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Abstract 

The dynamic relationship between competing ecological systems has long been and will 

continue to be one of vital topics in both ecology and mathematical ecology because of its 

importance and universal existence. Mathematical modeling has become an effective tool to model 

and simulate the dynamic system, providing decision makers with strategy recommendations. 

Although a great amount of previous work has attempted to model the biological mechanisms 

including dispersal, only rarely has there been a systematic investigation on different spatial 

effects.  

The author introduces spatial games as a modeling approach with different constructions 

towards different dynamic systems in order to benefit from the systematic research on spatial 

dynamics when studying the competing ecological systems. This research developed models of 

two systems: (1) two-spotted spider mite prey-predator system; (2) tomato spotted wilt virus 

(TSWV) and west flower thrips (WFT) vector-borne disease system. 

For two-spotted spider mite system, the author presented four spatial mathematical models 

as well as a novel spatial game model to describe the spatial movement of two competing species.  

For the TSWV-WFT system, a spatial game was introduced to describe the spatial 

dynamics of adult thrips and the novel model was validated with experimental data. The author 

also gave suggestions for efficiently controlling the vector-borne disease by performing sensitivity 

analysis towards parameters. 

The major contribution of this research is to introduce spatial games as a tool to describe 

the dynamic schemes in ecological systems.  Compared to a traditional dynamic model, a spatial 

game model is more expressive and informative. This approach uses a payoff function and a 



 

movement probability function that can be adjusted based on habits, characteristics and mobility 

schemes of different competing entities, which has enriched its modeling power.  

The methodology and modeling approach used in this dissertation can be applied to other 

competing species dynamic systems, and have a broad impact on research areas related to 

mathematical ecology, biology modeling, epidemiology, pest control, vector-borne disease 

control, and ecological decision-making processes.  
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Chapter 1 - Introduction 

 1.1 Introduction and Background 

The general purpose of modeling is to help explain the mechanics of real-world 

phenomenon.  The process of modeling can be broken down to four main steps: 1) identifying the 

major variables that can explain the process, 2) identifying the main factors as physical parameters 

that are essential on governing the real-world situations, 3) building equations which describe and 

summarize the whole system, 4) validating the model [1].  It has been noted that an effective model 

should include the following features [2, 3]:  

1. Simplicity. Models with fewer variables and parameters are always more favorable 

than complicated models, since they are easier to understand and test. 

2. Reality. This is the core topic of modeling. Models should be able to illuminate the 

real-world situation. 

3. Generality. Make the model general and expressive so that it can be adapted to other 

cases. 

4. Accuracy. The purpose of the modeling is to predict the system, so validation is 

essential to test the accuracy of a model. 

Mathematical biology is a powerful field which utilizes mathematical models to explore 

data-rich information sets analyzing complex biological mechanisms and to compute and simulate 

their associated dynamic systems.  This type of modeling plays an important role in determining 

the interactions within a system which describes the properties of a physical system over time, 

such as the changes of a species population or its spatial movement pattern.  An example is 

analyzing populations where the model attempts to link individual behaviors to population 
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dynamics. This type of approach provides insights on the biological processes and predicts changes 

to the total population system.  

 1.2 Research Motivation 

Previous work has attempted to determine biological mechanisms including dispersal and 

the interaction between species.  Studying the spatial effect of the biological process, which 

includes both dispersal and species interactions, offers researchers a critical view of movement 

within populations.  Spatial effects are unique when considering the relationships between plants 

and insects.  The challenge is accurately identifying and predicting their individual actions and 

reactions to their own interactions. 

Cunniffe et al. [4] outlined thirteen specific challenges related to disease prediction and 

control in modeling plant diseases. The challenges include understanding temporal changes in host 

availability, from plant organs to populations and capturing host spatial structure, even when data 

are limited. Several methods have been attempted to reduce or prevent plant damage, such as 

releasing predators of the pest (in the case of insects), or treating with chemicals in the case of 

disease or pests. Hence, understanding the dynamics of a prey-predator system as well as the 

dynamics of the vector-borne disease system can be very important.  Considerable research has 

sought efficient control strategies to help decision makers mitigate or control the plant damage.  

Developing useful strategies can direct the needs of general biological models and methodologies 

in future mathematical research. 

For the sake of understanding the interaction mechanism of different systems to control 

plant pests, collaborative research with professors in the Department of Entomology at Kansas 

State University was developed.  This research aims to develop new spatial models to study the 
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impacts of spatial movement and interaction among species, in order to systematically investigate 

different spatial schemes.  This research includes two main ecology systems as follows:  

1. Two-Spotted Spider Mite system. The two-spotted spider mite, Tetranychus 

urticae, is a species of plant eating mites which is widely regarded as a pest. Its 

predator, Phytoseiulus persimilis, effectively controls spider mite populations. 

There are quite a few models that have been discussed for this prey-predator system. 

Specific goals are: 

• Study the dynamic system with traditional system dynamics models, and 

compare and validate different methods 

• Develop a novel spatial game model to simulate the spatial transition of prey 

and predator, and compare the new model with traditional dynamics models 

discussed earlier  

• Perform stability analysis for the system 

2. Tomato Spotted Wilt Virus (TSWV) and West Flower Thrips (WFT) vector-

borne disease system. TSWV is a virus that infects more than 1000 plant species, 

which include agronomic and ornamental crops as well as weed hosts, causing 

significant financial loss. Western flower thrips (WFT) is considered the most 

efficient vector due to its wide distribution and the overlapping host ranges with 

TSWV [5, 6]. Studying the virus-vector-host plant dynamic system can be 

beneficial to controlling the thrips population and protecting the plants. For this 

system, specific goals are: 

• Develop mathematical models for TSWV-WFT 
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• Develop a novel spatial game model to simulate the movement of adult 

thrips, and validate the model with experiment data  

• Identify key factors that impact plants infection level 

• Discuss the proper intervention strategies and seek efficient control 

strategies  

 1.3 Proposed Methodologies 

To understand the changes of species population and movement, a key task is to study their 

associated spatial effects.  Different species have different preferences regarding where they travel.  

Hence, a general approach is required to describe each mobile behavior. In this research, a new 

methodology demonstrates an application of spatial game theory into two different competing 

biological systems. The spatial game perspective considers the benefits and costs at each location 

for the species and prompts their reactions, representing the dynamics of systems.  Both modeling 

scenarios, two spotted spider mites vs. predators and TSWV vs. WFT, consist of three parts: 

1. a payoff function, which assigns different payoff values according to the preference of 

players (different species),  

2. a move probability function that controls the move likelihood and direction of the 

players based on the payoff values of each location,  

3. an interaction function that describes the relationship between each subject species. For 

instance, the function could represent the predation process for prey-predator systems, 

or the virus transmission process along with the development of the vector for vector-

borne disease systems.   
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Compared to a traditional dynamic model, a spatial game model is more general and 

informative. It can capture the different habits, characteristics and different mobility preferences 

of the different competing species. Thus, it can be extended to other systems.  

This new methodology is applied separately to each of the case scenarios: one is for the 

prey-predator system; the other is for the vector-borne disease system. The new game-based model 

was compared with traditional dynamic models and validated with experimental data.  The results 

of this research can be expanded and applied to other systematic investigations of biological 

systems with spatial dynamics. 
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 1.4 Research Map 

This research plan provides effective mathematical model for studying the spatial effect of 

biological dynamic systems.  Figure 1.1 shows a research map that describes the research objective, 

research methodologies, and potential research contributions illustrating the use of the spatial game 

approach. 

 

Contribution 2Contribution 2 Contribution 4Contribution 4

Research 

Objective

Develop mathematical model to 

systematically investigate spatial effects 

of biology dynamic systems

Prey-predator system, 

Two spotted spider mites dynamic 

system 

Vector-borne disease system, 

Western flower thrips-tomato spotted 

wilt virus system

Develop two new models, compared 

with other two existing dynamic 

models, compare and validate four 

models with experiment data

Present new mathematical model 

without spatial effect

Construct a novel spatial game 

model, compare with traditional 

dynamic model and get validated

Stability analysis, to seek the 

important factors that infect the 

dynamic system

Experimental data of 

two spotted spider 

mites system

Experimental data of 

TSWV-WFT system

Research 

Methodology

Introduce spatial game to describe 

the movement of species, validate the 

model

Seek efficient control strategies

Contribution 1 Contribution 3

 

 

 

Figure 1.1 Research map 
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 1.5 Outlines 

This dissertation is organized into the following seven chapters:  

Chapter 1) Introduction:  interest in the research subject areas. 

Chapter 2) Literature Review: for the study of prey-predator system and the vector-borne 

disease system, as well as the introduction to basic spatial evolutionary game. 

Chapter 3) Mathematical Model for Two-Spotted Spider Mites System: Verification and 

Validation: two new models are developed and compared with traditional 

dynamic model, and are validated by using experiment data.  

Chapter 4) Modeling Dynamic Evolutionary Systems Using Spatial Games: for the first 

time, the spatial game model for prey-predator system is developed and 

compared with traditional dynamic model.  

Chapter 5) Using Spatial Games to Model and Simulate Tomato Spotted Wilt Virus-

Western Flowers Thrip Dynamic: for the first time, the spatial game perspective 

is applied to vector-borne disease system with TSWV-WFT system, and the 

new model is validated with experiment data.   

Chapter 6) Conclusions, Contributions, and Future Research: the main conclusions and 

contributions are summarized and the potential future works are discussed. 
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Chapter 2 - Literature Review 

 2.1 Spatial Game  

In a classic game, there are three basic components: players, strategies, and payoffs. Each 

player rationally chooses the strategy independently based on the complete information they have 

about the game. The players should choose strategies that maximize their payoffs.  Game theory, 

as a powerful tool for modeling the interaction of decision makers, has been applied to different 

areas, for instance, economics [7, 8], supply chain [9-11], network design [12-14], and 

epidemiology [15-17]. 

The spatial evolutionary game is a combination of classic game theory and spatial effects.   

In this type of game, players at different locations may have different information, and they make 

their decisions based on an updating rule that relates to the designed payoff functions [18].  Game 

theory was first applied to evolutionary biology by Lewontin [19]. He assumed that species were 

playing games against nature in order to seek strategies that can minimize the probability of being 

extinct. Since then, significant attention has been devoted to evolutionary game theory as a 

unifying framework for studying evolution in different disciplines such as animal dispersal [20], 

plant growth and reproduction [21]. May [22] extended this concept spatially to study the evolution 

of cooperative behavior by placing the players in a two-dimensional spatial array with ever-

changing strategies. For spatial evolutionary game, several common updating rules and schemes 

are reviewed by Roca et al. [23] and Newth and Cornforth [24]. 
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 2.2 Previous Mathematical Models of Prey-predator System 

 2.2.1 General Models 

Diffusion plays an important role in the system of prey and predators. In order to improve 

the interaction of prey and predators, it is important to understand the effect of diffusion 

(movement). Since the great work of Lotka [25] and Volterra [26], modeling predator–prey 

interaction has been one of the primary themes in mathematical ecology.  The development and 

application of mathematical models become an important tool for investigating and quantifying 

such effects. The pioneering work on reaction diffusion model was introduced by Fisher [27] and 

Skellam [28]. Since then, diffusion effect in ecology and biology system has attracted much 

research attention [29-33].  

For prey-predator systems, modeling approaches using either or both of self-diffusion 

model and the cross-diffusion model are commonly presented in literature. Self-diffusion has been 

taken into consideration by a number of studies when modeling prey-predator systems [34-36]. 

The general form of self-diffusion model of prey-predator is listed below. 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) − 𝑓1(𝑢, 𝑣) + 𝐷𝑢∇2𝑢  (2.1) 

𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) − 𝑓(𝑣) + 𝐷𝑣∇2𝑣  (2.2) 

where f(u) is the birth rate function of prey and f(v) is the death rate function of predator, f1 

(u, v) represents the interaction function which leads to a decreasing number of prey and f2 (u, v) is 

the interaction function which contributes to the increases of predator. Du, Dv is the self-diffusion 

coefficient, while ∇2𝑢 and ∇2𝑣 are the Laplacian operators in two dimensions, representing the 

species movement on a 2-D grid.  
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The self-diffusion model demonstrates the movement among each group. However, the 

prey may be able to recognize the predator, and thus the prey would keep away from predators to 

avoid being caught. On the other hand, predators tend to get closer to the prey. This phenomenon 

is called cross-diffusion, first introduced by Kerner [37], where both prey and predator are using 

opposing goals. Cross-diffusion has primarily been applied to competing population dynamic 

systems by Shigesada et at. [38]. The value of the cross-diffusion coefficient may be positive, 

negative or zero. The positive cross diffusion coefficient indicates the movement of the species in 

the direction of lower concentration of another species while negative cross-diffusion coefficient 

represents a situation when one species tends to diffuse in the direction of higher concentration of 

the other species. A variety of work has been done to investigate the prey-predator system through 

utilizing cross-diffusion [39-44]. 

The general form of cross-diffusion model of prey-predator is: 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) − 𝑓1(𝑢, 𝑣) + 𝑑11∇2𝑢 + 𝑑12∇2𝑣  (2.3) 

𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) − 𝑓(𝑣) + 𝑑21∇2𝑢 + 𝑑22∇2𝑣  (2.4) 

where f(u) is the birth rate function of prey and f(v) is the death rate function of predator, f1 

(u, v) stands for the interaction function causing the decrease of prey and f2 (u, v) is the interaction 

function resulting in the increase of predator; d11 and d22 are the self-diffusion coefficients of prey 

and predator, respectively; d12, and d21 are the cross-diffusion coefficients of predator and prey, 

respectively. If d12 > 0, and d21 < 0, it means that the prey species prefer to diffuse in the direction 

of lower density of the predator species, and the predator species tends to move to the direction 

with higher concentration of the prey species.  

Cross-diffusion is able to generate many different kinds of spatiotemporal patterns.  The 

interaction of self- and cross-diffusion is considered an vital mechanism for the appearance of 
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complex spatiotemporal dynamics in ecological models [45-47]. Recognizing and analyzing these 

complex dynamics allows for a more realistic understanding of the complete biological system’s 

behavior. 

Despite the successes of the self-diffusion model and cross-diffusion model, the prey-taxis 

effect model in one dimension has also been studied extensively. ‘Taxis’ describes the 

phenomenon that individuals change their movement due to a stimulus. Prey-taxis was first 

proposed by Kareiva and Odell [48]. Later it was defined as the movement of predators controlled 

by prey density [49]. As a result of these variations in the definitions in the literature, there are two 

different understandings of prey-taxis model. One assumes that the directed movement of predator 

density is proportional to the gradient of prey density [50-54], while the other assumption is that 

the directed movement of predator density is proportional to the gradient of some stimulus [55-

57]. To resolve these possible modeling discrepancies, equations of the reaction–diffusion–

advection type are used to obtain solutions for these prey-taxis models.  

