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NOMENCLATURE

a ~ Negative rake angle

D Depth of cut

W Width of cut

d Chip thickness

8] Workpiece velocity

UPC’UGH’ etc. Velocities in the Hodograph

UEG,Uﬁc, etc. Velocity discontinuities in the Hodograph

X" Yield stress in pure uniaxial tension

kK Yield stress in pure shear

a-Line Slip-line of the family denoted by the parameter ¢

B-Line Slip-line of the family denoted by the parameter (¢+n/2)

NsNq5MpsNg Friction angles; the angles between slip-lines and inter-
faces

R Radius of the centered fan field PED

do Height of chip formation, length HL in Fig. 4.1

950750010 Thelcgunter—c%ockwise angle of an a-line from the
positive x-axis

5,66,68 The counter-clockwise angle of an g-line from the

positive x-axis

cx,cy,cz,o,gn Normal stresses

01505504 Principal normal stresses
Txy’Tyx’T Shear stresses
P Hydrostatic stresses

vii



pl,pz,...etc._]
Compressive normal stresses

L '
pa,pb,pv,pv,pd
8, ,8,,+0.8EC,
1? > .
z Shear stresses
1

%225y 5y Sy
pBD’p13D’pBCD’pvaD Dimensionless compressive normal stresses
SBD’813D’SBCD’SvaD Dimensionless shear stresses
FH Horizontal component of the cutting force
FV Vertical component of the cutting force
VOH Ratio of the vertical component of the cutting

force to the horizomtal component of the cutting

force
FT Component of the cutting force normal to the tool face
FN Component of the cutting force parallel to the tool face
FTD,FHD,FVD Dimensionless components of cutting force; parallel to

the tool face, horizontal and vertical, respectively.
PMOK Uimensionless mean pressure on the tool face
i,x Coordinate direction paralilel to the tool face
¥,y Coordinate direction normal to the tool face
LFy Summation of forces in Y-direction
ILFx Summation of forces in X-direction
ZMO Summation of moment about 0 in Fig. 4.4
m Adhesion coefficient
U Friction coefficient
AR Real area of contact
81,82 Parameters in the Equation for AR
£ Parameter in the Equation for {%EJ

lim

VX,V Velocity Components in X and Y directions

Wl



1.0 INTRODUCTION

Machining is an important metal removal process in manu-
facturing. However, the mechanics of this process are not fully
understood. In the past, theoretical studies of metal cutting
with positive rake angle tools have been conducted. Various
theories have been presented, e.g., Merchant[li,-Lee and Shaffer [5]
and Hill [6]. But, on the nature of the cutting process with large
negative rake angles very little published literature is available.
Even if high negative rakes for single point cutting tools are
rarely used, it is necessary to understand the cutting mechanisms
at such rakes. Negative rakes exist in cutting with grinding
grits, at the nose radius of a single point tool and in drilling
rocks with diamond drill bits.

Rubenstein et al.[ll] conducted experiments with large negative
rake tools and concluded that chip formation ceases at about -55 deg.
rake in machining both aluminum and 70:30 brass. They also observed
that at higher negative rake angles the workpiecematerial flows
sideways instead of up the rake face.

Rowe and Wetton [13] applied the slip-line field thecry to the
problem of indenting by a symmetrical truncated wedge. Their
theory predicts first the formation of a frontal bulge (prow)
which later transforms to a chip. The formation of the prow was
experimentally proved.

Komanduri [14] conducted experiments in machining with a wide

range of negative rake tools. He observed that it is possible to



obtain chips with as high a negative rake as -75 deg. At -85 deg.
rake no chip was formed but the tool rubbed the work material
causing considerable side flow. He also concluded that the ratio

of the thrust force to cutting force is greater than 1 for high
negative rakes. His other observations were that the force parallel
to the rake face becomes zero at -76 deg. rake, and that a prow
formed ahead of the cutting edge.

Abdelmoneim and Scrutton [28] conducted experiments-with rake
angles ranging from -55 deg. to -80 deg. in machining non-ferrous
materials. One experimental observation was that ne chip formed
when using tools of -80 deg. rake.

Yoshihiro Kita ot al [27] studied the mechanism of metal re-
moval with a conic abrasive tool. They observed a stagnant region
ahead of the tool face during cutting. Besides they found a relation-
ship between the stagnant region and chip formation. If the position
of the stagnant tip is under the surface of the workpiece the chip
can be formed; but if the position of the stagnant tip is above the
surface of the workpiece no chip will be produced.

Challen and Oxley [31]used slip-line field analysis to explain
the deformation of a soft asperity by a hard one, the hard one
being a negative rake model. They derived equations for wear rates
and coefficients of frictiom.

Hein [35] developed an approximate slip-line field for a negative
rake angle cutting problem. His solution was an upper bound type.
His conclusion was that slip-line field theory can be applied to

problems of cutting with large negative rake angle tools.



Yoshihiro Kita et al.. [36] studied experimentally the cutting
mechanism with large negative rake tools. In their experiments
they tried to simulate plane strain in cutting. They observed a
stagnant region ahead.of the tool face. The size of this region
increases as the rake angle becomes more negative. In their con-
clusions they noted that the ratio of the vertical force to the
horizontal force is greater tham 1.

Most of the research done on negative rake angle cutting has
been experimental. The objective of the study conducted here is
to develop a theory of the mechanics of cutting with large negative
rake angle tools. As a basis for this study, the slip-line method,
which has been successfully used in solving problems related to
other types of metal forming processes is used. In developing the
slip-line field, the formation of the prow and the stagnant region
ahead of the tool, which have been experimentally demonstrated are
considered. Using this method, from the given rake angle, type
of material and depth of cut, the theoretical forces are calculated

and are compared with available experimental results.



2. THEORY OF PLANE STRAIN PLASTIC DEFORMATION [21, 32, 34]

2.1 Conditions and Assumptions

There are many cutting processes, like orthogonal machining in which
the depth of cut is relatively small compared to the width of cut, so that
permanent deformation occurs in plane strain. Plane plastic deformation
implies that the displacements of elements in the plastically deforming
region all occur in parallel planes, for instance the X - Y plane, and
are independent of the Z co-ordinate.

The workplece material is assumed to be homogeneous and isotropic.

In any plane, Z=constant, the same stress-strain relationship is applicable;
the components of stresses depend only on X and ¥, and T o? Tyz are zero.
Thus the Z~direction is a principal direction andtzzis a principal stress.

The elastic strains which must occur before the material is sufficiently
stressed to become plastic are ignored. In such cases it is reasonable to
assume that the workmaterial has an infinite Young's modulus of elasticity.

In the plastically deforming region of the workpiece strain-hardening
is neglected so that the material is assumed to flow at constant yield
stress, This material is referred torés rigid-perfectly plastic. The
strain-rate at each point in the deforming region is usually different. The
effect this may have on the yleld stress is therefore ignored. During
deformation involving high values of strain, most of the external energy
used is dissipated as heat. Temperature gradients that can arise may
affect the material properties; but this effect is neglected.

The slip-line method, which i1s based on plane strain plastic
deformation, requires several assumptions that may not agree with the
physical phenomenon it attempts to describe. However, many problems of

real importance have been solved [20] which show good agreement with



experiment and theory.

