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ABSTRACT

A new functional gene database, FOAM (Functional
Ontology Assignments for Metagenomes), was de-
veloped to screen environmental metagenomic se-
quence datasets. FOAM provides a new functional
ontology dedicated to classify gene functions rele-
vant to environmental microorganisms based on Hid-
den Markov Models (HMMs). Sets of aligned protein
sequences (i.e. ‘profiles’) were tailored to a large
group of target KEGG Orthologs (KOs) from which
HMMs were trained. The alignments were checked
and curated to make them specific to the targeted
KO. Within this process, sequence profiles were en-
riched with the most abundant sequences available
to maximize the yield of accurate classifier models.
An associated functional ontology was built to de-
scribe the functional groups and hierarchy. FOAM
allows the user to select the target search space
before HMM-based comparison steps and to easily
organize the results into different functional cate-
gories and subcategories. FOAM is publicly available
at http://portal.nersc.gov/project/m1317/FOAM/.

INTRODUCTION

Continuous evolution of next generation sequencing (NGS)
permits acquisition of increasingly large DNA and RNA
sequence datasets at a relatively low cost. These NGS

approaches have resulted in tremendous breakthroughs
in the study of human-associated microbial communities
(1,2). The environmental microbiology scientific commu-
nity is also applying NGS to study the composition of
phylogenetic and functional genes in microbial commu-
nities (metagenomics) and to study which genes are ex-
pressed (metatranscriptomics). Recent examples include
understanding of the impact of climate change on carbon
cycling and greenhouse gas emissions in soil and sediment
microbial communities (3–6), and mining of metagenomes
for genes that encode novel enzymes of interest for biotech-
nology applications and biofuel production (7,8). However,
a current bottleneck in meta-omic analyses of environmen-
tal microbial communities is the lack of tools to accurately
assess functional information without excessive computa-
tional time.

In particular, soil has been considered the ‘grand chal-
lenge’ for metagenomics sequencing projects for several
reasons (9). First, the majority of the microorganisms in
soil have never been cultivated and their functions are
not known. Second, the high diversity and complexity of
soil microbial communities is a challenge for metagenome
assembly (10). Third, the annotations suffer from lack-
ing functional assignments (as the microorganisms from
which they originate have not yet been cultivated and no
genome sequence data exists), and there are several genes
that have more than one functional assignment in existing
databases making correct gene assignments difficult. This
deficiency is exemplified when screening for genes involved
in specific biochemical cycles, such as methane oxidation or
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methanogenesis in KEGG (Kyoto Encyclopedia of Genes
and Genomes), which are currently classified by Gene
Ontology (11) within five categories: ‘biological process’,
‘metabolic process’, ‘biosynthetic process’, ‘cellular biosyn-
thetic process’ and ‘alkane biosynthetic process’. Another
example, KEGG Brite (12), classifies methanogenesis at the
fourth functional sublevel (as ‘methane metabolism’). Fi-
nally, there remain computational challenges when screen-
ing big datasets, such as those represented by gigabases (Gb)
to terabases (Tb) of sequence data, due to the requirement
for access to super computers and excessive computational
time (13).

MATERIALS AND METHODS

To address these challenges we aimed to build a manu-
ally curated and validated database for screening of envi-
ronmental metagenomic and metatranscriptomic sequence
datasets for functional genes. We focused on biochemical
functions and metabolic pathways important in environ-
mental microbial ecology, including global carbon and ni-
trogen cycles, by manually selecting and organizing func-
tional gene information into a database here called ‘FOAM’
(Functional Ontology Assignments for Metagenomes).

First, KEGG orthologs (KOs) (12) were retrieved to fit
within a hierarchical organization from general features to
specific pathways (such as denitrification, methanogenesis,
etc.). KEGG KO (a reference set of homologous genes, con-
sistent in known functions) benefits from stability, good
maintenance, curation, and third party annotation. The
KEGG KO was chosen as the FOAM ‘unit’ because it is
a qualitative and dynamically maintained knowledge base
associated with a rich tool environment that is available
within or outside of KEGG. Additionally, using KEGG
KO permits the use of all visualization KEGG tools or
third party software that have been released [e.g. Cytoscape
(14), Glamm (15), Voronto (16), iPATH (17), bioconductor
Pathview package (18)]. KEGG KO lists the genes defined
in KEGG that belong to each functional and homologous
family and, as a consequence, these can be multi-domain
and multi-functional. Here, to provide accurate functional
annotation, each FOAM module was constructed to ideally
target one function.