The general form of prey-taxis model in one dimension is presented below[57-60]: 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) − 𝑓1(𝑢, 𝑣) + 𝑑1

𝜕2𝑢

𝜕𝑥2  (2.5) 

 
𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) − 𝑓(𝑣) −

𝜕(𝑣𝑤)

𝜕𝑥
+ 𝑑2

𝜕2𝑣

𝜕𝑥2  (2.6) 

 
𝜕𝑤

𝜕𝑡
= 𝑇

𝜕𝑢

𝜕𝑥
+ 𝑑3

𝜕2𝑤

𝜕𝑥2   (2.7) 

where f(u) is the birth rate function of prey, f(v) is the death rate function of predator,  f1 (u, 

v) stands for the interaction function that causes the decrease of prey and f2 (u, v) is the interaction 

function that have effects on the increase of predator, w(x, t) is the velocity of the predators, d1 and 

d2 are the non-negative diffusivity constants of the prey and predator, and d3 is an effect of social 

behavior, T is the non-negative taxis coefficient that represents the sensitivity of the predators to 

the heterogeneous density distribution of prey. 
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 2.2.2 Response Function 

During the process of modeling prey-predator systems, a substantial element of the prey-

predator relationship is the response function denoted by f(u,v) in the models. There are two 

common types of functional response: prey-dependent and predator-dependent. Prey-dependent 

means that the sole determining factor of the functional response is prey density, while the 

predator-dependent response function relies on both prey and predator densities. In most current 

research, the prey-dependent function plays a fundamental role in predator-prey theory, such as 

Holling's Type functional response [61-69], which includes Holling type I-III originally introduced 

by Holling [70, 71] and Holling type IV presented by Andrews [72].  The Holling type response 

function has attracted significant attention in population dynamics of prey-predator systems. The 

Holling- type II , III and Holling type IV response functions are listed here: 

• 𝑓(𝑢, 𝑣) =
𝑚𝑢

1+𝑏𝑣
 , Holling- type II function; 

• 𝑓(𝑢, 𝑣) =
𝑚𝑢2

1+𝑎𝑢2 , Holling- type III function; 

• 𝑓(𝑢, 𝑣) =
𝑚𝑢

1+𝑏𝑢+𝑎𝑢2 , Holling type IV function. 

However, researchers have argued that the functional response should depend on both prey 

and predator densities when predators need to search for food and then share or compete for food.   

The predator-dependent functional response includes both predator and prey densities. There is 

substantial evidence indicating that predator-dependent functional responses are frequent 

occurrences, both in laboratory and natural systems [73], and they are more realistic than 

dependence only on absolute prey density [74].  A number of researchers have discussed the 

predator dependent response function for different systems [75-87]. One of the most popular 

functional responses is the Beddington-DeAngelis functional response [73, 88-93], which is 
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originally proposed by Beddington [78] and DeAngelis et al. [81]. The function is noted as: 

𝑓(𝑢, 𝑣) =
𝑢𝑣

𝜕+𝛽𝑢+𝛾𝑣
 .  

To resolve any concerns in the differences between the models, some scholars compare 

their model with different response functions, both prey-dependent and predator-dependent. For 

instance, the response functions that have been discussed by Chakraborty et al. [49] are listed here: 

• 𝑓(𝑢, 𝑣) =
𝑢

∅+𝑢
; where is the level of prey at which half of the maximum 

consumption rate occurs. 

• 𝑓(𝑢, 𝑣) =
𝑢

∅+𝑢+𝛽𝑣
; where β is the predator interference constant. 

• 𝑓(𝑢, 𝑣) =
𝑢

(∅+𝑢)(1+𝛽𝑣)
; 

• 𝑓(𝑢, 𝑣) =
𝑢

(∅+𝑢)
(1 − (1 − 𝜇𝑢)𝑒−𝜇𝑢); where μ is a constant 

 2.2.3 Summary 

Considerable research into prey-predator systems has created a foundation of effective 

modeling of these types of biological systems. What is clear is that such models must be 

customized to apply to their specific biological systems.  As an extension of current research, there 

are unique characteristics when multiple species are involved in the same environment.  The effort 

in this research was to uncover a more general predator-prey modeling approach that would be 

effective in simulating prey-predator dynamic systems. Also, the author compared four traditional 

dynamical models, which systematically discussed the different spatial effects that impact prey-

predator systems.  
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 2.3 Previous Mathematical Models of Tomato Spotted Wilt Virus and 

Western Flower Thrips System 

Even though the tomato spotted wilt virus (TSWV) and western flower thrips (WFT) have 

created significant global economic loss, the mathematical modeling research for this specific plant 

disease system is very limited. There are only a few models that have considered the complex 

interactions among the virus-vector-host plant. Jones et al [94] summarized that there were only 

two published papers [95, 96] involving thrips vector when modeling the TSWV epidemics by 

2010.  Several models have been developed since then, but most of them only concentrated on 

biology perspective, such as the analysis of weather condition influences [97-101] and temperature 

influences [102, 103].  The work presented in Section 5.2 serves as the first study to model and 

simulate the TSWV-WFT systems which emphasized the transmission characteristics in the 

mutual interaction among virus-vector-host plants. Most recently, Ogada er al [104] proposed a 

predictive model that considered WFT’s specific life cycle and preference of behavior of thrips 

towards host plants.  

For the TSWV and WFT systems, the virus spread and transmission is impacted by a 

variety of factors such as development rate, mortality rate and preferential behavior of the vector 

[105-110]. Mathematical models help to quantify the virus-vector-host plant dynamic process. In 

this study, Chapter 5 is the first work that has attempted to construct mathematical models for this 

specific system and further employs the spatial game approach and validated using experimental 

data.  
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Chapter 3 - Mathematical Model for Two-Spotted Spider Mites 

System: Verification and Validation 

Chapter 3 is based on the paper “Mathematical Model for Two-Spotted Spider Mites System: 

Verification and Validation” published in Open Journal of Modeling and Simulation (2017), 5: 13-

31. 

 Abstract 

This paper presents and compares four mathematical models with unique spatial effects for 

a prey-predator system, with Tetranychus urticae as prey and Phytoseiulus persimilis as predator. 

Tetranychus urticae, also known as two-spotted spider mite, is a harmful plant-feeding pest that 

causes damage to over 300 species of plants. Its predator, Phytoseiulus persimilis, a mite in the 

Family Phytoseiidae, effectively controls spider mite populations. In this study, we compared four 

mathematical models using a numerical simulation. These models include two known models: 

self-diffusion, and cross-diffusion, and two new models: chemotaxis effect model, and integro 

diffusion model, all with a Beddington-DeAngelis functional response. The modeling results were 

validated by fitting experimental data. Results demonstrates that interaction scheme plays an 

important role in the prey-predator system and that the cross-diffusion model fits the real system 

best.  The main contribution of this paper is in the two new models developed, as well as the 

validation of all the models using experimental data. 

 3.1 Introduction 

The two-spotted spider mite, Tetranychus urticae, is a species of plant-feeding mites 

generally considered to be a pest. It is the most widely known member of the Family Tetranychidae 
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and is a harmful pest in greenhouses and on field-grown crops. Previous reports have stated that 

Tetranychus urticae infests over 300 species of plants, including ornamental plants such as 

arborvitae, azalea, camellia, citrus, evergreens, hollies, ligustrum, pittosporum, pyracantha, rose, 

and viburnum; fruit crops such as blackberries, blueberries, and strawberries; and vegetable crops 

such as tomatoes, squash, eggplant, and cucumber [111].  

Insects have three pairs of legs and three body regions (head, thorax, abdomen), but 

throughout most life stages, spider mites have four pairs of legs and one body region. Tetranychus 

urticae is distinguishable by two large dark green spots on the dorsal area of the abdomen. 

Depending on the host plant and other environmental factors, such as temperature and light, the 

color of Tetranychus urticae varies from light green, dark green, brown, black, and orange [60]. 

The population of Tetranychus urticae completes a generation every 7–10 days, depending on the 

temperature. They have five stages of development: egg, larva, protonymph, deutonymph, and 

adult [112]. 

Predators beneficially regulate spider mite populations. Five species of spider mite pred-

ators are commercially available in the United States for crop protection: Phytoseiulus persimilis, 

Mesoseiulus longipes, Neoseiulus californicus, Galendromus occidentalis, and Amblyseius 

fallicus. Predatory mites are distinguishable from spider mites due to longer legs, a more active 

life, and a faster pace of movement. Predators are often red or orange in color [111]. Phytoseiulus 

persimilis, the most common predator of all stages of mites, is thought to originate from the 

Mediterranean or South America, but, since the 1960s, it has been established worldwide as a 

biological control agent, primarily for two-spotted spider mites. Phytoseiulus persimilis tolerates 

hot climates if relative humidity remains between 60 and 90 percent. This predator can consume 

20 eggs or five adults daily; females consume much more than immature and adult males. Each 
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female can produce 60 eggs in her lifetime. Phytoseiulus persimilis has five developmental stages: 

egg, nonfeeding larva, protonymph, deutonymph, and adult [112]. However, it often needs to be 

reintroduced because it relies exclusively on mites for food, eventually consuming all available 

prey. This beneficial mite is commercially available and commonly released against Tetranychus 

urticae [111]. 

Previous work has attempted to determine biological mechanisms, including dispersal, 

underlying mechanism of the spider mite-Phytoseiulus persimilis interaction. When diffusion is 

introduced into a prey-predator system, both species attain uniform distributions in the domain 

after certain time. Diffusion acts as a stabilizer in a reaction-diffusion system [113]. Under certain 

conditions, however, diffusion can destabilize the process, leading to non-uniform distribution in 

a prey-predator system. This destabilization is known as diffusion-driven instability [30].  

Similar to predator interference and relative diffusion, another factor, called prey-taxis, 

introduce instability into this domain, and leading to the formation of spatial patterns. In the Lotka-

Volterra logistic prey-predator model with prey-taxis, Sapoukhina et al [57]. demonstrated that 

“predators respond to the heterogeneity of the prey density by accelerating toward the localities 

where the prey is abundant, resulting in predator aggregation.” 

Phytoseiulus persimilis responds to odors released from leaves infested by Tetranychus 

urticae. Sabelis and Weel [114] discussed behavioral mechanisms of this predator by odor 

perception and how it contributes to prey identification. They observed the predators’ walking 

paths in still air and in an air stream uniformly permeated with or without prey-related odor stimuli. 

According to Sabelis and Weel, “the anemotactic responses observed are therefore both odour-

conditioned and (feeding) state-dependent.” An anemotactic response of starved predators may 

help them find clusters of spider mite colonies [115].  
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This paper presents and compares four prey-predator models with distinctive spatial effects 

as they apply to a two-spotted spider mite and Phytoseiulus persimilis system. The paper is 

organized as follows. Section 3.2 presents the four models, i.e. self-diffusion model, cross-

diffusion model, chemotaxis effect model, and integro-diffusion model for a Tetranychus urticae 

and Phytoseiulus persimilis prey-predator dynamic system. Section 3.3 presents simulation results, 

and Section 3.4 compares experimental data with simulated data from various models. Section 3.5 

discusses numerical simulation and model validation.  

 3.2 Mathematical Models 

The dynamic relationship between predator and prey is a central ecological matter and a 

primary concern when modeling prey-predator interactions. A significant component of the prey-

predator relationship is the functional response, which indicates the average number of prey killed 

per predator per unit of time. Two types of functional response are common: prey-dependent and 

predator-dependent. Prey-dependent implies that the functional response depends only on prey 

density; in a predator-dependent response, the function of response depends on both prey and 

predator densities. In the literature, the prey-dependent function has served as the basis for 

predator-prey theory, such as Holling's Type II functional response [116]. However, researchers 

have argued that when predators must search for food and then share or compete for food, the 

functional response should depend on both prey and predator densities. Considerable evidence 

suggests that predator-dependent functional responses occur quite frequently in laboratory as well 

as in natural systems [117]. One of the most popular functional responses is the Beddington-

DeAngelis functional response [89, 118], originally proposed by Beddington [78] and DeAngelis 

et al. [81]. The function is noted as 
𝑥𝑡𝑦𝑡

𝛼+𝛽𝑥𝑡+𝛾𝑦𝑡
. This paper employs the Beddington-DeAngelis 

response function under an assumption that the predator Phytoseiulus persimilis must search for 
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food. The logistic growth function is also employed for a prey system. The basic model is presented 

in Equation (3.1-3.2): 

𝜕𝑢

𝜕𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) −

𝑎𝑢𝑣

𝑏+𝑢+𝑐𝑣
 (3.1) 

𝜕𝑣

𝜕𝑡
=

𝑒𝑎𝑢𝑣

𝑏+𝑢+𝑐𝑣
− 𝑑𝑣 (3.2) 

Where 

u(t), v(t): spider mite and Phytoseiulus persimilis densities at time t, respectively 

r: intrinsic growth of spider mites 

K: carrying capacity of spider mites 

e: conversion rate of prey to predator 

d: death rate of Phytoseiulus persimilis 

a: maximum consumption rate 

b: saturation constant 

c: factor to scale the impact of predator interference. 

Let 𝛼 =
𝑐𝑟

𝑎
, 𝛽 =

𝑏

𝐾
, 𝛾 = 𝑐𝑒, 𝛿 =

𝑑𝑐

𝑎
. 

After manipulation, the following polynomial form is obtained: 

𝜕𝑢

𝜕𝑡
= 𝛼𝑢(1 − 𝑢)(𝛽 + 𝑢 + 𝑣) − 𝑢𝑣  (3.3) 

 
𝜕𝑣

𝜕𝑡
= 𝛾𝑢𝑣 − 𝛿𝑣(𝛽 + 𝑢 + 𝑣)  (3.4) 

This dynamic relationship is demonstrated in Figures 3.1 and Figure 3.2 which present two 

snapshots of dynamic simulation with the parameter α = 0.5, δ= 0.3, γ= 0.8 and an initial density 

for prey of 0.209 while the initial density for predator is 0.2203; maximum simulation time is 2000. 

Figure 3.1(a) and Figure 3.2(a) demonstrate the density of prey and predator changes through time, 
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while the red line represents of density of prey, and the blue line represents the density of predator. 

Figure 3.1(b) and Figure 3.2(b) demonstrate the trajectory of the dynamical system. 

 

 

Figure 3.1 Snapshot of dynamic simulation when t = 1010, β = 0.038. 

 

 

 

Figure 3.2 Snapshot of dynamic simulation when t = 1010, β = 0.066. 

 

According to Figure 3.1 and Figure 3.2, beta is correlated to the system stability. The 

system is unstable as shown in Figure 3.1 when β=0.038 and the system is stable when β=0.066. 

(a)                                                  (b) 

                 (a)                                                 (b) 
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This paper fits the dynamic system (3.3-3.4) into four models: self-diffusion model and 

cross-diffusion model which are based on existing formulations, and chemotaxis effect model and 

integro diffusion model which are part of the contribution of this paper. These models are presented 

in the following sections. 

 3.2.1 Self-Diffusion Model 

The tendency for a species to move in the direction of lower species density is called self-

diffusion [43]. A general form of a self-diffusion model for a prey and predator system is presented 

as follows: 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) − 𝑓1(𝑢, 𝑣) + 𝑑1∇2𝑢  (3.5) 

𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) − 𝑓(𝑣) + 𝑑2∇2𝑣  (3.6) 

Where: 

f(u): birth rate function of prey 

f(v): death rate function of predator 

f1(u,v): interaction function effect on the decrease of prey  

f2(u,v): interaction function effect on the increase of predator 

d1: self-diffusion coefficient for prey 

d2: self-diffusion coefficient for predator 

∇2: usual Laplacian operator in two dimensions. 

