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Abstract. WS2 and WS2/Zr self-lubricating soft coatings were produced by medium-frequency 

magnetron sputtering, multi-arc ion plating and ion beam assisted deposition technique on the 

cemented carbide YT15 (WC+15%TiC+6%Co) substrates. Microstructural and fundamental 

properties of these coatings were examined. Sliding wear tests against 40Cr hardened steel using a 

ball-on-disk tribometer method were carried out with these coated materials. The friction coefficient 

and wear rates were measured with various applied loads and sliding speeds. The wear surface 

features of the coatings were examined using SEM. The results showed that the WS-1 specimen (with 

WS2/Zr composite coating) has higher hardness and coating/substrate critical load compared with 

that of the WS-2 specimen (only with WS2 coating). The friction coefficient of WS-1 specimen 

increases with the increase in applied load, and is quite insensitive to the sliding speed. The wear rate 

of the WS-1 specimen is almost constant under different applied loads and sliding speeds. The WS-1 

specimen shows the smallest friction coefficient and wear rate among all the specimens tested under 

the same conditions. The WS-1 specimen exhibits improved friction behavior to that of the WS-2 

specimen, and the antiwear lifetime of the WS2 coatings can be prolonged through adding Zr 

additives. The self-lubricating and wear mechanism of the WS2/Zr coating was also found from the 

sliding wear tests. 

1  Introduction 

Recent advances in coatings technologies now permit the deposition of films with properties 

unachievable a decade ago. New coating deposition techniques developed offer a wide variety of 



 

2 
 

possibilities to tailor surfaces with many different materials and structures. In particular, chemical 

vapour deposition and physical vapour deposition (PVD) techniques have made it possible to deposit 

thin coatings a few micrometre thick in a temperature range from very high temperatures (1000℃) 

down to room temperature. Nowadays, coating materials such as TiN, TiC, TiCN, TiAlN, ZrN, HfN, 

Al2O3, MoS2 and more recently WS2 and their combinations as multilayers have been used with great 

success [1-4]. The first generation PVD coatings featured TiN as the hard coating and were applied in 

interrupted cutting. The superior performance of PVD TiN coated tools prompted their use in 

machining applications, such as turning, boring, as well as in industries as a wear resistant or 

protective layer on dies [5, 6]. The continued success of PVD coated tools led to the commercial 

development of the second and third generation PVD coatings (TiCN and TiAlN) which offer even 

higher machining productivity [7-9]. 

Hard coatings such as TiN, TiC, TiAlN, ZrN, and Al2O3 and their combinations as multilayers 

have been widely used to increase the wear resistance and operational life of some friction pairs in 

applications where wear can often occur [1-5, 10]. But the hard coatings retain a high coefficient of 

friction which can generate a large amount of heat. The generated heat greatly increases the operating 

temperature. The high temperature causes the failure of some important components which render the 

coatings inappropriate for practical applications. 

There are some commonly used soft solid lubricants such as molybdenum disulfide (MoS2), 

graphite (C), and boron nitride (BN). MoS2 is a well-known lamellar solid lubricant with a hexagonal 

structure [11]. MoS2 soft coating and its composite soft coating have been widely used for their 

ultra-low friction. However, the weakness of MoS2 soft coatings is also very obvious. When the 

temperature gets to 400℃, MoS2 soft coating begins to be oxidized to form MoO3 which can decrease 

the lubricity of the MoS2 soft coating sharply [12]. And MoS2 soft coating is very sensitive to 

environmental humidity. When the environmental humidity changes from 10% to 90%, the friction 

coefficient of the MoS2 soft coating doubles. Therefore, it is necessary to study a new kind of soft 

coating. 
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Tungsten disulfide (WS2) is a novel excellent lamellar solid lubricant. It has physical (prevents 

adhesion), chemical (high oxidation resistance) and microstructural (lamellar structure with ultra-low 

shear strength) influence on a tribological contact of working surfaces. The mechanism behind their 

effective lubricating performance is attributed to easy shearing along the basal planes of the 

hexagonal crystalline structures named � texture [13, 14]. Recently, WS2 coatings have attracted 

increasing interests for various applications, because of their low friction coefficient [15]. It is 

thought that these new composite coatings which combine WS2 coating with other materials have 

ideal properties for a wide range of applications. It has been proved possible to deposit these 

composite coatings while retaining their very low friction characteristics, high coating/substrate 

critical load and high wear resistance in either vacuum or humid air [16, 17]. Deepthi et al. [18] 

reported that nanocomposite coatings of CrN-WS2 were prepared at different Cr contents 

