missing obéer#ation per se is given by statement 5 following.

5. Denote the error sum of squares of Xi by Eii and the error sum
of products of Xi and Xj by Eij' Then the variance of the ith missing
value estimate is (vzuii - 1)02 and the covariance of the ith and jth

missing value estimates is vzuijcz, where

( 3 { _ 3 1 3
Ell El2 Elq “11 ”12 ulq 1
Bl oy 0
' o
E E 1
L al qq) L“ql 11qq, | )

6. The sum of squares for treatments obtained by analyzing the data
augmented by the missing value estimates is'abways greater than or equal

to the exact sum of squares for treatment, so that a correction for this

bias is needed.



2). Application of Covariance Technique to One Missing Observation

Let n equal the total number of observations in the experiment in-
cluding the missing one. Consider the original data as the dependent
variable Y of the covariance analysis and insert the value of zero in
the cell which has the missing observation. Set up a concomltant vari-
able X which takes the wvalue of -n in the cell corresponding to the sub-
stituted zero value and the value of zero elsewhere,

The usual computational procedures of the covariance analysis auto-
matically provide wmbiased tests of significance. However estimates of
functions of the Y data, such as treatment means, must be adjusted to
the value of zero for the concomitant variable rather than to the ob-
served average value (grand average) of X as is usually done. For
example, an adjusted treatment mean is not estimated by ?.j—éﬂ(i.j—i..),

the covariance formula generally used, but rather by the formula

adj. ¥.j = ¥.j - BEi.j , (0
where
N E
B = ==L
E E
XX

and Exy and Exx are the error sum of cross products and sum of squares,
respectively, in the analysis of covariance.

From statements 2 and 5 above, the missing observation estimate

and its variance are,

missing observation = nf_ =n EEX



~ 2 n2
var.(nBE) =g (‘E'“‘ —~ KT o
XX

where GZ is estimated by 52 which is the residual error mean square re-

sulting from routine application of the analysis of covariance. That is,

EZ
2 1 Xy
=.-_..._E -
s d.f. ( vy Exx )

where Eyy is the error sum of squares of the y's, and the number of
degrees of freedom is equal to the number of the error degrees of freedom
with full data, less one.

The variance of (1) is given by:
- - . - 2 “
var.{adj.Y.j) = var.(Y.j) + (X.j) var.(BE),
where var (é } is taken to be 02/E
- (B -
As comparision among the adjusted treatment means, such as:

adj.Tm - adj.In = (Y.m - Y.n) - BE(ilm - X.n)
may in general be designated by the notation

D=D - BED

Y X

Since Dy and BE are independent, var.(D) = var.(Dy) + Divar.(BE),
where var.(Dy) is calculated assuming no missing observations and

- 2
var.{8_) is taken to be " JE .

E XX

The computation required by the use of an X covariate is relatively
slight, due to the simple nature of the X data. In most situations, the
correct sum of squares of X attributable to any given source of wvariation

2
(zxi) will simply be n % (d.f. for the given source of variation).
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The procedure,.which gives unbiased estimates of both treatment and error
sum of squares, can be simplified as follows:
1. Set Y = 0 for the missing observation,
2, Define a covariate as X = 0 for an observed Y, and X = -n for Y = (.
‘3, Carry out the analysis of covariance,.
4. Compute éE = Exy/Exx and multiply by n to estimate the missing
value.
The estimate of the missing value, néE, is essentially an adjustment to

the so-called observation Y = 0, to give an estimate of the Y that would

have been obtained if X had been zero instead of -n.
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3). Application of Covariance Technique to More Than One Missing Observation
With more than one missing observation a multiple covariance analysis
is required. Again let n equal the number of Y observations in the ex-
periment including the missing ones, and assign a value of zero to the
Y observations which are missing. Set up concomitant variables Xm for
each missing observation. Each of these Xm will be zero in all cells
except in that cell corresponding to the missing observation with which
the given Xm is associated; in that one cell it will have a value of -n.
With q missing observations, a multiple covariance analysis must be
performed on Y and the g covariates Xm.
A complete analysis of covariance will provide unbiased tests for
treatment effects. Each missing obgervation Ym may be estimated by
anE = n X (error estimate of the f associated with that missing obser-
vation).

