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1 INTRODUCTION

1 .1 GENERAL

In the design of maohinory and some structures, the problem of transmitting

a torque (a couple) from one plane to a parallel plane is frequently encountered.

The simplest device to accomplish this function is a shaft. Shafts are found in

the form of Line Shafts, Head Shafts, Crank Shafts and ship and aeroplane pro-

peller shafts. Twisting or Torsion is generally, although not exclusively,

encountered in machine design.

Torsion is the term applied to the twisting action in a bar that is

subjected to the effect of externally applied torques or twisting moments acting

in planes normal to the axis of the bar.

Transmission shafting may also be subjected to bending owing to the weight

of pulleys, motors or other equipment supported by the shaft. Problems

involving loading that produces combined stresses are not considered in this

discussion. The members are subjected only to torsion.

Solutions to torsion problems fall into the following categories according

to the types of members transmitting the torque:

(i) Solid prismatic members,

(ii) Solid non-prismatic members.

(iii) Hollow prismatic members,

(iv) Hollow non-prismatic members.

1.2 PURPOSE AND SCOPE OF RESEARCH

The objective of the investigation was to study experimentally the behavior

of solid prismatic bars subjected to pure torsion and to compare the experimental

results with existing analytical solutions. Both elastic and plastic behavior

were studied.



Tho research was limited in scope to solid, prismatic steel members

subjected to puro torsion. The following cross sections woro studied:

(i) Circular

(ii) Rectangular

(iii) Square

2 LITERATURE SURVEY

2.1 HISTORICAL BACKGROUND

The elastic study of torsional problems dates as far back as the Eighteenth

Century, when Coulomb's theory for a circular cross section was published in

"Histoire de L'academie" in I78I4.

Navier, in I86I4, tried to correlate this theory with members having non-

circular cross sections.^ He deduced an incorrect relationship and came to the

erroneous conclusion that, for a givon torque, the angle of twist is inversely

proportional to the centroidal moment of inertia of the cross section, and,

that the maximum shear stress occurs at points most remote from the centroid of

the cross section. In contrast to Navier* s theory, it was later shown experi-

mentally that when non-circular prismatic bars are twisted, initially plane

sections or two dimensional sheets on twisting become warped into throe

dimensional sheets.

Saint Venant, in I853, gave the first correct theoretical solution for

non-circular sections ,5 Saint Venant* s theory states that at any point of an

elastic body, the stresses can be readily calculated if the functions repre-

senting the components, u, v and w of the displacements are known. He then

proposed the Semi Inverse method in which some of the displacements and forces

are assumed and the remainder of these quantities are determined so as to

satisfy all the equations of elasticity. The method consists of making as many



simplifying assumptions as nppoar roasonablo banod on an inspection of tho

problem, and thon showing that tho boundary conditions, tho equations of

equilibrium, and tho equations of compatability are all satisfied,,

The concept of Plasticity was first given by Trosca, who stated that a

metal yielded plastically when the maximum shear strain attained a critical

value .^ Saint Venant devoloped the fundamental equations of plasticity based

on some basic assumptions and provided the plastic solution to the torsional

problem of a circular shaft .5

Much of the work in Plastic torsion is attributed to Nadai, who in 1923*

investigated both theoretically and experimentally the plastic zones in a

twisted prismatic bar of an arbitrary contour. From certain properties of the

plastic stress function, he came to the conclusion that the plastic stress

function is a surface of constant maximum slope over the edge of the cross

section under consideration. If a piece of metal is shaped according to the

contour of the cross section and covored with sand while lying horizontally,

there results a heap of sand. The natural slope of such a heap represents the

plastic stress function of the cross section. The natural slope would be a

constant slope due to the constancy of the angle of repose of the sand.

Nadai also extended the membrane analogy to determine the stress distri-

bution in a twisted bar after the yield point has been reached.7 Let a roof of

constant slope be constructed over the contour of the cross section and the

base of this roof be closed with a membrane. If the membrane is loaded with

pressure, it will bulge upwards, touching some portions of the roof. The

touched portion of the membrane represents the plastic regions of the cross

section, while the free or untouched portions of the membrane represents

elastic regions or the surface of varying shearing stresses

The stress distributions in a prismatic bar having a solid cross section



and subjootod to puro torsion fall under throe different classifications:

(a) Elastic Stress Distribution

(b) Elastic-Plastio Stress Distribution

(c) Fully Plastic Stress Distribution

Problems involving elastic stress distributions and fully plastic stress

distributions are considered in the following discussion, but elastic-plastic

stross distributions are not considered.

2.2 ELASTIC SOLUTIONS TO TORSIONAL PROBERS FOR SOLID PRISMATIC AMBERS

Tho mathematical analysis of the torsion problem assuming that warping

will occur was first performed by Saint Venant, in I855.* This analysis leads

to the conclusion that the largest shearing stross on a section occurs on the

periphery at the point or points nearest to the centroidal axis. In reaching

this conclusion, the following two assumptions are fundamental :

(i) The body forces due to the effect of gravity are neglected.

(ii) The stross distribution takes place so abruptly that it does not

vary with Z (axis of centroid).

If a solid prismatic bar having an arbitrary contour is twisted by couples

applied at the ends, then the angle of rotation of a cross section at a distance

Z from the origin will be Z , where is the angle of twist per unit length.

Referring to Figure 1

x = p cosoC

y — p sino£

where p is the radius of circular cross section

x = -p Sin^ .SoC

y = p CosoC. S°£



5

Lot u = displacement in the diroction of x-axis.

v displacement in the direction of y-axis

Then u = € x = -y SoC = -y Z Q (1)

v = S y = x £°^" =» x Z # (2)

Due to tho warping action, the displaced point P' has moved out of the

original plane of P by an amount w, where

w = displacement in the direction of z-axis.

Warping is different for different values of x and y but is independent of

z so that all cross sections warp in the same manner.

w = 0F (x,y) (3)

where F = warping function.

Equation 3 indicates that for a given point, warping is also proportional

to <9 .

Converting displacements to normal and shearing strains,

€ x = _^i=0
£>X

C ^ V - A

£ z =^=03z

Vxv=— + J*2L= -zG + z6 =
* 3y 3x

Y yz =4i + |^=x6+e^
J

2) z d y o y

7> z d x c> x
(W

Where £ are normal strains and V are shearing strains.

