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Abstract 

 

 Generalized linear mixed models (GLMMs) are extensions of linear mixed models that 

enable non-normal distributional assumptions on the response of interest. Effective diagnostic 

metrics and tools to assess GLMM fit and performance are limited. The objective of this study 

was to develop and explore potential diagnostics to assess GLMM fit and performance to 

ultimately inform model choice, specifically for discrete count responses. We conducted a 

simulation study whereby a count response variable was generated by three realistic data 

generation processes (DGP) under a 2x2 factorial treatment structure in randomized complete 

blocks. Simulated data were fitted with competing models, including various GLMM 

specifications and normal approximations with and without transformations. For each DGP, 

model performance was assessed for accuracy of estimation of treatment means, as well as for 

Type I error and power for inference on differential treatment effects. Models were evaluated 

and compared using the Pearson Chi-Square over degrees of freedom statistic for overdispersion 

and information criteria. Further, we developed an array of potential diagnostic metrics based on 

model point predictions and used them to assess the ability of competing models to recreate 

selected features of count data, specifically skewness and dispersion. Overall, the diagnostic 

metrics evaluated failed to identify the corresponding true model for each DGP. Meanwhile, 

regardless of DGP, a Poisson-Unit GLMM outperformed other model specifications in fitting 

selected features of count data. An entomological dataset was used for proof-of-concept 

application. Further study is warranted to best inform GLMM specification for count response 

variables.  
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Introduction 

Generalized Linear Mixed Models (GLMMs) are extensions of linear models that 

integrate discrete or otherwise non-normal distributional assumptions on the response of interest, 

with a mixed models framework that accommodates correlation patterns in the data (Wolfinger 

and O’Connell 1993). Since their advent, GLMMs have expanded the versatility of statistical 

methods to deal with non-normal responses common across scientific disciplines, meanwhile 

correcting some of the problems resulting from an over-reliance on Fisher’s linear-models-based 

Analysis of Variance (ANOVA) (Wolfinger & O’Connell, 1993). The limitations of linear 

models are particularly apparent when its normal distributional assumptions do not align with the 

behavior of discrete data. In particular, count data tend to be skewed to the right, especially for 

low counts, thus violating normality assumptions essential to linear mixed models (Stroup, 

2015). Additionally, for count data, it often the case that the variance is some function of the 

mean, thereby violating the ANOVA assumption of constant variance (Stroup, 2015). Variance-

stabilizing transformations (e.g., log function or square-root-plus-3/8) have historically been 

used to alleviate this issue (Miller, 1997; Stroup, 2013, 2015). Admittedly, the robustness of 

linear models and ANOVA for non-normal datasets when sufficiently large sample sizes are 

available is well documented (Larrabee et al., 2014; Miller, 1997). However, linear models 

applied to non-normal data can result in non-sensical mean estimates, e.g. negative estimates for 

means or confidence interval boundaries (Larrabee et al., 2014; Stroup, 2015). Additional issues 

include losses in statistical power and biased estimates of treatment means, even if sensical 

(Larrabee et al., 2014; Stroup, 2015), especially when a sufficiently large sample size is not 

possible due to budgetary or practical constraints. 
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As a general methodological framework, GLMM are applicable to a wide variety of data 

types under a range of distributional assumptions, not necessarily the normal distribution, 

meanwhile retaining estimation accuracy and Type I error control without compromising power 

(Stroup, 2015). Recent computational and algorithmic developments (Pinheiro & Chao, 2006; 

Wolfinger & O’Connell, 1993) have facilitated implementation of GLMM and their 

incorporation into mainstream statistical practice through multiple software developments (R 

Core Team, 2021; SAS Institute Inc, 2016). Yet, reliable and applicable diagnostic metrics to 

evaluate GLMM performance in terms of goodness of fit to data, identification of sources of lack 

of fit, and appropriate remedial measures, when needed, are lacking. For the statistical 

practitioner working with real data, this poses a very tangible problem of potentially serious 

inferential consequences (Stroup, 2015). 

Overdispersion is among the most common issues encountered with GLMMs and occurs 

when there are more sources of variation in the data than are accounted for in a given model 

(Stroup, 2012). Particularly susceptible to overdispersion are models assuming distributions 

characterized by a single parameter, for instance the Poisson distribution, often used for count 

data (Lawless, 1987; Stroup, 2012). Indeed, the Poisson distribution imposes a strict structural 

assumption between mean and variance while count data frequently exhibit variances greater 

than the Poisson assumptions allow (Lawless, 1987). Another non-normal distribution also used 

for count data is the Negative Binomial (Lawless, 1987), which includes an additional scale 

parameter. Even in this case, the variance is often still constrained by a function of the mean 

(Lawless, 1987). These constraints are often violated in real data applications. 

Fortunately, overdispersion is typically diagnosed in real data by way of the Pearson chi-

sq/df statistic, an umbrella-type statistic that compares the dispersion described by a model 
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against the dispersion present in the data (Farrington, 1996; Payne et al., 2018; Stroup, 2012). 

Values of this statistic substantially greater than 1 are considered indicative of symptoms of 

overdispersion in the data. Yet, the statistic does not necessarily inform the practitioner about the 

cause of overdispersion and thus, what remedial measures to pursue. Possible contributing causes 

for overdispersion may include extremely large counts, zero inflation, a misspecified linear 

predictor or incorrect distributional assumptions (Stroup, 2012), amongst others, each of them 

calling for a different remedial approach. 

Specification of distributional assumptions is of interest when multiple options are 

amenable to the nature of the data. For example, for count data, either Poisson or Negative 

Binomial distributions may be considered acceptable, as well as variations on the Poisson 

distribution; yet, these specifications differ substantially in the assumed relationship between 

means and variances (Stroup, 2012, 2015; Ver Hoef & Boveng, 2007). These differences are 

non-trivial, as a poorly chosen GLMM may perform worse inferentially than normal 

approximations based on linear mixed models (LMMs) (Stroup, 2015). 

Recently proposed fit diagnostics for GLMM include extensions of the coefficient of 

determination (Piepho, 2019), though its scope seems limited to an umbrella-type assessment 

with applicability constrained to specific cases of (co)variance structures. Additionally, graphical 

representations of a frequentist take on posterior predictive checks, known as centipede plots, 

have been proposed to assess model fit to individual observations (Kramer, 2018).  

In this study, we developed and evaluated statistics derived from model predicted values 

�̂� as a way of assessing model fit to data y. Our underlying rationale is that predicted values �̂�, 

and functions thereof, calculated from competing GLMM specifications ought to be able to guide 

selection of the models better aligned with the underlying data generation process. Thus, models 



4 

yielding predicted values, and functions thereof, that match closely with those from observed 

data may be considered good fitting. In contrast, areas of discrepancies between predicted and 

observed values might indicate specific instances where a model performs poorly and thus 

motivate remedial measures.  

In the context of a simulation study, we implemented major axis regression (MAR) to 

evaluate discrepancy between functions of model predictions and correspondingly of simulated 

data (Mesplé et al., 1996). Estimates of the MAR intercept close to 0 and MAR slope close to 1 

indicate alignment between the fitted model and the observed data (Mesplé et al., 1996). On the 

other hand, MAR intercept estimates substantially greater (less) than 0 indicates over(under) 

prediction of low data counts (Mesplé et al., 1996). An analogous interpretation can be made of 

the MAR slope estimates relative to high data counts.  

Also of interest was the evaluation of the ability of a competing model to accommodate 

and regenerate specific features of the data, such as extreme values, (a)symmetry and relative 

variation. These features were assessed with statistics defined as the ratio of predicted values 

over observed values for the 97.5th percentile, the skewness coefficient, and the CV, respectively. 

These ratios were expected to yield values close to 1 if the specific data feature was properly 

reproduced by a model.  

We acknowledge that predicted values �̂�, as computed and utilized in this study, are of 

little predictive use beyond in-sample prediction (Burman, 1989; Hardle & Marron, J.S., 1985). 

Indeed, thus computed, predicted values do little to inform out-of-sample predictions in mixed 

models, as the expectations of random effects is assumed to be 0 (Hardle & Marron, J.S., 1985; 

Stroup, 2012). Here, we do not intend the proposed approach for forecasting or prediction of 
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future observations. Instead, we consider assessments of model fit to specific data features, such 

as extreme values, (a)symmetry and relative variation.  

 

The objective of this study was to develop and explore potential diagnostic metrics to 

assess GLMM fit and performance to ultimately inform modeling choice, specifically for 

discrete count responses. This objective was addressed by way of a simulation study with 

multiple scenarios, followed by a proof-of-concept data application in the entomological 

sciences. These will be defined in more detail in coming sections. The simulation study utilized 

three realistic data generation processes (DGPs), namely Poisson-Unit, Poisson-Gamma, and 

Additive Means processes, to simulate data under a 2x2 factorial treatment structure in a 

randomized block design, specified with either 10 or 50 blocks. These sample sizes are 

consistent with studies conducted in the animal sciences (Bello & Renter, 2018; Gonçalves et al., 

2018). Competing models fitted to count data included alternative specifications of traditional 

LMMs assuming normality with a constant or non-constant variance, as well as variance-

stabilizing transformations. Competing GLMMs assumed Poisson or Negative Binomial 

distributions of count data, both recognizing its positive discrete nature. Also, a GLMM 

assuming a Gamma distribution was fitted as an alternative continuous approximation to count 

data limited to the positive line. For two of the DGP evaluated in the simulation study, one of the 

competing models was the true DGP model, thus enabling an assessment of inferential 

robustness of the competing models.  



6 

Methodology 

 2.1 Simulation Scenarios 

Data were simulated under a treatment structure consisting of a 2x2 factorial arrangement 

given by the combination of levels of treatment A and treatment B within a completely 

randomized block design. Data were generated as discrete counts under three distinct data 

generation processes (DGP) adapted from Stroup (2013) and designed to represent plausible 

realistic mechanisms, namely (i) Poisson-Unit, (ii) Poisson-Gamma, and (iii) Additive Means, to 

be described below.  

For each DGP, four simulation scenarios were designed, consisting of the combination of 

number of blocks (i.e., 10 vs. 50) and equal or unequal treatment means. Simulation scenarios of 

equal or unequal treatment means were intended to characterize Type I Error and statistical 

power (i.e., 1 – Type II error). The choice of number of blocks, namely 10 and 50, was intended 

to mirror data collection conditions commonly aligned with experimental studies and 

observational studies respectively.  

For each simulation scenario under a DGP, 100 simulated datasets were generated, as 

follows:  

 

 2.1.1 Data Generation Process 1: Poisson-Unit 

1. Sample differential block effects 𝑏𝑘~NIID(𝜇 = 0, 𝜎𝑏
2 = 0.752), where either 𝑘 ∈

[1,2, … ,10] or 𝑘 ∈ [1,2, … ,50], depending on the simulation scenario. 

2. Define an intercept 𝜂 = 1 and define differential treatment effects 𝜏𝑖𝑗 where 𝑖 = {1,2} 

corresponds to levels of treatment factor A and 𝑗 = {1,2} corresponds to levels of 

treatment factor B, such that: 
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a. 𝜏𝑖𝑗 = 1.5 for all ijth combinations under the simulation scenario of equal treatment 

means, or 

b. 𝜏11 = 𝜏12 = 1.5,   𝜏21 = 3, and 𝜏22 = 0 under the simulation scenario of unequal 

treatment means. 

3.  Sample differential unit-level effects identified by the ijth treatment combination within 

the kth block, such that 𝑢𝑖𝑗𝑘~NIID(𝜇 = 0, 𝜎𝑢
2 = 0.752) 

4. Define the linear predictor using a canonical log link function such that 𝜂𝑖𝑗𝑘 =

log(𝜆𝑖𝑗𝑘) = 𝜂 + 𝜏𝑖𝑗 + 𝑏𝑘 + 𝑢𝑖𝑗𝑘, where 𝜆𝑖𝑗𝑘 is the rate parameter of a Poisson 

distribution. 

5. Generate a random sample 𝑦𝑖𝑗𝑘|𝑏𝑘, 𝑢𝑖𝑗𝑘~Poisson(𝜆𝑖𝑗𝑘) 

In this setting, the expected value of the conditional treatment means 𝜆11, 𝜆12, 𝜆21, and 𝜆22 in 

the scale of the observed data are equal to 12.2, 12.2, 54.6, and 2.7, respectively.  

 

 2.1.2 Data Generation Process 2: Poisson-Gamma 

1. Steps 1 and 2 are as described under the Poisson-Unit DGP explained in section 2.1.1. 

2.  Sample differential unit-level effects 𝑢𝑖𝑗𝑘 ~ Gamma (𝛼∗ =
1

𝜙𝐷𝐺𝑃
, 𝛽∗ = 𝜙𝐷𝐺𝑃),  

where α∗ is a shape parameter and 𝛽∗ is a scale parameter. Also, 𝜙𝐷𝐺𝑃 = 0.5 such that 

𝐸(𝑢𝑖𝑗𝑘) = 1. 

3. Define the linear predictor using a canonical log link function such that  log(𝜆𝑖𝑗𝑘) =

𝜂𝑖𝑗𝑘 = 𝜂 + 𝜏𝑖𝑗 + 𝑏𝑘, where 𝜆𝑖𝑗𝑘 is the rate parameter for a Poisson distribution. 

4. Generate a random sample 𝑦𝑖𝑗𝑘|𝑏𝑘, 𝑢𝑖𝑗𝑘~Poisson(𝜆𝑖𝑗𝑘 ∙ 𝑢𝑖𝑗𝑘). 
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In this DGP setting, the expected value of the conditional treatment means in the scale of the 

observed data were equal to those in the Poisson-Unit DGP described in section 2.1.1, where 

𝜆11 = 𝜆12 = 12.2, 𝜆21 = 54.6, and 𝜆22 = 2.7. 

In this DGP, the observed values 𝑦𝑖𝑗𝑘  , conditional on block and unit-level effects, were 

generated from a Poisson distribution with expectation given by the rate parameter multiplied by 

a gamma-distributed unit-level effect, as described in steps 2 and 4, thus the Poisson-Gamma 

label for this DGP. In fact, thus generated, 𝑦𝑖𝑗𝑘|𝑏𝑘 can be shown to follow a negative binomial 

distribution with mean 𝜆𝑖𝑗𝑘 and scale parameter 𝜙𝐷𝐺𝑃, whereby  𝑦𝑖𝑗𝑘|𝑏𝑘 ~ 𝑁𝐵(𝜆𝑖𝑗𝑘, 𝜙𝐷𝐺𝑃) 

(Stroup, 2013).  

 

 2.1.3 Data Generation Process 3: Additive Means 

1. Define an intercept term 𝜂 equal to 1. 

2. To define combined differential treatment and block effects, 

a. For simulation scenarios of equal treatment means, sample combined differential 

treatment effect and block effects as (𝜏𝑖𝑗 + 𝑏𝑘)~Gamma(𝛼∗ = 11, 𝛽∗ = 1), 

or, 

b. For simulation scenarios of unequal treatment means, sample the combined 

differential treatment effect and block effects as (𝜏𝑖𝑗 + 𝑏𝑘)~Gamma(𝛼𝑖𝑗
∗ , 𝛽∗ =

1), where 𝛼11
∗ = 𝛼12

∗ = 11,  𝛼21
∗ = 54, and 𝛼22

∗ = 2. 

3. Sample unit level effects  𝑢𝑖𝑗𝑘~Gamma (𝛼∗ =
1

𝜙𝐷𝐺𝑃
, 𝛽∗ = 𝜙𝐷𝐺𝑃), where 𝜙𝐷𝐺𝑃 = 0.5. 

4. Define the linear predictor using an identity link function, namely  𝜂𝑖𝑗𝑘 =  𝜆𝑖𝑗𝑘 = 𝜂 +

(𝜏𝑖𝑗 + 𝑏𝑘). 
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5. Generate a random sample 𝑦𝑖𝑗𝑘|𝑏𝑘, 𝑢𝑖𝑗𝑘~Poisson(𝜆𝑖𝑗𝑘 ∙ 𝑢𝑖𝑗𝑘). 

In this setting, the expectations of the conditional treatment means were 𝜆11 = 𝜆12 = 12,

𝜆21 = 55, and 𝜆22 = 3 and thus, of similar order of magnitude relative to those used for the 

Poisson-Unit DGP and Poisson-Gamma DGP. The key feature of this Additive Means DGP was 

that the Poisson rate parameter 𝜆𝑖𝑗𝑘 was a direct function of the fixed and random effects in the 

linear predictor (i.e., the “link” function was just the identity function). 

For illustration purposes, Figure 1 depicts six simulated datasets corresponding to the 50-

block scenario and corresponding to either equal or unequal treatment means under each of the 

three DGPs described above. 

  



10 

 

Figure 1: Histograms for illustration of simulated datasets with equal and unequal 

treatment means generated under the Poisson-Unit DGP (panel A and D), Poisson-Gamma 

DGP (panel B and E) and Additive Means DGP (panel C and F). Simulation scenarios with 

50 blocks are shown.  

 

 

 2.2 Specification of Competing Models 

Each simulated dataset was fitted with competing model specifications labeled 1 to 16 

and explained next. In general terms, competing models 1 through 4 represented alternative 

specifications of LMMs that used a normal distribution to approximate the behavior of the 

response variable, expressed either in the original scale (models 1 and 2) or following a variance-

stabilizing transformation (models 3 and 4). Models 5 to 16 consisted of GLMM specifications 
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that explicitly recognized the non-normal nature of the response variable. Further, consistent 

with GLMM methods of estimation, models 5 to 16 were fitted using either likelihood 

approximations (i.e. Laplace approximation and Adaptive Quadrature, Pinheiro & Chao, 2006) 

or linearization (i.e. Pseudolikelihood, Wolfinger & O’Connell, 1993). Each of the competing 

Models 5 to 16 are thus identified by the suffix “-L”, “-Q” or “-P”, respectively, to indicate 

method of estimation. 

A detailed description of the competing models considered in this study follows. 

 

 2.2.1 Linear Mixed Models 

LMMs were used as normal approximations to the count response, as is common practice 

in many disciplines (Stroup, 2015). The linear predictor included fixed effects for the intercept 𝜂, 

the differential effects 𝛼𝑖  and 𝛽𝑗 for treatment A and B respectively, and their differential 

combined effect 𝛼𝛽𝑖𝑗, as well as a random differential block effect 𝑏𝑘 assumed 𝑁𝐼𝐼𝐷(0, 𝜎𝑏
2). 

Specifically, for the LMMs, 𝜇𝑖𝑗𝑘 was defined as the expectation for the ijth treatment 

combination conditional on the kth block such that 𝜇𝑖𝑗𝑘 = 𝜂𝑖𝑗𝑘 = 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑏𝑘. 

