HALSTEAD'S COMPLEXITY MEASURE ON PASCAL PROGRAMS

by

SHOU-NAN WAHNG

B.S. Tamkang College, 1976

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

. Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1980

Approved by :

William J/ ‘'Hankley

SFEC
COM-
LD
266§
, R4
[7FO
W3b
C. 2

Acknowledgements

The writer is indebted to many persons whose assistance made

possible the completion of this report.

Much appreciation is due William J. Hankley, the writer's major
advisor. The help and encouragement from him made this report
possible. Also, I would 1like to thank David A. Gustafson for his

ideas contributed to this report.

I appreciate Kam Mok's help in the development of the plotting

program.

Finally, I would 1like to thank Chun Mei Liou for her
encouragement throughout this project and her assistance in preparing

this document.

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

CHAPTER I:
I.1
z,2

CHAPTER II:
*II.1:
II.2:

II.3:

CHAPTER III:
ITI.N:
IIl.z:
III.3:
III.4:
III.S:
III.6:

CHAPTER V:

TABLE OF CONTENTS

mTROBUCTIOHo--'1010000----c-u -...."'.-.1
IHTRODUCTIOH seBsPPSesnsans ...‘QD.DIII’.'1
mTIvATIUN FOR THI-S REPORT..I.D.0.0Q.....QO'..Z

PROGRAM MEASUREMENTS..... teecasscos vesesnssae 4
BASIC PARAMETERS....ecovvecccccsscscccscccnsssld
DERIVED EQUATIONS...cccoveccvcccsrscencncsesssd
PROGRAM IMPURITIES..ceececoscosscscnsscsacoscel

EXPERIMENTS AND RESULTS.cecosscocvesasncsasseel?
SERERAL; ovisin b sisiwns Lanans o semsing vasmens o 12
ON MEASUREMENT OF DECLARATIONS..... atmonon # memeasmilcn 12
ESTIMATED PROGRAM LENGTH. .c.veevoconcocsceasasslb
THE LANGUATE LEVEL OF PASCAL.cvveccossacnsen .. 19
VALIDITY OF PROGRAM MEASURE...vececvesscsaneee2]
DISCU%IDN..'...I........‘...‘D.-.‘......‘.'-.22

MLMTATIOHICOQOO'.’-‘.‘."‘"’.li.“"ll"-.ua
ovzm...—.....t.0....:’......’0.‘...'.'.CI.'OHB
WHY THE COMPILER WAS MODIFIED.....eecceesssce 49
HOW THE COMPILER PASSES WERE MODIFIED.........50
HOW THE MEASURED PARAMETERS WERE

OBTAINED OR CALCULATEDu..snsoeesses ceeeesecssol

.CMCLUSIOR'-....I.l........’"....-.lQDOOOCOOIISB

SH..ECTED BIBLIOGRAPHY...l.IDI.-‘.I-..CCQOD.'.l0O'.O.....O.l-loso

15.
16.
174
18.
19.
20.
21.
22.
23.
24,
25.

26.

1'

LIST OF FIGURES

FREQUENCY DISTRIBUTION OF .ccccceccccccescscccssnsnncaall
MEASURED RESULTS OF PROGRAM XREF...cceccveccencacccasessl3
MEASURED RESULTS OF PROGRAM KPASST.c.ccercecersnsneanesc2l
MEASURED RESULTS OF PROGRAM KPASS2...0000ccvecssasssssse2d
MEASURED RESULTS OF PROGRAM KPASS3.ccecevscvensscncssseeb
MEASURED RESULTS OF PROGRAM KPASSU..ceeeevscsconcsnceeee]
MEASURED RESULTS OF PROGRAM KPASS5.cccecceccecasccnseees2B
MEASURED RESULTS OF PROGRAM KPASS6..cc.veencscaceacesese29
MEASURED RESULTS OF PROGRAM KPASST.c.cevcscsencavecesassll
MEASURED RESULTS OF PROGRAM KPASS8...ccccvevevesnrsesaas3l
MEASURED RESULTS OF PROGRAM KPASS9.cccccssccessncsncesse3d
MEASURED RESULTS OF PROGRAM HPASST.vceeececccscccsccsses33
MEASURED RESULTS OF PROGRAM HPASS2....cecsencecccneseass3l

SUI‘MARI GF SOHE ﬁ/N VALUES-----o--.------------q------.-35

DISTRIBUTION OF M/N.iwveisi cwsvinswssaeses veavsess senmsnd
FREQUENCY DISTRIBUTION OF A EXPERIMENTED.ec.ecevenvsaesee3?
RANK-FREQUENCY DISTRIBUTION CF OPERATORS

IN THE BODIES OF THE PROGRAM XREF..ccececsssccscssscssss38
RANK-FREQUENCY DISTRIBUTION OF OPERANDS

IN THE BODIES OF THE PROGRAM XREF....ccecceccnnccccceessld?
RANK-FREQUENCY DISTRIBUTICN OF

OPERATORS IN THE WHOLE PROGRAM XREF.....icevevecavseesscliO
RANK-FREQUENCY DISTRIBUTICN OF

OPERANDS IN THE WHOLE PROGRAM XREF...ccccccccccccccccassall]
RANK-FREQUENCY DISTRIBUTION OF OPERATORS

IN THE BODIES OF THE PROGRAM KPASSH.....cveveevesnscces 2
RANK-FREQUENCY DISTRIBUTION OF

OPERATORS IN THE WHOLE PROGRAM KPASSH4.....ccccceneesseedl3
RANK-FREQUENCY DISTRIBUTION OF OPERATORS

IN THE BODIES OF THE PROGRAM KPASSS.cccescascrcoacnsees il
RANK-FREQUENCY DISTRIBUTICN OF OPERANDS

IN THE BODIES OF THE PROGRAM KPASSS...sveecsscssanasseadlib
RANK-FREQUENCY DISTRIBUTION OF

OPERATORS IN THE WHOLE PROGRAM KPASSS...cecescsnssascseslib
RANK-FREQUENCY DISTRIBUTICN OF

OPERANDS IN THE WHOLE PROGRAM KPASSS5..ececesccrccanssesold7

TABLE

OPERATORS IN PASCAL.. lllll -.----..-.-------....o-...-o..]O

CHAPTER I

INTRODUCTION
I.1 Introduction

Therg has always been a need to evaluate the quality and the
complexity, as well as other properties of computer programs. This
evaluation is beginning to be recognized in the field of computer
science, and the mechanical measaremént of programs is now a part of

sof'tware engineering.