Applying Hooke's law and converting strains to stresses.

<S x = <3"y = 6" z =* ' xy =

r yz -0 Y-yz-G(x0 + **)



r
z
- „ y„ - G( .ye + o ||) ( 5 )

Where <r are the normal stresses and "T are the shearing stresses.

Differentiating and subtracting Eq. 5 to eliminate the warping function,

1*JSL _-^L=_2G 6) (6)
3 y o x

In the absence of body forces, the only equation of equilibrium not

identically satisfied is

IlLil + 21y±= (7)
2) x 2> y

Equation 7 is satisfied if the stress components < xz and ( yz are derived

from a stress function^ (x, y).

rxz= "57

yz
z> x

Substituting Eq. 8 in Eq. 6,

|f£ + £%-j»e (9)
3x2 ^y^

Ytfhich is the required partial differential equation for the stress function.

The boundary condition for this equation can be obtained if the parametric

equation on contour C are considered as

x = x (s)

y-y(s) (10)

Referring to Fig. 2, it is depicted that as x is decreasing, s goes on

increasing o This figure represents a triangular element at the boundary of

the cross section

Since there are no normal stresses over the curved surface of the bar,

dA T xzSin6 + dA TyzCos<9 =

or



+v

»- A

Fig. 1. Twisting of solid prismatic bar having an

arbitrary contour.

Y

->- X

Fig. 2. Boundary condition.
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rys , dy/ds
(11)

7" xz dx/ds

Substituting Eq. 8 in Eq. 11,

. ^/Zx _ dy/ds
"

2>y/e)y
=

dx7ds"

or

Ts ~°

or ^ — constant (12)

Since only the first deriviative of I// is useful, it is supposed that

^ = on the contour of the cross section.

••• p - on C U3)

The method of adopting a stress function is least familiar to engineers,

and consists in satisfying a differential equation, which follows from the

equation of compatability and the equation of equilibrium. In addition, Eooke's

law must be valid throughout.

(a) Circular Cross Sections:

The mathematical treatment for the elastic stresses and deformations

induced by torsion is very complicated except in the case of a circular member.

The exact solution of the torsional problem for a circular member is

obtained, if it is based on the following two assumptions.''

(i) Cross sections of the member remain plane during twisting,

(ii) Rotation takes place without any distortion, i.e. no warping action

occurs.

The second assumption is valid provided the angle of twist is small.

Consider a shaft fixed at one end and subjected to a couple acting at the

other end.

The element is in a state of pure shear. An element abed, which was



initially rectangular became distorted as shown in Fig. 3.

From Fig. 3 and Fig. 1;, the displacement on the transverse side and the

longitudinal side should be the same,

.'. L Y - P Q •

or V=P^1=P<9 (lid

whoro L is the length of the member, Q ' is the total angle of twist and Q is

the angle of twist per unit length.

For the same angle of twist,

Y ' - p» -j~ - p» 6

X-lr 05)

Therefore the shearing strain at any point in the cross section is directly

proportional to the distance P from the centroid

Applying Hooke's law to Eq. ll;,

T = G Y = Gp<9 (16)

The above equation shows that maximum shearing stress occurs at points

most remote from the centroid. (Refer to Fig. 5)

To determine the relationship between the shearing stresses and the

torque, the distributed shearing stresses are equated to the applied torque .9

Consider an elemental area, as shown in Fig. 5» The force acting on it

will be

Force = Stress x area

= T' x P'dSdP'

Moment = T'P' 2 d©dP'

Integrating the internal moments and equating them to the externally

applied torque.
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a

d

b

c

Before Twisting

LY

After Twisting

Fig. 3. Distortion on longitudinal side.

Side A.

X

Fig. 4. Distortion on transverse side.
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r max

max

Fig. 5. Stress distribution in circular cross-sections,
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2*
f

P

7*' (P 1
)
2 dOdP'

0/0
Substituting tho value of T 1 from Eq. 15 in Eq. 17,

(V

T - 2*r
(P')3 dP»

J

p
(P»)2 (2*p» dp')

P

P
(P«

)

2 dA

(17)

T
(18)

where J is the polar moment of inertia of the cross section

7- BP
J

Equating shear stress to shear strain,

V -&-P*

S=£

(19)

(20)

Equation 19 is valid only up to the elastic limit. The shearing stress

obtained by testing the specimen to rupture and using Eq. 19 is called the

shear modulus of rupture.

rr =
T max. P (21)
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(b) Rectangular Cross Sections :

In the solution to torsional problems for rectangular cross sections,

the membrane analogy has been usefully applied. This was introduced by Prandtl

in 1903, and is often reforred to as the "Prandtl Anology".10 * 11

The stress funotion can be determined experimentally by moans of the

analogy, whioh states that when a homogeneous membrane is supported at the

edges of a hole, which has the same outline as that of the cross section of the

twisted bar, then the equations representing the shape of the membrane, after

being loaded with pressure, are of the same form as those representing the

torsional rigidity and stress of a prismatic member having the same cross

section as the hole in the plate. The small vortical displacement of the

membrane satisfies the differential equation,

£i + 2£--2. (22)W ©y2 IT

where,

^ = Intensity of pressure per unit area of membrane.

S - Uniform surface tension per unit length of boundary.

This equation is identical with that of Eq. 9 and it shows that the

deflection Z of the membrane will be proportional to the stress function
ty ,

because U) and Z are both zero on the contour C. (Refer to Fig. 6 and Fig. 7).

The following informations can be drawn from such a membrane :

7

$ 12

(i) The volume between the membrane and the Z = plane is proportional

to the torque required to cause a twist of Q per unit length of

bar.

(ii) The inclination of the film surface to the Z = plane at any

point is simply related to /grad y//, the total shear stress at any

point

.



lU

*- x

—*\&k\*—

Fig. 6. Membrane in plan.

Fig. 7. Membrane in elevation.
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(iii) Tho looation of a series of contour linos show the concentration

of stresses at a point; i.e., maximum shear stress occurs at the

point whore the contour lines are closest to each other.

The solution to torsional problems using the membrane analogy consists in

finding a deflection Z, such that it satisfies Eq. 22 and is zero at the

boundary.

