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reported even though from a practical standpoint their effects are indistinguishable, a long-

standing problem in hypothesis testing. The concept of effect size is widely used in the 

social sciences to deal with this issue by computing a unit-free estimate of the magnitude 

of the departure from 0H in terms of a change in location.  I extend this approach by 

replacing 0H  with hypotheses { *
0H } that state that the distributions { }iF  are possibly 

different in location and or scale, but close, so that rejection provides evidence that at least 

one treatment has an important practical effect. Assessing statistical significance under *
0H  

is difficult and typically requires inference in the presence of nuisance parameters. I will 

use frequentist, Bayesian and Fiducial modes of inference to obtain approximate tests and 

carry out simulation studies of their behavior in terms of size and power. In some cases a 

bootstrap will be employed. I will focus on tests based on independent random samples 

arising from K   3 normal distributions not required to have the same variances to 

generalize the 2K    sample parameter P( 1 2X X ) = 2 1( ) ( )F y F dy and non-centrality 

type parameters that arise in testing for the equality of means. 
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Chapter 1  Introduction 
 

The commonly used practice of comparing the locations of two or more distributions 

as a method for assessing how different one treatment is from another can be misleading, 

even when they have the same shape. Suppose, for example that X1 and X2 are independent, 

normally distributed random variables, Xi ~ N( 2,i i  ), with cumulative distribution 

functions denoted by (( ) / )i ix    ,  i = 1,2, where  is the standard normal distribution 

function.  Then, if the means are equal  

2/1))(/)(()( 2
2

2
1212112   XXP ,                           (1.1) 

 

and can be made arbitrarily close to ½ by adjusting the variances, equal or not,  no matter 

how different the means are.  This behavior is illustrated in Table 1 and Figure 1 below. If, 

for example,  X1 and X2 represent yields of two different varieties of wheat, all other things 

being equal, a farmer would prefer variety one to variety two if  12  > 0.95, regardless of 

how close the means are. Correspondingly,  if 1  is a lot bigger than 2  but  12  is close 

to ½ , the same farmer might prefer variety two to variety one if it is cheaper to plant, grow 

and bring to market. The failure of 12 1 2      to adequately represent the difference 

between two distributions arises here because 12  ignores the variation in the distributions 

and is not scale invariant.  Furthermore, standard tests for the equality of means based on 

independent random samples are consistent and will declare the distributions to be 

different when sample sizes are large, no matter how close the means are, as long as they 

are not identical. Broadly framed, this long-standing issue concerns distinguishing 

statistical from practical significance.  These problems can be somewhat remedied by 

using what is called an effect size, denoted ES, given here by ES1 = )(/)( 2
2

2
121    

or by ES2 = 1 2 1 2( ) /( )     , to assess the separation between two normal distributions. 

Note that  12  is a monotone increasing function of ES1 and that both decrease rapidly in 

Table 1 as 2 = 2
1 = 2

2  increases. These location-scale invariant effect sizes are examples 

of what I call intrinsic separation parameters. 
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Table 1. The Relationship Between 2  and 12  under Normality for Fixed 21    
 

21    2  ES1 ES2 12  Figure 

1 0.1 2.23607 1.58114 0.98733 Figure1.1 

1 1 0.70711 0.50000 0.76025 Figure1.2 

1 10 0.22361 0.15811 0.58847 Figure1.3 

1 100 0.07071 0.05000 0.52819 Figure1.4 

1 1000 0.02236 0.01581 0.50892  

 

 

 
 
Figure1. Separation Between Two Normal Distributions Having Common Variance  

      ( 1 2 1   ) 

                                                        
 
 
 
 
 
 
 
 
 
                         Figure 1.1 2 =0.1                                               Figure 1.2 2 =1 

   

 

 

 
 

 
 

                        Figure 1.3 2 =10                                                 Figure 1.4 2 =100 
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Definition:  Given K continuous distributions,  F = { }iF ,  a real-valued function IS(F), 

invariant with respect to location-scale transformations of the form # ( ) ( )i iF x F ax b  , 

0,a  1, 2,...,i K , whose value increases with increasing differences among the { iF } will 

be called an intrinsic separation parameter (ISP).  

 

The need for this new terminology arises because the term effect size as a measure of 

separation has been identified almost exclusively and narrowly with differences among 

locations of distributions  of the from F = { ( ) (( ) / )i i iF x F x    , i > 0, 1, 2,...,i K }, 

restricted by the assumption that 1 2 K       . Specifically, for comparing the means 

of two normal distributions having the same standard deviation  , the effect size is 

commonly taken to be ES = 1 2( ) /   . The literature in this area contains no work on 

inference for ES1 and ES2, which are special cases of my research. The usefulness of an 

ISP depends on the extent to which its values have meaning to the user.  
 

My research develops and explores inference for intrinsic separation among two or 

more distributions. The parametric part of my work will expand the scope of conclusions 

that can be reached by comparing distributions of the form { ( ) (( ) / )i i iF x F x    , i > 

0, 1, 2,...,i K }, without requiring that they have the same scale, based on a realization of 

independent random samples  {X i = xi = ),...,,( 21 iinii xxx }, with sample means and 

variances, denoted {( 2,i iX S )}. Letting IS(F) denote an intrinsic separation parameter of 

interest,  I propose testing 
  

                                         H0: IS(F)    vs   H1: IS(F)  > ,                                      (1.2) 

 

where   is a user input value. The value of   ideally represents the smallest magnitude 

of separation among the distributions as measured by a particular IS(F) which is of 

practical importance. An alternative,  classical approach to this issue, as presented in 

Hodges and Lehmann (1954) and Lehmann and Romano (2005), is to use three 

hypotheses; H(0): IS(F ) = 0, H(1): 0 < IS(F)  , and H(2) : IS(F ) > , where H(1) 
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represents an indifference zone in the parameter space.  Constructing tests for these three 

hypotheses can be very difficult and I will not pursue this approach.  Inverting a test for 

(1.2) also yields confidence sets for IS(F), which can be used to provide a data-based 

assessment of the magnitude of the separation among the distributions.  In the one-way 

analysis of variance, K  2,  based on independent random samples from normal 

distributions having means { i , i = 1,2,…, K} and the same  unknown variance 2 , IS(F) 

is commonly, if only implicitly, taken to be the non-centrality parameter of the F - test, 

given by 

                                              ISAOV_EQ(F) = 



K

i
iin

1

22 /)(  ,                                    (1.3) 

where 



K

i
ii Nn

1
/  , 




K

i
inN

1
. The standard procedure here too is to take   = 0 so 

that neither H0, which is never true in practice, nor H1 accurately indicates just how 

different the distributions are. In this case, testing (1.2) with   > 0 is relatively easy to 

carry out, as is described for K = 2 in Hodges and Lehmann (1954) and for K  3 in 

Murphy and Myors (2004).  Specifically, since the F- family has monotone likelihood ratio 

with respect to its non-centrality parameter, having observed obsF F , rejecting H0 if 

obsF exceeds the 1-   quantile of the non-central F-distribution with degrees of freedom  

K-1 and N-K and non-centrality parameter  , yields a consistent, size   test.  

  
Now, consider the one-way normal theory analysis of variance described above, 

where the variances { 2
i } need not be equal. An obvious extension of (1.3) is the intrinsic 

separation parameter defined by 

                                   ISAOV(F) = ]/)([
1

22



K

i
iiin  ,                                       (1.4) 

where now    



K

i
ii

K

i
iii nn

1

2

1

2 ///  . A reasonable, exact test for (1.4) is not available. 

However, the random variable  

                                             Q( ) = 2

1 1
( ) /

K K

i i w i
i i

w X X w
 

  ,                                       (1.5) 
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where 2/i i iw n   and 
1 1

/
K K

w i i i
i i

X w X w
 

  ,  has a non-central chi-square distribution with 

K-1 degrees of freedom and non-centrality parameter equal to ISAOV(F) as given in (1.4).  

For K = 2, using ISAOV(F) and taking   = 0 reduces to the Behrens - Fisher problem. Rice 

and Gains (1989) developed a Fiducial test based on Q( )  and Krishnamoorthy, Lu, and 

Mathew (2007) carried out  a parametric bootstrap test based on ),...,,()( 22
2

2
1

2
KSSSSQ  , 

both for the equality of means,  = 0.  I will extend both of these results and develop 

Bayesian and Fiducial approaches to cover inference for   > 0 in future research . 

          

One area I will focus on concerns samples from normal distributions and the class of 

intrinsic separation parameters given by 

                                     ISLIN(F) = 2 2

1 1
/

K K

i i i i
i i

l l 
 
  ,                                             (1.6) 

 
where 1 2( , ,..., )Kl l l l  is a user input vector of constants that sum to 0. Note that for 

independent random samples from normal distributions,  [ISLIN(F)] = P(
1

K

i i
i

l X

  >0) is 

one way of extending ( ),ij i jP X X i j    , defined above, from  K = 2 to K = 3 or more 

distributions.  Two other ways to accomplish this without assuming a particular form for 

the underlying distributions are by using the ISP’s given by 

 

                                        ISMAX(F) = Max{ ij },                                                           (1.7) 

             or                        ISAV(F) = ))1(/(},{2 


KKMax
ji

jiij  .                               (1.8) 

 

Absolutely no treatment effect occurs for (1.7) and (1.8) when  = ½ and when   = 0 for 

(1.6). Taking  =    ½ for (1.7) and (1.8) and  = 1( ) for (1.6) denotes increasing 

separation as   approaches 1.  The separation in (1.6) may be viewed as one-sided, as 

dictated by the choice of the coefficients { }il ,  and two-sided for (1.7) and (1.8). Under 

normality, no matter what the variances may be, when all the means are equal, ISAOV(F)  

and ISLIN(F) are 0, the minimum value of ISAOV(F). In calibrating ISLIN(F), I assume that 
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the coefficients { }il are chosen so that increasing ISLIN(F) corresponds to increasing 

separation. Thus, for example, }1 ,2/1 ,2/1{}{ il  indicates a preference for showing 

that there is high probability that X3 is greater than (X1+X2)/2. But, if all the means are 

equal, (1.7)-(1.8) are guaranteed to equal to ½ , their minimum value, only if the 

distributions are also symmetric. These ISP’s can be used to assess treatment effects that 

involve both means and variances for skewed as well as symmetric distributions. ISP’s 

(1.7) and (1.8) are also invariant with respect to an increasing transformation of the data. I 

will describe below results I have obtained on inference for (1.6), (1.7) and (1.8).   
 

Perng, et al. (1989) and Kemp, et al. (1993) constructed normal theory and 

nonparametric tests, respectively, for IS(F) = (1) (2)
1p p    and   > 0, when K = 2, where 

( )i
p  is the pth quantile of  Fi, 0 < p < 1/2. Note that under normality, IS(F) = ES2 with 

1(1 )p   . Here, I will attempt to extend this approach to three or more distributions. 

 
Effect size (ES) is a key concept that has been thoroughly discussed by Cohen (1988) 

in his book Statistical Power Analysis for the Behavioral Sciences (2nd ed). In general, 

effect size means “the degree to which the null hypothesis is false.” It measures the degree 

of departure from the null hypothesis. Cohen notes that the powers of many commonly 

used tests are functions of sample size (n), the population effect size (ES), and the desired 

size  . It is possible in principle to solve for any of the four values (power, n, ES,  ) 

given the other three. Cohen calibrates the practical importance of an estimated effect size 

as being small, medium or large by relating it to power.  I will develop a similar calibration 

for ISP’s and develop a scheme for estimating the sample sizes necessary for my tests to 

have desired power at specified alternatives in future research. 

 

All of the problems I will study involve inference in the presence of nuisance 

parameters. Pivotals, when they exist, provide direct solutions to this difficult problem. 

Specifically, suppose that interest lies in inference for ( )   . A quantity of the form 

),( DataQQ   is pivotal if its distribution PQ is free of   when ( )   . A test of 

0 0:H     can then be carried out at type I error rate  by rejecting 0H  if 
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CDataQQ  ),( 00 , where 
0 0( )HP Q C   . Such pivotals do not exist for my 

problems. Instead, in Chapter 2, I will base tests on functions of the parameters and data  

of the form ( ( ), ( ), )Q Q Data    , whose distributions under 0 0:H    , denoted 

( | ( ))QF   ,are known up to the additional nuisance parameter ( )  . Let ̂ and ̂  be 

estimates of  and  , respectively, obtained from Data . Then, given 

0
ˆ( , , ) obsQ Data q   , I will construct and investigate an approximate p-value defined as 1-

ˆ( | )Q obsF q  . This approach is related to what  Bayarri and Berger (2000) termed the plug-

in method. I will also use a parametric bootstrap to calibrate the distribution of a likelihood 

ratio test. This will require solving the difficult problem of finding estimates of 

 constrained by 0H .  

 

In Chapter 3, with ( | ( ))QF   = ( )QF  , I will compute p-values = p( ) as functions 

of the nuisance parameters  and “average” these over Fiducial and Bayes Posterior 

distributions on  .  Berger and Selke(1987) assert that the posterior probability of 0H  is a 

better measure of the evidence in the data than  a p-value. Accordingly, I will also use 

Fiducial and Bayes Posterior distributions to evaluate the probability of the null hypothesis 

given the data and investigate the use of these values as evidence for choosing between 0H  

and 1H .  Although some of the problems I present in Chapter 4 fall outside of the scope of 

inference for ISP’s, they are interesting related issues I worked on while preparing this 

dissertation. In Chapter 5, I present a simulation study based on the level and power for 

comparing those p-values in testing ISLIN(F). At the same time, a simulation study based 

on the level and power for testing ISMAX(F) and ISAV(F) are also presented in Chapter 5. A 

summary and conclusions are presented in Chapter 6. 
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Chapter 2  Frequentist Tests for ISLIN(F) Assuming Normality 
 

 

2.1 A Plug-In Test 

 

To review some of the ideas presented in the introduction, suppose we have K normal 

distributions, },...,2,1),,(~{ 2 KiNX iii  , and independent random samples { ijx , j = 

1,2,…, in } from each, iN n .  For K = 2, as noted above, 

                                        ))(/)(()( 2
2

2
12121   XXP                                (2.1) 

                                                 12 , 

 
is a location-scale invariant measure of the extent to which the distribution of  1X  lies 

above the distribution of 2X .  Specifically, if  12  is close to 1.0, most independent copies 

of 1X  will be larger than most independent copies of 2X . Consider tests of the form 

 

                                               120 :H  vs  121 :H ,                                         (2.2) 

 

where   is a proportion at least 0.5. If   = 0.5 and 1 2  , the pooled t-test provides an 

exact size   test of (2.2). If   = 0.5 and 1 2  , (2.2) is the familiar Behrens-Fisher 

problem, for which there is no reasonable, exact size   test. In this case, Welch’s test 

(Welch 1938) is an approximate size  test.  The Mann-Whitney test is only guaranteed to 

have its nominal size for (2.2) when F1 = F2 under 0H  and hence   = 0.5. My goals here 

are to extend the concept of separation given in (2.1) to the case of K  3 normal 

distributions and develop tests for the corresponding generalizations of (2.2) that do not 

require an assumption of equal variances. I will call a test having approximate p-value ‘p’, 

a nominal size   test if the null hypothesis is rejected whenever p  . Simulation can 

then be used to check if the actual type I error rate is close to its nominal value.  
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To generalize (2.1) so as to define separation among 3K  distributions, let 

),...,,( 21 K
T XXXX  , ),...,,( 21 K

T llll  0 , 0
1




K

i
il , which is needed for location 

invariance, 1
2
1

  , where TX  denotes the transpose of X  and the components of  the 

vector l  are user input constants. Separation can then be defined by a preference for 

hypothesis 1H  over hypothesis 0H , where, 

 

      )0(   :0 XlPH T , 

 )0(   :1 XlPH T .                                                  (2.3) 

 

Increasing separation corresponds to increasing  . Since Xl T  is distributed 

)  ,(
1

22

1



K

i
ii

K

i
ii llN  , letting   )(n , (2.3) can be expressed as: 

 

                            0 :    ( , )    H n   ,     1 :    ( , )  >  H n   ,                         (2.4) 

 

where   22/) ,( iiii ll  = (F)LINIS . 

 

Constructing tests for (2.4) requires dealing with the nuisance parameters 2
1

2 / ii  , 

Ki ,...,3,2 .  We begin by noting that since 2 2~ ( ,   / )i i i i i i il X N l l n    , we have 

that 

                                          Z    )1,0(~
/22

N
nl

lXl

iii

iiii


 




, 

                                         W   2
)(

22   ~  }/)1{( KNiii χSn    , 

 
and W and Z are independent. Hence, 
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)(
/)1(

//
22

22

KN
Sn

nlXl
T

iii

iiiii












                                                         (2.5) 

 
W

Z 
 )//),,(,(' ~ 22  iiiii nllnKNt  , 

 

where ),(' t  denotes a non-central t-distribution with non-centrality parameter   and 

 degrees of freedom. Dividing numerator and denominator of T by 2
1 , setting 1  = 1 

and letting ),...,,1( 2 K  , T  can be expressed as 

 

  

)(
)/)1()(/(

)(
/)1(

//
)(

222
1

2

2
1

2

KN
Snnl

Xl

KN
Sn

nlXl
TT

iiiiii

ii

iii

iiiii




















  .               (2.6) 

 

Let )(obst  be the observed value of )(T and 



K

i
inN

1
.  If { i } were known, a p-value 

for 0 0: ( , , )H n    , 1 0: ( , , )H n     could be defined by 

 

( ) ( ) ( ( ) )obsp p value P T t      ,                                     (2.7) 

 

where )  ,('  ~  0  KNdftT . Now, letting }min{)1( inn   and }max{)( iK nn  , we 

have that under 0H  given in (2.4), 

 

                                         (1) ( )( , ) ( , , ) ( , )Kn n n            .          

                                                            

Since a non-central t-distribution has monotone likelihood ratio in its non-centrality 

parameter, computing ( )p   in (2.7) by taking  ))(  ,('  ~  )( nnKNtT K  provides a 

conservative test of (2.4), which is exact size   if )()1( ... Knn  = n.  To handle the 



11 

realistic case where   is not known, estimate its components by 2
1

2 /ˆ SS ii  , i = 2,3,…,K 

and   plug )ˆ,...,ˆ,1(ˆ 2 K
T   into (2.6), yielding a test statistic 

 

                     




 






iii

ii

iiiiii

ii

nSl

Xl

KN
Snnl

Xl
T

/
)(

)ˆ/)1()(/ˆ(
)ˆ(

2222 
   .                     (2.8) 

 

An approximate p-value can then be defined as 

 

    )ˆ(()ˆ(valuep)ˆ(  obstTPp  ) .                                   (2.9) 

 

Where ( )~ '( ', ( ))KT t df n n  and 'df  is given by the approximation due to 

Satterthwaite(1946), 

    




















K

i
ii

i

i

K

i
i

i

i

ns
n
l

s
n
l

df

1

22
2

2

1

2
2

)1/()(

)(
    '      .                                          (2.10) 

 

Based on a preliminary simulation (given in the Appendix A, Figure A.1), the distributions 

of p-values given in (2.9) appear, as desired, to be approximately uniform under the null 

hypothesis if the sample sizes are equal. But, for unequal sample sizes, especially for cases 

where the range of the sample sizes is large, these p-values have a highly skewed 

distribution under 0H .   

 

This situation can be improved by using an estimate of the non-centrality parameter 

  instead of an upper bound.  To carry this out, first, rewrite the non-centrality parameter 

  as follows 

  iiiii nll // 22  
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iii

ii

ii

ii

nl

l

l

l

/22

22

22 












                                         (2.11) 

    
2 2

2 2 /
i i

i i i

l

l n




  


, 

 

so that under 0H ,   
iii

ii

nl

l
n

/22

22








    . Again using the fact that the noncentral t-

distribution has monotone likelihood ratio in its noncentrality parameter, p-values may be 

computed using 
2 2

2 2 /
i i

i i i

l
n

l n






 


, assuming that the population variances were known. 

Accordingly, again letting { 2
iS } denote the sample variances, define an estimate of  by   

                                                     
iii

ii

nSl

Sl
n

/
ˆ

22

22




  .  

 

Using    =  'df (the Satterthwaite approximation, (2.10) ), results in an estimated p-value, 

given by: 

        2 2( ) ( ( ) )obsp value S P T t S    ,                                    (2.12) 

where )ˆ  ,'('~ dftT . 

 

Preliminary simulations (given in the Appendix A, Figures A.2-A.3) indicate that this 

approach appears to yield p-values that are approximately uniformly distributed under 0H  

and tests that have good power, except when the range of sample sizes is very large. A full 

simulation study investigating the size and power of this test is conducted in Chapter 5. I 

will investigate its robustness with respect to departures from normality and the presence 

of outliers in future research.  

 

 



13 

2.2  A Likelihood Ratio Test 
 

The log-likelihood function for K independent random normal distributions is given 

by 
 

      
 


K

i

n

j
iiij

K

i
i

i
i

xnL
1 1

22

1

22 2/)()2log(
2

),(log  .                        (2.13) 

 

This log-likelihood is maximized by )ˆ,ˆ(log( 2L , where ̂  and 2̂  are the well known 

maximum likelihood estimators. Carrying out a likelihood ratio test requires maximizing 

the log-likelihood constrained by 0H  in (2.3), which can be difficult to carry out since this 

constrained likelihood is a very complicated function in a typically high dimensional space.  

For example, Buot, et al. (2007) and Drton (2008) show that for the Behrens-Fisher 

problem, K = 2 and   = 0.50, the likelihood function can have multiple modes under 0H . 