Programs used to be measured by the number of lines of code,
which only roughly gives the size of a2 program, not the complexity of,
nor the effért spent on a program. McCabe tHcCabe T76] proposed that
the complexity of a program be measured by the number of predicates in
it. It makes sense that, if a program has more predicates, it is more

complex to understand.

Maurice Halstead [Halstead T7] approached the problem
differently. He developed and refined a theory‘ called Software
Science. It is an empirical method to measure the statistical
properties ¢f programs, Several interesting —properties of programs
can be obtained based upoﬁ counts of operators and operands in them.
The four parameters used are 1n; (number of unique operators), n,
(number of unique~cpérauds). N; (total number of operators), and N

(total number of operands). An operator typically represents an

2

operation, e.g., "+", "-", or a procedure name. Operands represent
he objects; they are constants and variables. The properties tkat
can be derived are program length, veolume, level, ete. These terms

will be explained in Chapter 2.

Halstead initiated a éeries of studies of programs to develope
his theory several years ago. Later, in 1976, he published a book
[Halstead 7T7], in which he put together the results from his studies,
along with some justifications, to try to explain how and why his
method works. Most of the studies were done for Assembly, COBOL,
FCRTRAN, and PL/I programs. None was made for programs written in
PASCAL, which is now a popular language. Also, declaration and I/0
statements were .ignored in his model, whereas in PASCAL the
declarations seem to comprise an integral part of a definition of the

program.

I.2 Motivation for this Report

The motivation for this report was to measure the properties of
PASCAL and to incorporate declarations in Halstead's model. This
repoert presents a design and implementation of extensions to Hartman's
S-PASCAL compiler [Hartmann 77] to measure an approximation to
Halstead's parameters. In several experiments Halstead's measures are
repeated for each procedure declaration, each procedure body, each

procedure (declaration + body), all declarations, all bodies, and the

3
whole program. Results are reported for measurements on several

programs.

Chapter II will summarize Halstead's theory. Results and
discussions are in Chapter III, Chapter IV will give the

implementation details.

CHAPTER II

PROGRAM MEASUREMENTS

ITI.1 Basic Parameters

Halstead based his theory on four measures of algorithms :

w

.04 no. of unique operators in the implementation

no. of unique operands in the implementation

n’

N1 = total no. of all operators in the implementation

Nz total no. of all operands in the implementation.

An operator is a symbol that defines an operation or a pair of
symbols that serve to group things together. It is obvicus that the
assignment symbol ":=", the arithmetic operation symbols "+", "-7",
ngw uw/n_ the comparison symbols "=", ™", ") etc. are operators.
Since a procedure (subroutine) defines an operation, the referencing
of the procedure name is an operator reference. Also, "{)", "[]",

"begin-end"™ are each counted as a single grouping operator. The
arguments for this choice are: first, that the two components are
statistically completely dependent, and second, that the language
syntax can be So modified as to use only one of the symbol pair
without changing other operator and operand counts. On page 10, Table

1 contains the definition of all operators in PASCAL.

The definition for operands is more obvious. Objects that are

manipulated by operations are operands. The variable names, symbolic

g
constants, enumeration names, literal constants, etc. are operands.

One problem in counting operands is how to count constants; this issue

will be explored later in Chapter III.

The vocabulary n of an implementation 4is the total number of unique
operators and operands in the implementation. The total number of
occurrences of both operators and operands is the program length N of

the implementation. The equations are:

=1
[l

=0, + Oy
-N1+H2.

=
[

Based upon statistical arguments, Halstead justified an estimator of

program length ﬁ as:

-~

N D loganz + Iy log2n2 .

II.2 Derived Equations
The yolume V of a program is defined as:
vV = N 1052n
This is the length in bits of the most compact encoding of the

program. The intuition is that, for an implementation of vocabulary

n, at least logzn ‘bits will be needed to represent each

6

Ll

cperator/operand. The volume is thus the minimal bit length per token

multiplied by the total occurrences N.

The volume of a program changes if it is translated into another
language. When the program is translated into a language of the
highest level (for the particular application), it would be just a
procedure call. The volume of such a program is called the Qpotential

¥olume V¥ and is defined as

vE

n'logan!

(n: + n;) logz(n: + n;]

(2 + n;) logy(2 + n;)

where n: and n; are the potential operator count and the potential
operand count respectively. In a procedure call only two operators
are needed, namely, the procedure name and a grouping operator to
group together the operands (arguments). n; is the minimum number of
arguments needed for the call, However, there are significant
difficulties iﬁ deternining n;. For example, consider a module that
works as a symbol table handler for a compiler. If we are to use it,
we must supply the following arguments to the module: identifier
length, character set for the identifiers, symbol table size, the
identifier that is to be put in or searched for, and probably the
scope depth,_etc. All these afguments will be the potential operands
of this module. Whereas in practice, some of these arguments are not

obvious or are built into the module.

7

For a given algorithm with volume V and potential volume V¥ the

program level L of an implementation is defined as

L=V¥V or V=LV .

For a fixed algorithm, as the program vclume V goes up, the program
level goes down. The level L is 1 when the volume is the potential

volume. An approximation to the program level is
¢ = (2/n4) (nzlnz) .

The explanation is that, the lower the 1level, the more the number of
operators, so L ~ n:/n1 = 2/n1; and if an operand is repeated many

times, the level is low, so L -~ n2/N2 .

Halstead suggested that the product, A = LV¥, called the
language level, remains constant for any one language. Thus, in a
given language algorithms with larger potential volumes would have
lower program levels. The histogram of the language levels of several

languages shown in his book is reproduced as Figure 1 on page 11.
II.3 Program Impurities
Halstead argued that the impurities in programs would affect the

measurement. The impurities in a program do not mean that the program

is good or bad. His observation was that a program written by a

8

sophisticated (experienced) programmer has fewer impurities. In the

studies of the report, all impurities are ignored. For reference,

Halstead's listing of impurities [Halstead 77] [Ottenstein T6] are

summarized here:

1.

3.

5.

Complementary operations - use of two complementary operators

to the same operand, eg. A = B + C = C.

Ambiguous operands - wuse of the same operand to refer to
different things at different places in the program. This
problem occurs when we try to use the same operand over and

over again to save memory space.

Synonomous operands - the opposite to the above impurity.

The problem arises when we use two operands for the same

thing.

Commom subexpressions - Whenever a subexpression (segment of
code) is used more than once, an operand {procedure) should

be assigned to (defined for) it.

Unwarranted assigmments. An operand is assigned a value and
then used only once. The operand should not be created in

the first place.

6.

Unfactored expressions. An example will make it c¢lear: use

f=AT2+2%A%B4+B1T2

instead of

P
n

(A+B) T2 .