The condition of symmetry with respect to the y-axis and the boundary

condition at the sides x = t a of the rectangle are satisfied by taking Z in

the form of a series,

Z - £ bn (cos 2g£) Yn (23)

n = 1, 3, 5,

where,

b]_, b-z, are constant coefficients

yi» y-5» — are f^0-^ 0113 °f y °niy»

The ultimate solution for maximum shear stress and torque is

r max = 2G0A-^ Z ^ ( \ \ (8b)
A2 n^ V n2 Cos h n*b )

^ 2a /

n - 1, 3, 5, —

T=iGG(2a)3(2b) |l-^|ill
5

tanh ^1 (25)

n = 1, 3, 5,

Referring to Fig. 8 it is evident that maximum shear stress occurs at the

center of the side nearest to the centroid of the cross section. The variation

of stresses on tho sides will be parabolic as shown in Fig. 8.

The variation of shear stress along the diagonal has also been determined.
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Variation: of Stresses

Fig. 8. Stress distribution in rectangular cross-sections.
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It is zero at the controid and at the corners but is maximum at a point nearer

to the centroid.

(c) Square Cross Sections

A square cross section is a special case of the rectangular cross

section and the formulas for maximum shearing stress and torque can he deter-

mined directly from Eq. 21; and Eq. 25 by substituting a = b.

r max - lo351 G a ©. (26)

T - O.U1O6 G8(2a)^ (27)

Reforring to Fig. 9, the maximum shearing stress occurs at the centers of

the sides, but the shearing stress along the diagonal is zero.

(d) Summary

The formulas derived in the preceding sections for pure torsion of

solid prismatic members in the elastic range are summarized in Table 1.

2.3 PLASTIC SOLUTIONS TO TORSIONAL PROBLEMS FOR SOLID PRISMATIC MEMBERS

The stress distribution in a prismatic bar subjected to pure torsion can

be analyzed in the plastic stage, provided the specimen has a definite plastic

limit. This is possible if strain hardening is neglected and an idealized

stress - strain diagram is assumed in the form of two straight lines, as shown

in Fig. 10. 6

If the actual stress - strain curve for mild steel is compared with the

curve for an elastic, perfectly plastic material (Fig. 10), it is seen that up

to point C, where strain hardening starts, mild steel is nearly an elastic,

perfectly plastic material. Since most torsional problems deal with mild steel,

it would therefore be quite safe to assume an elastic, perfectly plastic

mate rial

.
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Table 1. Elastic solutions to torsion problems for solid prismatic members,

Sections Equations Reference Kos.

2 - Rectangular

2a

2b

Tm —
G.G.J.

Tmax "

L

G.e.p.

Tm = jG.e.(2a)3(2b) x

,, 192 a 5- 1 _ ,n?vb,
(1 Vr ,2- -cTanh-^—

)

v
?c5 b n? 2a '

n=l,5,5~

~ Ma l6G0a
t'max «= 2G9a g— x

11, 12, 13, 1U

5, 8, 10, 11;,

15, 16

2
n2Coshn *b

Brt.,3,5— 2a

3 - Square

2a

Tm - O.IJ4O6 G.6(2a)^

Trnax - 1.351 G.e.a.

10

2a
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Fig. 9. Stress distribution in Square cross-sections,

.-~°"
..^-"o D

+ o'

Shearing Strain

Expt. Points

Real Curve
Perfectly
plastic Curve

Fig. 10. Idealized Stress-strain diagram for mild steel,
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Along curve AB in Fig. 10, the specimen behaves as a perfectly elastic

material. As the torque is increased beyond the critical value and the corre-

sponding stress reaches point B, a single or several plastic regions spread

into the interior of the cross section, starting from the point or points where

the yiold stress was first reached. (Refer to Fig. 11) Although practically

it is impossible to obtain a perfectly plastic material as shown in Fig. 11,

theoretically it is assumed that the cross section is wholly plastic.

For a fully plastic member, the shear stress (Refer to Eq. 8) must be a

constant k'

.

Tx2 + Ty2 = k2
•

(28 )

The equilibrium condition

7>TZxz
+ 4^=0 (29)

~Z> X c> y

is still valid in the plastic case.

If {p (x, y) is the plastic stress function of the cross section, then

( XZ — -sr

' yz ~ ^T (30)

These are similar to Eq. 8 of the section on elastic stress.

Substituting Eq. 30 in Eq. 20,

2

&)*(&)-*^-, ,_ - (51)

Expressing the above constant in terms of the plastic stress function,

/grad^/ = k (32)

From the above mentioned properties of Us , it is evident that the plastic

stress function is a surface of constant maximum slope constructed over the

edge of the cross section.
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Partially Plastic Fully Plastic

Fig. 11. Development of plastic regions.
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Tho Soap film - Sand hill analogy was derived by Kadai and consists of

obtaining tho stress function experimentally.

If a horizontal base having the shape of tho cross section of the specimen

is cut out and covered with sand, then there results a heap, whose natural

slope is the same as the surface of stress function u, . From this heap of sand,

a transparent roof under constant slope may be constructed ovor the edges of

tho cross section under consideration (Refer to Fig. 12). The plane base of

tho roof is covored with a membrane, which is then subjected to pressure. For

small pressures, the membrane will not touch tho roof and it indicates that the

cross section is perfectly elastic. As the pressure is increased, a stage is

reached when a portion of the membrane touches the roof. The constrained

portion of the membrane will satisfy all the conditions of the plastic stress

function while the free membrane will satisfy the conditions for the elastic

stress function. When the pressure is increased to such an extent that the

whole membrane is in contact with the roof (a condition difficult to obtain,

refer to Fig. 11), then the cross section is completely plastic.

The shearing stress is equal to the slope of the stress surface and the

values of the twisting moment approach a value given by twice the space

occupied by the plastic stress surface.