As a first step in addressing this problem, I develop a Jacobi type algorithm for finding a 

local maximum which uses a Lagrange multiplier to incorporate the boundary constraint 

 






n

l

l

K

i
ii

K

i
ii









    

1

22

1 .                                                      (2.14) 

Form the function D (  2 , ) defined by  

 

D = ),(log 2L 2 2

1 1
 ( /   )

K K

i i i i
i i

l l n  
 

                                                           (2.15) 

        = 
 


K

i

n

j
iiij

K

i
i

i
i

xn
1 1

22

1

2 2/)()2log(
2

  + 2 2

1 1
 ( /   )

K K

i i i i
i i

l l n  
 

   ,   

      
where   is constant and is the Lagrange multiplier of the constraint (2.14). Taking partial 

derivatives and setting them equal to zero, yields the equations 

 



14 

0
id

dD


  for i =1,2,…K,  

02 
id

dD


 for i =1,2,…K ,        

 

Some simplification yields the following likelihood equations,  

      0
ˆ

ˆ

ˆ
2

1

22









i

iiii
K

j
jj

i nxn

l

l






   ,   i =1,2,…K,                                      (2.16) 

      0
)ˆ(2

ˆ

)ˆ(2

)ˆ(

ˆ2 2/3

1

22

1

2

22
1

2

2 











K

j
jj

K

j
jji

i

n

j
iij

i

i

l

llx
n

i










   ,  i =1,2,…K.                (2.17) 

 

 Equation (2.16) becomes 

      
2

2 2

1

ˆˆ
ˆ

i i
i i K

i j j
j

lx
n l

 





 


      .                                                   (2.18) 

 

  Now, multiply (2.18) by il  on both sides and sum. Then, 

2 2

1 1 1 2 2

1

ˆˆ
ˆ

K K K
i i

i i i i K
i i i

i j j
j

ll l x
n l


 

  



   


, 

     







  




 




K

i

K

i
iiiiK

i i

ii

K

i
ii

lxl

n
l

l

1 1

1

22
1

22

ˆ
ˆ

ˆ





    ,                     by (2.14) 

     









  




 




K

i

K

i
iiiiK

i i

ii

K

i
ii

lnxl

n
l

l

1 1

22

1

22
1

22

ˆ
ˆ

ˆ





  . 

Plug the above equation into (2.18), which then can be written as 
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








 K

i i

ii
i

K

i
ii

K

i
iiii

ii

n
ln

xllnl
x

1

22
11

222

ˆ

]ˆ[ˆ
ˆ








                                      (2.19) 

 

Next, from equation (2.14), equation (2.17) becomes: 

   0
)()ˆ(

)ˆ(

ˆ 2

1

32

22
1

2

2 











K

i
ii

i

i

n

j
iij

i

i

l

nl
x

n

i









 , 

    0
)(

)ˆ()ˆ(ˆ
2

1

2232

1

22 







K

i
ii

ii
n

j
iijii

l

nlxn
i




  . 

 

From equation (2.16), the above equation can be rewritten as: 

  0ˆ)ˆ(
)(

ˆ
)ˆ(ˆ

1

22

2

1

23

1

22  









K

i
iiiiiK

i
ii

ii
n

j
iijii lnxn

l

nlxn
i





  . 

   0)ˆ(
ˆ

)ˆ(ˆ

1

22

1

22 












 

iiiK

i
ii

ii
n

j
iijii nxn

l

nlxn
i

. 

   















K

i
ii

iiiii
i

n

j
iij

i

l

nxnnln

x
i

1

2
1

2

2

ˆ

)ˆ(

)ˆ(
ˆ










   ,    i =1,2,…K.                                         (2.20) 

 

Therefore, under the boundary constraint (2.14), candidate maximum likelihood estimators 

of {( i , 2
i )} are given by the solution of equations (2.19) and (2.20).  In Section 2.5 

below I present an iterative algorithm for solving these equations. Henceforth, following 

the usual practice, I will refer to these solutions as maximum likelihood estimators, 

denoted MLE’s. 

 



16 

There are 2K unknown parameters and solving this system is difficult. A likelihood 

ratio test can be carried out by rejecting 0H  if  

                                            c
L

L
H 

)ˆ,ˆ(

),((sup

2

2

0




    ,                                              (2.21) 

 

where c is calibrated so that the test has nominal size  . The performance of this test and 

comparisons to other tests I derive are investigated by simulation in Chapter 5. Letting 

 ln2 , from the results of the simulation study described later (Appendix B, Result 

4), the asymptotic distribution of   under 0H  appears in this nonstandard case not to have 

a chi-square distribution with one degree of freedom. Drton (2009) studies a variety of 

nonstandard cases and notes that this behavior can result from the nature of the local 

geometry of the parameter space. It’s not even clear whether   has a limiting distribution 

and if so whether that distribution is free of the true parameter. This issue needs further 

study. 

   

Jaber and Cox, in an unpublished manuscript, derived a likelihood ratio test for the 

two-sided Behrens-Fisher problem. Specifically, for K = 2, let l  = (1,-1) , and n = 0; the 

hypotheses (2.3) becomes 210 :  H  against the alternative 211 :  H . Under this 

null hypothesis, using   to denote the common unspecified mean under 0H , the maximum 

likelihood estimators of  , 2
1 , 2

2  are the solutions to likelihood equations, given  

implicitly by 

2
12

2
21

2
122

2
211

ˆˆ
ˆˆ

ˆ




nn

xnxn



  

2
1

2
1

2
1 )ˆ('ˆ   xS  

2
2

2
2

2
2 )ˆ('ˆ   xS  

 

where  
1

1

2
11

2
1

1

)(
'

n

xx
S

n

j
j




   and  

2

1

2
22

2
2

2

)(
'

n

xx
S

n

j
j




   .  
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Hence, the LRT statistic is given by: 
2/

2
2

2
2

2/

2
1

2
1

21

'
ˆ

'
ˆ

nn

SS 

















       .                                      (2.22) 

 

Letting  ln2 , the asymptotic distribution of   under 0H  is a chi-square distribution 

with one degree of freedom. Jaber and Cox argued that the size of the LRT using 2
1̂ , 

2
2̂ (MLE), denoted by (LRT1), is less than that of using 2

1S , 2
1S (sample variances), 

denoted by (LRT2), and based on a simulation study both tests have sizes close to the 

nominal significance level . However, LRT2 has slightly higher power than LRT1, and in 

most cases, LRT2 compares favorably with regard to size and power to the Welch -Aspin 

test (Welch (1947) and Aspin (1948)), which has size extremely close to the nominal 

significance level. Furthermore, asymptotic results show that there is some relationship 

between the generalized likelihood ratio test and the most commonly used test statistic, 

denoted by V below, for the Behrens-Fisher problem: 

 

    2/1
2

2
21

2
1

21

)//( nSnS
XXV




 .      (2.23) 

 

 

2.3 Simulation Example 

 

Suppose, for example, we have three independent, normally distributed random 

variables 3
1}{ iiX  with means i  (i =1,2,3) , standard deviations i (i =1,2,3), and 

independent random sample of sizes { in }, respectively, and that we want to carry out  the 

following test: 

9.0)
2

)(
(: 21

30 


 
XXXPH  

9.0)
2

)(
(: 21

3 


 
XXXPH a  
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2.3.1 Satterthwaite Approximation (Conservative) Test 
 

Test statistic:      



iii
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nSl
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T

/22
             where )1  ,2/1  ,2/1( il  

 

P-value = P( obsTT  ), where T ~ t’ (df’, nkn  )( ),       )(n  .  Using the  

Satterthwaite approximation given in (2.10), we have that: 
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Simulation results based on 10000 iterations are summarized in Figure A.1 of Appendix A, 

where it can be seen that the p-values are approximately uniformly distributed under 0H , 

except when sample sizes are far apart. 

 

 

2.3.2 Satterthwaite Approximation (Estimate) Test 
 

Test statistic:      



iii

ii

nSl

Xl
T

/22
             where )1  ,2/1  ,2/1( il  

 

P-value = P( obsTT  ), where T ~ t’ (df’,  n
nsl

sl

iii

ii

/22

22




 ),     9.0)(  n  

 

Simulation studies for this test are given in Appendix A, Figures A.2-A.3, where closer 

approximations to uniformly distributed p-values under the null hypotheses than in Result 

1 are evident and powers approaching 1 are obtained as the ISP increases.  
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2.4 Parametric Bootstrap Tests 

 

If the maximum likelihood estimators under the composite null hypothesis (2.4) 

could be found, then a parametric bootstrap could be used to calibrate the critical regions 

for the LRT statistic  in (2.21), as follows. Stated in general terms, let ( , )NG P  denote 

the distribution of a generic test statistic T = ( )NT X , where the observable NX  is 

generated from a probability law P , which depends on an unknown parameter   . 

Suppose that large values of T favor 1H  over 0H , statements about  .  An approximate 

size   parametric bootstrap test would reject 0H  when an observed value of T  exceeds 

the 1  quantile of  
0̂

ˆ ( , )
NNG P , where 0,ˆ N  is an estimate of 0 , a value of   constrained 

by 0H , and ˆ
ˆ ( , )

oNNG P  is an estimate of  ˆ( , )
oNNG P  obtained from data generated from 

0̂ N
P  .  Simulation results presented later indicate that this procedure works reasonably 

well. The following theorem gives conditions under which this parametric bootstrap test 

will be asymptotically size   in terms of a distance d which metrizes convergence in 

distribution.  

 

Theorem 1. (Lehmann and Romano, 2005)  Let NX be generated from a probability law 

0PP . Assume the following triangular array convergence: ( , ) 0Nd P P   and 0PP  

implies (., )N NG P  converges weakly to )(., PG , with )(., PG  continuous. Moreover, 

assume ˆ
NQ  is an estimator of P based on NX  which satisfies ˆ( , ) 0Nd Q P   in probability 

whenever 0PP . Then, for 
0 0P P P  , 

 

   1 ˆ{ (1 , )}N N NP T G Q     as N  .   (2.24) 

 
To apply this theorem with T being the likelihood ratio statistic given in (2.21), taking 

ˆ
NQ = ˆ

ˆ ( , )
oNNG T P  is a natural choice. As stated at the end of Section 2.3, although this 

choice appears to work well in my simulation study, it’s not known if the conditions of 
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Theorem 1 hold here. However, the existence of maximum likelihood estimators { 0,ˆ N } 

such that 

        
                          0, 0ˆ{ }N   in 

0
P probability,                                                         (*) 

 
is part of a condition  that makes { P } what Drton (2009) calls a regular statistical model 

and provides a heuristic justification for the asymptotic validity of  the parametric 

bootstrap test procedure. I will now establish that (*) holds in a variety of cases by 

following Silvey(1975) and showing that . .a e  under 
0

P , for any  sufficiently small  , 

 

0

0limsup{ sup ( ) ( )} 0T
NN

l
  

  
 

  ,                                     (**) 

 

where ( ) log( ( | ))Nl f x  is the log-likelihood, and 
( )( ) N

N
ll 








  is its vector of partial 

derivatives. 
 

 

2.4.1  Applying (**) to Testing the Mean of a Normal Distribution 

 

Verification 2.4.1: 
 
Let {Xi} be independent~N( ,  ), Var(Xi) =   > 0. Beginning with a simple illustration,  
 
suppose we want to test: 
 
                                      0 0 0: ,  :aH H      
 
Following (**), we have to show here that . .a e  under H0, for any sufficiently small  , 
 

0)}()(supsup{lim 0
0







NN
l .                     

This will follow from the first order Taylor expansion 

 
                    0 0( ) ( ) ( ) ( )N N Nl l l         , 
                                                                  

where:    represents, here and from now on, an appropriate intermediate value,                 
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               0 , 
                                       
             2 2

0( ) / 2 ( ) / 2N il N X       , 
 
             ( )Nl    2 2 3

0/ 2 ( ) /iN X    . 
                                                                            
Then, using the strong law of large numbers, . .a e  under 0H , we have for 00    : 
  
       0( ) ( )Nl     ]2/)))1((2()()1([ 32

0  ooN         
 
                              ]2/))1(()1([ 32  ooN   
 
                              ])(2/))1(()1([ 3

00
2   ooN  

 
                              ,  as N  
 
which completes the verification. 

 

 

2.4.2  Applying (**) to the Behrens - Fisher Problem 

 
Verification 2.4.2: 

Suppose there are two independent random variables ),(N~}{ 111
1 n

iiX  , Var(Xi) = 1 > 0, 

and ),(N~}{ 221
2 n

jjY  , Var(Yi) = 2 > 0 and we want to test 

                                     0 1 2:H   ,  21:  aH . 

To show that under 0H , 0
ˆ    , in probability, Theorem 1 can again be invoked by 

showing that . .a e  under 0H , for any sufficiently small  ,  N = 21 nn   and  

Nn /1   (0,1), 

0)}()(supsup{lim 0
0







N
T

N
l ,    

where ),,( 21  T , ),,( 201000  T . In this case,  we have 

                          
T

NNN
N

llll 


















21

)(,)(,)()(







  
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2






Nl  

 

 

I prove the consistency of the MLE’s under 0H  for the Behrens - Fisher problem based on 

the following principles. 

 
(1) Show that a.e each of the diagonal terms of ( )Nl    for all sufficiently small   

      > 0. 

 

(2) Show that the off-diagonal terms are smaller than the diagonal terms in absolute value  

     as   0. 

 
Notes: For sufficiently small 0,   
 
(i)  For {x,y,z} such that x2+y2 + z2 = 2 , positive values {a, b, c}, then:   

2 2 2 2 { , , }ax by cz Min a b c    

(ii)  0 0/ 2 3 / 2i i i    , i = 1,2 
 
        0 0/ 2 3 / 2     
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(1)  Clearly,  
2

1 1 2 22

( ) / /
( )

Nl n n
 




  


 satisfies (1) and using the strong law of large 

numbers, 
 

1
2

2
11

2 2 3
1 1 1

( )
( )

( ) 2

n

i
N i

X
l n




  





 



  =   

1
2

1
11

2
1 1

( ) /
[1/ 2 ]

n

i
i

X n
n



 






 

 

=   

1
2 2

0 1 0 0 0
11

2
1 1

( ) / ( ) 2( )( )]
[1/ 2 ]

n

i
i

X n X
n

     

 


     



 

 

=   
2

10 01
2

1 1

( ) (1)
[1/ 2 ]

n   
 

  



=

2
1 10 01

2
1 1

2 2( ) (1)
[ ]

2
on    

 
     

 

)]1(25.1[
27
4 2

103
10

1 on
 


 

 
 

 , as 1n , and as   0. 
 

Likewise,  

2
2

2
12

2 2 3
2 2 2

( )
( )

( ) 2

n

j
jN

Y
l n




  





 



)]1(25.1[

27
4 2

203
20

2 on
 


. 

         , as 2n , and as   0. 
 

(2)  To verify (2), we have that . .a e , 

2
1

1
1

1
1

2

1

/)(
/)(

















n

j
j

N

nX
nl  

 
                     = 2

10 /)()1(  o 2
1[ (1) ] /o     

 
                     2

10/])1([2  o . 
                    

Likewise  
2

2
2 20

2

( ) / 2[ (1) ] /Nl n o
 

 


 
 

. 
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Since: 
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 NNN lll , 

 

 ),/)1(/(2min{)()( 2010
2

0   NlN
T  )]1(25.1[

27
4 2

103
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o 

 , 

 

        )]}1(25.1[
27

)1(4 2
203

20

o
 

 )1()1( ooN   

 
                          , as N , and as   0. 

 
where . .a e  0)1( No as N ;  0)1( o as 0 , which completes the verification. 

 

 

2.4.3  Applying (**) to ISLIN (F) under H0  in (2.4)  

                                              
Verification 2.4.3:  

Let 2~ ( , / )i i iX N n   , i = 1,2,…, K, independent. Then the un-restricted parameter space 

is given by:  )},...,,,,...,,({ 22
2

2
121 KK

T   . Here, inference is desired for 

2 2( ) /i i i il l       >0. Therefore, the restricted parameter space is defined by the 

following:              

                                )},...,,,,...,,({~ 22
2

2
12 KK

T   ,  2K . 

 

Taking without loss of generality 1 0l  , 

                          . 
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1
2

22
1 /][ lll

K
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iiii 



   

Let ),...,,,,...,,( 212 KK
T   , where 02  ii  , N = Knnn  ...21  and 

Nni /  i (0,1), i =1,…, K. 

 

The principles needed to prove the consistency of  MLE’s for (2.14), K2 are a little 

different from those for the Behrens - Fisher Problem, as follows: 

 
(1)  Show that a.e each of the diagonal terms of  ( )Nl    for all sufficiently small  

        >0. 

 
(2)  Roughly speaking, use the diagonal terms to control the off-diagonal terms as   

       0.  
 
 
Note that 2

0 )( ii   >0, Ki ,...,2 , 2
0 )( jj   > 0, Kj ,...,1  and the off-diagonal terms  

 
))(( 00 jjii   ,…, and ))(( 00 jjii    are ‘small’. The loglikelihood and its  

 
gradient vector under 0H  are given by 
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(1) Show that a.e each of the diagonal terms of ( )Nl    for all sufficiently small  
       > 0. 
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(2) Now, we will use diagonal terms to control the off-diagonal terms as  0. We have 

that 
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Finally, a Taylor expansion yields the expression 
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where  0)1( No as N ;  0)1( o as 0 ,which completes the verification. 
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2.5  An Iterative Method of Finding the MLE’s under H0 in (2.4) 
 

 Algorithm for Finding Candidate MLE’s for a specific value of   

 

Algorithm 2.1:  Let }ˆ,...,ˆ,ˆ{ˆ )()(
2

)(
1

)( t
K

ttt    and }ˆ,...,ˆ,ˆ{ˆ )(2)(2
2

)(2
1

)(2 t
K

ttt   denote the 

candidate mle’s under the null hypothesis at the tth step. 

1. Start the iteration with the multiple initial points for )0(̂ :  x)0(̂ (sample means); 

then from equation (2.20) calculate )0(2̂ . 

2. Plug the value of )0(2̂  into equation (2.19). Then, calculate )1(̂  and  

      diff )1()ˆ(  = )0()1( ˆˆ   . Next, plug the value of )1(̂  into equation (2.20) to   

      calculate )1(2̂  and diff )1(2 )ˆ( )0(2)1(2 ˆˆ   . 

3. Iteration: compute ( )(ˆ t , )(2ˆ t ) from the previous ( )1(ˆ t , )1(2ˆ t ) using equations 

(2.19) and (2.20) until the maximum of diff )()ˆ( t and the maximum of diff )(2 )ˆ( t  

are less than a very small value. 

4. Use ( )(ˆ t , )(2ˆ t )  as the MLE ( 2ˆ,ˆ  ) under 0H . 

 

Preliminary simulations presented in Table 2.1 with { , 1,2,3il i  }= {-1/2, -1/2, 1} and 

 =0.90 indicate that this iterative method appears to have good convergence rates, 

especially for large sample sizes where it always converged to a local maximum.  
 

      Table 2.1 Estimated Convergence Proportions Based on 10000 iterations 

Sample size (n1,n2,n3) 
X1, X2, X3 

(10,10,10) (10,12,15) (10,30,90) (30,30,30) (50,50,50) 

N(0,1), N(0,1), N(1.56767, 1) 0.8781 0.9417 0.9994 0.9877 0.9990 

N(0,1), N(0,10), N(3, 2.743164) 0.8815 0.9372 0.9991 0.9962 0.9999 
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Furthermore, I carried out some simulations to investigate the performance of the 

estimators obtained from the algorithm given (2.5) in terms of BIAS and mean squared 

error (MSE). 

 

 

 Estimated Mean Squared Error of MLE’s    

 

Although we do not have an explicit formula for the mean squared errors of the 

maximum likelihood estimators described in (2.5), denoted MSE(MLE’s), I estimated 

them by simulation, as follows.  First, I specified some  values for sample sizes: n = 10 

(small), 30(medium), 100 (large),  and  parameters K =3, and  {( 2,i i  ), i = 1,2,…, K . All 

parameter values are listed in the third column in each table. Then, I generated 10000 

independent data sets from each setting and computed W(̂ ) = (̂ - )2, where  = i  or 

2
i , i = 1,2,…, K, for each data set.  Those W(̂ )  do not include the values where the 

algorithm did not converge.  The mean of the resulting W’s, denoted, W = ˆˆ ( )MSE  , is a 

consistent, unbiased estimator of MSE(̂ ).  The results  are given in  Table 2.2 below,  

where I report )ˆ(ˆ
iEMS   and 22 /)ˆ(ˆ

iiEMS  , the latter relative value since there is 

considerable variation in the 2
i ’s in the study, Ki ,...,1 .  

 

 

 Estimated BIAS of MLE’s     

 

I used the same approach and data sets as described above to estimate the biases of 

the maximum likelihood estimators , where now V(̂ ) = (̂ - ), and  = i  or 2
i , i = 

1,2,…, K, for each data set. The mean of the resulting V(̂ )’s over data sets where the 

algorithm converged, denoted ˆV( ) = )ˆ(ˆ SBIA , is a consistent, unbiased estimator of 

ˆ( )BIAS  . The results are given in Table 2.3. The parameters and sample sizes setting are 
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the same as those for estimated MSE.  All parameter values are listed in the third column 

in each table. 