(approximately 8-39 at%) using an unbalanced magnetron sputtering system. And they found that 

CrN-WS2 coatings not only exhibited improved adhesive properties and low friction coefficient, but 

also showed better wear resistance and high hardness. 

In the present study, WS2 coatings (WS2 and WS2/Zr) were deposited on the surface of YT15 

(WC+15%TiC+6%Co) cemented carbide by medium-frequency magnetron sputtering, multi-arc ion 

plating and ion beam assisted deposition technique. Microstructural and fundamental properties of 

these coatings were examined. Sliding wear tests of these coated specimens against 40Cr hardened 

steel were carried out using a ball-on-disk method in dry friction conditions, and the friction and wear 

behaviors were investigated. 

2  Materials and experimental procedures 

2.1  Preparation of PVD WS2 based coatings 

The substrate material employed for this study was YT15 (WC+15%TiC+6%Co) cemented carbide. 

The physical and mechanical properties of the YT15 cemented carbide are listed in Table 1. The 

surface of the substrate was mirror-polished and cleaned ultrasonically in ethanol and acetone for 15 

min, respectively, and then dried for about 20 min in a pre-vacuum dryer. A multiple use ion planting 

equipment was employed to deposit the WS2 coatings. To get the WS2 coatings, two WS2 targets 
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(medium-frequency magnetron sputtering) and one Zr target (multi-arc ion plating) were used. Prior 

to the deposition, the coating chamber was heated up to 200℃ and the vacuum in the chamber was 

pumped to 1.0×10-3 Pa. Then the substrate was cleaned by argon ion bombardment for 20 min with a 

bias voltage of -800 V. The WS2 coating with Zr is named WS-1. For the purpose of comparison, the 

WS2 coating without Zr is also deposited on the YT15 cemented carbide, and it is named WS-2. All 

the coating conditions are listed in Table 2. 

Table 1  Properties of the YT15 cemented carbide 

Composition 

(wt.%) 

Flexural strength 

(MPa) 

Hardness 

(GPa) 

Density 

(g/cm3) 

Young’s 

modulus (GPa) 

Thermal expansion 

coefficient (10-6/k) 

Poisson’s 

ratio 

WC+15%TiC

+6%Co 
1150 15.5 11.5 510 6.51 0.25 

Table 2  Physical vapour deposition coating conditions 

Substrate 
Deposition 

temperature (�) 

Ar pressure 

(Pa) 

Substrate bias 

voltage (V) 

WS2 current 

(A) 

Zr current 

(A) 

Deposition 

time (min) 

YT15 200 0.5 -100 1.2 80 150 

2.2  Measurement of microstructures and properties of WS2 coatings 

Surface morphologies of the WS2 coatings were investigated by scanning electron microscopy. The 

crystallization of � texture of the WS2 coating was studied by X-ray diffraction. The 

coating/substrate critical load of the WS2 coating was tested on the MFT-4000 device 

(Multi-functional Tester for Material Surface Properties) by moving the diamond stylus with a 

200-μm radius along the examined coating’s surface. The scratch parameters for testing the critical 

load are applied load 80 N, load increase rate 80 N/min, and scratch travel 4 mm. The coating 

hardness was tested on the MH-6 hardness tester at 0.2-N loads. Prior to the deposition, small 

adhesive tapes about several millimeters in length and width were marked on the edge of the 

cemented carbide YT15 disks. The thickness of the WS2 coating according to the marked adhesive 

tapes was measured by using the Wyko NT9300 Optical Profiler and the results were confirmed on 

the cross-sectional view with scanning electron microscope (SEM). 
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2.3  Friction and wear tests 

Sliding wear tests were conducted using the ball-on-disk method with a high-speed nano-micro 

tribometer (UMT-2, CETR) at room temperature. The disk specimen was made of PVD WS2 coated 

carbides and the dimension of the substrate disk was  564 mm. The ball ( 9.525 mm) was made 

of 40Cr hardened steel with a hardness of HRC 55-60. The ball surface was polished to produce a 

final surface roughness of Ra=0.05 μm. Both the ball and the disk were ultrasonically cleaned in 

ethanol and acetone progressively. The 40Cr hardened steel ball was fixed, while the WS2 coated 

carbides disk rotated at a speed of 40-120 m/min. A normal load of 5-25 N was applied in the tests. 