In order to obtain estimates of the B the solution of a set of

mE?

simultaneous equations of size q x q is required. Each unbiased test

of adjusted treétment effects requires the solution of an additional

set of simultaneous equations of size g X q. In general the solution of

these equations will be easy, even by an iterative technique, because

usually the off-diagonal terms of the matrix of coefficient will be small.
The computations required to obtain the sum of products — mexn and

mey — are simple, since each X is associated with a single missing

value and therefore has only one non—-zero cell. In computing mexn,

twe situations may be encountered.
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1. The two missing values associated with X and x occur in the
same level of the given source of variation. The results are exactly
the same as those obtained for sz; i.e., mexn =n x (d.f. for the given
source of variation}.

2. The two missing values occur in different levels of the given
source of variation. Then, for most cases, mexn = -nr, where r is
dependent upon the hierarchical (nested) classification which is used.
When no hierarchical classification is involved, ¥ = 1. When the given
source of variation is an interaction effect, then the corresponding main
effects and lower order interactions must be subtracted from the zgbove

X X = -Nnr.
mn
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ITI. LEAST SQUARES ANALYSIS TECHNIQUE FOR LINEAR MODEL

Consider an experiment involving n experimental units where the ob-
servations on g of the experimental units are missing. Without loss of
generality, it is assumed that the first q experimental units correspond

to the missing observations. The resulting missing data model is
= B+e , (3.1)

where Y is the q x 1 vector corresponding to the missing observations,
¥ is the E:E %X 1 vector of observations, EU is the q x p matrix of con-
stants forming the design matrix corresponding to the missing data, §1
is the H:E * p matrix of constants forming the design matrix corresponding
to the observed data, 8 is a p X 1 vector of unknown parameters, and e is
an ¥ 1 unobserved random vector assumed to have mean zero and covariance
matrix czln where 02 is unknown. The matrices §O and‘gl may or may not

be of full rank,

Consider the partition of model (3.1) corresponding to the observed

data, i.e.,
¥ =XBte . (3.2)

This is a linear model and the analysis is well known (for example, see
]
Graybill (4) or Scheffe (10)). The partitioning of the sums of squares

for this model is given in the following analysis of variance table,
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SOURCE DF SUM OF SQUARES
Total n—q XiZi
Estimation x zizlzizl

Error n—-q-r zi(z_u §1§;)21

Theré are various ways to compute the sum of squares due to a testable
hypothesis A 8 = 0. The principle of conditional error will be used.

It is equivalent to the likelihood ratio procedure. The procedure is:
First obtain the sum of squares due to error for model (3.2). Next
obtain a restricted model by imposing the hypothesis on model (3.2) and
compute the sum of squares due to error for the restricted model. The
sum of squarés due to the hypothesis 1s the sum of squares due to error
for the restricted model minus the sum of squares due to error for model

(3.2). The restricted model is

ilz.}_{l(l_ist )E+E!

and the sum of squares due to error is

sSEp = yi (I - X, (T - AA T~ A0) )y, -

The sum of squares due to the testable hypothesis A B = 0 is given by

ssHy = yi (XX - X (L - AN (23X -a8) )y,

The above analyses provide what we call the "exact analysis' of the ob-
served data model (3.2). A missing data technique will be considered
adequate only if it provides the same results as the exact analysis.

Now consider the problem of estimating the missing values, Yoo of
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model (3.1). At this point replace A by n in model (3.1), where n is the
vector of unknown parameters as n = E(EO) = Eﬂé' A technique for esti-
mating n is to select values for the elements of n that minimize the

error sum of squares under model (3.1). The general instructions put
forth in methods books are: (1) replace the missing data by the symbols
n; (2) write the usual sum of squares due to error y'(x —‘E_zf)zJ which

is a function of n since y' = (n', zi) and (3) minimize the sum of squares
due to error by choice of n. Let ﬁ.denote that value of n which minimizes
the sum of squares due to error. For the missing data model (3.1}, if

the linear combinations n = zog are estimable under model (3.2), the

error sum of squares is minimized by n = X8 = XDX1X1 which is the unique

BLUE of n. Thus the augmented data model is

1= »

%

I

§.+§_ » (3-3)

Iba

4] 1

where y,, X, X,, B and e are defined as in model (3.1) and ﬁ = EOE'

The error sum of squares for this model is equal to the error sum of
squares of the observed data model‘ll = Elé +e, i.e., SSEa = SSE.

