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INTRODUCTION

A common misconception that continues to exist in the computing
world is rhat 3if an instzllation dces not have its own version of a compu-
tational program then the user need only coasult some program library,
make the appropriate selection, and the problem will be solved. The
fallacy of this solution is usually unde;stugd by most professioaal com-
puting center personnel, but the average user is probably unaware of the
time, patience and understanding that it takes to convert a borrowed pro-
gram intoc a smooth-runming, accurate scientific-tool. The purpose of this
report is to point out all of the majer difficulties encountered when an
average computer user is unable to find é local program and doas not desire
to write one to solve a particular problem which he faces. This report
will not ccncern itself with the theory inveolved in the calculaticns men-

tioned in the following pazges.
METRHOD

In undertaking this étudy the author chose a problem which purposely
might appear to the reader as atypiczl of the average computing user's
needs, The problem, the computation of eigenvalues for real and complex
matrices is indead not a simple one. This particular preblem was chosen
primarily b=cuisse the associated mathematicsl theories made the author

feel that the simplest way to solve the preblem was to borrow a "canned”

n

progran. The Xenswes State University Computing Center, hencelcrth called
the Computing Center or the KiU Compucing Center, did not have suiteble

subprogryms to solve problems of this type. The advice from the local



computing center librarian was to consult the latest SHARE index. TFor
the readers unfamiliar with SHARE, it is a worldwide cooperative organi-
zation of computing installations whose primary purpose iz the sharing
of "standardized" computing programs., Appendix 1 of this report contains
a more extensive explanation of the SHARE organization. A review of the
index and the SHARE Secretary Distributions (S§3D's) revealed that three
subprograms were available which would solve the problem which the author
proposed. These three subprograms, SDA 3099, SDA 3219, and SbhA 3441, were
ordered by the local SHARE secretary. A period of three weeks elapsed
between the time these subprograms were ordered and the time they weare
received. Two of them, SDA 3099 and SDA 3441, were in card form; the
thirgd was available only on microfilm since it was in such little demand.
The decision to horrpw another subprogram from a similar cooperative iibrary
program organization was made after concluding that SBA 3219 would be too
difficult to adapt. The subprogram F4 UTEX MATSUB, also called EIVAL,
was obtained as a substitute for SDA 3219, FIVAL wvas obtaived from CO-0OP,
an orvanization similar to SHARD sponsored by CDC, the Control Data
Corporation. Thus the problem was to make these three subprograms oper-
ational on the computing system available at Kansas.State Universicy.
Eecause of the diagnostic value and compilation speed of Waterloo
FORTRAN (WATFOR), which is similar to IBM 361 FORTRAN IV, the programs
were tested and made operational using that compiler. The programs were
then compiled and executed on 1BM 360 FORTRAN IV Level G for the purpose
of comparison. aAll of the keypunching mentioﬁed vas done by the auther
becanse of the nature of this projact. It was felt that this would make

the project as realistic as possible, The following three sections of this



report will deal with the problems encountered in making these routines
operational. The fourth secrion will describe comparicon tests which were
made for the purpose of selecting the best of the three borrowed routines.
The £3ifth secrion will mention semz of the logistical probliems which the
authcr enccsuntered during the project. The fiuzl section will summarize

the project and will contain conciuding remarks.
SUBPROCRAM OML: ALIMAT

The Arbitrary Matrix Eisensystem Solver, originally shortesed to
AMAT, but now known as ALIMAT, was developad by R. E, Funderlic aad ..
Rinzel. This subprogram was submitted to SHARE in March, 1365. The version
now avsilable frow SRARE is the 1968 revision, designated SDA 3441-01,
It was wricten in FORTZAN IV for compilation and e;%cuiiun on an IBM 7530,
Tt is designed to calculate both eigenvalues.and a set a7 elgenvectors
for arbitrary real or complex matrices,

ALLMAT utilizes the QR algorithm in its calculations. The Weilandt
inverse pover method is used to calculate the eigenvectors.l A compliete

discussicn of the theory and algorithm may be found in The Algebraic Eigen-

value Problem by J. H, Wilkinmson. It does not contain other subroutines

which were written specifically for the routine. ALLMAT Lac :iive arguments,

A, EIGVAL, N, IA, and NCAL, which are defined as follows:

1p. E. Funderlic and J. Rinzel, "Eigenvalues 2ad Eigenvectors of
Q

Comrlox Matrices™ (Uak Ridge: Union Carbide Corpeoration, 19%&;, p. 3.

(¥jmizcgraphed.)
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1. A is the complex array vhich contains the input matrix upon
entry to ALLMAT and contains the complex elgenvectors upon
return. The maximum size allowed by ALIMAT is limited only
by the needs of the user.

2. EIGVAL is a complex vector which contains the eigenvalues
of the appropriate elgenvector upon return from ALLMAT.

3. N is the order of the input matrix A,

4, 1IA is the first dimension of the input matrix in the calling
program,

5. NCAL is the number of eigenvalues with correspondirg eigen-—
vectors which ALLMAT returns to the calling program.

ALLMAT.allows ten iterations per eigenvalue before tewwinaticon

occurs, In the case of equal eigenvalues, identical eigenvectors are
returned even though linearly independent eigenvectors may exist.

The originzl ALIMAT source deck consisted of 234 cards which had

been punched in Birnary Codaed Decimal (BCD) characters. The first task

to be undertaken was the conversion from BCI} to Extended Binary Coded
Decimal In*erchange Code (EBCDIC). .This conversion was accomplished using
an assembler 1anguage program available at the KSU Computing Center.
Although this conversion was not absolutely necessary, it was thought that
such a convarzion at the start of the project could save later problems.
The subpropram ALLMAT was a "called" program and contained no input-output
provisions, so an input-output 'calling" program had to be supplied by the
user, ALIMAT itself was not well-documented, but accompanying literature

allowed the construction of an input-output program. This input-output
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was written in IBM 360 FORTRAN IV and addad to ALLMAT prior to the first
attempt at compilation.

The first compilation revezlied several unexpected problems. The
FORTRAN 1V compiler used on the IBM 7090 allowed the first member of the
vector dimensicned SHIFT(3)} to be referenced by SHIFT., The WATFOR com-
piler wouid not allow this type of coding. As a result, all references
to SHIFT had to be changed to SHIFT(1). The initialization of SHIFT(1)
to zero necessitatéd the addition of two source cards. 'he first run
also revealed that the original program used varilsbles names SIN, COS,
and INT. All of these are identifiers for IBM 350 FORTRAN IV librazxy
sunvroutines. The variable namad SIN was changed to SINL, COS was changed
to CGS51 2nd the variable TNT was changed to JNT.

Another error was one which was characteristic of the WATFOR
compiler. The library subroutines square root and conjugate function
{CSQRT and COMJG) had to be declazred complex at the beginning of the
ALLMAT subprogram

A pair of complex matrices of order two were added as test datz
prior to the next run.l An error which resuited from not equating the
subprogram argumént IA to the first dimension et A in the calling program
caused it to yield incorrect results. The correcztion of this problem
provad successful and the routine ALIMAT performed satisfactorily for both

sets f test data.

1n. Johnston, "Numerical Anzlysis Project Program Review, SDA
3441" (Ontario: Department of Highways, 1967), p. 8. (Mimeographed.)
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The total time involved in making ALLMAT operational was approxi-

mately four hours of programming, re-programming, keypunching and re-
keypunching. The total computing cost to this point was $3.01. However,
the elapsed time since the first submission of the program was more than
four days. Since the corversion from BCD to EBCDIC, 59 of the 265 source
cards (22 per cent) required to execute ALLMAT were supplied by the user

or required zlteration.
SUBPROGRAM TWO: EIG4

The SHAPE subprogram, NU EIG4, SDA 3099, was written by B. N.
Parlett in April, 1963. The routine now being distributed was revised in
June, 1963. It was programmed in FORTRAN II for use on an IBM 7090.

The subprogrsm calculates the eigenvaluce of complex matrices or real
matrices in complex form.

EIG4 reduces the input matrix to Hessenberg form, evaluates the
characteristic polynomial and its derivatives using an extencion of Hyman's
method, and ccmputes the eigenvalues using a modification of Laguerre's
method.l The main subprogram EIG4 makes use of two specially written
FORTRAN subrcutines, designated CXTRT and CXLAG. Twe machine language
subroutines wore also includad in SPA 3099. The arguments for subprogram
EIG4 are not specially defined in the program review which SHARL includes
with tle routine. Neither are these arpuments -iefined in the program

documentation itself. However, the program user is able to define the

lp, N. Parlett, "Laguerre's Method Applied to the Matrix Eigenvalue
Problem", Mathematics of Computation, XVIIY January, 1964}, 4&i.




arguments after careful reading of the program review. The argumentc,
A, N, M, RT, Z, are defined zs follows:
1. A is the doubly-dimeunsioned input matrix in complex form,
EIG4 will find the eigenvalues for an input matrix of order
less than or equal to seventy.