Model 1 was defined as a homoskedastic LMM (LMM-hm) whereby  

𝑦𝑖𝑗𝑘|𝑏𝑘~𝑁𝐼𝐼𝐷(𝜇𝑖𝑗𝑘, 𝜎𝑒
2). Model 2 extended Model 1 to accommodate heteroskedasticity 

(LMM-ht), whereby 𝑦𝑖𝑗𝑘|𝑏𝑘~𝑁𝐼𝐼𝐷(𝜇𝑖𝑗𝑘, 𝜎𝑒𝑖𝑗

2 ), such that the residual variance was specific to the 

ijth treatment combination.  

Models 3 and 4 involved variance-stabilizing transformations of 𝑦𝑖𝑗𝑘 and thus consisted 

of LMMs analogous to Model 1 (LMM-hm) fitted to 𝑦𝑖𝑗𝑘
∗ = log(𝑦𝑖𝑗𝑘) or �̃�𝑖𝑗𝑘 =

√𝑦𝑖𝑗𝑘 + 3/8,  such that 𝑦𝑖𝑗𝑘
∗ |𝑏𝑘~𝑁𝐼𝐼𝐷(𝜇𝑖𝑗𝑘

∗ , 𝜎𝑒
2) or �̃�𝑖𝑗𝑘|𝑏𝑘~𝑁𝐼𝐼𝐷(�̃�𝑖𝑗𝑘, 𝜎𝑒

2), respectively. 
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 2.2.2 Generalized Linear Mixed Models 

Competing Models 5, 6 and 7, labeled GLMM-Ps-L, GLMM-Ps-Q and GLMM-Ps-P, 

respectively, assumed a conditional Poisson distribution of the response variable such that 

𝑦𝑖𝑗𝑘|𝑏𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘),   log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑏𝑘. Recall that suffixes -L, -

Q, and -P indicate methods of GLMM estimation, as previously indicated. 

Competing models 8, 9 and 10, labeled GLMM-PsU-L, GLMM-PsU -Q and GLMM-

PsU-P, respectively, also assumed a conditional Poisson distribution of the response variable. In 

this case, the linear predictor further included random unit-level effects  𝑢𝑖𝑗𝑘~𝑁𝐼𝐼𝐷(0, 𝜎𝑢
2), such 

that 𝑦𝑖𝑗𝑘|𝑏𝑘, 𝑢𝑖𝑗𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘), log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑏𝑘 + 𝑢𝑖𝑗𝑘 (Stroup, 

2013). 

Competing models 11, 12 and 13, labeled GLMM-NB-L, GLMM-NB-Q, and GLMM-

NB-P, respectively, assumed a conditional Negative Binomial distribution of the response 

variable such that 𝑦𝑖𝑗𝑘|𝑏𝑘 ~ 𝑁𝐵(𝜆𝑖𝑗𝑘, 𝜙𝑁𝐵), whereby log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 +

𝑏𝑘 and  𝜙𝑁𝐵 is the Negative Binomial scale parameter that accommodates variation at the level 

of observation.  

Finally, competing models 14, 15, and 16, labeled GLMM-Gm-L, GLMM-Gm-Q, and 

GLMM-Gm-P, respectively, assumed a Gamma distribution to approximate the behavior of the 

discrete count response variable, whereby 𝑦𝑖𝑗𝑘|𝑏𝑘~𝐺𝑎𝑚𝑚𝑎(𝛼𝑖𝑗𝑘
∗ , 𝛽𝑖𝑗𝑘

∗ ) with shape parameter 𝛼∗ 

and scale parameter 𝛽∗, such that 𝐸(𝑦𝑖𝑗𝑘|𝑏𝑘) = 𝜇𝑖𝑗𝑘 = 𝛼𝑖𝑗𝑘
∗ 𝛽𝑖𝑗𝑘

∗   and log(𝜇𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝜂 +

𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑏𝑘 .  

For models 5 to 16, the differential random effects, 𝑏𝑘 and 𝑢𝑖𝑗𝑘, fitted by the GLMMs 

were assumed 𝑏𝑘~𝑁𝐼𝐼𝐷(0, 𝜎𝑏
2) and 𝑢𝑖𝑗𝑘~𝑁𝐼𝐼𝐷(0, 𝜎𝑢

2), where applicable.  
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Competing models 14 to 16, namely GLMM-Gm, were considered as an alternative to 

the normal approximation of Models 1 to 4. Our rationale for exploring a Gamma approximation 

instead was based on the inherent skewness and positive-line support of the Gamma distribution, 

which may better align with the asymmetric and zero-bounded nature of count data. 

To note: the specification of competing models 8 through 10, namely, GLMM-PsU was 

directly aligned with the Poisson-Unit DGP used for data simulation. Similarly, the specification 

of models 11,12, and 13, namely GLMM-NB were directly aligned with the Poisson-Gamma 

DGP, respectively. Thus, competing models GLMM-PsU and GLMM-NB were, by design, the 

true data generation models in their respective case. In turn, none of the competing models were 

aligned with the Additive Means DGP used for data simulation. As a result, data generated under 

the Additive Means DGP did not have a true model amongst the specifications evaluated. 

 

 2.3 Model Comparison 

 2.3.1 Existing Performance Statistics 

Inferential performance of competing models was assessed using Type I Error and 

statistical power of Type III F-tests to assess treatment differences where 𝐻0: 𝜇𝑖𝑗 = 𝜇𝑖′𝑗 = 𝜇𝑖𝑗′ =

𝜇𝑖′𝑗′  and 𝐻𝐴: at least one treatment mean is different. For each DGP under equal treatment 

means, Type I Error was computed as the proportion of simulated datasets for which the null 

hypothesis was incorrectly rejected. In turn, statistical power was computed for scenarios of 

unequal treatment means under each DGP as the proportion of simulated datasets that correctly 

rejected the null hypothesis of equal treatment means. 

Fit statistics Akaike’s Information Criterion (AIC, Akaike, 1973) and Bayesian 

Information Criterion (BIC, Schwarz, 1978) were utilized to assess the fit of the competing 
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models. Although neither are proper scoring rules, AIC is asymptotically equivalent to the mean 

logarithmic score, which is a proper scoring rule which serves to summarize discrepancies 

between predictions and observations (Correndo et al., 2021; Czado et al., 2009; Gneiting, 2011). 

These information criteria were computed for the subset of competing models fitted using a true 

likelihood-based method of estimation, as follows: 

𝐴𝐼𝐶 = −2 log (𝐿(�̂�|𝒚)) + 2𝑑, and 

𝐵𝐼𝐶 = −2 log (𝐿(�̂�|𝒚)) + 𝑑log(𝑛),  

whereby  𝐿(�̂�|𝒚) is the likelihood function of the data, �̂� is a vector of parameter estimates, 𝒚 is 

a vector of observed response variables, d is the dimension of the model equivalent to the 

number of effective covariance parameters, and n is the size of the data equivalent to the number 

of effective subjects. Fit criteria calculated on this subset of models are directly comparable 

across LMMs (all fitted using true data likelihoods) and those GLMMs fitted based on integral 

approximations to the corresponding likelihood (Stroup, 2012). In contrast, for GLMMs 

estimated through linearization (i.e. pseudolikelihood, Schabenberger, 2005; Wolfinger & 

O’Connell, 1993), specifically competing models 7, 10, 13, and 16, AIC and BIC were 

considered non-interpretable (Schabenberger, 2005) and thus were not calculated in this study. 

For a given dataset, smaller values of AIC and BIC are considered as indications of better fitting 

models (Hastie et al., 2009). 

Overdispersion was assessed using the Pearson Chi-square statistic over degrees of 

freedom  (McCullagh & Nelder, 1989a). In general terms, computation of this statistic involves 

squaring the difference between observations and group means, then dividing by the variance 

weighted by the overall degrees of freedom (McCullagh & Nelder, 1989). In the context of 

GLMM, the Pearson Chi-square/DF overdispersion statistic is computed for conditional 
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distributions of the data (given random effects) using estimates approximated by Laplace 

approximation or Adaptive Quadrature (Stroup, 2012). For GLMMs estimated through 

linearization (i.e., pseudolikelihood, Stroup 2012), namely models 7, 10, 13, and 16, only the 

generalized Chi-square/DF statistic can be computed; this statistic is not considered appropriate 

for assessing overdispersion (Stroup 2012) and is thus not reported in this study. Values of the 

Pearson Chi-sq/DF statistic substantially greater than 1 are considered indicative of 

overdispersion (Stroup, 2012). 

 

 2.3.2 Additional Performance Statistics Considered 

To further assess model fit and performance, we developed and evaluated an array of 

statistics intended to characterize fit to selected data features based on discrepancies between 

observed values 𝑦𝑖𝑗𝑘 and predicted values �̂�𝑖𝑗𝑘 obtained from fitting competing models. 

Specifically, the predicted value �̂�𝑖𝑗𝑘 corresponding to the ijkth observation was obtained from 

point estimates of model parameters included in the linear predictor of the corresponding 

competing model, such that �̂�𝑖𝑗𝑘 = 𝑔−1(�̂�𝑖𝑗𝑘), whereby 𝑔(. ) indicates the link function of the 

corresponding model. For competing models 1 through 4, labeled LMM-hm, LMM-ht, LMM-l, 

and LMM-s, respectively, 𝑔(. ) indicates the identity function, such that �̂�𝑖𝑗𝑘 = �̂�𝑖𝑗𝑘. For all 

GLMMs indicated by models 5 through 16,  𝑔(. )= log(.).  

First, for each competing model fitted to a simulated dataset, predicted values  �̂�𝑖𝑗𝑘were 

regressed over observed values 𝑦𝑖𝑗𝑘, namely �̂�𝑖𝑗𝑘  =  𝛾0  +  𝛾1  ∗  𝑦𝑖𝑗𝑘  +  𝑒𝑖𝑗𝑘 using MAR, also 

known as Model II regression analyses (Mesplé et al., 1996). The MAR approach minimizes the 

sum of squares of the perpendicular distances between each point (𝑦𝑖𝑗𝑘, �̂�𝑖𝑗𝑘) and the fitted MAR 

line �̂̂�𝑖𝑗𝑘 (Correndo et al., 2021; Legendre & Legendre, 2012; Mesplé et al., 1996) (Figure 2). 
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Specifically, the criterion minimized is 𝐷(𝒚, �̂�)2 = ∑ √(𝑦𝑦 ̂̂𝑖𝑗𝑘 − 𝑦𝑖𝑗𝑘)
2

+ (�̂̂�𝑖𝑗𝑘 − �̂�𝑖𝑗𝑘)
2

𝑖𝑗𝑘 , 

where 𝒚 = {𝒚𝒊𝒋𝒌} and �̂� = {�̂�𝑖𝑗𝑘} represent the vector of ijkth observed values and corresponding 

model-predicted values, respectively. Similarly, 𝒚�̂̂� = {𝑦�̂̂�𝑖𝑗𝑘) and �̂̂�𝑖𝑗𝑘 denote the vectors of ijkth 

coordinate pairs on the MAR fitted line (Legendre & Legendre, 2012). Recall that MAR differs 

from ordinary least squares regression in that the latter minimizes the sum of the squared 

deviations along the vertical axis (i.e., residuals). MAR is usually recommended when 

comparing model predictions to observations in a simulation study (Legendre & Legendre, 2012; 

Mesplé et al., 1996).  

 

Figure 2: Simple visualization of major axis regression 

 

In this study, we estimated and summarized MAR coefficients, both intercept 𝛾0 and 

slope 𝛾1, for each competing model fitted to a simulation dataset within a DGP. Point estimates 

of 0 and 1 for the MAR intercept 𝛾0 and MAR slope 𝛾1, respectively, suggest good data fit of the 

competing model used to generate predicted values (Mesplé et al., 1996). On the other hand, a 
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MAR intercept substantially greater than 0 indicates that a model is over estimating low counts 

(Mesplé et al., 1996). Equivalently, MAR slopes smaller than 1 indicate underestimation of high 

counts. Note, these coefficients are dependent on each other and are strongly negatively 

correlated at approximately -0.73. Moreover, plotting observed and predicted values alongside a 

MAR line can also provide a visual aide for identifying specific areas in which a model struggles 

to describe features of the data. 

Next, we characterized fit to selected data features, specifically to dispersion and asymmetry, 

as follows. For each competing model, we computed:  

i) The ratio of the 97.5th-percentile of �̂� over the 97.5th-percentile of 𝒚, defined as 

𝑃97.5
(�̂�)

/ 𝑃97.5
(𝒚)

, where 𝑃97.5
(.)

  is the value below which 97.5% of the frequency distribution of 

�̂� (or 𝒚, as appropriate) lies; 

ii) The ratio of the skewness coefficient of �̂� over the skewness coefficient of 𝒚, defined as 

𝑚3
(�̂�)

/𝑚3
(𝒚)

, where 𝑚3
(𝒚)

=
∑ (𝑦𝑖𝑗𝑘−�̅�)

3𝑛
𝑖=1

(𝑛−1)𝑠𝑦
3  with sample size 𝑛, sample mean �̅�, and sample 

standard deviation 𝑠𝑦, and similarly for 𝑚3
(�̂�)

; 

iii) The ratio of coefficients of variation (CV) of �̂� over the coefficients of variation of 𝒚, 

defined as 𝐶𝑉(�̂�)/𝐶𝑉(𝒚) where 𝐶𝑉(𝒚) = 𝑠𝒚/�̅� and similarly for 𝐶𝑉 �̂�.  

 

Values of the proposed ratios i), ii) or iii) closer to 1 are indicative of better model fit to the 

corresponding data feature. For as 𝑃97.5
(�̂�)

/ 𝑃97.5
(𝒚)

  and 𝐶𝑉(�̂�)/𝐶𝑉(𝒚) , values less than 1 may be 

indicative of a competing model suffering from overdispersion. 
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 2.4 Data Application 

For a proof-of-concept data application, we used entomological data presented by Li, 

Cloyd, and Bello (2019). In that study, the objective was to determine the effectiveness of using 

the entomopathogenic fungus Beauveria bassiana in conjunction with the rove beetle Dalotia 

coriaria to suppress western flower thrips Frankliniella occidentalis populations under 

greenhouse conditions. Here, we worked with a data subset collected during Summer 2016 and 

consisting of observations on thrip counts collected on yellow chrysanthemum plants 

Dendranthema x grandiflorum (Ramat.) Kitam. at four weeks after treatment application. Further 

experimental details can be accessed at Li, Cloyd, and Bello (2019). Briefly, a total of 35 

individually potted plants, each contained inside an individual plastic cage, were arranged in 6 

blocks of 5 plants each and two additional blocks of 2 and 3 plants each, respectively, as deemed 

necessary by logistical constraints in the greenhouse. Blocks were defined by location within the 

greenhouse to control for gradients in light, temperature, and humidity. Within each block, plants 

were randomly assigned to one of five treatments consisting of (1) spinosad, pyridalyl, 

chlorfenapyr, and abamectin insecticides; (2) entomopathogenic fungus B. bassiana; (3) rove 

beetle D. coriaria; (4) a combination of B. bassiana and D. coriaria; and (5) a water control. 

Twenty thrips were applied to each of the plants and allowed to establish populations two weeks 

prior to the application of treatments.  Each week after treatment application, a yellow sticky 

card was placed adjacent to each plant and the number of western flower thrips captured on the 

sticky card was recorded. Observations on thrip counts collected four weeks after treatment 

application are considered in this data application. Competing models 1 through 16 were fitted to 

the entomological dataset and performance statistics were computed to determine which of the 

competing models best characterized the data.  
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 2.5 Software implementation 

Simulated data were generated and results were summarized and tabulated using R 

software (R Core Team, 2021, version 4.1.0). All competing models were fitted using the 

GLIMMIX procedure of SAS software (Version 9.4, SAS Institute Inc, 2016). For fitting 

competing models 11 through 16, namely GLMM-NB and GLMM-Gm, the maximum number 

of iterations of the nonlinear optimization process was increased to 10,000 iterations (i.e., 

MAXITER option in the NLOPTIONS statement of proc GLIMMIX) to facilitate model 

convergence. 

For competing model LMM-ht, the PARMS statement in proc GLIMMIX was used to 

provide starting values for estimation of variance components due to failure of the default Quasi-

Newton (QUANEW) optimization algorithm to yield starting values amenable with a valid 

objective function.  
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Results 

Table 1 shows the number of convergence failures in fitting competing models to the 100 

datasets generated under each DGP and simulation scenario; only models for which convergence 

failure was detected are listed. Overall, model convergence rates were acceptable, except for 

competing model 2, namely LMM-ht, which showed the greatest frequency of failure to 

converge. This convergence misbehavior was particularly problematic under the Poisson-Unit 

DGP, despite technical fine-tuning of the estimation algorithm to inform starting values for 

variance components, as explained in section 2.5. Results reported here are based on models that 

properly converged to simulated data. 

 3.1 Simulation Study: Poisson-Unit DGP 

Table 2 presents empirical Type I error and Statistical power for simulation scenarios 

with equal and unequal treatment means, respectively, following a Poisson-Unit DGP with 10 or 

50 blocks.  In all cases, linear mixed modeling approaches for normal approximations to the data, 

either expressed as discrete counts (model 1, LMM-hm) or their transformations (models 3 and 

4, LMM-l and 4-LMM-s) seemed to control Type I Error at or close to the nominal value. Of 

note is the relative stringency of model 2, namely LMM-ht, which yielded the lowest observed 

empirical Type I error in both the 10- and 50-block simulation scenarios. Most GLMMs (models 

8 to 16) showed some level of Type I Error inflation in the 10-block scenario, though false 

positives were better controlled with larger datasets consisting of 50 blocks. This was 

particularly apparent for competing models 8 through 10, namely GLMM-PsU, which was the 

true model for this DGP.  Meanwhile, competing models 5 through 7, namely GLMM-Ps yielded 

large Type I error inflation, above 0.60 in all cases, regardless of the number of blocks 

considered. This inflated probability of false positives was to be expected given strong evidence 
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for overdispersion of GLMM-Ps, as apparent from Pearson chi-sq /df statistics ranging from 2.5 

to 43.4 for this model (Table 3).  In contrast, the remaining GLMMs (models 8 through 16) 

showed Pearson chi-sq /df statistics close to, or below, 1 (Table 3). This suggests that, for models 

8 through 16, any additional variability in the data had been accounted for, either by the 

inclusion of a unit-level effect in the linear predictor (i.e., GLMM-PsU), or by the incorporation 

of a scale parameter (i.e., GLMM-NB or GLMM-Gm). Notably, the true model aligned with the 

DGP, namely GLMM-PsU, yielded Pearson chi-sq/df statistics between 0.1 and 0.4, well below 

the established threshold of 1. 

Regarding statistical power, most competing models yielded values close to or above 0.7, 

regardless of sample size (Table 2). The exception was model 2, namely LMM-ht which showed 

only 0.22 probability of correctly detecting treatment differences when data from only 10 blocks 

was available.  For some of the competing models, specifically models 1, 2, 4, and 16, power 

increased further with more blocks, though log transformations seemed to lag behind in power 

gain relative to other models.  Empirical power for competing models 5 through 7, namely 

GLMM-Ps, is not presented due to the reported failure to control Type I Error. 