The friction coefficients were obtained directly from the above mentioned tribometer’s computer. 

The wear rate W  was defined as 

=
V

W
PL

                                                                                                                                               (1) 

where V  was the volume loss, P  was the applied load, and L  was the sliding distance. The W  was 

the unit of volume loss per unit force and per unit distance (mm3/Nm). The worn regions of the coated 

disk were examined by scanning electron microscopy (SEM) and Wyko NT9300 Optical Profiler. 

3  Results and discussion 

3.1  Microstructures and properties of WS2 coatings 

The hardness, thickness, and critical load between the coating and substrate of the WS2 coatings are 

presented in Table 3. It is revealed that the uncoated YT15 cemented carbide has a hardness of 15.5 

GPa (see Table 1). Deposition of the WS2 or WS2/Zr coating onto the specimens causes the decrease 

in surface layer hardness. The hardness of WS-1 (with WS2/Zr composite coating) is 6.2 GPa, which 

is just 40% of the substrate’s hardness; while the hardness of WS-2 (only with WS2 coating) shows 

much more decrease (only 3.5 GPa) compared with that of YT15 and WS-1. The coating thickness of 

WS-1 (with WS2/Zr composite coating) is 1.5 μm; while the coating thickness of WS-2 (only with 

WS2 coating) shows a little thinner (only 1.2 μm) compared with that of WS-1 (see Table 3). 

The critical load characterizing the adherence of the coating to the substrate is determined as the 

one corresponding to the acoustic emission increase signaling the beginning of spalling of the coating 
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in scratch test. It is found that the critical load of WS-2 (with WS2 coating) is 31.61 N; while the 

critical load of WS-1 (with WS2/Zr composite coating) shows an increase (43.25 N) compared with 

the one without Zr (see Table 3). Because the Ⅱ crystal structure of WS2 is hexagonal layered 

structure, the shear strength of the WS2 coating is ultralow. Therefore, the WS2 coating/substrate 

critical load is quite low. However, the coating/substrate critical load of the WS2 coating shows an 

increase of 37% through adding Zr. 

Table 3  Properties of the WS2 coatings 

Specimen Substrate Coating Hardness (GPa) Thickness (μm) Critical load (N) 

YT15 YT15 - 15.5 - - 

WS-1 YT15 WS2/Zr 6.2 1.5 43.25 

WS-2 YT15 WS2 3.5 1.2 31.61 

Figure 1 shows the surface and cross-sectional SEM micrographs of the WS2/Zr composite coating. 

The coating thickness is about 1.5 μm in Fig. 1b. The crystallization of WS2 coatings were studied by 

X-ray diffraction (XRD). As a good solid lubricant, the crystal structure of WS2 is hexagonal layered 

structure. And the � texture of WS2 crystal structure plays an important role in the lubricity of WS2 

coatings. The greater the strength of � texture of WS2 crystal structure is, the better the lubricity of 

WS2 soft coatings would be. Fig. 2 shows the XRD of WS2 coatings. There is a diffraction peak of 

WS2 at 2θ of 10°~12° which is WS2 (002) crystal face of � texture. And it is clear that the WS2/Zr 

composite coating has better crystallization than pure WS2 coating. We can infer that adding Zr can 

effectively promote the growth of � texture of the WS2 coating. The elemental composition of the 

WS2 coatings is given in Table 4. It can be obviously seen from Table 4 that both S/W ratios of the 

WS2 coatings are less than the S/W proportion of WS2 compounds. It may be because that the 

sputtering efficiency of S and W are different, and S may react with other residual gases in the 

deposition temperature of 200�. Meanwhile, the S/W ratio of WS-1 is 1.724 while that of WS-2 is 

1.411 which can prove that adding Zr can effectively promote the growth of WS2 crystals. 