When you compute the sum of squares due to the testable hypothesis A 8 = 0
by standard computational techniques for the model (3.3) that sum of
squares will be biased. The principle of conditional error may be used

to circumvent the problem when the restricted model is easy to work with

computationally. The restricted model is
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n

1
I =X(L-AMB+e, (3.4)
A

414

i.e., the model
41

where the A B are estimable with respect to observed model (3.2). Estimate

] = X B + e is restricted by the hypothesis A g8 = 0

Y]
n under the restricted model (3.4), say by n, to obtain the augmented re-

stricted model

|[=e

~AAB+e. £3.5

Compute the error sum of squares as usual under model (3.5) as

$8E., * l]'_(—l— - E]_(-I- - AA) (&l (& — é”é)}_)ll

which is not biased.

From SSEra subtract the error sum of squares computed from the augmented data
model (3.3). i.e., SSEra - SSEa; that yields the exact value for the sum of
squareé due to the hypothesis A B = 0.

For example, suppose in a randomized complete block design, the missing ob-
servations can be estimated and the error sum of squares may be obtained

from the augmented data. Under the hypothesis there is no difference betweeen
the treatment effects, the restricted model is a one-way classification design
and the corresponding error sum of squares is easily computed. The difference

between the two error sums of squares is the sum of squares due to the

hypothesis that there is no difference between the treatment effects.
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IV. ANALYSIS OF COVARIANCE TECHNIQUE FOR LINEAR MODEL

Milliken and McDonald (7) state and prove the results for the linear
model to analyze experiments with incomplete data. Some general results will
be presented here without proof.

The covariance model is

ES

Y= _§+£l+g=@,§)§“+g (4.1)

|=

Ete,

where y is the n x 1 vector of observations, X is the n x p design matrix of
rank r < p, Z is the n X s matrix of covariates of rank v < s, isapx1
vector of unknown design parameters, y is a s x 1 vector of unknown para-
meters associated with covariates, and e is a n X 1 unobserved random normal
vector with mean zero and covariance matrix ozlJ whete 02 is unknown. Assume
that the rank of W is t < r+v < n.

We use the least square procedure by choosing é_and i to minimize the
quantity (y ~X B - Z y)'(y - X B8 - Z y). Differentiating thils quantity

with respect to § and Yy, we obtain, respectively, the two equations

X'XB-X'y+X'Zy=0 (4.2)
2'zy-2'y +2'X8=0. (4.3)

The sum of squares due to estimation in the analysis of wvariance table will
be partitioned into two parts, one due to Yy and one due to B after adjusting
for y.

To analyze the missing data model (3.1) using the covariance model (4.1),

construct a model as
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—
|=
-
——
P
£

] ,
J1+s, (4.4)

where n is ﬁ x 1 vector of arbitrary constants, D is a q x q diagonal matrix
with arbitrary nonzero diagonal elements, y is the q x 1 vector defined in
model (4.1),_2 is a ;:E x g null matrix, and xi,gb,gl,ﬁJ and e are defined
as for model (3.1). The analysis of the model (4.4) provides the exact
analysis, regardless of the values selected for n and the diagonal elements
of D, that is

1. the least squares estimate of B is é_= (gigl)cgizl

2. the sum of squares due to B adjusted for y is SS(B|y) = zi§1§1y1
and

3. the error sum of square is SSE = zi(L = §1§£)11,
The analysis of ‘model (4.4) provides the exact sum of squares due to a

teétable hypothesis A 8 = 0, regardless of the choice of n and D. The sum

of squares due to this hypothesis is
= 1 n— el - - - -
ssHy = ¥y (XX - X T - A0 C-4D) )y

The above results show that one can insert an arbitrary values for n and
for the diagonal elements of D and do a conventional analysis of covariance
using model (4.4) to obtain the exact analysis.

For general application of the covariance method, one needs a general
analysis of covariance computer program that uses the above formulae in-
volving conditional and/or generalized inverses.

After the analysis of variance has been completed, it may be desirable to
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estimate the means of the missing observations. If the 50 B are estimable
linear combinations for model (3.2), then the first ¢q elements of the
residual vector ¥, ML= gbi_are the BLUE's of goﬁ, The residual vector
can be computed after obtaining the least squares estimate of y from
equations (4.3) using the solution‘é (X ) Xlzl

The residual vector ¥ is

The elements of the vector (X Xl) Xlz are the unique BLUE's of the linear

combinations XCB if and only if the X:B are estimable for model (3.2).
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V. NUMERICAL ILLUSTRATIONS
Table 1 shows the field layout and yields of a 5 % 5 latin square
experiment on the effects of spacing (treatment) on yields of millet

plants (12).

Table 1.