(a) Circular Cross Sections

The stress function for a solid circular member of radius P is,
*

V -k(p - R) (33)

and the maximum plastic torque To for a solid prismatic section is given by,

- 1To = J I// d A
A

where A = area.
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Surface of Constant Slope

Free Membrane (Elastic)

Constrained Membrane
(Plastic)

Fig. 12. Soap film-Sand heap analogy,

S lope=k

Fig. 13. Sand heap for circular cross-sections,
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For a circular cross section,

A - *R2

dA
dR

= 2 A" R

To = 2

r P

K (p - R) 2 A R dR

R2 R3

{4-4

where

= 2 A K p3

3

cr

<3U

K = -7j- (for Tresca» s Theory)

« — (for Von Mises Theory)

The same problem can be solved by the sand-heap analogy." The roof of

constant slope will be represented by a cone. (Refer to Fig. 1J>)

Slope of heap = K

then h = Kp

V = i A p
2 h

= t K P3 k

To = 2V - Ejl k p3

(b) Rectangular Cross Section

The rectangular cross section can be solved very easily by the

sand-heap analogy.^ The resulting heap for such a cross section would be as
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shown in Fig lii (a) and Fig. li; (b).

Constant slopo = Ka

Voi. l = 2xi.x2axaxKa
3

- 4 Ka3

Voi. s
= I x 2(b - a) x 2a x Ka

= 2 Ka2 (b - a)

V -4Ka3 + 2Ka2 (b - a)
3

To = 2V =f Ka3 +4Ka2 (b - a) (35)
3

(c) Square Cross Section

For a square cross section with sides of 2a, the stress function is, 3

V - K(a - x)

Now A = J4 x 2

To = 2 I ^ dA

Ja
a

= 2 K(a - x) 8x dx

f
a3 a3 1

= l6K |-- T]

= §-Ka3 (36)
3

The same results will be obtained if the sand-heap analogy is applied.



26

Referring to Fig. 15 (a) and Fig. 15 (b)

Let slope of heap = K

The height h = Ka

V=^-x2ax2axka

fcKa3

To = 2V = -5- Ka3

(d) Summary

The formulas for plastic torsion of solid prismatic members which are

derived in the preceding sections are summarized in Table 2.

3 EXPERIMENTAL PROGRAM

hL GENERAL

The forecoming discussion will be based on the methods and procedures

adopted to determine the required torsional properties of the specimens. Since

the torsional properties of a particular material are dependent upon its yield

strength, it was necessary to conduct tensile tests first before starting the

torsion investigation.

5.2 DESIGN OF TENSILE TEST EXPERIMENTS

(a) Test Specimens

The tensile test specimens were prepared from the mild steel torsion

bars conforming to the requirements of AISI C - 1020.

Tensile tests were conducted on eleven different specimens. These speci-

mens were fabricated from the same material used for the torsion test specimens,

one tensile test specimen often serving for more than one torsion test bar.



27

Fig. 14. Sand heap for rectangular cross-sections,

Fig. 15. Sand heap for square cross -sect ions

.
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Table 2. Plastic solutions to torsion problems for solid prismatic members,

Sections

1 - Circular

2 - Rectangular

Equations

T„ - 2 A &o

8 *° u

Reference Kos,

6, 7, 17

6, 7

2a

2b

4^£ a2(b - a)

3 - Square
8 <5~o *

T~ = — a-^
° 3 <<

17

2a

2a
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(Refer to Fig. 17) The eleven tensile spocimons included four rectangular

specimens, two circular specimens with non-threaded ends and four circular

specimens with threaded ends.

The dimensions of all the tensile test specimens are shown on Figs . 19

and 20.

(b) Apparatus Used

The apparatus used for the tensile tests was a 20,000 lb capacity

Richie Universal Screw-Type machine, which had five different load ranges, e.g

1,000 lb, 2,000 lb, 5,000 lb, 10,000 lb and 20,000 lb. Elongations were

obtained with a 2" extensometer for the first (elastic) portion of each test;

while machinist's dividers were used after the elongations exceeded the maximum

stroke of the extensometer.

(c) Experimental Procedure

The tensile test specimens were punched for a 2" gage length and then

gripped in the machine fixtures. After the load indicating dial had been

zeroed and the initial gage length recorded by means of the dividers, the

extensometer was attached to the specimen. The load was then applied at a

cross head speed of approximately 0.01 in/min. and a continuous curve of Load

vs Elongation was obtained on a recorder. The strain rate for 1 inch of graph

on the recorder was O.OOl; in/2in

.

The load-elongation curve (see Fig. 2l) was plotted by the recorder until

the extensometer was reached, at which point the loading was held constant, the

extensometer removed and the elongation checked with the dividers. The loading

was then resumed and the elongation recorded by means of the dividers at

certain convenient intervals of time. This process was continued until the

specimen fractured

„
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In two oases, namely, spocimons I^c and R?c, Poicson's ratio was also

dotorminod. This was accomplished by using strain gagos oriontod perpendicular

to tho longitudonal axis of the specimen. The transverse strain was recorded

by means of a strain indicator. Tho readings for the transverse strain vrere

taken at 1,000 lb load increments. After tho proportional limit, these readings

were discontinued,

3.3 DESIGN OF TORSION TEST EXPERIMENTS

(a) Test Specimens

The specification for the torsion test specimen material was the same

as that of the tensile test specimens described earlier.

The basic problem for the torsion test specimens was to obtain them from

the practical sizes available from the dealers or manufacturers. For circular

and square cross sections, this presented no problem; however, rectangular

cross sections were available only in sizes of 1" x jjj", 3/V'x g", 3/1;" x -£-
M

and §•" x £-" . Certain cross sections were therefore machined from the above

mentioned sizes. (Refer to Fig. 20) Several different cross section sizes

were chosen for each shape, as summarized in Table 3»

The maximum clear distance between the ends of the two grips in the testing

machine was 28". Kov/evor, for all tests in this investigation the effective

length of specimen was 2it". The grip length at each end of the specimen was

ouLw

The rectangular and square test specimens were welded to circular grips.

The thicknesses of the fillet-welds between these grips and the specimens are

shown in Table 3.
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V
2V

30.0"

Grip
Specimen

7"Fillet rtelcl

24.0"

a

4—

r

'?. 'I '

Circular

Rectangular

Square

S.No. Specirr

1. R
z

2. R
3

3. \
4. K
5. *i

6. K
7.

8. HM

9. <
10. h
n. 1

• h
U. I $a

Bead of Fillet '.Veld

1/4"

1/4"

3/16"

3/16"

3/16"

1/8"

3/16"

3/16"

1/8"

3/8"

1/4"

1/4"

Table J>, Dimension of welds.
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(b) Apparatus Usod

Tho testing apparatus consisted of a Tinius Ohlson gear type torsion

testing machine^ the capacity of which is 10,000 in. lbs. (Refer to Fig. 22)

This machine consists of a torque wheel, which is rigidly fastened to the main

shaft. There are housings in the machine which prevent the development of

bending moment. Triangular chucks in the machine hold the specimens firmly at

the ends. These chucks accomodate circular cross sections with a maximum

diameter of 1.5 inch. The readings of the applied torque and angle of twist

can be measured directly on the machine. The machine could be operated manually

as well as electrically.