2.2 Basic Plane Strain Equatilons

It can be shown for plane strain deformation in the X - Y plane

o +a
- i e = = k
o, 5 p and Tz Tyz 0 (2.1)

The maximum shear stress in the plane flow is expressed as

g, = @
1 3.
Twax "z - K (2.2)
or 1
1 2 2y 2
Toas ™ [(?;)(ox - Uy) Ry (2.3)
The principal stresses are
o, =p+ K, o, = 0, =P, and Oy =p = K (2.4)

Assuming the von-Mises yield criterion, the yield occurs when the
maximum shear attains the value
K= Y?f’g-, where Y/is the yield stress in tension. (2.3)
The differential equations of equilibrium of forces for plane strain

deformation in the X - Y plane, neglecting body and inertia forces are

Bax AT "
=t =0 (2.6)
Ty + 2% a0 2.7
9x oy

Equations (2.3), (2.6), and (2.7) represent three equations with
three unknowns. If the boundary conditions are stated only in terms of
stresses, the above equations are sufficient to define the stress distribu-
tion independent of strain. This type of problem is referred to as being
statically determinate. However, if displacements or velocities are

specified over part of the boundary, the stress-strain equations may have



to be employed, and the problem becomes more complicated.
For the plane strain case, writing the strain rates in terms of
velocities, we have for the requirement of constant volume (incompressiblity)

v av

—.—x- —1-
i F 5y 0 (2.8)

The Saint Venant - von Mises plasticity relations can be re-arranged

to give

o - a Wep. = av&/

X ax 9y (2.9)

2T oV aV *
Xy x/. + " x/

4

9xX

This states that the direction of the surface of maximum tangential
stress coincides with the direction of the surface which experiences the
maximum rate of shear strain.

So we have five equations (2.3), (2.6), (2.7), (2.8), and (2.9) for
the five unknowns Ux,'dy, Txy, Vx, and Vy. This type of problem is referred
to as statically indeterminate since the equatiocns for stresses and
velocities that have to be solved simultaneously are extremely difficult.

The state of stress at some point C in a plastically deforming region
may be represented by the Mohr stress circle diagram as shown in Fig. 2.1.

The stresses O uy, and Txy can be expressed in terms of the hydro-
static pressure, p, and the yield shear stress, K, as follows

g, =g K Sin 2¢.
cy = -p + K Sin 2¢0 (2.10)

*T = + K Cos 20
Xy

2.3 Plain Strain Slip-Line Field Theory

2.3.1 Slip-Lines

The maximum shear stresses, ¢ =+ K act on surfaces which make
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angles of #45° with the principal directions. If curves are drawn in the
X - Y plane such that at every point on each curve the tangent coincides
with the direction of maximum shear stress, then two orthogonal families
of curves are obtained which are termed shear lines or slip lines. These
two families of curves are usually designated as a~-lines and B-lines. To
distinguish between these two lines, the usual convention is that where
the o and B-lines form a right-handed coordinate system of axes, then the

line of action of the algebraic maximum principal stress, ¢,, as shown in

1
Fig. 2.2 falls in the first and third quadrants. The anti-clockwise
rotation, §, of the a-line from the chosen X-direction is then considered
positive.

2.3.2 Hencky Stress Equations

The state of stress at a point can be expressed in terms of the
independent quantities p, K and ¢ as in equations (2.10). Thus, the
equilibrium equations (2.6) and (2.7) can be expressed in terms of these

quantities as follows:

-21(51:19—?;- + B 4 K Cos 2“'%=0
(2.11)
2KSinﬁ-g— +_g£_ _ 2K Cos 2{3._%_1:0

Equations (2.11) are the partial differential equations of equilibrium
for the plane strain deformation of a rigid perfectly plastic material
and are hyperbolic. The characteristics of the hyperbolic equations in
this case, coincide with the slip lines.

The choice of X and Y axes is arEitrary. If we rotate the axes
through # such that the o and g lines coincide with the X, Y axes, 0

becomes zero in equations (2.11) and as a result:



9x

ax
(2.12)
EE_. ZK—B—Q-zo
ay Iy
integrating (2.12), we have the Hencky equations
p+ 2K@ = C1 , along an a=-line
(2.13)
p - 2Kp = C2 , along a BR=-line
C, and C, are constants and their values generally vary from one

1 2
slip-line to another.

2.3.3 Geiringer Velocity Equations

From Fig. 2.3 the velocity components in the X and Y directions
are respectively

u =u Cos @ - v 8in @
vy =v Cos @ +u Sin @

(2.14)

Differentiating with respect to X and y respectively, and rotating
the X - Y axes through @ so that the X-axis coincides with the a-line, that

is, #=0. We have

Px o au_ ag
9x X ax

v
dy 9y ay

Since the rate of extension along a slip-line is zero

P S B
3% 2 9=0 [By ]¢=0 (2 di)

Thus equations (2.15) become:

du - vd§ =0 along an a-line

dv + udgd =0 along a B-line

(2.17)

Equations (2.17) are the velocity compatiblity equations and are
known as Geiringer's equatioms.

In many cases, it is possible to construct a graphical representation
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(a)Field of Uniform Stress.

a=-lines

Fig.2.4.81ip-Lines of Simple Stress States.

(1) Tangent to
Slip-Line L

Velocit‘i Discontinuity
(b)Hodograph. V= u1‘ |..|2

Fig.2.5.Velocity Discontinuity.

(b)Centered Fan Fileld.

Tig.2.6.3tress Free
Surface.
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of the velocity at each point in a plastically deforming region. This is
known as a hodograph The hodograph permits the evaluation of the magnitude
and direction of the velocity at a point which is indicated as a vector.

2.3.4 Simple Stress-States

Fig. 2.4(a) shows a slip-line field generated by two orthogonal
families of parallel straight lines. Using Hencky's stress equations
(2.13) it can be shown that if the slip lines are straight then the angle,
@, is constant along the slip lines and the hydrostatic pressure, p,
remains constant. Alsoc the stress components O s ay, and ¢, must be
constant. Thus the slip-line field of Fig. 2.4(a) represents a uniform
stress state,

The slip-line field shown in Fig. 2.4(b) consists of a set of radial
lines, say o~lines, intersected orthogonally by a set of concentric circular
arcs, say BA-lines. From the first of Hencky's stress equations (2.13),
since @ is constant along an o=~line, the hydrostatic pressure, p, must also
be constant along an a=line, From the second of Hencky's stress equations,
since @ varies linearly with distance along a B-line, the hydrostatic
pressure, p, varies linearly with distance along a f-line. This type of
slip~line field is known as the centered fan, The center of the fan, 0, is
a point of stress singularity, and it can have any one of an infinite
number of values.

In general a slip-line fileld can be constructed by combining both
the uniform stress state and the centered fan fields.

2.3.5 Velocity Discontinuities

For a rigid-perfectly plastic material the displacements throughout

the deforming material need not be continous. It is possible for there

to be relative slipping between neighbouring zones in the deforming material.
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The line of wvelocity discontinuity is a slip-line. As shown in Fig.
2.5(a) consider the material at Q crossing a slip-line. Let the material
to the left of Q have a velocity Vi with components vy and uy which are
normal and tangential to the slip-line respectively. After crossing

the slip-line its velocity changes to V_ with corresponding components

2
AL and Ug. Continuity at Q demands V=V hence normal components of
velocity when crossing a slip-line are always the same mﬁgnitude on either
side of the slip line. However, it 1s possible for there to exist a
velocity discontinuity of magnitude, V*=‘i-u2, tangential to the slip-

line at the point Q, as shown in the hodograph in Fig. 2.5(b).