Table 4 contains a summary of estimates of expectations of treatments and 95% 

confidence interval coverage of these expectations for competing models fitted to data generated 

under the Poisson-Unit DGP. Overall, competing models seemed to overestimate treatment 

means, particularly for larger treatment means (i.e., ij = 2,1) with small datasets (i.e., 10 blocks), 

as indicated by point estimates above the true value and confidence interval (CI) coverage below 

the nominal value. Normal approximations by models 1 and 2, namely LMM-hm and LMM-ht, 

overestimated treatment means by the largest margin and with the broadest CI width. For 

treatment means of smaller magnitude or when larger datasets were available (i.e., 50 blocks), 
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accuracy of estimated treatment expectations was improved, particularly for GLMM-PsU. 

Indeed, point estimates were closer to the truth and coverage was closer to nominal values 

without compromising CI width. Overestimation of treatment means by competing models 11 

through 16, namely GLMM-NB and GLMM-Gm was substantial, as indicated by both point 

estimates and lack of CI coverage; larger sample sizes partially mitigated the former but 

worsened the latter problem. Regardless of sample size, the logarithmic transformation of model 

3, namely LMM-l yielded better CI coverage rates for higher than for lower treatment means. 

Meanwhile, the reverse was true for the square-root-plus-3/8 transformation of model 4 whereby 

CI coverage often improved for higher treatment expectations compared to that of lower 

treatment expectations. 

Table 5 shows AIC and BIC fit statistics for simulation scenarios of unequal treatment 

means with 10 or 50 blocks. In all cases, models 14-16, namely GLMM-Gm, yielded the lowest 

values of AIC and BIC, both on average and for most individual datasets in these simulation 

scenarios, thus indicating best fit of all competing models considered, even the true model 

GLMM-PsU. Specifically, GLMM-Gm returned the lowest AIC and BIC values in 66%, 94% 

and 100% of the scenarios of equal treatment means with 10 blocks, unequal treatment means 

with 10 blocks, and all remaining scenarios, respectively. Meanwhile, values of AIC and of BIC 

for GLMM-PsU or GLMM-NB were very close in magnitude, many times within the 2-point 

rule of thumb considered discriminatory of model fit (Burnham & Anderson, 2004). Overall, 

neither AIC nor BIC were able to reliably discriminate between the true data generation model 

and other alternative GLMM specifications in these simulations with 10 or 50 blocks. 

Next, we consider the performance of the proposed diagnostic metrics based on predicted 

values. Ideally, if a model were able to perfectly replicate the observed data, the MAR intercept 
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(𝛾0) and slope parameter (𝛾1) would be expected, on average, to take values 0 and 1, 

respectively. Table 6 shows point estimates for MAR coefficients obtained from regressing 

predicted values obtained from competing models over observed values generated under a 

Poisson-Unit DGP. Overall, when competing models were fitted to data, the point estimates of 

the corresponding MAR coefficients showed substantial variability, though in most cases the 

range of estimates overlapped the expected values (Table 6). Of particular interest were models 8 

to 10, namely GLMM-PsU, which the reader may recall was the true model under the Poisson-

Unit DGP. Point estimates of MAR coefficients under the GLMM-PsU models were slightly 

biased upward for intercept (ranging from 0.04 to 0.08 across scenarios) and downward for slope 

(ranging from 0.96 to 1 across scenarios), though with the least uncertainty of the remaining 

competing models (Table 6). In fact, despite the slight bias, MAR coefficient estimates from the 

GLMM-PsU were closest (i.e., in terms of least absolute distance) to their respective target 

values compared to those of other competing models, both on average and for most individual 

datasets. Specifically, in 80% of the datasets of the 10-block unequal-treatment means scenario, 

and in at least 99% of all other simulation scenarios under this Poisson-Unit DGP, the GLMM-

PsU yielded MAR estimates closest to the corresponding target values relative to any other 

model evaluated.  The MAR coefficients appeared useful in identifying the Poisson-Unit GLMM 

as the best fitting model. 

Table 7 shows descriptive statistics for the ratio of 97.5th percentiles on predicted values 

�̂�𝑖𝑗𝑘 vs. observed values 𝑦𝑖𝑗𝑘 for the simulation scenarios of unequal treatment means under a 

Poisson-Unit DGP. Regardless of competing GLMM, values for this ratio overlapped with the 

target value 1. However, compared to all other competing models, the GLMM-PsU yielded 

estimated ratios closest to the target, both on average and for most simulated datasets; 
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specifically, for 93% of the datasets under the Poisson-Unit DGP scenarios. Meanwhile, models 

1 through 4, namely LMMs, seemed to consistently underestimate this ratio, indicating a limited 

ability to reproduce extreme values in the data.   

Table 8 contains the ratio of the skewness statistic computed from predicted values  

�̂�𝑖𝑗𝑘 vs. that from observed values 𝑦𝑖𝑗𝑘, under the unequal treatment means scenarios in the 

Poisson-Unit DGP. Here too, competing GLMMs returned skewness ratios with ranges that 

overlapped the target value 1. However, the estimated ratios obtained from the Poisson-Unit 

GLMMs were closest to the target, both on average and in at least 93% of the simulated datasets 

under the Poisson-Unit DGP. A similar pattern was also observed for the CV ratio computed on 

predicted values �̂�𝑖𝑗𝑘  over that on observed values 𝑦𝑖𝑗𝑘, with the GLMM-PsU yielding ratios 

closest to the target for at least 97% of the datasets (Table 9). 

 

 3.2 Simulation Study: Poisson-Gamma DGP 

Recall, that in simulation scenarios under the Poisson-Gamma DGP, the true model is 

represented by models 11 through 13, namely GLMM-NB.  

For both Type 1 error and statistical power, model comparisons were analogous to those 

reported for the Poisson-Unit DGP (Table 10) in that LMMs seemed to control Type I error. 

Models 1 through 4, namely GLMM-NB, showed slightly inflated Type I error that was not 

corrected with larger sample size. Meanwhile, models 8 through 10, namely GLMM-PsU, were 

able to control Type I error at the nominal level.  

Table 11 contains a summary of estimates of treatment expectations and 95% confidence 

interval coverage of these expectations for competing models fitted to data generated under the 

Poisson-Gamma DGP. Overall, model 4, namely LMM-s and models 11 through 16, namely 
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GLMM-NB, GLMM-Gm, returned estimates of treatment expectations closest to the true values, 

whereas models 3, namely LMM-l and models 5 through 10, namely GLMM-Ps, GLMM-PsU, 

consistently underestimated treatment expectations. Remaining LMMs substantially 

overestimated the expectations of treatments and yielded the broadest CI width. For models 11 

through 13, namely GLMM-NB, CI coverage was closest to target, particularly with larger 

sample sizes. For models 14 to 16, namely GLMM-Gm, CI coverage typically performed as well 

as that of GLMM-NB, except for small treatment expectations (𝑖𝑗 = 22).  

Overdispersion based on the Pearson chi-sq/df statistic seemed to be well controlled for 

most GLMM, except models 5 through 7, namely GLMM-Ps (Table A 1 in Appendix A).  

Estimates of fit statistics AIC and BIC showed similar behavior under the Poisson-

Gamma DGP as they had for the Poisson-Unit DGP (Table 12). In particular, models 14 through 

16, namely, GLMM-Gm models, yielded the smallest values of AIC and BIC, both on average 

and in at least 74% of all simulated datasets under the Poisson-Gamma DGP. Meanwhile, models 

8 through 10, namely GLMM-PsU and models 11 through 13, namely GLMM-NB showed small 

numerical differences in AIC or BIC, thus indicating little discriminatory power to detect the true 

data generation distribution. 

Table 13 shows estimated MAR coefficients for the unequal treatment means scenarios 

under the Poisson-Gamma DGP. Here too, models 8 through 10, namely GLMM-PsU, showed 

MAR estimates closest to the target values for both intercept and slope, both on average and in at 

least 74 and 94% of the simulated datasets, respectively. Meanwhile, the true model, namely 

GLMM-NB yielded substantial variability the estimates of MAR coefficients. Below, figure 3 

shows lines described by MAR coefficients from competing models LMM-hm, GLMM-PsU-Q, 

and GLMM-NB-Q fitted to a random simulation with 10 blocks and unequal treatment means 
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under the Poisson-Gamma DGP. A similar pattern was observed for the ratio statistics obtained 

from predicted values of competing models. In all cases, models 8 through 10, namely GLMM-

PsU, yielded estimates closest to the target value 1 compared to the remaining competing models 

(Tables A 2, A 3, and A 4). Specifically, for at least 91%, 81% and 93% of the simulated 

datasets, the estimated ratios of percentiles, skewness, and coefficients of variation obtained 

from the fitted GLMM-PsU were closest to the target value 1 of all models considered, including 

the true model GLMM-NB.  
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Figure 3: Fitted major axis regression (MAR) lines of predicted values �̂�𝒊𝒋𝒌 over observed 

values  𝒚𝒊𝒋𝒌 under selected competing models, namely LMM-hm (-- - -*- - --), GLMM-PsU-

Q (--●--), and GLMM-NB-Q (square). Observed values 𝒚𝒊𝒋𝒌 were generated under a 

Poisson-Gamma DGP with 10 blocks and unequal treatment means. Identity line 

represented by -.-.-. 

 

 

 3.3 Simulation Study: Additive Means DGP 

The reader may recall that, unlike the Poisson-Unit DGP and the Poisson-Gamma DGP 

examined earlier in this study, none of the competing models align with the Additive Means 
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DGP. That is, for this simulation scenario, there is no true model amongst the competing 

specifications.  

Table 14 presents the Type I Error rates and statistical power for models 1 through 16 

fitted to data generated under the Additive Means simulation scenarios.  

Models 1 through 4, or the LMMs, controlled Type I error within nominal expectations. 

LMM-l yielded power near 0.70 for both the 10- and 50-block scenarios whereas the LMM-ht 

increased in power from 0.45 with 10 blocks to 0.83 with 50 blocks. Remaining LMMs returned 

statistical power greater than 0.80.  

Of all the GLMMs, only model 10, namely GLMM-PsU-P, controlled Type I Error rate 

on target while maintaining power at approximately 0.70. For many of these Additive Means 

simulations, specifically, at least 60% of GLMM-PsU-L and at least 80% of GLMM-PsU-Q, 

estimates of variance components converge to 0 which, in turn, made inference based on F-tests 

impossible to compute. Of the subset of simulations that avoided the problem of variance 

component estimates converging to 0, competing models 8 and 9, namely GLMM-PsU-L and 

GLMM-PsU-Q, showed slight inflation of Type I error that was somewhat mitigated by the 

larger sample size. On the other hand, GLMM-PsU-P returned Type I error rates at the nominal 

level. Remaining models 11 through 16, namely GLMM-NB and GLMM-Gm, showed slight 

inflation of Type I error that did not seem to abate with larger sample sizes.  

Table 15 shows a summary of estimates of treatment expectations and corresponding 

95% CI coverage for competing models fitted to data generated under the Additive Means DGP. 

Competing models generally tended to underestimate the treatment means by varying degrees, 

though GLMM-Gm would overestimate the highest and lowest means (i.e., ij = 21 and 22, 

respectively) at 10 blocks and the lowest mean (i.e., ij = 22) with 50 blocks. Model LMM-hm 
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returned 100% CI coverage for lower treatment means (ij = 11 and 22) due to a large CI width 

that precluded estimation precision. GLMM-NB and GLMM-Gm CI coverage of treatment 

expectations was between 0.90 and 0.95 across equal and unequal expectations of treatments, 

except for model 13, namely GLMM-NB-P. GLMM-Gm CI coverage also fell to about 0.7 and 

overestimated the lowest treatment expectation (i.e., ij = 22) with 50 blocks. 

As with previously considered DGP, the Pearson Chi-Squared/DF statistic consistently 

detected overdispersion in models 5 to 7, namely GLMM-Ps, when fitted to data generated under 

the Additive Means DGP (Table 16).  Meanwhile, remaining GLMMs under consideration (i.e., 

models 8, 9, 11, 12, 14, 15) showed no evidence for overdispersion, with values of the Pearson 

Chi-Squared/DF statistic close to or below 1 (Table 16). 

Table 17 shows AIC and BIC values for competing models fitted to data generated under 

Additive Means DGP scenario with unequal treatment means. Results indicate a similar pattern 

of relative model fit as reported for previously considered DGPs, whereby models 14 to 16, 

namely GLMM-Gm, returned the smallest values of AIC and BIC, both on average and in about 

78% of the cases. Notably, model 1, namely LMM-hm, yielded smallest AIC and BIC values in 

about 8% of the cases. Taken together, under an Additive Means DGP, both AIC and BIC 

criteria seemed to indicate as best fitting, models that assumed continuous approximations to 

count data, namely GLMM-Gm or LMM-hm, as opposed to GLMMs that recognized the 

discrete distributional nature of the response.   

Table 18 shows point estimates of MAR coefficients obtained from regressing predicted 

values (�̂�𝑖𝑗𝑘) of each competing model over observed (simulated) values (𝑦𝑖𝑗𝑘) for the unequal 

treatment means simulation scenarios in this DGP. As seen in previous DGPs, models 8 through 

10, namely GLMM-PsU, showed MAR estimates closest to the respective targets (Table 18) in at 
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least 99% of the datasets. Additionally, models 8 through 10, namely GLMM-PsU, yielded the 

least variability in estimates of MAR of all the models considered (Table 18).  All competing 

models considered for this study consistently overestimated the major axis intercept parameter, 

as all estimates were greater than 0, except for the minimum estimate returned by LMM-l of -

0.63. Similarly, all competing models underestimated major axis slope parameters as all 

estimates were less than 1.   

Table 19 shows descriptive statistics for the ratio of 97.5th percentiles on predicted (�̂�𝑖𝑗𝑘) 

vs. observed values (𝑦𝑖𝑗𝑘) for the simulation scenarios of unequal treatment means under this 

DGP. GLMM-PsU returned ratios of the predicted vs. observed 97.5th percentile that were 

consistently closest to the target value 1, both on average and in at least 94% of all simulated 

datasets under the Additive Means DGP. GLMM-PsU appears to yield predicted values that best 

describe extreme values in these simulated data, specifically the 97.5th percentile.  

Table 20 shows presents descriptive statistics for the ratio of skewness statistics on 

predicted (�̂�𝑖𝑗𝑘)  vs. observed (𝑦𝑖𝑗𝑘) values for the simulation scenarios of unequal treatment 

means under this DGP. The GLMM-PsU returned ratios for skewness within the narrowest range 

and closest to the target value 1, both on average and in at least 84% of the datasets under the 

Additive Means DGP. All remaining competing models yielded ratios consistently below 1, thus 

indicating failure to capture skewness in the data.  

Table 21 contains descriptive statistics for the CV ratios on predicted (�̂�𝑖𝑗𝑘) vs. observed 

values (𝑦𝑖𝑗𝑘) for the simulation scenarios of unequal treatment means under the Additive Means 

simulation scenarios. Models 8 through 10, namely GLMM-PsU, consistently yielded estimates 

of this ratio closest to the target of 1, both on average and across all datasets. For remaining 
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models, CV ratios were consistently below 1, indicating failure to describe the relative variation 

within the data.   

 3.4 Data application 

For a proof-of-concept application, competing models 1 through 16 were fit to a selected 

data subset from the entomological study by Li et al (2019), as explained previously in section 

2.4. The data subset was selected to match the design structure of the simulation study under 

consideration, namely that of randomized blocks.  

Table 22 shows the Pearson Chi-Sq/DF statistics, as well as AIC and BIC fit statistics for 

the models fitted to the data. Models 5 and 6, namely GLMM-Ps, showed clear signs of 

overdispersion, with a Pearson Chi-Squared/DF statistic of 4.28. Therefore, no additional results 

are presented for these models.  Remaining GLMMs fitted to data yielded values of the Pearson 

Chi-Squared/DF statistic ranging between 0.26 and 0.61, thus indicating no evidence of 

overdispersion. 

Models 14 through 16, namely GLMM-Gm, yielded smallest values of AIC and BIC, 

thus indicating best fit amongst the models considered. In turn, competing models 11 and 12, 

namely GLMM-NB ranked second in goodness of fit based on AIC and BIC, followed closely by 

models 8 and 9, namely GLMM-PsU, and model 2, namely LMM-ht.  

Table 23 shows the estimated MAR coefficients, and corresponding 95% CI, obtained 

from regressing predicted values �̂�𝑖𝑗𝑘 over observed values 𝑦𝑖𝑗𝑘. For predictions generated under 

all competing models, estimates of MAR coefficients overestimated the intercept parameter and 

underestimated the slope parameter, as indicated by corresponding 95% confidence intervals that 

were above and below, respectively, of the target values for these parameters. Models 8 through 
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10, namely GLMM-PsU, returned coefficient estimates closest to the respective target values 

than any of the other competing models. 

Table 24 shows the ratios of 97.5th percentile, skewness coefficient, and CV for predicted 

values (�̂�𝑖𝑗𝑘) over observed values (𝑦𝑖𝑗𝑘) for the data application. Models 8 through 10, namely 

GLMM-PsU, returned estimated ratios of the 97.5 percentile and CV closest to the target value 1 

compared to any of the competing models considered. For the ratio of skewness coefficients, it 

was model 3, namely LMM-l, which yielded an estimate marginally closer to 1 – about 0.03 

units close – than GLMM-PsU. Results suggest that models 8 through 10, namely GLMM-PsU, 

recovered the data features of interest at least as well, if not better, relative to any of the 

competing model alternatives. 

Table 25 shows F-test statistics assessing the null hypothesis of equal treatment means 

under competing models fitted to the entomological data subset. Of all the competing models, 

only GLMM-Ps reports a significance at the 5% level, though this is likely explained by the 

overdispersion previously observed. Models 1 and 4, namely LMM-hm and LMM-s show 

marginally significant p-values for treatment difference (i.e.  0.061 and 0.078, respectively). 

Models 8 through 16, namely GLMM-PsU, GLMM-NB and GLMM-Gm show no evidence for 

treatment difference, though the magnitude of P-values reflects the method of estimation used for 

variance components.  

Table 26 shows estimated treatment means and corresponding 95% CI from LMM-hm, 

LMM-ht, LMM-l, GLMM-PsU, GLMM-NB, and GLMM-Gm. Models 8 through 10, namely 

GLMM-PsU, consistently yielded estimated treatment means smaller in magnitude and narrower 

in CI than models 11 through 13, namely GLMM-NB. This is consistent with results from our 

simulation study and with previous studies (Stroup 2012; 2015).  
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Discussion 

 

The objective of this study was to explore potential diagnostic metrics to assess GLMM 

fit and performance, to ultimately inform model choice for non-normal response variables, 

specifically discrete counts. To this end, we conducted a simulation study under various data 

generation processes and a proof-of-concept application using entomological data. In each case, 

we fitted an array of competing models, including GLMMs that explicitly specified count-

amenable distributional assumptions and models intended to work by approximation. We 

evaluated the performance of an array of statistics developed to assess GLMM fit.  