Column

Row Sum

1 2 3 4 5
1 B:257 E :230 A:279 C: 287 D : 202 1255
2 D: 245 A :283 E : 245 B : 280 € : 260 1313
3 E : 18 B :252 C:280 D : 246 A 1 250 1210
4 A :203 C:204 D227 E : 193 B : 259 1086
5 C:231 D: 271 B : 266 A : 334 E : 338 1440
S 1118 1240 1297 1340 1309 6304

Summary by Spacing

A w2V B i 4" C : 6" D : 8" B # 30"

Sum 1349 1314 1262 1191 1188 6304
Mean 269.8 262.8 252, 4 238.2 237.6 252.2

Case 1. One Missing Observation
To illustrate, suppose that in Table 1, the yield, 338 grams in row 5,

colum 5 and treatment E, were missing. Let Yess denotes this missing value.



1). Use of formulae to analyze data:

In a latin square experiment, the formula for calculating this

missing value is

~ _ r{R+c¢c+T) -~ 2G
Y555 = (r - 1) (r - 2)

where R = 1440 - 338 = 1102
C= 1309 - 338 = 971
T = 1188 - 338 = 850
G = 6304 - 338 = 5966,.

Then Yg55 = 223.6

The correction for bias is

2
le-r- - (r'l)g] - 1687.8
(r=-1" (£ - 2)

After putting‘the estimated missing yield, 223.6 grams, in the

table, the analysis of wvariance gives

Treatment Sum of Squares 9581.8
Less Bias 1687.8
Unbiased treatment 5.5. 7894.0

The final analysis is

D.F. 5.5, M.S. F ratio
Rows(unadj.) 4 7495,1 - -
Colums (unadj.) 4 6034.5 - -
Treatments(adj.) 4 7894.0 1973.5 3.39
Error 11 6385.5 580.5 -

Total 23 - . o
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2). Analysis of covariance technique:
The procedures are as following:
(i). Set Y555 = 0 in the missing cell.
(1i). Define a covariate as X = 0 for an observed Y, and
X555 = -25 for Y555 = 0.

(ii1). Carry out the analysis of covariance which is given in table 2,
with all the computations relative to a given source of vari-
ation listed on a single line. Column (1), (2) and (3) are
the sums of squares and products of x and y. Columm (4)

shows the correct sum of squares for error (SE) and sum of

S, is subtracted from

squares for treatment + error (ST+E)' E

S to obtain adjusted treatment sum of squares S Thus

T+E T
the completed analysis is obtained and exact tests of sig-
nificance have been made. Furthermore adjusted means and

their variances can be calculated.

2 E
(iv). Compute BE = Exy = 2???3) = 8.94, and multiply by 25 to ob-
X

~

tain the missing value estimate Ysse = 223.6.



Table 2.

Analysis of Latin Square with One Missing Observation

23

v @ 3 @,
5 2la 2 (Jxy) Mean F
Source of Variation [D.F Zx ZXy ZY Zy ShaEre D.F.
Zx Square Ratio
Row 4 | 25(4) 456 7652.6 - - - -
Column 4 | 25(4) 1111 17908.6 - - - -
Treatment 4 | 25(4) 1716 32278.2 - - - -
Error 12 | 25(12) 2683 30378.4 SE = 6383.77 |11 580,34 -
Treatment+Error 16 25(16) 4399 62656.6 ST+E=142?8.60 15 - -
Adjusted Treatment 4 - - - ST = 7894,83 | 4 [1973.70] 3.40
3). Least square analysis technique
The model for a latin square experiment is
n N(0,0°).

Yiik

= -+ -} + .

i, j and k=1,..5; eijk

where a,8,y indicate treatment, row, and column effects.

Refer to missing data model (3.1), 20 is the scalar corresponding to
this one missing observation, ¥4 is the 24 x 1 vector of observations,
is the 1 x 16 vector of constants forming the design matrix corresponding

to the missing data, X

1

is the 24 x 16 matrix of constants forming the

design matrix corresponding to the observed data, B is a 16 x 1 vector

of unknown parameters, and e is a 25 X 1 random vector assumed to have

e b
mean zero and covariance matrix o Lose

%,
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ing the hypothesis A 8 = 0 on the model (3.3), and using the

results we already described, the exact wvalue for the sum of squares due

to hypothesis
In this

(5) to analyz

will be obtained.
problem, we have used least squares analysis computer program

e the data. The results are as follows:

Source D.F. Sum of Squares Mean Squares F Ratio
Rows 4 7014.175 - -
Columns 4 5917.428 - -
Treatments 4 7895.148 1973.787 3.39
Residual 11 6387.605 580.691 -
Total 23 28895.832

Case 2, Two Missing Observations

Suppose

that in Table (1), the first item, 257 grams and the last item,

338 grams were missing. Let y and y denote the two missing obser-
112 555

vations.