2. N is the order of the input matrix.

»
1=

is the number of eigervalues which EIG4 computes.

4. RT is a singly-dimensicned complex vector which will contain

the calculated eipenvalues upon return from EIG4.

5. Z is a starting value for the iteration of the first eigenvalue.

Originally, EIG4 allowed fifteen iterations per eigenvalue before
assuming non-convergence. As an important factor in the converging process,
the EIG4 author stressed in the program summary that the selection of an
adequate starting value, Z, is very important in the accuracy of the cal-
culated eigenvalues,

The EIG4 deck supplied by SHARE was alsc punched in BCD characters.
Since the KSU Ceaputing Center has more EBCDIC keypunches, the default
option on the WATFOR ccmpiler specifies EBCDIC characters, and the line
printer does not convert the BCD charscters to EBCDIC which ﬁakes the list-
inpgs hard to read, it was decided to convert the deck to EBCDIC. This
conversion was accomplished using the previously mentioned routine. EIGS
did not include input provisions, so the input routine had to be supplied
by the program user.

The original EIG4 deck contained 342 gource cards. A total of 279
of these cards comprised the three FORTRAN subprograms previously mentioned.

The rewmaining sixty-three cards were the assembler language subroutines.
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After the subprogram was converted to EBCDIC several major problems
occured. EIG4 was written in FORTRAN II, which handled complex arithmetic
in a vastly different manner than IBM 360 FORTRAN IV. Instead of using
explicit statements to declare variables to be complex, FORTRAN II treated
a complex number as two parts of a singly-dimensioned vector. The le:ter
I in the first column of a& source card indicated to the compiler that com-
plex arithmetic was to be performed in the expression which appeared on
that card. This method of accomplishing complex arithmetic created many
of the problems which follow.

-The most obvious task was to create the appropriate complex declar-
ations for each of the complex variables used in the three FORTRAN sub-
programs, The next job was the re-keypunching of the seventy-nine source
cards containing the letter I in card column one. 1t was detefmined that
the two machine language subroutines were included to process accumulator
overflow conditions., The user declded to eliminate these two subroutines
and their call statements since the WATFOR compiler contained its own
floating point overflow routine.

The FORMAT statements supplied for output in EIC4 had to be revised
because of the changes involved in the output of complex numbers. The
associated output statements, written in the cumbersome FORTRAN II style,
also had to be altered The square root function had to be declared complex
{SORTF was changed to CSQRT) in the appropriate subroutines. Statements
containing FORTRAN IT function names such as XMINOF, ABSF, MAX1F, MINOF
had to be changed to the equivalent IBM 360 forms of MINO, ABS, MAXI,

and MIRO.
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Certain statements which found the magnitude of the real part plus
the magnitude of the imaginary part c¢f a complex number had to be changed.
These changes involved the introduction of the IBM 360 FORTRAN IV functions
REAL and AIMAGS. After making these alterations, another attempt at
compilation was méde.

The next attempt detected another serious problem with EIG4. The
FORTRAN 11 compiler used for the original version of EIG4 differed from our
IBM 360 FORTRAN IV compiler in its testing of the parameters during the
execution of DO statements., Values which would fall through and allow
completion of the loop on the original version were not 2llowable on the
IBM 360 FORTRAN IV compilers. The correction of thic error necessitated
the addition of several IF statements to check the DO parzmeters.

A pair of complex test matrices of order two were supplied priox
to the next attempt at compilation. The compilation was successful but
EIG4 failed to provide acceﬁtable results. The results of the computations
indicated that the iteration of many of the elgenvalues had been halted
after the fifteenth attempt. The user was forced to alter the routine
in such a manner to allow thirty itevations per elgenvalue. This mod-
ification produced results which were initially acceptable to the user.

The user spent approximately ten hours making EIG4 operational.
This time was spent mainly on re-programming and keypunching and was sﬁread
over a meriod of two weeks. The operational version of EIGA contained
cnly 158 of the original source cards supplied by SHARE. Thus more than
49 per cent of the oripginal source deck was either eliminated or modified

by the user. More than 18 per cent of the operational version of EIG4



had to be mrugrammed by the user. The total computing costs roguired

to make EIG4 operational was $12.63.
SUBPROGRAM THREE: EIVAL

The subprogram known as F4 UTEX MATSUB or EIVAL was written in
1961, by L. H., Ehrlich. This subprogram was written in FORTRAM II for use
n: ¢ither a Control Data Covporation Model 1604 or 3600. It calculates
all zigenvalues of a real or complex matrix, as well as the eigenvector
for zach eigenvalue., EIVAL utilizes the direct and inverse power mathods
zrd matvix deflation in its caleculations.l The source deck comsisted

-

of one main subprogram. FIVAL consists of twelve arguments, M, IEL, IVEC,
ALRS, ALI%, GBR, CGRI, ID®T, MIT, MiTS, EP1l, and EPZ,-which are defined
as follows:

1. M is the order of the input matrix A. The crder of A must be
less than or equal te eighteen,

2. 1IEG is a dummy variable which will allow the eizenvalue iterants
to be printed when initialized to one but wiil not allos
printing when set to zaro.

3. 1VEC is & summy variable which when initialized tn one w2ll
allow the subroutine to caleulate a set of eigenvectors.

When IVEC is set to zero EIVAL will bypass the calculation

of eigenvectors.

4, ALES Is the real part of ihe starting value Alpha.

1i. W. Ehriich, “F& UTEX MATSUE Summary” (Austin: The University of
Texas, 1961), ©. 1. OMizeopgraphed.)
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5. ALIS is the imaginary part of the starting value, Alpha.
6. GBR is the real part of beta.

7. GBI is the imaginary part of beta.

8. 1IDET is a dummy variable which will allow the subroutine to
calculate |C-AI| when initialized to one. When IDET is set
to zero these values are not calerulated,

9. MIT is the maximum number of iterations allowed for the power
method.

10, MITS is the maximum number of iterations allowed Zor tha
inverse method.
11. EPl is the constant used to test the success of the firét
iteration method. EFEPl is normally initialized to 104,
12. EP2 is the constant used to test the success of the inverse
power method. This constant is normally initialized to 10714,
It must be uots¢ that unlike the two subprograms previously dis-
cussed, EIVAL does not pass the values c¢f the input matrix to subprogram
as arguments. The subprogr%m utilizes COMMOK ststements to pass these
values. Another major difference is the manner in which the subﬁrogram
handles complex arithmetic. EIVAL treats the complex matrix as two separafe
and distinct matrices. Matrix AR is composed of the real portions of the
complex nunbers while matrix AT is composed of their imaginary components.
This method of performing complex arithmetic created many problems which
were difficult to visualize because of the physical separation of the two
elements of the complex matrix.
The subpreogram EIVAL consisted of 353 BCD source cards. As was

the case with ALIMAT and EIG4, the original deck was converted to EBCDIC
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characters prior to compilation at the cost of $1.24, A suitable input-
cutput program consisting of thirty-seven source cards was added by the user
prior to the first attempt at compilation,

This first attempt revealed several expected errors. All of the
output statements provided in the original subprogram had to be revised.

The associated FORMAT statements also had to be altered by the user. It
was also determined that source cards containing the square root function
and the modular function had to be changed to comply with IBM 360 FORTRAN
IV. Thus SQRTF was changed to SQRT and XMODF became MOD.

Another attempt at compilation revealed additional errcrs in ETVAL.
Many of the variables used by EIVAL were not initiazlized to zero by the orig-
inal routina. The "background" is not set to zero on the IBM 360, seo
an initial vaiue of zero cannot be assumed. This failure caused the var-
izbles to be undefined on our compiler and caused the generation of numer-
ous error messages, The initialization of the necessary variables caused
the addition of seven source cards. The next attempt at compilation revealed
an error in the input preogram as well as the locztion of several keypunch
errors.

The program author suggested the EP2, the constant used to deter-
mine the success of the convergence of the inverse power method, be initial-
ized to 10~1%4, PRecause of the laék of precision of the IBM 360 single
precision floating point arithmetic, the user changed this constant to 1077,
The same test dats used for the initial testing of the cther routines
yielded satisfactory results with EIVAL.

A total of six hours of keypunching and re-programming was spent

by the user in making EIVAL operational. Approximately 20 per cent of
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the final version of EIVAL was added or altered by the user. The computing
cost amounted to $6.33. A perlod of elght days elapsed between the conver-

sion from BCD to EBCDIC and the successful execution of the program.
COMPARTSON OF RESULTS

After the three subprograms had beesn compiled successfully, the
user switched from WATFOR to IBM 360 FORTRAN IV Level G. The programs
were modified slightly by adding the INTIME function to determine the com-
parative execution times of the subprograms. Test data were extremely
difficult to obtain, especially complex matrix data. The elgenvalues
calculated by all three programs were compared with the hand calculated
results of the test data.