Preliminary experiments were carried out to check the operation of the

machine. The results of these tests indicated the possibility of erroneous

readings from the twist gage on the machine . It was also determined in these

tests that the twist gage on the machine did not take into account the slip in

the grips. For these reasons, another twist measuring device was designed and

constructed. This device consisted of two circular steel rings each having an

internal diameter of 1 3/U" and a length of U". One steel ring was attached to

a pointer and the other attached to a circular plate, 22 in. in diameter and

5" thick, by means of screws. At the periphery of the plate, angles were

marked in degrees. The steel rings were each provided with four Alan screws

to fix them firmly to the specimen. The twist measuring device is shown in

Fig. 23.

Strains were measured experimentally for specimens S2, R2» R2* *&& R2" •

Electrical resistance Strain Rosettes were used for this purpose and the strain

readings obtained with a strain indicator. (Refer to Fig. 23)
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Fig. 22 Tinius Ohlsen torsion testing machine.

Fig. 23 Strain gage connections for torsion test specimens,
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(c) Experimental Procedure

After the speoimons had beon fabricated, the exact dimensions of each

cross section were measured at intervals of 3" by means of a micrometer. These

dimensions are shown in Fig. 16, 17 and 18. The average dimensions vrore then

calculated and are tabulated in Table U.

The grips of the specimen were cleaned with wire brushes and one end was

fixed in the chucks of the machine . The twist measuring device was then

adjusted on the specimen so as to measure the angle of twist over a gage length

of 10n . The torque dial and twist dial were both zeroed before the test was

started.

In the early stages of the torque-twist curve (i.e. in the elastic range),

the torque increases very rapidly for a small change in the angle of twist. It

was therefore necessary to apply the torque manually during the first complete

rotation of the specimen. In the elastic range, the torque was applied to a

value of one third the anticipated yield torque, and then subsequently released.

This cycle was repeated three or four times so that slippage in the grips could

be eliminated. The exact initial torque and angle of twist were taken after

these cycles had been completed. The torque was increased very slowly and

readings were recorded every half degree of twist. This process was continued

manually for one complete rotation, after v/hich the torque was applied with the

electric motor. Readings were then taken after each 100° of revolution measured

by the machine twist gage.

When the specimen failed, the location of failure was carefully observed

and checked to see that failure did not occur in the welds or the heat affected

zones of the welds.

As previously mentioned, strain rosettes were used on some of the specimens,

to measure strains. The three gages of a strain rosette were connected to three
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Table iu Dimensions of specimens to be tested.

Propose<i Cross- Keasuied Cross-
Sections Designation Sectional Dimensions Sectional Dimensions

1-Circular Cl 2p = 1.250 2p - I.256
c2 2p = 1.000 2o = 0.991
c3 2p = 0.750 2p = 0.750
ch 2p = 0.500 2? = 0.L97

2-Rectangular R2 2b - 1.000 2b - 1.003
2a = 0.666 2a = 0.6=9

R
3

2b = 0.750 2b = 0.762
2a = 0.500 2a = 0.501

% 2b - 0.500 2b = 0.199
2a = 0.333 2a -O.jlil

R2
» 2b - ,1.000 2b = 1.009

2a » 0.500 2a - 0.501
R3' 2b - 0.750 2b = 0.756

2a = 0.375 2a = 0.375

v 2b = 0.500 2b = 0.516
"T

2a = 0.250 2a - 0.250
R2
" 2b - 1.000 2b - 1.000

2a - 0.333 2a - 0.336
R3** 2b = 0.750 2b - .760

2a » 0.250 2a = 0.252
R
U
" 2b - 0.500 2b - 0.500

2a - 0.166 2a = 0.160

3-Square s2 2a - 1 .000 2a = 1.002
s
3

2a - 7.50 2a = 0.765

si 2a = 0.500 2a = o 50i+
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channels of a switoh box and readings wore taken with a strain indicator at

convenient intervals of torque.

In order to obtain accurate strain gage readings, a specimen was first

loaded to three fourths the value of the anticipated yield torque and then

unloaded. It was again loaded, unloaded and again loaded. During this process

of loading and unloading, strain readings were taken and checked with each

other. After the yield torque had been reached strain readings were not taken

because Hooke's Law does not apply in the inelastic range, and therefore Bohr's

circle for stress and strain is not valid.

It should be mentioned that the testing machine could not be operated

beyond 8,600 lb in. although the nominal capacity is 10,000 lb in. Therefore,

four specimens (C^, C2, S2 and Rg) could not be tested to failure.

U PRESENTATION AND INTERPRETATION OF DATA

J4.I MATERIAL PROPERTIES FROM TENSION TESTS

The material properties were determined from tensile tests, as explained

in chapter 3. The required material properties included the yield stress, the

ultimate tensile stress, the modulus of elasticity, Poisson' s Ratio and the

percent elongation. A typical load-elongation curve is shown in Fig. 21. This

curve was recorded directly from the extonsometer during the test on specimen

R2C.

A stress-strain curve was obtained from the load-elongation curve of the

recorder and from the subsequent elongation readings taken by the machinist 1 s

divider. In Fig. 2I4., the stress-strain curve up to point A was drawn from the

recorder plot and from A to Ri, the curve was obtained from the divider

elongation readings

.

Some of the divider points, i.e. E, D, E, etc., have not been shown on the
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stress-strain ourvo in Fig. 2l\ beoauso of the small scale adopted for strain

in this figure

.

The initial stress -strain curve is linear. On further straining, the

relation between stress and strain is no longer linear and the material

//

undergoes plastic deformation. The plastio deformation continues uptil point A,

after which the stress starts increasing with further strain. This effect of

the material being able to withstand a greater load despite the reduction in

cross sectional area is known as strain hardening. At point G, the rate of

strain hardening is unable to keep paoe with the rate of reduction in the cross

sectional area and a maximum value of the stress is attained, followed by

necking of the bar and leading to fracture at R^.