The situation when a subseripted variable is used several

times to refer to the same object. If A[i] is referenced in
the same context several times with i unchanged; after the
first occurrence, it should only be counted as one operand.
However, in the first reference of A[i], there are two

operands, A and i, and one operator "[]".

10

operators in PASCAL

array ".."

record L

set n

const mam

yar m()n

type (1" used for set
packed "[]" used for array
m " on non

gase mod

not nAn

lt=l|' !!/H'

ngm : upnary cperator "+7
nyn unary operator "-"
nHn arith operator "+"
ul=n arith operator "-"
nyah bool operator "and"
begin-end bool operator "gr"
while-do set operator "opr"/"4"
repeat-until "in"

with-do n M

for-to, for-downto =l

if-then, if-then-else div

¥ note 1 : The reserved word "forward" is not counted as an operator
because it is primarily used for implementation
consideration.

¥ ngte 2 : "of" is not counted because it is used with "set" or
"array® merely to make it English like.

note 3 : the reserved word "program" is not counted in the measure
since sach program must have one and the word contributes
nothing to the program.

note 4 : "pil" is treated as a value rather than a reserved word.

TABLE 1 Operators in PASCAL

FIGURE

o3 8

L Engtish
- B
- PL/I

0
40k j Algol 58
sel
0 I 1 —/
40F [Fartran
20 |
o L™
s0F [|
40| Pitot
20 '_‘
o .——| 1
40} Assembly
20| T
a L 1
Q 1 2 3 4
A Language Lavel
1 Frequency Distributions of A

LR |

12

CHAPTER III

EXPERIMENTS AND RESULTS
III.1 General

This chapter presents measurements of ﬁ/N and A for twelve
different programs: the nine passes of the K-State implementation
PASCAL compiler, KPASS1 to EKPASS 9, the first two passes of Hartmann's
compiler, HPASS1 and HPASS2, and the cross reference program XﬁEF.
The results are summarized in Fig. 2-16(page 23-37) at the end of this
chapter. Only the values of the ratio of ﬁ to N and part of the
values of the language level computed are shown in these figures.
~Before analyzing these results, two measurement issues are discussed:

where tc measure declarations, and how to treat constants.

IIT1.2 On Measurement of Declarations

There is no doubt that constant names (symbolic constants) play
an important role in the programming language PASCAL, Since a
constant name is declared in the constant declaration part to equate
itself to a litebal constant, the question arises as to how to count
each constant name. Should it be treated as an alias of the literal

constant it represents, or better as an object by itself?

13

It is very easy to think that a constant name and the
corresponding literal constanrt are the same and that the former merely
provides 2 different way to represent the latter. In some cases it is
true. An example is that we use the name "eol"™ to represent the ASCII
code x'05' in a PASCAL program. However, in a lot of other cases, it
is pot so. As in the implementation of a compiler, we usually use
integers for tokens; However, we may just as well use character
strings for them. If a constant name is counted as an alias of the
literal constant it represents, then the count for nj will probably
vary between the two representations of tokens. The counts should not
be different, since the logic of the program is not changed by
changing the machine representations of the tokens, It is obvious
that, in this example, the constant names are different from the
literal constants represented by them. On the other hand, it seems so
obvious that they should be treated differently. A token is a token
by itself. We do not think it as an integer when it is encoded as an
integer, and we do not think it as a characler string whea it is

encoded as a character string.

From the above discussion, we know that the constant declaration
part serves as a mapping function; it links the constant names with
their represented 1literal constants. The only reason for its
existence is that the machine doea not know how 2 constant name is
represented. In order for the compiler to generate proper codes, it
must know the primitive machine types of the constant names.
Sometimes a constant name is used as an alias of scme literal

constant; sometimes it 1is not. To make the correct judgement, one

14
must analyze the prbgram to determine‘ which case is applicable to a
constant name. This approach is not used in this project because of
the enormous amount of work involved. Rather, we performed repeated
experiments, alternately counting all coanstant names and the literal
constants which they represent as the same operand, or as different
ones. Also, the counts were repeated both with and without constant
declarations (i.e., there are four different cases for each

experiment).

As to measuring declarations, there are two different views. In
a computer everything is represented in bits. One bit 4is not
different from another. But, according to the rules built into
compiled program c¢odes, the machine knows when to use the proper
interpretation for the value saved in each memory unit. A computer
usually knows four interpretations: integers, floating-point numbers,
character strings, and bits. When we are programming, not every
object in the real enviromment is of these primitive types. We have
to map the objects in our minds to the primitive representations
available. This procedure is exactly what we do in the declaration
pért of a program. Of course, declarations also serve to avoid some

errors, such as referencing a misspelled variable in FORTRAN.

In PASCAL a type declaration is used to link an abstract object
type and its machine representation together. A variable declaration

links an object and its representation; a constant declaration links

15

an object and its represented value, Since they merely set up an
agreement between the user and the machine and do not contribute to

the implementation of an algorithm, they should be ignored.

The alternative view is the following one: The Halstead measures
for a particular program should reflect the characteristics of that
program in the language in which it 1is written, not the
characteristics of the underlying algorithm and not the
characteristics of an underlying lower level target language. When a
PASCAL program is compiled, the information from the declarations is
distributed to the operations, whence a generic operator like "+" may

become an "add-real™ in the target language. DNow, a target program
(with operators like "add-real®™) will not have the same n4...N, counts

as its source version, even though it expresses the same algorithm.
The body of a PASCAL source program (without its declarations) will
have neither the same information as the full program, nor the same
n1...N2 counts. If declarations were optional (for example, as are
some declarations in BASIC and in FORTRAN), then we could conclude
that they would be merely mental constructs which aid the programmers
in understanding a program, but they would not be an integral part of
the expression of the algorithm. We view comments in this light. On
the other hand, since declarations are essential in PASCAL and since
they contribute to the expressive power of PASCAL (by allowing
programmer defined types), they are an integral part of the expression
of algorithms in PASCAL. Hence the counts for PASCAL programs should

includ the declaratioms.

16

Yet, we observe the "ggna;ﬁ declarations serve a double purpose.
First, they declare the name and the type of a symbolic constant.
Second, they assign a literal value to the constant. We believe that
the declared constants are truely parameters of a program in the
broadest sense. That is, users may invoke instances of a program with
different parameter values 2as may be desired-=----even though most
constant values will not be <changed by wusers of a program. The
assignment of values to symbolic constants may be viewed as part of
the invocation of the program and not part of its implementation
expression. Therefore, we conclude that--at minimum=-the assignment
part of constant declarations should not be counted as part of the
n1...N2 measures. Rather, a declaration like "const A4 = 1" should be
counted as "const A : integer". This was nct done in the experiments,
but sets of measurements were taken completely ignoring the const

declarations.