Since the early 20th century, linear models have been the go-to methods in the applied 

statistician’s toolbox to deal with count data, mostly by way of variance-stabilizing 

transformations of the data, the behavior of which was to be approximated by a normal 

distribution (Miller, 1997). This type of approach has inevitably led to problems, mostly related 

to loss of power and estimates outside of the parameter space; for example, treatment mean 

estimates below 0 (Stroup, 2015). It was not until 1972 that generalized linear model theory 

opened up a formal framework to incorporate distributional assumptions beyond normality into 

the model process (Lee & Nelder, 1996; Nelder & Wedderburn, 1972). These developments 

were soon followed by estimation algorithms (Laird & Ware, 1982; Wolfinger & O’Connell, 

1993) that enabled implementation of GLMMs into software tools. For example, the advent of 

the GLIMMIX macro from SAS in 2005 introduced the use of non-normal distributional 

assumptions to fit discrete data in the context of correlated data, and laid the foundation for the 

GLIMMIX procedure (Stroup, 2015).  

Yet, the practical implementation of GLMM for the modeling of discrete data is not 

without shortcomings due to challenges unique to discrete data (e.g., overdispersion) as well as 
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alternative, albeit conceptually appropriate, modeling specifications (e.g., distributional 

assumptions). Further complicating the development of GLMM diagnostics are the many 

components that must be simultaneously gauged, such as the accuracy of distributional 

assumptions, the specification of effects in the linear predictor, both fixed and random, and the 

recognition of the underlying covariance structure (Kramer, 2018).  

 In this study, we considered models spanning the history of count data modeling, starting 

with various LMM specifications, and ranging to GLMMs that accommodate Poisson or 

Negative Binomial distributions on the (conditional) response. In addition, we explored GLMM-

Gm; while not commonly used in practice, the Gamma distribution offers support along the 

positive line with consequential asymmetry, thereby supporting its exploration as a potential 

candidate for approximating the behavior of count data. Furthermore, in recognizing that the true 

process by which count data are generated is often unknown, our simulation study evaluated 

model behavior across three plausible data generation processes.  

Results from the simulation study indicated that regardless of DGP, GLMM-PsU and 

GLMM-NB showed slight inflation of Type I Error when sample size was limited, though this 

problem was mitigated as sample size increased. This was also the case when modeling by 

Gamma approximation using GLMM-Gm. Meanwhile, modeling by normal approximation, 

namely through LMMs, seemed to control Type I error at or below the nominal level. LMMs 

maintained high power, except for LMM-ht. By contrast, GLMMs, specifically GLMM-PsU and 

GLMM-NB, showed a clear advantage over LMM in terms of decreasing bias in the estimation 

of treatment means. Indeed, GLMMs yielded point estimates closer to the truth and narrower CI 

for comparable coverage relative to LMMs. The notable exception to GLMM control over Type 

I error inflation is GLMM-PsU-L and GLMM-PsU-Q in the Additive Means scenario, which 
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experienced severe Type I Error inflation. As expected, GLMM-Ps consistently showed 

symptoms of overdispersion with concomitant inflation of Type I Error, which rendered GLMM-

Ps ineligible for modeling purposes. Regarding GLMM-Gm, there does not seem to be any 

practical benefit in terms of estimation or inference for using a Gamma approximation for the 

modeling of count data, compared to fitting properly discrete distributional assumptions, namely 

GLMM-PsU or GLMM-NB. 

A common issue encountered when fitting GLMM to count data is that of overdispersion, 

whereby variation present in the data is unaccounted for by the model (Stroup, 2012). Single-

parameter probability distributions, such as the Poisson distribution, are especially vulnerable  

(Stroup, 2012). The Pearson Chi-Sq/DF overdispersion statistic is a well-described umbrella-type 

statistic that can reliably detect problems of overdispersion (Farrington, 1996; Payne et al., 2018; 

Stroup, 2012). Indeed, in this study, the Pearson Chi-Sq/DF statistic consistently returned values 

substantially greater than 2 for GLMM-Ps, thus supporting the diagnostic value of this statistic to 

detect overdispersion. However, the Pearson Chi-Sq/DF statistic lacks specificity to identify the 

source of overdispersion and thus, provides no guidance on implementation of remedial 

measures to adjust model fit, when needed.  

As a side note, the reverse problem, that of model underdispersion, can be of interest in 

some applications. Underdispersion is characterized by less variability present in the data than 

assumed by a model (Winkelmann & Zimmermann, 1995). It has been proposed that values of 

the Pearson Chi-Sq/DF below the accepted threshold of 1 may be indicative of underdispersion 

(Payne et al., 2018). In our study, this was not the case. Specifically, when data generated under 

a Poisson-Unit DGP were fitted with the true model, namely GLMM-PsU, the Pearson Chi-

Sq/DF statistic was considerably smaller than 1, in some cases closer to 0. The same result was 
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observed when data generated under a Poisson-Gamma DGP were fitted with their respective 

true model, namely GLMM-NB. In either case, by definition and construction, the model 

specification directly reflected the DGP and thus, could not possibly be underdispersed; yet 

values of the Pearson Chi-square statistic were found to be as low as 0.07. Taken together, our 

results indicated that Pearson Chi-Sq/DF values between 0 and 1 are not necessarily indicative of 

underdispersion and should not be interpreted as such.  

Fit statistics Akaike’s and Bayesian Information Criterion are statistics often used to 

compare fit of alternative models to a given dataset (Burnham & Anderson, 2004). Our 

simulation study showed that neither AIC nor BIC was able to reliably identify the true data 

generation models, even when true models were available amongst competing models. Rather 

surprisingly, GLMM-Gm – intended as an approximation to count data – was found to be better 

fitting based on both AIC and BIC, regardless of the DGP involved. Moreover, true models 

yielded AIC and BIC values that, at best, differed from those of other competing models by very 

small magnitudes. Specifically, both fit statistics struggled to discriminate fit between the 

distributional assumptions embedded in GLMM-PsU and GLMM-NB. Although model 

dimension differs slightly across competing models, the magnitude of the differences in 

information criteria are attributed to the differences in likelihood and likelihood approximations 

calculations under each distributional assumption. As a result, the value of AIC or BIC to aid the 

practicing statistician in assessing GLMM fit given these sample sizes seems questionable, at 

best. However, it is known that BIC will generally tend to select the true model if it is included 

in the set of competing models as the sample size increases to infinity (Burnham & Anderson, 

2004). Thus, it is possible that the failure of BIC in this study was due to an insufficiently large 

sample size. 
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Recent proposals for umbrella coefficients of determination statistics for GLMMs attempt 

to accommodate diversity in (co)variance structure with varying degrees of success (Jaeger et al., 

2019; Nakagawa & Schielzeth, 2013; Piepho, 2019). The measure proposed by Nakagawa, 

Johnson, and Schielzeth is 𝑅𝐺𝐿𝑀𝑀
2 , a ratio of fixed-effect variation over the sum of fixed-effect, 

individual-effect, and observational-level variances (Nakagawa et al., 2017). This method has an 

advantage in its simplicity of calculation and interpretation, but has been found to be limited to 

simple variance-covariance structures (Jaeger et al., 2019; Piepho, 2019). Extensions to more 

complex (co)variance structures include 𝑅Σ
2 (Jaeger et al., 2019), which leverages standardized 

generalized variances, Kenwood-Rogers estimates of degrees of freedom, and adjusted Wald F-

statistics, and is interpreted as the proportion of generalized variance accounted for by the fixed 

effects in the GLMM (Jaeger et al., 2019). An alternative calculation of a coefficient of 

determination for fixed effects (Ω𝛽), random effects (Ω𝑢), and both fixed and random effects 

(Ω𝛽𝑢), introduces average semivariances to measure the total variance in terms of a mean 

variance of a difference in observations across any variance-covariance structure, and can 

respectively be interpreted as the proportion of the variation accounted for by fixed effects, 

random effects, and both fixed and random effects (Piepho, 2019). Although these coefficients of 

determination appear to have desirable properties, it is presently unclear if these options are 

useful for model selection when competing models differ in their distributional assumptions of 

the response. Additionally, the various coefficients of determination continue to be omnibus, 

umbrella-type statistics. Diagnostics that inform on specific features of model lack-of-fit to data 

would be most helpful to inform remedial measures, when needed. 

This study attempted to develop useful methods for assessment of GLMM fit and 

performance through the utilization of predicted values �̂�𝑖𝑗𝑘(as defined in section 2.3.2) as a 
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method of investigating specific data features in model assessment. It should be noted that 

predicted values �̂� are direct functions of a fitted linear predictor, that is, the combination of 

fixed and random effects in a linear model, and thus are influenced by the number of parameters 

included in the linear predictor. Of the competing models that were evaluated in this study, one 

such model included one additional effect in its linear predictor relative to the others being 

evaluated, that model being GLMM-PsU. Thus, the predicted values from this model were 

calculated slightly differently. It is unclear if comparison of statistics calculated on predicted 

values from models with different specifications of linear predictors is appropriate.  

MAR coefficients were used to evaluate discrepancies between simulated data and model 

prediction, as were ratios of 97.5th percentiles, skewness coefficients, and coefficients of 

variation calculated on both predicted and simulated values. In our study, the MAR coefficients 

consistently identified GLMM-PsU as a best-fitting model regardless of the DGP. Indeed, 

predicted values obtained from GLMM-PsU most closely mapped the data. Likewise, the 97.5th 

percentile, skewness, and CV ratio statistics yielded by GLMM-PsU consistently returned values 

closest to the target of 1 with very little variation compared to any other competing model. We 

interpret these results to indicate that the GLMM-PsU best reflected the data features of interest. 

In this study, we also considered analogous ratios of other percentiles including the 0th 

(minimum), 2.5th, 16th, 25th, 75th, 84th, and 100th (maximum). None of these percentiles yielded 

patterns useful for fit assessment due to extreme variability of ratios (for specifically the 2.5th, 

16th and 25th percentiles) or poor separation of values (for higher percentiles). Therefore, results 

were not shown here and are not discussed further.  

These findings were not necessarily surprising because MAR coefficients and the 

selected ratios of descriptive statistics were based on predicted values generated from point 
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estimates of each model’s linear predictor. Of all the competing GLMM specifications 

considered in this study, GLMM-PsU was the only one that incorporated a unit-level effect term, 

namely 𝑢𝑖𝑗𝑘, within the linear predictor. This unit-level term is intended to accommodate any 

left-over variability in the data that might stem from the unit of observation, which is otherwise 

left out of consideration in a Poisson GLMM (Stroup, 2012). To note, this unit-level term can be 

considered to play an equivalent role to that of residuals in the LMM framework assuming 

normality. By contrast, GLMMs that assume Negative Binomial or Gamma distributions specify 

scale parameters to accommodate unit-level variability. However, these scale parameters are not 

necessarily included in the linear predictor per se and thus, cannot be reflect unit-level variability 

in predicted values. Thus, it may not be appropriate to only utilize statistics on predicted values 

alone to compare assessments of model fit among competing models with different specifications 

of linear predictors. However, these statistics may be useful in comparing model fit between 

GLMMs fitted with different methods of estimations, e.g., GLMM-NB-L vs. GLMM-NB-Q vs. 

GLMM-NB-P. Other diagnostic statistics that similarly and exclusively focus on the estimation 

of centrality parameters and related functions may also tend to select GLMMs with more 

parameters present in the linear predictor than alternative specifications. Further work on GLMM 

diagnostics may be well served by incorporating estimates of dispersion into the assessment of fit 

to data. 

Taken together, GLMM-PsU proved to be a comparatively robust model for capturing 

data features of dispersion and skewness and for producing predicted values that best reflected 

such features, regardless of DGP. The close alignment of predicted values returned by GLMM-

PsU to simulated data may indicate the usefulness of GLMM-PsU for predictive purposes. 

Predictive modeling is concerned with accuracy of the prediction of future or new observations, 
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and will occasionally sacrifice theoretical accuracy to benefit empirical prediction (Shmueli, 

2010). Meanwhile, inference and explanatory modeling is focused on explaining the nature of 

the relationships between variables in a mechanistic way to accurately describe an underlying 

data generation process (Shmueli, 2010). When inference is prioritized, the main interest is in 

minimizing bias between true values of parameters and their estimators. In this study, it was not 

possible to reliably diagnose the true DGP with these metrics when different from the Poisson-

Unit DGP. Of the other two simulated DGP, the Poisson-Gamma DGP had true models in 

GLMM-NB, while the Additive Means DGP was deliberately designed to be an inherently 

arbitrary mechanism. Our development of potential diagnostic statistics for GLMM using 

predicted values, and functions thereof, may be considered better aligned with predictive 

purposes.  

Regarding the data application, our findings were mostly consistent with the results from 

the simulation studies. The data application also reinforced the relative behaviors of GLMM-PsU 

and GLMM-NB observed by Stroup (2015) for estimation of treatment means, whereby the 

former yields lower estimates and narrower CI than the latter. As it stands, the appropriate 

characterization of the dispersion of the data and the most accurate estimates of the treatment 

means are unclear to the practicing statistician, and cloud determinations on which model 

specification to use to ensure proper inference for the data at hand. Further work on diagnostics 

to address the appropriateness of distributional assumptions made by GLMM is warranted. 

A recent practical proposal for GLMM diagnostics drew from the Bayesian literature and 

explored discrepancies between observed data and pseudo-data generated from candidate models 

using so-called “centipede plots” (Kramer, 2018). This approach compared data against multiple 

sets of pseudo-data generated by plugging parameter estimates into the data likelihood, then 
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using the likelihood as a stochastic data generation process. The alignment between the original 

datapoints and the generated pseudo-data can be explored visually after ranking the data 

(Kramer, 2018), with the resulting plots showing a remarkable similarity to centipedes. These 

plots can be useful in identifying specific ways in which a candidate model fails to align with the 

data for goodness-of-fit purposes (Kramer, 2018).  By inserting parameter estimates into a 

candidate model as a stochastic process to generate pseudo-data, information on dispersion 

parameters is naturally incorporated in the evaluation of competing models, thereby avoiding the 

inherent limitations of relying solely on predicted values, as previously discussed. 

Moving forward, the Bayesian statistical framework may provide additional insight to 

advance GLMM diagnostics, specifically through posterior predictive checks (Gelman et al., 

1996; Guttman, 1967; Rubin, 1984). Recognizing that, in a Bayesian setting, both location and 

dispersion parameters themselves have distributions, a distribution of model predictions can be 

generated a posteriori by numerically integrating across the joint posterior distribution of the 

parameters of interest (Gelman et al., 2004). This approach, in turn, propagates uncertainty from 

the estimation process onto predictions to be used for GLMM diagnostics and model fit 

assessments. So generated, the posterior predictive distributions (or functions thereof) can then 

be contrasted for alignment against those of the data.  

Finally, in this study we focused on diagnostics computed on predicted values, which, by 

definition, are expressed in the observable scale, also known as the data scale or the inverse link 

scale. By contrast, GLMMs are, by definition, fitted on a non-observable scale defined by a link 

function (Stroup, 2012, 2015). Thus, as defined, a link function imposes a non-linear relationship 

between the linear predictor in the model and the expectation of the response variable. As such, it 

is plausible that assessments of model fit in the observable scale be distorted. It may be worth 
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considering GLMM diagnostics that assess goodness-of-fit in the link scale in which the model is 

fitted. Further research is warranted to better understand the complexities of GLMM diagnostics. 
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Conclusion 

 

 

Potential diagnostic statistics to assess fit of generalized linear mixed models were 

developed and examined in a simulation study involving realistic data generation processes, 

followed by a proof-of-concept data application in the entomological sciences.  

Diagnostics were developed from functions of predicted values obtained from fitting 

competing models to simulated data. Specifically, we considered MAR coefficients of predicted 

values regressed over observed data, as well as ratios of selected features of count data, namely 

the 97.5th percentile, skewness, and CV. Overall, none of the diagnostics considered here 

allowed for recovery of the true data generation process; this may be a limitation if research 

focus is on identifying the underlying mechanisms. In contrast, a Poisson GLMM that included 

unit-level effects was comparatively robust for inference and produced predicted values that best 

reflected features of dispersion and skewness commonly encountered in count data.  

Further research on diagnostics to assess fit of GLMMs to non-normal data is warranted. 

Future developments may be well served by incorporating uncertainty of estimation into 

diagnostic metrics.  
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Tables 

Table 1: Frequencies of model failures to converge, by simulation scenario 

Simulation scenarios N LMM-ht 

GLMM-

PsU-L 

GLMM-

PsU-Q 

GLMM-

NB-P 

GLMM-

Gm-P 

Poisson-Unit DGP 

10 Blocks, Equal 

Treatment Means 100 34 1 1 2 1 

Poisson-Unit DGP 

10 Blocks, Unequal 

Treatment Means 100 51 0 0 4 0 

Poisson-Unit DGP 

50 Blocks, Equal 

Treatment Means 100 13 0 0 1 0 

Poisson-Unit DGP 

50 Blocks, Unequal 

Treatment Means 100 50 0 1 1 0 

Poisson-Gamma DGP 

10 Blocks, Equal 

Treatment Means 100 35 0 0 0 0 

Poisson-Gamma 

10 Blocks, Unequal 

Treatment Means 100 27 0 0 0 0 

Poisson-Gamma 

50 Blocks, Equal 

Treatment Means 100 1 0 0 0 0 

Poisson-Gamma 

50 Blocks, Unequal 

Treatment Means 100 0 0 0 0 0 

Additive Means DGP 

10 Blocks, Equal 

Treatment Means 100 1 0 0 0 0 

Additive Means DGP 

10 Blocks, Unequal 

Treatment Means 100 10 0 0 0 0 

Additive Means DGP 

50 Blocks, Equal 

Treatment Means 100 0 0 0 1 0 

Additive Means DGP 

50 Blocks, Unequal 

Treatment Means 100 0 0 0 1 0 
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Table 2: Empirical Type I Error & Statistical Power, Poisson-Unit DGP 

Results for the true GLMMs used for data generation are bolded 

 10 Blocks 50 Blocks 

Type I Error Power Type I Error Power 

1-LMM-hm 0.05 0.72 0.05 0.99 

2-LMM-ht 0.02 0.22 0.00 0.81 

3-LMM-l 0.06 0.67 0.06 0.69 

4-LMM-s 0.06 0.79 0.04 0.98 

5-GLMM Ps-L 0.61 . 0.68 . 

6-GLMM Ps-Q 0.61 . 0.68 . 