 

 

Table 2.2 Estimated Relative MSE of the MLE’s Based on 10000 iterations 

  Table 2.2.1 K=3, (a) )( 2 (0.5) 
Parameter 

Values 
small sample  

sizes 
medium sample 

sizes 
large sample  

sizes   i 
i  

2ˆi  i̂  2ˆi  i̂  
2ˆi  i̂  

2ˆi  

0.55 
1 
2 
3 

0 
0.5 

0.4039 

1 
1 
1 

0.2931 
0.2417 
0.1720 

0.4501 
0.3635 
0.4167 

0.1735 
0.1364 
0.1054 

0.2581 
0.1985 
0.3205 

0.0883 
0.0768 
0.0520 

0.1411 
0.1149 
0.1273 

0.65 
1 
2 
3 

0 
0.5 

0.7219 

1 
1 
1 

0.2919 
0.2470 
0.1775 

0.4486 
0.3644 
0.4101 

0.1726 
0.1375 
0.1109 

0.2563 
0.2013 
0.3106 

0.0894 
0.0762 
0.0548 

0.1411 
0.1149 
0.1281 

0.75 
1 
2 
3 

0 
0.5 

1.0761 

1 
1 
1 

0.2927 
0.2464 
0.1871 

0.4564 
0.3648 
0.3956 

0.1744 
0.1375 
0.1233 

0.2583 
0.1987 
0.2965 

0.0906 
0.0762 
0.0583 

0.1404 
0.1158 
0.1237 

0.85 
1 
2 
3 

0 
0.5 

1.5194 

1 
1 
1 

0.3012 
0.2526 
0.2045 

0.4599 
0.3692 
0.3775 

0.1746 
0.1364 
0.1411 

0.2567 
0.2010 
0.2809 

0.0917 
0.0781 
0.0625 

0.1421 
0.1166 
0.1170 

 

 
 
Table 2.2.2 K=3, (b) ),( 32  (0.5, 2) 

Parameter 
Values 

small sample  
sizes 

medium sample 
sizes 

large sample  
sizes   i 

i  
2ˆi  i̂  2ˆi  i̂  

2ˆi  i̂  
2ˆi  

0.65 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

20.0018 

0.3191 
0.3165 
0.3971 

0.4417 
0.3595 
0.3933 

0.1811 
0.1738 
0.2851 

0.2567 
0.1999 
0.3085 

0.0990 
0.1 

0.1233 

0.1404 
0.1157 
0.1247 

0.75 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

6.10671 

0.3159 
0.3116 
0.3490 

0.4395 
0.3602 
0.3733 

0.1794 
0.1706 
0.2498 

0.2575 
0.2 

0.2915 

0.0985 
0.0990 

0.11 

0.1411 
0.1153 
0.1186 

0.85 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

1.4920 

0.3106 
0.3059 
0.2795 

0.4578 
0.3601 
0.5249 

0.1797 
0.1712 
0.2040 

0.255 
0.1969 
0.4087 

0.0954 
0.0959 
0.0883 

0.1411 
0.1145 
0.1686 

0.95 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

0.5069 

0.2898 
0.2895 
0.1735 

0.4278 
0.3475 
0.3563 

0.1729 
0.1637 
0.1237 

0.2587 
0.1959 
0.2713 

0.09 
0.09 

0.0548 

0.1378 
0.1105 
0.1168 
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Table 2.3 Estimated BIAS of the MLE’s Based on 10000 iterations 

  Table 2.3.1 K=3, (a) )( 2 (0.5) 
Parameter 

Values 
small sample  

sizes 
medium sample 

sizes 
large sample  

sizes   i 
i  

2ˆi  i̂  2ˆi  i̂  
2ˆi  i̂  

2ˆi  

0.55 
1 
2 
3 

0 
0.5 

0.4039 

1 
1 
1 

0.00008 
0.0050 
-0.0022 

-0.0805 
-0.0581 
-0.0247 

-0.0006 
-0.0015 
-0.0029 

-0.0284 
-0.0186 
-0.0061 

5.200e-04 
4.805e-04 
-2.534e-05 

-0.0075 
-0.0047 
-0.0041 

0.65 
1 
2 
3 

0 
0.5 

0.7219 

1 
1 
1 

0.0041 
0.0101 
-0.0078 

-0.0769 
-0.0498 
 -0.0308 

0.0005 
 0.0005 
-0.0052 

-0.0254 
-0.0165 
 -0.0091 

0.0006 
 0.0008 
-0.0008 

-0.0080 
-0.0073 
 -0.0023 

0.75 
1 
2 
3 

0 
0.5 

1.0761 

1 
1 
1 

0.0083 
0.0022 
-0.0185 

-0.0780 
 -0.0562 
-0.0237 

0.0039  
 0.00179 
-0.00809 

-0.03369 
-0.0166 
 -0.0111 

0.0013  
 0.0020  
-0.0007 

-0.0096 
-0.0036 
 -0.0025 

0.85 
1 
2 
3 

0 
0.5 

1.5194 

1 
1 
1 

  0.0158 
  0.0111 
 -0.0220 

-0.0728 
-0.0488 
 -0.0271 

0.0037  
 0.0031  
-0.0114 

-0.0255 
-0.0163 
 -0.0106 

0.0029 
 0.0005 
-0.0017 

-0.0073 
-0.0052 
 -0.0024 

 

 

Table 2.3.2 K=3, (b) ),( 32  (0.5, 2) 
Parameter 

Values 
small sample  

sizes 
medium sample  

sizes 
large sample  

sizes   i 
i  

2ˆi  i̂  2ˆi  i̂  
2ˆi  i̂  

2ˆi  

0.65 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

20.0018 

-0.0005 
 0.0081 
-0.0393 

-0.1000 
-0.0965 
-0.2042 

0.0015 
-0.0042 
-0.0211 

-0.0324 
 -0.0348 
  0.0070 

-0.0007 
 0.0004 
-0.0043 

-0.0100 
-0.0119 
-0.0176 

0.75 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

6.10671 

0.0018 
 0.0079 
-0.0359 

-0.0987 
-0.0925 
 -0.0700 

0.0020 
 0.0018 
-0.0179 

-0.0318 
-0.0302 
 -0.0199 

0.0018 
 0.0010 
-0.0026 

-0.0081 
-0.0109 
 -0.0066 

0.85 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

1.4920 

0.0131 
 0.0203 
-0.0339 

-0.0696 
-0.0634 
 -0.0740 

0.00218 
 0.0028 
-0.0168 

-0.0316 
-0.0302 
 -0.0140 

0.0019  
-0.0002 
-0.0041 

-0.0097 
 -0.0110 
 -0.0051 

0.95 
1 
2 
3 

0 
0.5 
2 

1 
1.5 

0.5069 

0.0268 
 0.0244 
-0.0198 

-0.0527 
-0.0266 
 -0.0271 

0.0104 
 0.0102 
-0.0102 

-0.0094 
-0.0069 
 -0.0171 

0.0047 
 0.0038 
-0.0004 

-0.0075 
-0.0044 
 -0.0018 

 
 
 
The small entries in Table 2.2 indicate that the Algorithm 2.1 given in section 2.5 

provides estimators that are close to being unbiased for the parameter values used in this 

study. As expected, bias tends to decrease as sample size increases. However, the 

estimated relative, root-mean-squared errors are only as low as the 10% range for the large 

sample sizes. 
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2.6  Two Methods of Computing a  LRT Statistic Under H0 in (2.4) 

 

My null hypothesis is composite and I used two different methods to obtain LRT statistics. 

In both cases the algorithm defined above was used to estimate the maximum likelihood 

estimators:  

 

Method 1:  Compute the LRT statistic with the numerator obtained only for 0  , so that 

)( 0
1 

n .   

Method 2:  Select representative proportions }  ;,...,2,1 ,5.0  ;{ 00   Mjj Mj  

and use , { ( , )}N M N j jL Max L   in the numerator of the likelihood ratio statistic. 

Specifically, use the statistic 

                                                               
)ˆ,ˆ( 2

,

L
L MN . 

 

As will be seen in Chapter 5, Method 1 does not work well, in the sense that it results in a 

test that need not be unbiased. Method 2 does perform well overall and appears to result in 

an unbiased test. Therefore, I will use Method 2 to investigate the parametric bootstrap 

used to calibrate the LRT in the full simulation study presented in Chapter 5. The general 

scheme for using a bootstrap to estimate a p-value using a statistic ‘T ’, where large values 

favor 1H  over 0H , is given below. I call this the parametric bootstrap likelihood ratio 

(PBL) test when T is the LRT statistic. 

 

Having observed T = t, a parametric bootstrap test is carried out as follows. 

 

1. Obtain the mle 0,
ˆ

N  (using Algorithm 2.1) constrained by H0, where 0  . 

2. Generate R independent samples { *
rx } from the model 

0,
ˆ

N
P


. 

3. Calculate the value of the test statistics )( *
rxT (using Method 2) for each resample. 

4. Estimate the p-value by 
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A full simulation study of this method applied to my tests is given in Chapter 5.  

 

 

 

2.7. Tests Based on Bootstrap Confidence Sets 
 

An alternative method for testing the hypotheses in (1.2), which, as the reader will 

recall,  amounts to choosing between ‘ IS(F)   ’ and  ‘IS(F) >  ’, is to use a bootstrap, 

parametric or nonparametric, to construct a one-sided lower confidence set I  for IS(F) and 

conclude that ‘IS(F) >  ’  if  I does not contain  . The nonparametric bootstrap can be 

carried out by independently resampling from the data from each distribution and using the 

percentile method or the BCa (Bias Corrected and Accelerated) of constructing confidence 

sets. Hall and Martin (1988) applied this approach to the Behrens-Fisher problem. In 

section 4.2.3 I construct confidence sets by using a prepivoted bootstrap. 
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Chapter 3 Average P-Values 
 

 

As stated above, my inference problems lie within the general framework of 

constructing tests in the presence of nuisance parameters. The Behrens-Fisher problem is a 

famous illustration of how difficult this can be. In cases when a test statistic is pivotal 

under 0H , reporting a p-value and rejecting the null hypothesis if p   provides an exact 

size   test.  Consider, for example testing 0 0:H    vs 0:aH    based on a random 

sample x  of size n from 2( , )N   , with both parameters unknown. Here, T = 

0( ) /n X S  has a t-distribution with n-1 degrees of freedom under 0H  for all values of 

the nuisance parameter   > 0. Note that using the concept of monotone likelihood ratio, 

this procedure still works if the null hypothesis is generalized to 0 0:H   . Since an 

appropriate pivotal does not exist for the Behrens-Fisher problem, a special case of my 

tests, p-values that are uniformly distributed under 0H , may not be available. Instead, I will 

construct p-values to weigh the evidence in the data against 0H  by averaging p-values 

obtained as functions of nuisance parameters over a distribution on these unknown 

quantities, a procedure recently studied in other cases by Bayarri and Berger (2000.). In 

Section 3.4, I prove that average p-values are asymptotically ‘correct’ under mild 

conditions. 

 

Suppose that an observable random variable X  has a family of distributions indexed 

by a vector of parameters ),( 21    and we want to test 0 :H 101   , viewing 2  as a 

nuisance parameter. We assume that there is a test function T( X , ) such that 

T( X , ),( 210  ) is pivotal for all 2  and having observed X  = x , large values of T( x , 

),( 210  ) ),( 2xt  support the alternative hypothesis 1H over 0H . If  2  were known, a 

p-value, uniformly distributed under 0H , would be given by 

 

                                               )),(),(,(()( 22102  xtXTPp  . 



36 

In the absence of knowledge as to the value of the nuisance parameter and following 

Barnard (1984), we can average )( 2p  over a distribution 2P  on 2 , which may depend 

on the observed value of X , yielding an extended p-value given by                                              

 

                                2 22( ) ( | )p p P d x   ,                                                    (3.1) 

 

which although not necessarily uniformly distributed under the null hypothesis will ,as I 

will show, behaves like a true p-value for my problems, in some cases, in the sense that 

rejecting 0H  when p leads asymptotically to an approximate size   test.  I will 

develop and explore this procedure in this chapter, where having observed X = x, 2P  is a 

Fiducial distribution on 2 and when 2P   is a posterior distribution on 2 .  Also, both 

distributions can be used to compute the ‘probability’ that the null hypothesis is true given 

the observed data.  The average p-values studied in Bayarri and Berger (2000) are similar 

in persepective to (3.1) but different in structure. They consider the situation where the test 

function is actually a statistic , ( )T X , whose distribution , ( | )TF  , depends on an 

unknown  parameter  . They then define an average p-value as 

           

                                              p = (1 ( ( ) | )) ( | )TF T x d x   , 

 

where ( | )d x   is a distribution on   which may depend on having observed X = x . 

This p-value is the same as the one given in (3.1) in some cases.                   

 

 Tsui and Weerahandi (1989) have proposed another extended p-value, called a 

generalized p-value, to deal with nuisance parameters, which I will investigate in future 

research. 
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3.1  Fiducial P-Value 

 

The concept of Fiducial probability leads to a form of statistical inference based on 

inverse probability without requiring prior probability distributions. It was first proposed 

by E.B. Wilson (1927), and then developed by R. A. Fisher (1956). Edwards (1997) is an 

informative essay on this mode of inference. However, Fiducial inference is not widely 

used now and is not always mathematically consistent and free of contradictions in the 

multivariate case. I will use the symbol FP  to denote Fiducial probabilities. 

 

In the two-sample case, K= 2,  l = (1,-1)T  and   = 0.5, equation (2.1) is the Behrens-

Fisher problem.  Barnard (1984) shows that the Behrens-Fisher approach (which can be 

viewed as Fiducial inference) compares favorably with Welch’s test. In this chapter, I will 

extend the use of the Fiducial approach to test the hypothesis in equation (2.3), for at least 

three normal distributions.  

Again, consider the hypotheses in (2.4), and for fixed 2  the test statistic given (2.5), 

and repeated here for the reader’s convenience, 

 

                       

)(
/)1(

//
)(

22

22
2

KN
Sn

nlXl
T

iii

iiiii











                                                               (3.2) 

                       )//,('~ 22 


 iiiii nllKNt
W

Z   , 

 

where again ),(' KNt   denotes a non-central t distribution with non-centrality parameter 

  and KN   degrees of freedom. Let )( 2obst  be the observed value of )( 2T . If { 2
i } 

were known, a p-value could be defined by  
2 2 2( ) ( ) ( ( ) )obsp p value P T t       

 

A Fiducial p-value is given by: 
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Fiducialp  2 2 2( ) ( | )p f data d     

 )|()( 22 datadFp                                                (3.3) 

 

where 2( | )f data  is  a joint Fiducial density of 2  based on the data, obtained as 

follows. 

Since 2

2)1(
i

ii Sn

  has a chi-square distribution with degree of freedom )1( in , for 

fixed sample variance ( 2
iS ) and fixed sample size ( in ), the Fiducial distribution of 2

i  is 

given by: 
2

2 ( 1)
| i i

i FD
i

n Sdata
U




   ,  for  i =1,2,…,K,                                   (3.4) 

{ 2| ~ ( 1)i iU data n  } and the distributions in (3.4) are then scaled-inverse chi-squares 

with scale factors 2)1( ii Sn   and degrees of freedom )1( in , i =1,2,…,K. The hypotheses 

we are interested in are given in (2.4). 

If we further assume that the K variances are independent, the Fiducial joint density 

( 2( | )f data ) of 2  based on the data is given by 

 

  2 2 2 2 2 2 2
1 1 1 2 2 2( | ) ( | ,  ) ( | , )... ( | ,  )K K Kf data f S n f S n f S n     

          2 2

1

( ( | , )
K

i i i
i

f S n


 , 

 

where 2 2( | ,  )i i if S n  is the Fiducial density function of 2
i  given by the data. 

That is:   

2

2
2 2 2 2

( 1) 2

( 1) 
( | , ) Pr{ }

i
i

i i
i i i i n

i

n Sf S n d


  







  . 

 

Substituting these Fiducial distributions into (3.3) gives an explicit, complicated 

expression for Fiducialp . For the case of two-sample Behrens-Fisher problem, the Fiducial p-
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value (3.3) is a generalized p-value as given by Tsui and Weerahandi (1989). The Fiducial 

approach also leads to an evaluation of the ‘probability’ of 0H ,  as follows. 

Since                )/,(~,|)( 222
iiiiiii nlxlNDatal   ,                                           (3.5) 

and under 0H , 

  22
iiii lnl      ,                                                         (3.6) 

we have that 

  
2 2

2
0 2 2

( | , ) ( )
/

i i i i

i i i

n l l x
FP H Data

l n
 





 

 


 .                                (3.7) 

 

Averaging over the distributions in (3.4), yields 
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Note that FiducialpDataHFP )|( 0  here, but they are equivalent using another simple test 

statistic )( 2Z  given in (3.19) below. Small values of 0( | )FP H Data could be taken as 

evidence in support of the alternative hypothesis. 

 

 

3.2  An Approximation to the Fiducial P-Value 

 

The Fiducial p-value in (3.3) can in principle be computed by numerical integration. 

However, this can be difficult to carry out accurately. An approximation to the Fiducial p-
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value can be obtained by a Monte Carlo simulation, as follows. Instead of numerically 

approximating the complicated integral of (3.3), independently select a large number (B) 

values of  2
i  (say, 2

)(repi ) from the Fiducial distribution of 2
i  ,  i = 1,2,…,K. Next, using 

those independent values 2
)(repi (i = 1,…,K) calculate the value of )( 2

)(repT  for each 

replication. Then, evaluate the p-value, denoted by )(ˆ 2
)(repp  . The average of those p-

values is an approximation of the Fiducial p-value, denoted by Fiducialp̂  and given by 

 

Bpp
B

rep
repFiducial /)(ˆˆ

1

2
)(



    ,                                                     (3.9) 

 

where ) )( ()(ˆ 2
)(

2
)( repobsrep tTPp    and )( 2

)(repobst   is the observed value of )( 2
)(repT  .  

Here, we take T to have a non-central t-distribution with non-centrality parameter   = 

)()( nn k  and   = N K  degrees of freedom, which provides a conservative test. 

 

This Fiducial p-value is a generalized p-value that will hopefully lead to a test of size 

at most or a little above   that also has good power. Based on a preliminary simulation 

(given in the Appendix A, Figure A.4), the distribution of the approximation to the 

Fiducial p-value in (3.9) appears, as desired, to be approximately uniform under the null 

hypothesis only if the sample sizes are equal and large enough (n = 100). But for unequal 

sample sizes and for small equal sample sizes (n = 10), the P-values have a highly skewed 

distribution under 0H . The unequal-sample-sizes case can be improved by using the 

replication estimates of the non-centrality parameter   instead of an upper bound as 

described in (2.11). Again using 

 

                                               
2 2

2 2 /
i i

i i i

l
n

l n






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
,                                             (3.10) 
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plug the replication 2
)(repi  into this equation in place of 2

i . Then, the test statistic )( 2T  

in equation (3.2) is treated as having a noncentral t-distribution with non-centrality 

parameter )(rep  and N-K degrees of freedom. Using 

      )( 2
)(repT   ~ t’ (N-K, 




 n

nl

l

irepii

repii
rep

/2
)(

2

2
)(

2

)(

 )  ,                           (3.11) 

 

results in an approximation of  the Fiducial p-value given by: 

Bpp
B

rep
repFiducial /)(ˆˆ

1

2
)(



   ,                                            (3.12) 

 
where ) )( ()(ˆ 2

)(
2

)( repobsrep tTPp    ,  )( 2
)(repobst   is an observed value of )( 2

)(repT  , and 

}  ,...,  ,{ 2
)(

2
)(2

2
)(1

2
)( repkrepreprep   , for rep =1,2,…,B.  Each 2

)(repi  has a scaled-inverse 

chi-square distribution with scale factor 2)1( ii Sn   and degree of freedom )1( in (in 

equation 3.4) and they are independent. 

 

Preliminary simulations for Fiducial p-value in (3.12) (given in Appendix A, Figures 

A.5-A.6) indicate that this approach appears to yield Fiducial p-values that are 

approximately uniformly distributed under 0H  and tests that have good power, except for 

small sample sizes. 

 

 An Example of the Fiducial P-Value 

 

Assume we have three independent samples from normal distributions having sample 

means ix , sample size in , and sample variance 2
iS , respectively, i =1,2,3. Suppose we 

want to test: 

 


 )
2

)(
(: 21

30
XXXPH  , 




 )
2

)(
(: 21

3
XXXPH a   ,                                      (3.13) 
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using the test statistic T in equation (3.2) with { } ( 1/ 2,   1 / 2,   1)il    .  

 

Preliminary simulations for the Fiducial p-value in (3.9) and (3.12) are given in the 

Appendix A, Figures A.4-A.6. In Chapter 5, I conducted a full-scale simulation study to 

investigate the size and power of this test and compare the results to the frequentist tests 

given in Chapter 2. 

 

 

3.3   Averaging Over a Posterior Distribution 
 

In this section, we present a Bayesian approach to testing the Hypotheses in Equation 

(2.4). A conjugate prior distribution and a semi-conjugate prior distribution will be 

considered in my future research. Here, we use a Jeffrey’s-type noninformative prior, 

given by 

                                     
2
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

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

  ,                                    (3.14) 

where c  is an arbitrary positive constant. 

The posterior distributions of   and 2  are specified by 

                                          )/,(~,| 22
iiiiii nxNx                                                    (3.15) 

 

 where  K
iiii x 1

2 ,|   are independent and 

                                             
i

ii

Dii U
Snx

2
2 )1(| 

     ,                                                  (3.16) 

 

{ )1(~| 2 iii nxU  } and { ii x|2 } are independent. These distributions can then be used 

in (3.1) to compute an average p-value. The distributions in (3.16) are scaled-inverse chi-

square distributions with scale factors 2)1( ii Sn   and degrees of freedom )1( in , i =1,2,…, 

K. The hypotheses we are interested in are given in (2.4). Equations (3.5) and (3.6) imply 

that the posterior probability of 0H  given 2  is  
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Averaging over the distributions in (3.17), yields 
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Let us define another simple test statistic: 
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If 2  were known, then the test statistic )( 2Z  would have a standard normal distribution 

under the upper boundary of 0H  in (2.4). And a p-value for 0H (2.4) could be defined by  

 

))(()()( 222  obszZPvaluepp  ,                            (3.20) 

 

where )1,0(~ NZ ; a posterior p-value could be defined by  

 

2 2 2( ) ( | ) postp p d Data d     ,                                 (3.21) 

 

where )|( 2 dataD   is a joint posterior distribution of 2 . Comparing (3.21) with equation 

(3.18), it is easy to see that postpDataHP )|( 0 . I will use simulation to study the 
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performance of tests based on treating )|( 0 DataHP  in (3.18) as a p-value for test statistic 

)( 2Z  in (3.19) and make comparisons to my other tests. 

 

There are many different techniques for simulating draws from complicated 

distributions, such as: Rejection Sampling, Gibbs Sampling, and the Metropolis algorithm. 

In my future research I will explore using these methods. 

 

 

3.4 Consistency of “Average” P-Value  
 
 

Here we show that the average p-values defined in (3.1) are asymptotically correct 

under mild conditions, a concept which does not appear to have yet been treated in the 

literature.  Partition },{ 21   , where 2 Rr, 1r , is viewed as a vector of 

nuisance parameters. Many of our tests have the form 00 )(:  H  vs  01 )(:  H  , 

where ( )    is a real valued function. Suppose that there is a real valued pivotal 

2( , , )NNT X    such that for a known function (.)NH  of Nx ,  and 2  :  

                               2 2( ( , , )) ( | , )N N N N NP T T x H x       

                                                                     1- 2( | , )N NH x   . 