For the Beddington-DeAngelis response function and logistic growth function, the corre-

sponding polynomial form becomes: 
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𝜕𝑢

𝜕𝑡
= 𝛼𝑢(1 − 𝑢)(𝛽 + 𝑢 + 𝑣) − 𝑢𝑣 + 𝑑1∇2𝑢  (3.7) 

 
𝜕𝑣

𝜕𝑡
= 𝛾𝑢𝑣 − 𝛿𝑣(𝛽 + 𝑢 + 𝑣) + 𝑑2∇2𝑣  (3.8) 

 3.2.2 Cross-Diffusion Model 

Although the self-diffusion model demonstrates that the movement within a given species 

is independent of other species, prey may recognize predators and respond by moving away to 

avoid capture by predators in predator-prey systems. However, if predators recognize prey, this 

recognition may affect the rate or direction of their movement, thereby helping the predators find 

prey. This phenomenon, known as cross-diffusion, has recently received significant attention, as 

described in [39, 119-121]. Value of the cross-diffusion coefficient may be positive, negative, or 

zero. A positive cross-diffusion coefficient denotes species movement in the direction of lower 

concentration of another species. A negative cross-diffusion coefficient indicates that one species 

tends to diffuse in the direction of higher concentration of another species. 

The general form of a cross-diffusion model for prey-predator interactions is presented as 

follows: 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) − 𝑓1(𝑢, 𝑣) + 𝑑11∇2𝑢 + 𝑑12∇2𝑣  (3.9) 

𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) − 𝑓(𝑣) + 𝑑21∇2𝑢 + 𝑑22∇2𝑣  (3.10) 

Where: 

f(u): birth rate function of prey  

f(v): death rate function of predator 

f1(u,v): interaction function effect on the decrease of prey  
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f2(u,v): interaction function effect on the increase of predator  

d11 and d22: self-diffusion coefficients of prey and predator, respectively 

d12 and d21: cross diffusion coefficients of predator and prey, respectively. 

If d12 > 0 and d21 < 0, then the prey species tends to diffuse in the direction of lower con-

centration of the predator species and the predator species tends to diffuse in the direction of higher 

concentration of the prey species. Using the Beddington-DeAngelis response function and logistic 

growth function, the corresponding polynomial form becomes: 

𝜕𝑢

𝜕𝑡
= 𝛼𝑢(1 − 𝑢)(𝛽 + 𝑢 + 𝑣) − 𝑢𝑣 + 𝑑11∇2𝑢 + 𝑑12∇2𝑣  (3.11) 

 
𝜕𝑣

𝜕𝑡
= 𝛾𝑢𝑣 − 𝛿𝑣(𝛽 + 𝑢 + 𝑣) + 𝑑21∇2𝑢 + 𝑑22∇2𝑣  (3.12) 

 3.2.3 Chemotaxis Effect Model 

A large number of insects, animals, and humans rely on smell to convey information 

between species members. Predatory mites respond to volatile chemicals released by plants 

infested with spider mites, as shown in experiments using Y-tube olfactometers and chemical 

analyses [30]. Previous research work has investigated the attraction mechanism between 

Phytoseiulus persimilis and herbivore-induced plant volatiles [122-125]. For example, Michiel van 

Wijk confirmed that P. persimilis identifies chemical compounds in odor mixtures but the 

predators possess a limited ability to identify individual spider mite-induced plant volatiles in odor 

mixtures. Therefore, predatory mites have to learn to respond to prey-associated odor mixtures 

[125]. This section models this chemically-directed movement, or chemotaxis effect. 
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The predator-prey model with chemotaxis effect can be written as: 

𝜕𝑢

𝜕𝑡
= 𝛼𝑢(1 − 𝑢)(𝛽 + 𝑢 + 𝑣) − 𝑢𝑣 + 𝑑1∇2𝑢  (3.13) 

 
𝜕𝑣

𝜕𝑡
= 𝛾𝑢𝑣 − 𝛿𝑣(𝛽 + 𝑢 + 𝑣) −

𝜕(𝑣𝑤)

𝜕𝑥
−

𝜕(𝑣𝜒(𝑎)
𝜕𝑎

𝜕𝑥
)

𝜕𝑥
+ 𝑑2∇2𝑣  (3.14) 

 
𝜕𝑤

𝜕𝑡
= 𝑇

𝜕𝑢

𝜕𝑥
+ 𝑑3∇2𝑤  (3.15) 

Where: 

u(x, t): population density of prey 

v(x, t): population density of predator 

w(x, t): velocity of predators 

a(x, t): presence of a gradient in an attractant 

χ(a): function of the attractant concentration 

d3: effect of social behavior  

T: sensitivity coefficient of predators to heterogeneous density distribution of prey. 

 3.2.4 Integro Diffusion Model 

Integro-differential equations (IDEs) share continuous-space and continuous population 

assumptions of partial-differential equation (PDE) models. The PDE model focuses on localized 

movement (diffusion) of individuals, while IDE models focus on long-range movement. In this 

case, both prey and predator can move a long distance. 

The predator-prey model with IDE can be written as: 
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𝜕𝑢(𝑥)

𝜕𝑡
= 𝛼𝑢(1 − 𝑢)(𝛽 + 𝑢 + 𝑣) − 𝑢𝑣 − ∫ 𝑢(𝑥)𝐾1(𝑥 − 𝑦)

 

𝑦∈𝐷
𝑑𝑦 + ∫ 𝑢(𝑦)𝐾1(𝑥 −

 

𝑦∈𝐷

𝑦) 𝑑𝑦  (3.16) 

 
𝜕𝑣(𝑥)

𝜕𝑡
= 𝛾𝑢𝑣 − 𝛿𝑣(𝛽 + 𝑢 + 𝑣) − ∫ 𝑣(𝑥)𝐾2(𝑥 − 𝑦)

 

𝑦∈𝐷
𝑑𝑦 + ∫ 𝑣(𝑦)𝐾2(𝑥 − 𝑦)

 

𝑦∈𝐷
𝑑𝑦 

(3.17) 

Where 𝐾1(𝑥 − 𝑦) = 𝐾2(𝑥 − 𝑦) =
1

4𝜋𝜇𝑇
exp [−

𝑥2+𝑦2

4𝜇𝑇
] 

Equation (3.16-3.17) considers movement from all points in space D (labeled y in the 

integral) to point x. T is the dispersal time of each species, and µ is a species parameter describing 

the diffusivity, or rate of dispersal, of each population. Movement rate, assumed to vary with 

distance, is described by kernel function K1 and K2. Kernel function defines how movement rate 

decreases with distance, thus offering greater flexibility than the PDE model. Therefore, predation 

can occur over a variety of scales instead of being a local event. 

 3.3 Numerical Simulation 

In this section, dynamic simulations are performed with the four discussed models. The 

simulation is performed on a two-dimensional lattice with 100 x 100 cells. Spacing between each 

lattice cell was 1.25-unit distance, and the timing step was 0.05. Laplacian diffusion was calculated 

using finite difference, and Neumann boundary conditions were employed. The parameter used 

[43] was α = 0.5, β = 0.128, γ = 0.8, δ = 0.3, d11 (d1) = 0.01, d22 (d2) = 1, d12 = 0.005, and d21 = -

0.001. Additional parameters for the chemotaxis effect model were d3 = 0.005, T = 0.01, for integro 

diffusion model were µ=0.051, T=2.5. 
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 3.3.1 Prey and Predator Density Simulation 

Prey and predator densities were compared at fixed locations of (50, 50) and (90, 90) within 

a 100 x100 grid. The simulation ran 10000 iterations with initial prey density 0.5 and predator 

density 0.2. Results of the self-diffusion model, cross-diffusion model, chemotaxis effect model, 

and integro diffusion model are shown in Figures 3.3–3.6, respectively. In all four figures, the left 

subfigure (a) represents prey and predator densities at the location (50, 50) and the right subfigure 

(b) represents these densities at the location (90, 90). 

 

Figure 3.3 Prey and predator density for self-diffusion model, x axis is iteration time 

while y axis is the density of prey and predator. 

 

 

Figure 3.4 Prey and predator density for cross-diffusion model, x axis is iteration time 

while y axis is the density of prey and predator. 
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Figure 3.5 Prey and predator density for chemotaxis effect model, x axis is iteration 

time while y axis is the density of prey and predator. 

 

 

Figure 3.6 Prey and predator density for integro diffusion model, x axis is iteration 

time while y axis is the density of prey and predator. 

 

Simulation results in Figures 3.3–3.6 show that the chemotaxis effect model differs 

significantly from the other three models. The chemotaxis effect system did not achieve steady 

state by 10000 iterations, while the other three dynamic systems achieved steady state at 

approximately 4000–6000 iterations. The reason for this could be predatory mites move faster 

toward the higher density of prey area when attraction odors are present for predatory mites, 

thereby weakening system stability. 
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 3.3.2 Pattern Simulation 

This section presents simulated patterns of formation among models. Using stable state as 

the initial condition, simulations were run with 0, 100000, and 20000 iterations. Corresponding 

results are shown in subfigure (a), subfigure (b), and subfigure (c) of Figures 3.7–3.10. Simulated 

results for self-diffusion, cross-diffusion, chemotaxis effect, and integro diffusion models are 

shown in Figures 3.7, 3.8, 3.9, and 3.10, respectively. 
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Figure 3.7 Patterns of prey and predator in self-diffusion model: (a) 0 iteration, (b) 

10000 iterations, and (c) 20000 iterations. Prey population is shown on the left, and predator 

population is shown on the right. 

 

 

a a 

b b 

c c 
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Figure 3.8 Patterns of prey and predator in cross-diffusion model: (a) 0 iteration, (b) 

10000 iterations, and (c) 20000 iterations. Prey population is shown on the left, and predator 

population is shown on the right. 

 

b b 

a a 

c c 
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Figure 3.9 Patterns of prey and predator in chemotaxis effect model: (a) 0 iteration, 

(b) 10000 iterations, and (c) 20000 iterations. Prey population is shown on the left, and 

predator population is shown on the right. 

 

b b 

a a 

c c 
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Figure 3.10 Patterns of prey and predator in integro diffusion model: (a) 0 iteration, 

(b) 10000 iterations, and (c) 20000 iterations. Prey population is shown on the left, and 

predator population is shown on the right. 

 

From Figures 3.7 – 3.10, it could be concluded that different spatial effect played important 

role towards the dynamic system. Using the chemotaxis effect model shows a larger range of 

b b 

a a 

c c 
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density distributions of prey and predator than that of the other three models when they all began 

from the same steady state. For instance, after 20000 iterations, the difference of density 

distribution of prey is around 0.45 for chemotaxis effect model while that for other models is 

around 0.0045, and the density distribution difference of predator is about 0.05 for chemotaxis 

effect model while that of predator for other models is about 0.0005. This indicates that chemotaxis 

introduces more instability into the model. On the other side, the pattern for the integro diffusion 

model differed significantly from the other models, which is consistent with the model assumption 

that prey and predator system has long-range interaction during their movement. The simulation 

results verified the assumption of different spatial effect models and confirmed that different 

interaction scheme plays an important role in this prey-predator system.  

 3.4 Validation 

 3.4.1 Introduction of the Experiment 

This experiment, conducted by the entomology department at Kansas State University, was 

carried out on 24 individually-potted lima beans plants set in 8x3 arrays, with Phytoseiulus 

persimilis as predator and Tetranychus urticae as prey. The experiment lasted four weeks, and the 

total number of two-spotted spider mites and predator were counted every six days. Table 3.1 lists 

the total number of observed prey (Tetranychus urticae) and predator numbers in 24 days. 
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Table 3.1 Total number of prey and predator every six days 

 

Times/Days 
Observations 

Number of prey Number of predator  

0 64 6 
 

6 458 6 
 

12 490 13 
 

18 2238 67 
 

24 1954 239 
 

 

 3.4.2 Comparison of Total Number of Prey and Predator 

This section compares the number of two-spotted spider mites and its predator using a 

simulated model with the experimental (actual) observations. Parameters in Equation (3.1) -(3.2) 

for simulation were α = 20, b = 105, c = 45, d = 0.3, e = 0.25, r = 0.38, K = 800.  

Simulation results are shown in Figure 3.11- Figure 3.14, where the dotted curve represents 

actual data from the experiment and the solid curve represents the number of prey and predator 

calculated from the simulated models.  The number of prey comparison is presented on the 

subfigure (a) while the number of predator comparison is presented in the subfigure (b) of each 

figure. 
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Figure 3.11 Comparison of simulated numbers from the self-diffusion model with 

experiment observations in 24 days 

 

 

a) 

b) 

(b) 

(a) 
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Figure 3.12 Comparison of simulated numbers from the cross-diffusion model with 

experiment observations in 24 days 

 

a) 

b) 

(a) 

(b) 

(

a) 
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Figure 3.13 Comparison of simulated numbers from the chemotaxis effect model with 

experiment observations in 24 days 

 

a) 

b) 

(a) 

(b) 
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Figure 3.14 Comparison of simulated numbers from the integro diffusion model with 

experiment observations in 24 days 

 

From Figure 3.11 to Figure 3.14, we can see that the total number of prey has good fit while 

the total number of predator does not have the same good fit.  In order to compare the results 

numerically, we performed statistical analysis comparing the simulation results with observations. 

This analysis employs Root Mean Squared Error (RMSE). RMSE is a measure of how close a 

a) 

b) 

(a) 

(b) 
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fitted line is to data points. The use of RMSE is very common and makes an excellent general 

purpose error metric for numerical predictions. The statistical analysis is presented in Table 3.2 

and Table 3.3. 

Table 3.2 RMSE of the number of prey between predicted value and observations 

Time/Days 

Different Models    

Observations of 
Prey 

Self-Diffusion 
Cross-

Diffusion 

 

Chemotaxis  

Effect 
Integro Diffusion 

0 64 64 64 64 64 
 

6 458 266 267 268 301 
 

12 490 1016 990 1285 1543 
 

18 2238 2116 2107 2134 1761 
 

24 1954 2171 1774 1802 1517 
 

RMSE  306.59 289.83 418.93 622.49 
 

 

Table 3.3 RMSE of the number of predator between predicted value and observations 

Time/Days 

Different Models    

Observations of 

Predator 
Self-Diffusion Cross-Diffusion 

Chemotaxis 

Effect 
Integro Diffusion  

0 6 6 6 6      6  

6 6 8 7 5      4  

12 13 11 11 48     93  

18 67 175 152 412     433  

24 239 417 386 588     488  

RMSE  104.16 84.85 245.97     224.72  

 

Results show that the cross-diffusion model fits the two-spotted spider mite system best, 

with the smallest RMSE compared to the other three models for both prey and predator number 

prediction. The integro diffusion model had the largest RMSE for prey number prediction while 

the chemotaxis effect model had the largest RMSE for predator number prediction. 
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 3.5 Conclusions 

This paper presented and analyzed four mathematical models with the Beddington-

DeAngelis functional response [78, 81, 89, 118] for Tetranychus urticae and Phytoseiulus 

persimilis prey-predator system. The four models were the self-diffusion model, the cross-

diffusion model, the chemotaxis effect model, and the integro-diffusion model. Simulation results 

were shown using a numerical example. One conclusion obtained from the results is that different 

spatial effects impact the prey-predator distribution, since the integro-diffusion model exhibit a 

significantly differently pattern than the other three models. 