7-GLMM Ps-P 0.61 . 0.68 . 

8-GLMM PsU-L 0.12 0.69 0.05 0.70 

9-GLMM PsU-Q 0.14 0.70 0.05 0.70 

10-GLMM PsU-P 0.07 0.68 0.04 0.70 

11-GLMM NB-L 0.09 0.69 0.07 0.70 

12-GLMM NB-Q 0.09 0.69 0.07 0.70 

13-GLMM NB-P 0.09 0.69 0.07 0.70 

14-GLMM Gm-L 0.09 0.71 0.06 0.71 

15-GLMM Gm-Q 0.09 0.71 0.06 0.71 

16-GLMM Gm-P 0.09 0.71 0.07 0.99 

 

 

Table 3: Average, minimum and maximum values of the Pearson chi-sq/df statistic under 

simulation scenario of unequal treatment means with 10 or 50 blocks and a Poisson-Unit 

DGP 

Results for the true GLMMs used for data generation are bolded 

 10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

5-GLMM Ps-L 9.73 2.53 43.37 10.93 6.60 27.38 

6-GLMM Ps-Q 9.73 2.53 43.37 10.93 6.60 27.38 

8-GLMM PsU-L 0.18 0.08 0.39 0.16 0.12 0.21 

9-GLMM PsU-Q 0.18 0.07 0.39 0.16 0.11 0.21 

11-GLMM NB-L 0.77 0.58 1.17 0.78 0.69 0.92 

12-GLMM NB-Q 0.77 0.58 1.17 0.78 0.69 0.92 

14-GLMM Gm-L 0.38 0.14 0.90 0.43 0.29 0.56 

15-GLMM Gm-Q 0.38 0.14 0.90 0.43 0.29 0.56 
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Table 4: Summary of estimates of expectations of treatments and 95% confidence interval 

coverage for competing models fitted to data generated under the Poisson-Unit DGP 

Results for true GLMMs used for data generation are bolded, and results for estimates of treatment mean 𝜆12 are 

excluded as 𝜆12 = 𝜆11 

Model Blocks 

Treatment 

levels  

(ij) 

True 

Mean 

Avg 

Treatment 

Mean 

Estimate 

Avg Diff 

from 

True 

Mean 

Avg 

width of 

95% CI 

for 

Means 

95% CI 

Coverage 

1-LMM-hm 10 1,1; 1,2 12.2 23.00 10.80 83.19 0.96 

2-LMM-ht 10 1,1; 1,2 12.2 29.92 17.72 382.46 0.88 

3-LMM-l 10 1,1; 1,2 12.2 12.47 0.27 23.98 0.94 

4-LMM-s 10 1,1; 1,2 12.2 17.26 5.06 33.25 0.94 

5-GLMM-Ps-L 10 1,1; 1,2 12.2 15.47 3.27 19.13 0.79 

6-GLMM-Ps-Q 10 1,1; 1,2 12.2 15.47 3.27 19.13 0.79 

7-GLMM-Ps-P 10 1,1; 1,2 12.2 15.56 3.36 20.24 0.80 

8-GLMM-PsU-L 10 1,1; 1,2 12.2 13.29 1.09 19.76 0.91 

9-GLMM-PsU-Q 10 1,1; 1,2 12.2 13.29 1.09 19.30 0.87 

10-GLMM-PsU-P 10 1,1; 1,2 12.2 13.76 1.56 21.55 0.93 

11-GLMM-NB-L 10 1,1; 1,2 12.2 16.91 4.71 25.57 0.86 

12-GLMM-NB-Q 10 1,1; 1,2 12.2 16.90 4.70 25.56 0.86 

13-GLMM-NB-P 10 1,1; 1,2 12.2 16.20 4.00 25.18 0.85 

14-GLMM-Gm-L 10 1,1; 1,2 12.2 17.62 5.42 25.24 0.83 

15-GLMM-Gm-Q 10 1,1; 1,2 12.2 17.61 5.41 25.28 0.83 

16-GLMM-Gm-P 10 1,1; 1,2 12.2 16.93 4.73 25.09 0.83 

1-LMM-hm 10 2,1 54.6 102.08 47.48 83.19 0.43 

2-LMM-ht 10 2,1 54.6 122.16 67.56 369.18 0.80 

3-LMM-l 10 2,1 54.6 59.42 4.82 114.68 0.97 

4-LMM-s 10 2,1 54.6 78.43 23.83 71.28 0.66 

5-GLMM-Ps-L 10 2,1 54.6 67.38 12.78 81.97 0.83 

6-GLMM-Ps-Q 10 2,1 54.6 67.38 12.78 81.97 0.83 

7-GLMM-Ps-P 10 2,1 54.6 67.76 13.16 86.94 0.86 

8-GLMM-PsU-L 10 2,1 54.6 60.11 5.51 85.80 0.93 

9-GLMM-PsU-Q 10 2,1 54.6 60.10 5.50 85.22 0.91 

10-GLMM-PsU-P 10 2,1 54.6 60.75 6.15 91.26 0.94 

11-GLMM-NB-L 10 2,1 54.6 77.17 22.57 112.20 0.79 

12-GLMM-NB-Q 10 2,1 54.6 77.16 22.56 112.26 0.79 

13-GLMM-NB-P 10 2,1 54.6 73.50 18.90 110.01 0.85 

14-GLMM-Gm-L 10 2,1 54.6 78.26 23.66 110.60 0.78 

15-GLMM-Gm-Q 10 2,1 54.6 78.23 23.63 110.76 0.79 

16-GLMM-Gm-P 10 2,1 54.6 74.49 19.89 108.58 0.82 

1-LMM-hm 10 2,2 2.7 4.99 2.29 83.19 1.00 

2-LMM-ht 10 2,2 2.7 5.60 2.90 318.64 0.98 

3-LMM-l 10 2,2 2.7 2.31 -0.39 4.32 0.88 

4-LMM-s 10 2,2 2.7 3.68 0.98 15.84 0.98 

5-GLMM-Ps-L 10 2,2 2.7 3.40 0.70 4.60 0.84 

6-GLMM-Ps-Q 10 2,2 2.7 3.40 0.70 4.60 0.84 

7-GLMM-Ps-P 10 2,2 2.7 3.42 0.72 4.83 0.84 
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8-GLMM-PsU-L 10 2,2 2.7 2.93 0.23 4.96 0.96 

9-GLMM-PsU-Q 10 2,2 2.7 2.93 0.23 4.96 0.95 

10-GLMM-PsU-P 10 2,2 2.7 3.21 0.51 5.55 0.96 

11-GLMM-NB-L 10 2,2 2.7 3.73 1.03 6.15 0.90 

12-GLMM-NB-Q 10 2,2 2.7 3.73 1.03 6.15 0.90 

13-GLMM-NB-P 10 2,2 2.7 3.65 0.95 6.23 0.91 

14-GLMM-Gm-L 10 2,2 2.7 4.52 1.82 6.87 0.75 

15-GLMM-Gm-Q 10 2,2 2.7 4.52 1.82 6.88 0.75 

16-GLMM-Gm-P 10 2,2 2.7 4.31 1.61 6.74 0.81 

1-LMM-hm 50 1,1; 1,2 12.2 20.89 8.69 38.04 0.96 

2-LMM-ht 50 1,1; 1,2 12.2 22.56 10.36 87.29 0.38 

3-LMM-l 50 1,1; 1,2 12.2 11.14 -1.06 8.26 0.87 

4-LMM-s 50 1,1; 1,2 12.2 15.65 3.45 13.34 0.88 

5-GLMM-Ps-L 50 1,1; 1,2 12.2 13.84 1.64 7.25 0.78 

6-GLMM-Ps-Q 50 1,1; 1,2 12.2 13.84 1.64 7.25 0.78 

7-GLMM-Ps-P 50 1,1; 1,2 12.2 13.94 1.74 7.33 0.76 

8-GLMM-PsU-L 50 1,1; 1,2 12.2 12.02 -0.18 7.52 0.91 

9-GLMM-PsU-Q 50 1,1; 1,2 12.2 12.06 -0.14 7.48 0.91 

10-GLMM-PsU-P 50 1,1; 1,2 12.2 12.59 0.39 7.71 0.94 

11-GLMM-NB-L 50 1,1; 1,2 12.2 15.58 3.38 9.73 0.66 

12-GLMM-NB-Q 50 1,1; 1,2 12.2 15.57 3.37 9.73 0.66 

13-GLMM-NB-P 50 1,1; 1,2 12.2 14.96 2.76 9.22 0.75 

14-GLMM-Gm-L 50 1,1; 1,2 12.2 15.99 3.79 9.56 0.54 

15-GLMM-Gm-Q 50 1,1; 1,2 12.2 15.98 3.78 9.57 0.54 

16-GLMM-Gm-P 50 1,1; 1,2 12.2 15.16 2.96 8.96 0.69 

1-LMM-hm 50 2,1 54.6 96.53 41.93 38.04 0.05 

2-LMM-ht 50 2,1 54.6 105.63 51.03 113.43 0.24 

3-LMM-l 50 2,1 54.6 54.49 -0.11 40.59 0.96 

4-LMM-s 50 2,1 54.6 72.74 18.14 28.58 0.31 

5-GLMM-Ps-L 50 2,1 54.6 63.55 8.95 32.68 0.74 

6-GLMM-Ps-Q 50 2,1 54.6 63.55 8.95 32.68 0.74 

7-GLMM-Ps-P 50 2,1 54.6 64.01 9.41 33.03 0.75 

8-GLMM-PsU-L 50 2,1 54.6 55.18 0.58 33.20 0.93 

9-GLMM-PsU-Q 50 2,1 54.6 55.35 0.75 33.25 0.94 

10-GLMM-PsU-P 50 2,1 54.6 55.97 1.37 33.05 0.92 

11-GLMM-NB-L 50 2,1 54.6 71.85 17.25 43.80 0.58 

12-GLMM-NB-Q 50 2,1 54.6 71.83 17.23 43.82 0.58 

13-GLMM-NB-P 50 2,1 54.6 68.39 13.79 41.03 0.69 

14-GLMM-Gm-L 50 2,1 54.6 72.84 18.24 43.20 0.53 

15-GLMM-Gm-Q 50 2,1 54.6 72.79 18.19 43.29 0.53 

16-GLMM-Gm-P 50 2,1 54.6 69.03 14.43 40.53 0.63 

1-LMM-hm 50 2,2 2.7 4.76 2.06 38.04 1.00 

2-LMM-ht 50 2,2 2.7 4.86 2.16 87.06 1.00 

3-LMM-l 50 2,2 2.7 2.10 -0.60 1.56 0.66 

4-LMM-s 50 2,2 2.7 3.46 0.76 6.51 1.00 

5-GLMM-Ps-L 50 2,2 2.7 3.16 0.46 1.80 0.68 

6-GLMM-Ps-Q 50 2,2 2.7 3.16 0.46 1.80 0.68 

7-GLMM-Ps-P 50 2,2 2.7 3.18 0.48 1.82 0.67 
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8-GLMM-PsU-L 50 2,2 2.7 2.73 0.03 1.91 0.93 

9-GLMM-PsU-Q 50 2,2 2.7 2.73 0.03 1.91 0.93 

10-GLMM-PsU-P 50 2,2 2.7 3.06 0.36 2.07 0.83 

11-GLMM-NB-L 50 2,2 2.7 3.54 0.84 2.41 0.65 

12-GLMM-NB-Q 50 2,2 2.7 3.54 0.84 2.41 0.65 

13-GLMM-NB-P 50 2,2 2.7 3.49 0.79 2.36 0.67 

14-GLMM-Gm-L 50 2,2 2.7 4.27 1.57 2.69 0.20 

15-GLMM-Gm-Q 50 2,2 2.7 4.26 1.56 2.69 0.20 

16-GLMM-Gm-P 50 2,2 2.7 4.05 1.35 2.52 0.29 
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Table 5: Average, minimum, and maximum values of Akaike’s and Bayesian Fit Criteria 

under simulation scenarios of unequal treatment means with 10 or 50 blocks and a Poisson-

Unit DGP 

Results for the true GLMMs used for data generation are bolded 

 Akaike’s Information Criterion Bayesian Information Criterion 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal Treatment 

Means 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1-LMM-hm 396.2 287.9 539.1 2196.5 1840.3 2796.5 396.8 288.5 539.7 2200.3 1844.1 2800.3 

2-LMM-ht 420.8 288.7 602.4 2269.8 1872.2 2932.4 422.3 290.2 603.9 2279.3 1881.8 2942.0 

5-GLMM Ps-L 594.9 306.5 2035.9 3131.7 2320.9 5698.1 596.4 308.1 2037.4 3141.2 2330.4 5707.6 

6-GLMM Ps-Q 594.9 306.5 2035.9 3131.7 2320.9 5698.1 596.4 308.1 2037.4 3141.2 2330.4 5707.6 

8-GLMM PsU-L 321.9 249.6 395.8 1576.5 1460.1 1684.9 323.7 251.2 397.6 1588.0 1471.5 1696.4 

9-GLMM PsU-Q 321.7 249.6 395.8 1576.5 1458.6 1726.1 323.5 251.2 397.6 1588.0 1470.1 1735.7 

11-GLMM NB-L 322.0 250.1 399.0 1579.0 1462.6 1691.6 323.8 251.6 400.8 1590.5 1474.1 1703.1 

12-GLMM NB-Q 322.0 250.1 399.0 1579.0 1462.5 1691.5 323.8 251.6 400.8 1590.4 1474.0 1703.0 

14-GLMM Gm-L 310.6 231.3 397.9 1527.1 1391.1 1642.3 312.4 233.1 399.7 1538.6 1402.6 1653.7 

15-GLMM Gm-Q 310.6 231.3 397.8 1526.8 1391.0 1641.9 312.4 233.1 399.6 1538.3 1402.5 1653.4 
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Table 6: Average, minimum, and maximum values for point estimates of MAR coefficients, 

both intercept and slope, in simulation scenarios of unequal treatment means with 10 or 50 

blocks under a Poisson-Unit DGP 

Results for the true GLMMs used for data generation are bolded 

 Major Axis Regression (Data Scale) 

Intercept Coefficients 

Major Axis Regression (Data Scale) 

Slope Coefficients 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1-LMM-hm 19.03 3.04 68.27 21.77 8.41 58.91 0.53 0.20 0.83 0.40 0.10 0.65 

2-LMM-ht 25.01 4.71 80.28 25.11 10.35 58.32 0.50 0.15 0.77 0.36 0.11 0.67 

3-LMM-l 6.81 -10.02 26.50 10.00 3.42 25.67 0.56 0.15 1.18 0.42 0.11 0.68 

4-LMM-s 14.20 1.96 38.43 16.12 7.51 34.26 0.47 0.18 0.81 0.36 0.09 0.56 

5-GLMM Ps-L 4.18 -2.30 23.36 4.97 -0.13 10.82 0.89 0.63 1.03 0.86 0.75 1.01 

6-GLMM Ps-Q 4.18 -2.30 23.36 4.97 -0.13 10.82 0.89 0.63 1.03 0.86 0.75 1.01 

7-GLMM Ps-P 4.17 -2.31 23.34 4.97 -0.13 10.82 0.89 0.63 1.03 0.86 0.75 1.01 

8-GLMM PsU-L 0.29 0.08 0.80 0.21 0.07 0.44 0.99 0.96 1.00 0.99 0.98 1.00 

9-GLMM PsU-Q 0.28 0.08 0.80 0.21 0.04 0.43 0.99 0.96 1.00 0.99 0.98 1.00 

10-GLMM PsU-P 0.30 0.08 0.80 0.25 0.09 0.49 0.99 0.96 1.00 0.99 0.98 1.00 

11-GLMM NB-L 7.83 -13.28 25.49 11.13 2.00 32.27 0.73 0.37 1.50 0.61 0.25 0.92 

12-GLMM NB-Q 7.80 -13.28 25.43 11.11 1.98 32.27 0.73 0.37 1.50 0.61 0.25 0.92 

13-GLMM NB-P 7.75 -12.82 24.41 11.24 2.28 31.78 0.72 0.35 1.48 0.59 0.24 0.89 

14-GLMM Gm-L 9.13 -12.98 29.44 12.22 3.63 32.27 0.69 0.34 1.35 0.57 0.23 0.86 

15-GLMM Gm-Q 9.10 -12.98 29.29 12.18 3.58 32.24 0.69 0.34 1.35 0.57 0.23 0.86 

16-GLMM Gm-P 9.12 -13.17 36.05 12.15 3.07 32.11 0.68 0.26 1.38 0.56 0.22 0.87 
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Table 7: Average, minimum, and maximum values for 97.5th Percentile Ratios from 

simulation scenarios with 10 or 50 blocks and unequal treatment means under a Poisson-

Unit DGP 

Results for the true GLMMs used for data 

generation are bolded 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.60 0.40 1.06 0.54 0.37 0.88 

2-LMM-ht 0.60 0.33 1.10 0.59 0.31 1.16 

3-LMM-l 0.03 0.01 0.09 0.02 0.01 0.04 

4-LMM-s 0.06 0.03 0.14 0.05 0.03 0.07 

5-GLMM Ps-L 0.95 0.70 1.53 0.94 0.65 1.33 

6-GLMM Ps-Q 0.95 0.70 1.53 0.94 0.65 1.33 

7-GLMM Ps-P 0.95 0.70 1.53 0.94 0.65 1.33 

8-GLMM PsU-L 0.99 0.97 1.01 0.99 0.98 1.01 

9-GLMM PsU-Q 0.99 0.97 1.01 0.99 0.98 1.01 

10-GLMM PsU-P 0.99 0.97 1.01 0.99 0.98 1.01 

11-GLMM NB-L 0.80 0.39 2.00 0.78 0.46 1.14 

12-GLMM NB-Q 0.80 0.39 2.00 0.79 0.46 1.14 

13-GLMM NB-P 0.80 0.37 1.88 0.76 0.44 1.11 

14-GLMM Gm-L 0.76 0.36 1.95 0.75 0.45 1.13 

15-GLMM Gm-Q 0.76 0.36 1.96 0.75 0.45 1.13 

16-GLMM Gm-P 0.76 0.35 1.86 0.74 0.44 1.13 
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Table 8: Average, minimum, and maximum values for Skewness Ratios from simulation 

scenarios with 10 or 50 blocks and unequal treatment means under a Poisson-Unit DGP 

 Results for the true GLMMs used for data generation 

are bolded 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.30 -0.26 0.71 0.20 0.10 0.47 