 

Based on data NX  =  Nx , suppose that large values of 20( , , )NNT x    support 1H  over 0H , 

whatever these hypotheses happen to be. Having observed NN xX  , 20( , , )NNT x      

obst ( 2 ) and if  2  were known, a p-value uniformly distributed under 0H  when the data 

were generated by 1 2( , )    with 0( )   , would be given by 

2 2 20( ( )) ( ( ) | , )N obs N obsp t P T t                                             (3.22) 

                                                        20( | , )N NH x    

 

Let )|( 2 NN x  be a joint continuous (Posterior or Fiducial) density on 2 2{ } , 1N . 

Then, as defined above, an “average” p-value over )|( 2 NN x  is given by 



45 

 

2 2 20( ) ( | , ) ( | )NN N N N Np x H x x d      .                          (3.23) 

 

       

Definition:  The average p-value ( p ) is consistent if for all { * * *
1 2( , )   , *

0( )   }, 

*
2( ) ( | ) 0N N N Np X p X      a.e. * ,

P


,   as N                               (3.24) 

 

where * = ),( *
2

*
1   denotes the true parameter vector. 

 
Since for all N , *

2( | )N Np X   is uniformly distributed when *~NX P


,  it follows from 

Slutsky’s Theorem that  a consistent { ( )N Np X } is asymptotically uniformly distributed 

with respect to *P


.  This makes ( )N Np X  what Bayarri and Berger (2000)  call a 

frequentist p-value. 

 

 

Theorem 2:   Suppose that for all Nx  and 0 , 0 2( | , )N NH x   is differentiable with respect 

to 2  and, as , N  ,for a decreasing sequence of positive constants 0}{ N  , 

 for all * * *
1 2( , )    for which *

0( )   ,  a.e. *P


 

 (i) *
*

2 2( | ) 0NNP X


      ,                                                                       (3.25)            

(ii) 
*

2 2

( )
20

1

sup ( | , ) 0
N

r
j

NN N
j

h X
  

  
 

  ,                                                           (3.26) 

 

where  .  denotes a  Euclidean distance and ),|( 20
)( N

j
N Xh jNN XH   /),|( 20 , j  

in 2 , are the partial derivatives of NH  at j , which are assumed to be jointly continuous 

functions of ),( 2NX , 1N . Then,  

*
2( ) ( | ) 0N N N Np X p X      a.e *P


,   when N  
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Proof:   

 

Let B = { 2  ; *
2 2 N    }, ( ) ( )

2 20( ) sup{ ( | , ) ; }j j
N NN Nb x h x B    , jja )( *

22   , 

for j =1,…, r. Then ,  for *
1 2( , )   , 2   a point between 2 and *

2 , partitioning the 

parameter space and using a first-order Taylor expansion, we obtain: 
*
2( ) ( | )N N N Np X p X    

*
2 2

*
2 2 2 20 0( | , ) ( | , )  ( | ) 

N
NN N N N NH X H X X d

  
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 
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*
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( )

,1

( )
N

N

r
j

N N
j

b X
   


 

  + *
*

2 2( | )NNP X


     

         0   a.e.  as N , 

 

which completes the proof. 

 
 

Berger(1985) gives conditions under which *
2 2( | )NN x   is almost surely, 

asymptotically normally distributed with a positive-definite covariance matrix, which can 

in some cases be used to verify (i) of Theorem 2. One need not subscribe to either a 

Bayesian or Fiducial approach to apply Theorem 2. For frequentists, where the data are 

generated from *
21 ,

P  with fixed ),( *
21  , as long as the prior density is positive at *

2 , and 

(i) and (ii) hold,  consistency prevails. 
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Example 3.1:  Suppose ~}{ 1
N
jjX   iid ),( 2N  and we want to test 00 :  H , vs 

01 :  H . We use this example even though the familiar t-test provides an alternative, 

exact solution, since it leads to a relatively easy illustration of Theorem 2.  With 2  = 2  

and 2
0( , ) ( ) /NN NT x N x    ,  2( , )Np x   = 2

0( | , )N NH x   = 0[ ( ) / )]NN x    . 

Taking a Jeffreys-type noninformative prior of the form 

 

                                                       2 2 2
(0, )( ) ( / ) ( )p c I    , 

 

the posterior distribution of 2  is given by: 

 

)2/)1(  ,2/)1(()|( 22
NN SNNIGx  ,                               (3.27) 

 

an inverse gamma distribution corresponding to 2( 1) /NN S U , where U  has a chi-square 

distribution with 1N   degrees of freedom.  Take q
N N  2/1 ,  0<q<1/2. Condition (i) 

holds since, using the asymptotic standard normality of the posterior distribution of  

 /)( *22 N , where 2 is the limiting variance,  denotes the standard normal 

density, a.e. 
*0

P


 , 

 *
0

2 2*( | ) [2(1 ( / ))]NN NLimP X Lim N 
                               (3.28) 

                                                                       = 0.                                                                                                    

To verify condition (ii), we have that 

      2
0 02 3/ 2( | , ) ( )

2( )N N N
Nh T X  


  )/)(( 0  NX N  

2/32
0

)(22
1





NXN 

                                                    (3.29) 

 

From the Law of the Iterated Logarithm, we have  
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1)
loglog2

(sup *
0 


 N
XN

Lim N

N 


  a.e.    *

10 2,
P
 

,                                                     (3.30) 

 

      
2 2 2*

2
0

,
0 {( ) sup ( | , )}

N

N N NN
Lim h X

   
  

  

  

       )
)(

loglog
(

2 *2 




  NLim NN ,  

             )
)(

loglog
(

2 *2 




NLim N
N

 = 0, *
10 2,

P
 

 a.e.                                                         (3.31) 

 

  with  2* > 0  .                                               

 

Thus, both conditions of Theorem 2 are satisfied and therefore, the “average” p-value ( p ) 

for this example is consistent.  

 

 

Example 3.2:  Referring back to the separation hypothesis given in (2.3), let {Xi, i = 

1,2,…,K} be independent with iX ~N( 2, /i i n  ),  i = 1,2,…, K, independent. 

 

    H0:  nll
K

i
ii

K

i
ii 

 1

22

1
/    vs   H1:  nll

K

i
ii

K

i
ii 

 1

22

1
/ ,                   (3.32) 

 
where { il } are known constants. Letting ),...,,( 211 K  and ),...,,( 22

2
2
12 K  , 

)1,0(/  ii Nn  , we have here ( )  =  22/ iiii ll  n . For known 2 , a p-value 

may be based on  

 

                                  2( , , )NNT X   = 2 2 2 2

1 1

/ /
K K

i i i i i i i
i i

l X n l l n  
 

 
 

  
   , 

                                   
which has a standard normal distribution under H0.  
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(1) I present a Bayesian approach to testing these hypotheses using an average posterior p-

value. Here, we use a Jeffreys-type noninformative prior, given by 

                                 
2

1

2
),0(12 )]([

)()  ,(
i

K
i

i
K
i I

xcp










   .                               

 

The posterior distributions of   and 2  are specified by 

                                        )/,(~,| 22
iiiiii nxNx                                             

 

 where  K
iiii x 1

2 ,|   are independent and 

                                       
i

ii

Dii U
Snx

2
2 )1(| 

     ,                                                    

 

{ )1(~| 2 iii nxU  } and { ii x|2 } are independent with each other. So we have 

)]|([)|( 22 ii xx    and as in (3.27), i = 1,2,…,K 

                             iniii Usnx
i
/)1(| 2

2  , in distribution, iU ~ chi-square (ni-1). 

 
Consider the case K   2, / (0,1)i in N   , 1,2,..., ;i K  and H0: 0( )    holds.    

Since  
 im

j ji ZU
1

2 ,  1 ii nm ,  independent, N(0,1) random variables, 

                                          iiim mmUZ
i

2/][   (0,1)N .                                     

Hence, in distribution, 

       ]2/[| 2
2 iimniii mmZsmx

ii
 , 

 
and  

  ]1/2/[)/2(|)( 22
2  imimnini mZmZsxs

iiii
  .                           (3.33) 

 
 
Then, we have a.e.,  in distribution. 
                                

)2,0(|)( 2*
2

2
2 iiiii Nxsn   ,  Ki ,...,1 .                                     (3.34) 

 
Note that  )()|( *2

NNNii AIxsP   , Ki ,...,1 , where 
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)( NAI = 1 if Niis   *2  and 0 otherwise. 

 
Take 5. q

N N . We have then,  
                            

                    ii

n

j
ij nXX

i

/)( 2

1




= 22

1
)(/)( iiii

n

j
ij XnX

i

 


,   Ki ,...,1 . 

 
Using the Law of the Iterated Logarithm and letting 2)( iijij XY  ,  Ki ,...,1  and 

inj ,...,1  

 


























 







ii n

j
iiij

q
n

j
iiiijN nYNLimSupnXLimSup

1

*
2

5.

1

*
2

21 /)(/)(   

})log(log2])log(log2/|)([|{ *
2

*
2

1

*
2

5.
iiiiiii

n

j
iij

q nnnnnYNLimSup
i




   

* * 0.5 *
2 2 2

1
{[| ( ) | / 2 log log( )] 2 log log( )}

in
q q

ij i i i i i i i i
j

LimSup Y n n n n     



   

 
= 0, a.e. *P


.                                                                                                  (3.35) 

 
Likewise,  
 
 })({ 21

iiN XLimSup     

2{ ( ) /( )}q
i i i i iLimSup n X N n   = 0, a.e. *P


.                                        (3.36) 

 
Hence, 

0/)(
1

*
2

21 
















in

j
iiiijN nXXLimSup  ,  a.e. *P


.                                        (3.37) 

                 
and 

0)}|({ *
2

2  iNii xsPLim   a.e. *P


                                                         (3.38) 
 
 
  To verify condition (i) for the consistency of the average p-value, we then have :                                                
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)|( *
22 NN xP    

 





K

i
NNii xKP

1

*
22 )|/(   
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K

i
NNii

K
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NNii xKsPxKsP
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1

2
2 )|2/()|2/(   

                                   









K

i
N

q
ii

K

i
N

q
iiii xKNsPxKNsnP

1

5.2*
2

1

2
2 )|2/()|2/)((   

                                      
         0, a.e. ,                                                                                                            (3.39) 

 
which verifies  Condition (i) for the consistency of the average p-value. 

 

 

 (2) To verify (ii), letting    = ( 10 20 0( , ,..., )K   , 2 ) be any vector of parameters for 

which H0 holds and  ' , the standard normal pdf, we obtain, 

 

     iiiiiiNN nlXlXH //),|( 22
020  , 

             

2
5.122
022

0210
)( ]

)/(
)()2/1(

)[//)((),|( j
iij

iii
iiiiii

j l
nln

Xl
nlXlth

i

N 








  

 
 
Let  2/1)//)(( 22

0   dnlXl iiiiii . Hence, using the Law of the Iterated 

Logarithm applied to | 0iiX  |, i = 1,2,…,K, we have that for positive constants jC , j 

=1,…, K, 

 

*
2 2 2
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( ) sup { ( | , )}
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h X
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0 2
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  
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  
2 *2

00.5
1.5 *22 *21 1
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2 log log2 /
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j i i i iq i i

j i ii ij i i i
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00.5
1.5 *22 *21 1

2 log log
( )   Lim sup [ ] (1)

2 log log2 /

K K
j i i i iq i
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Nnl
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   

 

 


 


 


 

 
0.5

1

( ) log log (1)
K

q
j

j
N C N o 



   

 
0 ,  a.e. *P


 

 
 

with   )/( 22
iiij nln  > 0  

 
Thus, both conditions of Theorem 2 are satisfied and therefore, the “average” p-value ( p ) 

for this example is consistent.  

 

 

3.5  Posterior Predictive P-Values 

 

The test statistic T in equation (2.6) has two different levels of dependence on 

unknown (nuisance) parameters. The first level of dependence is on the nuisance parameter 

),...,,1( 2 K   in equation (2.6), which is equivalent to ),...,( 22
1

2
K  . The second 

level of dependence arises because the distribution of T depends on the unknown variances 

),...,( 22
1

2
K  . In Chapter 2, one solution was to insert estimates for the nuisance 

parameters and take the maximum of p(( 1 2,  )) over the values of ( 1 2,  ) determined by 

the null hypothesis.   As mentioned earlier, a traditional p-value does not exist in the cases 

I study because there is no useful pivotal.  

 

Presenting a Bayesian view, Meng (1994) offered a solution to cases like this where 

the test variable depends on nuisance parameters by giving an extended p-value, called a 



53 

posterior predictive p-value or discrepancy p-value, which is the tail area probability for a 

“discrepancy variable” under the joint posterior distribution of replicate data and the 

(nuisance) parameter, both conditional on the null hypothesis. The “discrepancy variable” 

is a “test statistic” dependent on unknown parameter(s). The posterior predictive p-value 

reduces the two levels of dependence. Following Meng (1994), given a null hypothesis 

:0H 101   , the posterior predictive p-value is given by : 

 

},|),,(},,(Pr{ 02121 HxxDxDp rep
B    

      }|),,(},,(Pr{ 210210 xxDxD rep                                              (3.40) 

 

where ),,( 21 xD  is a discrepancy variable, repx  denotes a replication of x , a  “future 

observation”. The probability in (3.40) is taken over the joint posterior distribution of 

( 210 ,, repx ) given 0H . Specifically,  

)|(),|(),|,,( 2021021 xxfHxxf reprep   ,  101    ,                               (3.41) 

         )|(),|( 20210 xxf rep   

 

where )|( 20 x  is the posterior density (probability) of 2  under 0H . Meng also gives an 

alternative interpretation of Bp  by taking the posterior mean of )( 2p  over the posterior 

distribution of 2  under 0H . That is, 

),|)(( 02 HxpEpB    ,                                               (3.42) 

 

where },|),,(},,(Pr{)( 210121212   xDXDp . This probability is obtained 

from the frequentist setting, using the sampling density ),|( 210 Xf . 

 

Choosing discrepancy variables can be difficult. Meng(1994) suggested two 

discrepancy variables, called a conditional likelihood ratio (CLR) and a generalized 

likelihood ratio (GLR), assuming that the density ( )f   is jointly continuous in its 

arguments, is given by 
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),|(sup
),|(sup

),(
21

21
2

01

01









xf
xf

xDC



                                            (3.43) 

),|(supsup
),|(supsup

)(
21

21

201

201








xf
xf

xDG



                                        (3.44) 

 

Meng (1994) used two classical examples, including the Behrens-Fisher problem, to 

illustrate the posterior predictive p-value.  A posterior predictive p-value need not have a 

uniform distribution under H0.  But, Meng (1994) shows that if the replication is defined 

by nuisance parameters and new data generated, then the Type I frequentist error of a 

nominal -level posterior predictive test is often close to but less than  and will never 

exceed 2.  
 
Here, I verify that the posterior predictive p-value with the conditional likelihood ratio 

(CLR), the discrepancy variable, is exactly equivalent to the posterior p-value with the test 

statistics in (3.19) and is then also equivalent to )|( 0 DataHP . 

To prove that Bp  is equivalent to postpDataHP )|( 0 , we need to obtain the relationship 

between CLR and )( 2Z  as defined in (3.19). In fact, it is easy to check that the CLR is a 

monotone function of )( 2Z . 

 

Verification 3.5.1:  The log likelihood function is given by 

                             
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Suppose 2
2    is fixed. Then, it is easy to obtain the maximum likelihood estimators 

(MLE’s) under the null hypothesis and alternative hypothesis. 

For 01  ,  the MLE is : ii x~ (sample mean) 

For 01  ,  the MLE is : 

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Then, we can obtain the conditional likelihood ratio (CLR): 

),|(sup
),|(sup
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
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nl
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exp)
2
1( 22
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2
1( Z . 

 

Thus,               )1(~)],(ln[2 2
2 xDC (a chi-square distribution with df = 1) 

                         Bp  is equivalent to postpDataHP )|( 0 , 

which completes the verification. 
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Chapter 4  Nonparametric Tests 
 

The Wilcoxon-Rank sum test, also called the Mann-Whitney test (Wilcoxon 1945; 

Mann and Whitney 1947), provides an exact size   test for the equality of two continuous 

distributions, denoted F1 and F2, based on independent random samples.  It is the locally 

most powerful rank test for detecting a shift in the logistic distribution and has good power 

for many other shift models, without the need to assume a particular distributional form. 

The Mann-Whitney form of the test indicates that it is based on estimating )( YXPxy  , 

1~ FX  and 2~ FY , and its asymptotic power function increases as xy  moves away from 

1/2. However, the test’s null distribution is obtained under the assumption that F1   F2 and 

it can perform poorly as a test of equal locations when F1 and F2 are not just translates of 

one another. The rank Welch test (Zimmerman and Zumbo 1993) provides an approximate 

size  test of the stochastic equality and inequality (4.1) using an approximating Student-t 

distribution, but it exhibits some   inflation in certain cases as given in Delaney and 

Vargha (2002). To deal with this case, Reiczigel, Zakaria’s and Ro’zsa (2005) developed a 

new test, called the Bootstrap Rank Welch test (BRW), to test for stochastic symmetry 

without assuming that the distributions have the same shape. Their hypotheses are given by      

                                          

                )()(:0 YXPYXPH  ,    )()(: YXPYXPH a  ,                     (4.1) 

for two-sided tests, and 

 

   )()(:1 YXPYXPH a    or )()(:2 YXPYXPH a  ,                    (4.2) 

for a one-sided test. 

 

As described below, I will extend their hypotheses and construct tests to deal with 

three or more distributions. Also, Teprstra(1952) and Jonckheere(1954) proposed a 

nonparametric test for ordered alternatives among two or more distributions based on the 

sum of pairwise Mann-Whitney statistics. In future work I plan to extend their null 

hypothesis of equality among the distributions to encompass a degree of ordered separation.    
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A generalization of (4.1) relevant to my goal of assessing separation is ISAV(F ) given in 

(1.8) for some user input   > ½, 

 

 


))1(/(},max{2:0 KKH
ji

jiij ,   


))1(/(},max{2: KKH
ji

jiija .       (4.3) 

 

I also propose the related hypotheses based on ISMAX(F) given in (1.7), 
 

                       }max{:0 ijH ,   }max{: ijaH .                                               (4.4) 

 

Another well known extension of (4.1) is given by what are called slippage tests, 

which will be discussed further in section 4.4. 

 

 

4.1  A Nonparametric Test Statistic 

 

Developing exact tests for (4.3)-(4.4) is not possible in general since the null 

hypotheses are composite and do not require that the distributions be identical. Instead, I 

will develop tests based on the bootstrap and study their properties in terms of size, power 

and robustness. For example, a test for (4.4) could be based on the statistic 











 



ji

jlik

nlnkji nn
xx

ji

)(#
 maxˆ

,...,1,,...,1,
   .                                           (4.5) 

 

To construct bootstrap tests, we need to take resamples from an estimate of F0, the 

distribution of the data under the null hypothesis. For composite null hypotheses, where H0 

does not fully specify F0, Efron and Tibshirani (1993) propose the following guidelines: 

 

1. Use a test statistic which is approximately pivotal so that its distribution changes 

little over the conditions determined by the null hypothesis. 

2. Condition on a sufficient statistic for the unknown parameters. 

3. Estimate F0 by a CDF 0F̂  which satisfies H0 and resample from it. 
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Here, I will focus on (3). In our hypothesis tests, there are many parameters of interest and 

many nuisance parameters, so that constraining F so that the null hypothesis holds will be 

very challenging.  

 

 

4.2 Nonparametric Bootstrap Tests 
 

The proposed method applies the nonparametric bootstrap principle to testing  (4.4) 

based on the new test statistic ̂  given in (4.5). First we need to transform the samples 

{ Kxxx ,..., 21 } into { ',...',' 21 Kxxx }to satisfy the null hypothesis, that is, to stochastic 

equality. The null distribution of ̂  is estimated by resampling from the distributions 

( ',...',' 21 Kxxx } and calculating the test statistic for each resample group ( *
)(̂b , b = 1,2,…,B). 

Based on this simulated null distribution of ̂ , a P-value can be defined as: 

 )ˆˆ(11 *
)(1 bB

p           for an upper-tail test                                                 (4.6) 

)ˆˆ(11 *
)(2 bB

p           for a lower-tail test                                                   (4.7) 

 },min{2 21 ppp            for a two-tailed test                                                  (4.8) 

 

The challenging part here is to figure out how to transform the samples into a new data set 

to satisfy the null hypothesis, a problem I will work on. 

 

4.2.1    Symmetric Distributions 

 

If the distributions { iF } are symmetric and 2/1 ,  the hypotheses in inequalities 

(4.3) and (4.4) may be viewed as a test for the equality of means, 

 KH   ...: 210 , 

:aH  At least two means are different.                                         (4.9) 
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Then we could just use the usual shift transformation. First, compute an overall mean for 

the pooled data, denoted by x . Second, use the equation below to complete the 

transformation. 

       'ij ij ix x x x     , 1, 2,..., ij n , 1, 2,...,i K  ,                                                       (4.10) 

where i

n

j
iji nxx

i

/
1



  is the sample mean of the i th sample. 

 

4.2.2  Skewed Distributions  
 

 Shift Models 

 

Assume that we have two or more independent random variables with the same shape 

and 2/1 . Then our hypothesis test (4.3) and (4.4) becomes a test of equality of 

distributions.  

We might follow the shift transformation (4.11), use the sample median instead of 

sample mean to minimize the effect of outliers,  

 

MedMedxx iijij ' ,  1, 2,..., ij n , 1, 2,...,i K  ,                                (4.11) 

where iMed  denotes the sample median of the i th variable, and  Med denotes the overall 

sample median. A simulation study is needed in this case. 