 

7 
 

Fig. 1  Surface a and cross-section b morphologies of WS2/Zr composite coating 

 

Table 4  Elemental composition of the WS2 coatings 

Specimen Coating S (at.%) W (at.%) Zr (at.%) S/W 

WS-1 WS2/Zr 55.45 32.17 12.38 1.724 

WS-2 WS2 58.52 41.48 - 1.411 

 

Fig. 2  XRD of WS2 coatings 

3.2  Friction coefficient and wear rates of WS2 coatings against 40Cr hardened steel 

In sliding wear tests, the friction coefficient of WS-1, WS-2 and YT15 cemented carbide was a 

function of sliding time, and is shown in Fig. 3. As can be seen, the YT15 specimen without coating 

exhibited the highest friction coefficient; while the WS-1 specimen with WS2/Zr coating showed the 

smallest friction coefficient under the same testing conditions. It is obvious that the friction process of 

YT15 cemented carbide against 40Cr is not smooth, and the friction coefficient fluctuates 
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significantly especially in the last 150 s. The average friction coefficient of YT15 cemented carbide is 

about 0.43 in the last 150 s sliding test. The friction coefficient of WS-2 (with WS2 coating) also 

shows some fluctuations and the average value is about 0.06 in the first 100 s sliding operation, and 

then increases to 0.12 in the end. The friction coefficient of WS-1 (with WS2/Zr coating) fluctuates 

little and decreases gradually from 0.05 to 0.03 in the first 125 s sliding operation, and then increases 

gradually from 0.03 to 0.05 in the last 125 s sliding operation. 

Fig. 3  Variation of friction coefficient with sliding time of YT15, WS-2 and WS-1 specimens when sliding against 

40Cr hardened steel balls at a sliding speed of 120 m/min and a load of 5 N 

In the sliding wear tests, the average friction coefficient of WS2 coatings and YT15 cemented 

carbide against 40Cr hardened steel is a function of applied load and sliding speed, as shown in Figs. 

4 and 5 respectively. As can be seen, the WS-1 specimen shows the smallest friction coefficient 

among all the specimens tested under the same conditions. The friction coefficient increases with the 

increase of the load while decreases with the increase of sliding speed. The friction coefficient of 

WS-1 is quite insensitive to the sliding speed (Fig. 5). It does not vary much at sliding speeds ranging 

from 40 to 120 m/min. 
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Fig. 4  Friction coefficient of WS2 coatings and YT15 carbide under different applied loads in sliding wear tests 

(Sliding speed 120m/min, sliding test time 5 min) 

Fig. 5  Friction coefficient of WS2 coatings and YT15 carbide under different sliding speeds in sliding wear tests 

(Applied load 5 N, sliding test time 5 min) 

Micrographs of the worn surface of the 40Cr hardened steel balls after sliding with three 

specimens are shown in Fig. 6. Violent wear by plastic ratcheting can be observed on the worn 

regions of the balls for all specimens. The wear scar diameters of the balls sliding with the YT15, 

WS-1 and WS-2 specimens are 859.6 μm, 474.2 μm and 602.8 μm, respectively. Obviously, the wear 

scar diameters of the balls sliding with the WS2 coatings are much smaller than that of the ball sliding 

with the YT15 specimen. Meanwhile, the wear scar diameter of the ball sliding with the WS-1 

specimen is the smallest one among all the specimens tested under the same sliding conditions. 
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Fig. 6  Micrographs of the worn surface of the 40Cr hardened steel balls after sliding with a YT15 specimen, b 

WS-1 specimen, c WS-2 specimen (Applied load 5 N, sliding speed 120 m/min, sliding test time 5 min) 

The wear segment of the ball can be regarded as a spherical crown [19]. Based on integral 

operation [20], the wear volume of the worn ball can be calculated as 

2 2

2
2 3 2 2 2 22

d

2

1 1
( ) (2 )

4 12 24

D

D

D
V y dy D D d D d   


                                                            (2) 

where D  is the diameter of the 40Cr hardened steel ball and d  is the diameter of the worn scar. 