The counts were made both with and without counting

declarations.

IIT1.3 Estimated Program Length

The primary measurement used in this study is program length.
The reason for this is that it is hard to Jjustify other parameters of
Halstead's complexity measure. Yet it is very easy to see how good ﬁ

is as an estimation to the real program length N. AS for the language

7
level A, we can use some Iintuition to judge the result. The

expectation is that the language level is not high.

For each program measured, the calculation is done both with and
without constant declarations. In each of the figures 2-13 shown on
page 23-34, if there are two numbers in each box, the upper one is the
one obtained with constant declarations, the other one without. When
there is only one number in a box, it means that the two ratios are

the same.

As each figure shows, the counts were made for each procedure
declaration, each procedure body, each procedure (declaration + body),
all declarations, all bodies, and the whole program. There are two
ways to count constants, i.e., (1) a constant name is counted as an
alias of its corresponding 1literal constant, (2) a constant name is
treated as an operand different from the literal constant it
represents. Not all values of the language level computed are listed
because only the four shown seem to be meaningful after some

analysis.

In each figure, the ratios shown in the two columns titled Meach
decl” and "all decl's™ are very high. This fact implies that the
estimated value ¥ is very inaccurate. This assertion is justified,
for Halstead's measure is based on algorithms only, where a
declaration only serves as a mapping function. It alone does not make

an algorithm,

18

The ratios of ﬁfﬂ under the titles "each decl™ and "each proc"

are also very high. The reason for this is that a procedure is not =z
module. A module is a stand-alone program, which constitutes an
algorithm by itself. L procedure usually is only a part of an
algorithm; thus, the measure made on a partial algorithm is nect

accurate.

The rest of the ratios ﬁ/N is put together in figure 14 and
plotted in figure 15. The mean for each category is computed. To see

how close ﬁ is to N in each category, we compute the values in the row
| o~
z}'(smu -n

programs. The smaller the value, the better the approximation ﬁ is to

titled "closeness" using the equation s where m = no of

N.

The program KPASSS5 is a procedure that prints out messages for
errors detéeted in the first four passes. In this program most of the
operands are constant names, which are the error code names, and the
character string literals, which are error message texts. The former
operands appear only twice, once in the declaration, the other in the
case statements as the case labels., Because most operands appear only
once or twice in this program, the program length is over estimated by
Halstead's method when we treat constant names differently from
literal constants. The estimation of N 1is not bad when we count
constant names as aliases of literal constants. Because of the over<—
estimation of N for program KPASSS5, we also count the mean and the
closeness of ﬁ/N for each counting method without including KPASSS.

The pursuit and the analysis as to why the estimation of N for program

19
XPASS5 is high and as to how Halstead's estimating equation can be
modified to fit the measuring of such programs are beyond the scope of
this report. When counting constant names as operands by themselveé,
the values of the language 1level computed for KPASSS are alsc very
high; compared to those obtained from other programs. The reason
might have been that there are not many distinct operators referenced

in the program KPASSS.

From figures 14 and 15(page 35-36) it is obvious that the results
obtained based on counting methods (1), (4), and (6) are the best.
The fact that two of the above three counting methods include
declarations seems to contradict the first view (ignoring
declérations} in section 2. As stated earlier, the manner as to how
to treat declarations is an open question. The arguments in section 2
were just some intuitive remarks, which were not substantiated by any
theory or fact, although they were by no means proved invalid. Since &
the prime purpose of this report is to provide a tool for Balstead's
complexity measure, no attempt is made to try to expain why the

results that include declaraticns are better.

II1.4 The Language Level of PASCAL

The values of the language level for PASCAL obtained by using the
three counting methods mentioned above are plotted in figure 16(page
37). As can be seen from the figure, except for program KPASS5, all

%Js are within the range of 2. Compared to the distributions of the

20
A's of other languages shown in figure 1(page 11), the distribution of
the language level of PASCAL obtained in this report suggests that the
E-State implementation of PASCAL is not more expressive than the other
programming languages in figure 1. That 1is, it would take as many
tokens to "speak™ in PASCAL as in PL/I. (PASCAL advocates would argue

that PASCAL has other semantic strength over FL/I.)

Some explanation -about the language level of PASCAL follows.
First, there are not many supporting functions or procedures in
PASCAL, and there is no subprogram 1library support in the original
K-State implementation of PASCAL; hence, each program must repeat the
same set of procedures necessary for its operation. Had the programs
been able to reference these procedures without having to define them,
the language 1level probably will be higher. Second, PASCAL was
designed to be a small and precise programming language. In order to
be precise, we have to use more operations to achieve what can be done
in other programming languages. The following code segment

illustrates this point:

Yar A : real;
I : integer;
begin
A := conv(I)
end;

where in PL/I, the conversion is done implicitly by saying "A=I".
'Since the language is small, we have to define a lot of functions by

our own. As an example, if A and B are two arrays of the same type

21
and we are to equate B to A&, the complexity of the implementation in

PASCAL compared to that in PL/I is quite obvicus :

PL/I PASCAL

B = 4; for i:= low_bound £o high_ bound
do B[i] := A[i];

However, there seems to be some powerful or good structures in
PASCAL that are not revealed in Halstead's measurements, such as the
with-statement and the variant record construct. Further study will

be needed to incorporate these considerations intoc the model.

III.5 Validity of Program Measure

As noted in Chapter II, all questiocns of program ihpurities were
ignored, whereas Halstead warns that impurities may invalidate the
prediction equations. One seperate and indireet measure of the
program purity is to examine the program's adherence to Zipf's law of
language [Cherry 66]. This predicts that frequency of occurrence of
each token (total number of occurrence) versus the rank order of
occurrence of each token should be a linear curve plotted on log-log
scale. (Halstead's explanation of the length equation also implies

that Zipf's law should hold seperately for operators and operands.)

Plots of the frequency-rank distribution for operator tokens and

operand tokens for some programs measured are shown in Figures 1T7=26

22
on page 38-47. Deviation of these curves from the ideal linear <forms
may indicate the extent to which the predictor equation may give
spurious results. One pattern which is evident in these curves is the
dropping off of the low frequency tokens. That is caused partially by
the single occurrence of many tokens in the program. These are
constants or variables which are declared or initailized just once and

not again ever used.

III.6 Discussion

The decision as to how to count constant names can be avoided if,
as in the language ADA, we can read the enumeration names directly.
If an object is to be wused as the alias of a literal constant, then
define the former as a constant name; if it is to be used as a
distinect operand, then define it in an enumeration. Having been able
to do so, we . could céunt all- constant names as the aliases of some

literal constants.