Real test matrices of order two, three, four, and eignf were sup-
plied by the user. It was found chat ALLMAT calculated the eigenvectors
and eigenvalues of the real matrices approximately 20 per cent faster than
EIVAL., Using single-precision arithmetic, ALLMAT gave eigenvalues which
agreed with the suggested results to at least the six significznt digits.
The EIVAL routine was not as accurate as ALLMAT, often yielding errors
in the fifth significant digit. ince the built-in complex routines
weren't used in EIVAL, the user was akle to convert the routine to double
precision., The resulting answers were accurate to at least seven signif-
icant dicits,

The EIG4 program provided the least accurate eigenvalues. EIG4
was Frund to be of little value in calculating the eigenvalues of real

symmetric matrices. The new limit of thirty iterations per eigenvalue
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was not satisfactory in some cases, This limit was raised to fifty by the
user in hopes of improving the routinc's accuracy. The value of EPS in
subroutine CXLAG was changed from 10~% to 1078, These two changas yielded
the desired effect but increased the execution time of the routine con—
siderably. These changes increased the accuracy of ELG4 for both symmetric
and non-symmetric real matrices. The results were generally accurate
to six significant digits.

The user was not able to make a direct conversion to double
precision arithmetic because of the lack of double precision functions
comparable to REAL and AIMAGJ. EIVAL was easily converted because of
the manner in which it handles complex arithmetic,

The user compared the speed of the single precision form of EIVAL
with that of EIG4 for the calculation of eigenvalues for the real tesstc
matrices. The differences in execution time depended on the particular
input matrix. However, EIG4 was found to be considerably slower than EIVAL
on 2l1 of the real matvices tested.

Complex test data were much more difficult to obtain. Severzl
complex matrices of order two were used to compare the three routines.

It was determined that ALIMAT was approximately 30 per cent faster imn

the calculation of eigenvectors and eigenvalues thamn the single precision
version of EIYAL. The accuracy obtained for the eigenvalues and eigenvectors
was ¢omparatle to that obtained for the real test matrices. The EIGA

routine did not give as accurate results for the symmetric complex matrices.

Tabie I compares the accuracy and specd obtained for selected test matrices.
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LOGISTICAL PROBLEMS

The problems mentioned in this section of the report are illus-
trative of the barriers encountered by an average computing center user
wvho does not make his permanent residence in the center. These remarks
are not to be taken as malicious, destructive criticisms &f our local
computing facility. The problems mentioned in this section are particular
barriers encountered by the user. Tro reader should realize that the
author did not intend to Imply that these problems are universal in nature.

The granting of an uusponsored account number for this project
was the first major logistical problem encountered by the user. This
application resulted in the granting of $1250 of "free" computing time,
required the signatures of several people, and caused a delay of threc
days.

The next problem consisted of scanning the volumes of SHARE minutes
in search of ;lues to applicable subprograms. Computing Center rules
stated that these vclumes were not to be removed from the Computing Center
Library. The local SHARE secretary was most helpful in the ordering of the
necessary subprograms., The delay of approximately three weeks was unavoid-
able.

The original EIVAL deck was not in good enough shape to be repro-
duced on the IBY card reproducer cwned by the center. Having decided the
Lbest way to reproduce the deck was to write a program, the user accidentally
found out thet this center had a "reproduction' program. The program

cperated satisfactorily and the routine was reproduced.
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The machine language program which the computing center maintains
for the converslon from BCD to EBCUIC worked perfectly for the user. Tho
card interpreter owned by the cerier, an ancient model from IBM, is alncst
worthless.

The computing center hours were found to be adequate by this user.
The attitudes of the dispatchers secemed to Improve during the test period
to a point where this user felt that thev almost understood the problems
of the user. The turn-around time during the testing of the routines
ranged from as little as two hours to as much as seven hovrs. These
routines were two-minute batch WATFOR jobs. During the majorit; af the
testing phase of the project the user found that the best time schedczle
was program submission early in the morning, mid-afterncon and late evening.
This schedule allowing three turn-arounds a day was malntained during
most of the project. The turn-around time for the five-minute FORTRAN IV
Level G comparison runs was culy slightly longer then for the batch WATFOR
jobs, It should be mentioned that most of the computing uwas done in late
August and early September, 2 period when the compuiing centey processes
an abnormally high percentage of long jobs.

The university library also presented many problems to the author.

The hook The Algebraic Eigenvalue Problem by J. A, Wilkinson was listed

as available in the library but the book could not be located by the
library staff. An attempt to obtain the book on inter-librory loan from
the University of Kansas was unsuccessful, The user was unable to locate

many of the references mentioned in many of the mimecographed reports.



CONCLUSTON

The adaptation of a borrowed or "canned” program for use at a
particular computing instzllation may be a very tedious, time-consuming
process, The particular problem chosen by this user was more difficulte
than the typical computing user would face, however, the fact still remszins
that when a user needs a particular prczvam to solve a given problem then
he has no other choice than to write his oﬁn program or try to use someone
else's program. In this particular case, the adaptation of someone elac'g
program seemed to be the best sclution. The variance in FORTRAN compilers
and in ghe configuration of computing installations makes the establishment
of an all-purpose program library nearly impossible. The problems which
arose in attempting to convert one version of FORTRAN to another have been
discussed in this report. The difficulties in converting from one programming
language to another are undoubtzdly even more time-consuming. Since the
user did choose thre= subprograms which were not specifically written
in IBM FORTRAN IV Level G for executicvn on an IBM 360/50, the problems mentionud
in this report are not identical to those faced by z2ll users who wish to
borrow-programs.

This user was able to make several conclusions based on this project.
The user should malke every attempt to borrow a routine which has been written
in as nearly the same language version as he plans to use. The user should
seck copies of program reviews prior to making his choice. He should
be prepared to spend considerable time in obtaining the routine and making

it operational. The user should be aware of particular aspects of the
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computing hardware which he will utilize. Such aspects include "back-
ground" varisble iritialization and floating-point accuracy. He must either
find reliable test data or generate his own.

Two specific improvements are suggested to cooperative program
libraries such as SHAKE. Improvements in the program documentation and
the accompanying program summaries would greatly facilitate the use of
borroved routines. At least one set of test data with accurate results
should accompany all library routines. These two improvements would elim-

inate many of the problems which the author has mentioned in this repert.
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SHARE

SHARE was founded in August, 1955, in a seminar held by IBM for
Rand, Leckheed and North American to discuss the standardization of computing
programs for the IBM 704. Seventeen corporations and universities made
up the original SHARE organization. The name SHARE was chosen as repre-
senting the common aims of the organization. Today a substantial portion
of the major users of the larger IBM computing equipment is represented
in SHARE. The benefits of the organization SSD's include written documentary
information (55D's) as well as informal conversation at meetinms. SHARE
membership is entirely voluantary, members are in no way forced to comtribute
or participate although such failure defeats the purpose of the organization.
To be eligible for membership the system must be composed of IBM 704, 702,
7044, 7090, 7094, or 360/50 or higher. Other svstems may be approved for
membership by the SHARE Executive Board. SHBARE membership noy'numbers

several hundred corporations and universities from throughout the world.
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SUBPROGRAM ONE: SDA 3441, ALLMAT

INPUT-OUTPUT PROGRAM

999
998
997
996
995
994

COMPLEX A(9,9),EIGVALI(9)
FORMAT(212)
FORMAT(5(F1l0.6,F10.6))

FORMAT(1H1, *THE INPUT MATRIX WAS AS FOLLOWS:?)

FORMAT(1H ,4((Fl6.83F12.8),"' I°*

))

FORMAT(1H-4'THE COMPUTED EIGENVALUES ARE:')

FORMAT(1H=-, *THE NUMBER OF EIGENVALUES WITH CORRESPONDING EIGENVECI

10RS IS:',5X,1I3)

993 FORMAT(1H-,'THE COMPUTED EIGENVECTOR IS:')
FORMAT(1H-4 "EXECUTION TIME =',5X,F10.6)

992
4

CALL INTIME(ITIME)
READ(1+999,END=5) N, IA

DO 1 I[=14N

READ(1,998) (AllI4J)yJ=1,4N}
NCAL=0

WRITE(3,997)

DO 2 I=1,N

WRITE(3,996) (A(I,J)sJ=1,N)
CALL ALLMAT(A,EIGVALsN,IA,NCAL)
WRITE(3,995)

WRITE(3,996) (EIGVALI{I)yI=1,N)
WRITE(3,993)

CO 3 I=1,N

WRITE(3,996) (A{l,J)+J=14N)
WRITE(3,994) NCAL

CALL INTIME(ITIMELl)
TIME=(ITIMEL1-ITIME) /100.
WRITE(3,992) TIME

GO TO 4

CONTINUE

STOP

END

SUBROUTINE ALLMAT(A,LAMBDA,M, IA,NCAL)

PROG.AUTHORS JOHN RINZEL R+E+FUNDERLIC,UNION CARBIDE CORP.
NUCLEAR DIVISION,CENTRAL DATA PROCESSING FACILITY,

0AK

RIDGE TENNESSEE

COMPLEX A(TA,1)5H(30,30),HL(30,
IMULT(30),SHIFT{3),TEMP,

LOGICAL INTHI(30),TWICE

INTEGER JNT(30)14R,RP1,RP2

N=M

NCAL=N

30)+LAMBDA(1),VECT(30),
TEMP1,TEMP2,SIN1,C0S1,CONJG,CSQRT



s REaNel

1l
13

2

3

10
11

12
13

14

IFI{N.NE.1)GO TO 1

LAMBDA(1)=A(1,1)

A(ly1l)=1.