The wear rates of the worn balls sliding with the three specimens can be calculated according to 

Eqs. (1) and (2). Figs. 7 and 8 show the wear rates of these specimens sliding against 40Cr hardened 

steel balls as a function of applied load and sliding speed, respectively. It is obvious that the wear 

rates of WS2 coating specimens are much lower than that of YT15 specimen and the WS-1 specimen 

shows the smallest wear rate among all the specimens tested under the same sliding conditions. 

Meanwhile, the wear rate of WS-1 specimen fluctuates little and almost keeps as a constant value 

under different applied loads and sliding speeds. 

The results confirm that WS2 coating can greatly improve the tribological behaviour and wear 

resistance of YT15 carbide. Of the two coated specimens, the WS-2 specimen exhibits significantly 

lower friction coefficient and wear rates when compared with the YT15 specimen, and the specimen 

with WS2/Zr composite coating exhibits further improved friction behaviour and wear resistance 

under the same test conditions. 
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Fig. 7  Wear rates of WS2 coatings and YT15 carbide under different applied loads in sliding wear test (Sliding 

speed 120 m/min, sliding test time 5 min) 

Fig. 8  Wear rates of WS2 coatings and YT15 carbide under different sliding speeds in sliding wear test (Applied 

load 5 N, sliding test time 5 min) 

3.3  Wear surface studies 

The SEM micrograph of the worn surface of WS-2 specimen under a load of 5 N at a sliding speed of 

60 m/min after 5 min sliding operation is shown in Fig. 9a. A high magnification examination of the 

wear track (Fig. 9b) shows that there are some cracks, flakes and delamination on the wear surface. 

The energy dispersive X-ray spectroscopy (EDX) surface chemical composition analysis on the wear 

track (point 1 and 2) are illustrated in Fig. 9c and Fig. 9d, respectively. S, W, Fe and O elements are 

identified at point 1, while C, W and Ti elements are identified at point 2. It is obvious that large areas 
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of the WS2 coating on the wear track were worn out, which caused the substrate materials to be 

exposed during the sliding test. 

The SEM micrograph of the worn surface of WS-1 specimen under a load of 5 N at a sliding speed 

of 60 m/min after 5 min sliding operation is shown in Fig. 10a. It is noted that the wear track width of 

WS-1 specimen is much smaller than that of WS-2 specimen (see Fig. 9a and Fig. 10a). A high 

magnification examination of the wear track (Fig. 10b) shows that there are some small mechanical 

plowing grooves on the wear surface. The energy dispersive X-ray spectroscopy (EDX) surface 

chemical composition analysis on the wear track (point 1) is illustrated in Fig. 10c. Zr, S, W, Ti, Fe 

and O elements are identified at point 1. It is clear that the WS-1 specimen exhibited better wear 

resistance than the WS-2 specimen under the same test conditions. Therefore, adding Zr into WS2 

coating can prolong the antiwear lifetime of WS2 coating. 
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Fig. 9  a SEM micrograph of the worn surface of the WS-2 specimen. b Enlarged SEM micrograph corresponding to 

a. c EDX surface chemical composition at point 1. d EDX surface chemical composition at point 2 (Applied load 5 

N, sliding speed 60 m/min, sliding test time 5 min) 

Fig. 10  a SEM micrograph of the worn surface of the WS-1 specimen. b Enlarged SEM micrograph corresponding 

to a. c EDX surface chemical composition at point 1 (Applied load 5 N, sliding speed 60 m/min, sliding test time 5 

min) 
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Fig. 11a shows the SEM micrograph of the wear surface of 40Cr hardened steel ball sliding against 

WS-1 specimen under a load of 10 N at a sliding speed of 120 m/min after 5 min sliding test. It is 

noted that the surface of 40Cr hardened steel ball is covered by some materials almost over the whole 

wear scar. Fig. 11b shows the enlarged SEM micrograph of the adhered material on the wear scar of 

the 40Cr hardened steel ball corresponding to Fig. 11a. The energy dispersive X-ray spectroscopy 

(EDX) surface chemical composition analysis on the wear track (point 1 and 2) are illustrated in Fig. 