We believe that more time has to be spent to gain the insight
into the nature of algorithms and programs. After knowing more about
the nature of them, we would be able to adjust Halstead's model such
that it will predict the complexity of programs, as well as the

underline algorithms, more accurately.

each each each¥® all all whole
decl body proc decl's bodies pgm

! 1.87 ! | 1.70 | 2.00 ! ! 0.89 !
(v 17061 169y qiq1 120011 1% | glon 1
| 2.33 | 1 1.84 | 2,49 | | 1.03 !
(2) I 1.97 | 1462 | 1.7% | 2.13 | Lete ! 0.98 !
(4) ﬁ/ N
all whole
bodies pgm
| | 0.78 !
(1) E 1.09 ! .85 |
! ! 1.09 !
(2) }1.22) ool

(B) Language Level A

% teach proc' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value'
{2) means 'count a constant name as an distinet operand'

FIGURE 2 Measured Results of Program XREF

each each each® all all whole
decl body proc decl's bodies pgm

(1) | 156 | q.46 | 1.50 | 1.71 | 5 98 | 0.81 |
Y v olo2 1 V% 1 158 atan) %% 1 glg0 i
1 2.57 ! ! 1.81 | 2.78 | P 1.12 | .
(2) 1 2.02 | 1.51 I 1.62 | 2.26 ! 1.16 ! 1.05 !
() N/ N
all whole
bodies pgm
] t 1
1) 1 0. { 0.67 |
(1) 0.95 4 4lo7 |
! ! 1.34
(2) { 1.35 r 109 1

(B) Language. Level A

'each proc! includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value'
(2) means 'count a constant name as an distinet operand’

FIGURE 3 Measured Results of Program KPASS1

each each each® all all whole
decl body proc decl's bodies pgm

| 1.69 ! ! 1.648 | 1.97 } ! 6.82 |
(N 1 2.21) 162 F1.72 | 2.64 | 1:02 ! 0.94 !
| 2.96 | 1 2.09 | 3.32 | 1 1.25 |
(2) 1 2.22 | b1 ! 1.80 | 2.65 ! 1.3 I 1.21 |
(8) N/ N
all whole
bodies pgm
(1) | 1,09 | 0.72 i
! ! 0.88 !
' I 1.73 |
(2)] e ! 1.52 !

(B) Language Level A,

¥ 'gach proc' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value'
(2) means 'count a constant name as an distinet operand!

FIGURE &4 Measured Results of Program KPASS2

25

each each each® zll all whole
decl ©Dbody proc decl's bodies pgm

Yi20 1 0 4tz 1 2ie7 080y gt
| 2.68 ! -~ 1 2.00) 3.10 | 1 1.02 !
(2) i 212 E 132 i 2.03 3 2.69 i 2] i 1.05 i
() N/ N
all whole
bodies pgm
! 1 0.22 |
] .2 i]
(1) {027, 5136 1
|] 1
1 0-] 0o62]
(2) H o ! 0.59 !

(B) Language Level A

% 'egach proc' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value’
(2) means 'count a constant name as an distinct operand?

FIGURE 5 Measured Results of Program KPASS3

each each each* all all whole
decl body proc decl's bodies pgm

! 1.42] i 1.54% | 1.70 | | 0.64 |
(1 | 2.04 ! Ll ! 1.80 | 2.50 ! O3 i 0.73 E
| 2.66 | | 2.06 | 3.00 ! P 1.11 |
(2) 1 2.07 ! 138 | 2.10 | 2.5% | 1»38 I 1.16 |
() (A) N/ N
all whole
bodies pgm
! | 0.24 !
(1) 030} 5138 1
! | 0.78 |
(2) : 0.91 | .76 |

(B) Language Level A

® teach proc'! includes both the declaration and the body of a
procedurse

NOTE: (1) means 'count a constant name as an alias of its value!
(2) means 'count a constant name as an distinet operand!

FIGURE 6 Measured Results of Program KPASSH

each each each* all all whole
decl body proc decl's bodies pgm

) v 2i091 T2 1 qlen 1200 ! T35y 121
1 2.98 !} | 2.17 | 2.66 | I 1.59 |
(2) I 2.09 | &-29 ! 2.49 5 2.00 i 246 | 2.17 |
(1) N/ N
all whole
bodies pgm
| 3,05 1| 1.42 |
(1) = 3.05 [oot |
! | 3,96 |
(2) 1017 4 2 on

(B) Language Level A

% vgach proc' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value!
(2) means 'count a constant name as an distinct operand’

FIGURE T Measured Results of Program KPASSS

each each each¥® all all whole
decl body proc decl's bodies pgm

I 1.48 | ' 1.33 ! 1.84 ! ! 0.49 !
() 4 ilg5 1 1381 1738 1 20u3 1 953 | glug
1 2,33 | ! 1.65 | 2.76 ! ! 0.66 |
(2) E 1.96 i 1.47 5 1.55 i 2.46 i Bel % 0.66 3
(4) N/ N

all whole

bodies pgm
i ! 0.17 |
(1) = 0.21 ' 019 |
! | 0.39 !

Q.42 !

(2) , 0.82, o'37 1

(B) Language Level A

® teach proc! includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value!
(2) means 'count a constant name as an distinet cperand!

FIGURE 8 Measured Results of Program KPASS6

each each each® 2zll all whole
decl body proc decl's bodies pgm

| 1.51 ! P 1.81] 1.90 ! ! 0.31 !
1) I 1.96 i 133 i 1.48 i 2.53 5 e 5 0.55 i
| 2.44 |} } 1.79 | 2.94 | ! 0.78 !
(2) i 1.98 3 he52 i 1.65 5 2.57 i O il 5 0.79 i
(4) N/ W
all whole
bodies pgm
i ! 0.15 |
(1) : 0.16 10016 !
| | 0.38 |
(2) : 0.38 | 0,36 |

(B) Language Level A

% teaph proc' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value!'
{(2) means 'count a constant name as an distinct operand!

FICURE 9 Measured Results of Program KPASST

each each each® all all whole
decl body proc decl's bodies pgm

| 1.83 | I 1.51 | 2.03 ! ! 0.64 |
+1) | 2,03 | Taf i 1.56 5 2.54 f 02 ! 0.71 i
| 2.83 | ! 1.97 | 3.24 | 1 1.03 !
(2) 5 2.05 i Vel i 1.71 f 2.57 :l bile i 0.95 i
(4) N/ N
all whole
bodies pgm
] 1 §
T [} % 1 °-31]
(1) 4 081y 073y
I ! 0.84 |
(2) = 0.79 | 0.65 !