The yield stress and the ultimate tensile stress of specimen R2C were

found to be 39,200 psi and 63,800 psi, respectively. (Refer also to Table 5)

The modulus of elasticity was obtained from the slope of the elastic

portion of the stress strain curve and found to be 3I0O x 10 psi for this

specimen.

The percent elongation is calculated by subtracting the initial strain

reading from the final strain reading and dividing the result by the original

gage length of the specimen.

Final strain reading - 2 103/128"

Initial strain reading = 2"

Difference .
= 103/128"

Percent elongation - 103/128 x ^ x 100

- U0.2^

Poisson's Ratio is obtained by dividing the transverse strain obtained

from the strain gage readings by the longitudinal strain.
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Table 5.

h5

Specimen
No.

Yield
Strength

(psi)

Ultimate
Strength

(psi)

Modulus of

Elasticity
(psi)

Percentage
Elongation

{%)

Poisson's
Ratio

C]C 36,900 61,600 52.0 x 106 142.0 *

C2C 38,1+00 62,500 55.3 x 106 I4D.6 *

CjC 58,600 65,700 5O.5 x 106 36-3 *

c
u
c U3,ooo 65,500 29.0 x 106 36.0 *

R2'C ]

R2"Cj
39.200 65,800 51.0 x 10 6 lj2.0 0.281

R C 1

R3' c
R
u
c

J

50,800 69,l60 50.8 x 106 37.5 0.501

R3"C iiO,Uoo 60,080 29.0 x 106 25 .U *

RU'C 1

RU"CJ
U5,900 6U.950

,

29.0 x 106 32.0 *

s2c 1
R2C J

58,800 65,000 53.1 * 106 la .8 *

s
$
c U5.220 67,Uoo 29.3 x 106 1+0.6 *

S^C 1*3,750 63,000 29.8 x 106 37.5 *

Properties not determined.



U6

Final transverse strain = II7J4 x 10"°

Initial transverse strain « Qlj> x 10"°

Difference = 332 x 10"^

Total longitudonal strain = ° '^ x .59

Poisson* s Ratio 3
7,2 x 10"G

o3>oII TV—g~ X 0.59

= .282

Similar calculations were made for all tho specimens and the resulting

values have been summarized in Table 5.

U.2 TORQUE-TWIST CURVES

Tho torquo-twist curves for all the specimens are shown in Figs. 25

through 32.

It would not be worthwhile to discuss the torsional behaviour of all the

specimens separately; instead, the torque -twist curve for a samole specimen

(Rg 1

) will be discussed in detail and the determination of the torsional

properties described.

The data for specimen Rg* is presented in Table 6. A complete torque-

twist curve for this specimen is shown in Fig. 35* (The torque-twist curves in

Figs. 25 to 32 have not been shown up to the point of failure; instead, they

indicate only the elastic and plastic torque.) Referring back to the torque-

twist curve of specimen Rg'C in Fig. 35 > "the initial part of the curve is

perfectly elastic. This is shown in the form of a straight line OB. At B, the

stress at the center of the longest side of specimen R^' reached the yield

point. The yielded zone expanded with increasing torque until, theoretically,

the whole cross section became plastic. It is not possible to determine the

part of the curve for which the specimen remained elastic-plastic. The reason
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Table 6.

Speoimon No sl^'

Croassoctional Dimensions . . ,:1" X -j"

Total Eff . Longth :23 f."

Eff. Length For Twist Gage. . ,:10
n

Yield Strength : 39.200 psi

Total Ang. Angle from,

of Twist Twist gage Torque C C C-

(Dor,.) (Dog.) (lb.in.) C
l *~2 _

p3 _2^. 2660 3106 200
k h

3JL -2i 250 2600 2975 330

5 _2 500 2660 2331 U66

6 -1| 750 2671 2637 608

yi -1 1000 266U 25i42 Jh9

9 - I 1250 2656 2U00 890

1500 2650 2252 1032

Unloading

9i - -|- 1250 2650 2395 895

8 -1 1000 2652 25I4I 750

y -i| 750 2652 2660 6lU

6 -2 500 265U 2827 U73

5 -2^ 250 265U 2973 331

33 _2?. 265U 3110 200

Loading

5 -2i 250 2652 2971 332

6 -2 500 2652 2330 U75

75O 2651 2680 618



Total Ang.
of Twist
(Deg.)

Angle fron
Twist gage

(Dag.)

Torque
(lb.in.) «! ^2 6,

5

8 -1 1000 2651 2535 756

1250 2650 2391 900

10! 1500

Unloading •

2650 2250 1036

1250 2650 2392 e96

8 -1 1000 26$1 25U0 753

750 265I 2682 613

- 500 2653 2826 U75

250 2653 2972 331

2653 3110 200

Loading

+u -o3 2653 3110 200

5 -2i 250 2653 2970 335

6 -2 500 2653 2625 U76

7 J* 750 2650 2675 620

8 -1 1000 26^0 2535 755

9i
l

" 2 1250 2650 2390 900

«* 1500 A 26U8 2250 1038

12
1
2 1720 20;5 2127 1156

1* 1 1930 2£25 I850 1370

15 1* 20U5 B 2621 1553 1697

16 2 2100 2618 1260 1928

17 2±- 2150 26lU 1010 2161
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Table 6. (Contd.)

Total Ang.
of Twist
(Deg.)

Angle
Twist

(De-

from
r,age

• )

Torque
( lb in.) *, £ 2 V

18 3 2l60 2613 732 2UD0

4 U 2210 2613 205 2910

Sil-
. 5 22I4O 2607 31+20

as 9 2280

29^ 10 2280 C .

36f 15 2300

hh 20 2300

53§ 25 2330

65l 30 2370 D

95 140 2J46O E
*

121-| 50 2580 F

114* 60 2690

168 70 2800

190 80 29OO G

213 90 3000 H

285 120 3230 I

350 150 31420 J

58 180 36OO K

122 210
•

3750 L

190' 21+0 3900 M

255 270 U030 N

322 300 la 60

30 330 1)280 P



Total Any;. Angle from
Of Twist Twist gage Torque r £ £_
(Dog.) ( Dog .