1). Use of formulae to analyze data:

Snedecor (12.2) describes a method for making an unbilased test for

latin square

(iis

(i1).

design, with two missing values. The steps are as follows,
Supply estimates of the missing values. The recursion
method is applied to the missing plot formula for the latin
square. Results: ;112 = 225.36, ;555 = 228.85.

Analyze the variance of the augmented square (that is, in-
cluding the two estimated values ;112 and ;555). The only

part needed is the sum of squares for error, SSES = 5915.7.



(iii).

(iv).

(v).

blocks:

25

Treating the original data as randomzied blocks in rows and-
éolumns, ignoring the treatments, supply a new pair of esti-
ﬁates by use of the formula for missing plots in randomized

;112 = 206.7, §555 = 278.1.

Analyze the variance of the augmented randomized blocks.

What is needed is the sum of squares for error SSEB = 12668.2.
Analyze the variance of the latin square, using SSEB - SSES =

12668.2 ~ 5915.7 = 6752.5 as the sum of squares for treatment.

Source of Variation D.F. S.S. - M.S. F Ratio
Unbiased Treatment 4 6752.5  1688.00 2.8
Error 10 5915.7 591.57 -

2). Analysis of covariance technique:

A multiple covariance analysis is used to handle the problem of two

missing observations.

(1]

(i1).

(1td).

Assign the value of zero to the two mission observatioms,
Yi1p = 0900 Fggg = B

Set up two concomitant variables Xl and X2 for each missing
observation. Each of Xl = 0 in all cells except in that
cell corresponding to Y112° in that one cell Xl = =-25,

Similarly, each of X, = 0 in all cells except in that cell

2
corresponding to V555 in that one cell X2 = =25,

The computation of a multiple covariance analysis is given
in table 3. Column (6) shows how to obtain adjusted sum of

squares for treatment. The methods of obtaining the correct

error term is just using the usual covariance formula
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2 .
E " - Z BmE(Ex ). In order to obtain the exact sum

y m=1 o

of squares for treatment, the following adjustment must
be applied to treatmentterror:

2

mZ 1 BI'Il (T+E) (T4 xmy

where the Bm(T+E) must satisfy the equation (see table 3):

25(16)51(T+E) + 2552(T+E) = 3586,
2551(T+E) & 25(16)52(T+E) = 4656.
Therefore
él(T+E) = 8.2698,
éz(T+E) = 11.1221.

Hence the adjusted (treatment+error) sum of squares is

2
2 ~
- T+E = 12673.4.
EY le Bm(T+E)( )xmy 73.4

Subtraction of the correct error term, SE = 5915,886, from
this gives the treatment sum of squares, 6757.5, which will

provide an exact test for treatment effect.

Two missing observations are estimated by

-~ ~

Yy12 = 08

]

1E 225.36

~ ~

Y555 = = 228.85.

H
w
|



3). Least square analysis technique:
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In this two-missing-observations case (q=2), we apply the same linear

model as one missing cbservation example, except that g=1 is replaced by

g=2., The same least squares computer program is used to analyze the data.

Sum of squares

Source D.F.
Rows 4
Columns 4
Treatments 4
Residuals 10
Total 22

7023.415
6266.660
6752.386

5920.738

Mean squares F ratio
1688.096 2.85
592,074 -
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VI. DISCUSSION

When one missing observation exists in an experimental design, one
may do analysis by using formulae which are available in some designs.

If more than one missing observation, the iterative methods can be used
to estimate the missing values, the unbiased test will be performed by

a special method which depends on different experimental design, e.g.,
the method we described in the previous example for latin square design.
Since the procedures required to estimate the several missing values and
correcting for bias will become complicated, the other two techniques —
least squares analysis and covariance analysis seem preferable as general
missing plot procedures.

Both of these techniques provide an exact analysis. The covariance
analysis technique is generally computationally easier than least squares,
and also provides the missing value estimates. 1If one is analyzing the
data by a high speed computing device, there would be no point in working
out the partition of the sum of squares of x or products of x and y
algebraically. Even when the expected values of the missing data are not
linearly estimable, the covariance analysis still provides the exact
analysis, but the standard computational formulae break down and thus new
formulae, involving pseudo-inverses of certain matrices, are given (7).