(B) Language Level A

'each proc' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value!
(2) means 'count a constant name as an distinet operand'

FIGURE 10 Measured Results of Program KPASS8

each each each® all all whole
decl body proc decl's bodies pgm

1.99 | 1 1.26 | 2.41 | | 0.69 |
() 2.02 | 1xhe ! 1.21 | 2.56 | W2 ! 0.75 |
| 2.74 | 1 1.49 | 3.26 | ! 0.96 |
(2) ! 2.02 ! 103 | 1.28 ! 2.60 ! B39 ! 0.88 !
(4) N/ N
all whole
bodies pgm
| 1 0.45 |
(1) : 0.58 g
| 0.8 | 0.90 |
(2) 1 0.85, 572

(B) Language Level A

% tegch proe' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value'
(2) means 'count a constant name as an distinct operand!

FIGURE 11 Measured Results of Program KPASS9

each each each®* all all whole
decl body proc decl's bodies pgm

1 I [} [] 1 I
1)1 1.64 l 1.4 i 1.55 | 1-68] 5 1 0-83
(D7 qion 1 % 1 1580 11007 1 %97 1§ T8 !

| 2.49 | | 1.84 | 2,59 | t1.18 |}
(2) | 1.96 ! T30 | 1.66 | 2.02 ! 14% I 1.03 !

(4) N/ N
all whole
bodies pgm
i ! 0.61 |
(1) 4 1034 565 |
: ! 1.22 |
(2) = 1.46 ! 0.92 |

(B) Language Level A

fgach proe' includes both the declaration and the body of a
‘procedure

NOTE: (1) means 'count a constant name as an alias of its value!
(2) means 'count a constant name as an distinet operand!

FIGURE 12 Measured Results of Program HPASS1

34

each each each® all all whole
decl body proec decl's bodies pgm

| 1.63 | | 1.60 | 1.79 | ! 0.63 !
iy i 2.29 E 1ok i 1:72 i 2.49 E .50 i 0.74 i
1 2.80 | | 2,03 | 3.03 | ! 1.03 |
(2) 1 2.29 ! 1-6% | 1.79 | 2.50 | 1.23 I 1,02 |
() N/ N
all whole
bodies pgm
1 i i
1) | 0.68 | 0.%0 |
€1 ! .6 | 0.53 !
| ! 1.18 |
(2) = 1.42 | 1.07 |

{B) Language Level A

% teach proe' includes both the declaration and the body of a
procedure

NOTE: (1) means 'count a constant name as an alias of its value!
(2) means 'count a constant name as an distinet operand!

FIGURE 13 Measured Results of Program HPASS2

39

(4) |

Summary of Some N/N values

(3) 1§

i
1

(2)

(1) i

{ PROGRAM

WO U™ NW~O OO M
902011”679800
L] - L] L

O 0NO0DOO O v~ «—

B e A A S S e e e A R e i S ——

SO ™ M OIN ™ WO =5

999?72.&.57787

» s+ ¢ 8 8 s s
000001000000

Mmam EmEm EmEm G e St e Seaw Smee SR EEw i e e e -

MOAWNQA —hoo Mo M

012015570910

. ® e 8 s e b .
111111001014}

e s G maem mmas EmGm EmEm ey ey Mo SSSH Emn Saes e e

Ne=- QN MO e VMM

388558“35585
L] L] L] L] L] . . L] L] L . L

000000 0D0O0OOCOO

e e e G S e SRR EmAE T Gmem e Sl S e . -

WO M e O
— 0 M T81912
* o 8 & ® @ .

111112001011

i e s e A S e S S -

6890353922?8
090883558898

L] . L . L L

1101001..000000

M0 O M

o =

w0 v~ 0

oo

O W0
—
- » -

- 0o

QM
713

000

M ™ -
o MM

- 00

™ b O
oy ™ v

.+ ®
oo

S Eds Rmme S e R SR e S e de e S SN e e S S e S S S

e s S MM U BN Emem R e S SRS Smes e e Em e S S e

-0 M 0 O v

qum%quququuwquuqueuuu

3499442924
R EEEEEE

!closeness®

imean#®
lvariance#®

mean&

&

variance&
closeness

i
1
i
]
1
1

m oA
?(HUHI - 1)
e S A

literal constants

not counting constant declarations .
(6) whole program, constant names <> literal constants,

not counting constant declarations

counting constant declarations
(5) whole program, constant names = literal constants,

counting constant declarations
(4) whole program, constant names <> literal constants,

(2) all bodies, constant names <> literal constants
(3) whole program, constant names = literal constants,

(1) all bodies, constant names =
closeness =- defined by the eduation

-~

14 Summary of some N/N values

the better the approximation

the smaller the value,

& calculation not including KPASS5
FIGURE

calculation including KPASSS

2.0T

1.3p

L.6f

—
.
-~

1.0p

0.4

0.61%

0.2

.
.
- 2
i -
. H
- - .
?
.
-
- .
. s .
* .
.
- H
.
.
* H
-
.
.
-
a

(1) &3 3 (%) (3 (68)

FIGURE 15 Distribution of HN/N

36

e~

37

~
)
=~
L¥]

>
~1

(A) obtained from category (1) of FIGURES 2(B)=-13(E)
5 4
2
0] ™
0 1 2 3 4 5 5 7
(B) obtained from category (4) of FIGURES 2(B)=-13(B)

-~

"~

(€)

1 2 3 5] §

obtained from category (6) of FIGURES 2(B)-13(B)

FIGURE 16 Frequency Distributions of A Experimented

(3801) Kousnboug

06 3.00 4.20 5.00 5.25 7.3a

Rank-order (log,r)

Rank-Frequency Distribution of Operators
in the Bodies of the Program XREF

38

(3%301) fKousnbouy

00 6.00 .00 8.-00

'4.00

3.o00
S i oA

2.00

1.00
I

39

oo

1.30 2.00 3.00 £.00 5.00 §.0¢C 7.00
Rank-order (logzr)
FIGURE 18 Rank-Frequency Distribution of Operands

in the Bodies of the Program XREF

§5.00

(3%801) Kouenbauy

.00

4

J.oo

2.00

L

10

1.00 2.20

FIGURE 19

.30 7.33

N

3.00 4.00 5.a0

Rank-order (log,r)

Rank-Frequency Distribution of
Operators in the Whole Program XIREF

(;2301) Kouanbaua g

5.00

.00

7.00 8
—

i VPP HORIE P ——

6.00

00

4.
I v

.00

.00

41

Q.00

.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.5

Rank-order (logor)

FIGURE 2Q Rank-Frequency Distribution of
Operands in the Whole Program XREF

(3%307) fousnbauay

B8.00

6.00 7.00

.00

[1]

4.