 

 General Models 

If we know nothing about the distributions of those random variables, then figuring 

out how to transform the samples into a new data set to satisfy the null hypothesis is a 

difficult problem. In the present study, there are three potentially useful transformations to 

try. The first one is the shift transformation (4.12), a little different from (4.10). The 

second transformation is called a stretch transformation (4.13). The last one is a power 

transformation (4.14).  

axx ijij ' ,    1, 2,..., ij n , Ki ,...,2  ,                                               (4.12) 

where a  can be obtained as the median of the values ( mij xx 1 ). 
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wwxcx ijij  )(' ,   1, 2,..., ij n , Ki ,...,2  ,                                    (4.13) 

where 0w  and c can be obtained as the median of the values ( 
wx
wx

m

ij




1

 ). 

 

d
ijij xx '    1, 2,..., ij n , Ki ,...,2  ,                                                       (4.14) 

where d can be obtained as the median of values { 
)log(
)log(

1m

ij

x
x

 }. 

For those three transformations, we let mm xx 11 ' , 1,...,2,1 nm  , and make some 

transformations for the other samples to satisfy the null hypothesis. Note that the last two 

transformations change the ratio of the variances. We need to do a simulation study in the 

future to see if this works.  

 

4.2.3  A Nonparametric Bootstrap CI for ISP 

Since transforming the samples { Kxxx ,..., 21 } into { ',...',' 21 Kxxx } to satisfy the null 

hypothesis is complicated, especially to our composite hypothesis. I will use a 

nonparametric bootstrap to construct a one-sided lower confidence set CI for ISAV(F ) and 

ISMAX(F) , and conclude that the alternative hypothesis is correct if  CI does not contain 

 . The nonparametric bootstrap CI  for ISMAX(F) is carried out as follows 

 

(1) Resample independently and separately from the data in
jijx 1}{    Ki ,...,1 , and 

compute  ̂)(ˆ FSI MAX . 

(2) Independently repeat B times, resulting in B
ii 1

*}ˆ{  . 

(3) Use the percentile method or prepivoting method developed by (Beran, 1987) to 

construct a Lower CI for ISMAX(F): ] ),(ˆ[  DataLCI . Reject  H0  if )(ˆ DataL . 

 

Simulation results for this procedure are given in Chapter 5. In future research, I will 

use the BCa (Bias Corrected and Accelerated) bootstrap to construct a Lower CI for 

ISAV(F ) and ISMAX(F). 
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4.3  The Quantile Test Statistic 

 

I examined another test statistic for the hypothesis tests (4.2)-(4.4) called the quantile 

test statistic, which is given by: 













 K

i
ji

jiji

FF
K

pFpF
pH

1

11

11

)4/1()4/3(1

)()(max
)(                                        (4.15) 

where  )(1 pFi
  is the inverse CDF  for ith treatment, defined by: 

})(:inf{)(1 pyFypF ii      for 10  p .                                     (4.16) 

 

A preliminary simulation was conducted and the results did not show a general 

pattern in a plot of the test statistic )( pH  verses p . Therefore, the quantile test statistic 

needs to be revised or adjusted in future research. 
 

 

 

4.4 Slippage Tests 

 

Slippage tests were considered as an outlier distribution detection by Mosteller 

(1948), Paulson (1952), Kudo (1956), Doornbos and Prins (1956), and others for location 

slippage, and by Cochran (1941) for variance slippage.  In general, suppose we want to 

compare K distributions to find out if all these distributions are identical, or, if not, which 

one has “slipped” away from the others, which are identical. Actually, this is a more 

restrictive test for both null and alternative hypotheses, since it only considers one 

‘extreme’ distribution.  R. Doornbos published a book called “Slippage tests” in 1966 to 

describe the slippage tests for one, or more than one outlier under several families of 

distributions. 
 

In my hypothesis test (4.1), another extension is given by slippage tests, whose right-

sided hypotheses are given by: 
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2/1)()(   :0  ijjiji XXPXXPH      for ji   

1

ij

1: ( )          (    ,     1,..., 1, 1,..., ;  unknown)
2

1  )  )    (for ,    , 1,..., 1, 1,..., ) 
2

a i j ij

i j i j

H P X X for j i m and j m m K m

and P(X X P(X X j i and i j m m K





       

        
  

(4.17) 
 

Left-sided slippage hypotheses are given by 

 ),...,1,1,...,1 ,   ,(for   
2
1 ) )  

),...,1,1,...,1    ,   (         
2
1)(:2

KmmjiandijXP(XXP(Xand

KmmjandmijforXXPH

ijjiji

ijjia








    

        (4.18) 

 

If we assume that those random variables { }iX  have the same shape, then the hypothesis 

tests in equation (5.5) and (5.6) become.  
 

                    KFFFH  ...: 210 ,     

             
ondistributisamethefollowKiijXand

jiforXXPH

j

ijjia

        ),...,1,1,...,1(   

)   (         
2
1)(:1



 
         (4.19)  

for one unknown value of i (right-slippage test), and  

 

ondistributisamethefollowKiijXand

jiforXXPH

j

ijjia

        ),...,1,1,...,1(   

)   (         
2
1)(:2



 
          (4.20) 

for one unknown value of i (left-slippage test). 

 

The test statistics ̂  in (4.5) and )( pH  in (4.15) can also can be used to test for the 

hypotheses in (4.17) – (4.20).   
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Chapter 5 Simulation Results and Discussion 

 

Before carrying out a full simulation study, I did a small-scale simulation to compare 

the bias of the likelihood ratio test (LRT) of the hypotheses given in (2.3), assuming 

normality, using Method 1 and Method 2, as explained in Section 2.5,   Let 0  denote the 

maximum value of   under 0H . Estimated power functions for selected values of 

0  ( 0H holds) are reported in Appendix B, Table B.1, for the case 0  and Table B.2 

for  0   , where the LRT p-value is calibrated using a chi-square distribution with df=1 

and PBL p-values are calibrated using a bootstrap. I also present QQ plots of the p-values 

(LRT and PBL) vs a uniform (0, 1) distribution for the two methods in Appendix B, Figure 

B.1. 

 

From these tables and graphs we see that power functions using Method 2 are close 

to and mostly less than the nominal  =0.05 value for all cases.  On the other hand, the 

entries for Method 1 are much larger than nominal when 0  . These conclusions are 

supported by the QQ plots in Appendix B, Figure B.1 which show sharp departures from 

linearity unless 0  .  

  

In addition, to investigate the distribution of the test statistics  , the logarithm of the 

likelihood ratio test statistic, Figure B.2  in Appendix B presents histograms of simulated , 

independent copies of   under several conditions when 0H  holds. Sample means and 

variances of these histograms indicate sometimes significant departures from the values of 

one and two, respectively, which would be the case if these were samples from a chi-

square distribution with one degree of freedom.  Consequently, the chi-square distribution 

with one degree of freedom should not be used to calibrate the LRT for this class of 

hypotheses and accordingly my full-scale simulation only uses the Method 2 with LRT 

statistic calibrated using a bootstrap, designated PBL.  
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Furthermore, I investigated the affect of different choices of the values { j } used in 

Method 2 on the behavior of the PBL. The results in Table 5.1 and the QQ plots in 

Appendix B, Figure B.3, indicate that there is not a large difference due to changing  the 

gap value, | j - 1j | from 0.01 to 0.05. In my full simulations described below, I will use 

three different gaps. 

 
Table 5.1 Estimated Type I Error Probabilities Comparison of PBL P-Values for ISLIN(F) 

          K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 2),  =0.05, 75.00   (PBL),  
          Iterations = 1000 
 

Small sample sizes Medium sample sizes large sample sizes  

Gap  = 0.05  = 0.10  = 0.05  = 0.10  = 0.05  = 0.10 
0.01 0.05 0.09 0.035 0.065 0.04 0.09 
0.025 0.05 0.09 0.035 0.065 0.04 0.09 
0.05 0.05 0.09 0.035 0.065 0.04 0.09 

 

 

5.1  Simulation Study for ISLIN (F) Assuming Normality       

In this sub-section, I will focus on the test for the hypotheses given in (2.3). Simulations 

here were used to check and compare the Type I error rates and power curves of five p-

values for ISLN (F) under normality. Recall that  

   ISLIN(F) = 2 2

1 1
/

K K

i i i i
i i

l l 
 
    .                                        

I consider the fixed-effects model 

ijiijX   , 

where the independent error terms iiij njKiN ,...,1;,...,2,1),,0(~ 2  , iN n , 

resulting in data { ijx , j = 1,2,…, in } .  

 

 

Parameter Settings:  
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 K = 3, 5, 7 

 )1),...,1/(1),1/(1(  KKl T ,   (-1/(J1),-1/( J1),…,1/( J2), 1/( J2)) 

 where  
)(#

2
)(#

1
21

/1/1
JJ

JJ , and KJJ 21 ,  are specified below, 

               = 0.05, 0.10 

 1  = 0, 2
1 =1 (without loss of generality) 

 # = 200 iterations (data sets) 

sample sizes : n = 10(small), 30(medium), 100 (large) 

Average p-value:  generate 1000 independent variances from the chi-square 

                             distribution. 

Bootstrap procedure: generate 99 bootstrap samples.  

 

Case 1 

 K=3:  )1 ,2/1 ,2/1( Tl  

  = 0.55, 0.65, 0.75, 0.85 

(a) Equal Variance:  12
3

2
2

2
1    

)( 2 (0), (0.5), (1)--------3 parameter settings 

  = 0.75, 0.8, 0.85, 0.9 for )( 2 (1) 

Obtain 3  so that  2 2

1 1
[ / ]

K K

i i i i
i i

l l 
 

   = . 

(b) 12
2
2   , so that the variance increases with the mean. 

),( 32   (0.5, 1), (0.5, 2) , (0.5, 5)------3 parameter settings 

  = 0.55, 0.65, 0.75, 0.8 for ),( 32   (0.5, 1) 

Obtain 2
3  so that 2 2

1 1
[ / ]

K K

i i i i
i i

l l 
 

   = . 

 

Case 2 

 K=5:  )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl   

   = 0.75, 0.8, 0.85, 0.9 
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(a) Equal Variance:  12
5

2
4

2
3

2
2

2
1    

),,( 432   (0, 0, 1), (0.5, 0.5, 1) --------2 parameter settings 

       Obtain 5  so that 2 2

1 1
[ / ]

K K

i i i i
i i

l l 
 

   = . 

(b) 12  ii   for i =2,3,4 

),,,( 5432   (0, 0, 2, 2), (0.5, 1, 3, 3.5) ------2 parameter settings 

          Obtain 2
5  so that 2 2

1 1
[ / ]

K K

i i i i
i i

l l 
 

   = . 

Case 3 

 K=7:  )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl   

(a) Equal Variance:  12
7

2
6

2
5

2
4

2
3

2
2

2
1    

  = 0.75, 0.8, 0.85, 0.9 

),,,,( 65432  (0,0,0,0,0), (0.5, 0.5, 0.5, 1,1), (1, 1, 1, 1, 1)  

                                             --------3 parameter settings 

         Obtain 7  so that 2 2

1 1
[ / ]

K K

i i i i
i i

l l 
 

   = . 

 

(b) 12  ii   for i =2,3,4,5,6 

  = 0.55, 0.65, 0.75, 0.85 

),,,,,( 765432   (0, 0, 0, 0, 0, 1), (0, 0.5, 0.5, 0.5, 0.5, 2) , 

                                         (0.5, 1, 1, 1, 1.5, 3)------3 parameter settings 

         Obtain 2
7  so that 2 2

1 1
[ / ]

K K

i i i i
i i

l l 
 

   = . 

 

 

For each of the parameter combinations, I compare the following test statistics for both 

size and the power. In each case, the null hypothesis is rejected if the estimated p-value is 

at most the nominal type I error rate,  . 
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Test Statistic:  Plug: Plug-in p-value for 



iii

ii

nSl

Xl
T

/22
,  

A_T: Average p-value for )( 2T  

A_Z: Average p-value for )( 2Z = Posterior Predictive p-value 

PBp:  Parametric Boostrap Test p-value for plug-in 



iii

ii

nSl

Xl
T

/22
 

PBL: Parametric Boostrap Test p-value for LRT statistic    

 

The Type I error rates and the power comparisons for 05.0 and 0.10 are estimated 

using Monte Carlo simulation. As mentioned above, I will use Method 2 throughout my 

simulation study to generate PBL p-values under the null hypothesis. I set the gaps 

between j  and 1j  equal to three cases, 0.01, 0.025, 0.05. 

 

 

5.1.1 Comparison of Type I Error Rates  

 

In (2.3), 0H  is composite for ISLIN(F), which makes it difficult to check type I error rates 

and powers . Table 5.2 reports representative cases of estimated type I error rates, ̂ , for 

these five tests with small, medium, and large sample sizes and nominal type I error 

rate = 0.05 when 0  .  The complete simulation results are summarized in Appendix 

C, Table C.1.  Cells in the tables where  = 0.05 does not lie in the approximate .95 

confidence interval 200/)ˆ1(ˆ96.1ˆ    are highlighted. The gray color indicates that 

the corresponding entry is smaller than the lower bound of the approximate .95 confidence 

interval.  The pink color indicates that the corresponding entry is greater than the upper 

bound of the CI above. The results for   = 0.10 are very similar and are not reported. 

Further, some QQ plots for these five p-values are given in Appendix C, Figure C.1.  

These tables and plots lead to the following summary statements.  
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(1) In general, when the sample sizes are large, the Type I error rates for all five tests 

are very similar and close to the nominal level  .  
 

(2) For small samples, the Type I error rates for Plug may exceed the nominal  in 

some cases, but appear never to exceed 2 . But, for most of cases, even for 

small samples, the estimated Type I error rates for Plug p-value tests appear to be 

more stable and closer to the nominal level   than the error rates for the others. 
 

(3) The Average p-value tests for T (A_T) and for Z (A_Z) have similar estimated 

Type I error rates and these two p-values seem to be a little conservative for small 

samples. 
 

(4) The QQ plots in Appendix C, Figure C.1, appear to be equiangular lines through 

the origin, especially for the large samples. 

 

(5) Furthermore, in order to check whether the estimated type I error probabilities for 

those five tests are less than the nominal  over the parameter space determined 

by the composite null hypothesis, I generated data sets under 0   . The 

corresponding results are exhibited in Appendix C, Table C.2 for  =0.05 and in 

Appendix C, Figure C.2 using QQ plots.  These simulation results indicate that 

the estimated levels of those five tests are less than the nominal  = 0.05. 

Specifically, for some small samples even some medium-size samples, and the 

large values of  , the PBp and PBL p-values have a very conservative Type I 

error rate. Sometimes, the estimated Type I error rate = 0.  
 

 
Although the PBp and PBL test compare well with the tests based on the plug in and 

average p-values, they are complex, time-consuming procedures. 
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Table 5.2 Estimated Type I Error Probabilities Using P-Values for ISLIN(F), 0  . 

Table 5.2.1 K=3, (a) )( 2 (0.5),  =0.05, )1 ,2/1 ,2/1( Tl  
small sample sizes medium sample sizes large sample sizes  

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.55 0.06 0.05 0.05 0.065 0.065 0.065 0.06 0.065 0.06 0.06 0.045 0.045 0.045 0.05 0.05 

0.65 0.04 0.04 0.04 0.045 0.05 0.055 0.05 0.05 0.055 0.06 0.05 0.05 0.05 0.05 0.06 

0.75 0.055 0.03 0.03 0.055 0.03 0.065 0.05 0.05 0.06 0.04 0.04 0.04 0.04 0.045 0.035 

0.85 0.06 0.05 0.05 0.036 0.025 0.055 0.055 0.055 0.055 0.05 0.055 0.05 0.05 0.06 0.045 

 
Table 5.2.2 K=3, (b) ),( 32  (0.5, 2),  =0.05, )1 ,2/1 ,2/1( Tl  

small sample sizes Medium sample sizes large sample sizes  

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.55 0.04 0.045 0.045 0.04 0.05 0.035 0.035 0.04 0.045 0.045 0.05 0.05 0.05 0.045 0.045 

0.65 0.035 0.035 0.035 0.035 0.055 0.06 0.055 0.06 0.06 0.06 0.045 0.045 0.045 0.045 0.03 

0.75 0.06 0.055 0.055 0.06 0.04 0.05 0.05 0.05 0.055 0.06 0.05 0.05 0.05 0.055 0.04 

0.85 0.045 0.035 0.035 0.016 0.021 0.065 0.055 0.055 0.036 0.026 0.03 0.03 0.03 0.03 0.055 

 
 
 
 
5.1.2 Power Comparisons  

 

To compare powers ( )  at specified alternatives, I present estimated power profiles for 

those cases where the type I error rates appear to be close to the nominal  . Figure 5.1 and 

Appendix C, Figure C.3, plot estimated powers, denoted ̂ , and compare these five tests 

with small, medium, and large sample sizes for some parameter settings. Using the 

variance of a binomial distribution, standard errors of these entries ̂  are at most 0.021 for 

0< ̂   0.10 or .90   ̂ < 1; 0.028 for  0.10< ̂   0.20 or .80   ̂ < 0.90;  0.032 for 

0.20< ̂   0.30 or .70   ̂ < 0.80;   0.035 for 0.30< ̂   0.70.  Furthermore, in Appendix 

C , Table C.3, I present the results of Cochran’s test for testing the equality of the powers 

among the six tests at fixed alternatives.  

 

0H : The powers are equal.    

aH : At least two powers differ. 
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Cochran’s test is used to compare proportions, since all five tests are performed on the 

same data set. 

 
Summary of power comparisons: 

 

(1) When sample sizes are large, or even medium, the power comparison results 

indicate that all five tests exhibit similar behavior. Further, Cochran’s test 

indicates that the powers only differ for some values of  , for a few medium and 

most small samples.  

(2) The Plug p-value test exhibits the highest power when sample sizes are small and 

medium. 

(3) The PBp and PBL p-values have almost the same power. In some small samples, 

these two p-values-based tests appear to be almost as powerful as the Plug p-

value test and they appear to be more powerful than the other two, A_T and A_Z, 

in most cases. 

(4) Clearly, for small or medium samples, the A_T, and A_Z have almost exactly the 

same power. In most small samples, they appear to be less powerful than the 

others. But they appear to be more powerful than the other two (PBp and PBL) in 

some cases. 

 

Overall, from the simulation results for both the level and the power, we conclude that 

when samples from normal distributions are large or medium, it does not make any 

practical difference which of these five tests is used. But, because the PBp and PBL tests 

require much more time than the others, I recommend using the plug-in and the average p-

value tests. For small samples, I recommend using the plug-in test and using parametric 

boostrap tests and average p-value tests if controlling the type I error rate is very important. 

Overall, the plug-in test is recommended for all cases in practical applications. 
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Figure 5.1 Power Simulation of Tests for ISLIN(F) From Normally Distributed Data 

Figure 5.1.1 K=3, (a) )( 2 (0.5), 65.0 ,  = 0.05 , )1 ,2/1 ,2/1( Tl  

 
 
 
 
 
 
 
 
 
 
 
       (1) small samples                      (2)  medium samples                   (3)  large samples 
 
 
                         Blue:        Plug_in                                           Black:      PBT_plugin 
                         Red :        Average_T                                      Yellow:   PBT_LRT 
                         Green :     Average_Z                                       

                           
 

Figure 5.1.2 K=3, (b) ),( 32  = (0.5, 2), 75.0 , )1 ,2/1 ,2/1( Tl  

 
 
 

 

 

 

       (1) small samples                      (2)  medium samples                   (3)  large samples 
 
 
                         Blue:        Plug_in                                           Black:      PBT_plugin 
                         Red :        Average_T                                      Yellow:   PBT_LRT 
                         Green :     Average_Z                                       
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5.2  Simulation Study for ISAV(F ) and ISMAX(F)    

 

Now, let us investigate the nonparametric tests for ISAV(F ) and ISMAX(F). As I already 

mentioned in Chapter 4, developing exact tests for (4.3) and (4.4) is not possible in 

general. Instead, I developed tests based on the bootstrap and studied their properties in 

terms of size and power. This sub-section presents estimated Type I error rates and powers 

for the nonparametric bootstrap tests (4.3) and (4.4) for ISAV(F ) and ISMAX(F) . 

 

I first constructed a simple nonparametric bootstrap CI for ISMAX and  ISAV. Since 

preliminary simulations indicated that these confidence intervals when used as tests do not 

work well in most of cases, I switched to CI’s based on a pre-pivoting bootstrap (Beran, 

(1987)) to correct bias and found that it performed better. When a pivot does not exist for a 

bootstrap test, its actual type 1 error rate could be far from its nominal value, even for large 

samples. The Prepivoting method was developed by Beran (1987) to produce a bootstrap 

confidence set that has close to its nominal coverage rate. Beran stated that “Prepivoting is 

the transformation of a confidence set root by its estimated bootstrap cumulative 

distribution function”.  The Prepivoting algorithm for constructing a nonparametric 

bootstrap CI is given below:  

 

Algorithm 5.1:  Prepivoting Algorithm for Bootstrap CI’s: 

 

Let T be a test statistic, F be the true cumulative distribution function of the data and 

nF̂  is the empirical cumulative distribution function obtained from the data. Compute the 

test statistic )ˆ( nFT  obtained from the data.  

 

(A) Let  },...,,{ **

2

*

1 M
yyy  be independent bootstrap samples drawn from nF̂ , Let  *

,
ˆ

jnF  be an 

estimate of nF̂ , obtained from *

j
y , Mj ,...,2,1 . Then compute test statistic )ˆ( *

, jnFT  

for each resample *

j
y , Mj ,...,2,1 and the corresponding error term 

jnR , )ˆ( *
, jnFT )ˆ( nFT , for Mj ,...,2,1 . The empirical cumulative distribution 
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function of the value }1:{ , MjR jn    well approximates nĤ  for sufficiently large 

M, where }ˆ|{)ˆ,(ˆ)(ˆ
nnnnn FxRprFxHxH  . 

 

(B) Let },...,,{ **

,

**

2,

**

1, Bjjj
yyy  be B independent bootstrap samples from *

,
ˆ

jnF , Mj ,...,2,1 . 