GO 7O 58

ICOUNT=(

CO 73 I=1,3

SHIFT(I)=0.

IF{N.NEL.21GO TO 4
TEMP={A(141)+A(2,2)+CSQRT({A(1,1)+A(2,2) )% %2~
14, %{A1242)%A(1,1)-A(2,1)%A(1,2))))/2.
IF(REAL(TEMP) sNE«Coe s ORAIMAGITEMP) «sNE«Q+)GO TO 3
LAMBDA(M)=SHIFT(1)
LAMBDA(M-1)=A(1,1)+A12,2)+SHIFTI{1)

GO TO 38

LAMBDA(M)=TEMP+SHIFT{1)
LAMBDA(M=1)=(A({2,2)%A(1,1)-A{2,1)%A(1,2))/({LAMBDAIM)-SHIFT(1))+
1SHIFTI1)

GO TO 38

REDUCE MATRIX A TO HESSENBERG FORM

NM2=N-2

D0 15 R=1,NM2

RP1=R+1

RP2=R+2

ABIG=0.

JNT(R)=RP1

O 5 I=RP1l,N
ABSSQ=REAL(A(T, R} I**¥2+AIMAG{A{I R} }**2
IF{ABSSQ.LE.ABIG)GOD TO 5
JNT(R])=1

ABIG=ABSSQ

CONT INUE

INTER=JNT (R)
IF{ABIG.EQ.D.1G0O TO 15
IF{INTER.EQ.RP1)GO TO 8
CO 6 I=RyN

TEMP=A(RP1,1)
A{(RP1l,T)=A1INTER,I)
A{INTER,I)=TEMP

CO 7 I=1.N

TEMP=A(1,RP1)
A{I4RP1)}=A(1,INTER)}
A{I,INTER)=TEMP

CO 9 I=RP2,N
MULTI{T)=ATIsR}I/A{RPL,R)
A{I,R)=MULTI{I)

DO 11 I=1,RP1

TEMP=0.

CO 10 J=RP2,N
TEMP=TEMP+A{I,J)%MULT{J)
A{IyRPLI=A{]I,RP1}Y+TEMP
CO 13 I=RP2,N

TEMP=0,

0O 12 J=RP2,N
TEMP=TEMP+A(I,J)*MULTI(J)
A{IyRPL)=A{I,RP1I+TEMP-MULT(TI)}*A(RPL,RP1)
CO 14 I=RP2,N

D0 14 J=RP2,N
AlTJ1=ALT,J4)-MULTII)*A(RPLl,J)



OGO

zEale

[aNeNR

15 CONTINUE
CALCULATE EPSILCN

EPS=0.

OO0 16 I=1,N
16 EPS=EPS+CABS{A(Ll,1))

CO 18 I=2,N

SUM=C,

IM1=1-1

CO 17 J=IM1,N
17 SUM=SUM+CABS({A(I,J))
18 TF(SUM.GT.EPS)EPS=SUM

EPS=SQRT{FLOAT{N) )*EPS*1,.,E-12

IF({EPS<EQeD«IEPS=1,E~12

CO 19 I=1,N

CO 19 J=1,N
19 H{T4J)=A11,4)
20 IF{N.NE.11}GO TO 21

LAMBDA(M)=A(1l,1)+SHIFTI(1)

GO TO 38
21 IF{N.EQ.2)GO TO 2
22 MNl1=M-N+1

IF(REAL{A(NSN)) e NEsOss ORJATMAGIA{NsN) JaNE2DW)

1 IF{ABS{REAL{AINJN=-1)/A(NyN)))I+ABSIATMAGIA(NsN-1)/AINyNI}1)}-1.E-9)

2 244924423
23 IF(ABS{REAL{A(NSN-1)))+ABS{AIMAGIAINsN-1))1}.GE.EPS)GO TO 25
24 LAMBDA{MNL)=A(N,N)+SHIFT(1)

ICOUNT=0
N=N-1
GO TO 21

CETERMINE SHIFT

25 SHIFT(2)=(A{N=1,N-1)+AIN,N)+CSAQRTI(AIN-L1sN-L)+A(NeN))*%x2
1 =44%(A(NgNIRAIN-L,N-1)-A(NyN-1)*A(N-1,N})))/2.
IF{REAL(SHIFT{2))eNE+sDe e ORLAIMAGISHIFT(2)).NE.Q.)GO TO 26
SHIFTI{3)=A(N-14sN-1)+A(N,N)
GO 7O 27
26 SHIFT(3)=(A(NyNI®AIN=1,N=1)=A{NyN=-1}*A(N=-1,N)}/SHIFT(2)
27 IF(CABSISHIFTI{2)-A(NsN))LT.CABS{SHIFT{3)-A(NsN))IGO TO 28
INDEX=3
GO 7O 29
28 INDEX=2
29 IF{CABS{A(N-1,N-2)).GE.EPS)GO TO 30
LAMBDA(MNL)=SHIFT(2)+SHIFT(1)
LAMBDAIMNL+1)=SHIFT(3)+SHIFT(1)

ICOUNT=0
N=N=-2
GO TO 20

30 SHIFT{1)=SHIFT(1)+SHIFT(INDEX)
CO 31 I=14N
31 AT, I)=A(I,1)-SHIFT(INDEX)

PERFORM GIVENS ROTATIONS, QR TITERATES

IF(ICOUNT.LE.10)1GO TO 32
NCAL=M-N
GO 7O 38

32 NMl=N-1



s NaNel

33

34

35

36
37

38

39

40
41

42
43

TEMP1=A(1,1)

DO 37 R=1,NM1

RP1=R+1
RHO=SORTIREAL{TEMPL)*%2+AIMAG(TEMPL)*%2+
1 REAL{TEMP2)**2+AIMAGI{TEMP2 } ¥%2)
IFIRHD.NEL.D,.) GO TO 33

TEMP1=A{(RP1,RP1}

TEMP2=A{R+2,RP1)

GO TO 37

COS1=TEMP1/RHO

SIN1=TEMP2 /RHO

INDEX=MAXO{R-1,1)

O 34 I=INDEXsN

TEMP=CONJG(COS1)*A(R, I)+CONJG{SIN1)*A(RP1,1I)
A{RPl,1)=—SINI*¥A{R,I}+COS1*AlRP1,1)

A(R, I)=TEMP

TEMP1=A{RP1l,RPl)

TEMP2=A{R+2,R+1)

CO 35 I=1,R
TEMP=COS1*®A(I+R)+SIN1*A{I,RP1)

A(TI RP1L)=—CONJGI{SINL)*A{I,R)+CONJGICOS1)*A(I,RP1)
A{I,R)=TEMP

INDEX=MINO{R+2,N)

{0 36 I=RP1,INDEX

A{T,R}=SINI*A{I,RP1l)
A{TI4RP1)=CONJGICOS1)*A{I,RP1)

CONTINUE

ICOUNT=ICOUNT+1

GO TO 22

CALCULATE VECTORS

IF{NCAL.EQ.0IGO TO 58

N=M

NM1=N-1

IF{N.NE.2)GO TO 39
EPS=AMAX]1 [CABS{LAMBDA(1)),CABS{LAMBDA(2)]))*1.E-8
IF(EPS.EQ.0.,)EPS=1.E-12
H{ls1)=A(1,1)
H{l,2)=A1(1,2)
H{2,11=A(2,1)}
H(2,2)=A12,2)

0O 57 L=1,NCAL

CO 41 T1I=14N

CO 40 J=1,N
HLi{IJd)=HUI,J}
HL{TI,T)=HL(I,1)-LAMBDA{L)
CO 45 I=1,NM1

MULTI{I)=0.
INTH{1)=.FALSE,

IP1=1+1
IFICABS(HL{I+1,1)).LE.CABS{HL(I,I})})GO TO 43
INTH{I)=2 TRUES

CO 42 J=I4N
TEMP=HL{1+1,41}
HL{T+1,J)=HL(1,J)

HLITI L J)=TEMP

IF(REAL(HL(I 1)) eEQeDesAND-AIMAGI(HLI(I,I))eEQ.Q0.)GO TO 45

MULT(I)=—HL{I+1,I)/HL(TI,1)



44
45

46

47

48

49

50

i

52

53

54

55
56
57
58

DO 44 J=1PlsN
HLIT+1,J)=HL{TI+1,J)+MULT(I)*HL{I,J)
CONTINUE

DD &6 I=]1,N

VECTI(I)=1.