The reduced size of the resultant FOAM database, com-
pared to non-specific sequence databases, was a first step to-
wards significant improvement in the speed and specificity
of similarity searches. In addition, to improve upon the sen-
sitivity of conventional heuristic alignment programs, we
turned each KO set into Hidden Markov Models (HMMs;
19) by fetching their corresponding protein family (Pfam)
profiles (20) as described in Figure 1. This step generated
a sizeable number of conflicts (several Pfam per KO and
vice versa) that were automatically resolved by functional
assignments to KO. For the few remaining unresolved assig-
nations, the corresponding set of sequences was manually
split according to the topology of their phylogenetic trees.
At this point the HMMs were re-trained from the new pool
of sequences.

By retrieving the sequences of the corresponding Pfam
of each selected KO, in addition to the sequences already
present in the FOAM database, we ensured precise de-

tection of functions from potentially distant homologs.
With this method, ∼74 000 peptide sequence profiles were
specifically tailored and trained to predict functions as de-
fined in KEGG KO. This profile-based searching approach
enabled identification of less conserved regions along se-
quence alignments. Thus this method is applicable for
searching for more distant homologs, similar to the ap-
proach used by Pfam (20) and TIGRFAM (21). However,
we found that most Pfam and TIGRFAM models provide
multiple KEGG KO assignments and did not serve our
needs for retrieval of functionally specific annotations from
metagenomes. Also, Pfam and TIGRFAM do not focus
on environmental processes and cover only few functions
of interest for different environmental sources. Addition-
ally, Pfam and TIGRFAM are based on a simplified align-
ment, called ‘SEED’, which is composed of a collection of
sequences representative of a protein family, whereas our
aim was a more comprehensive recruitment of more distant
homologs. Recently, FunGene (22) was published as a new
toolkit specialized to process amplicon data for functional
genes, focusing on marker genes (∼100 currently available).
FunGene provides users with HMMs for their marker genes
of interest as a tool to test primers and probes. Moreover,
FunGene allows users to build and submit new HMMs.
FOAM is complementary to FunGene: it includes ∼3000
custom protein models obtained by enriching Pfams rele-
vant to environmental microbiology with more protein se-
quences. An additional attribute of FOAM is that KO as-
signments were screened during the manual calibration to
ensure that the Pfam alignments all targeted the same KO. If
parts of the alignments targeted other KOs they were omit-
ted from building the models or manually reassigned. Im-
portantly, FOAM is a database that can be complemented
with input from the user community. The FOAM database
is by no means complete and we encourage recommenda-
tions from future users for additional categories to input
into FOAM.

Ontology definition

The ontology was defined according to following con-
straints: (i) cover major biochemical functions and path-
ways relevant to environmental microbiology; (ii) orga-
nize functional classes hierarchically to simplify functional
group selections before or after the search step; (iii) use
KEGG KO‘s to refine the functional classification. FOAM
therefore benefits from the quality of KEGG annotation
and all the tools that make use of KO IDs. Several KOs
are present in several functional classes to keep the pathway
complete at the higher level.

To address the first two constraints, we mainly drew from
a comprehensive bacterial physiology and metabolism ref-
erence text (23) that was completed by KEGG BRITE on-
tology (12) information. The resulting FOAM hierarchy is
limited to five functional levels: level 1 is the most general
function group definition and level 5 the most refined, with
level 5 corresponding to KO levels. The resulting FOAM
ontology is distributed in the form of a tabulated file on
the FOAM website. For example, the level 1 FOAM en-
try #11 refers to the nitrogen cycle (Table 1; http://portal.
nersc.gov/project/m1317/FOAM/data/release 1/) and con-

 at K
ansas State U

niversity L
ibraries on M

arch 13, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://portal.nersc.gov/project/m1317/FOAM/data/release_1/
http://nar.oxfordjournals.org/