The magnitude of the tangential stress along a line of velocity
discontinuity is equal to t=tK. In passing through such a line, an element
experiences a finite shear in the direction in which the tangential stresses
act and thus changes its direction of motion. The jump velocity, V*nul—u2
and the sense of the tangential stress, T, are related by the conditiom that

the plastic energy dissipation be positive: <t(u )>0. Therefore, if the

1 42

Jump V*ﬂul-u >0, t=+K and if V*=ul-u <0 then t1=-K.

2 7
In general, once a velocity discontinuity is established across a slip-
line there always exists a velocity discontinuity across any extension to
the slip-line. Another general rule on slip-lines across which there is
a discontinuity in the tangential component of velocity, is that, these
slip-lines either form the boundary of the deforming region, or originate
and/or terminate at a point of stress singularity within the field. These
restrictions are necessary, otherwise compatibility of the velocity

solution is wiolated.

2.3.6 Boundary Conditions for Stresses

2.3.6.1 Stress Free Surface

At a stress free surface there are no normal or shear components of
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stress. The stress free surface is, therefore, a principal plane on which
the principal stress is zero. It follows that the direction tangential
to the free surface is a principal stress direction. The slip-lines
indicate directions of maximum shear stress at anypoint in the material
and intersect the free surface at angles of +45° as shown in Fig. 2.6(a).
The normal stress at the point @ can be considered as a zero compres-
sive stress. Since the other principal stresses are also compressive and
have greater magnitudes, the zero normal stress is the algebraic maximum
principal stress, that is, cl=0. The algebraic minimum principal stress
is 0,=-2K. The Mohr's circle diagram is shown in Fig 2.6(b). The

3

algebralc maximum principal stress, o,, has its direction contained in the

1’
first and third quadrants of the right-handed a~B co-ordinate system. Hence
the ¢ and B-lines are designated as shown in Fig. 2.6(a).

2.3.6.2 Friction Present at the Interface

At the tool-workpiece interface there can exist both shear and normal
stresses. The shear stress tangential to the interface arises from friction
conditions. If the magnitude of the shear and normal stresses are known
the angle at which the family of slip-lines intersects the boundary can be
found from the Mohr's circle as shown in Fig. 2.7(c). One slip~line will
intersect the interface at some angle n< 45°. The determination of the
magnitude of the shear and normal stress from a given friction condition
will be discussed in Section 5.1.2.

In the case of no friction at the interface, the slip-lines intersect
the interface at angles of n = +45°, If the frictional stress becomes so
high that the workplece material will yield in shear at the interface,
one slip-line meets the interface tangentially and the other normally.
Under these conditions the interface is usually referred to as being

perfectly rough.
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2.3.7 Requirements for a Complete Solution

2.3.7.1 General Requirements

A complete solution to the plane strain deformation of a rigid-

perfectly plastic material requires:

1. A statically admissible stress field which satisfies the
equilibrium equations and the stress boundary conditions and nowhere is
the yield criterion to be violated.

2. A kinematically admissible velocity field that is
compatible with the stress field.

3. The rate of plastic work is everywhere positive.

4. The yield criterion is not violated in the material adjacent
to the plastic region. That is, the material must be capable of supporting
the stresses transmitted across the boundary without yielding.

2.3.7.2 Check of Positive Rate of Work

Plastic work 1s always positive, that is, work has to be done on
materials to cause permanent deformation. It is necessary to check that
any slip-line solution does not violate this fact at any point throughout
the field,

The following method of verifying that the plastic energy dissipation
be positive was suggested by Ford [33]. In Fig. 2.8(a), a curvilinear
element ABCD is bounded by a pair of a and B-lines. The corresponding
hodograph is shown in Fig. 2.8(b). The plastic energy dissipation in the
element will be positive provided the velocity of C relative to A represented
by the vector, Eg, in the hodograph is positive, that is, having a sense
from A to C, and the velocity of D relative to B represented by the vector
bd is positive, that is, having a sense from D to B corresponding with the
sign of the shear stresses in the physical plane of Fig. 2.8(a).

Velocity discontinuities need to be considered separately. The jump
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in velocity, V*suz-ul, as discussed in Section 2.3.5, must be in the same
direction of the shear stress on the same side of the discontinuity line.

2.3.7.3 Yield Criterion Not Violated at Points of Stress Singularity.

Hill [30] showed that in order that yielding of the vertex, Fig 2.9,

shall not occur, the following inequalities must apply:

-

v 2 e o] (2.18)
. , 1 T
[pﬁ-pa ) -i-[Cos Znaﬁlos 2ﬂ.b]—Cos(~(+ﬁa+ﬂb) , for T+na+nb 7
2K — |1 T
wi-[Cos 2€1a+Cos ZQb]+(y+n;-QD—1r/2) , for ﬁﬂaﬂzb 7
(2.19)
-1
{pb-pa > -Z-[Cos Zﬂa+Cos ZQb]+Cos(7—ﬂa~nb) , for '\(-ﬂa-nbi-g-
2K -1
min E{Cos 29a+Cos Zs‘LD]—(y-Qa—nb—r/Z)

m
for v na-.fzbz-_i

where, q. = 2 Sin_l Sa
a 2 —
4
(2.20)
o =% sin %
: ' K
-T +r
and both ﬂa and nb lie between % and =

Some particular singularities which frequently occur in plasticity
solutions are given as follows:
case(i): Only normal pressures P, and p, are applied.

Sa=S.b=0, ﬂa=%=0, requires y > 0

1-Cos v , ¥ <

= 1
Hy= 37, v 2

I Py=P,
2K

SIE NS E

case(ii): The shearing stresses are the largest possible and are

both directed either towards or away from the vertex.

= L
Sa Sb K, na -n.b -iz 5 requires*rg_z
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PyP,

2K

B
2

case(iii): One shear stress (Sa) 1s directed towards and the other

(Sb) away from the vertex.

S =§ =K, 2 =0 = %-, requires y > 0

a b a b
PP Siny s YT

> > =
T gKa_ -(y-m) , Yz’

case(iv): On one side there is no shearing stress, but on the other

the maximum possible.

s, =0, S =K @ =0, @

a b b
1420y =) 2pp, 2 |2 Costy - m/i1 , Loy ey
K 3 3
-2 ("{ “zﬂ)-l s Y i?’“

2.3.8 Methods of Solution.

If the problem is statically determinate, the slip~line field and
the stresses can be defined from equations (2.13) and the stress boundary
conditions. The velocities can be determined from equatioms {2.17) using
the boundary conditions. However, if‘the problem 1s statically indeter-
minate, when the stress boundary conditions are insufficient to obtain a
unique slip-line field, then Hencky's stress equations must be solved
simultaneously with the Geiringer velocity equations using both the stress
boundary conditions and the velocity boundary conditions., Except for the
cases where the slip-line fields are of the simplest kind, the numerical
solution to statically indeterminate problems is extremely difficult.

Sometimes such problems can be treated by a semi-inverse method.
First, the stress field is determined with guesses made for the unattended
boundary conditions. If a valid hodograph, that satisifies the velocity
boundary conditions, can be constructed for a field so obtzined; and the

rate of energy dissipation is non-negative throughout the field, the slip~
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line is kinematically admissible. Furthermore, in the stress field at
stress singularities if the vertices are not overstressed, and if the
stress field can be extended in a statically admissible manner into the
non-deforming regions of the velocity field, the stress field is unique in
the deforming regions and the solution 1s complete.

A solution that does not include an extension of the stress field into
all the non-deforming regions of the velocity field, but is otherwise

complete, yields an upper bound for the surface tractions [24].