TWICE=,FALSE.

IF‘REAL{HL‘N,N} ,oEQ.O-tAND.AIHAG{HL{N1N) ,CEQOGO ]HL(N,N‘=EPS
VECTIN)=VECT{N) /HL{N,N)

CO 49 I=1,NM1

K=N-1

PO 48 J=K,;NM1
VECTIK)=VECTIK)-HLIK,J+1)*VECT(J+1)
IF(REALIHLIKy)K) )oEQeQs e ANDL.ATMAGIHL{KK))oEQa Qs JHL(K,K)=EPS
VECTIK)=VECT{K)/HL{K,K)

BIG=0,.

CO 50 TI=1,.N
SUM=ABS{REAL(VECT{I)))+ABS{AIMAG(VECTI(I)))
IF{SUM,GT.BIG)BIG=SUM

DO 51 I=1,N

VECTU{I)=VECTI(I)/BIG

IFI{TWICE)GD TO 53

DO 52 I=1,NM1

IF{«NOT.INTH(I))GO TO 52
TEMP=VECT(I)

VECT{II=VECT(I+1)

VECT{I+1)=TEMP
VECT(I+1)=VECT{I+1)+MULT(II*VECT(I)
TWICE=,TRUE,

GO TO 47

IF{N.EQ.2)G0 TO 56

NM2=N-2

CO 55 I=1,NM2

N1I=N-1-1

NIl=N-1+1

CO 54 J=NI1l,N
VECT{JdI=H{J4NLIIEVECT{NLI+1))+VECTIJ)
INDEX=JNT(N1I)

TEMP=VECT (N11I+1)
VECT{NL1I+1)=VECTU(INDEX)
VECT({INDEX)=TEMP

CO 57 I=1.N

A(TI,L)=VECT(I)}

RETURN

END
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SUBPROGRAM TWO: SDA 3099, EIG4

INPUT PROGRAM

999
998
997
996
4

101

10

11

13
14

16
15

COMPLEX A(T70,70),4RT(T0),2Z
FORMAT(212)
FORMATI(5{F10.6,F10.6))
FORMAT{1H1l, *"ECHO CHECK OF INPUT MATRIX*)
FORMAT(1H o 'EXECUTION TIME =',10X,F10.6}
CALL INTIME(ITIME)
READ(14999,END=5) N4M

DO 1 I=1,N

READ(1,998) (Al(lI,J)eJ=1,N)
WRITE(3,997)

PO 2 I=14N

WRITE(3,998) (A(IsJ)eJd=1,N)
co 3 1=1,70

RT{I)=(0e+0¢)
2=({1.0E+36,0.)

CALL EIG4(A,NyM,RT,2Z)

CALL INTIME(ITIMEl)
TIME=(ITIMEL1-ITIME)/1C00.
WRITE(3,996) TIME

GO TO 4

CONTINUE

STOP

END

SUBROUTINE EIG4(AsNyMyRT,2Z)
COMPLEX A(T70470) s TRACE+RT(T0) ¢XsEsZ,CSQRT
DIMENSION INT(70)

0O 101 I=1,70

INT(I)=0

TRACE=A{1,1)

CO 10 I=2,N
TRACE=TRACE+A(I,1)
WRITE(3,5) TRACE

CALL CXTRI{A,1.E-8,N,INT)
TRACE=A(1,1)

DO 11 I=2,4N
TRACE=TRACE+A(I,1)
WRITE{(3,6) TRACE

NU=0

NV=0

IFINV-N)14,12+14

NV=NV+1

NU=NV

IF{INT{NV))15,17,15
NV=NV+1



2Nz EaNaNyl

17
18

19
20

21

12

24

@~

11

12
312
13

GO TO 16

TF{NV-NU)19,18,19

RTI{NU}Y=A(NU,NU)

X=RT (NU)

WRITE(3,7) X

GO 7D 13

IF{NV-NU-1120,21,20

NP= MINC(M,NV)}

CALL CXLAGIA' 1|E‘81NP,NU1NV'RTQI’

GO TO 13

R={a590)2(AINU,NU)+AINV,NV]))
E=R%*%2-A{NU,NU)*A{NV,NV)I+A(NU,NV]*A{NV,NU)
S=CSQRTI(E)

RT(NU)=R+S

RTINV)I=R~-S

X=RT{NU)

E=RT{NV)

WRITE(3,7) X,E

GO 70 13

x={000001

DO 24 J=1,M

X=X+RT{J)

WRITE(3,8)X

RETURN

FORMAT(1H-,30X, "TRACE OF GIVEN MATRIX =',{Fl6.8,F16.8))
FORMAT(1H=-,2T7Xy*TRACE OF HESSENBERG FORM ="',{({F16.8,F16.8))
FORMAT{1H-, "EIGENVALUE",12X,(Fl6.8,F1648))
FORMAT{1H=433X, *SUM OF EIGENVALUES",{Fl6+.84F16.8))
END

SUBROUTINE CXTRI{ASEPSyN,INT)
COMPLEX A(T0,70),C,U
DIMENSICN INT{(70)

R=0.

N1l=N-1

N2=N-2

DO 21 J=1,N1

Jl=J+]1

J2=J+2

L=J1

NJl=N-J1

C=A(J,J1)
S=ABS{REAL(C))+ABS{AIMAGI(C))
IF(NJ]l .LE. ©) GO TO 15
IF{J2 .GT. N) GO TO 312

D0 12 K=J2,N

C=A(J.K}
T=ABS{REAL{C))I+ABS{AIMAGIC))
IF{T-S)12,12,11

L=K

S=T

CONTINUE

IF{ L «EQ. J1) GO TO 15

DO 131 K=1,N

C=A{KyJ+1)

A{KsJ+1)=A1K,L)}



QOO O0O

131

14

141

15

151

16

17

18
181

19

10
20
21
22

A(K,L)=C

DO 141 K=1.N

C=A(J+1,K]}
Ald+1,K)=A(L,sK)

A!L,K3=C

R=0.

CO 151 K=1,4

C=A(J,K)
T=ABS{REAL{C))+ABS{AIMAGIC))
R=AMAX1{R,T)

IF{ S .GT. EPS*R) GO TO 17
L=0

NJ1=0C

GO TO 181

C=AlJdyJd+l)

IF{ J2 .GT. N) GO TO 181
DO 18 K=J2,N
AlJ,K)=ALJ,K)/C

CO 20 TI=1.N
M=MINO{J,1-2)

U={0.’Oc)

IFt NJ1 .LE. ©) GO 1O 19
IF{J2 .GT. N} GO 7O 19
0O 8 K=J2,N
L=U+A(K, I} ¥A{J,4K)

IF( M .LE. O0) GO TO 20
00 10 K=1,M
U=U-A(KsT)*A{J+]1,K+1)
A{J+1,1)=A(J+1,1)+U
INT(J)=L

INTIN)=0

RETURN

END

SUBROUTINE CXLAGUALEPSyN1ysNUsNyRTHZ)
COMPLEX A(70,70)+P{3,71)sRySPURL1ySPURZ2,4T»S1,52,0,
1B1,82,83,Q1,Q2+E+DELZ,RT{70),CSQRT
WRITE(3,1}

BLl=1.

NU@=NU-1

LLY=D

DELOLD=1.

ROLD=1.

SUM1=0,

SuUM2=0.

A{NyN+#1)=(04,0a)

12=0.

X=0,.

PllyN+1)=1({04s40,)

P(21N+1)={00§0.)

P{34N+1)=1{044+04)

P'erU)=(1.,.0’

P(Z'NU}=‘001a0’

P(31NU'={QOp.Gl

NUl=NU+1

CuP=0.