3.o00

wimliss

00

2.

¥
“__r—rf

—
I

!

?

h2

Bals]

FIGURE 21

2.00 3.00 4.00 5.00 6.00 .00

Rank-order (logar)

Rank-Frequency Distribution of Operators
in the Bodies of the Program KPASSY

%.39

(3%801) Kouanbaag

.00

7

mi
i

s

!
i
L

43

.30 2.00

FIGURE 22

T T T

3.00 4.00 5.9 6.00 T oz

Rank-order (log,r)

Rank-Frequency ‘Distribution of
Operators in the Whole Program KPASSY

(JaﬂoI) Aousnbauy

8.00
it

7.00

6.00

‘ 5.00

4.00

2.00
i i Ao

1.00

NP B

3.00
/_

FIGURE 23

- 00
o
(6]
o
(=]
[8]

3.00 4.00 5.00 5.00 7.40

Rank-order (logar}

Rank-Frequency Distribution of Operators
in the Bodies of the Program KPASSS

by

(3%801) Lousnbeug

.00

)
s

45

uﬂ . 00

.50

<)
<)

1.00 2.0 3.00 4,90 5.00 6.3C 7

Rank-order (log,r)

FIGURE 24 Rank-Frequency Distribution of Operands
in the Bodies of the Program KPASSS

-

.26

(Jzﬂot) £Louenbadg

00

7.00

o

T i e T T 2 2
1.00 2.00 3.60 4.00 5.00 5.20 7.00

Rank-order (log,r)

FIGURE 25 Rank-Frequency Distribution of
Operators in the Whole Program KPASSS

46

(3%801) Aouenbauy

Qo
o
“f-
g
l,_'.'i
(~]
o
©7
g i
Iﬂ.‘-
8
<37
S
F',-
[=]
[=]
o] Lj‘j_
L
g l_‘_
i
8]
%5.00 1.0¢C 2.00 3.00 4.00 5.00 5.00 7.90
Rank-order (log,r)
FIGURE 26 Rank-Frequency Distribution of

Operands in the Whole Program KPASSS

47

48
CHAPTER IV

IMPLEMENTATION
IV.1 Overview

The implementation of the S=PASCAL compiler at the Computer
Science Department of K-State consists of nine passes. The first four
passes are lexieal analysis, syntax analysis, name analysis, and
declaration analysis, in that order. VIn order to automatically
acquire information for the Halstead measure for PASCAL programs, pass
1, 3, and 4 were modified such that the output from pass 4 contains
the frequency counts for all operators and most operands. Censtant
names and literal constants are output. as intermediate code messages
as they are encounter?d in the source program. The reason for not
counting them in pass &4 is -primérily due to memory size

consideration.

The output from pass 4 must be copied onto a tape. Several
programs written in PL/I then rearrange the data, analyze the constant
names and literal constants, accumulate the counts for each operator
and operand for different experiment cases, and finally report the
statistical results. A program written in FORTRAN plots the log-log

scale figure for the operator and operand frequency counts.

The whole processing sequence is shown in Fig. 27-28 on page

56-570

49

IV.2 Why the Compiler Was Modified

In a program, the same name c¢an be defined in different places
to represent different objects. Each of these objects is a distinct
operand. The scope rule makes it clear as to when the name represents
which object. Since the scope analysis is done in pass 3 {(name
analysis), the output from this pass is. used for the operator and

operand counts.

Because of the following two reasons, we could not obtain all

the information from the output of pass 3 :

1. Some basic operators are completely gone, and it is
impossible to analyze the intermediate code to find where
they were. For example, since a multi-dimensional array is
represented as a one-dimensional array of one-dimensional
arrays, there is no way of knowing which representation the

user actually expressed.

2. Constant declarations are gone by pass 3, each reference of a
constant name has been replaced either by the value it
represents or by a constant number generated by the compiler.-
Since the use of constant names is a significant feature in
PASCAL, we want to treat them differently from the literal

constants.

An easy way to solve the first problem is to output a message as

50
each basic operator is encountered in the source code. This can be
done in either pass 1 or pass 2. Pass 1 was chosen to modify because

it was easy to modify.

For the second problem, the identification of constant names
must be done in pass 3, since constant names need to be scope analyzed

also. The approach is detailed in the next section.

IV.3 How the Compiler Passes Were Modified

In pass 1, the lexical analyzer, a unique message is output for
each of the four operands, namely, "integer"™, "boclean", "real", and
"char®", and for each operator shown in Table 1 on page 10, except for
the following. Since no semantic analysis is done in pass 1, there is
no way of knowing if a "-" is a unary operator or a binary operator.
Similar reason applies to the -operator ™+". Also, whether -the
operators "and" and M"gr®™ ("+", M=F) are used as boolean operators
(arithmetic operators) or as set operators is not known. The
identification of these operators is thus delayed until the modified

pass 4.

The determination of whether a pair of square brackets "[]" is
used for array subscription or for set representation is easy. In
pass 1, if the open square Eracket nf{m is preceded by an identifier,
it is used for array subscription; if it is preceded by an operator (

moom, mum o mg® Wapdn fop®), it is used for set bracketing.

51

In pass 3 all constant declarations are absorbed. In the output

a constant name is treated the same way as a literal constant. The
modification made for this work is to output a tcken (in the form of a
message) whenever a constant name ;s defined, to output a different
token (also in message form) when the constant name is referenced. In
both cases the token contains the unique number assigned to the
constant name. Also, each literal constant in a declaration is output

as encountered.

The hodified pﬁss 4 does not do any declaration analysis or
address calculation. It accumﬁlates the ‘counts of operators and
operands other than constants for each single declaration part and for
each single body part. The counts are output at the end of the
declaration or the body. Constant names and literal constants are
output as they are read in. The analysis of cdnstants is left to the
next step. Since the compiler introduces many internal names in pass
3, one task in pass 4 is to recognize which names are declared by the
user. After Some analysis it was found that, from the output of pass
3 each type declaration is user-defined if it is followed by the token
"type-def". Because of this fact, all types defined by the user can
be identified and counted. Other types are system-induced and thus
ignored. As to variables, those that are not declared explicitly are

system=-induced.

The problem of counting ambiguous operators not resolved in pass
1 is handled easily in pass 4 since the types are known. In the

intermediate code input to pass 4 each name token has two fields, the

52
name index, and the type index of the name. From the type index we
can determine whether a name (operand) is of set type or not. For
each of the four operators "apnd", "or", "+", and "-", it is easy to
identify which operations the operator represents. The operators are
used for set operation if the types of the operands are of set types;
otherwise, they are used for boolean or arithmetic operations. The
distinction between unary and binary operators of the tokens "+" and

"." is solved in the original pass 3.