2-LMM-ht 0.29 0.02 0.50 0.21 0.09 0.49 

3-LMM-l -0.03 -0.49 0.27 -0.02 -0.15 0.06 

4-LMM-s 0.20 -0.35 0.52 0.13 0.05 0.24 

5-GLMM Ps-L 0.95 0.57 1.81 0.89 0.71 1.59 

6-GLMM Ps-Q 0.95 0.57 1.81 0.89 0.71 1.59 

7-GLMM Ps-P 0.95 0.57 1.81 0.89 0.71 1.59 

8-GLMM PsU-L 1.01 0.99 1.05 1.01 1.00 1.02 

9-GLMM PsU-Q 1.01 0.99 1.05 1.01 1.00 1.02 

10-GLMM PsU-P 1.01 0.99 1.05 1.01 1.00 1.02 

11-GLMM NB-L 0.85 0.19 2.42 0.70 0.30 1.62 

12-GLMM NB-Q 0.85 0.19 2.42 0.71 0.30 1.62 

13-GLMM NB-P 0.86 0.28 2.42 0.70 0.30 1.58 

14-GLMM Gm-L 0.81 -0.18 2.37 0.67 0.28 1.47 

15-GLMM Gm-Q 0.81 -0.18 2.37 0.67 0.28 1.47 

16-GLMM Gm-P 0.81 -0.07 2.40 0.67 0.27 1.47 

 

  



59 

Table 9: Average, minimum, and maximum values for Coefficient of Variation Ratios from 

simulation scenarios with 10 or 50 blocks and unequal treatment means from a Poisson-

Unit DGP 

 Results for the true GLMMs used for data generation 

are bolded 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.62 0.38 0.85 0.53 0.28 0.70 

2-LMM-ht 0.61 0.32 0.82 0.52 0.28 0.76 

3-LMM-l 0.35 0.15 0.70 0.28 0.13 0.42 

4-LMM-s 0.35 0.22 0.50 0.29 0.14 0.38 

5-GLMM Ps-L 0.90 0.73 1.03 0.87 0.78 1.01 

6-GLMM Ps-Q 0.90 0.73 1.03 0.87 0.78 1.01 

7-GLMM Ps-P 0.90 0.73 1.03 0.87 0.78 1.01 

8-GLMM PsU-L 0.99 0.96 1.00 0.99 0.98 1.00 

9-GLMM PsU-Q 0.99 0.96 1.00 0.99 0.98 1.00 

10-GLMM PsU-P 0.99 0.96 1.00 0.99 0.98 1.00 

11-GLMM NB-L 0.81 0.50 1.32 0.72 0.41 0.95 

12-GLMM NB-Q 0.81 0.50 1.32 0.72 0.41 0.95 

13-GLMM NB-P 0.81 0.50 1.32 0.71 0.40 0.95 

14-GLMM Gm-L 0.77 0.48 1.25 0.69 0.39 0.91 

15-GLMM Gm-Q 0.77 0.48 1.25 0.69 0.39 0.91 

16-GLMM Gm-P 0.77 0.48 1.27 0.69 0.38 0.93 
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Table 10: Empirical Type I Error & Statistical Power, Poisson-Gamma DGP 

Results for the true GLMMs used for data generation are bolded 

10 Blocks 50 Blocks 

 Type I Error Power Type I Error Power 

1-LMM-hm 0.03 0.77 0.07 0.99 

2-LMM-ht 0.01 0.13 0.01 0.27 

3-LMM-l 0.04 0.68 0.05 0.70 

4-LMM-s 0.04 0.80 0.06 0.99 

5-GLMM Ps-L 0.55 . 0.80 . 

6-GLMM Ps-Q 0.55 . 0.80 . 

7-GLMM Ps-P 0.55 . 0.80 . 

8-GLMM PsU-L 0.05 0.70 0.05 0.69 

9-GLMM PsU-Q 0.07 0.71 0.05 0.69 

10-GLMM PsU-P 0.04 0.68 0.05 0.69 

11-GLMM NB-L 0.06 0.69 0.07 0.69 

12-GLMM NB-Q 0.06 0.69 0.07 0.69 

13-GLMM NB-P 0.07 0.69 0.08 0.71 

14-GLMM Gm-L 0.08 0.69 0.06 0.70 

15-GLMM Gm-Q 0.08 0.69 0.06 0.70 

16-GLMM Gm-P 0.10 0.70 0.09 0.71 
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Table 11: Summary of estimates of expectations of treatments and 95% confidence interval 

coverage for competing models fitted to data generated under the Poisson-Gamma DGP 

Model Blocks 

Treatment 

levels  

(ij =) 

True 

Mean 

Avg 

Treatment 

Mean 

Estimate 

Avg Diff 

from True 

Mean 

Avg width 

of 95% CI 

for Means 

95% CI 

Coverage 

1-LMM-hm 10 1,1; 1,2 12.2 16.56 4.36 53.62 1.00 

2-LMM-ht 10 1,1; 1,2 12.2 19.89 7.69 33.55 0.78 

3-LMM-l 10 1,1; 1,2 12.2 8.95 -3.25 17.90 0.90 

4-LMM-s 10 1,1; 1,2 12.2 12.72 0.52 23.53 1.00 

5-GLMM-Ps-L 10 1,1; 1,2 12.2 11.54 -0.66 14.06 0.88 

6-GLMM-Ps-Q 10 1,1; 1,2 12.2 11.54 -0.66 14.06 0.88 

7-GLMM-Ps-P 10 1,1; 1,2 12.2 11.63 -0.57 14.86 0.91 

8-GLMM-PsU-L 10 1,1; 1,2 12.2 10.03 -2.17 14.71 0.88 

9-GLMM-PsU-Q 10 1,1; 1,2 12.2 10.03 -2.17 13.99 0.84 

10-GLMM-PsU-P 10 1,1; 1,2 12.2 10.46 -1.74 16.16 0.93 

11-GLMM-NB-L 10 1,1; 1,2 12.2 12.60 0.40 18.44 0.96 

12-GLMM-NB-Q 10 1,1; 1,2 12.2 12.60 0.40 18.44 0.96 

13-GLMM-NB-P 10 1,1; 1,2 12.2 12.11 -0.09 17.98 0.95 

14-GLMM-Gm-L 10 1,1; 1,2 12.2 13.29 1.09 18.30 0.96 

15-GLMM-Gm-Q 10 1,1; 1,2 12.2 13.28 1.08 18.32 0.96 

16-GLMM-Gm-P 10 1,1; 1,2 12.2 12.64 0.44 17.59 0.95 

1-LMM-hm 10 2,1 54.6 73.81 19.21 53.62 0.61 

2-LMM-ht 10 2,1 54.6 28.26 -26.34 48.76 0.22 

3-LMM-l 10 2,1 54.6 44.72 -9.88 90.95 0.96 

4-LMM-s 10 2,1 54.6 58.50 3.90 50.12 0.76 

5-GLMM-Ps-L 10 2,1 54.6 50.96 -3.64 60.92 0.86 

6-GLMM-Ps-Q 10 2,1 54.6 50.96 -3.64 60.92 0.86 

7-GLMM-Ps-P 10 2,1 54.6 51.34 -3.26 64.57 0.88 

8-GLMM-PsU-L 10 2,1 54.6 45.68 -8.92 64.00 0.84 

9-GLMM-PsU-Q 10 2,1 54.6 45.67 -8.93 64.60 0.84 

10-GLMM-PsU-P 10 2,1 54.6 46.30 -8.30 68.34 0.89 

11-GLMM-NB-L 10 2,1 54.6 56.84 2.24 80.27 0.90 

12-GLMM-NB-Q 10 2,1 54.6 56.83 2.23 80.32 0.90 

13-GLMM-NB-P 10 2,1 54.6 53.37 -1.23 76.58 0.89 

14-GLMM-Gm-L 10 2,1 54.6 58.12 3.52 78.87 0.90 

15-GLMM-Gm-Q 10 2,1 54.6 58.09 3.49 78.96 0.90 

16-GLMM-Gm-P 10 2,1 54.6 55.30 0.70 76.21 0.89 

1-LMM-hm 10 2,2 2.7 3.79 1.09 53.62 1.00 

2-LMM-ht 10 2,2 2.7 4.09 1.39 43.62 0.92 

3-LMM-l 10 2,2 2.7 1.97 -0.73 3.89 0.80 

4-LMM-s 10 2,2 2.7 2.96 0.26 11.75 1.00 

5-GLMM-Ps-L 10 2,2 2.7 2.68 -0.02 3.64 0.87 

6-GLMM-Ps-Q 10 2,2 2.7 2.68 -0.02 3.64 0.87 

7-GLMM-Ps-P 10 2,2 2.7 2.70 0.00 3.81 0.87 

8-GLMM-PsU-L 10 2,2 2.7 2.45 -0.25 4.11 0.91 

9-GLMM-PsU-Q 10 2,2 2.7 2.45 -0.25 4.15 0.90 
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10-GLMM-PsU-P 10 2,2 2.7 2.70 0.00 4.66 0.93 

11-GLMM-NB-L 10 2,2 2.7 3.02 0.32 4.94 0.91 

12-GLMM-NB-Q 10 2,2 2.7 3.02 0.32 4.94 0.91 

13-GLMM-NB-P 10 2,2 2.7 2.98 0.28 4.93 0.92 

14-GLMM-Gm-L 10 2,2 2.7 3.78 1.08 5.58 0.85 

15-GLMM-Gm-Q 10 2,2 2.7 3.77 1.07 5.58 0.85 

16-GLMM-Gm-P 10 2,2 2.7 3.60 0.90 5.36 0.87 

1-LMM-hm 50 1,1; 1,2 12.2 16.14 3.9 28.5 1 

2-LMM-ht 50 1,1; 1,2 12.2 61.32 49.1 725.4 0.86 

3-LMM-l 50 1,1; 1,2 12.2 8.64 -3.6 6.8 0.58 

4-LMM-s 50 1,1; 1,2 12.2 12.36 0.2 10.4 0.98 

5-GLMM-Ps-L 50 1,1; 1,2 12.2 10.77 -1.4 5.7 0.73 

6-GLMM-Ps-Q 50 1,1; 1,2 12.2 10.77 -1.4 5.7 0.73 

7-GLMM-Ps-P 50 1,1; 1,2 12.2 10.87 -1.3 5.7 0.74 

8-GLMM-PsU-L 50 1,1; 1,2 12.2 9.66 -2.5 6.1 0.68 

9-GLMM-PsU-Q 50 1,1; 1,2 12.2 9.66 -2.5 6.1 0.68 

10-GLMM-PsU-P 50 1,1; 1,2 12.2 10.20 -2.0 6.3 0.81 

11-GLMM-NB-L 50 1,1; 1,2 12.2 12.34 0.1 7.6 0.95 

12-GLMM-NB-Q 50 1,1; 1,2 12.2 12.33 0.1 7.6 0.95 

13-GLMM-NB-P 50 1,1; 1,2 12.2 11.84 -0.4 7.1 0.94 

14-GLMM-Gm-L 50 1,1; 1,2 12.2 12.95 0.7 7.5 0.91 

15-GLMM-Gm-Q 50 1,1; 1,2 12.2 12.94 0.7 7.5 0.91 

16-GLMM-Gm-P 50 1,1; 1,2 12.2 12.57 0.4 7.1 0.92 

1-LMM-hm 50 2,1 54.6 75.23 20.6 28.5 0.23 

2-LMM-ht 50 2,1 54.6 277.46 222.9 555.7 0.82 

3-LMM-l 50 2,1 54.6 41.63 -13.0 32.6 0.78 

4-LMM-s 50 2,1 54.6 56.85 2.3 22.1 0.83 

5-GLMM-Ps-L 50 2,1 54.6 49.95 -4.6 25.6 0.88 

6-GLMM-Ps-Q 50 2,1 54.6 49.95 -4.65 25.63 0.88 

7-GLMM-Ps-P 50 2,1 54.6 50.41 -4.19 25.91 0.88 

8-GLMM-PsU-L 50 2,1 54.6 43.02 -11.58 25.94 0.62 

9-GLMM-PsU-Q 50 2,1 54.6 43.01 -11.59 26.02 0.62 

10-GLMM-PsU-P 50 2,1 54.6 43.83 -10.77 25.83 0.68 

11-GLMM-NB-L 50 2,1 54.6 55.96 1.36 33.59 0.95 

12-GLMM-NB-Q 50 2,1 54.6 55.95 1.35 33.62 0.95 

13-GLMM-NB-P 50 2,1 54.6 52.87 -1.73 30.55 0.96 

14-GLMM-Gm-L 50 2,1 54.6 57.04 2.44 32.79 0.95 

15-GLMM-Gm-Q 50 2,1 54.6 56.99 2.39 32.84 0.95 

16-GLMM-Gm-P 50 2,1 54.6 55.98 1.38 31.18 0.95 

1-LMM-hm 50 2,2 2.7 3.66 0.96 28.51 1 

2-LMM-ht 50 2,2 2.7 13.33 10.63 540.85 1 

3-LMM-l 50 2,2 2.7 1.63 -1.07 1.28 0.28 

4-LMM-s 50 2,2 2.7 2.73 0.03 5.13 1 

5-GLMM-Ps-L 50 2,2 2.7 2.44 -0.26 1.44 0.84 

6-GLMM-Ps-Q 50 2,2 2.7 2.44 -0.26 1.44 0.84 

7-GLMM-Ps-P 50 2,2 2.7 2.47 -0.23 1.46 0.86 

8-GLMM-PsU-L 50 2,2 2.7 2.19 -0.51 1.57 0.78 

9-GLMM-PsU-Q 50 2,2 2.7 2.20 -0.50 1.58 0.78 
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10-GLMM-PsU-P 50 2,2 2.7 2.49 -0.21 1.73 0.95 

11-GLMM-NB-L 50 2,2 2.7 2.80 0.10 1.93 0.97 

12-GLMM-NB-Q 50 2,2 2.7 2.80 0.10 1.93 0.97 

13-GLMM-NB-P 50 2,2 2.7 2.76 0.06 1.86 0.97 

14-GLMM-Gm-L 50 2,2 2.7 3.59 0.89 2.24 0.57 

15-GLMM-Gm-Q 50 2,2 2.7 3.59 0.89 2.24 0.57 

16-GLMM-Gm-P 50 2,2 2.7 3.47 0.77 2.09 0.74 
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Table 12: Average, minimum, and maximum values of Akaike’s and Bayesian Fit Criteria 

under simulation scenarios of unequal treatment means with 10 or 50 blocks and a Poisson-

Gamma DGP 

Results for the true GLMMs used for data generation are bolded 

 Akaike’s Information Criterion Bayesian Information Criterion 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1-LMM-hm 372.5 305.4 446.3 2603.6 2282.4 3375.0 373.1 305.7 446.9 2607.5 2286.2 3378.8 

2-LMM-ht 333.2 198.2 445.1 2872.9 2278.7 3195.3 334.7 199.7 446.7 2882.5 2288.2 3204.9 

5-GLMM Ps-L 448.5 291.2 699.8 6390.1 4324.6 9997.6 450.0 292.7 701.3 6399.7 4334.1 10007.2 

6-GLMM Ps-Q 448.5 291.2 699.8 6390.1 4324.6 9997.6 450.0 292.7 701.3 6399.7 4334.1 10007.2 

8-GLMM PsU-L 303.3 248.6 348.5 2018.9 1888.4 2162.8 305.2 250.4 350.3 2030.3 1899.8 2174.3 

9-GLMM PsU-Q 303.1 248.4 348.2 2018.9 1888.4 2162.8 304.9 250.2 350.1 2030.3 1899.8 2174.3 

11-GLMM NB-L 302.4 249.8 345.8 2013.3 1889.6 2154.3 304.2 251.6 347.6 2024.8 1901.1 2165.7 

12-GLMM NB-Q 302.3 249.8 345.8 2013.4 1889.6 2154.4 304.1 251.6 347.6 2024.9 1901.0 2165.9 

14-GLMM Gm-L 288.7 234.1 336.5 1995.7 1855.2 2140.5 290.5 236.0 338.3 2007.2 1866.7 2152.0 

15-GLMM Gm-Q 288.7 234.1 336.5 1995.5 1854.9 2140.3 290.5 235.9 338.3 2007.0 1866.4 2151.8 

 

Table 13: Average, minimum, and maximum values for point estimates of MAR 

coefficients, both intercept and slope, in simulation scenarios of unequal treatment means 

with 10 or 50 blocks under a Poisson-Gamma DGP 

Results for the true GLMMs used for data generation are bolded 

 Major Axis Regression (Data Scale) 

Intercept Coefficients 

Major Axis Regression (Data Scale) 

Slope Coefficients 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1-LMM-hm 12.32 4.00 26.47 60.59 25.69 168.96 0.55 0.25 0.86 0.46 0.12 0.70 

2-LMM-ht 13.27 4.39 27.58 64.15 25.77 179.98 0.60 0.29 0.88 0.43 0.06 0.70 

3-LMM-l 4.43 -8.09 12.48 27.44 0.72 60.71 0.56 0.17 1.13 0.47 0.13 0.83 

4-LMM-s 9.59 1.56 18.62 46.26 20.52 93.58 0.50 0.22 0.87 0.41 0.12 0.65 

5-GLMM Ps-L 2.45 -2.36 6.56 12.06 -1.71 24.97 0.90 0.74 1.06 0.89 0.78 1.02 

6-GLMM Ps-Q 2.45 -2.36 6.56 12.06 -1.71 24.97 0.90 0.74 1.06 0.89 0.78 1.02 

7-GLMM Ps-P 2.43 -2.37 6.54 12.06 -1.71 24.97 0.90 0.74 1.06 0.89 0.78 1.02 

8-GLMM PsU-L 0.27 0.03 0.56 0.23 0.05 0.42 0.99 0.96 1.00 1.00 1.00 1.00 

9-GLMM PsU-Q 0.27 0.03 0.56 0.23 0.05 0.42 0.99 0.96 1.00 1.00 1.00 1.00 

10-GLMM PsU-P 0.29 0.05 0.57 0.25 0.05 0.44 0.99 0.96 1.00 1.00 1.00 1.00 

11-GLMM NB-L 5.67 -7.38 17.51 30.08 -4.26 69.54 0.72 0.33 1.33 0.64 0.26 1.03 

12-GLMM NB-Q 5.66 -7.38 17.51 30.03 -4.36 69.52 0.72 0.33 1.33 0.65 0.27 1.03 

13-GLMM NB-P 5.44 -6.89 16.85 29.06 -6.14 68.78 0.72 0.34 1.28 0.65 0.26 1.05 

14-GLMM Gm-L 6.95 -3.42 17.51 31.07 -1.32 70.09 0.67 0.33 1.19 0.63 0.26 0.98 

15-GLMM Gm-Q 6.93 -3.42 17.51 30.97 -1.32 70.04 0.67 0.33 1.20 0.63 0.26 0.98 

16-GLMM Gm-P 6.59 -3.79 16.42 29.69 -4.64 69.27 0.68 0.33 1.17 0.64 0.26 1.03 
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Table 14: Empirical Type I Error & Statistical Power, Additive Means DGP 

 10 Blocks 50 Blocks 

Convergence 

Failures 

Type I Error Power Convergence 

Failures 

Type I Error Power 

1-LMM-hm 0 0.06 0.91 0 0.05 1.00 

2-LMM-ht 13 0.03 0.45 0 0.05 0.83 

3-LMM-l 0 0.04 0.66 0 0.03 0.69 

4-LMM-s 0 0.05 0.84 0 0.05 1.00 

5-GLMM Ps-L 0 0.45 . 0 0.50 . 