FleZ,



IF{NUl «GT. N) G0 TO 123

DO 11 J=NUl,N

R=A(J-1,J)
11 CUP=CUP+ABS{REAL(R) }+ABS{AIMAG(R))
123 CUP=CUP/FLOAT{N=-NU)

CAP=0,

FIND THE TRACE OF A AND A*%2

(s NaNgl

SPUR1=A{NU,NU)}

SPUR2=SPUR1*%*2

IF(NUL .GT. N) GO TO 124

DO 13 J=NU1l.N

T=A{J+J)

SPUR1=SPUR1+T
i3 SPURZ2=SPUR2+T*%2+(24+0e)*¥A{J-1,J)%A(J,J-1)
124 S1=-SPUR1

$2=SPUR?2

C
C INITIAL ITERATE (EITHER GIVEN OR FROM INFINITY)
c

131 IF{REAL{(Z) -1.E+35})23,14,14

14 Fl=N-NUQ
IF(ABS(REAL(S1))+ABS{AIMAG(S1))+ABS(REAL(S2))+ABS({AIMAG(S2) )~
l11.E-6*%CAP)15,15416

15 Z=CuP
GO 10 23

16 D=1F1l-11sa40. ) )¥(F1%52-51%%2)
Z={CSQRT(D)-S11/F1

C
c EVALUATE POLYNOMIAL AND DERIVATIVES
C

23 P(l.NU)=1.0
IF {LLY+NUQ-NU)} 24,24,235

26 P{1,NU)=1.E-20
IF{NU .,GT. N ) GO TO 331

235 00 33 K=NUyN
T=—A(K,K+1)

25 COo 33 L=1,3
S=FLOAT(MOD(L-1,3))
[F{L-1 «NE. G) GO TO 251
R=={Z*P{L,K))

GO TO 252

251 R=—={Z1*P(L+K)+S*¥P{L-1,K)}
IF{ NU .GT, K) GO TO 125

252 DD 28 J=NU,K

28 R=R+PI(L,J)%*A{K,J)

125 IF(X129,434,29

29 X=0
P{1,NUI=P({1,NU}*1.E-15
IF(REAL(P{1,NU)}))30,30,235

30 F=.9%FLOAT (K-NU)/FLOAT (N-NU+1)
WRITE(3,4) 2
I=F*7
P{}.'NUlztln ,B.]

GO TO 235

34 IF (N-K) 31,31,32

31 P{LsK+1)=R
GO TO 33

32 P{LeK#+1)=R/T



OO0

o000

OO0

zNale

33
331

35

36

43

21

44

19

41

42
50
65

&6
67

55
56

57
570
572

CONTINUE
CONTINUE

SCALE DOWN THESE VALUES IF REQUIRED TO AVOID OVERFLOW

Bl=P{1,N+1)

B2=P{2,N+1)

B3=P{1,N¢1)
G1=ABS{REAL(B1))+ABS({AIMAG(B1))
G2=ABS{REAL(B2))+ABS(AIMAGI(B2)) .
G3=ABS(REAL(B3))1+ABS(AIMAG(B3))
S=AMAX1(Gl,G2)

S=AMAX1(S,G3)

IFIS — 1.E+19) 43,43,36
Bl'-:BIII]..E"'].Q’G-)
B2=B2/(1.E+19,0.)

WRITE(3,2) Z,G61,G2,G3
B3=B3/(1.E+19,0.)

REMOVE EFFECT OF KNOWN ROOTS FROM S1,52 THE LOG DERIVATIVES

Q].:'cOtQO'

Q2=1{e0,4.0)
IF(NUQ-NU)19,21,21

DO 44 J=NU,NUQ
D=({les0a)/(RT(J)-Z)

Ql=Q1+D

Q2=Q2+D**2

IF (G1l) 41,41,19

S1=Q1+82/B1

S2 = (B2/B1)*%2 - B3/B1 - Q2

FIND NEXT ITERATE

LLY=LLY+]1

IF(l E+7T-ZZ*(ABS(REAL(S1))+ABS(AIMAGI(S1))))4l,41,42
MARK=1

GO TO 100

G=N-NUQ

IF(BL1)65,65,66

H=eS5*{G~2,)

GO TO 67

H=G-1.

D=H%®{G%52-S1**2)

E=CSQRT (D)
IF(REAL{S1)*REAL(E)+AIMAG{S1)*AIMAG(E))55,56,56
E=-E

DELZ=-G/(S1+E)

Z=2+DELZ
CELNEW=ABS(REAL (DELZ) )+ABS{AIMAG(DELZ))
RNEW=DELNEW/DELOLD
ZZ=ABS{REAL(Z))+ABS{AIMAG(Z))

TEST FOR CYCLING AT 57 AND FOR LINEAR CONVERGENCE AT 571

IF{LLY-3)62,62,57

IF(DELNEW-MAX1 (3.*DELOLD,«5%2Z7Z))571,571,570
IF(BL1)571,571,572

CELOLD=CAP+1.0

ROLD=3.
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IF{LLY-15)14,14,100
571 IF(RNEW-.7*ROLL)62,58,58
58 MARK=3
IF(DELNEW—. 1*EPS*MAX1 (2Z,.01*%CAP)) 70,59,59
59 IF{BL1)61,61,60
60 I=I-DELZ
BL1=0.
GO TO 50
61 BL1i=1.
GO TO 63

TEST FOR AN EIGENVALUE

62 IF{DELNEW-10.*EPS*AMAX1(ZZ,.001%CAP))64,644563
63 DELOLD=DELNEW
ROLD=RNEW
IF(LLY-50)23,23,100
b4 MARK=2
T0 BLl1=1.

WE ACCEPT Z AS A ROOT

100 NUQ=NUQ+1
RTINUQ)=Z
WRITE(3,3) Z,LLYsMARK
LLY=C
CAP=MAX1 (2Z,CAP)
DELOLD=1,
ROLD=1.
SUM1=SUM1 +RT (NUQ)
SUMZ2=SUMZ+RTINUQ)*%2
$1=SUM1-SPUR1
$2=SUM2-SPUR2

A NEWTON STEP TOWARDS NEXT ROOT

84 IF({ABS(REAL(QL))+ABS(AIMAG(QL)) )*MAX1(Z2,.,001*%CAP)-1.E+4)86,86414
86 1=7-B2/((<54.0)*B3-B2%Q1)

GO TO 23
101 CONTINUE

RETURN
1 FORMAT(1HO50Xy 19HLAGUERRE ITERATIONS//31X,9HREAL PARTLIOX,10H IMAG.
1PART22Xy1HP11X, 7THP PRIME6Xs11HP DBL PRIME)
FORMAT(1H »*ITERATE"'20X,(F15.8,F15.8)48X,3F15.4)
FORMAT(1H ,'EIGENVALUE"y12X,(F20.8,F2048),12X,13,* [ITERATIONS,
ITEST 'y I14//)
4 FORMAT(1H +'ITERATE',20Xs (F20.8,F20.8),412X, *OVERFLOW")

END

w N
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SUBPROGRAM THREE: F4 UTEX MATSUB, EIVAL

INPUT PROGRAM

999
368
997
996
995
994
393

992
5

COMMON AR(18,18),A1(18,18)

FORMAT(612,F443,F844)

FORMAT({1H1, "ECHC CHECK OF INPUT PARAMETERS?')

FORMAT(1H, 616,F10.5,F18.8)

FORMAT(10F1C.6)

FORMAT(1H-, *ECHO CHECK OF REAL PART OF INPUT MATRIX')
FORMAT(1H-,"ECHO CHECK OF IMAGINARY PART OF INPUT MATRIX')
FORMAT(1IH T7,'M*",T11,'TEG"yT16,"IVEC',T22,"IDET",T29,"MIT"',T34,

1'MITSY,T42,'EPL",T6C,"EP27)

FORMAT(1H-, "EXECUTION TIME=",10X,F134¢€)

CALL INTIME(ITIME)

READI(14999,END=5) M,IEG.IVEC,IDET+MIT,MITS,EP1,EP2
WRITE(3,998)

WRITE{(3,993)

WRITE(3,997) M, IEG,IVEC, IDET,MIT,MITS,EP1,EP2
CO 1 I=1,M

READ(14996) (AR({I,J)eJ=14M)

CO 2 I=1,M

READ{14996) (Al(I4J)yeJ=1,M)

WRITE(3,995)

CO 3 I=1.M

WRITE(3,996) (AR{I4J)yJ=1,M)

WRITE(3,994)

CO 4 I=11H

WRITE(3,996) {(AI{l,J)yd=1,M)

ALRS=0.

ALIS=0.

GBR=0,

GBI=C.

CALL EIVAL(M,IEG,IVEC,ALRSyALIS,GBR,GBI, IDETyMIT,MITS,EP1,EP2)
CALL INTIME(ITIMEL)

TIME=(ITIMEL-ITIME) /100,

WRITE(3,992) TIME

GO 10 5

CONTINUE

STOP

END

SUBROUTINE EIVAL (M,IEG,IVEC,ALRS,ALIS,GBR,GBI,IDET,MIT,MITS,EP1,

1EP2)

DIMENSICN AR(18,18),AI(18,18),BR(18,18),B1(18,18),CR(18,18),CI(18,

118)4XR{18 JoXI(18 JsYR(18),4YI(18),ZR(18),21(18)

CaMMON CR,LC1
ITWO=2
IONE=1

N=M
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14GS

450

519

520

522

1000

1001

81¢C

917

SUMR=0,0

SUMI=0.0

PRDR=1.0

PRDI=0.C

TRACER=0C,.9

TRACEI=0.0

CO 1499 1=1,18
XR{I)=0D.