3.0 FORMULATION OF THE PROBLEM

3.1 Introduction

In the metal cutting process, a surface layer of metal is
removed by a tool that travels parallel to the surface at a chosen
depth of cut. Most metal cutting operations are three dimensiomnal,
however, only orthogonal cutting, where the tool is moved in a
direction at right angles to the cutting edge is considered. This
simplifies the analysis of the mechanics of metal cutting.

The chip formed is assumed to be continuous and thus the pro-
cess is considered to be steady motion. The rake angle, o, of the
tool, which is the angle between the upper face of the tool and
the normal to the workpiece surface is considered to be negative
and is shown in Fig. 3.2. It is assumed that the state of friction
over the area of contact between the tool and the plastic flow of
the work material can be represented by an adhesion coefficient, m.
The given conditions are then, the values of the rake angle (o),
the adhesion coefficient (m), the depth of cut (D), the width of
cut (W), and the workpiece physical properties (v'or K). The
problem is to determine the shape of the plastic region around the
cutting edge and to calculate the forces on the face of the tool,
and the thickness of the chip, d. Since the width of the tool, W,
is generally very large compared with the depth of cut, D, the de-
formation is essentially plane strain.

For plane strain plastic deformation, the governing equilibrium

differential equations (2.11) which are hyperbolic are known, but

19
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for statically indeterminate problems like negative rake angle
cutting, direct solutions are extremely difficult. However, con-
sidering the characteristics of the differential equations which
are the slip-lines, the problem is reduced to determining the
field of slip-lines. The construction of a slip~line field is
usually based on experimental observation and the intuition of
the investigator. Once the slip-line field is determined, a valid
velocity field (hodograph) is constructed. 1If a valid hodograph
cannot be found the procedure of finding a new slip-line is con~
tinued until a slip-line field with a kinematically admissible
field is found. 1If the slip-line field found satisfies all the
requirements of a complete solution as discussed in Section 2.3.7,
it is a complete solution to the problem. However, if the stress
. field used is not extended to the non-deforming regions of the
velocity field, it is an upper bound solution.

The trial and error procedure of determining the slip-line
field for large negative rake is more complex than many types of
forming processes such as extrusion and sheet drawing. One of the
main reasons is that, in the cutting process the material of the
workpiece first lifts up and then divides into two parts
under the tool. One of them flows up the tool face to become a
stress free chip, while the second one flows down the tool face to

rejoin the workpiece material.
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3.2 Previously Proposed Slip-Line Field

Slip-line fields for negative rake angle cutting are proposed
by Hein [35] and Challen {31]. The one proposed by Challen does not con-
sider the division of the plastic flow into two parts. Since the
divided flow haé been proved experimentally [11,33], Challen's slip-~line
field will not be discussed further. Hein's proposal which is an
upper bound solution type will now be discussed.

Hein's proposed slip-line field is shown in Fig. 3.1(a). Tt
has a valid hodograph as shown in Fig. 3.1(b). Point B is the
stagnation point where the workpilece material is divided into two
parts. One flows towards A to become a chip, and the other flows
towards C. The region BGH is overstressed and violates the yield
criterion necessary for a complete slip-line solution, however, the
solution leads to an upper-bound approximate solution. The results
obtained predict that there is a maximum allowable negative rake
angle, beyond which it is impossible to form a chip. The fact that
there is a critical angle is supported experimentally [11,14 28], even
though the numerical value is not in agreement. Also, using the slip-
line field it is found that the normal component of the cutting
force is greater than the tangential component, and both force com-
ponents increase as the rake angle increases. These facts are also
in good agreement with experimental results [11,28,36].

The results obtained by this trial slip-line, which is the

first of its kind, shows that the slip-~line method of solution is
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suited to the type of problem under consideration. Thus, one is
tempted to search for an improved slip-line field which will be a
better solution.by taking into account additional cutting

features not previously considered.

3.3 Newly Proposed Slip-Line Field

In setting up the slip-line field it is assumed that the tool
is stationary and rigid, and the depth of cut is comparatively bigger
than the radius of curvature at the tip of the cutting edge of the
tool.

Only a few experiments have been done on negative rake angle
cutting; and all that appear in the literature {12,14,36] observed
that a stagnation region appears in front of the tool. This region
divides the plastic flow into upward and downward directions over
the tool face. Thus, the slip-line to be constructed should take
this fact into consideration. Also it is observed experimentally [13]
that there exists a buildup of material ahead of the tool which is
called a prow, and this too should be included in the slip-line
field. Other experiments relating to wear indicate that the tool
wears on the bottom side of the tool, which is called the flank.

This suggests that the slip-line field proposed should extend beyond
the cutting tip. However, this feature is not included as it
makes the problem of finding the slip-line field more difficult.-

Hein's slip-line field, Fig. 3.1(a), assumes that at a single

point B on the tool face the plastic flow is divided into upward and

downward directions. This assumption makes the construction of a
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slip-line field difficult and thus the over-stressed region BGH

is created. In order to avoid this over-stress it will be considered
that there is a dead zone of some shape in frout of the tool. 1In
addition, it seems that the trial slip-line field should ineclude a
prow. Thus, considering the regiqn ABF, BDE and BCD of the trial
slip-line field with a dead zone and a prow, a new slip-line field
consisting of simple stress regions is sought. After many trial
attempts a successful upper bound solution was found as shown .in
Fig. 3.2.

The proposed slip-line field consists of the dead zone BCP and
prow GH. The chip leaves from the work material, with zero stress,
along the stress—free line AH. The work material, with a horizontal
uniform velocity U, enters and leaves the plastic zone along the
velocity discontinuity slip-line GC. That entering along the line
GF, first flows parallel to the prow GH, then the velocity discontinuity
slip-line PH makes the flow parallel to the tangent to the curved
surface BP at P. Then the centered fan field BHP causes the flow
to follow a path similar to the curve BP., Next the velocity dis-
continuity slip-line BH straightens the flow out parallel to the tool
face and finally it emerges as a chip along the stress—-free surface
line AH. Material entering along FE first flows parallel to GH,
is then directed by the centered fan field to flow parallel to the
surface PC, and finally the velocity discontinuity slip-line DC

makes the flow horizontal with velocity U. Material entering below
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E is directed by the fan to change directions and leave from the
plastic region crossing ED again which makes the flow horizontal
with a magnitude of U Here it can be seen that the dead zone BPC
~acts as a divider of the plastic flow.

For this slip-line field GW is the depth of cut, D. The friction
conditions on the surfaces AB, BP and PD are given by the angle Ny

n, and Ngs respectively. The determination of the magnitude of these

2

angles is discussed in Section 5.1.2.



4.0 SLIP-LINE FIELD SQLUTION

4.1 Geometrical Properties

Figure 4.1 is the slip-line field proposed. It consists of
the uniform stress state regions ABH, GHPE and PCD, the centered
fan regions HBP and PED, and the dead zone BPC. The center of
the circular arc BP is at 0. Angles a, nl, nz and n3 and the
depth of cut D are known for a given problem, Since the depth of
cut D can be expressed in terms of the fan PED radius, R is also
assumed known. The geometrical relationships of the slip-lines
are given in Appendix I.