Another conclusion could be made is the two proposed models were theoretically rea-

sonable. According to the simulation, the chemotaxis effect model was not as stable as the other 

three models, affirming that predator mites move faster and further when presented with attracting 

odors, thereby reducing system stability. The chemotaxis effect model lack of stability was also 

derived from the pattern formation simulation result. The result shows the range of density 

distribution of the chemotaxis effect model was much larger than that of the other three models 

when all models began from an identical steady state. On the other hand, the pattern for the integro 

diffusion model differed from the other models, which is consistent with the model assumption 

that prey and predator has long-range interaction during their movement. 

In the validation process, results showed that all four models have good fit with the real 

system, with the cross-diffusion model having the best fit. For a future research, we plan to develop 

an agent-based model [126-128] to simulate interactions and predict the key parameters in order 

to offer suggestions on controlling the number of predators. Also, future expansion of this research 

can consider applying optimal control theory [129, 130] to provide decision makers with better 

policies of controlling the population of the two-spotted spider mites. Spatial games which have 
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been adopted to analyze various structure of populations [131, 132], also present a future 

expansion of our research. 
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Chapter 4 - Modeling Dynamic Evolutionary Systems using Spatial 

Games  

Chapter 4 is based on the paper “Modeling Dynamic Evolutionary Systems using Spatial Games” 

submitted to Mathematical and Computer Modeling of Dynamical Systems.  

 Abstract 

Modeling the dynamics of evolutionary competing species on a physical grid is a 

challenging modeling problem. This paper presents a novel modeling approach for synthesizing 

evolutionary dynamics of competing species using a spatial game perspective. This modeling 

approach describes the movement of players (‘species’ in our context) across a lattice.  The model 

is based on a payoff function which controls the move likelihood and direction of the players 

(‘predators’ and ‘preys’). Using simulated results, the paper provides a comparison between the 

spatial game model and an existing predator-prey dynamic model. Finally, a case study is 

presented to illustrate the applicability of this formalism and validate the model.  

 4.1 Introduction 

Spatial games are a combination of traditional game models and cellular automata, 

representing strategies, players, payoff function, structure of population, and updating rules. This 

methodology has been adopted to analyze various structures of populations [131-133]. This paper 

introduces for the first-time spatial games as a modeling approach towards a system of 

evolutionary dynamics representing predator and prey.  

The dynamic relationship between prey and its predator has long been and will continue to 

be one of the popular topics in both biology and mathematical biology because of its importance 
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and universal existence. A large body of research has been devoted to modeling the biological 

mechanisms of dispersal, and the underlying prey and predator interaction.  

Traditional modeling approaches use mathematical formulations and include various 

diffusion models. Introducing diffusion into a prey-predator system usually results in both species 

eventually reaching homogeneous distributions in the domain. Thus, diffusion models act as a 

stabilizer in a reaction-diffusion system [113]. Under certain conditions, however, diffusion can 

destabilize the process, leading to non-uniform distribution in a prey-predator system. This 

destabilization is known as diffusion-driven instability [30]. Traditional models have also 

considered influences such as odor [57, 114, 115, 122-125] and mobility effect [134].  

Compared to a traditional dynamic model, a spatial game model is more expressive and 

informative. It can capture the different habits and characteristics of the competing species and can 

be extended to other systems. It can also capture different mobility preferences of the species. For 

instance, the game-based perspective can be used to model the self-diffusion, cross-diffusion, 

chemo-taxis effect or even longer distance movement, that has previously discussed [135]. 

In this paper, the new approach is discussed and validated by comparing it with the more 

traditional cross-diffusion dynamic model and also validated with an actual field experiment. The 

paper is organized as follows: section 4.2 presents the new approach game-based model with 

payoff functions, probability move functions and interaction functions.  Section 4.3 recalls the 

cross-diffusion model and section 4.4 demonstrates the numerical simulation of both modeling 

approaches. Section 4.5 presents a comparison between the two modeling approaches and an actual 

field experiment. Section 4.6 discusses the results considering validation of the models and 

presents future work. 
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 4.2 Game-based Model 

In this section, the mathematical model of the spatial game is introduced.  The model 

includes payoff functions, probabilistic functions and interaction functions all acting on a square 

grid.  The payoff functions describe quantitatively the benefits that each species in each cell 

location (i, j) gains from its surrounding cells. The probability functions calculate the likelihood 

of each member of cell location (i, j) to migrate to the neighboring cells, and the interaction 

functions describe the dynamic between prey and predator that coexist in each cell.   

 4.2.1 Payoff Function 

Using the spatial game approach, it is assumed that prey and predator move in a reactionary 

way, meaning that the prey may be able to recognize the predator, and respond by moving away 

to avoid being caught. On the other hand, if predators recognize the prey, this may affect the rate 

and directions of their movement which may help them find prey. The payoff function of prey and 

predator at cell (i, j) is shown in Equation (4.1). 

1 2
1

1 2

4
3 3

4

( , ) ( )( )

( , ) ( ( ) )( )

k k
Pu i j e f

u c v c

k
Pv i j k u c g h

v c

  
 

   


 (4.1) 

Where Pu denotes the payoff of prey, Pv indicates the payoff of predator. Parameters c1, 

c2, c3, k1, k2, k3, k4, e1, f, g, and h scale the payoff affections.  As can be seen the prey’s function is 

inversely proportional to the number of prey (u) and predator (v) in cell (i, j). The predator’s payoff, 

on the other hand, in proportion to the number of prey and inversely proportional to the number of 

other predators in cell (i, j). This implies that the prey prefers to move away from its own species 
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(reduce competition for food) and understandably also from predators. The predators are attracted 

to the prey but prefer to move away from other predators.  

The behavior of the payoff functions is demonstrated in Figure 4.1 and Figure 4.2, using a 

small example corresponding to different numbers of prey and predators in cell (i, j).  The 

parameters used here are: k1=250; k2=100; k3=1; k4=10; e1=0.01; f=0.01; g=0.01; h=0.01; c1=20; 

c2=20; c3=20; c4=20; u=0 to100; v=0 to 100; Figure 4.1 denotes that prey will get higher payoff if 

there were less prey and less predator within its cell. Figure 4.2 indicates that predator will have 

higher payoff with more prey and less predator. 

 

Figure 4.1 Behavior of payoff function of prey 
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Figure 4.2 Behavior of payoff function of predator 

 

 4.2.2 Movement Probability Function 

The payoff function discussed above define the payoff of each cell in a neighborhood.  

Based on those payoff values, the probability of the population in each cell to move can be 

calculated. This probability depends on the fraction of the total payoffs of the neighbors, compared 

to the cell’s payoff as shown in Equations (4.2) – (4.6).  Note that the movement of the prey is 

based on the prey payoffs and similarly the predators’ movement depends on their payoff of each 

cell in a neighborhood.  

 4.2.2.1 The probability to stay at the same place 

,

1

,

1, 1
1, 1

( , )

( , )

u v

u v

x i i
y i j

P i j
P

P x y
  
  




        

(4.2) 
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 4.2.2.2 The probability to move one cell up 

,

2

,

1, 1
1, 1

( 1, )

( , )

u v

u v

x i i
y i j

P i j
P

P x y
  
  





       

(4.3)

 

 4.2.2.3 The probability to move one cell down 

,

3

,

1, 1
1, 1

( 1, )

( , )

u v

u v

x i i
y i j

P i j
P

P x y
  
  





       (4.4) 

 4.2.2.4 The probability to move one cell left  

,

4

,

1, 1
1, 1

( , 1)

( , )

u v

u v

x i i
y i j

P i j
P

P x y
  
  





       (4.5) 

 4.2.2.5 The probability to move one cell right  

,

5

,

1, 1
1, 1

( , 1)

( , )

u v

u v

x i i
y i j

P i j
P

P x y
  
  





       (4.6) 

Based on the probabilities calculated, the number of entities (predators and preys) that 

move to the neighboring cells is calculated. This analysis is performed for each cell in the lattice 

to determine the population distribution, as shown in the example below. 

 4.2.3 Example of Game Execution 

This example uses a 3*3 lattice to demonstrate the mechanism of the spatial game and the 

schedule of movements for prey or predator. Table 4.1 shows the current population of prey and 

predator on our grid. First, the payoffs of the prey and predator is calculated in each cell, using 

Equation (4.1), as depicted in Table 4.2 and Table 4.3. 
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Table 4.1 Initial distribution of prey and predator presented as (u,v) 

(10, 20) (9,2) (8,2) 

(7, 4) (30, 2) (5, 2) 

(4, 2) (3, 3) (2, 1) 

 

Table 4.2 Payoff distribution of prey 

1.86 3.42 3.52 

3.33 2.12 3.88 

4.01 3.98 4.51 

 

Table 4.3 Payoff distribution of predator 

122.50 188.55 183.00 

165.33 305.00 166.36 

160.82 149.74 155.57 

 

Iteration I: 

After the payoff is calculated, the probabilities to move are determined based on the 

movement probability functions. For example, the following equations present the move 

probability for prey in cell (2, 2). 

• The probability to stay at the same place: 

1

1, 1
1, 1

( , ) 2.12 2.12

( , ) 3.42 2.12 3.98 3.33 3.88 16.73
x i i
y i j

Pu i j
P

Pu x y
  
  

  
   

=0.126 

This implies that 12.6% of the prey population in cell (2, 2) will not move.  
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• The probability to move one cell up: 

2

1, 1
1, 1

( 1, ) 3.42 3.42

( , ) 3.42 2.12 3.98 3.33 3.88 16.73
x i i
y i j

Pu i j
P

Pu x y
  
  


  

   
= 0.2044 

• The probability to move one cell below:  

3

1, 1
1, 1

( 1, ) 3.98 3.98

( , ) 3.42 2.12 3.98 3.33 3.88 16.73
x i i
y i j

Pu i j
P

Pu x y
  
  


  

   
 = 0.238 

• The probability to move one cell left: 

4

1, 1
1, 1

( , 1) 3.33 3.33

( , ) 3.42 2.12 3.98 3.33 3.88 16.73
x i i
y i j

Pu i j
P

Pu x y
  
  


  

   
= 0.199 

• The probability to move one cell right: 

5

1, 1
1, 1

( , 1) 3.88 3.88

( , ) 3.42 2.12 3.98 3.33 3.88 16.73
x i i
y i j

Pu i j
P

Pu x y
  
  


  

   
= 0.232 

 

According to the calculations above, the movement of prey from cell (2, 2) to the 

neighboring cells could be obtained using the function N×Pi (i=1, 2, 3, 4, 5). The number of prey 
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is rounded to the nearest integer. For instance, the number would stay at the same place is: 

N×P1=30×0.126=3.8≈4. This movement of prey from cell (2, 2) is shown in Figure 4.3.  

4

6

76

7

30

 

Figure 4.3 Move distribution of prey in cell (2, 2) 

 

The same calculations are performed for each cell as well as for the predator population. 

When all the cells and species complete their movements, the next iteration of the game is 

shown in Table 4.4. During the game movements process the total number of both species is kept 

the same, so at this point the total number of prey is 78, and the total number for predators is 38. 

 

Table 4.4 The distribution of prey and predator (u, v) after exercising movement 

(5, 6) (15, 9) (7, 2) 

(13, 9) (8, 5) (12, 2) 

(5, 2) (10, 2) (3, 1) 

 

 4.2.4 Interaction Function 

After moving and occupying neighboring cells, prey and predator have an interaction 

phase. In this case the same dynamics presented earlier is utilized, using the basic model with a 
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logistic growth function for prey and the Beddington and DeAngelis response function for the 

resources transfer [78, 81, 88, 89, 135], as shown in Equation (4.7-4.8). 

𝜕𝑢

𝜕𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) −

𝑎𝑢𝑣

𝑏+𝑢+𝑐𝑣
  (4.7) 

 
𝜕𝑣

𝜕𝑡
=

𝑒𝑎𝑢𝑣

𝑏+𝑢+𝑐𝑣
− 𝑑𝑣  (4.8) 

where: 

u(t), v(t): the prey and predator densities at time t respectively 

r: the birth rate of prey 

K: the carrying capacity of prey 

e: the conversion rate of prey to predator 

d: the death rate of predator 

a: the maximum consumption rate 

b: the saturation constant 

c: scales the impact of the predator interference. 

Once predator and prey in each cell interact, some prey is consumed by the predators, some 

new prey is born and some predators die out.  This step creates a new distribution of predators and 

prey in each cell, shown in Table 4.5.  As shown in the table, the prey population has increased to 

92 while the predator population has decreased to 33.  This is the basis for the next iteration in 

which a new payoff is calculated, with a new probability to move and a new distribution of the 

species.   

Table 4.5 The distribution of prey and predator (u, v) after interation 

(9, 3) (11, 4) (9, 3) 

(11, 4) (12, 5) (11, 4) 

(9, 3) (11, 4) (9, 3) 
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 4.3 Cross-Diffusion Model 

This section describes the more traditional spatial Cross Diffusion model that is used for 

comparison with the game-based spatial model.  This well-known model describes a phenomenon 

that allows predators to recognize prey; this recognition may affect the rate or direction of their 

movement, thereby helping predators to find prey. This phenomenon, known as cross-diffusion, 

has recently received significant attention, as described in [39, 43, 119, 120].  

 4.3.1 General Cross-Diffusion Model 

The general form of a cross-diffusion model for prey-predator interactions is 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) − 𝑓1(𝑢, 𝑣) + 𝑑11∇2𝑢 + 𝑑12∇2𝑣  (4.9) 

𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) − 𝑓(𝑣) + 𝑑21∇2𝑢 + 𝑑22∇2𝑣  (4.10) 

where: 

f(u): birth rate function of prey  

f(v): death rate function of predator 

f1(u,v): interaction function effect on the decrease of prey  

f2(u,v): interaction function effect on the increase of predator  

d11 and d22: self-diffusion coefficients of prey and predator, respectively 

d12 and d21: cross diffusion coefficients of predator and prey, respectively 

 

Value of the cross-diffusion coefficient may be positive, negative, or zero. A positive cross-

diffusion coefficient denotes species movement in the direction of lower concentration of another 

species. A negative cross-diffusion coefficient indicates that one species tends to diffuse in the 

direction of higher concentration. If d12 > 0 and d21 < 0, then the prey species tends to diffuse in 



53 

the direction of lower concentration of the predator species and the predator species tends to diffuse 

in the direction of higher concentration of the prey species.  

 4.3.2 Cross-Diffusion Model with Beddington-DeAngelis Function Response 

Here the basic model Equation (4.7) -(4.8) presented earlier with Beddington-DeAngelis 

function response and the logistic growth function for prey is extended to include the cross-

diffusion effect. The corresponding model is shown below: 

𝜕𝑢

𝜕𝑡
= 𝑟𝑢(1 −

𝑢

𝐾
) −

𝑎𝑢𝑣

𝑏+𝑢+𝑐𝑣
+ 𝑑11∇2𝑢 + 𝑑12∇2𝑣  (4.11) 

 
𝜕𝑣

𝜕𝑡
=

𝑒𝑎𝑢𝑣

𝑏+𝑢+𝑐𝑣
− 𝑑𝑣 + 𝑑21∇2𝑢 + 𝑑22∇2𝑣  (4.12) 

 4.4 Model Comparison 

To compare the performance of the different approaches on the dynamic system, simulation 

under critical conditions is conducted and compared.  