Then, compute test statistic )ˆ( **
,kjFT  for each double resample **

,kj
y , Mj ,...,2,1 , 

Bk ,...,2,1  and the corresponding error terms kjnR ,, )ˆ( **
,kjFT )ˆ( *

, jnFT ,  for 

Mj ,...,2,1 , Bk ,...,2,1 . 

 

(C) Compute 
B

RR
Z jnkjn

j
,,,# 

 , for Mj ,...,2,1 . Then, the empirical cumulative 

distribution function of the { jZ : Mj 1 } approximates 1,
ˆ

nH  for sufficiently large 

M and B, where ]ˆ|}ˆ|}{[)ˆ,()(ˆ *
,,,1,1, nnjnkjnnnn FxFRRprprFxHxH  . 

 

(D) An approximate  1 , one-sided C.I. for T is given by:  

)}}1(ˆ{ˆ)(,{ 1
1,

1
1,  

nnnn HHtRtCI  

        )}}1(ˆ{ˆˆ{ 1
1,

1  
nn HHTT  

 

 

Parameter Settings:  

The parameter settings for the simulation study of ISAV(F ) and ISMAX(F) for Normal 

distributions are the same as for ISLN (F)  with additional choices for pre-pivoting 

bootstrap resamples. Specifically, set:  
 

   M=100 (M represents the numbers of the bootstrap resample),  

                                    B=100 (B is the double bootstrap resample numbers) 

   Sample sizes: small(10), medium(20), large(50)  

    =0.05, 0.10  
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Time constraints only allowed 100 bootstrap resamples and the simulation results are not 

good and precise enough to investigate the attained Type I error rates and powers for 

ISAV(F ) and ISMAX(F) when  =0.05.  Usually, for the more precise results, we need at 

least 999 bootstrap resamples for  =0.05.  So, I only show the results for  =0.10 here. 

 

 

5.2.1 Simulated Type I Error Rates for ISAV(F ) 

 
Table 5.3 records estimated Type I error rates of ISAV(F ) obtained by using a prepivoting 

nonparametric bootstrap CI method. Cells in the table where   = 0.10 does not lie in the 

approximate .95 confidence interval 200/)ˆ1(ˆ96.1ˆ    are highlighted, where ̂  

represents the estimated type I error rate. The gray color indicates that the corresponding 

entry is smaller than the lower bound of the approximate .95 confidence interval.  And the 

pink color indicates that the corresponding entry is greater than the upper bound of this CI. 

 

The error rates in Table 5.3 are close to 0.10 in general even for some small samples, 

except for the case 021   . That shows us that when two or more populations are very 

close to each other, the error rates are inflated even for large samples (n=50). The, largest 

inflation might be double what value it should be ( =0.10) when  =0.80.  

 

Hence, the prepivoting method seems to work well for ISAV(F)  when two or more 

distributions are not identical and are fairly far apart. 

 

 

5.2.2 Simulated Type I Error Rates for ISMAX(F ) 

 
From the simulation results for the type I error rates of ISMAX(F) (given in Table 5.4), we 

notice that when we increase the sample size n to 50, the type I error rate is very close to 

0.10, even when   is large. So, the prepivoting method for ISMAX(F) appears to work well 

for large sample sizes.  
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But for the small samples, the Type I error rates exhibit serious inflation and even can be 

as large as 0.49 when 95.0 . So for ISMAX(F),  the pre-pivoting method is not useful for 

small samples. 

 
Therefore, for ISMAX(F),  the simulation studies show that the pre-pivoting method is 

helpful in reducing the bias for some cases, especially for the large samples. 

 
For both ISAV(F)  and ISMAX(F),  there is some inflation of estimated Type I error rates.  I 

will investigate this issue in future research. 

 

 

Table 5.3 Prepivoting Nonparametric Bootstrap CI for ISAV(F) 
 
Table 5.3.1 K=3,  =0.10 

(a) ( 2 =0) (a) ( 2 =0.5) (a) ( 2 =1) 
      

Type I error ( ) 

0.60 0.70 0.80 0.60 0.70 0.80 0.70 0.80 0.85 
n=(10,8,9) 0.19 0.21 0.16 0.15 0.13 0.13 0.13 0.08 0.1 

n=(20,25,28) 0.2 0.19 0.22 0.11 0.14 0.12 0.13 0.11 0.1 

n=(50,60,55) 0.18 0.14 0.25 0.11 0.09 0.06 0.1 0.08 0.1 

 

(b) ),( 32  = (0.5, 1) (b) ),( 32  = (0.5, 2) (b) ),( 32  = (0.5, 5) 
      

Type I error ( ) 

0.65 0.70 0.65 0.75 0.80 0.65 0.75 0.85 
n=(10,8,9) 0.08 0.13 0.07 0.14 0.12 0.05 0.14 0.09 

n=(20,25,28) 0.12 0.12 0.10 0.14 0.08 0.1 0.1 0.05 

n=(50,60,55) 0.08 0.14 0.16 0.09 0.13 0.14 0.12 0.10 

 
 

Table 5.3.2 K=5,  =0.10 
(a)  (0,0,1) (a) (0.5, 0.5, 1) (b) (0, 0, 2, 2) (b) (0.5, 1, 3, 3.5) 

        
 

Type I error ( ) 
0.66 0.70 0.75 0.65 0.70 0.75 0.71 0.74 0.77 0.80 

n=(10,8,9,7,9) 0.24 0.13 0.17 0.16 0.15 0.15 0.22 0.30 0.09 0.12 

n=(20,25,22,24,26) 0.28 0.17 0.28 0.09 0.13 0.15 0.17 0.26 0.06 0.14 

n=(50,60,55,54,58) 0.17 0.12 0.16 0.16 0.19 0.15 0.23 0.24 0.13 0.14 
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Table 5.4 Prepivoting Nonparametric Bootstrap CI for ISMAX(F) 
 

Table 5.4.1 K=3,  =0.10 
(a) 2 =0 (a) 2 =0.5 

    

  

Type I error ( ) 
0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

n=(10,8,9) 0.13 0.23 0.32 0.49 0.12 0.14 0.26 0.47 

n=(20,25,28) 0.16 0.12 0.14 0.23 0.11 0.09 0.09 0.23 

n=(50,60,55) 0.16 0.11 0.15 0.13 0.09 0.11 0.10 0.11 

 
Table 5.4.2 K=3,  =0.10 

(b) ),( 32  = (0.5, 1) (b) ),( 32  = (0.5, 2) 
    

  

Type I error ( ) 
0.65 0.70 0.75 0.80 0.65 0.75 0.85 0.95 

n=(10,8,9) 0.16 0.12 0.14 0.13 0.11 0.1 0.26 0.42 

n=(20,25,28) 0.09 0.05 0.05 0.11 0.08 0.08 0.12 0.19 

n=(50,60,55) 0.18 0.09 0.14 0.09 0.16 0.08 0.15 0.09 

 
 

Table 5.4.3 K=5,  =0.10 
(a) ),,( 432  = (0,0,1) (a) ),,( 432  = (0.5,0.5,1) 

    

 

Type I error ( ) 
0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 

n=(10,8,9,7,9) 0.43 0.53 0.61 0.69 0.32 0.32 0.36 0.54 

n=(20,25,22,24,26) 0.21 0.21 0.33 0.47 0.11 0.07 0.1 0.18 

n=(50,60,55,54,58) 0.21 0.22 0.15 0.18 0.08 0.10 0.09 0.05 

 
 

 

 

5.2.3 Simulated Powers for ISAV(F ) and ISMAX(F ) 

 
I also investigated the power properties of tests for both ISAV(F ) and ISMAX(F ). When the 

attained Type I error rate is close to its nominal value ( =0.10), the simulated-powers 

results for ISAV(F ) (illustrated in Appendix C, Figure C.4) and for ISMAX(F) (given in 

Figure 5.2)  indicate that the prepivoting Bootstrap tests have an increasing power function 

when the value of π increases. 
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Figure 5.2  Power Simulation Results for ISMAX(F), Medium Samples 

 

 
 
 

 
 
 
 
 
 
(a)  K=3 (a) )( 2 (0.5), 75.0                               (b) K=3 (b) ),( 32  = (0.5, 1), 65.0  
 
 
 
 
 
 
 
 
 
 
 
(c)  K=3 (b) ),( 32  = (0.5, 2),                                     (d)  K=5, (a) ),,( 432  = (0.5,0.5,1),            
      75.0                                                                          80.0 , 
 
 
 

5.3 Example                                                                   

 
Consider three Normal distributions:                           Figure 5.3 PDF Curves 

 
  

)5.0 ,0(~ 2
11 NX ,  

)3,0(~ 2
22 NX ,  

)705.14,1(~ 2
33 NX . 
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Although the means are not identical, there is considerable overlap among the three 

distributions, as pictured in Figure 5.3 and as indicated by the following values of some 

intrinsic separation parameters:  

 

2533.0)( FISLIN   60.0))((  FISLIN .  for }1  ,2/1{ 321  llll T  

5650.0)( FIS AV ,        6012.0)( FISMAX .       

 

We generated independent random samples of three sample sizes, small, medium, and 

large, from these three distributions. Summary statistics are listed in Table 5.5 and the 

corresponding side by side boxplots are given in Figure 5.4.  The considerable overlap 

among these boxplots is, of course, what decision-makers using these data sets would see.  

The five p-values for testing the value of LINIS  using the hypothesis in (2.4) with π = 0.50, 

0.55, 0.60, 0.65, 0.70 are given in Table 5.6. 

 

First, note that all tests yield results which support the conclusion that the three means are 

not identical, i.e.,   > 0.50. As   increases, indicating increasing separation, the tests 

provide increasing support for the hypothesis that the distributions are not ‘far’ apart, a 

main point of this dissertation. Except for ‘small’ samples, the p-values of all the tests are 

very similar. This example motivates me to investigate in the future procedures for 

selecting sample sizes so that my tests have desired power at specified alternatives.  

 
Table 5.5 Summary Statistics of the Data Sets for the Example 
    

Treatments i  2
i  in  ix  2

is  
10 -0.0251 0.3745 
30 0.0244 0.4039 1X  0 0.5 
100 -0.0433 0.5370 
15 0.0714 1.705 
50 0.1058 3.3723 2X  0 3 
150 -0.1622 2.9977 
12 2.7141 10.2982 
20 2.5142 16.0952 3X  1 14.7050 
120 1.3517 15.1650 
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Figure 5.4 Side by Side Boxplots for the Data Sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 5.6 Comparison of the P-Values for ISLIN(F) for the Example 
  
   Table 5.6.1  = 0.50 

Sample Sizes Plug A_T A_Z PBp PBL 
Small 0.0074 0.0079 0.0081 0.010 0.0227 

Medium 0.0069 0.0075 0.0075 0.010 0.0222 
Large 5.4168e-05 5.4151e-05 5.2923e-05 0.010 0.0128 
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   Table 5.6.2   = 0.55 
Sample Sizes Plug A_T A_Z PBp PBL 

Small 0.0202 0.020 0.0193 0.050 0.050 
Medium 0.0268 0.0272 0.0269 0.020 0.020 

Large 0.0057 0.0058 0.0059 0.020 0.020 
 
   Table 5.6.3  = 0.60 

Sample Sizes Plug A_T A_Z PBp PBL 
Small 0.0486 0.0496 0.0508 0.090 0.100 

Medium 0.0818 0.0835 0.0825 0.140 0.140 
Large 0.1222 0.1216 0.1218 0.140 0.140 

 
   Table 5.6.4  = 0.65 

Sample Sizes Plug A_T A_Z PBp PBL 
Small 0.1046 0.1075 0.1081 0.070 0.080 

Medium 0.2007 0.2013 0.1981 0.220 0.220 
Large 0.5969 0.6013 0.6025 0.590 0.750 

 
   Table 5.6.5  = 0.70 

Sample Sizes Plug A_T A_Z PBp PBL 
Small 0.2025 0.2050 0.2056 0.220 0.230 

Medium 0.3990 0.4045 0.4048 0.440 0.440 
Large 0.9582 0.9589 0.9594 0.90 0.77 

 
 
Table 5.7 exhibits the lower limits ( )(ˆ DataL ) of one-sided lower confidence sets for 

ISAV(F) and ISMAX(F) for the data in this example, obtained by using a nonparametric 

bootstrap and prepivoting. We would conclude that the separation among the distributions, 

as measured by ISAV or ISMAX, is greater than  only if )(ˆ DataL . Again, as ˆ( )L Data  

increases, indicating increasing separation, the tests provide decreasing support for the 

hypothesis that the distributions are ‘that far’ apart. The dividing line here between 

separation and not separation is for   around 0.56 for ISAV and around 0.60 for ISMAX. We 

note that these bootstrap results depend, hopefully weakly, on the resample numbers (M, 

B). 
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Table 5.7 Lower Limit of CI for ISAV(F) and ISMAX(F) for the Example 
  
   Table 5.7.1 Lower Limit of CI for ISAV(F) 

05.0  10.0  
Sample Sizes 

M=B=100 M=B=500 M=B=100 M=B=500 
Small 0.5489 0.5466 0.5553 0.5719 

Medium 0.5743 0.5348 0.5799 0.5558 
Large 0.5525 0.5559 0.5544 0.5670 

 
 
     Table 5.7.2 Lower Limit of CI for ISMAX(F) 

05.0  10.0  
Sample Sizes 

M=B=100 M=B=500 M=B=100 M=B=500 
Small 0.6167 0.60 0.6167 0.60 

Medium 0.525 0.5683 0.6267 0.6364 
Large 0.5792 0.5692 0.5809 0.5804 
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CHAPTER 6  Summary  and Conclusion 
 

 I developed and explored the concept and tests for some Intrinsic Separation 

Parameters: ISLIN(F), ISMAX(F), and ISAV(F)), assuming normality for ISLIN(F) , among two 

or more distributions which may have different shapes by using frequentist, Bayesian, 

Fiducial and bootstrap modes of inference . Over all, the tests developed for ISP among 

normal  distributions with unequal variances are more complex than the one-way ANOVA, 

which tests the equality of means with equal variances.  
 

For ISLIN(F),  I developed five tests for this ISP, assuming the normality. They are the  

plug-in test (Plug),  two average p-value tests (A_T, A_Z), and two parametric boostrap 

tests (PBp, PBL). The asymptotic behavior of the parametric bootstrap test and the average 

p-value tests are derived in Chapter 2 and Chapter 3 separately.  Chapter 2 presents a 

method for  proving  that the parametric bootstrap test for the LRT is an asymptotically 

size-  test under normality and some mild conditions. Chapter 3 proves that the average 

p-value ( p ) is consistent under normality. In addition, based on the simulation results in 

Chapter 5, in terms of estimated size  and power, my five testing procedures perform very 

similarly and very well for medium and large samples. Furthermore, Example 5.3 

illustrates these five tests and shows them to behave similarly. In general, it does not 

matter which of these five procedures for medium and large samples (≥30), we use. 

 

When samples are very small (  15), simulation results show that the plug-in test 

performs well regardless of the values of the error variances, and the number of 

distributions being compared, except it has type I error rates inflated for a few cases. Other 

tests, compared to the plug-in test, are more conservative, but with the loss of power 

(significant in most of cases).  

 

Since a meaningful interpretation of LINIS (F)  depends heavily on the assumption of 

normality, the issue of robustness of tests for it is of limited interest. Defining and 

investigating more ISP’s such as ISMAX(F) and ISAV(F)) which do not depend on the form 

of the underlying distributions would be an important step forward. Constructing effective 
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tests for  ISP for ISAV(F ) and ISMAX(F) remains a challenging problem. Prepivoting a 

bootstrap to reduce the bias in constructing a one-sided lower confidence set for ISAV(F ) 

and ISMAX(F) only appears to works in  some cases.  This issue warrants further study. 
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CHAPTER 7 Further Researches 

 

(1) Investigate robustness of my tests with respect to the presence of outliers. 

(2) Develop procedures for selecting sample sizes so that my tests have desired power 

at specified alternatives. 

(3) Develop another approach to compare several distributions (sometimes called 

counting overlap), which is an intrinsic separation test based on the proportion of 

overlapping observations. 

(4) Further explore the concept of separation for skewed families of location scale 

distributions such as the extreme value. 

(5) Investigate the ISP for ISAV(F ) and ISMAX(F) by using BCa (Bias Corrected and 

Accelerated) method or develop other procedures. 

(6)       Derive the asymptotic distribution of the likelihood ratio test for LINIS (F) . 
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APPENDIX A 

Figure A.1  Estimated P-Values Under (2.4): 0H : ISLIN(F)   

Satterthwaite Approximation (Conservative) Test—p-value (2.9) , 10000 Iterations 

 

(A.1.1) )1,0(N~21 XX
D
 , )1,56767.1(N~3X , )1 ,2/1 ,2/1( Tl  

 
Figure A.1.1 Uniform Q-Q Plot of  Estimated P- Value 

 
 
 
 
 
 
 
 
 
 
 

           (1)  1n  = 2n = 3n =10                       (2)  1n =10, 2n =11, 3n =12                  (3)  1n =10, 2n =30, 3n =90 

 
 
 
 
(A.1.2) )1,0(N~1X , ))10(,0(N~ 2

2X , ))74316.2(,3(N~ 2
3X , )1 ,2/1 ,2/1( Tl  

 
 

Figure A.1.2 Uniform Q-Q Plots of  Estimated P- Values 
                  

 

 

 

 

 

 

 

           (1)  1n  = 2n = 3n =10                       (2)  1n =10, 2n =11, 3n =12            (3)  1n =100, 2n =125, 3n =150 
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Figure A.2  Estimated P-Values Under 0H  (2.4) 

Satterthwaite Approximation (Estimate) test—p-value (2.12) 
 
 
(A.2.1) )1,0(N~21 XX

D
 , )1,56767.1(N~3X , )1 ,2/1 ,2/1( Tl , 10000 Iterations  

 
Figure A.2.1 Uniform Q-Q Plots of  Estimated P- Values 

        
 
 
 
 
 
 
 
 
 
 
       (1)  1n =10, 2n =15, 3n =20                  (2)  1n =10, 2n =30, 3n =90            (3)  1n =100, 2n =500, 3n =900 

 

 

 

(A.2.2) )1,0(N~1X , ))10(,0(N~ 2
2X , ))74316.2(,3(N~ 2

3X , )1 ,2/1 ,2/1( Tl ,    
              B=10000 Iterations 
 
 

Figure A.2.2 Uniform Q-Q Plots of  Estimated P- Values 
 

 

 

 

 

 

 

 

       (1)  1n =10, 2n =30, 3n =15                (2)  1n =10, 2n =100, 3n =30          (3)  1n =100, 2n =1000, 3n =300 
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Figure A.3  Estimated Power ( 0H :(2.4)  ) 

Satterthwaite Approximation (Estimate) Test (p-value (2.12))—Power  
 

(A.3.1) )1,0(N~21 XX
D
 , )1,56767.1(N~3X , )1 ,2/1 ,2/1( Tl , 1000 Iterations ,  

              m = n . 
 

Figure A.3.1 Power vs  n  
   
 
 
 
 
 
 
 
 
 
 
 
 
                 (1)  1n  = 2n = 3n =10                                            (2)  1n  = 2n = 3n =100 
 
 
 
(A.3.2) )1,0(N~1X , ))10(,0(N~ 2

2X , ))74316.2(,3(N~ 2
3X , )1 ,2/1 ,2/1( Tl ,  

              B=1000 Iterations,  m = n . 
 

Figure A.3.2 Power vs  n  
 
 
 
 
 
 
 
 
 
 
 
 

             (1)  1n =10, 2n =15, 3n =25                                                   (2)  1n  = 2n = 3n =100 
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Figure A.4  Fiducial P-Values under 0H  (2.4) 

Conservative Test—P-value (3.9) 

 

(A.4.1) )1,0(N~21 XX
D
 , )1,56767.1(N~3X , )1 ,2/1 ,2/1( Tl , 5000 Iterations  

             (rep = 1000) 
 

Figure A.4.1 Uniform Q-Q Plots of  Fiducial P- Values (Conservative test) 
 

 
 
 
 
                
 
 
 
 
 
 
           (1)  1n  = 2n = 3n =10                       (2)  1n =10, 2n =15, 3n =20            (3)  1n =100, 2n =110, 3n =120 

 
 
 

 (A.4.2) )1,0(N~1X , ))10(,0(N~ 2
2X , ))74316.2(,3(N~ 2

3X , )1 ,2/1 ,2/1( Tl ,  
               B=5000 Iterations (rep = 1000) 
 
 

Figure A.4.2 Uniform Q-Q Plots of  Fiducial P- Values (Conservative test) 
 
 
 
 
 
 
 
 
 
 
 
 

           (1)  1n  = 2n = 3n =10                       (2)  1n =10, 2n =50, 3n =20            (3)  1n =100, 2n =120, 3n =150 
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Figure A.5  Fiducial P-Values under 0H  (2.4) 

Replication Test—P-value (3.12) 

(A.5.1) )1,0(N~21 XX
D
 , )1,56767.1(N~3X , )1 ,2/1 ,2/1( Tl , 5000 Iterations  

             (rep = 1000) 
 

Figure A.5.1 The Uniform Q-Q Plot of  Fiducial P- Value (Replication test) 
 
 
 
 
 
 
 
 
 
 
 
 

      (1)  1n =10, 2n =30, 3n =90              (2)  1n =100, 2n =110, 3n =120         (3)  1n =100, 2n =200, 3n =500 
 
 
 

(A.5.2) )1,0(N~1X , ))10(,0(N~ 2
2X , ))74316.2(,3(N~ 2

3X , )1 ,2/1 ,2/1( Tl , 
5000 Iterations  (rep = 1000) 

 
 
 

Figure A.5.2 Uniform Q-Q Plots of  Fiducial P- Value (Replication test) 
 

 
 
 
 
 
 
 
 
 
 
 

   (1)  n1=10, n2=200, n3=30                          (2)  n1=n2=n3=100                       (3)  n1=100, n2=500, n3=200 
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Figure A.6  Fiducial P-Value -- Power ( 0H :(2.4)  ) 

Replication Test (p-value (3.12))—Power  
 

    )1,0(N~1X , ))10(,0(N~ 2
2X , ))5087.12(,5(N~ 2

3X , )1 ,2/1 ,2/1( Tl , 
     1000 Iterations (rep = 500) , m = n . 
 