The depth of cut D is

8
) — 0= . ol
1 sin(180 ul A+ nz) s:m(90-“2 + nz)

D =R — - sin{n, + B-a)
810Ny oin(ne=n. # Q) sind 1
] 2 2
(4.1)
The chip thickness d is
: - : . 8
P 1 sin(180 Ny oA + nz) sin(90 > nz? .
sinn3 sirln.—n. + g ) sin ©
e T
sin(90-n_)
cos (45—n1) {(4.2)

sin(45 + nl)

At point P all the angles should sum to 360°. Thus the geometric

condition at P requires that

¢ + 4, +n, = 90 (4.3)

In order that a chip be formed, it is necessary to have

27



n,+te-a> 0. (4.4)

Also in order to form the dead zone

lSU—(nl + 6 + A - nz) > 0. (4.5)

For frictional stresses to be in proper directions

< 45, (4.6)

4.2 Velocity Field

4.2.1 Hodograph

The hodograph of the slip-line field is shown in Fig. 4.2.
It is assumed that velocity discontinuities shall occur along the
slip-liqe GC and the radial 1lines of the centered fan field of
HPB and PED. The numerical relationships of the velocities in
each region of the slip-line field in terms of the velocity U of
the work-piece are given in Appendix I.

4.2.2 Continuity Requirements

The material entering across the slip-line GF should come out
as a chip along the free surface line HA. This requires that the
volume cut should be equal to the volume of chip.

Referring to Fig. 4.1 and Fig. 4.2

Volume cut U W =UHQ

U R 51n(180—n1-6—a+n2) 51n(90—6/2+n2)
sinn, 51n(n1-n2+8f2) s1nd

"

sin(n1+8-a)

(4.7)

and it can be shown also that

28
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Volume of chip HA COS(&S—HI)

UBA

_ _UR
sinn, sin(n -n

sin(lBO-nl-e—A+n2) sin(90-8/2+n2)
+8/2) sinf

sin{n.+9-a).
9 1
(4.8)

Equations (4.7) and (4.8) are equal in magnitude. Hence the
volume cut equals the volume of chip. Thus, physically there is no
restriction on the angles 6 and A which are unknown.

4.2.3 Velocity Discontinuity Requirements

The velocity discontinuity along the whole length of the slip-
line GC should be equal. Thus, referring to the hodograph of Fig. 4.2,

it means that the veleocity discontinuities UEG and Ugc should be

identical. Hence, the following condition follows

sin(45—n1—8+a)

U U

EG sin 135
sin(n,+8+A-n,—-0-90)
Uk = U 1 2

DC sin(180—n3)

Therefore,
sin(45-n,~8+a) sin(n,+8+A-n_-a-90)
U 1 =1 L 2 (4.9)
sin 135 sin(lBO—n3) :

Solving for 8,

sin(180—n3) sin(éﬁ—nl+u)—sin135 sin(n1+ﬁ—n2—u-90)
8 = Arctan (4.10)

sin(lBO-nB) cos{(45-n,+a)+sinl35 cos(nl+A—n -0~-90)

1 2
and solving for A in Eq. (4.9) and using the relationship of Eq. (4.3)

sin(lBO—n3) sin(hS—n1—8+a)
sinl35

¢ = n3+n1-a+e—sin_ (4.11)
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Physically this means that the only ¢ angle that keeps the
line FC in Fig. 4.1 horizontal is the relationship given by the

equation (4.11).

4.3 Stress Distribution

The chip flows from the work-material along the Stress free
line HA, as shown in Fig. 4.3(a). 1t is assumed that the chip
has no stress, thus p1=0 and Py~ -2k as shown in the Mohr's circle
diagram of Fig. 4.3(b). Thus, the maximum principle stress is P;-
The o and B lines as described in Sec. 2.3.1 are shown in Fig. 4.3(a).
The hydrostatic pressure in region ABH is k and the states of stress
along AB anﬁ HB are shown on the Mohr's circle.

In the centered fan HBP, the radial lines are the B-lines and
the circular arcs are the a-lines. According to Hencky's, Eq. (2.13)

the pressure varies linearly with 8 along the circular arc (a-~line),

and thus
Pg + 2k(~56) = Pg + Zk(-eg).
Thus,
p8 = p6 + 2k(88"96), 98—36 = B
or
Pg = Pg ¥ 2k6 . (4.12)

The state of stress in the regions HBP and HPEG can be found
using the Mohr's circle of Fig. 4.3(b).
The centered-fan PED has & radial lines and B circular arcs.

Thus using Hencky's equation on the R-lines
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Pyg = Zkéyy = Pyg T Zkéyg.
That is,
Prg = Prg ¥ k(0570100 8yt = 9
or
Py = Ppg + 2K¢. {4.13)

The state of stress in the regions PED and PCD are shown in
the Mohr's circle diagram of Fig. 4.3(b).

As shown in Fig. 4.3(a) the a-lines make angle Ny with the

tool interface AB, the B-lines make angle Ny with the radius of

the dead zone circular interface BP, and the R-lines make Nq with

the dead-zone interface PC. The frictional stresses on the inter-

face AB and BP oppose the plastic flow that enters across the slip-

line GF; and the frictional stress on side PC opposes the flow

that enters through slip-line FE. The angles Nys M and 7

2 3
represent friction conditions on AB, BP and PC, respectively, and
the determination of their numerical values is discussed in
Section 5.1.2.

The values of the stresses on the interfaces as determined

from the Mohr's circle diagram of Fig. 4.3(b) is discussed in

Appendix I. Some of the results are as follows:

Py -k(1+31n2n1)

I

s

On side BP, at any point V

o
]

~k(1+2y + sin2n2)

v 2

3 = k cos 2nl . (4.14)

kcos2n., . (4.15)
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On side PC

P13 -k (l+28+2¢+51n2n3)

s

It

13 -k cos 2n3- (4.16)

Referring to Fig. 4.2 and Fig. 4.3(a) it is observed that
the plastic flow velocity discontinuities are in the directions of
EE, iﬁ, iﬁ, iE, PP and BE, and are in the same directions as shear
stresses across these slip-lines. Thus, the plastic work done in
deforming the work-piece is positive as required by slip-line
theory. In the slip-line field proposed all deformation occurs
along the velocity discontinuity lines and thus the check for

positive plastic work is complete.

4.4 Check of Yield Criterion

In the slip-line field of Fig. 4.3(a), the vertices of the
simple stress regions HAB, HBP, HPEG, PED and PCD are not over-
stressed as shown in Appendix II. The analysis to find whether
a stress field satisfying equilibrium exists in the non-plastic
regions is not attempted as we are interested in an upper-bound
solution. However, the stability of the vertex BPC of the dead
zone, which is thought to be very critical in the sense that it
acts as a cutting tip, is checked.

From the Mohr's circle of Fig. 4.3(b)

o D3 TF
Py -ZEE-EE - % (24 + sin2n -sin2n,). (4.17)

The conditions for the vertex BPC to not be overstressed, as

shown in Appendix II, are as follows. The maximum and minimum values

of Py allowed are:
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For A + n,=ng > m/2
P .2 (sin2n, + sin2n,.) + (A +n, - n, - ©/2)
dmax 2 3 2 2 3
For 4 +ny, = ng < m/2
g .
Pimax ~ 3 (s1n2n3 + 51n2n2) cos (A + n, -n3) (4.18)
For A + Ny = Ny 2 /2
p e o (sin2n., + sin2n.) - (& + n_, - n, -n/2)
dmin 2 3 2 3 2
For A + UER P < m/2
P _— (sin2n., + sin2n,) + cos(A + 1, - n,)
dmin 2 3 2 3 27

So in determining the unknown angles ¢ or A, the value of Py given

by Eq. (4.17) should satisfy the inequality

Pamin = P4 = Pamax’ (4.19)

4.5 TForces Exerted by the Cutting Tool

4,5.1 Equilibrium Requirements on the Dead Zone

In Fig. 4.4, BPC is the dead zone. Due to plastic deformation
the normal and tangential forces that act on the surfaces BP and
PC are PVT, SVT and P13T, S13T, respectively, as shown in Fig. &4.4.
The magnitudes of these forces are as follows:

Assume the width of the tool to be unity. Asshown in Appendix I.