We use bifurcation analysis to visualize the sensitivity of the system with respect to 

parameters a, which denoted the maximum consumption rate. Bifurcation points are defined as 

points where stability changes from stable to unstable. In our bifurcation diagram (Figure 4.4), 

there is a typical Hopf bifurcation point (marked as “H”). 
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Figure 4.4 Computed equilibrium curve of prey population in relation to system 

parameter a 

 

A Hopf bifurcation, identified in Figure 4.4, is a periodic bifurcation in which a new limit 

cycle is born from a stationary solution, and is detected when system parameter a changes. The 

parameters for the bifurcation analysis are: r=0.5, K=400, b=51.2, c=3.2, e=0.25, d=0.3 while a 

changed from 0 to 10 and have the bifurcation point of a=8.076 with u=11.54, and v=4.67. The 

dynamic system changes its stability while the maximum consumption rate a is equal to 8.076. 
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Figures 4.5-4.7 demonstrate the changes in the population of prey and predator through time near 

the bifurcation point, as well as the trajectory of the dynamic system from t=0 to t=500. 

 

Figure 4.5 Snapshot of the dynamic simulation when t=500, a=8.0 

 

 

Figure 4.6 Snapshot of the dynamic simulation when t=500, a=8.076 
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Figure 4.7 Snapshot of the dynamic simulation when t=500, a=8.10 

Figure 4.5 presents an unstable system when a=8 while Figures 4.6 and 4.7 presents a stable 

state when a=8.076 and a=8.10, which indicates that the system stability changes at the bifurcation 

point.   

In order to further compare the effect of the different approaches on the stability of the 

system, a simulation on a 100*100 grid is conducted. Figures 4.8-4.10 demonstrate the dynamics 

of the prey and predator as a function of the number of iterations (left hand side) and a function of 

both populations (right hand side) under the critical conditions of a = 8.076. Subfigure (a) shows 

the simulation when the initial distribution for prey and predator is at their stable state which is 

11.54 and 4.67 respectively. Subfigure (b) shows the simulation when the initial distribution for 

prey and predator is not at a stable state (u= 4.67 and v=10). Subfigure (c) shows the simulation 

when the initial distribution for prey and predator is from the outside of the cycle in which u=100 

and v=34. Figure 4.8 demonstrated the system performance for the basic model, while Figure 4.9 

and Figure 4.10 demonstrated for game-based model and cross-diffusion model, respectively.  

In addition, pattern formation simulations comparing the two models have also been 

conducted. Using the stable state as the initial condition, perturbation is introduced into the stable 
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state, in which there are 11.54 prey and 4.67 predators in each cell in the lattice. Simulations were 

run with 20000, 40000 and 60000 iterations. The simulated results for the game-based model and 

the cross-diffusion model are shown in Figures 4.11 and 4.12 respectively. 
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Figure 4.8 System performance for the basic model 
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Figure 4.9 System performance for the game-based model 
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Figure 4.10 System performance for the cross-diffusion model 
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Figure 4.11 Pattern of Prey and Predator with game-based model. (a) 20000 iteration, (b) 

40000 iterations, and (c) 60000 iterations. The prey population is shown on the left, and the 

predator population is on the right. 

b 

c c 

b 

a a 
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Figure 4.12 Pattern of Prey and Predator with cross-diffusion model. (a) 20000 iteration, (b) 

40000 iterations, and (c) 60000 iterations. The prey population is shown on the left, and the 

predator population is on the right. 

a a 

b b 

c c 
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From the simulation results, Figure 4.8 shows that the system spirals towards the stable limit cycle 

when a=8.076 regardless of the initial conditions of prey and predator. In Figures 4.9 and Figure 

4.10 we can see that both the game-based model and the cross-diffusion model are less stable than 

the basic model, demonstrating that the movement of prey and predators affects the stability of the 

system (the Basic Model is not spatial and does not capture movement of the population as is 

represented in Equation (4.7) -(4.8)).  Also, we can see that the game-based model and cross-

diffusion model act similarly in different scenarios. In subfigure (a) of Figure 4.9 and Figure 4.10, 

prey and predator stay in the stable state and then both populations grow reaching some peak point 

and then start to oscillate. In subfigure (b), prey and predator increased to a stable state and then 

fluctuate in both models. In subfigure (c), prey and predator decrease to stable state and then to 

fluctuate for both models. From the simulation result, the game-based model and cross-diffusion 

model act similarly in their density distribution but they differ when considering the pattern 

formation when starting from the same initial state. The game-based model looks more balanced 

than the cross-diffusion model. 

 4.5 Model Validation 

This section presents an actual case with the two spotted spider mite and its predator 

Phytoseiulus persimilis illustrating the applicability of the game-based approach. This section 

describes the model’s validation using the experimental data and compares the simulated results 

with the actual observed data using both modeling approaches. 
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 4.5.1 Background 

The two-spotted spider mite, Tetranychus urticae (T. urticae), is a species of plant-feeding 

mites generally considered to be a pest. Previous reports have stated that T. urticae infests over 

300 species of plants, including ornamental plants such as arborvitae, azalea, and viburnum, fruit 

crops such as blackberries, blueberries and strawberries, vegetable crops such as tomatoes, squash, 

eggplant, and cucumber [111].  

Predators are beneficial in regulating spider mite population, and there are several predators 

that can control the spider mite populations by feeding on the adults and the eggs.  Phytoseiulus 

persimilis (P. persimilis) is the most popular predator for this pest. This beneficial mite is 

commercially available and commonly released against T. urticae [136]. 

 4.5.2 Experimental Design 

The data are taken from an actual study performed and published by the Entomology 

Department at Kansas State University. 

The experimental unit consisted of 24 bean plants arranged in an 8*3 array with 

Phytoseiulus persimilis as predator and Tetranychus urticae as prey. Plants within the array were 

packed closely together to allow mites to move freely from plant to plant. This experiment lasted 

24 days, and the total number of the two-spotted spider mites and the predator were counted every 

six days (6, 12, 18 and 24 days after the introduction of predators) during the experiment. The 

experiment ended after 24 days because many plants showed substantial damage and were no 

longer suitable hosts for the prey [112]. Table 4.6 lists the initial distribution of prey and predator, 

and Table 4.7 lists the total number of observed prey (Tetranychus urticae) and predator during 

the 24 days period.  The distribution of prey and predator every 6 days is in Appendix A. 



65 

Table 4.6 Initial distribution of prey and predator presented as (u,v) 

(32, 6) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(32, 0) (0, 0) (0, 0) 

 

Table 4.7 Total number of observed prey and predators every six days 

Time/Days Number of prey Number of predator 

0 64 6 

6 458 6 

12 490 13 

18 2238 67 

24 1954 239 

 

 4.5.3 Comparison of Total Number of Prey and Predator 

The total number of the two-spotted spider mites and its predator were counted every six 

days and compared with the simulated game model and the calculated cross-diffusion model. Basic 

parameters for the simulation were: α = 20, b = 105, c = 45, d = 0.3, e = 0.25, r = 0.38, K = 400. 

While payoff parameters for the game-based model were: k1 = k2 = k3 = k4 = 100, e1 = f = g = h = 

0.01, c1 = 0.09, c2 = c3 = c4 = 100.   

Figure 4.13 presents the comparison of the two species according to the game-based model 

and the observed data, and Figure 4.14 presents the comparison between the cross-diffusion model 

and the observed data.  
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 In Figures 4.13-4.14, the dotted curve represents observed data, and the solid curve 

represents the number of prey and predator calculated based on the simulated models. Statistical 

results (Root Mean Square Error) are shown in Table 4.8 and Table 4.9. 

 

Figure 4.13 Comparison of game-based model with observed data 

 

 

Figure 4.14 Comparison of cross-diffusion model with observed data 
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Table 4.8 RMSE of the simulated total number of prey and its observations 

Time/Days Observations of 

Prey 

Model with 

game 

Cross-

Diffusion 

0 64 64 64 

6 458 284 258 

12 490 1165 781 

18 2238 1982 1737 

24 1954 1965 2398 

RMSE  371.24 378.68 

 

Table 4.9 RMSE of the simulated total number of predators and its observations 

Time/Days Observations of 

Predator 

Model with 

game 

Cross-

Diffusion 

0 6 6 6 

6 6 7 6 

12 13 20 13 

18 67 73 80 

24 239 254 263 

RMSE  8.82 13.42 

 

The Root Mean Square Error (RMSE) is a frequently used measurement of the differences 

between values predicted by a model and the values actually observed. A smaller RMSE means a 

better fit of the model to the data. Comparison results show that the game-based model fits the 

observations more closely than the cross-diffusion model since it has a smaller RMSE for both 

prey and predator. Thus, we conclude that the game-based model has a good fit and can generate 

good predictions of the prey-predator populations. 
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 4.5.4 Sensitivity Analysis 

Sensitivity analysis is the study of the effect of uncertainty in input values that can impact 

the output of a mathematical model [137, 138]. For the game-based model, this section explores 

the impact of different parameters have on the total number of prey and predator, in order to 

recognize the significant factors and develop suggestions on controlling the population of two 

spotted spider mites.  

In the sensitivity analysis presented in this section, the total number of two spotted spider 

mites and its predator acted as the response outputs.  The uncertainty inputs tested (one at a time) 

are: the birth rate of prey, the conversion rate of prey to predator and the death rate of predator.  

This analysis follows the same initial conditions as in the experimental study (as stated in the 

previous section). Simulation results are shown in Figures 4.15-4.17. For each figure, subfigure 

(a) represents the total number of prey respond to different parameter values while subfigure (b) 

represents the total number of predator. 

 

Figure 4.15 Sensitivity to birth rate of prey 

 

(a)                                                                        (b) 
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Figure 4.16 Sensitivity to conversion rate of prey to predator 

 

 

Figure 4.17 Sensitivity to death rate of predator 

Through the simulation, prey’s birth rate and predator’s death rate positively correlated 

with the total number of prey thus concluding that a higher birth rate of prey and a higher death 

rate of predator leads to higher economic loss. The conversion rate of prey to predator has a 

negative correlation with the total number of prey, which indicates that a higher conversion rate 

can reduce economic loss.  

(a)                                                                        (b) 

(a)                                                                      (b) 
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Thus, the suggested efficient control strategies should be to decrease the two spotted spider 

mites’ birth rate and its predator’s death rate, and to increase the conversion rate of prey to 

predator.   

 4.6 Conclusion and Discussion 

This paper presents and analyzes a new modeling approach for spatial and dynamic 

evolutionary systems, specifically for two species prey-predator dynamics system. This new 

approach represents the spatial dynamics of both species as a game model which uses payoff 

functions that the players (the two species) can receive based on the populations in the surrounding 

cells. The values of the payoff for each player helps generate the probability that the players will 

migrate to or away from the neighboring cells. This interaction when carried out over many 

iterations represents the spatial dynamics of the two species. The game-based model is simulated 

and compared in this paper to a more traditional cross-diffusion dynamic model that was discussed 

earlier. In addition to the simulation, the game-based model is validated by using actual 

experimental data in which the two species were observed every six days over a period of 24 days. 

In the numerical simulation section, one conclusion obtained from the results was that the 

game-based model performed similarly to the cross-diffusion model regarding population changes, 

while the pattern of the game-based model is more balanced than that of cross-diffusion model 

when they start from the same stable state.  

In the model validation section, the paper presents a comparison of the population of prey 

and predator, taking two spotted spider mites and its predator- Phytoseiulus persimilis as an 

example. Results show that both the game-based model and the cross-diffusion model are a good 

fit for the actual experimental data and the game-based model fits the observations more closely 
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than the cross-diffusion model regarding the total number of prey and predator. Overall, we can 

conclude that the game-based model is a good fit and can generate good predictions of the prey-

predator system. 

The game-based modeling approach can be extended to other systems, such as competing 

commercial firms, logistic distribution systems and similar dynamic systems. The game-based 

approach uses a payoff function and a movement probability function that can be adjusted based 

on habits, characteristics and mobility schemes of different competing entities. Thus, this modeling 

approach can be applied to many other areas of science.  

Overall, this modeling approach is more flexible and comprehensive. It can be easily 

extended to other systems, especially to biological and ecological dynamic systems, for instance 

to a virus-vector-host plant system. The game-based approach can capture complex interactions 

that go beyond the traditional system dynamics representation.  These interactions can be modeled 

using the payoff functions, movement functions and other complex rules that control the 

interaction among the players. On the other hand, in traditional dynamic models the movement 

represented using a diffusion scheme is usually limited to simple movements of the players. 

Future expansion of this research can include more sophisticated models, such as agent-

based models [126, 127, 139, 140] and further validation of models using experimental systems 

with different spatial scales and different distributions of prey and predator. Also, optimal control 

theory could be considered [129, 130, 141]. This will provide decision makers with better policies 

for controlling the populations of evolutionary dynamic systems.  
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Chapter 5 - Using Spatial Games to Model and Simulate Tomato 

Spotted Wilt Virus – Western Flowers Thrip Dynamic System  

Chapter 5 is based on the paper “Using Spatial Games to Model and Simulate Tomato Spotted 

Wilt Virus – Western Flowers Thrip Dynamic System” submitted to International Journal of 

Modeling and Simulation.  

 

 Abstract 

Modeling a complex chain-effect of biological agents is of great interest to researchers and 

practitioners.  The paper presents such a chain consisting of the Tomato Spotted Wilt Virus 

(TSWV) which is carried by the western flower thrips (WFT) as its vector, and infects tomato 

plants.  The TSWV is a virus that infect more than 1000 plant species, including agronomic and 

ornamental crops as well as weed hosts, causing significant financial loss.  This virus is transmitted 

by thrips, and the western flower thrips (Frankliniella occidentalis) is reported to be the most 

important vector due to its wide distribution.  This paper introduces a new modeling approach 

based on a spatial game to model this dynamic system.  The paper presents this approach along 

with simulations and validation using experimental data. This method has a broad descriptive 

power and is applicable to other vector-borne disease systems. 

  5.1 Introduction 

Spotted wilt of tomato was first described by Brittlebank in 1919 [142]. The name Tomato 

Spotted Wilt Virus (TSWV) was first established by Samuel [143] for characterizing the 

pathogenic agent as a virus and it remains one of the most important plant viruses that are 
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distributed broadly around the world. Tomato spotted wilt virus, belongs to the genus Tospovirus, 

infects over 1000 plant species in over 85 families, including ornamentals, vegetables, and field 

crops [144], causing significant economic damage. The symptoms caused by TSWV varies from 

different species of infected host, weather condition and age of plants, including ringspots, 

mottling, and line patterns on leaves [145].  

TSWV is unique since it is one of a few viruses known to be transmitted by thrips. There 

are nine species reported as vectors of TSWV [146] with the Western Flower Thrips (WFT) 

considered as the most efficient vector due to its wide distribution and the overlapping host ranges 

with TSWV [5, 147-149]. A large number of weed species in the family Asteraceae serve as 

common reservoirs for infected WFT that invade greenhouses [150-153]. 