PAGE 3 OF 7 Nucleic Acids Research, 2014, Vol. 42, No. 19 e145

Figure 1. HMM building pipeline: example with KO:K16157 (methane monooxygenase). Step 1––find Pfam(s) combination assigned to the KO of interest
(a) and (b) check for redundancy. Step 2––fetch IMG peptide sequences which hit the retrieved Pfam(s). Step 3––fetch from Pfam-A database the HMM
of interest. Step 4––alignment (hmmalign) and filter each Pfam from extra sequences obtained in IMG. Step 5––stitch filtered alignments. Step 6––draw
a Maximum Likelihood tree (fasttree). Step 7––find clusters in tree with same KO. Step 8––split alignment (step 5 output) by cluster (step 7 output) and
build HMM for each, and process the ‘Trusted Cutoff’ computation.

tains 52 KOs. There are four functional groups at level
2 of the database: ‘reduction of nitrogenous compounds’
(i.e. reductive reactions involving nitrogen compounds), ‘ni-
trogen fixation’, ‘ammonia assimilation’ and ‘nitrification’.
The FOAM level 2 group, ‘reduction of nitrogenous com-
pounds’, is further subdivided into four categories: ‘den-
itrification’, ‘assimilatory nitrate reduction’, ‘dissimilatory
nitrate reduction’ and ‘hydroxylamine reduction’. Subse-
quently, the FOAM level 2 group of ‘nitrification’ is sub-
divided into the following categories: ‘ammonia to hydrox-
ylamine’ and ‘hydroxylamine to nitrite’. This example illus-
trates that some KOs (e.g. hydroxylamine oxidoreductase)
may be found in more than one FOAM category, as gene
products may be involved in more than one biochemical
pathway.

Database construction

Approximately 74 000 HMMs were generated and dis-
tributed into either a single file, or 21 HMMer (19) for-
matted files, where each HMM corresponded to the most
refined functional level in the hierarchical FOAM ontol-
ogy. To generate models, we developed a pipeline, trig-
gered for each KO referenced in FOAM. Then, based on
KEGG assignment information, the system retrieved all
combinations of Pfams assigned to a KO. From those
combinations, sequences in the IMG (version 4) protein
database containing the Pfams were retrieved; including
protein sequences annotated from microbial genomes and
metagenomes. This process enriched preexisting Pfams with

additional sequence information (particularly metagenomic
sequences). The sequences were aligned with Pfam models
using hmmalign (part of HMMer 3 suite) and recurring gaps
were removed after this step. At this stage, we gained a num-
ber of protein profiles (defined as an alignment or model
that represents a group of sequences which serves for com-
parison) per KO equal to retrieved Pfams. An individual
Pfam usually has multiple-KO assignments, making them
less specific. Therefore, profiles were grafted together into
one alignment and a Maximum Likelihood tree was built
through the FastTree program (24) to identify clades on the
topology consistent with sequence KO annotation––here
called clusters (Figure 1). Grafting alignments is relevant
because some sequences may be present in several Pfams,
linking them with other sequences in a different Pfam (see
Figure 1 step 5 and Venn diagram in Supplementary Data
2).

Detection of KO consistent branches was done by brows-
ing the tree from the leaves to ascendant nodes provided
that the subtree gathered leaves with only the same KO as-
signment. Once completed, the subtree was excised and the
algorithm restarted from the remaining tree. A consistent
subtree was defined as the largest subtree that has a single
KO annotation. Due to the nature of the KO annotation it
is possible that some genes may have had more than one
KO assigned to them. In that case, we still accepted them
if they had the common KO of the subtree. Furthermore,
each KO was mapped to EC numbers and a consistent sub-
tree may have all genes assigned to the same EC number,
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Table 1. The current FOAM database is made of 73 969 HMMs designed to target 2870 different Kos

#HMM #KO #hmm/KO

01 Fermentation 1342.5 173 7.76
02 Homoacetogenesis 336 118 2.85
03 Superpathway of thiosulfate metabolism 36 7 5.14
04 Utililization of sugar, conversion of
pentose to EMP pathway intermediates