XI({1)=0.

YR(I1=0,

YI{1)=0.

IR{I)=C.

ZI1tI)=0.

0O 450 TI=1,N
TRACER=TRACER+CR(I,1I)
TRACEI=TRACEI+CI(I,1I)

SET UP MATRICES

CO 5192 I=1,4N
EO 519 J=1,4N
BR{I+J)=CRI(I,J)
AR(I,J)=CR{1I,J)
BI{I,J)=CTI(I,J)
AT(T,.J)=CI(144J)

EVALUATE DETERMINANT

ASSIGN 520 TO IA

ASSIGN 811 TG IO

MM=M

INTER=0

GO TO 535

DETR=1.0

CETI=0.0C

CO 522 K=1,M
T1=DETR*¥AR (K, K)-DETI*AT(K,K}
DETI=DETR*AT (KyK)+DETI*AR(K,K)
CETR=T1

INTER=MCD ({(INTER,2)

IF (INTER) 1000,917,810
WRITE{3,1201)

FORMAT(1H ,*'STOP'}

RETURN
CETR=—DETR
CETI=-DETI

GO0 7O ID, (811,912)

811 WRITE(3,557) TRACER,TRACEI,DETR,4DETI
557 FORMAT{1H-,'TRACFE OF MATRIX =',2F18,8,5%X,'DETERMINANT DOF MATRIX =?

1,2F18.8)

ASSIGN 912 TO ID
ASSIGN 530 TO IA
ASSIGN 40 TO 1B
ASSIGN 523 TO IC
ISL=~1

GO TO 92

523 ISL=0

EIGENVALUE GUESS OR ORIGIN TRANSLATIOCN
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403

504

10

11

12

13

106

118

108

650

109

14

80

ALR=ALRS
ALT=ALIS
IT=1

EIGENVECTOR GUESS

CO 504 I=1,N
XR{I)=1.0

XI(I)=0.0

DO 5 I=14N
AR(T,1)=AR(I,I}-ALR
AT(I,I)=AI(I,I)-ALI

FIRST ITERATICON - POWER METHOC

1J=1
BIG=0.

COMPUTE Y={(A-ALPHA)*X

CO 13 I=1,N

YR(I)=0,

YItI)=0.

CO 11 J=1,N
YRUII=YR{IIDI+AR( I, JI*XRIJ)I-ATI(I,J)*XTI(J)
YI(I)=YI(I)+AI(I,J)%XR{J)I+AR(TI,J)=XI(J)
AM=YR(T)**2+YT(])*%2

IF (AM-BIG) 13,13,12

BIG=AM

JJ=1

CONT INUE

IF (BIG) 109,106,109

EXACT EIGENVALUE AND EIGENVECTOR - Y=0. FLAG=100y

ICT=1000C

CO 108 I=1,N

JJ=1

IF (XR(I)-1.0) 108,118,108

[SL=1

GO TO 92

CONTINUE

WRITE(3,650)

FORMAT({1H ,'ERROR., FEIGENVECTOR NOT NORMALIZED IN METHOD l.')
GO TO 990

MU RAYLEIGH QUOTIENT - (Y.X)/(X,X)=MU

RQNR=0D,

RANI=0D.

RQD=O.

CO 14 I=1,N
RONR=RQNR+XR{I)*YR{I)I+XI(I)%YI(I)
ROQNI=RONI+XR(ID*YI(T)-XI{I)*YR(I)
RQD=RQD+XR (T ) *¥2+X[ ([ )*%*2
AMUR=RQNR/RQD

AMUI=RQNI/RQD

AMM=AMUR% %2+ AMUT*%*2

IF (IEG) 1002,8B1,890

ALRC=AMUR+ALR
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ALIC=AMUTI+ALI
WRITE(3,300) IONE,IJsALRC,ALIC
300 FORMATI(1H ,214,2F20.8)

TEST FIRST ITERATION
MAGNITUDE OF (Y-MU%X)=TS

Bl TS=0,
CO 15 I=1,N

15 TS=TS+(YRII)}-AMUREXR(IV+AMUIEXI{1) )*%2+
TOYT{TI-AMUREXTI(I}-AMUI*XR{ 1)) *%2

NORMALIZATION

CO 16 I=1,N
XROD)=(YR{JJIEYRII)+YI{JII*YILI)I/BIG
16 XI{I)={YR(JIIRYTI(I)=YT{JII)*YR(TI})/BIG
XRIJJII=1.0
XI{JJ)1=C. 0
111 IF (TS/RQD-EP1l) 20,20,18
18 IF (TJ-MIT) 19,20,20
19 TJ=1J+1
GO TO 10

SECOND ITERATION - INVERSE POWER METHOD

20 ICT=14
MIT2=MITS+1J
AL R=AMUR+ALR
ALT=AMUT+ALI
MM=N
CC 310 I=14N
AR{TI,I)=AR(I,I)-AMUR
310 AT(T,1)=AT(I,I)-AMUI
GO 1O 29
99 CO 100 I=1,N
AR{TI,I})=AR{I,I)-ALR
100 AI(TI,I}=AT(I,I)-ALI
29 Ti=1J+1

GAUSSTAN ELIMINATION - (A-ALPHA)*Y=X

535 CO 27 [=2,MM
IMI=1-1
CO 27 J=1,1IM1

21 FM=ARI{LJ)*%2+AT(T4J)%%2
SM=AR{JoJ ) X%2+AT (JyJ)*%2
IF {FM-SM) 24,24,22

ROW INTERCHANGE — IF NECESSARY

22 CO 23 K=J,MM
T1=AR(J.K)
TZ2=AT{J,K)
ARTJ,K)=AR(I,K)
AT{J,KI=AT({1,K}
AR{I,KI=T1

23 AT(I,K}=T2
T1=XR({J)
T2=X1(J)
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24
25

S0

26

27

530

750
751

28

752

30

974
753

32

33

31

XR{JI=XR(I)
XItJ)=xXI(1)
XR{1)=T1
XI{1)=72

Tl=FM

FM=SM

SM=T1
INTER=INTER+1

IF (SM) 25,27,425
IF (FM) 90,27,90

TRIANGULARIZATION

RR=(AR(I+J)*AR(J,JI+AT(T,J)*AT(JsJ))/SM
RI=(AR(Je JI*AT{ I, J)-AR(I+J)}*ATI(J,J))/SM
DO 26 K=J .MM

AR(T K)=AR(I+K)-RRXAR{J,K)+RI*AI(J,K)
AI{TJK}=ATIIK)-RRRAT[J,K)-RI*AR({J,K}
AR{I,J)=0.

AI(I,J)=0.
XR{II=XRII)-RREXR{J)+RTIEXI(J)
XI{I)=XI(I)-RREXTI(J)-RI*XR(J)

CONT INUE

GO TO TA, (520,530,911,530)
SMALL=1C00.

CO 28 K=14MM

TKK=K

TI=AR(KK)XE2+AT (K, K) *%2

IF (T1) 750,752,750

IF (T1-SMALL) 751,28,28

SMALL=T1

1Z2=K

CONTINUE

GO TO I8y (40,753,40)

I1Z=1TKK

IF {ISL) 753,30,30

EXACT EIGENVALUE - (A-ALPHA) SINGULAR. FLAG=2C00

ISt=1

ICT=2000

CO 974 I=14MM
XR{1)=0.0
XI{I)=0.0
YR{IZ)=1.0
YI{1Z)=0.,0

Jd=117

BIG=1.D2

IF {1Z-MM) 33,32,33
1272=2

GO TC 95

1272=12+1

CO 31 I=172Z,MM
YR(I)=D,

YI(I)=0D,
[27=MM=-17+2

IF (17-1) 95449,95

BACKWARD SUBSTITUTION
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40 171=1

41 BIG=0.

95 L0 46 I=127Z,MM
[I=MM-1+1
KK=11+1
SR=0.

S1=0.
IF {I-1) 42,44,42

42 CO 43 K=KK,MM
SR=SR+AR(ITK)*YRIK})=-AT(IT,K})*YI{K)

43 SI=SI+AR(TIK)*YI{K)+AT{II ,K}*YR(K)

4 T1=AR(IT, IT)%%2+AT(IT,T1)%**2
YRIII)I=(AR(ITLII)*(XRITI)=-SRI+ATI{IT,,ITI*={XI(ITI)=-ST))/T1
YI{T D) =(AR(TIT I TR IXTUTT}=-STII-AT{II,IDI*{XR(IT)-SR))/T1
AM=YR{TTI)*%2+¥YT {11 )*%*2
IF {AM-BIG) 46446445