)

(lb.in.) i 2 £

97 U390 Q

180 36 U520 R

115 U790 s

180 197 5050 T

275 5280 U

180 355 5550 V

7U 5790 W

180 150 6000 X

229 6180

90 21^ 6eUo

(Fracture)

Fracture occurred at the left hand grip.
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for this is that strain hardening startod in somo portions of the plastic zone

and the slope of the curve increased. Point C on the curve indicates that most

of the cross section of specimen Rp 1 has become plastic. The effect of strain

hardoning increased (i.e. slope of ourvo increases) as more torque was applied

until fracture occurred at D. (The fractured torsion specimens are shown in

Fig. 38 to U2.)

The shear modulus of elasticity (G) can "be determined from the slope of

the elastic portion of torque-twist curve, and this value for R?
* was found to

be 10.95 x 10 psi. The valuos of the shear modulus for the other specimens

are given in Tablo 7.

A comparison of the torque-twist curves is shown in Figs. 33 "t° 37* I"t i- s

evident from these curves that the circular bars can sustain a larger total

angle of twist than the non-circular ones. This behaviour of the circular bars

is justified on the basis of complete symmetry about the longitudenal axis.

According to the assumption that plane cross sections remain plane during

twisting, the shearing strains are uniform on any circular ring and are not

accompanied by any displacement normal to the cross section.

However, for the non-circular specimens, the shearing strains are not

uniform around the periphery. The only way varying strains of this type can be

accomodated is by warping of each cross section out of its original plane. The

total displacement is then the rotational displacement added to the displacement

normal to the plane of .the cross section. The non-circular bars therefore fail

at a smaller total angle of twist than the circular ones for the same effective

length

.

The transition in the torque -twist curves from the elastic range to the

plastic range, in the case of the non-circular specimens, is gradual, whereas

in the case of the circular specimens, this transition is quite abrupt. This
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Fig. 38 Fractured circular specimens.

- . 39 Fractured rectangular sj cimens (b/a-1.5),
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Fig. 40 Fractured rectangular specimens (b/a=2.0)

Fig. 41 Fractured rectangular specimens (b/a-3.0),
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Fig. 42 Fractured square specimens,
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behaviour doponds primarily on the rato of change of tho elastic portion in the

cross section to tho plastic state, and since this rate is lavt in the case of

non-circular cross sections, the transition of torque-twist curve is quite

gradual. (Refer to Fig. 11).

U.3 TORQUE-STRESS CURVE

As montioned in the previous chapter, torque-stress relationships were

experimentally determined for specimens R2, R2' » Rp" and S2, and the torque-

stress curves are shown in Fig. i;3»

Discussing again specimen R2* , the strain readings are obtained from Table

6. The strains were measured in three directions inclined 120° to each other.

To determine the principal strain, Mohr's circle for strain was constructed as

shown in Fig. I^..

£
1
= 26I48 - 2653 = -5 x 10"6

6 ? = 2250 - 3110 =-860 x 10"6

10
-6£, = 1038 - 200 - +838 x

m = jUi + ^2 + £ 3)

-«. (-5 - 860 + 838)

- -9

0a =6 1 -m = -5+9=+l|X 10"6

Ob = £ 2 - m - -860 + 9 - -851 x 10~6

0c - € 3 - m - +333 + 9 = +8U7 x 10-6

R
fe

(from Fig. Ui) =980 x 10~6

Rs = Rfcl^T

A 31.0 x lO^= 980 x 10-6 2n_2HI

= 23,700 psi
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o
c"> -

co
CM -

O
CN.

;<,

Theoretical Curve
Experimental Curve

—]
| | | T 1 | I I

500 1000 1500 2000 2500 3000 3500 4000 4500

Torque (lbs- in)

Fig. 43. Shearing stress -torque curves.
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*ig. 44. Mohr's circle for strain.
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The x-adius of tho strain circlo was found to bo 920 x 10"
, which is the

required principal strain. Tho maximum shearing; stress is represented by the

radius of the Mohr's stress circle. This valuo can be determined from the

Mohr's strain circle by the formula

Rs " R r-x

—

s 1 + u

The experimental values of the maximum shearing stre3S wore determined for

convenient intervals of torque and are plotted in Fig. 1;3» The theoretical

torque-stress curve in the figure was drawn from the theoretical values

obtained for maximum shearing stress by using the torque-stress formula for a

-b _

in the next section.

rectangular cross section (— — 1.5) • This calculation is explained in detail
8.

U.ii CORRELATION OF THEORETICAL AND EXPERIMENTAL TORQUES

The formulas for computing theoretical torques have been discussed in

chapter 2. It v/as also pointed out that the torque -yield stress relationship

can be deduced very easily for the circular and square cross sections. The

formula for a rectangular cross section (Eq. 25) was presented in a generalized

form due to the unknown ratio of the sides of the rectangular cross sections.

The formulas for rectangular sections are now derived for each particular side

ratio

.

±-us
oC

i6oer max = 2GGa - lfe
g

a x Z^~ n - 1. 3, 5" n2cosh£^

= 2G0a [l--|2
( cosh^fc }

}

= 2G6a (l ~ —)

= 2GSa (1 - 0.152)



- 2G ax 0.8l£ - I.696 G a

}g (2a)3(2b) 1-^
n l, 3, 5 -

—£ tan h -a '

n5 ^a

2U
G aU 1 . if. tan h 2.36

8G a^ 1 - i|2. x 0.902

SG a14
(1 - O.I4I)

U.72 G a^

7^

i;.72

i73?5

2.78 a3

a3

^=2.0

max = 2G a 1 -
(2 ''Cosh 9Cosh3

+ - - )

— /IT - i-4r( )
2 ^11.6 9 x 63OO

= 2G a ( 1 - —,—
)2 x 11.6

= 2G a ( 1 - O.OcS)

- I.8&4.G a

Ie -^ G a^ 1 - 24 x -4- tan h n

= ^p-G a^ 1 - ^4 (0.996 + .001(11)
3 ?

= ^G a14
( 1 -0.31)

3

= 7.35C- a14

_7.35 a3

- 3o9U a3



Ik

i- 5.

^max - 2G© a f 1 -i L } < ~~ + OP
.