100.5 14 7.18

05 Fatty acid oxidation 1179.5 41 28.77
06 Amino acid utilization biosynthesis
metabolism

7773 805 9.66

07 Nucleic acid metabolism 2734 288 9.49
08 Hydrocarbon degradation 1415.5 85 16.65
09 Carbohydrate Active enzyme (CAZy) 2305.5 305 7.56
10 TCA cycle 478.5 35 13.67
11 Nitrogen cycle 217.5 52 4.18
12 Transporters 0.5 543 0.00
13 Hydrogen metabolism 194.5 16 12.16
14 Methanogenesis 524.5 57 9.20
15 Methylotrophy 238 69 3.45
16 Embden Meyerhof-Parnos (EMP) 209 35 5.97
17 Gluconeogenesis 258 28 9.21
18 Sulfur metabolism 35.5 33 1.08
19 Synthesis of saccharides and deriviatives 2015.5 419 4.81
20 Polymers hydrolysis 2740 358 7.65
21 Cellular response to stress 11647 825 14.12

Total: 35781 Different KOs: 2870

On average, an HMM is made from an alignment of 81 peptide sequences and about 26 HMMs are built per KO. The file size is ∼7 GB.

or the same first three digits of the EC number. In any of
the above scenarios, we reported the members of the sub-
tree and their corresponding annotation (common KO or
EC number). A caveat of this approach is that we did not
consider the quality of the tree in the tree-splitting step (i.e.
weakly supported branches were equally treated as strongly
supported ones), producing models of different qualities.
Nevertheless, we decided that the approach of rational clas-
sification is better than no classification at all. In the future,
the groups could be recomputed, or split more optimally
when more data become available (e.g. more KOs). From
each cluster related to the KO in process, we extracted the
alignment from which HMMs were eventually built.

RESULTS

Validation

As FOAM was constructed entirely from protein sequences
in Pfam and in JGI-IMG without sourcing KEGG pep-
tides, we used KEGG peptides for validation. Because each
KEGG sequence has a KO assignment, resulting compar-
isons were relatively straightforward. We also compared
FOAM HMMs to UNIPROT––Swissprot (25), but this re-
quired searching for files generated by KEGG to make the
link between KEGG and Swissprot IDs. Therefore, valida-
tion of HMMs in FOAM included all KEGG protein se-
quences (with genuine KO assignments) and those in Swis-
sprot. To accomplish this, the hmmsearch program was
launched and the best hits with a ‘per domain’ score >25
were kept. In order to compute quality metrics, we had to
address a multi-class problem because each item (here se-
quence) had to be labeled with one of more than two KOs.
To do so, we built a ‘confusion matrix’ from which the val-
idation metrics were derived (Supplementary Table S1). As
each FOAM HMM targets one or multiple KOs, or each

classified sequence, we considered the best hit as a true pos-
itive if at least one KO assigned by KEGG corresponded to
one predicted KO (an example of how a confusion matrix is
filled and metrics are computed is given in Table 2).

Validation results are shown in Figure 2 and indicate
good FOAM classification performance for all indices. In-
deed, at the KO level (the most refined classification level)
precision reached 92% in both tests; with 82% (Swissprot
test) or 69% (KEGG peptides test) sensitivity. Notably, a
majority of misclassifications at the KO level were assigned
to very close KOs (in terms of ID which usually means func-
tional similarity) explaining the jump in values when KOs
are gathered in higher classes starting at FOAM ontogeny
level 4 which normally gathers several very close KOs.

As a specific example, we extracted the data from the
validation we performed for K02588, which contains the
nifH gene, and is known to be problematic (many false
positives) due to its domain architecture. The Swissprot
database contains 70 proteins annotated as K02588. Run-
ning the HMMs, we were able to classify 68 of these cor-
rectly, 0 were incorrect, and 2 were false negatives; thus il-
lustrating the power of FOAM.

DISCUSSION

In the new era of metagenomics, faced with the growth of
large databases, increasing numbers of sequencing projects,
and consequently large sequence datasets, we identified a
need for a functional gene database that covers the diver-
sity of known microbial metabolic processes; in particu-
lar for environmental metagenomes. The resulting FOAM
database that we present here has many strengths for the
user including core function models, i.e. FOAM HMMs
tailored for KO assignments, and an organizational struc-
ture based on biochemical cycles with environmental rele-
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Table 2. Example of confusion matrix construction for database validation

The matrix is initialized by labeling rows (KEGG assignment) and columns (FOAM assignment) according to the KO list available in FOAM. Then, for
each classification in the hmmsearch output, a cell in the matrix is incremented: if K2 is predicted as K2, then tp2 is incremented, if K3 is predicted as K1,
then e31 is incremented. At the end, trace (diagonal summation), sums per row, sums per column are computed and quality metrics calculated. Here this
calculation has been performed for K00001, K00002, K00010, K00200.