S13T 8 PC

13
K R cos 2n3/sinn

3
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P13T = p,; BC
= KR (1l + 20 + 2¢ + sin2n3)/sinn3
8 8
PVT = f p' OB dy = K 0B { (1 +2yp + sin2n,.) dy
o v 0 2
=KR sin(90-6/2) Sln(lso-nl_e-A +ﬂ2) L ° (1+2¢p+sin2n,) dy
sind sin(nl-—n2 + §/2) sinn3 0 My

8
SVT = J s' OB dy
0 v

sin(90-8/2)
2 sin®@ sin(nl“n

51n(180-n1—e—A + nz) 1 re 5

K R cos2n P

g * a/2) sinn3 JD

For the dead zome to be in static equilibrium the tool has to
exert the forces RY and RX which act normal and tangential to its
face, respectively. These forces can be determined as follows:
Referring to Fig. 4.4,
IF =0

X.

RX = SVTIX + P13TX - S13TX - PVTX (4.20)

K R c092n3 cos(lSO-nl*B—A+n2)

1]

where, S13TX = S13T cos (lSO—nl-e-A+n2) =

sinn3

P13TX = PL3T sin(lsomnl—e—a+n2) = KR (l+26+2¢+sin2n3) X
51n(180—n1—8—A+n2)/s1nn3
e
PVTX = J PVT sin(n,-n,+¥) dy
0 L 2
. in(90-8/2) 51n(180—n1-8-a+n2) 1

- - - X
sind 51n(n1-n2+8/2) sinn,
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-cos(nl-n +9) + cos(nl-nz) + 2 {Sln(nl-n2+8) -

2

8 COS(nl-n2+6) - s1n(n1-n2)}— 31n2n2 {COS(nl-n2+8)

-cOs(nl-nz)}]

]

8
SVTX J SVT sin(90—nl+n2-w) dy
0

51n(180—n1-6—ﬁ+n2) 1

+8/2) sinn

sin(90-6/2)
2 sind sin(nl'n

K R cos2n X

2 3

(cos(90-nl+n2-8) - cos(90-n1+n2))

Assuming uniform shear stress on BC, the shearing stress is given by

SBC=RX/BC. Thus, the following inequality should not be violated

0 eid e X . (4.21)
— C—
IF =0
y
RY = S13TY + P13TY + PVIY + SVTY (4.22)
where
P13TY = P13T cos(lSD—nl—B-A+n2)
= KR (1 + 2e+2¢+sin2n3) cos(lSO—nl—e-A+n2)/sinn3
S13TY = S13T sin(lBO-nl*B—A+n2)
=9K R cos2n3 sxn(lSO-nl—B-A+n2)/31nn3
PVTY =| PVT cos(n,-n,+y) dy
0 i
\ N sin(180-n, ~6-A+n_)
- g p 2int30-0/2) o (sinn,-n,+8) -

sind sxn(nl-n2+e/2) sinn, 1 2

sin(nl—nz) + 2 {cos(nl—n2+e) +8 s1n(nl-n2+6) - cos(nl-nz)}

s s - ad -
sin2n, {Sln\nl n2+8) szn(nl nz)})
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)
SVTY = SVT cos(90-n.+n.-y) dy
0 1 72
ginlon-gsp) Hintis0em; 4-din,)
e c052n2 sind sin(nl—n2+e/2) sinn3

(31n(90—n1+n2) - s1n(90-n1+n2-8))

The location of these forces can be determined by taking moments

about 0. That 1is,

IM, = 0 RX OT + RY TR - P13T OM + S13T PZ - SVTO = O,

0
Hence,
TR = PL3T OM - S13T PZ + SVTO - RX OT (4.23)
RY
where
8
SVTO = J sv 0B OB dy

0
. 2
o o2 |sin(o0-0/2) sin(180,"6mAwm,)
sinf sin(nl-n2 +8/2) sinon

cos2n, 8
3

OM = 0Z + ZM

51n(180-n1-6-A+n2) ¢in(90-8/2) gos(nz +m, - )

e sin(nl—n2 + 6/2) sind sinn3
N
2 sinn3
) 51n(180—n1-6—A+n2) sin(90-6/2) 51n(n2+n3-¢)
PZ = R \olnl(n.=n, + 8/2) sind sinn
1 2 3
o - SLn(180-n1-B—&+n2) 8in(90-8/2) cOS(nl-nz)

2 R = > T
51n(n1 Ty * 6/2) sin8 sinn,
To have the dead zone in equilibrium it is required that

TB < TR < TC (4.24)
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4.5,2 Force Reactions on the Tool Face

The forces that act on the tool face in response to plastic
deformation stresses, as shown in Fig. 4.4, are the tangential
forces S3X and R¥X, and the normal forces P3Y and RY.

The magnitudes of these forces using Appendix I are:

§3X = 53 AB
e x cosan 31n(180-n1—6-é+n2) 51n(90—8/2—n2) sink5
sinn, 31n(n1-n2 + 8/2) sind sin(45 + nl)
P3Y = p, AB
. (1+31n2nl) 51n(180-n1-6-A+n2) sln(90—6/2-n2) sink5
sinn3 sin(nl-n2 + 8/2) sind éiﬁ(45+n1)

RX and RY are given in Eqs. (4.20) and (4.22), respectively. On
the face of the tool, denoting the tangential force, FT, and the normal

force, FN, we have the following relationship,

FT = S3 + RX Ch 25

FN P3Y + RY .

4.5.3 Force Exerted by Tool

The horizontal and vertical force components exerted by the
tool on the work material are denoted by FH and FV, respectively, and
are shown in Fig. 4.4.

The magnitudes are

FH FN cosa - FT sina
(4.26)

FN sina + FT cosa.

FV
The ratio of the vertical force to horizontal force is,

VOH = FV/FH. (4.27)
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4.5.4 Dimensionless Forces

All the force equations are expressed in terms of the maximum
shear stress, K, and the radius, R, of the fan PED. To make these
forces dimensionless, the force equationskare divided by K and R.
Thus, the dimensionless tangential force on the face of the tool,
the horizontal and the vertical force component exerted by the tool
on the workpiece are denoted by FTD, FHD, and FVD, respectively.

Their magnitudes are expressed as,

FTD = FT/K R
FHD = Fi/K R (4.28)
FVD = FV/K R



5.0 THEORETICAL RESULTS

5.1 Friction at High Normal Pressures

5.1.1 Theory

In negative rake angle metal cutting the normal pressures on
friction surfaces are very high, and the relationship of shear
stress and normal stress given by Amonton's friction law are not
valid. This is proved experimentally by Wanheim [25,29]. The relation
between frictional shear stress and normal stress appear as in
Fig. 5.1. From the graphical relationships of shear and normal
stress given by Wanheim, Hein [35] developed equations that relate
frictional shear stress with normal stress using the newly defined
term called the adhesive friction coefficient, m. Here it is dis-
cussed briefly.