 

Figure A.6  Power vs  n  
 
 
 
 
 
 
 
 
 
 
 
 
 

                 (1) 1n = 2n = 3n =100                                                        (2) 1n =10, 2n =15, 3n =20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                              (3) 1n =30, 2n =40, 3n =30 
 
 
 
 
 



96 

APPENDIX B 

 
Table B.1: Estimated Type I Error Probabilities for LRT and PBL, 0    
 

Table B.1.1 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5),  =0.05 
small samples  medium samples  large samples  

Method1 Method2 Method1 Method2 Method1 Method2 
 

  
LRT PBL PBL LRT PBL PBL LRT PBL PBL 

0.55 0.085 0.065 0.065 0.055 0.05 0.06 0.065 0.065 0.05 

0.65 0.065 0.065 0.05 0.065 0.06 0.06 0.045 0.045 0.06 

0.75 0.05 0.03 0.03 0.045 0.05 0.04 0.05 0.055 0.035 

0.85 0.051 0.062 0.025 0.050 0.065 0.05 0.055 0.055 0.045 

 
Table B.1.2 K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 2),  =0.05 

small samples  medium samples  large samples  
Method1 Method2 Method1 Method2 Method1 Method2 

 

  
LRT PBL PBL LRT PBL PBL LRT PBL PBL 

0.55 0.07 0.06 0.05 0.04 0.035 0.045 0.065 0.055 0.045 

0.65 0.055 0.05 0.055 0.055 0.04 0.06 0.07 0.055 0.03 

0.75 0.085 0.055 0.04 0.05 0.04 0.06 0.065 0.065 0.04 

0.85 0.041 0.052 0.021 0.047 0.052 0.026 0.04 0.045 0.055 

 
 
 
Note:  

(1) The gray color indicates that the entry is smaller than the lower bound of  the   
approximate  .95 confidence interval. 

(2) The LRT p-value is constructed by using a chi-square distribution with df=1. 
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Table B.2 Estimated Type I Error Probabilities for LRT and PBL, 0    
 
Table B.2.1 Estimated type I error probabilities, K=3, )1 ,2/1 ,2/1( Tl ,   
                    (a) )( 2 (0.5),  =0.05, 85.00  (method1) 

LRT PBL  

  0.65 0.70 0.75 0.80 0.65 0.70 0.75 0.80 

Small samples 0.575 0.37 0.18 0.09 0.575 0.395 0.21 0.11 

Medium samples 0.835 0.715 0.335 0.105 0.84 0.69 0.33 0.11 

Large samples 1 1 0.96 0.47 1 1 0.955 0.46 

 
 
Table B.2.2 Estimated type I error probabilities, K=3, )1 ,2/1 ,2/1( Tl ,  
                    (b) ),( 32  (0.5, 2), 75.00   (method1) 

LRT PBL  

  0.60 0.65 0.70 0.74 0.60 0.65 0.70 0.74 

Small samples 0.28 0.2 0.095 0.04 0.285 0.18 0.09 0.035 

Medium samples 0.425 0.215 0.1 0.065 0.415 0.215 0.095 0.05 

Large samples 0.99 0.815 0.355 0.045 0.99 0.815 0.34 0.05 

 
 
Table B.2.3 Estimated type I error probabilities for PBL, K=3, )1 ,2/1 ,2/1( Tl ,  
                    0   (method2) 

 (a) )( 2 (0.5), 85.00   (b) ),( 32  (0.5, 2), 75.00    

  0.65 0.70 0.75 0.80 0.60 0.65 0.70 0.74 
Small samples 0 0 0.005 0.005 0.015 0.01 0.025 0.06 

Medium samples 0 0 0 0 0 0.005 0.002 0.025 

Large samples 0 0 0 0 0 0 0 0.003 

 
 
 
Note:  

(1) The rose color indicates that the entry is greater than the upper bound of  the   
approximate  .95 confidence interval. 

(2) The LRT p-value is constructed by using a chi-square distribution with df=1. 
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Figure B.1  QQ Plots for Comparing Method1 and Method2  
 
Figure B.1.1 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5),  =0.05, 0 0.85,  =0.80,  
                     medium samples 
 
 
 
 
 
 
 
 
 
 
 
 
              (Method 1)                                  (Method 1)                               (Method  2) 
 
 
 
 
 
Figure B.1.2  K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 2),  =0.05, 0 0.75, 

 =0.74), medium samples 
 
                    
 
 
 

 

 

 

 

 
              (Method 1)                                  (Method 1)                               (Method  2) 
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Figure B.2  Histograms of the Test Statistic ( ) 
            75.00  ,  K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5), medium samples.  
             (generate 1000 data sets)  
 
 
Figure B.2.1 Using Medthod 1 ( 0 =0.75 ) to obtain   
 
 
 
 
 
 
 
 
 
 
 
 
 
          (a)  65.0*                              (b)  70.0*                              (c)  75.0*   
            Mean: 2.736233                                    Mean: 1.401272                                 Mean: 1.051681 
            Variance: 8.996257                               Variance: 3.095475                               Variance: 2.098876 
 
 
 
Figure B.2.2 Using Method 2 ( max( jL )=max( jL ),(log 2 ) ) to obtain   
 
 
                                                                                    
 
 
                                                                                        
 
 
 
 
 
 
          (a)  65.0*                              (b)  70.0*                              (c)  75.0*   
            Mean: 0.06337245                                Mean: 0.2563152                                 Mean: 0.6334252 
            Variance: 0.1103547                             Variance: 0.5746209                            Variance: 1.740241 
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Figure B.3 QQ Plots of the PBL P-Value for Different Gaps 
               K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 2),  =0.05, 75.00   (PBL) 
 
Figure B.3.1  Small samples 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.3.2  Medium samples 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.3.3  Large samples 
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APPENDIX C 

Table C.1 Estimated Type I Error Probabilities for ISLIN (F), 0   
 
Table C.1.1 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0),  =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.55 0.055 0.035 0.035 0.055 0.055 0.05 0.05 0.05 0.05 0.055 0.06 0.06 0.06 0.055 0.03 

0.65 0.055 0.035 0.03 0.05 0.045 0.055 0.05 0.05 0.05 0.075 0.06 0.06 0.06 0.045 0.04 

0.75 0.065 0.045 0.045 0.06 0.055 0.05 0.05 0.05 0.055 0.055 0.06 0.055 0.06 0.055 0.05 

0.85 0.04 0.025 0.025 0.035 0.031 0.04 0.04 0.04 0.04 0.075 0.05 0.045 0.045 0.06 0.085 

 
Table C.1.2 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (1),  =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.045 0.035 0.035 0.05 0.055 0.05 0.05 0.05 0.065 0.08 0.035 0.035 0.035 0.04 0.065 

0.80 0.035 0.02 0.02 0.025 0.06 0.05 0.045 0.05 0.045 0.07 0.05 0.05 0.05 0.05 0.04 

0.85 0.065 0.045 0.045 0.026 0.025 0.05 0.04 0.045 0.05 0.03 0.035 0.03 0.03 0.035 0.075 

0.90 0.06 0.03 0.03 0.006 0.006 0.06 0.06 0.065 0.011 0.016 0.04 0.035 0.035 0.035 0.065 

 
Table C.1.3 K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 1),  =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.55 0.04 0.04 0.04 0.03 0.055 0.03 0.03 0.03 0.03 0.05 0.07 0.07 0.07 0.065 0.07 

0.65 0.055 0.045 0.045 0.06 0.035 0.04 0.04 0.04 0.045 0.07 0.035 0.035 0.035 0.035 0.03 

0.75 0.05 0.035 0.035 0.04 0.05 0.045 0.035 0.035 0.04 0.035 0.06 0.055 0.055 0.055 0.035 

0.80 0.06 0.035 0.035 0.065 0.05 0.04 0.03 0.03 0.05 0.035 0.065 0.06 0.06 0.065 0.065 

 
Table C.1.4 K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 5),  =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.55 0.035 0.035 0.035 0.03 0.06 0.05 0.05 0.05 0.05 0.065 0.04 0.04 0.04 0.035 0.03 

0.65 0.045 0.045 0.045 0.04 0.055 0.03 0.035 0.035 0.035 0.04 0.045 0.045 0.045 0.045 0.07 

0.75 0.03 0.03 0.03 0.03 0.026 0.055 0.06 0.06 0.04 0.035 0.06 0.06 0.055 0.055 0.08 

0.85 0.045 0.045 0.045 0 0 0.05 0.05 0.045 0 0 0.055 0.05 0.055 0.055 0.035 
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Table C.1.5 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (a) ),,( 432  (0, 0, 1),  =0.05 
small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.04 0.025 0.025 0.035 0.04 0.065 0.055 0.055 0.075 0.08 0.055 0.05 0.05 0.055 0.06 

0.80 0.045 0.005 0.005 0.04 0.04 0.06 0.06 0.06 0.07 0.07 0.04 0.035 0.035 0.05 0.055 

0.85 0.04 0.02 0.02 0.04 0.055 0.045 0.03 0.03 0.04 0.035 0.05 0.04 0.04 0.045 0.05 

0.90 0.075 0.025 0.025 0.035 0.045 0.025 0.02 0.02 0.04 0.04 0.05 0.045 0.045 0.055 0.055 

 
 
Table C.1.6 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (a) ),,( 432  (0.5, 0.5, 1),  
                    =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.06 0.035 0.035 0.075 0.075 0.055 0.045 0.045 0.05 0.05 0.04 0.035 0.035 0.055 0.055 

0.80 0.02 0.005 0.005 0.03 0.045 0.05 0.04 0.04 0.05 0.055 0.055 0.045 0.045 0.035 0.04 

0.85 0.055 0.045 0.04 0.051 0.051 0.055 0.03 0.03 0.055 0.05 0.05 0.045 0.045 0.05 0.05 

0.90 0.065 0.02 0.025 0.045 0.045 0.045 0.04 0.04 0.045 0.045 0.05 0.05 0.05 0.05 0.05 

 
 
Table C.1.7 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (b) ),,,( 5432  (0, 0, 2, 2),  
                    =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.06 0.05 0.05 0.045 0.045 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.045 0.045 

0.80 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.055 0.055 0.04 0.03 0.03 0.05 0.05 

0.85 0.04 0.025 0.025 0.020 0.025 0.045 0.04 0.04 0.03 0.03 0.045 0.04 0.04 0.055 0.055 

0.90 0.06 0.015 0.015 0.027 0.011 0.04 0.035 0.035 0.02 0.015 0.075 0.065 0.065 0.06 0.065 

 
 
Table C.1.8 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (b) ),,,( 5432  (0.5, 1, 3, 3.5),  
                    =0.05 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.04 0.03 0.03 0.025 0.02 0.035 0.035 0.035 0.025 0.025 0.045 0.045 0.045 0.04 0.04 

0.80 0.06 0.05 0.05 0.036 0.036 0.08 0.08 0.08 0.061 0.061 0.065 0.055 0.05 0.065 0.06 

0.85 0.04 0.025 0.025 0.005 0.005 0.04 0.035 0.035 0.026 0.031 0.04 0.035 0.035 0.035 0.03 

0.90 0.045 0.035 0.035 0.022 0.005 0.05 0.05 0.05 0.021 0.015 0.04 0.03 0.03 0.03 0.035 
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Table C.1.9 K=7, (a) ),,,,( 65432   = (0.5, 0.5, 0.5, 1, 1),  =0.05,  

                    )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl  
small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.70 0.055 0.04 0.04 0.055 0.055 0.06 0.05 0.045 0.045 0.05 0.04 0.04 0.04 0.05 0.05 

0.75 0.09 0.05 0.05 0.06 0.06 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.045 0.045 

0.80 0.095 0.065 0.065 0.051 0.051 0.075 0.065 0.065 0.065 0.065 0.08 0.08 0.08 0.075 0.075 

0.85 0.065 0.045 0.045 0.011 0.006 0.065 0.045 0.045 0.051 0.056 0.08 0.08 0.08 0.07 0.07 

 
Table C.1.10 K=7, (a) ),,,,( 65432   = (1, 1, 1, 1, 1),  =0.05, 

                      )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl  
small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.70 0.07 0.055 0.055 0.065 0.065 0.06 0.055 0.055 0.065 0.065 0.045 0.04 0.04 0.045 0.045 

0.75 0.08 0.05 0.05 0.07 0.065 0.065 0.055 0.055 0.055 0.055 0.06 0.06 0.06 0.06 0.065 

0.80 0.06 0.04 0.04 0.035 0.035 0.045 0.045 0.045 0.06 0.06 0.035 0.035 0.035 0.045 0.045 

0.85 0.075 0.04 0.04 0.006 0.006 0.045 0.03 0.03 0.035 0.035 0.065 0.065 0.06 0.05 0.04 

 
Table C.1.11 K=7, (b) ),,,,,( 765432   = (0, 0.5, 0.5, 0.5, 0.5, 2),  =0.05 

                      )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl  
small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.045 0.045 0.045 0.035 0.035 0.045 0.04 0.035 0.045 0.045 0.06 0.06 0.06 0.05 0.05 

0.80 0.055 0.05 0.055 0.011 0.011 0.07 0.065 0.065 0.06 0.06 0.065 0.055 0.055 0.06 0.06 

0.85 0.06 0.02 0.025 0.02 0 0.045 0.04 0.04 0.011 0.011 0.055 0.05 0.055 0.05 0.05 

0.90 0.05 0.035 0.035 0 0 0.05 0.045 0.045 0 0 0.03 0.035 0.035 0.035 0.035 

 
Table C.1.12 K=7, (b) ),,,,,( 765432   = (0.5, 1, 1, 1, 1.5, 3),  =0.05, 

                      )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl  
small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.75 0.055 0.05 0.05 0.03 0.03 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.045 0.045 

0.80 0.055 0.035 0.035 0.011 0.011 0.065 0.06 0.06 0.065 0.06 0.06 0.055 0.06 0.06 0.06 

0.85 0.09 0.075 0.075 0 0 0.065 0.055 0.05 0 0 0.055 0.055 0.055 0.05 0.05 

0.90 0.09 0.07 0.07 0 0 0.055 0.05 0.05 0 0 0.055 0.055 0.055 0.010 0.010 
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Table C.2  Estimated Type I Error Probabilities of P-Values for ISLIN(F), 0   
Table C.2.1 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5),  =0.05, 0 0.85 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0 0 0 0 0 0 0 

0.80 0.015 0.01 0.01 0.005 0.005 0.01 0.01 0.01 0 0 0 0 0 0 0 

0.84 0.025 0.025 0.025 0.01 0.01 0.035 0.035 0.035 0.030 0.030 0.04 0.04 0.04 0.04 0.045 

 
Table C.2.2 K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 2),  =0.05, 0 0.75 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.60 0.005 0.005 0.005 0.005 0.015 0 0 0 0 0 0 0 0 0 0 

0.65 0.01 0.01 0.01 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0 0 0 0 0 

0.70 0.03 0.025 0.025 0.025 0.025 0.015 0.015 0.015 0.02 0.02 0 0 0 0 0 

0.74 0.07 0.055 0.055 0.055 0.060 0.035 0.035 0.035 0.025 0.025 0.04 0.04 0.04 0.03 0.03 

 
 

Table C.2.3 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl ,  =0.05, 0 0.85 
                    (a) ),,( 432  = (0.5, 0.5, 1) 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.65 0 0 0 0 0.005 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 0 0.005 0.005 0 0 0 0 0 0 0 0 0 0 

0.80 0.01 0 0 0.005 0.015 0 0 0 0.005 0.005 0 0 0 0 0 

0.84 0.045 0.01 0.01 0.045 0.040 0.025 0.025 0.02 0.03 0.035 0.01 0.01 0.005 0.01 0.01 

 
 

Table C.2.4 K=7, )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl ,  =0.05, 0 0.75,  
                    (a) ),,,,( 65432  = (0.5, 0.5, 0.5, 1, 1) 

small samples  medium samples  large samples   

  Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL Plug A_T A_Z PBp PBL 

0.60 0 0 0 0 0.005 0 0 0 0 0.005 0 0 0 0 0 

0.65 0.015 0.015 0.015 0.015 0.015 0 0 0 0 0 0 0 0 0 0 

0.70 0.02 0.02 0.015 0.035 0.035 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 

0.74 0.06 0.04 0.04 0.035 0.04 0.045 0.03 0.035 0.04 0.04 0.025 0.025 0.025 0.045 0.045 
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Table C.3 Cochran’s Test  

0H : The powers are equally effective 

aH : There is a difference in effectiveness among Powers 

Table C.3.1.   K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5), 65.0 , 05.0  

 
aH =0.66 

aH =0.76 
aH =0.80 

aH =0.88 
aH =0.98 

Small samples Do not reject Reject Reject Reject Do not reject 

Medium samples Do not reject Do not reject Do not reject Do not reject Do not reject 

Large samples Do not reject Do not reject Do not reject Do not reject Do not reject 

 
 
Table C.3.2.   K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  = (0.5, 2), 75.0 , 05.0  

 
aH =0.76 

aH =0.82 
aH =0.85 

aH =0.88 
aH =0.95 

Small samples Do not reject Reject Reject Reject Reject 

Medium samples Do not reject Do not reject Do not reject Reject 
(p-value=0.0435) Do not reject 

Large samples Do not reject Do not reject Do not reject Do not reject Do not reject 

 

Table C.3.3.  K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (a) ),,( 432  = (0.5, 0.5, 1),   
                      75.0 , 05.0  

 
aH =0.76 

aH =0.82 
aH =0.85 

aH =0.88 
aH =0.95 

Small samples Reject Reject Reject Reject Rejct 

Medium samples Reject Reject Reject Reject Do not reject 
Large samples Do not reject Do not reject Do not reject Do not reject Do not reject 

 

Table C.3.4.  K=7, (a) ),,,,( 65432  = (0.5, 0.5, 0.5, 1, 1), 70.0 , 05.0 , 

                      )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl  
 

aH =0.75 
aH =0.82 

aH =0.85 
aH =0.88 

aH =0.95 

Small samples Reject Reject Do not reject Reject Do not reject 
Medium samples Do not reject Do not reject Do not reject Do not reject Do not reject 

Large samples Do not reject Do not reject Do not reject Do not reject Do not reject 
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Figure C.1 QQ Plots of the P-Values for ISLIN (F), 0   
Figure C.1.1 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5), 65.0  

(a)  Small samples (10,15,12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  Medium samples (30,50,20) 
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(c)  Large samples (100,150,120) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C.1.2 K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  = (0.5, 2), 85.0  

(a)  Small samples (10,15,12) 
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(b)  Medium samples (30,50,20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  Large samples (100,150,120) 
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Figure C.2 QQ Plots of the P-Values for ISLIN (F), 0  , Medium Samples 
 
Figure C.2.1 K=3, )1 ,2/1 ,2/1( Tl , (a) )( 2 (0.5),  =0.05, 0 0.85,  =0.80.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C.2.2   K=3, )1 ,2/1 ,2/1( Tl , (b) ),( 32  (0.5, 2),  =0.05, 0 0.75, 

 =0.74. 
 
 

 

 

 

 

 

 

 

 

 

 

 



110 

Figure C.3 Power Simulation Results of Tests for ISLIN(F) 

Figure C.3.1 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (a) ),,( 432  = (0.5, 0.5, 1), 75.0 ,  
                        =0.05. 
 

 

 

 

 

       (a) small samples                      (b)  medium samples                   (c)  large samples 
 

                         Blue:        Plug_in                                           Black:      PBT_plugin 
                         Red :        Average_T                                      Yellow:   PBT_LRT 
                         Green :     Average_Z                                       
 

 
 
Figure C.3.2 K=5, )2/1 ,2/1 ,3/1,3/1 ,3/1( Tl , (b) ),,,( 5432  (0.5, 1, 3, 3.5),  
                     80.0  =0.05. 
 

 

 

 

 

 

       (a) small samples                      (b)  medium samples                   (c)  large samples 
 

                         Blue:        Plug_in                                           Black:      PBT_plugin 
                         Red :        Average_T                                      Yellow:   PBT_LRT 
                         Green :     Average_Z                                       
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Figure C.3.3  K=7, (a) ),,,,( 65432   = (0.5, 0.5, 0.5, 1, 1), 70.0 ,  =0.05, 

                      )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl . 
 

 

 

 

 

       (a) small samples                      (b)  medium samples                   (c)  large samples 
 

                         Blue:        Plug_in                                           Black:      PBT_plugin 
                         Red :        Average_T                                      Yellow:   PBT_LRT 
                         Green :     Average_Z                                       
 

 
 
 
Figure C.3.4  K=7, (b) ),,,,,( 765432   = (0.5, 1, 1, 1, 1.5, 3), 75.0  =0.05 

                      )1 ,6/1,6/1,6/1 ,6/1,6/1 ,6/1( Tl . 
 