The output from the new pass U consists of two kinds ‘of tokens:
one kind works as delimiters, the other contributes to the counts.
For each procedure the declaration part is enclosed by two distinct
delimiters. Another two delimiters are used to group the body part.
Four other delimiters are used to group the global declaration and the
main body. Between each pair of delimiters are the tokens for
constants followed by the counts for operators and other operands,
The following shows the structure of the output from the modified pass

b:

del-pain-decl-start

del-main-decl-end

del-rout-decl-start

-

del=-rout-decl-end

del-rout=-body=-start

del=-rout-body-end

-

del-main-body-gstart

del-main-body-end

The output tokens from pass

const_name_definition,

L

are

const_name_reference,

thg

53

following:

integer_value,

real_value, string value, char_value, boolean_value, nil,

counts for other operands and all operators.

and the

S4

IV.4 How The Measured Parameters Were Obtained or Calculated

411 the rest of the programs are run on IBM/370. The plotting
program is written in FORTRAN, others are written in PL/I.

The first process is to move the main program body up such that,
like all procedures, the main deelaration‘and the main body parts are

paired together.

The second process is to assign a unique number to each distinet
literal constant. Each literal constant is replaced by a new token,
the const_nc, which includes the unigque number assigned to the literal
constant. Another token is also generated for each constant name in
this process. This token is const_name_const_no link. It contains a
constant name and the constant number assigred to the literal constant
to which the name is equated. The purpose of introducing this token

is merely to ease the effort in the counting process.

In the counting process, tﬁa parameters n4, 0, Nyy N2 are
caleculated and output to a file. The four parameters are calculated
for each procedure declaration, each procedure body, each procedure,
all declarations, all bodies, and the whole program. The counting 1is
done both with and without constant declarations according to the
parameter specified in the JCL statement. The tokens
const_name_const_no_link generated in the previous process is used

when constant names are treated as aliases of literal constants.

55

The 1last process, called the report process, computes the
estimated program langth E, the language 1level A, and other
parameters for each group of the parameters (n1, Oy, N1, Nz) obtained
from the counting process and prints them. The estimated program

level L is computed using the equation

[l 3
n

Since the potential volume V# is defined as

Ve = LV

the language level A is defined as

A = Lv*,

the language level A is computed using the equation

A = Lv* = 1%y = L2,

where

? = N 108211 -

program to
be analyzed

|

PASS 1

PASS 2

PASS 3

PASS &4

56

output a message for most of the tokens
in Table 1 and the 4 operands
"integer", "real", "char", "boolean"

unchanged

output a token def_cid(cid#) for each constant name
when it is defined; output another tcken cid_ref(ecid#)
when it is referenced, cid# is a unique number
assigned to the constant name in this program;
literal constants are output unchanged

accumulate counts for operators and operands
that are not constant(literal or symbolic)
literal and symbolic constants are output unchanged

FIGURE 17 Step 1 of the Implementation

calculate
other
parameters

REARRANGE

LINKING

COUNT

tape 2

D

57

put global declaration and
main body together

resolve the link between a
constant name & its value

based on different treatments
of the constants, obtain the
frequency counts for each
operator/operand & the &4

parameters n;, n,, Nqys Ko

contains the 4 parameters

counts

\,

CALCULATE

PLOT

|

STATISTICAL

i

FIGURE 28

RANK-
FREQUENCY
FIGURE

“-\\‘h__"‘

calculated & the frequency

plot the
rank-frequency
figure

Step 2 of the Implementation

CHAPTER V

CONCLUSION

In Halstead's model, the parameters n;, , n,, Ny, Ny are cbtained
directly from the physical representation of a program. But it treats
the unary operator "=-" and the binary operator "-" as two different
operators. This distinetion seems to be based on semantic
consideration. The question arises as whether we should take into
account all_seman&ic meanings in a program when we use the model. If
so, the same operator may be counted as'different operators when it is
applied fo operands of‘dirferent types. As an example, the operator
"," can be applied to bhoth integer and real numbers; it can also be
applied to operands of type "money" or "hours". Whether the operators
+'s applied to operands of the four different types are of four

different kinds or of one kind is not clear in ;he model.

Another issue of great interest is the relationship between
algorithms and programs. An algorithm is a method used to solve some
problem. A program realizes an algorithm in the form of some
programming language. In Halstead's model, when we say "complexity",
we mean the complexity of a program. But the complexity of an
algorithm seems to be of more interest, since it directly reflects the
difficulty of the algorithm, or that of the mental process. Though
Halstead tried to estimate the time needed to understand a program,

the result was not very convincing.

59

Measuring the complexity of computer programs is a very new field
in computer science. There are a lot of unknowns to be answered.
Though Halstead's model has some shortcomings to be overcome, it does

provide a direction as to how to measure programs.

60

SELECTED BIBLIOGRAPHY

[Cherry 66] Cherry, Colin, "On Human Communication", MIT Press, 1966.

[Halstead 77] Halstead, Maurice H., "Element of Software Science",
Elsevier North-Holland 1977.

[Hartmann 77] Hartmann, Alfred C., "A Concurrent Pascal Compiler for
Minicomputers”, Lecture Notes in Computer Science 50,
Springer-Verlag 1977.

[McCabe 76] McCabe, Thomas J., "A Complexity Measure™, IEEE Trans. on
Software Engineering, vol. SE-2, NO.4, December 1976, pp.
308-320.

[Ottenstein T6] Ottenstein, Karl J., "A Program to Count Operators and
Operands for ANSI-FORTRAN Modules”, Computer Science
Department Technical Report 196, Purdue University, June
1976.

[Zweben T3] Zweben, Stuart H., "Software Physics : Resclution of an
Ambiguity in the Counting Procedure®™, Computer Science
Department Technical Report 93, Purdue University 1973.

HALSTEAD'S COMPLEXITY MEASURE ON PASCAL PROGRAMS

by

SHOU-NAN WANG

B.S. Tamkang College , 1976

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1980

Maurice H. Halstead has develcoped several measures of
program and language complexity, size, content, ete; all of
which depend upon four primary parameters, nq(unique

operataor count), ns(unique operand count), N1(total

operators), Np(total operands), which are static statisties

of programs.

This report presents a design and implementation of
extensions to Hartman's S-PASCAL compiler to measure an
approximation to' Halstead's parameters. These parameter
counts afe repeated for each procedure, and for the whole
program, Results are reported for measurements on several

programs.