Western flower thrips life cycle consists of six stages: egg, two larvae stages, two 

transformation stages (prepupae and pupae), and an adult stage. TSWV-WFT transmission 

happens in a continuous and spatially distributed mode.  The TSWV must be acquired by thrips 

during the first larval stage. Thus, only immature thrips that acquire the TSWV when they are on 

the first larvae stage can grow into adults that can transmit the virus [5, 144, 154-156]. The WFT 

can get infected by the TSWV at the second larvae stage or at the adult stage but cannot transmit 

the virus to plants [157, 158]. Even though there is only a limited time for thrips to capture the 

virus, the widespread host range for both virus and thrips advances the spread of this virus. Infected 

thrips, primarily adults, move into greenhouses from outdoor plants and, thus, introduce plant 

infection [159].  

This plant disease has been proven difficult to control, and even more difficult to predict 

the transmission effect among virus, vector and host plants due to the complexity of the disease 

interaction system.  Mathematical models are of great importance serving as a valuable tool to 
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study this dynamic system and make predictions on the disease transmission. Some models for 

TSWV have been recently developed looking from both the biology perspective and from the 

vector perspective: some focused on the analysis of weather condition influences [95, 98, 100], 

temperature influences [160, 161], and analysis of parameters such as thrips age [162], time delay  

[153] and preference behavior [104, 108, 163] that may influence the whole system. 

Since the adult thrips can fly and expedite the transmission of the disease within the 

greenhouse, spatial effect of this model needs to be considered. In this chapter, a spatial game 

model is used to capture this spatial dynamic.  This model includes payoff functions, and move 

probability functions which define the mobility of adult thrips. The new approach is validated with 

experimental data and parametric simulation that provides sensitivity analysis and 

recommendations on the controlling this vector-borne disease.  

This chapter is organized as follows. Section 5.2 presents the basic dynamic model 

considering the life development of the vector and transmission in the triangle virus-vector-host 

plant system. Section 5.3 proposes a more complex dynamic model considering the whole life 

cycle of the vector. Section 5.4 introduces the new game-based modeling approach and section 5.5 

demonstrates preliminary results including a comparison between this new approach and 

experimental data, and a simulation to seek the significant factors that affect this disease system. 

Section 5.6 discusses the results and presents future work. 

 

 5.2 Basic Dynamic Model 

One mathematical model is constructed based on the transmission principle of TSWV by 

WFT. The parameters used in the model are shown in Table 5.1.  
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Table 5.1 Parameters of the mathematical model 

Parameter Interpretation 

vh Birth rate of the host 

βv Bite rate of the thrips 

Thv Infection rate from vector to host 

γh Age at harvest of host 

μh Death rate of host 

τh Incubation period for exposed host 

vv Birth rate of the thrip 

Kv Carrying capacity of thrips population 

Tvh Infection transmission rate from host to vector 

μv Death rate of thrips adults 

μL Death rate of thrips larvae 

γv Age at maturity of WFT 

τv Incubation period for vector 

 

The system diagram of TSWV transmission between the host and WFT is shown in Figure 

5.1. In this section, we assume the population is homogeneous. A modified susceptible-exposed-

infected (SEI) model is constructed for both of host and WFT (Eqs. (5.1)-(5.11)). 

 

SL
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Sh=the number of susceptible hosts,
Eh=the number of exposed hosts,
Ih=the number of infected hosts,
Hh=the number harvest hosts,
SL=the number of susceptible larva,

EL=the number of exposed larva,

IL=the number of infected larva,

Sv=the number of non-infective adult,

Iv=the number of infective adult,

 

Figure 5.1 System Diagram of WFT-TSWV Model 
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Host Population 

     ( )/ (1/ )h
h v hv v h h h h h h

dS
v T I S N S S

dt
 (5.1) 
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v hv v h h h h h h h h

dE
T I S N E E E

dt
        (5.2) 

(1/ )h
h h h h

dI
E I

dt
    (5.3) 

(1/ ) (1/ )h
h h h h
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S E

dt
    (5.4) 

h
h h h h h h h

dN
v S E I

dt
       (5.5) 

where  

Sh: the number of susceptible hosts 

Eh: the number of exposed hosts 

Ih: the number of infected hosts 

Hh: the number of harvested hosts 

Nh: the total number of hosts 

 

WFT Population 

( )(1 / ) ( ) / (1/ )L
v v v v v v vh h L h v L L L

dS
v S I N K T I S N S S

dt
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dt
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v L v L v v
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S E S

dt
      (5.9) 
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(1/ )v
v L v v

dI
I I

dt
    (5.10) 

( )(1 / )v
v v v v v v v

dN
v S I N K N

dt
     (5.11) 

where  

SL: the number of susceptible larva 

EL: the number of exposed larva  

IL: the number of infected larva 

S: the number of non-infective adult 

Iv: the number of infective adult  

Nv: total number of WFT 

 

In this model, WFT are classified into two groups: larvae and adults. WFT larvae are 

distributed among susceptible SL, exposed EL, and infected IL compartments and adults are 

distributed between non-infective Sv and infective Iv. Only susceptible larvae equation includes 

birth rate because the female WFT do not transmit TSWV vertically. Specifically, the susceptible 

larvae can either develop to non-infective adults or be transmitted to exposed larvae. The exposed 

larvae can either develop to non-infective adults successfully or be transferred to infected larvae. 

The infected larvae develop to infective adults. The hosts are distributed among susceptible Sh, 

exposed Eh, infected Ih, and harvest Hh. The susceptible host may either harvest or be infected by 

infective WFT adults. The exposed hosts may either be harvested before becoming infected or 

transfer to infected hosts. The infected hosts cannot recover or be harvested. 

 

 



78 

 5.3 Complex Dynamic Model 

In this section, a more complex dynamic model is presented. The key characteristics of the 

vector life process, such as development stages, development time, survival, daily death, as well 

as the virus transition and the mutual infection among virus-vector-host plants, forms the basis of 

the dynamic model. The model presented is an extension of the models presented in the literature, 

such as [104, 153].  

 5.3.1 Model Description and Assumption 

The model describing the vector life process and disease transmission system is established 

based on the following assumptions: 

• Infection transmission to host plants is subject to contact by infective vectors. 

• The infection acquisition of the vector is by biting on infected host plants. 

• Eggs are born as non-infected since this virus transmission does not belong to a vertically 

transmitted infection which uses mother-to-child transmission. 

• Only the vector who got infected on Larvae 1 stage can transmit the virus during its 

development. 

• The vectors on later stages (Larvae 2, Prepupa, Pupae and Adults) can acquire the virus but 

are not able to transmit the infection. 

• The vectors on larvae stages (Larvae 1 and Larvae 2) are portable but restricted to the plant 

where they were born as eggs. 

• Prepupae and Pupae are immobile and have no influence on the transmission process. 

• Adults can move from plant to plant. 
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• Adults have preference for plants according to their infection status as well as the infective 

status of plants: infected adults prefer healthy host plants, while healthy adults prefer 

infected host plants. 

The development of WFT and the TSWV transmission process is clarified in Figure 5.2. 

 

Figure 5.2 Flowchart of WFT life development and virus transmission 

 

In this model, WFT have six developmental stages: egg-larvae1-larvae2-prepupae-pupae-

adult. Susceptible-exposed-infected (SEI) framework is employed. As stated, all eggs are healthy, 

denoted as SE. For larvae 1, susceptible vector (SL1) get exposed (EL1) and become infective (IL1). 

For the other stages of WFT, only those developed from infective larvae 1 can transmit the virus, 

denoted as IL2, Ipp, Ip and Iv. The other stages that are susceptive and are not able to transmit the 

virus, are denoted by SL2, Spp, Sp and Sv.  
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 5.3.2 Mathematical Model 

Based on the principle of vector life development and TSWV transmission, the complex 

dynamic model is presented in Equations (5.12) - (5.24). For host plant, the infection level depends 

on the fraction of infective adults, meaning that with more infective adults on the plant, the higher 

the infection level that the host plant would get. The range of plant infection level is assumed to 

range from 0 to 1, (low to high).  This model is an extension of the models reported in the literature, 

however, it is not capable of modeling the spatial effects of this complex interaction, such as 

movement of thrips and spread of the plant infections. All the variables and parameters are 

summarized in Table 5.2 and Table 5.3. 

 

WFT Population: 

Eggs 

𝑑𝑆𝐸

𝑑𝑡
= 𝑉𝑣(𝑆𝑣 + 𝐼𝑣) − (1

𝛾𝑆𝐿1
⁄ )𝑆𝐸 − 𝜇𝐸𝑆𝐸  (5.12) 

 

Larvae 1 

𝑑𝑆𝐿1

𝑑𝑡
= (1

𝛾𝑆𝐿1
⁄ )𝑆𝐸 − 𝛽𝐿1𝐼ℎ𝑆𝐿1 − (1

𝛾𝑆𝐿2
⁄ )𝑆𝐿1 − 𝜇𝑆𝐿1𝑆𝐿1

𝑁𝑣
𝐾𝑣

⁄   (5.13) 

𝑑𝐸𝐿1

𝑑𝑡
= 𝛽𝐿1𝐼ℎ𝑆𝐿1 − (1

𝛾𝐼𝐿1
⁄ )𝐸𝐿1 − 𝜇𝐸𝐿1𝐸𝐿1

𝑁𝑣
𝐾𝑣

⁄   (5.14) 

𝑑𝐼𝐿1

𝑑𝑡
= (1

𝛾𝐼𝐿1
⁄ )𝐸𝐿1 − (1

𝛾𝐼𝐿2
⁄ )𝐼𝐿1 − 𝜇𝐼𝐿1𝐼𝐿1

𝑁𝑣
𝐾𝑣

⁄   (5.15) 
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Larvae 2 

𝑑𝑆𝐿2

𝑑𝑡
= (1

𝛾𝑆𝐿2
⁄ )𝑆𝐿1 − (1

𝛾𝑆𝑃𝑃
⁄ )𝑆𝐿2 − 𝜇𝑆𝐿2𝑆𝐿2

𝑁𝑣
𝐾𝑣

⁄   (5.16) 

𝑑𝐼𝐿2

𝑑𝑡
= (1

𝛾𝐼𝐿2
⁄ )𝐼𝐿1 − (1

𝛾𝐼𝑃𝑃
⁄ )𝐼𝐿2 − 𝜇𝐼𝐿2𝐼𝐿2

𝑁𝑣
𝐾𝑣

⁄   (5.17) 

 

Prepupae 

𝑑𝑆𝑝𝑝

𝑑𝑡
= (1

𝛾𝑆𝑃𝑃
⁄ )𝑆𝐿2 − (1

𝛾𝑆𝑃
⁄ )𝑆𝑝𝑝 − 𝜇𝑆𝑝𝑝𝑆𝑝𝑝

𝑁𝑣
𝐾𝑣

⁄   (5.18) 

𝑑𝐼𝑝𝑝

𝑑𝑡
= (1

𝛾𝐼𝑃𝑃
⁄ )𝐼𝐿2 − (1

𝛾𝐼𝑃
⁄ )𝐼𝑝𝑝 − 𝜇𝐼𝑝𝑝𝐼𝑝𝑝

𝑁𝑣
𝐾𝑣

⁄   (5.19) 

 

Pupae 

𝑑𝑆𝑝

𝑑𝑡
= (1

𝛾𝑆𝑃
⁄ )𝑆𝑝𝑝 − (1

𝛾𝑆𝑣
⁄ )𝑆𝑝 − 𝜇𝑆𝑝𝑆𝑝

𝑁𝑣
𝐾𝑣

⁄   (5.20) 

𝑑𝐼𝑝

𝑑𝑡
= (1

𝛾𝐼𝑃
⁄ )𝐼𝑝𝑝 − (1

𝛾𝐼𝑣
⁄ )𝐼𝑝 − 𝜇𝐼𝑝𝐼𝑝

𝑁𝑣
𝐾𝑣

⁄   (5.21) 

 

Adults 

𝑑𝑆𝑣

𝑑𝑡
= (1

𝛾𝑆𝑣
⁄ )𝑆𝑝 − 𝜇𝑆𝑣𝑆𝑣

𝑁𝑣
𝐾𝑣

⁄   (5.22) 

𝑑𝐼𝑣

𝑑𝑡
= (1

𝛾𝐼𝑣
⁄ )𝐼𝑝 − 𝜇𝐼𝑣𝐼𝑣

𝑁𝑣
𝐾𝑣

⁄   (5.23) 

Where Nv = ( Sv + Iv) is the total number of adult thrips 

 

Host Plants 

𝑑𝐼ℎ

𝑑𝑡
= 𝛽𝐼

𝐼𝑣

𝑆𝑣+𝐼𝑣
(1 − 𝐼ℎ)  (5.24) 
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Table 5.2 Notations of the mathematical model  

Parameter Interpretation 

SE Number of susceptible Eggs 

SL1 Number of susceptible Larvae1 

EL1 Number of exposed Larvae1 

IL1 Number of infective Larvae1 

SL2 Number of non-infective Larvae 2 

IL2 Number of infective Larvae 2 

Spp Number of non-infective Prepupae 

Ipp Number of infective Prepupae 

Sp Number of non-infective Pupae 

Ip Number of infective Pupae 

SV Number of interacting non-infective Adults 

IV Number of interacting infective Adults 

Ih Infection level of host plants 

 

Table 5.3 Parameters of the mathematical model  

Parameter Description 

vv Birth rate of WFT 

Kv Carrying capacity of WFT population 

γSL1 The average number of days required for eggs to develop to Larvae 1 

μE Daily death rate of thrip eggs 

βL1 Bite rate of the thrips 

γSL2 The average number of days required for susceptible larvae 1to develop to 

non-infective Larvae 2 

μSL1 Daily death rate of susceptible Larvae 1 

γIL1 The average number of days required for exposed larvae 1to develop to 

infective Larvae 1 

μEL1 Daily death rate of exposed Larvae 1 

γIL2 The average number of days required for infective Larvae 1to develop to 

infective Larvae 2 

μIL1 Daily death rate of infective Larvae 1 

γSpp The average number of days required for non-infective Larvae 2to develop 

to non- infective Prepupae 

μsL2 Daily death rate of non-infective Larvae 2 

γIpp The average number of days required for infective Larvae 2to develop to 

infective Prepupae 

μIL2 Daily death rate of infective Larvae 2 

γSp The average number of days required for non-infective Prepupae to 

develop to non-infective Pupae 

μSpp Daily death rate of non-infective Prepupae 
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γIp The average number of days required for infective Prepupae to develop to 

infective Pupae 

μIpp Daily death rate of infective Prepupae 

γSv The average number of days required for non-infective Pupae to develop 

to non-infective Adults 

μSp Daily death rate of non-infective Pupae 

γIv The average number of days required for infective Pupae to develop to 

infective Adults 

μIp Daily death rate of infective Pupae 

μSv Daily death rate of non-infective Adults 

μIv Daily death rate of infective Adults 

βI Coefficient on plants infection level 

 

 5.4 Spatial Game Model 

The spatial evolutionary game is a combination of classic game theory and spatial effects, 

representing players, policies and dynamics.  Generally the different players (plants, vectors and 

viruses) “make” their decisions based on an updating rule that depends on payoff functions [131].  

Game theory was first applied to evolutionary biology by Lewontin [19] and has been adopted to 

analyze a variety of population problems [133, 164]. For spatial evolutionary game, several 

common updating rules and schemes are reviewed by Roca et al [23] and Newth and Cornforth 

[24]. 