 
 
 
 
 
 
 
 
 
 
       (a) small samples                      (b)  medium samples                   (c)  large samples 
 

                         Blue:        Plug_in                                           Black:      PBT_plugin 
                         Red :        Average_T                                      Yellow:   PBT_LRT 
                         Green :     Average_Z                                       
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Figure C.4  Power Simulation Results for ISAV(F )  
 
 
 
 
 
 
 
 
 
 
 
                     (C.4.1)                                             (C.4.2)                                           (C.4.3) 
 
 
 
 
 
 
 
 
 
 
 
                     (C.4.4)                                              (C.4.5)                                         (C.4.6) 
 
 
 
 
 
 
 
 
 
 
 
                     (C.4.7)                                              (C.4.8)   
 
(C.4.1) K=3, (a) )( 2 (0.5) 60.0 , n=(20,25,28),   
(C.4.2) K=3, (a) )( 2 (1) 70.0 ,  n=(20,25,28),   
(C.4.3) K=3, (b) ),( 32  = (0.5, 1), 65.0 , n=(20,25,28), 
(C.4.4) K=3, (b) ),( 32  = (0.5, 2), 65.0 , n=(20,25,28),   
(C.4.5) K=3, (b) ),( 32  = (0.5, 5), 65.0 , n=(20,25,28),   
(C.4.6) K=5, (a) ),,( 432  = (0,0,1) 70.0 , n=(50,60,55,54,58),   
(C.4.7) K=5, (a) ),,( 432  = (0.5,0.5,1) 65.0 , n=(20,25,22,24,26),   
(C.4.8) K=5, (b) ),,,( 5432  = (0.5, 1, 3, 3.5), 77.0 , n=(20,25,22,24,26). 
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APPENDIX D 

Result 1   R Code for Estimated Type I Error Probabilities for ISLIN (F)  

                 (K=3),  Method 2 
############################################################################### 
# This Splus/R Function to compare the estimated P-Values of my Ph.D research 
# ni = sample size for random variable xi 
# Normality 
# Ho: P(l'x>0)<=Pi       #K=3 
####################################################################################### 
#Obtain the MLE's 
 
mle.iteration<-function(n1,n2,n3,x1,x2,x3,npai,gap){ 
m<-0        # counts iterations 
diff<-1 
l<-c(l1,l2,l3) 
n<-c(n1,n2,n3) 
 
sample.mean<-c(mean(x1),mean(x2),mean(x3)) 
sample.var<-c(var(x1),var(x2),var(x3)) 
mu.hat<-sample.mean 
var.hat<-rep(0,3) 
 
y<-rep(0,3) 
z<-rep(0,3) 
 
while( diff>gap) { 
m<-m+1 
 
var.hat[1]<-sum((x1-mu.hat[1])^2)/(n[1]*(1-l[1]*(npai^2)*(sample.mean[1]-mu.hat[1])/sum(l*mu.hat))) 
var.hat[2]<-sum((x2-mu.hat[2])^2)/(n[2]*(1-l[2]*(npai^2)*(sample.mean[2]-mu.hat[2])/sum(l*mu.hat))) 
var.hat[3]<-sum((x3-mu.hat[3])^2)/(n[3]*(1-l[3]*(npai^2)*(sample.mean[3]-mu.hat[3])/sum(l*mu.hat))) 
 
if (is.na(var.hat[1])==TRUE) { 
    results<-NA 
    break 
}  
 
if (min(var.hat)<0) { 
    #cat("var.hat<0","\n") 
    return (NULL) 
    break 
} 
 
  diff.var<-abs(z-var.hat) 
  z<-var.hat 
 
for (j in 1:3) { 
y[j]<-sample.mean[j]+(l[j]*var.hat[j]*(npai*sqrt(sum(l^2*var.hat))-
sum(l*sample.mean)))/(n[j]*sum(l^2*var.hat/n)) 
} 
  diff.mu<-abs(y-mu.hat) 
  diff<-max(c(diff.mu,diff.var)) 
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  mu.hat<-y 
 
if (m>=800) { 
    #cat("iteration more than 800 ",  "\n") 
    return (NULL) 
    break 
} 
results<-cbind(mu.hat,var.hat) 
} 
return (results) 
} 
 
################################################################################### 
# function to get the test statistic T_star_plugin 
 
Tstar_plug<-function(n1,n2,n3,x1,x2,x3){ 
a1<-l1^2*var(x1)/n1+l2^2*var(x2)/n2+l3^2*var(x3)/n3 
T_p_plugin<-(l1*mean(x1)+l2*mean(x2)+l3*mean(x3))/sqrt(a1) 
T_p_plugin 
} 
 
######################################################### 
# function to get the test statistic T_star_LRT 
 
Tstar_LRT1<-function(n1,n2,n3,x1,x2,x3,npai){ 
mle<-mle.iteration(n1,n2,n3,x1,x2,x3,npai,1e-5) 
 
if (is.matrix(mle)==FALSE) { 
    lambda<-NA 
} else  { 
S1.2<-var(x1)*(n1-1)/n1 
S2.2<-var(x2)*(n2-1)/n2 
S3.2<-var(x3)*(n3-1)/n3 
 
lambda1<-(-2)*((n1/2)*log(S1.2/mle[1,2])+(n1/2)-sum((x1-mle[1,1])^2/(2*mle[1,2]))) 
lambda2<-(-2)*((n2/2)*log(S2.2/mle[2,2])+(n2/2)-sum((x2-mle[2,1])^2/(2*mle[2,2]))) 
lambda3<-(-2)*((n3/2)*log(S3.2/mle[3,2])+(n3/2)-sum((x3-mle[3,1])^2/(2*mle[3,2]))) 
 
lambda=lambda1+lambda2+lambda3 
} 
lambda 
} 
 
####################################################################################### 
max.log_mle<-function(n1,n2,n3,x1,x2,x3,npai){ 
 
mle<-mle.iteration(n1,n2,n3,x1,x2,x3,npai,1e-5) 
if (is.matrix(mle)==FALSE) { 
    log_mle<-NA     
} else { 
mle1<-(-1)*(n1/2)*log(2*(3.141593)*mle[1,2])-sum((x1-mle[1,1])^2/(2*mle[1,2])) 
mle2<-(-1)*(n2/2)*log(2*(3.141593)*mle[2,2])-sum((x2-mle[2,1])^2/(2*mle[2,2])) 
mle3<-(-1)*(n3/2)*log(2*(3.141593)*mle[3,2])-sum((x3-mle[3,1])^2/(2*mle[3,2])) 
log_mle=mle1+mle2+mle3 
} 
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result<-c(npai, log_mle) 
result 
} 
 
############################################################### 
# function to get the test statistic T_star_LRT 
 
Tstar_LRT<-function(n1,n2,n3,x1,x2,x3){ 
try<-array(rep(0,length(pi_j)*2),c(length(pi_j),2)) 
 for (j in 1:length(pi_j)) 
{ 
 try[j,]<-max.log_mle(n1,n2,n3,x1,x2,x3,npai_j[j]) 
} 
if (sum(is.na(try))>0) { 
 try1<-try[-which(is.na(try[,2])),] 
} else { 
 try1<-try 
} 
  npai_max<-try1[which(try1[,2]==max(try1[,2]))] 
 
  p_max<-Tstar_LRT1(n1,n2,n3,x1,x2,x3,npai_max) 
  p_max 
} 
 
####################################################################################### 
general.p_value<-function(n1,n2,n3){ 
 
  x1<-rnorm(n1,mu1,sigma1)     # generate n Normal (0,1) random variables 
  x2<-rnorm(n2,mu2,sigma2)      # generate n Normal (0,sqrt(10)) random variables 
  x3<-rnorm(n3,mu3,sigma3)      # generate n Normal (3,sigma3) random variables 
 
  var1_hat<-var(x1)*(n1-1)/rchisq(num,df=n1-1) 
  var2_hat<-var(x2)*(n2-1)/rchisq(num,df=n2-1) 
  var3_hat<-var(x3)*(n3-1)/rchisq(num,df=n3-1) 
 
################## 
# plug in p_value 
 
a1<-l1^2*var(x1)/n1+l2^2*var(x2)/n2+l3^2*var(x3)/n3 
T_p_plugin<-(l1*mean(x1)+l2*mean(x2)+l3*mean(x3))/sqrt(a1) 
dem1<-(l1^2*var(x1)/n1)^2/(n1-1)+(l2^2*var(x2)/n2)^2/(n2-1)+(l3^2*var(x3)/n3)^2/(n3-1) 
df1<-a1^2/dem1 
 
delta1<-sqrt(l1^2*var(x1)+l2^2*var(x2)+l3^2*var(x3))*qnorm(pi)/sqrt(a1) 
p_value.plugin<-1-pt(T_p_plugin, df=df1, ncp=delta1) 
 
################## 
# average p_value for T  
 
a2<-l1^2*var1_hat/n1+l2^2*var2_hat/n2+l3^2*var3_hat/n3 
b2<-((n1-1)*var(x1)/var1_hat+(n2-1)*var(x2)/var2_hat+(n3-1)*var(x3)/var3_hat)/(n1+n2+n3-3) 
T_p_hat<-((l1*mean(x1)+l2*mean(x2)+l3*mean(x3))/sqrt(a2))/sqrt(b2) 
 
delta2<-sqrt(l1^2*var1_hat+l2^2*var2_hat+l3^2*var3_hat)*qnorm(pi)/sqrt(a2) 
p_value.T<-1-pt(T_p_hat, df=n1+n2+n3-3, ncp=delta2) 
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p_value.average_T<-mean(p_value.T) 
 
################## 
# average p_value for Z  
 
Z_p_hat<-(l1*mean(x1)+l2*mean(x2)+l3*mean(x3)-
qnorm(pi)*sqrt(l1^2*var1_hat+l2^2*var2_hat+l3^2*var3_hat))/sqrt(a2) 
p_value.Z<-1-pnorm(Z_p_hat) 
p_value.average_Z<-mean(p_value.Z) 
 
################################################ 
# Parametric Bootstrap Test for T_plugin and LRT 
 
T_p1<-Tstar_plug(n1,n2,n3,x1,x2,x3) 
T_p2<-Tstar_LRT(n1,n2,n3,x1,x2,x3) 
 
m<-99 
mle2<-mle.iteration(n1,n2,n3,x1,x2,x3,qnorm(pi),1e-5) 
 
if (is.matrix(mle2)==FALSE) { 
    p_PBT_plug<-NA 
    p_PBT_LRT<-NA     
 
} else { 
MLE.mu<-mle2[,1] 
MLE.sigma<-sqrt(mle2[,2]) 
 
x1.boot1<-replicate(m, rnorm(n1, MLE.mu[1], MLE.sigma[1])) 
x2.boot1<-replicate(m, rnorm(n2, MLE.mu[2], MLE.sigma[2])) 
x3.boot1<-replicate(m, rnorm(n3, MLE.mu[3], MLE.sigma[3])) 
 
# compute test statistics for each resample 
 
T_boot.1<-rep(0,m) 
T_boot.2<-rep(0,m) 
for (j in 1:m) { 
  T_boot.1[j]<-Tstar_plug(n1,n2,n3,x1.boot1[,j],x2.boot1[,j],x3.boot1[,j]) 
  T_boot.2[j]<-Tstar_LRT(n1,n2,n3,x1.boot1[,j],x2.boot1[,j],x3.boot1[,j]) 
} 
reject1<-ifelse(T_boot.1>=T_p1,1,0) 
reject.2<-ifelse(T_boot.2>=T_p2,1,0) 
reject2<-reject.2[!is.na(reject.2)] 
p_PBT_plug<-(sum(reject1)+1)/(m+1) 
p_PBT_LRT<-(sum(reject2)+1)/(length(reject2)+1) 
} 
 
################## 
# compute the p_value 
p_value<-c(p_value.plugin, p_value.average_T,p_value.average_Z, p_PBT_plug, p_PBT_LRT) 
p_value 
} 
#################################### 
set.seed(6543267) 
num<-1000  # get 1000 number of independant var_hat from the chi-square distribution 
B<-200  # get 100 data sets to do simulation 
n1=30 
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n2=50 
n3=20 
l1=-0.5 
l2=-0.5 
l3=1 
pi<-0.85 
pi_j<-seq(0.50,pi,by=0.025) 
npai_j<-qnorm(pi_j) 
pi_true<-0.75 
 
####################################################### 
#(a)equal variance 
mu1<-0 
mu2<-0.5 
sigma1<-1 
sigma2<-1 
sigma3<-1 
mu3<-sqrt(sigma3^2+(sigma1^2+sigma2^2)/4)*qnorm(pi_true)+(mu1+mu2)/2 
 
######################################################## 
#(b)sigmasq_i=mu_i+1 
#mu1<-0 
#sigma1<-1 
#mu2<-0.5 
#sigma2<-sqrt(mu2+1) 
#mu3<-1 
#sigma3<-sqrt(((mu3-(mu1+mu2)/2)/qnorm(pi_true))^2-(sigma1^2+sigma2^2)/4) 
 
################################################################ 
p.dist<-array(rep(0,5*B),c(5,B)) 
reject.05<-array(rep(0,5*B),c(5,B)) 
for (i in 1:B){ 
 p.dist[,i]<-general.p_value(n1,n2,n3) 
reject.05[,i]<-ifelse(p.dist[,i]<=0.05,1,0) 
} 
####################################################################################### 
reject.05<-ifelse(p.dist<=0.05,1,0) 
re1<-reject.05[1,] 
re2<-reject.05[2,] 
re3<-reject.05[3,] 
re.4<-reject.05[4,] 
re4<-re.4[!is.na(re.4)] 
re.5<-reject.05[5,] 
re5<-re.5[!is.na(re.5)] 
 
typeI_error1.05<-sum(re1)/length(re1) 
typeI_error2.05<-sum(re2)/length(re2) 
typeI_error3.05<-sum(re3)/length(re3) 
typeI_error4.05<-sum(re4)/length(re4) 
typeI_error5.05<-sum(re5)/length(re5) 
 
cat('TypeI error(0.05) plugin =', typeI_error1.05, '\n')  
cat('TypeI error(0.05) average_T =', typeI_error2.05, '\n')  
cat('TypeI error(0.05) average_Z=PP p_value=', typeI_error3.05, '\n')  
cat('TypeI error(0.05) PBT_plugin =', typeI_error4.05, '\n')  
cat('TypeI error(0.05) PBT_LRT =', typeI_error5.05, '\n')  
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Result 2   R Code for Power Simulation Results for ISLIN (F)  

                 (K=3), Method 2 
############################################################################### 
# This Splus/R Function to compare the power of P values of my ph.D research 
# ni = sample size for random variable xi 
# Normality 
# Ho: P(l'x>0)<=Pi  
####################################################################################### 
general.p_value<-function(n1,n2,n3,n_alter){ 
 
  #mu3<-sqrt(sigma3^2+(sigma1^2+sigma2^2)/4)*n_alter+(mu1+mu2)/2 
  sigma3<-sqrt(((mu3-(mu1+mu2)/2)/n_alter)^2-(sigma1^2+sigma2^2)/4) 
 
  x1<-rnorm(n1,mu1,sigma1)     # generate n Normal (0,1) random variables 
  x2<-rnorm(n2,mu2,sigma2)      # generate n Normal (0,sqrt(10)) random variables 
  x3<-rnorm(n3,mu3,sigma3)      # generate n Normal (3,sigma3) random variables 
 
  var1_hat<-var(x1)*(n1-1)/rchisq(num,df=n1-1) 
  var2_hat<-var(x2)*(n2-1)/rchisq(num,df=n2-1) 
  var3_hat<-var(x3)*(n3-1)/rchisq(num,df=n3-1) 
 
################## 
# plug in p_value 
 
a1<-l1^2*var(x1)/n1+l2^2*var(x2)/n2+l3^2*var(x3)/n3 
T_p_plugin<-(l1*mean(x1)+l2*mean(x2)+l3*mean(x3))/sqrt(a1) 
dem1<-(l1^2*var(x1)/n1)^2/(n1-1)+(l2^2*var(x2)/n2)^2/(n2-1)+(l3^2*var(x3)/n3)^2/(n3-1) 
df1<-a1^2/dem1 
delta1<-sqrt(l1^2*var(x1)+l2^2*var(x2)+l3^2*var(x3))*qnorm(pi)/sqrt(a1) 
 
p_value.plugin<-1-pt(T_p_plugin, df=df1, ncp=delta1) 
 
################## 
# average p_value for T  
 
a2<-l1^2*var1_hat/n1+l2^2*var2_hat/n2+l3^2*var3_hat/n3 
b2<-((n1-1)*var(x1)/var1_hat+(n2-1)*var(x2)/var2_hat+(n3-1)*var(x3)/var3_hat)/(n1+n2+n3-3) 
 
T_p_hat<-((l1*mean(x1)+l2*mean(x2)+l3*mean(x3))/sqrt(a2))/sqrt(b2) 
 
delta2<-sqrt(l1^2*var1_hat+l2^2*var2_hat+l3^2*var3_hat)*qnorm(pi)/sqrt(a2) 
p_value.T<-1-pt(T_p_hat, df=n1+n2+n3-3, ncp=delta2) 
p_value.average_T<-mean(p_value.T) 
 
################## 
# average p_value for Z  
 
Z_p_hat<-(l1*mean(x1)+l2*mean(x2)+l3*mean(x3)-
qnorm(pi)*sqrt(l1^2*var1_hat+l2^2*var2_hat+l3^2*var3_hat))/sqrt(a2) 
 
p_value.Z<-1-pnorm(Z_p_hat) 
p_value.average_Z<-mean(p_value.Z) 
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################################################ 
# Parametric Bootstrap Test for T_plugin and LRT 
 
T_p1<-Tstar_plug(n1,n2,n3,x1,x2,x3) 
T_p2<-Tstar_LRT(n1,n2,n3,x1,x2,x3) 
 
m<-99 
 
mle2<-mle.iteration(n1,n2,n3,x1,x2,x3,qnorm(pi),1e-5) 
 
if (is.matrix(mle2)==FALSE) { 
    p_PBT_plug<-NA 
    p_PBT_LRT<-NA     
 
} else { 
MLE.mu<-mle2[,1] 
MLE.sigma<-sqrt(mle2[,2]) 
 
x1.boot1<-replicate(m, rnorm(n1, MLE.mu[1], MLE.sigma[1])) 
x2.boot1<-replicate(m, rnorm(n2, MLE.mu[2], MLE.sigma[2])) 
x3.boot1<-replicate(m, rnorm(n3, MLE.mu[3], MLE.sigma[3])) 
 
# compute test statistics for each resample 
 
T_boot.1<-rep(0,m) 
T_boot.2<-rep(0,m) 
for (j in 1:m) { 
  T_boot.1[j]<-Tstar_plug(n1,n2,n3,x1.boot1[,j],x2.boot1[,j],x3.boot1[,j]) 
  T_boot.2[j]<-Tstar_LRT(n1,n2,n3,x1.boot1[,j],x2.boot1[,j],x3.boot1[,j]) 
} 
 
reject1<-ifelse(T_boot.1>=T_p1,1,0) 
reject.2<-ifelse(T_boot.2>=T_p2,1,0) 
reject2<-reject.2[!is.na(reject.2)] 
 
p_PBT_plug<-(sum(reject1)+1)/(m+1) 
p_PBT_LRT<-(sum(reject2)+1)/(length(reject2)+1) 
} 
 
################## 
# compute the p_value 
 
p_value<-c(p_value.plugin, p_value.average_T,p_value.average_Z, p_PBT_plug, p_PBT_LRT) 
p_value 
} 
 
#################################################################################### 
power<-function(n_alter){ 
 
B<-200  # get 200 data sets to do simulation 
 
p.dist<-array(rep(0,5*B),c(5,B)) 
reject.05<-array(rep(0,5*B),c(5,B)) 
for (i in 1:B){ 
 p.dist[,i]<-general.p_value(n1,n2,n3,n_alter) 
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 reject.05[,i]<-ifelse(p.dist[,i]<=0.05,1,0) 
} 
 
re1<-reject.05[1,] 
re2<-reject.05[2,] 
re3<-reject.05[3,] 
re.4<-reject.05[4,] 
re4<-re.4[!is.na(re.4)] 
re.5<-reject.05[5,] 
re5<-re.5[!is.na(re.5)] 
 
typeI_error1.05<-sum(re1)/length(re1) 
typeI_error2.05<-sum(re2)/length(re2) 
typeI_error3.05<-sum(re3)/length(re3) 
typeI_error4.05<-sum(re4)/length(re4) 
typeI_error5.05<-sum(re5)/length(re5) 
 
typeI_error.05<-c(typeI_error1.05, typeI_error2.05, typeI_error3.05, typeI_error4.05, typeI_error5.05) 
typeI_error.05 
} 
 
#################################################################################### 
begin.time=Sys.time() 
set.seed(6543267) 
num<-1000  # get 1000 number of independant var_hat from the chi-square distribution 
 
n1=100 
n2=150 
n3=120 
 
l1=-0.5 
l2=-0.5 
l3=1 
 
####################################################### 
#(a)equal variance 
 
#mu1<-0 
#mu2<-0.5 
#sigma1<-1 
#sigma2<-1 
#sigma3<-1 
#mu3<-sqrt(sigma3^2+(sigma1^2+sigma2^2)/4)*qnorm(pi_true)+(mu1+mu2)/2 
 
######################################################## 
#(b)sigmasq_i=mu_i+1 
mu1<-0 
sigma1<-1 
mu2<-0.5 
sigma2<-sqrt(mu2+1) 
mu3<-2 
#sigma3<-sqrt(((mu3-(mu1+mu2)/2)/qnorm(pi_true))^2-(sigma1^2+sigma2^2)/4) 
 
################################################################ 
pi<-0.75 
pi_j<-seq(0.50,pi,by=0.05) 
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npai_j<-qnorm(pi_j) 
 
pi_true<-0.75 
 
#m<-c(0.86,0.88,0.90,0.92,0.94,0.96,0.98) #pi=0.85 
#m<-c(0.81,0.83,0.85,0.87,0.89,0.91,0.93,0.95,0.98) #pi=0.80 
m<-c(0.76,0.79,0.82,0.85,0.88,0.91,0.95,0.98) #pi=0.75 
#m<-c(0.66,0.69,0.72,0.76,0.8,0.84,0.88,0.92,0.95,0.98) #pi=0.65 
#m<-c(0.56,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.94,0.98) #pi=0.55 
 
n_alter.m<-qnorm(m,mean=0,sd=1) 
 
mm<-length(m) 
 
power_function<-array(rep(0,5*mm),c(5,mm)) 
for (j in 1:mm){ 
    power_function[,j]<-power(n_alter.m[j]) 
} 
end.time=Sys.time() 
tt=end.time-begin.time 
tt 
   
 
plot(m,power_function[1,],type="l",lwd=3,ylab="the power",col="blue",xlab="pi") 
lines(m,power_function[2,],type="l",lwd=3,col = "red") 
lines(m,power_function[3,],type="l",lwd=3,col = "green",lty = "dashed") 
lines(m,power_function[4,],type="l",lwd=3,col = "black",lty = "dashed") 
lines(m,power_function[5,],type="l",lwd=3,col = "yellow",lty = "dashed") 
 

 