6-GLMM Ps-Q 0 0.45 . 0 0.50 . 

7-GLMM Ps-P 0 0.45 . 0 0.49 . 

8-GLMM PsU-L 61 0.08 . 62 0.06 . 

9-GLMM PsU-Q 80 0.08 . 81 0.07 . 

10-GLMM PsU-P 0 0.05 0.69 1 0.05 0.70 

11-GLMM NB-L 0 0.07 0.69 0 0.07 0.70 

12-GLMM NB-Q 0 0.07 0.69 0 0.07 0.70 

13-GLMM NB-P 6 0.07 0.66 22 0.06 0.71 

14-GLMM Gm-L 0 0.07 0.71 0 0.08 0.74 

15-GLMM Gm-Q 0 0.07 0.71 0 0.08 0.74 

16-GLMM Gm-P 2 0.07 0.71 1 0.07 0.73 
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Table 15: Summary of estimates of expectations of treatments and 95% confidence interval 

coverage for competing models fitted to data generated under the Additive Means DGP 

Model Blocks 

Treatment 

levels  

(ij =) 

True 

Mean 

Avg 

Treatment 

Mean 

Estimate 

Avg Diff 

from True 

Mean 

Avg 

width of 

95% CI 

for 

Means 

95% CI 

Coverage 

1-LMM-hm 10 1,1; 1,2 12.0 11.92 -0.08 29.65 1.00 

2-LMM-ht 10 1,1; 1,2 12.0 13.29 1.29 13.91 0.89 

3-LMM-l 10 1,1; 1,2 12.0 7.99 -4.01 13.32 0.85 

4-LMM-s 10 1,1; 1,2 12.0 10.12 -1.88 14.62 0.95 

5-GLMM-Ps-L 10 1,1; 1,2 12.0 10.50 -1.50 8.08 0.76 

6-GLMM-Ps-Q 10 1,1; 1,2 12.0 10.50 -1.50 8.08 0.76 

7-GLMM-Ps-P 10 1,1; 1,2 12.0 10.56 -1.44 8.45 0.78 

8-GLMM-PsU-L 10 1,1; 1,2 12.0 8.97 -3.03 5.15 0.40 

9-GLMM-PsU-Q 10 1,1; 1,2 12.0 8.96 -3.04 2.68 0.22 

10-GLMM-PsU-P 10 1,1; 1,2 12.0 9.35 -2.65 11.20 0.87 

11-GLMM-NB-L 10 1,1; 1,2 12.0 11.66 -0.34 12.90 0.92 

12-GLMM-NB-Q 10 1,1; 1,2 12.0 11.66 -0.34 12.90 0.92 

13-GLMM-NB-P 10 1,1; 1,2 12.0 12.00 0.00 13.32 0.91 

14-GLMM-Gm-L 10 1,1; 1,2 12.0 12.05 0.05 12.70 0.94 

15-GLMM-Gm-Q 10 1,1; 1,2 12.0 12.05 0.05 12.70 0.94 

16-GLMM-Gm-P 10 1,1; 1,2 12.0 11.96 -0.04 13.00 0.94 

1-LMM-hm 10 2,1 55.0 57.35 2.35 29.65 0.77 

2-LMM-ht 10 2,1 55.0 39.78 -15.22 40.87 0.60 

3-LMM-l 10 2,1 55.0 43.07 -11.93 72.89 0.95 

4-LMM-s 10 2,1 55.0 50.27 -4.73 32.11 0.78 

5-GLMM-Ps-L 10 2,1 55.0 50.31 -4.69 34.99 0.84 

6-GLMM-Ps-Q 10 2,1 55.0 50.31 -4.69 34.99 0.84 

7-GLMM-Ps-P 10 2,1 55.0 50.60 -4.40 36.92 0.88 

8-GLMM-PsU-L 10 2,1 55.0 43.98 -11.02 27.59 0.52 

9-GLMM-PsU-Q 10 2,1 55.0 43.96 -11.04 14.36 0.26 

10-GLMM-PsU-P 10 2,1 55.0 44.49 -10.51 49.04 0.89 

11-GLMM-NB-L 10 2,1 55.0 56.63 1.63 58.44 0.93 

12-GLMM-NB-Q 10 2,1 55.0 56.63 1.63 58.45 0.93 

13-GLMM-NB-P 10 2,1 55.0 51.36 -3.64 53.16 0.84 

14-GLMM-Gm-L 10 2,1 55.0 56.72 1.72 58.53 0.96 

15-GLMM-Gm-Q 10 2,1 55.0 56.72 1.72 58.53 0.96 

16-GLMM-Gm-P 10 2,1 55.0 56.12 1.12 59.41 0.96 

1-LMM-hm 10 2,2 3.0 2.96 -0.04 29.65 1.00 

2-LMM-ht 10 2,2 3.0 6.66 3.66 7.36 0.60 

3-LMM-l 10 2,2 3.0 1.69 -1.31 2.76 0.58 

4-LMM-s 10 2,2 3.0 2.41 -0.59 7.46 1.00 

5-GLMM-Ps-L 10 2,2 3.0 2.61 -0.39 2.70 0.82 

6-GLMM-Ps-Q 10 2,2 3.0 2.61 -0.39 2.70 0.82 

7-GLMM-Ps-P 10 2,2 3.0 2.62 -0.38 2.78 0.82 

8-GLMM-PsU-L 10 2,2 3.0 2.24 -0.76 2.34 0.61 
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9-GLMM-PsU-Q 10 2,2 3.0 2.24 -0.76 1.27 0.31 

10-GLMM-PsU-P 10 2,2 3.0 2.48 -0.52 3.55 0.93 

11-GLMM-NB-L 10 2,2 3.0 2.90 -0.10 3.83 0.93 

12-GLMM-NB-Q 10 2,2 3.0 2.90 -0.10 3.83 0.93 

13-GLMM-NB-P 10 2,2 3.0 3.78 0.78 4.72 0.82 

14-GLMM-Gm-L 10 2,2 3.0 3.55 0.55 4.11 0.92 

15-GLMM-Gm-Q 10 2,2 3.0 3.55 0.55 4.11 0.92 

16-GLMM-Gm-P 10 2,2 3.0 3.51 0.51 4.17 0.93 

1-LMM-hm 50 1,1; 1,2 12.0 12.08 0.08 11.78 1.00 

2-LMM-ht 50 1,1; 1,2 12.0 12.68 0.68 5.72 0.83 

3-LMM-l 50 1,1; 1,2 12.0 8.21 -3.79 5.36 0.32 

4-LMM-s 50 1,1; 1,2 12.0 10.30 -1.70 6.05 0.84 

5-GLMM-Ps-L 50 1,1; 1,2 12.0 10.67 -1.33 3.50 0.57 

6-GLMM-Ps-Q 50 1,1; 1,2 12.0 10.67 -1.33 3.50 0.57 

7-GLMM-Ps-P 50 1,1; 1,2 12.0 10.75 -1.25 3.53 0.60 

8-GLMM-PsU-L 50 1,1; 1,2 12.0 9.14 -2.86 2.16 0.21 

9-GLMM-PsU-Q 50 1,1; 1,2 12.0 9.14 -2.86 0.98 0.10 

10-GLMM-PsU-P 50 1,1; 1,2 12.0 9.61 -2.39 4.50 0.52 

11-GLMM-NB-L 50 1,1; 1,2 12.0 11.98 -0.02 5.45 0.92 

12-GLMM-NB-Q 50 1,1; 1,2 12.0 11.98 -0.02 5.45 0.92 

13-GLMM-NB-P 50 1,1; 1,2 12.0 13.03 1.03 6.03 0.83 

14-GLMM-Gm-L 50 1,1; 1,2 12.0 12.24 0.24 5.31 0.91 

15-GLMM-Gm-Q 50 1,1; 1,2 12.0 12.24 0.24 5.31 0.91 

16-GLMM-Gm-P 50 1,1; 1,2 12.0 12.20 0.20 5.39 0.91 

1-LMM-hm 50 2,1 55.0 54.51 -0.49 11.78 0.70 

2-LMM-ht 50 2,1 55.0 47.78 -7.22 19.74 0.80 

3-LMM-l 50 2,1 55.0 40.60 -14.40 26.50 0.56 

4-LMM-s 50 2,1 55.0 47.77 -7.23 12.87 0.41 

5-GLMM-Ps-L 50 2,1 55.0 48.17 -6.83 14.21 0.53 

6-GLMM-Ps-Q 50 2,1 55.0 48.17 -6.83 14.21 0.53 

7-GLMM-Ps-P 50 2,1 55.0 48.51 -6.49 14.35 0.56 

8-GLMM-PsU-L 50 2,1 55.0 41.68 -13.32 9.95 0.07 

9-GLMM-PsU-Q 50 2,1 55.0 41.66 -13.34 4.66 0.04 

10-GLMM-PsU-P 50 2,1 55.0 42.32 -12.68 18.46 0.30 

11-GLMM-NB-L 50 2,1 55.0 54.16 -0.84 23.25 0.96 

12-GLMM-NB-Q 50 2,1 55.0 54.16 -0.84 23.25 0.96 

13-GLMM-NB-P 50 2,1 55.0 42.87 -12.13 18.91 0.70 

14-GLMM-Gm-L 50 2,1 55.0 54.14 -0.86 23.10 0.95 

15-GLMM-Gm-Q 50 2,1 55.0 54.14 -0.86 23.10 0.95 

16-GLMM-Gm-P 50 2,1 55.0 53.96 -1.04 23.61 0.94 

1-LMM-hm 50 2,2 3.0 2.96 -0.04 11.78 1.00 

2-LMM-ht 50 2,2 3.0 4.54 1.54 2.32 0.80 

3-LMM-l 50 2,2 3.0 1.53 -1.47 1.00 0.04 

4-LMM-s 50 2,2 3.0 2.36 -0.64 3.06 0.99 

5-GLMM-Ps-L 50 2,2 3.0 2.62 -0.38 1.14 0.65 

6-GLMM-Ps-Q 50 2,2 3.0 2.62 -0.38 1.14 0.65 

7-GLMM-Ps-P 50 2,2 3.0 2.64 -0.36 1.15 0.67 

8-GLMM-PsU-L 50 2,2 3.0 2.20 -0.80 0.80 0.24 
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9-GLMM-PsU-Q 50 2,2 3.0 2.20 -0.80 0.41 0.15 

10-GLMM-PsU-P 50 2,2 3.0 2.48 -0.52 1.39 0.69 

11-GLMM-NB-L 50 2,2 3.0 2.93 -0.07 1.58 0.93 

12-GLMM-NB-Q 50 2,2 3.0 2.93 -0.07 1.58 0.93 

13-GLMM-NB-P 50 2,2 3.0 5.59 2.59 2.79 0.69 

14-GLMM-Gm-L 50 2,2 3.0 3.63 0.63 1.73 0.68 

15-GLMM-Gm-Q 50 2,2 3.0 3.63 0.63 1.73 0.68 

16-GLMM-Gm-P 50 2,2 3.0 3.62 0.62 1.77 0.70 
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Table 16: Average, minimum and maximum values of the Pearson chi-sq/df statistic under 

simulation scenario of unequal treatment means with 10 or 50 blocks and an Additive 

Means DGP 

 10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

5-GLMM Ps-L 6.06 2.27 11.33 6.21 4.52 9.88 

6-GLMM Ps-Q 6.06 2.27 11.33 6.21 4.52 9.88 

8-GLMM PsU-L 0.23 0.14 0.38 0.22 0.17 0.27 

9-GLMM PsU-Q 0.23 0.14 0.38 0.22 0.17 0.26 

11-GLMM NB-L 0.91 0.61 1.38 0.99 0.78 1.21 

12-GLMM NB-Q 0.91 0.61 1.38 0.99 0.78 1.21 

14-GLMM Gm-L 0.49 0.17 0.92 0.54 0.35 0.78 

15-GLMM Gm-Q 0.49 0.17 0.92 0.54 0.35 0.78 
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Table 17: Average, minimum, and maximum values of Akaike’s and Bayesian Fit Criteria 

under simulation scenarios with 10 or 50 blocks and an Additive Means DGP 

 

  

 Akaike’s Information Criterion Bayesian Information Criterion 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1-LMM-hm 275.4 219.1 321.4 1478.7 1374.7 1580.4 275.9 219.4 322.0 1482.4 1378.5 1584.3 

2-LMM-ht 271.8 242.6 336.9 1455.4 1362.9 1718.0 273.2 244.1 338.1 1464.8 1372.5 1727.6 

5-GLMM Ps-L 350.3 238.4 478.9 1862.2 1608.0 2170.1 351.8 239.9 480.5 1871.7 1617.6 2179.7 

6-GLMM Ps-Q 350.3 238.4 478.9 1862.2 1608.0 2170.1 351.8 239.9 480.5 1871.7 1617.6 2179.7 

8-GLMM PsU-L 273.9 227.6 318.3 1362.4 1298.4 1439.2 275.7 229.2 320.1 1373.8 1309.9 1450.7 

9-GLMM PsU-Q 273.5 227.7 318.0 1361.0 1297.3 1437.8 275.2 229.2 319.8 1372.2 1308.8 1449.3 

11-GLMM NB-L 272.8 227.8 315.2 1356.9 1293.8 1427.5 274.5 229.3 317.1 1368.3 1305.2 1439.0 

12-GLMM NB-Q 272.7 227.8 315.3 1356.9 1293.7 1427.5 274.5 229.3 317.1 1368.3 1305.2 1439.0 

14-GLMM Gm-L 260.2 222.8 307.3 1293.0 1220.1 1378.1 261.9 224.3 309.1 1304.4 1231.6 1389.6 

15-GLMM Gm-Q 260.2 222.8 307.3 1293.1 1220.3 1378.1 261.9 224.3 309.1 1304.5 1231.8 1389.6 

 10 Blocks, Equal 

Treatment Means 

50 Blocks, Equal  

Treatment Means 

10 Blocks, Equal 

Treatment Means 

50 Blocks, Equal  

Treatment Means 

1-LMM-hm 274.7 235.2 315.0 1472.9 1401.1 1556.2 275.1 235.5 315.3 1475.5 1403.0 1560.0 

2-LMM-ht 276.2 215.5 328.5 1475.7 1403.3 1721.5 277.5 217.0 329.7 1484.1 1410.9 1729.2 

5-GLMM Ps-L 382.6 264.1 562.0 2011.9 1798.6 2256.5 384.1 265.7 563.5 2021.5 1808.2 2266.1 

6-GLMM Ps-Q 382.6 264.1 562.0 2011.9 1798.6 2256.5 384.1 265.7 563.5 2021.5 1808.2 2266.1 

8-GLMM PsU-L 280.2 234.1 308.4 1395.7 1336.0 1451.5 281.8 235.9 309.9 1406.0 1345.6 1461.1 

9-GLMM PsU-Q 280.7 246.6 308.0 1394.2 1334.9 1450.3 282.3 248.1 309.5 1404.2 1344.4 1459.8 

11-GLMM NB-L 280.1 244.7 307.0 1389.8 1332.6 1439.8 281.7 246.2 308.5 1400.3 1342.2 1450.7 

12-GLMM NB-Q 280.1 244.7 307.0 1389.8 1332.6 1439.8 281.7 246.2 308.5 1400.3 1342.2 1450.7 

14-GLMM Gm-L 271.5 236.2 305.0 1344.6 1276.7 1404.0 273.1 237.7 306.5 1355.1 1286.2 1415.4 

15-GLMM Gm-Q 271.5 236.2 305.0 1344.6 1276.7 1404.0 273.1 237.7 306.5 1355.1 1286.2 1415.4 
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Table 18: Average, minimum, and maximum values for point estimates of MAR 

coefficients, both intercept and slope, in simulation scenarios of unequal treatment means 

with 10 or 50 blocks under an Additive Means DGP 

 Major Axis Regression (Data Scale) 

Intercept Coefficients 

Major Axis Regression (Data Scale) 

Slope Coefficients 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1-LMM-hm 8.02 2.81 15.24 8.13 4.93 11.42 0.61 0.26 0.89 0.60 0.44 0.74 

2-LMM-ht 7.88 2.03 15.19 8.13 4.91 11.42 0.60 0.00 0.89 0.60 0.44 0.74 

3-LMM-l 5.38 -0.63 10.77 5.92 3.20 8.26 0.47 0.12 0.86 0.43 0.26 0.63 

4-LMM-s 6.94 2.07 13.19 7.23 4.25 9.99 0.53 0.18 0.86 0.51 0.34 0.68 

5-GLMM Ps-L 3.31 1.01 6.33 3.36 2.34 4.89 0.84 0.67 0.95 0.83 0.76 0.89 

6-GLMM Ps-Q 3.31 1.01 6.33 3.36 2.34 4.89 0.84 0.67 0.95 0.83 0.76 0.89 

7-GLMM Ps-P 3.28 0.98 6.30 3.36 2.34 4.89 0.84 0.67 0.95 0.83 0.76 0.89 

8-GLMM PsU-L 0.33 0.17 0.60 0.33 0.24 0.47 0.98 0.96 0.99 0.98 0.97 0.99 

9-GLMM PsU-Q 0.33 0.17 0.60 0.33 0.24 0.47 0.98 0.96 0.99 0.98 0.97 0.99 

10-GLMM PsU-P 0.38 0.25 0.64 0.43 0.32 0.56 0.98 0.96 0.99 0.98 0.97 0.99 

11-GLMM NB-L 7.58 1.83 14.43 7.96 4.82 11.42 0.62 0.26 0.90 0.60 0.44 0.74 

12-GLMM NB-Q 7.58 1.83 14.43 7.96 4.83 11.42 0.62 0.26 0.90 0.60 0.44 0.74 

13-GLMM NB-P 7.34 1.93 14.43 8.18 5.65 11.42 0.63 0.26 0.89 0.59 0.44 0.73 

14-GLMM Gm-L 8.08 2.83 14.83 8.37 5.11 11.77 0.62 0.27 0.89 0.60 0.43 0.75 

15-GLMM Gm-Q 8.09 2.83 14.83 8.37 5.11 11.77 0.62 0.27 0.89 0.60 0.43 0.75 

16-GLMM Gm-P 8.05 2.38 15.62 8.44 5.26 11.77 0.61 0.26 0.89 0.59 0.43 0.75 
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Table 19: Average, minimum, and maximum values for 97.5th Percentile Ratios from 

simulation scenarios with 10 or 50 blocks and unequal treatment means under an Additive 

Means DGP 

 10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.59 0.34 0.86 0.52 0.43 0.64 