* . no + - - ) 7

= 2G© a / 1 - i (EH

- 2G6a (1 - O.Oli48)

= 2G6a x 0.986 = 1.9720 6a

Te -^0loQSa^b / 1 - £L (tan h J4.7I + - )]

6U- l6c-SaU (1 - H+ x 0.999)

= 1606a14 (1 - 0.21)

- l6GSai;
x 0.79

- 12.66 GSa^

1.972

The yield torques and the plastic torques calculated from these formulas

for all the specimens have been summarized in Table 7. These values have also

been indicated in the torque-twist diagrams. (Refer to Figs. 25 to 32) These

figures indicate that the calculated yield torque was below the experimental

value in all cases, while the calculated plastic torque was higher than the

experimental value in each test.

The under estimation of the yield torque is due to the fact that a slight

increase in the yielded zone at the periphery of the cross section does not

effect the rate of increase of torque, that is, the slope of the torque-twist
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c\irvo, and theroforo tho elastic-plastic torque still seomo to bo in the

elastic range.

Tho plastic torque is dofinod as the torque which causes the entire cross

section to become plastic. This stage comes after considerable deformation of

the specimen, especially along the diagonals of the square and rectangular

cross sections. During this deformation, strain-hardening starts for portions

which became plastic first. The calculated plastic torque is therefore located

on that portion of torque-twist curve where strain-hardening starts occuring.

In short, it may be said that the theoretical yield torque is lev/er than

the experimental value, whereas the theoretical plastic torque is higher than

that indicated on the experimental torque-twist curve.

lj.5 CORRELATION OF THEORETICAL .AND EXPERIMENTAL SHEAR STRESSES

It was known before starting this investigation that the experimentally

determined shearing stress would not be very precise. There ought to be a

difference between the theoretical shearing stress and the experimental shearing

stress (obtained from Kohr' s circle) because the size of the strain rosettes

was too large to measure the strain precisely at the center of the greater side

of the rectangular and square cross sections. The strain rosettes were applied

on the one inch sides of each of the four specimens. The shearing stress is a

maximum at the centers of these sides, but it is zero at points only one half

inch away from the center, that is, at the corners. The strain rosettes were

measuring strains at points slightly away from the center, resulting in a

smaller value of the maximum shearing stress.

The experimental shearing stresses were determined for each specimen as

explained in Sec. i;.3 and the values have been summarized in Table 8.

A graph of shearing stresses versus torque has been plotted in Fig. b,3 for

each "cross section. The dotted curve is plotted from the experimental shearing
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Torque Shearing Stress
(lb in) (psi)

500 2130
1000 U320
1500 6U50
2000 85h0
2500 10,690
3000

3500

12,780
IU.85O

0.501".

Torque Shearing Stress

(lb in) (psi)

250 3,880

500 7,900
750 • 12,000
1000 15,900

• 1250 19,990
1500 23,800
1720 27,200

1930 3U,200

20U5 142,500

i .coy

Torque
(lb in)

250
500

750
1000

1250
1500
1750

0.659'

Shearing Stress
(psi)

2,270
b.,6Uo

6,950
9,2'hP

11,500
13,300
15,920

1 .008"
I

R2
" 0.336"

Torque
(lb in)

100
200
300
bpo
500
580

675
770
860

Shearing Stress
(psi)

3,160
6,350

. 9,U00
12,630
15,800
18,1400

21,550
2lt,600

28,100

Table 8. Experimental Shearing Stress,
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stress values obtainod from Table 8, and the solid curve is obtained from the

thoorotical shearing stress values deduced from formulas, explained in Sec. It.l>.

The difference between the theoretical and the experimental shearing stress

for all the four cross sections is due to the inability of the strain rosettes

to measure strains exaotly at the centers of the sides, as previously explained,

5 CONCLUSIONS

The following conculsions are based on the foregoing theoretical and

experimental investigations for solid prismatic members subjected to elastic

and plastic torsion:

(1) The experimentally measured elastic torques were somewhat higher than

the theoretical maximum elastic torques, whereas the experimental plastic

torques were slightly lower than the theoretical plastic torques.

(2) For the same cross-sectional area, circular members can sustain a

higher total angle of twist than non-circular members for the same loading.

(3) Strain hardening in specimens subjected to torsional loading starts

before the entire cross section becomes plastic.

(il) In the case of non-circular members, those having a higher width-

depth ratio exhibit a greater torsional strength for the same area of cross

section.

(5) In the elastic range, the maximum shearing strength varies linearly

with the applied torque..

(6) For the same torque, the experimental shearing stress in a specimen

was found to be lower than the theoretical shearing stress. This was due to

the fact that with the use of large size rosettes it was not possible to measure

the shearing stress precisely at the center of the side.
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6 RECOMMENDATIONS FOR FURTHER RESEARCH

It would bo intero sting to analyso tho olastic-plastic boundary changes

with increasing torque for a given cross soction. The best known analytical sol-

ution is for an oval cross section, which was originally presented by Sokolovsky.

An experimental method for obtaining a solution of the elastic-plastic torsion

problem has been developed by Nadai (discussed in Chapter 2).

Another possible investigation would be to determine the torque for a

finite angle of twist, taking strain hardening into consideration.
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The purpose of this study was to study experimentally the behaviour of

solid prismatic bars under elastic and plastic torsion, and to compare the

experimental results with existing analytical solutions. Tho study was limited

in scope to solid prismatic steel members subjected to pure torsion.

Tho data were collected for four circular, nine rectangular and three

square cross sections. The nine rectangular specimens were divided into three

groups, each having a different width-depth ratio.

In order to calculate theoretical values for the test specimens, coupon

tests were conducted to dotormino the yield strength, modulus of elasticity and

Poisson's ratio. Tho theoretical torques and shear strosses wore based on

these properties.

From the torsion tests, torque-twist curves were drawn for each specimen.

The results indicated that the theoretical yield torques were somewhat lower

than the experimental yield torques. Unlike a stress-strain curve, the

transition from elastic to plastic behaviour was very gradual. For the same

area of cross section, the torsional strength of the rectangular specimens

increased with an increase in the width-depth ratio.

Maximum shearing stresses were experimentally determined for three

rectangular and one square cross section. The strains were measurod from strain

rosettes and then maximum shearing stresses determined by constructing Mohr's

circle. The experimental shearing strosses thus determined was found to be

lower than the theoretical shearing stresses.