Since the adult thrips have the ability to fly and thus spread the virus to different plants, 

spatial effect has to be taken into consideration for the distribution of the Tomato Spotted Wilt 

Virus dynamic system.  This unfortunately enhances the speed of transmission of the virus. The 

robust approach of the spatial game provides this spatial dynamic. The model proposed here is 

comprised of payoff functions denoting the payoff for each player type and of probability functions 

which decided on the possibility of adult thrips next movements. This spatial dynamic is enacted 

on a grid representing the area of interest. 
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 5.4.1 Payoff Function for Adult Thrips  

Prior work denoted that the adult thrips, either uninfected or infected, has different 

preference towards plants that are in different infection status. That is, the non-infective adults 

show preference for infected plants over healthy plants, while the infective adults show fondness 

for healthy plants over infected plants [104, 108, 163]. Furthermore, like most thrips, western 

flower thrips is a competitive species that tends to fly to plants that have smaller thrips populations 

[165]. Taking these two factors into account makes the payoff for non-infective and infective 

adults different due to its different preference. For non-infective adults, the payoff is higher with 

plants that are more severely infected and have smaller population of adult thrips. For infective 

adults, the payoff is higher with plants that are heathier and have smaller population of adult thrips. 

The payoff of cell (i,j) is calculated as shown in Equation (5.25). 

2
1

2
3

( , ) * ( , )
( , ) ( , )

( , ) *(1 ( , ))
( , ) ( , )

Sv h

Iv h

k
P i j k I i j

Sv i j Iv i j

k
P i j k I i j

Sv i j Iv i j

 


  


  (5.25) 

Where SvP  denotes the payoff of non-infective adults,  IvP  indicates the payoff of infective 

adults, and ( , )hI i j  represents the infection level of host plants within cell (i, j).  Sv(i,j) and Iv(i,j) 

represent the noninfective and infective thrips in cell (i,j). Parameters k1, k2, k3 scale the payoff 

affections. As discussed, the payoff for non-infective adults is proportional to the infection level 

of plants, while, on the other hand, the payoff for infective adults is inversely proportional to the 

infection level of the plants. All adult thrips prefer to fly away from high concentration of their 

own species. The behavior of the payoff functions is demonstrated in Figure 5.3 and Figure 5.4 
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using the parameters: k1 = k2 = k3 =100, Ih = [0:1], (Sv + Iv ) = 0 to 40.  The level of plant infection 

Ih goes from 0 to 1, and the total number of adult thrips on each plant changes from 0 to 40.  

 

Figure 5.3 Value of payoff function of uninfected adult thrips  

 

Figure 5.4 Value of payoff function of infected adult thrips  
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Figure 5.3 denotes that uninfected adult thrips will get higher payoff with the plants that 

have higher infection level and lower population of adult thrips. Figure 5.4 indicates that infected 

adult thrips will have higher payoff with the host plants that have lower infection level and lower 

population of adult thrips.  

 5.4.2 Move Probability Function  

The payoff function presented above defines the payoff of each of the two players: (the 

healthy adult thrips and infective adult thrips) in the domain of interest (our grid). Based on those 

payoff values, the probability of the adult thrips to move can be calculated. Western flower thrips 

is not a strong flyer as discussed in [166]. Thus, it is assumed that adult thrips can move up to two 

adjacent cells in one move step.  The probability of the direction and distance of each movement 

depends on the fraction of the total payoffs of the accessible region (Eqs. (5.26)- (5.34)). 

 5.4.2.1 The probability to stay at the same place 

,

( , )

,

2, 2
2, 2

( , )

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y
  
  




  (5.26) 

 5.4.2.2 The probability to move one cell up 

,

( 1, )

,

2, 2
2, 2

( 1, )

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.27) 

 5.4.2.3 The probability to move two cells up 

,

( 2, )

,

2, 2
2, 2

( 2, )

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.28) 
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 5.4.2.4 The probability to move one cell down 

,

( 1, )

,

2, 2
2, 2

( 1, )

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.29) 

 5.4.2.5 The probability to move two cells down 

,

( 2, )

,

2, 2
2, 2

( 2, )

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.30) 

 5.4.2.6 The probability to move one cell left 

,

( , 1)

,

2, 2
2, 2

( , 1)

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.31) 

 5.4.2.7 The probability to move two cells left 

,

( , 2)

,

2, 2
2, 2

( , 2)

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.32) 

 5.4.2.8 The probability to move one cell right 

,

( , 1)

,

2, 2
2, 2

( , 1)

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.33) 

 5.4.2.9 The probability to move two cells right 

,

( , 2)

,

2, 2
2, 2

( , 2)

( , )

Sv Iv

i j

Sv Iv

x i i
y j j

P i j
P

P x y


  
  





  (5.34) 
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Based on the probabilities calculated for each cell in the domain, the transition distribution 

is decided each time. Below is an example showing this dynamics under the spatial game 

mechanism. 

 5.4.3 Example of Game Execution  

This example uses a 5x5 lattice to demonstrate the movement of adult thrips during one 

iteration. Table 5.4 shows the current population of uninfected adult thrips and infected adult 

thrips. Table 5.5 shows the current infection level of host plants. First, using Equation (5.25), the 

payoff in each cell for two players (the healthy adult thrips and infective adult thrips) is calculated, 

which is depicted in Table 5.6 and Table 5.7. 

Table 5.4 Initial distribution of healthy and infected adult thrips denoted as (Sv, Iv) 

(51, 12) (60, 18) (23, 18) (36, 21) (55, 29) 

(32, 12) (47, 30) (46, 29) (39, 7) (44, 28) 

(29, 23) (57, 31) (42, 17) (31, 13) (31, 31) 

(35, 8) (54, 29) (34, 25) (31, 39) (31, 22) 

(58, 22) (35, 29) (29, 16) (38, 13) (38, 26) 

 

Table 5.5 Initial infection level of host plants 

0.5508 0.8963 0.0299 0.5909 0.2835 

0.7081 0.1256 0.4568 0.0240 0.6931 

0.2909 0.2072 0.6491 0.5589 0.4405 

0.5108 0.0515 0.2785 0.2593 0.1569 

0.8929 0.4408 0.6763 0.4151 0.5446 
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Table 5.6 Payoff distribution for healthy adult thrips  

56.6671 90.9114 5.4266 60.8407 29.5430 

73.0875 13.8572 47.0167 4.5721 70.7027 

31.0136 21.8607 66.6093 58.1581 45.6583 

53.4083 6.3515 29.5436 27.3538 17.5736 

90.5447 45.6435 69.8477 43.4709 56.0274 

 

Table 5.7 Payoff distribution for infected adult thrips  

46.5075 11.6527 99.4514 42.6681 72.8380 

31.4579 88.7402 55.6500 99.7757 32.0751 

72.8326 80.4121 36.7805 46.3873 57.5675 

51.2428 96.0581 73.8462 75.5033 86.2000 

11.9553 57.4815 34.5967 60.4507 47.0976 

 

After the payoff is calculated, the probabilities for players to move are determined based 

on the movement probability functions (Eqs. (5.26)-(5.34)) that are dependent on the payoff 

values. For example, the following equations present the move probability for 42 healthy adult 

thrips in cell (3, 3). 

• The probability to stay at the same place: 

,

(3,3)

,

1,5
1,5

(3,3) 66.6093 47.0167

( , ) 5.4266 47.0167 66.6093 29.5436 69.8477 31.0136 21.8607 58.1581 45.6583 375.1346

Sv Iv

Sv Iv

x
y

P
P

P x y



  
       

=0.177561 

 

This implies that 17.7561% of the healthy adult thrips population in cell (3, 3) will not 

move.  
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• The probability to move one cell up: 

,

(2,3)

,

1,5
1,5

(2,3) 47.0167 47.0167

( , ) 5.4266 47.0167 66.6093 29.5436 69.8477 31.0136 21.8607 58.1581 45.6583 375.1346

Sv Iv

Sv Iv

x
y

P
P

P x y



  
       

=0.12533 

• The probability to move two cells up: 

,

(1,3)

,

1,5
1,5

(1,3) 5.4266 5.4266

( , ) 5.4266 47.0167 66.6093 29.5436 69.8477 31.0136 21.8607 58.1581 45.6583 375.1346

Sv Iv

Sv Iv

x
y

P
P

P x y



  
       

=0.014466 

 

The same calculations are performed for the probability to move to other cells. The entire 

set of move probabilities is presented in Figure 5.5, showing the probabilities to move from the 

center cell to the adjacent cells. 

1111 0.155033 0.121712

0.12533

0.014466

0.0582740.082673

0.078755

0.186194

0.177561

 
 

Figure 5.5 Move probability for cell (3,3) 
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According to the calculations above, the movement of healthy adult thrips from cell (3, 3) 

to the neighboring cells could be obtained using the function N×P while rounding up the numbers 

to the nearest integer.  For instance, the 7 healthy thrips will not move 

(42×0.177561=7.457565≈7); and 5 will move one cell up (42×0.125333=5.263981≈5). The same 

calculations are performed for the other neighboring cells producing the distribution of the 42 

healthy adult thrips. The movements from cell (3,3) is shown in Figure 5.6. 

42 7 7 5

3

8

5

1

24

 

Figure 5.6 Move distribution of healthy adult thrips in cell (3,3) 

 

The same calculations are performed for the infected adult thrips in each cell. After one 

iteration, the distribution of healthy and infected adult thrips is shown in Table 5.8. During the 

game mobility phase the populations of the two species is kept the same: there are 1006 heathy 

adult thrips and 548 infected adult thrips in the whole domain.  

Table 5.8 The distribution of healthy and infected adult thrips after exercising 

movement 

(39, 12) (91, 4) (6, 38) (57, 12) (23, 26) 

(62, 9) (18, 30) (50, 21) (5, 36) (68, 12) 

(31, 27) (28, 36) (62, 17) (61, 18) (48, 26) 

(48, 17) (7, 40) (33, 29) (28, 24) (15, 36) 

(54, 4) (44, 22) (63, 15) (33, 12) (32, 15) 
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 5.4.4 Interaction  

After moving to the new cells, the virus, vector and plants interact in the manner formulated 

in Equations (5.12) - (5.24). The mutual interactions in the triangle virus-vector-plant and the 

movement of adult thrips captures the whole vector-borne disease dynamic interaction.  This 

interaction defines how many more eggs are laid, how many thrips move between the stages of 

development, how many plants got infected and all the other parameters that completely define the 

system.   

 5.5 Numerical Simulation 

This section presents the validation of the game-based model by comparing it with actual 

observed data from the Entomology Department at Kansas State University. This section also 

presents sensitivity analysis that the total number of infected host plants as a function of the birth 

rate of the WFT, biting rate of larva and death rate of infected WFT.  This can help predict the 

transmission of the virus and can suggest potential strategies to control this plant disease.  

 5.5.1 Experiment and Data Introduction 

The base data was collected using a physical study of the TSWV-WFT dynamic system 

with tomato plants.  The experiment used a greenhouse with 80 tomato plants which were 

distributed in 8 rows and 10 columns [105].  In the experiment, 500 uninfected adult thrips were 

released in a uniform fashion into the greenhouse, in which 16 tomato plants were already infected 

(the rest 64 tomato plants were heathy). The initial status of tomato plants is presented in Table 

5.9, while H is healthy plants and I is infected plants. 

During the experiment, individual tomato plants were checked for visual indication of 

TSWV infection on a weekly basis for 8 weeks. When a plant was observed, it was recorded as 
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“uninfected”, “questionable infection” or “confirmed infection”. The experiment results are shown 

in Table 5.10. Detailed infection status of tomato plants is in Appendix B. 

 

Table 5.9 Initial status of tomato plants 

 1 2 3 4 5 6 7 8 9 10 

1 H H H H H I H H H I 

2 I H H H H I H H H H 

3 H H H I I H H H H H 

4 I H H H H H H H H I 

5 I H H I H H H H H H 

6 H H H H H H H H I I 

7 H H H I H H I H H H 

8 H I I H H H H H H H 

 

Table 5.10 Experiment results of infected plants number 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Uninfected  64 64 64 64 52 32 0 0 

Questionable 0 0 0 0 12 30 33 0 

Infected 16 16 16 16 16 18 47 80 

 

 5.5.2 Comparison with Experimental Data 

The simulation using the game-based approach represented the greenhouse as closely as 

possible.  The simulation started with the same initial distribution of 64 healthy plants and 16 

infected plants, as shown in Table 5.9.  For thrips, 500 uninfected thrips are evenly distributed as 

initial condition. The game-based model was simulated for 8 weeks using the parameters shown 

in Table 5.11 and game parameters of k1 = k2 = k3 = 100.  Table 5.11 also provides references to 

the suggested values of these parameters. The simulated results are shown in Table 5.12.  
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Table 5.11 Parameter values for numerical simulations  

Parameter Description Units Ranges Value Source 

vv Birth rate of the thrips 1/day (4, 10) 5 [19, 153] 

Kv Capacity of thrips population - - 500 Estimated 

γSL1 The average number of days required for 

eggs to develop to Larvae 1 

day (2, 4) 3 [19, 104, 

133, 164] 

μE Daily death rate of thrip eggs 1/day 0.2 0.2 [104] 

βL1 Bite rate of the thrips -  0.6 [153] 

γSL2 The average number of days required for 

susceptible larvae 1 to develop to non-

infective Larvae 2 

day (1, 2) 1.5 [19, 104, 

133, 164] 

μSL1 Daily death rate of susceptible Larvae 1 1/day 0.2 0.2 [104] 

γIL1 The average number of days required for 

exposed larvae 1 to develop to infective 

Larvae 1 

day (1, 2) 1 Estimated 

μEL1 Daily death rate of exposed Larvae 1 1/day (0.1, 0.2) 0.15 Estimated 

γIL2 The average number of days required for 

infective Larvae 1 to develop to infective 

Larvae 2 

day 1 1 [104, 108] 

μIL1 Daily death rate of infective Larvae 1 1/day 0.1 0.1 [104] 

γSpp The average number of days required for 

non-infective Larvae 2 to develop to non- 

infective Prepupae 

day (2, 4) 3 [19, 104, 

133, 164] 

μsL2 Daily death rate of non-infective Larvae 2 1/day (0.1, 0.2) 0.2 [104] 

γIpp The average number of days required for 

infective Larvae 2 to develop to infective 

Prepupae 

day 2 2 [104, 108] 

μIL2 Daily death rate of infective Larvae 2 1/day 0.1 0.1 [104] 

γSp The average number of days required for 

non-infective Prepupae to develop to non-

infective Pupae 

day (1, 2) 1.5 [19, 104, 

133, 164] 

μSpp Daily death rate of non-infective Prepupae 1/day (0.1, 0.2) 0.2 [104] 

γIp The average number of days required for 

infective Prepupae to develop to infective 

Pupae 

day 1 1 [104, 108] 

μIpp Daily death rate of infective Prepupae 1/day 0.1 0.1 [104] 

γSv The average number of days required for 

non-infective Pupae to develop to non-

infective Adults 

day (1, 3) 2 [19, 104, 

133, 164] 

μSp Daily death rate of non-infective Pupae 1/day (0.1, 0.2) 0.2 [104] 

γIv The average number of days required for 

infective Pupae to develop to infective 

Adults 

day (1, 2) 1.5 [104, 108] 

μIp Daily death rate of infective Pupae 1/day 0.1 0.1 [104] 

μSv Daily death rate of non-infective Adults 1/day (1/45, 

1/30) 

1/37.5 [19, 104] 

μIv Daily death rate of infective Adults 1/day (1/51, 

1/42) 

1/46.5 [19, 104] 
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Table 5.12 Simulated results of infected plants number 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Uninfected  64 64 64 57 23 5 0 0 

Questionable 0 0 0 7 41 57 31 0 

Infected 16 16 16 16 16 18 49 80 

 

 

Figure 5.7 and Figure 5.8 presents the comparison of total number of uninfected plants and 

infected plants respectively, with the dotted line shows the simulated results while the solid line 

represents the actual observed experimental results. Also, the infection level distribution map for 

plants from the experiment and from the simulated model is presented in Figure 5.9 and Figure 

5.10, respectively, for the time table of week 1 to week 8.  