The dimensionless frictional shear stress is related to the real
area of contact AR by the equation

=m AR . (5.1)

|4

The dimensionless normal stress limit of proportionality is

given by the expression

["_n] _ V2(1+n/2+42E+sin2E) (5.2)
2% 1im 2/7 + 4sing
where £ = % COs-lm, m#0 .
The limit of the real area of contact, AR, is approximated by
AR,. 2 1-0.52 (1-m)%:3%°, (5.3}

lim

A=
I=
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For normal stresses below the proportional limit, that is,

0 < %E € [%E] , the dimensionless frictional shear stress 1is
lim
given by r " ARlim on
i on K (5.4)
2k

lim
For normal stresses greater than the proportional limit, that

. on
18, [

— < EE, the real area of contact is given by
2k lim 2k

e
AR = 1-8 e 2. ek (5.5)
AR1im
where, B, = , (5.6)
2 (1-ar,, ) (Y
lim 2k ..
lim
on
BZ(EEJ lim
and By = (1—ARlim) e y (5.7)

and the dimensionless shear stress is
on
8, (5%

% =m (1—81 e ¥ (5.8)

The friction coefficient, u, is defined as usual as

£5.9)

=
1]
QI-—!

n
The relationship between the dimensionless shear stress and
the normal stress in terms of the adhesion friction coefficient m,

and in terms of the friction coefficient, pu, is shown in Fig. 5.1



5.1.2 Determination of the Angles Nys Ny and n

As shown in Fig. 4.3(a), Ny is the angle between the a-slip
lines and the tool face AB, n, is the angle between the R-slip
lines and the curved side of the dead zome BPC, and n
between the B-slip lines and the side of the dead zone PC.

From the Mohr's circle of Fig. 4.3(b), on interface AB,

s, = kc052n1; Py = -k(l+sin2nl)

3
and thus from Eq. (5.1)

=3
ET‘= cos2n, = m AR.

1
p
Hence, for 0 < 2 & (Eﬂq , from Eq. (5.4)
- |2k| — 2Kk .
lim
C052 =;In_A.R-_-]£!_n. p_3
Ty on) K
a8 lim
That is,
s ) m ARlim l+51n2n1
oy (giq 2
2k 11
im
d for |23] > (om from Eq. (5.8)
and for |==! > [2k}1. , from Eq. :
im 1+sin2n1
el
cosan =m (1-51 e ).
On interface BP, the normal pressure varies linearly with
angle 6. To simplify the calculation, the average normal stress
is used in determining the angle n It is assumed that the error

9
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is the angle

(5.10)

(5.11)
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introduced in determining n, does not significantly affect the general

2

result.
The average pressure P,gq’ OO BP, from Appendix I and Fig. 4.3(b)

is 6 _,
Pv 0Bdy

= -k (l+6+sin2n.).
va 2

P¥,

Thus, for 0 < e < (%E Lim
m ARl. (1+6+sin2n2)
cos2n, = 2 (5.12)
2 (gzq 2
2k lim
pv
a an
for ZT' 2 (-z—k)
Lim 1+8+sin2n
Y Sl
2 2
cosan = m (1-81 e : ) (5.13)
P13 on
On interface PC, for 0 < EE_’ < (Eiﬂ
lim
m ARli l+26+2¢+sin2n3
SBERY. W e = ( 2 ) | (5.14)
G
lim
p
and for %I > %}
b 1+26+2¢+sin2n,
“82 ( 5 ) (5.15)

cosZn3 =m (1-8l e )
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Equations (5.10) to (5.15) are non-linear and the direct
solution of nl, Nys and n3 is extremely difficult. Thus, iteration

is used in solving for them.

5.2 Method of Solving

The angle the tool inclines with the workpiece, that is, the
rake angle, the amount of material to be removed, that is, the depth
of cut D and the width of cut W, are known. If the nature of friction,
in this case, the value of the adhesion coefficient, m, is known for
the cutting condition under consideration, the cutting forces FH and
FV can be determined from Egs. (4.26). However, the determination of
FH and FV is complex.

After selecting the appropriate value of m, the value of n, can

1

be determined using some kind of iteration on Egs. (5.10) or (5.11).

The same procedure can be applied for determining n, from Eqs. (5.12)

2

or (5.13). But, since the determination of n, involves the value of

8 which is unknown, the iterations are not direct. The angle 8 as can
be seen in Eq. (4.10) depends on Nys Nas and on A which are unknown.

Thus, to determine n the value of 6 has to be guessed first.

23
To determine n, from Eqgs. (5.14) or (5.15) the same problem

as in determining n, arises since the value of ¢ is unknown. So,

2
in this case too, the value of ¢ is guessed in addition to the value
of 8 guessed above; and the calculation is carried out, Then the value

8 given by the expression (4.10) is calculated and checked against

the initial guessed value. If the two values are not within the
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desired error limits, the procedure is repeated until the desired
result is obtained. During these computations the value of ¢ 1is
kept constant.

Once the unknown angles are determined, the dimensionless forces
can be computed taking care of all the requirements imposed by the
slip-line solution method and its consequences. Since for different
values of ¢ an infinite number of results can be obtained, the one
that requires minimum cutting energy is chosen as the best solutiom.
This assumption is made by the logical intuition that metal cutting
operations can be performed by minimum horizontal cutting force.

The computer program developed for the computations described

above 1s given in Appendix III.

5.3 Numerical Results

The numerical results obtained from the computer program are
given in Appendix IV. However, for better understanding some of the
results are shown graphically.

The variation of the dimensionless cutting forces, FHD and FVD,
with increasing rake angle, a, for certain values of adhesion co-
efficient, m, are shown in Fig. 5.2 and Fig. 5.3, respectively. The
dimensionless tangential force, FID, plotted against the rake angle
for certain values of m is shown in Fig. 5.4. The ratio of the verti-
cal cutting force component to the horizontal cutting force component

as m changes for constant rake angle is shown in Fig. 5.6. The variation
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of FHD and FVD with m for a given rake angle can be seen in Fig. 5.7
and 5.8, respectively. The critical angle which is defined as the
maximum rake angle beyond which the tool does not cut is plotted
against m and shown in Fig. 5.5. Figure 5.9 shows the ratio of chip
thickness to depth of cut plotted against m for different values
of a. The variation, with m, of shear stresses and normal stresses
on the tool face and dead zone are shown in Fig. 5.10, and Fig. 5.11,
respectively.

Using the numerical results calculated, some slip-line fields
are drawn to scale for different rake angles and adhesion coefficients,

and are shown in Fig. 5.12 and Fig. 5.13.
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o

Fig.5.4.  Relation between Dimensionless Tangentilal
Force,FTD,on Tool Face and Rake Angle with
respect to Adhesion Coefflcient,m.
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Fig.5.3.S1lip-Line Filelds for Rake Angle -60deg.,same depth
of Cut,D,and Adhesion Coefficilent,m,for (a) C.1,
(b} 0.3:0e) 0.5,0(d) 0.7s0e) 0.5



6.0 COMPARISON WITH EXPERIMENTAL RESULTS

6.1 Introduction

Very few experiments have been doneldn negative rake angle
metal cutting. The works of Komanduri[l4], Abdelmoneim [28], and Y. Kita [36]
are discussed here. In all the experiments performed the cutting
forces are measured. Thus, it is required to convert the theoretical
dimensionless forces FVD, FHD and FTD to actual forces. If the
adhesion coefficient, m, is known for a certain rake angle cutting,
the theoretical dimensional forces can be computed by multiplying
the dimensionless forces by the yield shear stress, K, the depth
of cut and width of cut. It is assumed that in metal cutting the
adhesion coefficient, m, is between 0.5 and 1.0. However, the values
of 0.1, 0.5, and 0.9 are selected to compare with experimental
results, The value of K which is the mechanical property of the

work material is taken from reference books.