vance. The resulting HMM construction pipeline has sev-
eral strengths, including: (i) improved specificity for clas-
sifying peptides or translated reads/contigs into functions
because sequences were selected according to phylogenetic
analyses to become KO-specific classifiers and (ii) increased
sensitivity that is crucial when dealing with diverse and
underexplored environments (e.g. soil). The KEGG KO
was chosen as the FOAM ‘unit’ because it is a dynam-
ically maintained knowledge base associated with a rich
tool set available within or outside of KEGG (KEGG-
ML, GLAMM, iPath, Voronto, etc.). That being said,
FOAM does not aim to replace other existing systems,
such as MG-RAST, IMG/M, KEGG genes, KO, Phylo-
facts (FAT-CAT) (26,27), or Pfam, for metagenome annota-
tion. Rather, FOAM provides the community with a tool for
precise functional annotations even when distant homologs
have been obtained by shotgun metagenomic sequencing.

We also defined a large set of environmentally important
functions for gene mining, which we organized into 5 lev-
els of resolution. This enables the user to focus on specific
functional groups by preselecting the relevant models or by
organizing the results into classified functional families. As
an example, we annotated two soil metagenomic datasets
after quality trimming/filtering and assembly using Velvet.
The coding regions were then searched from contigs using
Prodigal (in mode ‘meta’) and HMMer (19) run against the
HMMs from FOAM CarboActive enzyme ontology group.
The first metagenome, from a prairie soil, was ∼300 Gbp,

assembled in 5 901 346 contigs (N50: 609 bp), producing
7 716 071 ORFs. The second metagenome, from adjacent
cultivated soil, was ∼200 Gb, assembled in 4 592 072 con-
tigs (N50: 548 bp) with 6 059 007 ORFs. The annotation
of these two datasets took ∼200 cpu hours. In another ex-
ample, we used the whole FOAM database to annotate 6
657 648 Miseq reads (∼75 bp in length) from permafrost.
The sequences were translated into all six reading frames
and the translated file was run through hmmsearch on a
Dell PowerEdge R910 with 40 cores and 1 TB of RAM.
The hmmsearch devoted 5 cpus on average at any given time
and this search took ∼55 h to run, i.e. ∼275 cpu hours.
These two examples demonstrate that FOAM is an appro-
priate tool for characterization and comparison of different
functional genes in large and highly complex environmental
metagenome datasets.

In summary, analysis of current environmental
metagenomes is often challenging due to the high di-
versity and large proportion of uncharacterized microbial
taxa in most environmental habitats. Such data require
more sensitive tools to identify distant homologs while
minimizing computational cost. The FOAM database rep-
resents a useful and expedient tool for informative analyses
of these data. The assignment sensitivity was increased
with HMMs that were trained from sequence alignment
profiles, and use of HMMer 3.0 provided model queries
that were as expedient as BLAST (28,29). Additionally,
FOAM allows easy narrowing of a search to specific target
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Figure 2. Validation results. For each of the five functional levels available in the FOAM ontology, three metrics were computed: recall (or sensitivity),
precision (known also as ‘positive predictive value’ or sometime ‘specificity’) and F1-score (the harmonic mean of both). In all cases, precision stays >92%
at the KO level to reach 97% at level 1 (21 classes). Recall varies much more, from 69% at the KO level, to 98% at level 1. Levels 2, 3 and 4 gave similar
performance results for both recall and precision; and their F1-score ‘mean’ within a range of 92–94%.

functional categories. As each model is trained with an
average of 80 sequences, FOAM screens a dataset with a
selective database ∼80× faster than BLAST to test the
same content, while resulting in a higher sensitivity.

Deliveries (Results)

HMM files and ontology are available here: http://portal.
nersc.gov/project/m1317/FOAM/

FOAM (the ontology)
The ontology is available as a tab-separated values file.
FOAM (the HMMs)

FOAM is currently made of 73 969 HMMs built to clas-
sify into 2870 different KO (about 25 HMMs per KO on av-
erage). A brief description of FOAM statistics is illustrated
in Table 1.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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