For the game-based model simulated results a plant is defined as uninfected if its infection 

level is less than 0.2, and the plant is classified as infected if its infection level is larger than 0.5, 

otherwise, it is defined as questionable infection. In Figures 5.9-5.10, a green cell indicates 

uninfected plant, yellow cell indicates questionable plant and a red cell represents a confirmed 

infected plant in that cell.  
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Figure 5.7 Comparison of total number of uninfected plants from simulation and experiment 

 

Figure 5.8 Comparison of total number of infected plants from simulation and experiment 
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Figure 5.9 Plants Infection level distribution from experiment 

 

Figure 5.10 Plants Infection level distribution from simulated model 
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When comparing the simulation with the observation one can notice that the total number 

of uninfected plants decreased a little faster in the simulation in comparison with the observed 

data, while the total number of infected plants have a very good fit with the observations.  

Looking at the comparison of pattern of infection, the first three weeks has a very similar 

pattern to the initial pattern in both the simulation and the actual data.  From week 4, the simulated 

model has more healthy plants that become questionable while in the observed data this trend is 

not as evident. The same trend continues for week 5 and week 6 with the simulated model has 

more uninfected plants transferred to unhealthy plants. During week 7 all the plants became 

infected (either questionable or confirmed) and in week 8 all the plants were confirmed as infected.  

In all, we can conclude that game-based model has a good fit and can generate good predictions 

for the TSWV- WFT system. 

 5.5.3 Sensitivity Analysis 

Sensitivity analysis is a technique used to study how different values that can impact the 

response output of a mathematical model [137, 138]. This section explores the impact of different 

parameters have on the total number of infected plants, in order to recognize the significant factors 

and develop suggestions on controlling the vector disease.  

In a practical sense, the objective of studying this TSWV-WFT system is to control the 

total number of infected plants, and minimize the economic loss. In the sensitivity analysis 

presented in this section, the total number of infected host plants acted as the response output.  The 

uncertainty inputs tested (one at a time) are: WFT birth rate, WFT larvae 1 biting rate, and the 

daily death rate of infected WFT adults.  This analysis follows the same initial conditions as in the 

experimental study (as stated in the previous section). Simulation results are shown in Figures 

5.11-5.13. 
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Figure 5.11 Sensitivity to WFT birth rate 

 

 

Figure 5.12 Sensitivity to WFT Larvae 1's biting rate 
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Figure 5.13 Sensitivity to daily death rate of infected WFT adults 

 

Through the simulation, WFT birth rate and Larvae 1’s biting rate positively correlated 

with the total number of infection plants thus concluding that a higher birth rate and a higher biting 

rate of WFT leads to higher economic loss. Daily death rate of infected WFT has a significant 

negative correlation with the total number of infected plants, which indicates that a higher death 

rate of infected WFT adults can reduce economic loss. Thus, our goal could be to decrease the 

WFT birth rate and WFT Larvae 1’s biting rate, and also to increase the daily death rate of infected 

WFT adults.  To change the biting rate of WFT some chemical control might be used to stimulate 

plant self-defense; or to improve resistance to the herbivore [153]. To impact the birth rate of WFT 

and daily death rate of infected WFT, temperature control in greenhouse may be a useful method 

as well as biological control such as introducing predator mites (Amblyseius cucumeris for 

example) to control WFT or using pesticide [105, 146, 167].  
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 5.6 Conclusion and Discussion 

This paper introduces and analyzes a new modeling approach for the Tomato Spotted Wilt 

Virus – western flower thrips – host plant disease system. This new perspective describes the 

spatial dynamics of adult thrips as a spatial game model which uses payoff functions that the 

players (the uninfected adult thrips and infected adult thrips) can receive based on the infection 

level of plants and the number of adult thrips population in the grid used for the spatial model. The 

values of the payoff from each cell helps generate the probability that the adult thrips will migrate 

to that cell. In each cell the basic dynamic model is used to analyze the development stages of 

thrips and transmission of infection representing the triangle interaction for virus-vector-host plant 

system. This interaction along with the spatial game dynamic carried out over many iterations 

represents the whole spatial dynamics for TSWV-WFT.  

The game-based model is simulated and validated using actual experimental data in which 

the infection status of host plants was recorded every week for 8 weeks. The total number of 

uninfected plants, questionable plants, and confirmed infected plants has been compared between 

the simulated results and experiment results. The distribution of infected level of plants has been 

also compared for each week. Comparison results shows that this new approach has a good fit with 

the experimental data and indicates that the model can generate good predications of the TSWV-

WFT system. 

Moreover, a sensitivity analysis is performed studying the impact of different parameters 

on the infection of host plants.  This allows to generate suggestions for controlling the vector-

borne disease and minimize the total number of infected plants. Results show that WFT’s birth 

rate, WFT larvae 1’s biting rate and the daily death rate of infected WFT adults have a significant 

impact on the plants infection status. Strategies such as biological control, chemical control or 
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temperature control that can decrease the birth rate, biting rate or increase the daily death rate of 

infected WFT adults could be recommended. 

The game-based approach can have wide applications in other research areas such as 

competing commercial firms, prey-predator systems, logistic distribution systems and similar 

dynamic systems. The payoff function and move probability function can be adjusted based on 

different habits, characteristics and mobility preferences of the different players or species. Thus, 

this modeling approach can be useful in many other areas of science.  

Future expansion of this research can include more sophisticated models, such as agent 

based models [126, 127, 140] and use the optimal control theory [129, 141], which will provide 

decision makers with better policies for controlling the vector-borne disease. Also, further 

validation of models with TSWV-WFT experiment could be performed with different spatial 

scales and different initial distributions. 
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Chapter 6 - Conclusions, Contributions, and Future Works 

 6.1 Conclusions 

In this research, spatial effects have been investigated and discussed for two competing 

dynamic ecological systems: a prey-predator system (two spotted spider mites and its predator), 

and a vector-borne disease system (tomato spotted wilt virus (TSWV) vs western flower thrips 

(WFT)). The author developed a novel methodology to these systems as well as compared the new 

model with traditional dynamic models. The resulting analytical and numerical simulation help us 

better understand the system behaviors and recommend the corresponding control strategies. 

Main conclusions drawn from this dissertation are: 

1. Different spatial assumptions impact the prey-predator distribution.  The integro-

diffusion model exhibits a significantly different pattern when compared to the 

other three models: self-diffusion, cross-diffusion and chemotaxis effect model.  

2. For two spotted spider mite system, cross-diffusion model has the best fit with 

experimental data when compared with other three models: self-diffusion, 

chemotaxis effect model and integro-diffusion model.   

3. For prey-predator system, the novel game-based model performed similarly to the 

cross-diffusion model regarding population changing.  This similarity between 

models suggests that the game-based model is a valid approach for modeling the 

prey-predator dynamic system.  

4. For two spotted spider mite system, the game-based model fits the observations 

more closely than the cross-diffusion model regarding the total number of prey and 

predator, indicating the game-based model is a good fit and can generate good 

predictions of the prey-predator systems. 
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5. For TSWV-WFT system, the game-based model has a good fit with the 

experimental data, which satisfied the fidelity requirement of the proposed new 

methodology. 

6. In order to efficiently control the spread of TSWV, strategies such as biological 

control, chemical control or temperature control that can decrease the birth rate, 

biting rate, or increase the daily death rate of infected WFT adults is recommended.  

 6.2 Contributions 

Major contributions of this dissertation to the area of biological systems modeling, decision 

making on pest control, and plant disease epidemiology are listed as follows: 

1. For the first time, this research compared four dynamic models for two spotted 

spider mites vs. predators system from two perspective: numerical simulation and 

validation with observations. The four models including two well-known models 

in literature and two new models developed by the author.  

2. For the first time, this research applied the spatial evolutionary game theory to the 

prey-predator system model. By defining a payoff function and a probability 

function, a spatial dynamic scheme is demarcated. This novel game-based model 

was successfully compared with the more traditional biological dynamic model.  

3. For the first time, this research developed new mathematical models to study 

TSWV-WFT system which emphasized the life cycle of vector and transmission 

characteristics of the specific system.  

4. For the first time, this research introduced spatial effect to TSWV-WFT system. 

Spatial game as an effective tool is applied to reveal the spatial movement of adult 
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thrips. This novel model was successfully validated with real-world experimental 

data. Sensitivity analysis is performed to suggest efficient controlling strategies.  

5. The spatial game methodology developed in this research can be applied to other 

research areas with spatial dynamics. 

 6.3 Future Works 

Major future works in the area of analysis of specific dynamic systems are listed as follows: 

1. Further analytical study into the TSWV-WFT dynamic system, such as stability 

analysis and bifurcation analysis, should be conducted to better understand the 

behavior of the dynamic system.  

2. In order to increase understanding of the variation of individuals’ responses, an 

agent-based model could be developed as a tool to study the complex system with 

interactions among different species.  

3. To seek more cost-effective control strategies, optimal control theory could be 

employed for these ecology systems. For both systems in this research, actual 

control costs in various scenarios should be discussed and compared. 

4. Further validation of models for two spotted spider mites and TSWV-WFT using 

experimental systems, including discussion of different spatial scales and different 

predator and prey spatial distributions. 
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Appendix A- Population Distribution of Two Spotted Spider Mites 

and its Predator in Experiment 

Table A.1 Initial distribution of prey and predator presented as (u,v) 

(32, 6) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(32, 0) (0, 0) (0, 0) 

 

Table A.2 Distribution of prey and predator presented as (u,v) on day 6 

(60, 5) (24, 1) (0, 0) 

(14, 0) (12, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(210, 0) (130, 0) (2, 0) 

 

Table A.3 Distribution of prey and predator presented as (u,v) on day 12 

(52, 6) (20, 2) (6, 0) 

(32, 0) (8, 1) (34, 4) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(0, 0) (0, 0) (0, 0) 

(48, 0) (22, 0) (0, 0) 

(136, 0) (32, 0) (0, 0) 

(56, 0) (44, 0) (0, 0) 
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Table A.4 Distribution of prey and predator presented as (u,v) on day 18 

(48, 2) (12, 8) (28, 4) 

(64, 5) (24, 9) (76, 8) 

(80, 3) (84, 9) (32, 6) 

(76, 3) (70, 2) (12, 0) 

(260, 6) (76, 0) (60, 0) 

(220, 0) (0, 0) (368, 0) 

(0, 0) (156, 2) (356, 0) 

(0, 0) (0, 0) (136, 0) 

 

Table A.5 Distribution of prey and predator presented as (u,v) on day 24 

(110, 10) (80, 24) (98, 16) 

(132, 42) (92, 22) (112, 26) 

(124, 25) (148, 12) (138, 18) 

(64, 8) (88, 4) (112, 0) 

(84, 3) (70, 3) (116, 10) 

(42, 6) (36, 3) (30, 1) 

(24, 0) (20, 1) (32, 0) 

(48, 2) (72, 2) (84, 1) 
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Appendix B- Infection Status of Tomato Plants in the Experiment of 

Spotted Wilt Virus and Western Flower Thrips System 

Table B.1 Initial Status of tomato plants 

 1 2 3 4 5 6 7 8 9 10 

1 H H H H H I H H H I 

2 I H H H H I H H H H 

3 H H H I I H H H H H 

4 I H H H H H H H H I 

5 I H H I H H H H H H 

6 H H H H H H H H I I 

7 H H H I H H I H H H 

8 H I I H H H H H H H 

 

Table B.2 Infection status of tomato plants in week 2 

 1 2 3 4 5 6 7 8 9 10 

1 H H H H H I H H H I 

2 I H H H H I H H H H 

3 H H H I I H H H H H 

4 I H H H H H H H H I 

5 I H H I H H H H H H 

6 H H H H H H H H I I 

7 H H H I H H I H H H 

8 H I I H H H H H H H 

 

Table B.3 Infection status of tomato plants in week 3 

 1 2 3 4 5 6 7 8 9 10 

1 H H H H H I H H H I 

2 I H H H H I H H H H 

3 H H H I I H H H H H 

4 I H H H H H H H H I 

5 I H H I H H H H H H 

6 H H H H H H H H I I 

7 H H H I H H I H H H 

8 H I I H H H H H H H 
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Table B.4 Infection status of tomato plants in week 4 

 1 2 3 4 5 6 7 8 9 10 

1 H H H H H I H H H I 

2 I H H H H I H H H H 

3 H H H I I H H H H H 

4 I H H H H H H H H I 

5 I H H I H H H H H H 

6 H H H H H H H H I I 

7 H H H I H H I H H H 

8 H I I H H H H H H H 

 

Table B.5 Infection status of tomato plants in week 5 

 1 2 3 4 5 6 7 8 9 10 

1 H Q Q H H I H Q Q I 

2 I H H H H I H H Q Q 

3 H H H I I H H H H Q 

4 I H H H H H H H H I 

5 I H H I H H Q H H H 

6 H H H H H H Q Q I I 

7 H H H I H H I H H H 

8 Q I I Q H H H H H H 

 

Table B.6 Infection status of tomato plants in week 6 

 1 2 3 4 5 6 7 8 9 10 

1 H Q Q H H I Q Q Q I 

2 I H H Q H I H H Q Q 

3 H H H I I H H Q Q Q 

4 I H H Q Q Q H Q Q I 

5 I H H I H H Q Q Q Q 

6 H H Q Q Q H I I I I 

7 H H H I Q Q I H H H 

8 Q I I Q Q Q Q H H H 
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Table B.7 Infection status of tomato plants in week 7 

 1 2 3 4 5 6 7 8 9 10 

1 Q I I Q Q I I I I I 

2 I Q Q I Q I Q Q I I 

3 Q Q Q I I Q Q I I I 

4 I Q Q I I I Q I I I 

5 I Q Q I Q Q I I I I 

6 Q Q I I Q I I I I I 

7 Q Q Q I I I I Q Q Q 

8 Q I I I I I I Q Q Q 

 

Table B.8 Infection status of tomato plants in week 8 

 1 2 3 4 5 6 7 8 9 10 

1 I I I I I I I I I I 

2 I I I I I I I I I I 

3 I I I I I I I I I I 

4 I I I I I I I I I I 

5 I I I I I I I I I I 

6 I I I I I I I I I I 

7 I I I I I I I I I I 

8 I I I I I I I I I I 

 

(“H” is uninfected plants, “Q” is questionable infection plants, “I” is confirmed infection 

plants) 