11c and Fig. 11d, respectively. Fe, C and Si elements are identified at point 1, while Zr, S, W, Fe, C, 

Cr and O elements are identified at point 2. The self-lubricating and wear mechanism of WS2/Zr 

coating indicates that WS2/Zr composite coating was transferred to the surface of 40Cr hardened steel 

ball and formed a transfer film in the sliding test. Then the friction occurred between the transfer film 

and the WS2/Zr composite lubricating film instead of between the cemented carbide YT15 substrate 

and the 40Cr hardened steel ball. Because of the low shear strength of WS2/Zr coating, it has ultralow 

friction coefficient when sliding against 40Cr hardened steel balls. Therefore, friction occurs inside 

the solid lubricating film which can decrease friction and wear, lower friction coefficient and prolong 

the lifetime of the friction pairs. 

Fig. 12a shows the SEM micrograph of the wear surface of 40Cr hardened steel ball sliding against 

WS-2 specimen under a load of 10 N at a sliding speed of 120 m/min after 5 min sliding test. It is 

noted that the wear scar on the surface of the 40Cr hardened steel ball is very obvious and some part 

of the worn surface is covered with some materials, believed to be WS2. The energy dispersive X-ray 

spectroscopy (EDX) surface chemical composition analysis on the wear track (point 1 and 2) are 

illustrated in Figs. 12b and 12c, respectively. Fe, C, Cr and O elements are identified at point 1, while 

W, S, Fe, C and Cr elements are identified at point 2. From Fig. 12 we can see that the WS2 transfer 

layer is formed but also is severely damaged during the sliding test. The worn surface of the 40Cr 

hardened steel ball sliding against WS-2 specimen is worse than that against the WS-1 specimen. 



 

15 
 

Fig. 11  a SEM micrograph of the worn surface of the 40Cr hardened steel ball sliding against WS-1 specimen. b 

Enlarged SEM micrograph corresponding to a. c EDX surface chemical composition at point 1. d EDX surface 

chemical composition at point 2 (Applied load 10 N, sliding speed 120 m/min, sliding test time 5 min) 
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Fig. 12  a SEM micrograph of the worn surface of the 40Cr hardened steel ball sliding against WS-2 specimen. b 

EDX surface chemical composition at point 1. c EDX surface chemical composition at point 2 (Applied load 10 N, 

sliding speed 120 m/min, sliding test time 5 min) 

4  Conclusions 

WS2 coatings (WS2 and WS2/Zr) were deposited by medium-frequency magnetron sputtering, 

multi-arc ion plating and ion beam assisted deposition technique on the cemented carbide YT15 

substrates. Sliding wear tests against 40Cr hardened steel using a ball-on-disk tribometer method 

were carried out with these coated materials. The main conclusions obtained can be summarized as 

follows. 

1. The WS-1 specimen (with WS2/Zr composite coating) has the higher hardness and 

coating/substrate critical load compared with that of the WS-2 specimen (only with WS2 

coating). 

2. The WS-1 specimen shows the smallest friction coefficient among all the specimens tested 

under the same conditions. The friction coefficient of WS-1 specimen increases with the 

increase in applied load, and is quite insensitive to the sliding speed. 

3. The WS-1 specimen shows the smallest wear rate among all the specimens tested under the 

same conditions and it almost remains constant under different applied loads and sliding speeds. 
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The WS-1 specimen exhibits improved friction behavior and wear resistance compared to that 

of the WS-2 specimen. The antiwear lifetime of the WS2 coatings can be prolonged through 

adding Zr additives. 

4. The self-lubricating and wear mechanism of WS2/Zr coating indicates that WS2/Zr composite 

coating is transferred to the surface of 40Cr hardened steel ball and forms a transfer film in the 

sliding test. Then the friction occurs between the transfer film and the WS2/Zr composite 

lubricating film instead of between cemented carbide YT15 substrate and 40Cr hardened steel 

ball. Because of the low shear strength of WS2/Zr coating, it has ultralow friction coefficient 

when sliding against 40Cr hardened steel balls. Therefore, friction occurs inside the solid 

lubricating film which can decrease friction and wear, lower friction coefficient and prolong the 

lifetime of the friction pairs. 
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