2-LMM-ht 0.58 0.05 0.83 0.52 0.43 0.63 

3-LMM-l 0.04 0.02 0.07 0.04 0.03 0.05 

4-LMM-s 0.07 0.04 0.12 0.07 0.05 0.09 

5-GLMM Ps-L 0.86 0.65 1.18 0.85 0.66 1.11 

6-GLMM Ps-Q 0.86 0.65 1.18 0.85 0.66 1.11 

7-GLMM Ps-P 0.86 0.65 1.18 0.85 0.66 1.11 

8-GLMM PsU-L 0.99 0.96 1.00 0.99 0.98 0.99 

9-GLMM PsU-Q 0.99 0.96 1.00 0.99 0.98 0.99 

10-GLMM PsU-P 0.99 0.96 1.00 0.98 0.98 0.99 

11-GLMM NB-L 0.62 0.34 0.97 0.54 0.43 0.65 

12-GLMM NB-Q 0.62 0.34 0.97 0.54 0.43 0.65 

13-GLMM NB-P 0.61 0.34 0.95 0.53 0.43 0.65 

14-GLMM Gm-L 0.62 0.34 0.91 0.54 0.43 0.67 

15-GLMM Gm-Q 0.62 0.34 0.91 0.54 0.43 0.67 

16-GLMM Gm-P 0.62 0.34 0.94 0.53 0.43 0.65 
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Table 20: Average, minimum, and maximum values for Skewness Ratios from simulation 

scenarios with 10 or 50 blocks and unequal treatment means under an Additive Means 

DGP 

 10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.43 0.20 0.88 0.39 0.22 0.54 

2-LMM-ht 0.43 0.20 0.88 0.39 0.24 0.54 

3-LMM-l 0.02 -0.41 0.49 -0.02 -0.20 0.20 

4-LMM-s 0.31 0.04 0.70 0.28 0.14 0.44 

5-GLMM Ps-L 0.83 0.60 1.19 0.80 0.66 0.96 

6-GLMM Ps-Q 0.83 0.60 1.19 0.80 0.66 0.96 

7-GLMM Ps-P 0.83 0.60 1.19 0.80 0.66 0.96 

8-GLMM PsU-L 1.01 0.98 1.04 1.01 1.00 1.02 

9-GLMM PsU-Q 1.01 0.98 1.04 1.01 1.00 1.02 

10-GLMM PsU-P 1.01 0.99 1.04 1.01 1.00 1.02 

11-GLMM NB-L 0.47 0.20 0.99 0.40 0.22 0.58 

12-GLMM NB-Q 0.47 0.20 0.99 0.40 0.22 0.58 

13-GLMM NB-P 0.48 0.20 0.99 0.40 0.22 0.63 

14-GLMM Gm-L 0.47 0.21 0.92 0.41 0.23 0.57 

15-GLMM Gm-Q 0.47 0.21 0.92 0.41 0.23 0.57 

16-GLMM Gm-P 0.47 0.20 0.97 0.40 0.23 0.58 

 

Table 21: Average, minimum, and maximum values for Coefficient of Variation Ratios 

from simulation scenarios with 10 or 50 blocks and unequal treatment means from an 

Additive Means DGP 

 10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.70 0.47 0.90 0.69 0.59 0.78 

2-LMM-ht 0.70 0.47 0.90 0.69 0.59 0.78 

3-LMM-l 0.41 0.23 0.64 0.40 0.32 0.51 

4-LMM-s 0.37 0.23 0.50 0.36 0.31 0.42 

5-GLMM Ps-L 0.85 0.72 0.95 0.85 0.78 0.89 

6-GLMM Ps-Q 0.85 0.72 0.95 0.85 0.78 0.89 

7-GLMM Ps-P 0.85 0.72 0.96 0.85 0.78 0.89 

8-GLMM PsU-L 0.98 0.96 0.99 0.98 0.97 0.99 

9-GLMM PsU-Q 0.98 0.96 0.99 0.98 0.97 0.99 

10-GLMM PsU-P 0.98 0.96 0.99 0.98 0.97 0.99 

11-GLMM NB-L 0.71 0.47 0.93 0.70 0.59 0.79 

12-GLMM NB-Q 0.71 0.47 0.93 0.70 0.59 0.79 

13-GLMM NB-P 0.72 0.47 0.92 0.69 0.59 0.78 

14-GLMM Gm-L 0.70 0.44 0.89 0.68 0.58 0.78 

15-GLMM Gm-Q 0.70 0.44 0.89 0.68 0.58 0.78 

16-GLMM Gm-P 0.70 0.46 0.90 0.68 0.58 0.78 
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Table 22: Pearson chi-sq/df statistic, AIC, and BIC, proof-of-concept data application 

 Pearson chi-sq/df AIC BIC 

1-LMM-hm --- 242.2 242.4 

2-LMM-ht --- 233.6 234.1 

5-GLMM Ps-L 4.28 297.9 298.4 

6-GLMM Ps-Q 4.28 297.9 298.4 

8-GLMM PsU-L 0.26 232.8 233.4 

9-GLMM PsU-Q 0.26 232.4 233.0 

11-GLMM NB-L 0.61 229.3 229.8 

12-GLMM NB-Q 0.61 229.3 229.8 

14-GLMM Gm-L 0.31 190.1 190.6 

15-GLMM Gm-Q 0.31 190.1 190.6 

 

Table 23: Estimates and 95% confidence interval bounds for MAR coefficients from the 

proof-of-concept data application 

 Intercept Slope 

Est 95% Lower 

Bound 

95% Upper 

Bound 

Est 95% Lower 

Bound 

95% Upper 

Bound 

1-LMM-hm 3.87 2.21 5.30 0.58 0.42 0.76 

2-LMM-ht 5.38 3.97 6.65 0.41 0.28 0.57 

3-LMM-l 1.51 0.56 2.41 0.33 0.23 0.43 

4-LMM-s 2.93 1.84 3.93 0.49 0.38 0.61 

8-GLMM-PsU-L 0.29 0.12 0.45 0.97 0.95 0.98 

9-GLMM-PsU-Q 0.28 0.12 0.44 0.97 0.95 0.98 

10-GLMM-PsU-P 0.30 0.15 0.46 0.97 0.95 0.98 

11-GLMM-NB-L 4.09 3.05 5.04 0.45 0.34 0.56 

12-GLMM-NB-Q 4.07 3.02 5.02 0.45 0.35 0.56 

13-GLMM-NB-P 3.50 2.40 4.50 0.51 0.40 0.63 

14-GLMM-Gm-L 6.10 4.99 7.12 0.45 0.34 0.57 

15-GLMM-Gm-Q 6.09 4.97 7.12 0.45 0.34 0.57 

16-GLMM-Gm-P 5.93 4.79 6.97 0.46 0.34 0.58 
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Table 24: 97.5th Percentile, Skewness, and Coefficient of Variation Ratios from the proof-

of-concept data application 

 97.5th Percentile 

Ratio 

Skewness 

Ratio 

Coefficient of Variation 

Ratio 

1-LMM-hm 0.728 0.373 0.648 

2-LMM-ht 0.584 0.229 0.515 

3-LMM-l 0.475 0.966 0.822 

4-LMM-s 0.690 0.651 0.670 

8-GLMM PsU-L 0.991 1.065 0.969 

9-GLMM PsU-Q 0.991 1.064 0.969 

10-GLMM PsU-P 0.991 1.061 0.967 

11-GLMM NB-L 0.693 0.755 0.565 

12-GLMM NB-Q 0.695 0.759 0.568 

13-GLMM NB-P 0.755 0.847 0.627 

14-GLMM Gm-L 0.642 0.650 0.459 

15-GLMM Gm-Q 0.643 0.650 0.461 

16-GLMM Gm-P 0.645 0.654 0.472 

 

 

Table 25: F-test results for treatment effects of competing models from the proof-of-

concept data application at α=0.05 

 Effect numDF denDF F-Value P-value 

1-LMM-hm Trt 4 23 2.62 0.061 

2-LMM-ht Trt 4 23 1.60 0.208 

3-LMM-l Trt 4 23 1.61 0.205 

4-LMM-s Trt 4 23 2.42 0.078 

8-GLMM-PsU-L Trt 4 23 1.91 0.143 

9-GLMM-PsU-Q Trt 4 23 1.88 0.147 

10-GLMM-PsU-P Trt 4 23 1.66 0.194 

11-GLMM-NB-L Trt 4 23 1.83 0.157 

12-GLMM-NB-Q Trt 4 23 1.84 0.156 

13-GLMM-NB-P Trt 4 23 2.16 0.106 

14-GLMM-Gm-L Trt 4 15 1.80 0.181 

15-GLMM-Gm-Q Trt 4 15 1.80 0.181 

16-GLMM-Gm-P Trt 4 15 1.64 0.215 
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Table 26: Treatment mean estimates of LMM-hm, LMM-ht, LMM-l, GLMM-PsU, 

GLMM-NB, and GLMM-Gm from the proof-of-concept data application 

 Trt Estimate 

95% Lower 

Bound 

95% Upper 

Bound 

1-LMM-hm A 4.52 -4.78 13.83 

2-LMM-ht A 5.10 0.48 9.73 

3-LMM-l A 1.18 0.25 5.54 

8-GLMM-PsU-L A 2.28 0.72 7.20 

9-GLMM-PsU-Q A 2.27 0.71 7.25 

10-GLMM-PsU-P A 2.60 0.82 8.20 

11-GLMM-NB-L A 3.89 1.35 11.22 

12-GLMM-NB-Q A 3.88 1.34 11.19 

13-GLMM-NB-P A 3.51 1.33 9.27 

14-GLMM-Gm-L A 6.42 2.60 15.87 

15-GLMM-Gm-Q A 6.41 2.59 15.84 

16-GLMM-Gm-P A 6.04 2.40 15.22 

1-LMM-hm B 4.24 -5.07 13.54 

2-LMM-ht B 4.82 0.12 9.52 

3-LMM-l B 2.52 0.54 11.85 

8-GLMM-PsU-L B 3.06 1.04 9.01 

9-GLMM-PsU-Q B 3.06 1.03 9.06 

10-GLMM-PsU-P B 3.44 1.15 10.32 

11-GLMM-NB-L B 4.59 1.66 12.68 

12-GLMM-NB-Q B 4.58 1.66 12.65 

13-GLMM-NB-P B 4.29 1.65 11.16 

14-GLMM-Gm-L B 5.11 2.40 10.86 

15-GLMM-Gm-Q B 5.10 2.40 10.87 

16-GLMM-Gm-P B 4.84 2.20 10.62 

1-LMM-hm C 16.14 6.85 25.42 

2-LMM-ht C 15.92 2.05 29.79 

3-LMM-l C 5.65 1.20 26.52 

8-GLMM-PsU-L C 7.56 2.68 21.32 

9-GLMM-PsU-Q C 7.55 2.66 21.44 

10-GLMM-PsU-P C 8.10 2.81 23.37 

11-GLMM-NB-L C 11.88 4.43 31.84 

12-GLMM-NB-Q C 11.85 4.42 31.77 

13-GLMM-NB-P C 10.67 4.29 26.53 

14-GLMM-Gm-L C 13.73 6.43 29.32 

15-GLMM-Gm-Q C 13.71 6.42 29.31 

16-GLMM-Gm-P C 12.96 5.89 28.55 

1-LMM-hm D 13.99 4.71 23.28 

2-LMM-ht D 13.78 4.06 23.50 

3-LMM-l D 7.67 1.63 36.01 

8-GLMM-PsU-L D 7.95 2.85 22.19 

9-GLMM-PsU-Q D 7.93 2.82 22.33 

10-GLMM-PsU-P D 8.49 2.96 24.32 
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11-GLMM-NB-L D 12.42 4.65 33.17 

12-GLMM-NB-Q D 12.40 4.64 33.12 

13-GLMM-NB-P D 11.41 4.60 28.30 

14-GLMM-Gm-L D 10.46 4.97 22.03 

15-GLMM-Gm-Q D 10.44 4.95 22.00 

16-GLMM-Gm-P D 9.83 4.67 20.69 

1-LMM-hm E 3.95 -5.35 13.26 

2-LMM-ht E 4.53 -1.56 10.62 

3-LMM-l E 1.15 0.24 5.39 

8-GLMM-PsU-L E 2.25 0.72 7.10 

9-GLMM-PsU-Q E 2.25 0.71 7.15 

10-GLMM-PsU-P E 2.56 0.82 8.06 

11-GLMM-NB-L E 4.25 1.49 12.14 

12-GLMM-NB-Q E 4.23 1.48 12.10 

13-GLMM-NB-P E 3.93 1.50 10.30 

14-GLMM-Gm-L E 8.81 3.53 22.00 

15-GLMM-Gm-Q E 8.81 3.53 22.02 

16-GLMM-Gm-P E 8.39 3.32 21.16 
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Appendix A - Supplemental Tables 

A 1: Average, minimum and maximum values of the Pearson chi-sq/df statistic under 

simulation scenario of unequal treatment means with 10 or 50 blocks and a Poisson-

Gamma DGP. 

Results for the true GLMMs used for data generation are bolded 

 10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

5-GLMM Ps-L 5.88 2.09 11.86 26.51 14.95 51.46 

6-GLMM Ps-Q 5.88 2.09 11.86 26.51 14.95 51.46 

8-GLMM PsU-L 0.22 0.12 0.39 0.10 0.07 0.14 

9-GLMM PsU-Q 0.22 0.12 0.39 0.10 0.07 0.14 

11-GLMM NB-L 0.72 0.56 1.27 0.73 0.63 0.85 

12-GLMM NB-Q 0.72 0.56 1.27 0.73 0.63 0.85 

14-GLMM Gm-L 0.35 0.14 0.75 0.36 0.27 0.48 

15-GLMM Gm-Q 0.35 0.14 0.75 0.36 0.27 0.48 

 

 

A 2: Average, minimum, and maximum values for 97.5th Percentile Ratios from simulation 

scenarios with 10 or 50 blocks and unequal treatment means under a Poisson-Gamma DGP 

 Results for the true GLMMs used for data generation are 

bolded 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.61 0.40 0.95 0.55 0.42 0.75 

2-LMM-ht 0.70 0.51 1.03 0.53 0.40 0.71 

3-LMM-l 0.04 0.02 0.08 0.01 0.01 0.01 

4-LMM-s 0.07 0.04 0.13 0.03 0.02 0.04 

5-GLMM Ps-L 0.93 0.66 1.35 0.93 0.75 1.25 

6-GLMM Ps-Q 0.93 0.66 1.35 0.93 0.75 1.25 

7-GLMM Ps-P 0.93 0.66 1.35 0.93 0.75 1.25 

8-GLMM PsU-L 0.99 0.96 1.01 1.00 1.00 1.00 

9-GLMM PsU-Q 0.99 0.96 1.01 1.00 1.00 1.00 

10-GLMM PsU-P 0.99 0.96 1.01 1.00 1.00 1.00 

11-GLMM NB-L 0.80 0.41 1.46 0.76 0.50 1.12 

12-GLMM NB-Q 0.80 0.41 1.46 0.76 0.50 1.12 

13-GLMM NB-P 0.80 0.43 1.47 0.76 0.51 1.12 

14-GLMM Gm-L 0.75 0.41 1.27 0.75 0.48 1.11 

15-GLMM Gm-Q 0.75 0.41 1.27 0.75 0.48 1.11 

16-GLMM Gm-P 0.76 0.41 1.24 0.76 0.50 1.13 
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A 3: Average, minimum, and maximum values for Skewness Ratios from simulation 

scenarios with 10 or 50 blocks and unequal treatment means under a Poisson-Gamma DGP 

 Results for the true GLMMs used for data generation are 

bolded 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.32 0.12 0.82 0.22 0.11 0.43 

2-LMM-ht 0.37 0.19 0.58 0.22 0.08 0.44 

3-LMM-l 0.00 -0.37 0.79 -0.02 -0.13 0.07 

4-LMM-s 0.21 0.04 0.68 0.14 0.08 0.30 

5-GLMM Ps-L 1.00 0.65 1.65 0.93 0.69 1.42 

6-GLMM Ps-Q 1.00 0.65 1.65 0.93 0.69 1.42 

7-GLMM Ps-P 1.00 0.65 1.65 0.93 0.69 1.42 

8-GLMM PsU-L 1.01 1.00 1.05 1.00 1.00 1.00 

9-GLMM PsU-Q 1.01 1.00 1.05 1.00 1.00 1.00 

10-GLMM PsU-P 1.01 1.00 1.05 1.00 1.00 1.00 

11-GLMM NB-L 0.84 0.27 1.67 0.73 0.35 1.65 

12-GLMM NB-Q 0.85 0.27 1.67 0.73 0.35 1.65 

13-GLMM NB-P 0.87 0.29 1.86 0.75 0.35 1.69 

14-GLMM Gm-L 0.80 0.26 1.60 0.72 0.35 1.64 

15-GLMM Gm-Q 0.80 0.26 1.60 0.72 0.35 1.64 

16-GLMM Gm-P 0.82 0.27 1.64 0.74 0.35 1.67 
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A 4: Average, minimum, and maximum values for Coefficient of Variation Ratios from 

simulation scenarios with 10 or 50 blocks and unequal treatment means from a Poisson-

Gamma DGP 

 Results for the true GLMMs used for data generation 

are bolded 

10 Blocks, Unequal 

Treatment Means 

50 Blocks, Unequal 

Treatment Means 

Mean Min Max Mean Min Max 

1-LMM-hm 0.64 0.42 0.87 0.57 0.24 0.74 

2-LMM-ht 0.69 0.46 0.90 0.55 0.20 0.75 

3-LMM-l 0.40 0.22 0.87 0.19 0.05 0.26 

4-LMM-s 0.35 0.21 0.51 0.32 0.11 0.42 

5-GLMM Ps-L 0.91 0.78 1.05 0.90 0.80 1.02 

6-GLMM Ps-Q 0.91 0.78 1.05 0.90 0.80 1.02 

7-GLMM Ps-P 0.91 0.78 1.06 0.90 0.80 1.02 

8-GLMM PsU-L 0.99 0.96 1.00 1.00 1.00 1.00 

9-GLMM PsU-Q 0.99 0.96 1.00 1.00 1.00 1.00 

10-GLMM PsU-P 0.99 0.96 1.00 1.00 1.00 1.00 

11-GLMM NB-L 0.80 0.52 1.24 0.75 0.44 1.04 

12-GLMM NB-Q 0.80 0.52 1.24 0.75 0.44 1.05 

13-GLMM NB-P 0.81 0.52 1.22 0.75 0.44 1.06 

14-GLMM Gm-L 0.75 0.49 1.15 0.74 0.43 1.02 

15-GLMM Gm-Q 0.75 0.49 1.15 0.74 0.43 1.02 

16-GLMM Gm-P 0.76 0.49 1.15 0.75 0.43 1.05 

 

 