The advantaée of the least squares analysis is that when the computer
program of least squares analysis is available, one just needs to use the
observed data to do an analysis which provides an exact test. Because
covariance analysis uses several covariates to analyze the data, it may

take longer computing time than least squares procedure.
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Techniques for the estimation of missing data in the multivariate
linear model are suggested and the subsequent analysis of the '"complete"
data is considered by McDonald (6). Those techniques are generalizations
of the procedures for the analysis of univariate experiments in which
some of the observations are missing. The techniques require only compu-
tational procedures which are already available in the literature for

mivariate experiments.



31

VII. REFERENCE
1. Anderson, R. L. (1946) Missing Plot Techniques. Biometrics, 2: 41-47.
2. Bartlett, M. S. (1937) Some Examples of Statistical Methods of Research
in Agriculture and Applied Biology. J. Roy. Stat. Soc. Suppl.,
4: 137-170.
3. Coons, I. (1957) The Analysis of Covariance as A Missing Plot Technique.
Biometrics, 13: 387-405.
4, Graybill, F. A. (1969) An Introduction to Linear Statistical Model,
Vol. I, McGraw-Hill, New York.
5. Kemp, K. E. (1972) Least Squares Analysis of Variance, A Procedure, A
Program, and Examples of Their Use. Research Paper 7, Depf. of
Statistics, Kansas State Univ., June 1972,
6. McDonald, L. (1971) On the Estimation of Missing Data in The Multi-
variate Linear Model, Biometrics, 27: 535-543.
7. Milliken, G. A. and McDonald L. (1971) Techniques for Analysis Experi-
ments with Missing or Incomplete Data. Technical Report No. 14,
Dept. of Statistics, Kansas State Unilv,
8. Nelder, J. A. (1954) A Note on Missing Plot Values. Biometrics, 10:
400-401.
9. Norton, H. W. (1955) A Further Note on Missing Data. Biometrics,
11: 110.
10. Scheffé, H. (1959) The Analysis of Variance, Wiley, New York.
11, Smith H. F, (1957) Missing Plot Estimates. Biometriecs, 13: 115-118.
12. Snedecor, G. W. and Cochran, W. G. (1957/56) Statistical Methods,

6th/5th editions, Iowa State Univ. Press, Ames, ILowa.



13.

14.

15.

16.

32

Wilkinson, G. N. (1958) The Analysis of Variance and The Derivation
of Standard Errors for Incomplete Data. Biometriecs, 14: 360-384.

Wilkinson, G. N. (1957) The Analysis of Covariance with Incomplete
Data. Biometrics, 14: 363-372.

Wilkinson, G. N. (1958) Estimation of The Missing Values for The
Analysis of Incomplete Data. Biometrics, 14: 257-286.

Yates, F. (1933) The Analysis of Replicated Experiments When Field

Results Are Incomplete. The Empire J. Exp. Agri., 1: 129-142,



VIII., ACKNOWLEDGMENT
The writer wishes to express her sincere appreciation to her major
professor, Dr. Holly C. Fryer of the Department of Statistics, for

reviewing this manuscripts and offering advice.

33



MISSING PLOT TECHNIQUES

by

CHING-LAN WU

B. A., National Taiwan University, 1969

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1973



The occurrence of missing data in a statistically designed experiment
requires some modification of the usual statistical techniques because the
orthogonality or balance of the design is destroyed. One of the first
papers on the subject of estimating the missing yield was published by
Allan and Wishart (1930), and had been expanded by Yates (1933) to cover
several missing units in given experiment.

Bartlett (1937), Anderson (1946) and Coons (1957) had used the
analysis of covariance model to analyze the experiments with missing
data. The technique employs the computational procedures of a covariance
analysis using a dumming X covariate. With q(>1) missing observations,

a multiple covariance analysis is required. Set up concomitant variables
Xm for each missing observation. Each of these Xm will be zero in all
cells except in that cell corresponding to the missing observation with
which the given Xm is associated; in that one cell it will have a value
of -n. A multiple covariance analysis will be performed on y and the ¢
covariates Xm. A complete analysis of covariance will provide unbiased
tests for treatment effects.

Another missing plot technique is the least squares analysis which
produces what we call the exact analysis. The least squares estimators
obtained are those that minimize the residual sum of squares. Usually,
the least squares computations are more complicated than analysis of
covariance,

Either of these two techniques is suggested to be used as a missing
plot technique, because of its generality of application and the ease

with which 'exact' tests of significance will be obtained.