45 JJ=11
BIG=AM

46 CONTINUE

NORMALIZATION - X=NORMALIZED Y

49 CO 47 I=1,MM
XRIII=(YR{JUIXYROII+YI{JIII=YI(I)}/BIG
47 XI(I)=(YRUJJI=YTI(II-YI(JJ)XYR(TI)}/BIG
XR1JJI)I=1.D
XI{JJ)=0.0
92 IFIN) 116,11649921
3921 CO 601 I=1,N
CO 601 J=1,N
AR(T4J)=BRI(I,J)
601 AI(I,J)=BI(I,4)
116 IF {ISL) 755,500,860
755 GO TO 1IC, {(523,704,525)

ALPHA RAYLEIGH QUOTIENT - {AX,X)/(X,X)=ALPHA

50 ALR=0.
ALT=C,
SUM=0,.0
55 00O 52 I=1,N
YR{I}=0.
YI{I)=0.
CO 51 K=1,N
YRIT)I=YR{I)+AR(I,KI*XRIK)-AI(I,K}*XI{(K]
51 YIMT)=YI{I)+AR(TKIEXT(K}+AT(I,K}*EXR{K)
ALR=ALR+XR{I)RYR{I}+XI(T)*¥YI(I)
ALT=ALI+XROIVHYI(I)-XICI)*YRL{I)
52 SUM=SUM&XR(TIIFXR2+XT 11 %%R2
ALR=ALR/SUM
ALT=ALI/SUM
AM=ALR**2 + AL [ *%2
IF (IEG) 100C,83,82
82 WRITE(3,300) ITWO,I1JsALR,ALI

TEST SECOND ITERATION
83 T5=0.

E0 53 I=1,N
TiI=YRIT)I-ALR*=XR{I)+ALI*XI(I)
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93
301
400
401

402

820

&C
63
64

61

&8

62

65

&6

T2=YI{T)-ALR*XI(T}-ALI*XR(I)
TS=TS+T1%%2+4T2%%2

IF {TS/SUM-EP2)6C,60,3721

IF {(IJ-MIT2) 99,400,400
WRITE(3,401) IT

FORMAT(1H ,*INVERSE POWER METHCD NOT CONVERGED ON TRY NUMBER',15)
IF (IT-3) 402,990,402
ALR=ALR+GBR

ALT=ALI+GSBI

IT=1T+1

WRITE{3,820) ALR,AL!I
FORMAT(1H ,'ALPHA=',2F2C.8)
GO TO 4

ISL=0

WRITE(3,64) ALR,ALI
FORMAT{1H—, *EIGENVALUE=",2F18.8}
ZR{N)=ALR

ZI(N)=ALI

SUMR=SUMR+ALR

SUMI=SUMI +ALI
T1=PRDR*ALR-PRDI*ALI
PRDI=PRDR*ALT+PRDI*ALR
PRDR=T1

CEFLATICN OF MATRIX
IF (JJ=N) 61,65,461
PERMUTATION CPERATION

T1=XR({JJ)
T2=X11JJ)
XR{JJ)=XR(N)
XI{JJ)=XT (N}
XR(NI=T1
XI(N)=T2

CO 68 K=1,N
T1=AR{JJyK)
T2=A1{JJ+K)
AR(JJHyK)=AR(N,4K)
AT(JJsK)=AT(N,K)
AR(N,K)=T1
AT{N,K)=T2

CO 62 K=1,N
T1=AR(KsJJ)
T2=AT1(K,JJ)
AR{K,JJ)=AR(K,N)
AT{KsJJ)=AT(K,N)
ARIK,NI=T1
AT(KyN)=T2

CEFLATION

A=N-1

CO 66 I=1,N

CO 66 J=1,N

AR(T 3 J)=AR(I4J)-XRIT)*ARIN+L,JI+XT{I)*AT(N+1,J)
AT(T 4 J)1=AT I J)-XRUIDI)*AT{N+L1,J)=-XI(I)*AR{N+1,J)
CO 600 I=1,4N

CO 600 J=1,N
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BR{I,J)=AR(I,J)
600 BI(I,J)=A1(I,J)

COMPUTE EIGENVECTOR AND/OR CETERMINANT AS REQUIRED

91C IF (IDET) 1G00,527,7C0
527 1F (IVEC) 100C,525,700
700 DO 702 I=1,M
CO 702 J=1,M
AR(T1,J)=CRI(1I,4)
AI(T40)=CI(I,J)
IF (I-J) 702,701,702
701 AR(I4I)=AR(I,1)-ALR
AT(I,I)=AT(I,1)-ALI
702 CONTINUE
MM=M
INTER=0
ASSIGN 911 TOC IA
GO TO 535
911 ASSIGN 530 TO IA
IF (IDET) 1000,914,520
912 WRITE(3,913) DETR,DETI
913 FORMAT(1H +*'DETERMINANT=',2F18.8)
ILAG=SQRT (AR{1l,1)*¥2+AI(1,1)%%2)
ILIT=7LAG
CO 923 [=2,M
IMAGT=SCRT (AR{I,I)*%2+AT(I,1)%%2)
IF (ZLAG-ZMAGT) 922,92Nn,92¢
92C IF (ZLIT-ZMAGT) 923,923,921
921 ZLIT=ZIMAGT
GO TO 923
922 ZILAG=IMAGT
923 CONTINUE
WRITE(3,924) ZLAG,ZLIT
924 FORMAT(1H ,*LARGEST AND SMALLEST MAGNITUDES OF DIAGONAL ELEMENTS O
lF TRI. MATRIX=',2F18.8)
914 ISL=-1
IF {(IVEC) 1000,4916,915
915 D0 703 I=1.M
XR(I)=0.
703 XI(I)=0,
ASSIGN 753 TO 1B
ASSIGN 704 TO IC
GO TO 530
916 ASSIGN 525 TO IC
GO 10O 92
T04 WRITE(3,705) (XRUID$XI(I),aI=1,M)
705 FORMAT(1H-,'ASSOCIATED EIGENVECTOR IS', 2F20.8)
ASSIGN 40 TO IB
525 IF (N-1) 5264674523
67 ALR=AR(1,41)
ALT=ATI(141)
SUMR=SUMR+ALR
SUMI=SUMI +AL1
T1=PRDR*ALR-PRDI*ALI
PRDI=PRDR*ALI+PRDI*ALR
PRDR=T1
ZR{1)=ALR
ZI(1)=ALI
WRITE(3,320) ALR,ALI



320 FORMAT{1H-,'FINAL EIGENVALUE =',2F18.8)
h=0
GC TC 910
526 WRITE{3,321) SUMR,SUMI,PRDR,PRDI
321 FORMAT(1H-,"'SUM OF EIGENVALUES =',2F18.8,5X,"PRODUCT OF EIGENVALUE
1S =',2F18.8)
990 CONTINUE
RETURN
END
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The ease with which many "library" computing subprograms are
adaptable for use on a particular computing installation is usually ov=r-
estimated by the typical computing center user. Because of the varia-
tions in programming languages and computing hardware, the immediate
successful operation of a computing subprogram which was written for use
at another installation is highly improbable. This project was under-
taken to report the major problems encountered when a typical computing
user attempts to make three borrowed subprograms operational on a partic-
ular computing installation.

‘The author chose to use subprograms which were written to computre
the eigenvalues of real and complex matrices. Two of these subprograms,
ALLMAT and EIG4, were obtained from SHARE while the third, EIVAL, was
obtained from CO-OP. Both SHARE and CO-OP are cﬁoperative computing
users organizations which distribute library subprograms.

The author encountered different types of problems associated
with each of the three subprogrems. ALLMAT proved to be the easiest to
adapt, the wmost accurate, and the fastest of the three subprograms. The
adaptation of ALLMAT included writing an input-output program and cor-
recting certain undefined variables. A total of four hours of programming
and keypunching was utilized in making ALLMAT operational.

Subprogram EIG4 was the most difficult teo adapt. This subprogram
proved to be the least accurate of the three and also the slowest. Errors
encountercd in the adaptation of EIG4 included the corrscting of undefined

variables, checking fo. corrzect DO parameters, and correcting certain
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FORTRAN IV library function veferences, 'The user spent a total of ten
hours reprogramming EIG4 tn mzke it oorerational.

EIVAL, the third subprogram selected by the author, presented
similar problems to the user. These obstacles included the writing of
an input program, the correcting of FORTRAN IV library function references
and the initialization of certain variables. The user spent approximately
six hours making EIVAL operational.

The three subprograms were tested with both real and complex
test matrices. The user was able to convert EIVAL to double prescision
because of the programming techniques used in its construction. The
double precision version proved to be highly accurate in its calculations.
2IG4 was found to be inadequate in calculating the eigenvelues of symmatric

real or complex matrices.

it

Several logistical problems were encountered by the user. Thes
problems were specific ones faced by the user in the soluticn of the
proposed problem,

Many barriers were encountered by the author in attempting teo
adapt the three subprograms for use on the Kansas State University cow-
puting installation. These barriers were not insurmountable but they
must be taken into account when a computing center user considers adspting

a borrowed subprogram for use on an available computing installaticn.