6.2 Comparison with Komanduri's Experiments [14]

In these experiments it is observed that chips formed for all
rake angles down to -75 deg. and no chip is obtained at -85 deg.
rake. The value of the cutting forces for the depth of cut 0.0004 in.
and width of cut 0.15 in. for different values of negative rake angles
are compared graphically in Figs. 6.1, 6.2 and 6.3. It is assumed
that the yield stress in tension of the work material is about

¥'= 50,000 psi, and thus the yield stress is K = Y/V/3 = 28,900 psi.
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Rake Angle

Fig.G.E.Théorétical Ratio of Vertical Cutting Force to Horilzontal
Cutting Force compared to Komanduril [14] Experimental

Results.

eEXperiment

Rake Angle

Fig.6.3.Theoretical Tangential Force on the Tool
Face compared to Komanduri[iM]Experimental
Results.
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In Fig. 6.1(a) and Fig. 6.1(b) the theoretical cutting forces
are compared with the experimental values. It is seen that the experi-
mental values are about 10 times greater than the theoretical values.
The experimental values obtained for zero rake angle are compared
with theories [21]} which are good for positive and small negative rake
angles and it is found the experimental horizontal and vertical forces
are 6 and 12, respectively, times greater than the theoretical values
of these forces. Thus, it is assumed that due to the very small
depth of cut of 0.0004 in., the experimental values obtained have to
account for some factors which are unknown to this author. Therefore,
in this comparison the magnitude of forces are not given much attention.
From Fig. 6.1(a) and 6.1(b) it can be observed that the shape of the
theoretical curves in particular for m = 0.5 and m = 0.9 have the
same shape as the experimentally obtained curve. The ratio of the
theoretical vertical force to horizontal force shown in Fig. 6.2
is in general agreement both in shape and magnitude to the experi-
mental results.

In Fig. 6.3 the tangential force on the tool face for different
rake angles is shown. It is seen that the shape of the theoretical
curves is similar to the experimental one. The surprising result
is that the zero force obtained experimentally, which is for rake
angle -76 deg., is between the theoretically obtained values of -68
to -77 deg. for m = 0.9 and 0.1, respectively. For m = 0.5 the

force is zero for rake angle -75 deg.



6.3 Comparison with Abdelmoneim's Experiments [28]

This experiment has experimental results for machining brass
with the depth of cut 0.004 in. The yield stress in tension.for
brass is 37,000 psi and thus, K = 21,360 psi. The experimental
results are compared with the theoretical results in Fig. 6.4(a)
and Fig. 6.4(b). The experimental values are higher than the
theoretical values as expected. However, unlike the comparison

with Komanduri's result, the theoretical values are in reasonable

agreement with the experimental results; considering, the difficulties

in measuring the cutting forces and the slip-line theory assumptions
used in calculating the theoretical forces. In Fig. 6.5 the tangen-
tial forces are compared; and it can be seen that the shapes of the

curves and the magnitudes of the forces are in reasonable agreement.
Also in Fig. 6.4 it can be observed that there is a certain value

of m which gives very close result to the experimentally obtained

forces.

6.4 Comparison with Y. Kita [36]

This experiment is done using lead as a work material. It is
observed in this experiment that at -60 deg. rake the horizontal
cutting force is 100 kg, and the vertical cutting force is 200 kg,
for cutting at a depth of 3 mm and width 2.20 mm. Also at -60 deg.
rake it is observed that the ratio of the depth of cut to the height
of chip formation, is D/dO = 0.5. The value of K = 2 kg/mm2 is

given by the author.
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The theoretical values for m = 0.1, 0.5 and 0.9 are given
in Table 6.1. From this table it can be seen that for m = 0.5
and 0.9 the theoretical cutting forces, and the theoretical ratio
D/dO are very close to the experimental values. In this experiment

special care was taken to achieve plain-strain and to reduce the

heat effect on the material properties.



Table 6.1. Theoretical Results for a = -60 deg.
Adhesion Horizontal Vertical .
. . Ratio D
Coefficient Force Force FV/FH T
m FH (kg) Fv (kg) o
0.1 228 409 1.80 .18
0.5 80 177 2.23 .58
0.9 88 192 2,21 .57
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7.0 CONCLUSIONS

The slip-line solution which was developed to solve the
problem of metal cutting with large negative rake angles is con-
sidered to be a good approximation to the real solution., The
solution presented is an upper-bound type. This slip-line solution
considers the experimental facts that a bulge or prow forms ahead
of the tool before the chip is formed, and that the workpiece material
flows in opposite directions on the tool face. It accounts for the
experimental facts that: there is a critical rake angle beyond
which metal cutting ceases; that the vertical component of the
cutting force is larger than the horizontal component; and that there
is a certain rake angle at which the tangential force on the tool
face is zero. The numerical results of the cutting forces agree
reasonably well with experimental results of Abdelmoneim [28] and
Y. Kta {36]. Thus, the slip-line field suggested is believed to be
close to the real one, even though in reality the slip-line field
may not consist of simple stress state regioms.

Analyzing the numerical results of this slip-line solution
other interesting facts can be concluded. Imn Fig. 5.5 it can be
seen that the critical rake angle, which is defined as the maximum
rake angle beyond which the toocl does not cut, has different values
for different values of adhesion coefficient, m. The critical rake
angle varies from about -55 dég. for m near 0 to about -89 deg. for
m near 1. The adhesion coefficient is related to friction conditions.

Thus, one can conclude that the friction conditions during cutting
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determine whether a certain negative rake angle can cut or not.
With the presence of high friction coefficients the critical angle
is more negative than with low frictionm coefficients.

The variation of the vertical and horizontal components of the
. cutting force with adhesion coefficlent, m, for a fixed rake angle
are shown in Fig. 5.7 and Fig. 5.8, respectively. From these figures
it can be speculated that there is a certain value of adhesion co-
efficient, for a given negative rake angle, for which the cutting
force is minimum. As expected it is not the lowest friction co-
efficient or adhesion coefficient, m, that gives this wvalue. It
is a value of m greater than 0.3 that gives this minimum value.

Besides, from these figures one can conclude that m values greater

than 0.2 help in cutting more than values less than 0.1. The above con-

clusion is presented pictorially in Fig. 5.13. 1In this figure the
rake angle is kept comstant at -60 deg. and the slip-line fields
for various adhesion coefficients, m, which have the same depth of
cut are drawn to scale from the numerical values obtained. It can
be seen in the figures that for large m the size of the slip-line
field is smaller than for lower values of m. This means to cut
the same depth an m value less than 0.1 needs a larger plastically
deformed region than higher values of m.

The vertical and horizontal components of the cutting force
for a given value of m increase as the rake angle becomes more
negative. This is shown in Fig. 5.3 and Fig. 5.2, respectively.

The value of these forces increases very fast as the rake angle



approaches the value of the critical angle. The behavior of the
plastically deformed region as the rake angle becomes more negative
is shown in Fig. 5.12. From this figure it can be concluded that to
cut the same depth at a given value of m, higher negative rake angles
need larger size of deformed region than lower negative rake angles.
The value of the vertical force is greater than the horizontal force,
and is shown in Fig. 5.6.

The value of the tangential force on the tool face becomes zero
for a certain value of m at a certain value of rake angle. This
fact is shown in Fig. 5.4. The values of these rake angles range
from -77 deg. for m=0.1 to about -68 deg. for m=0.9. This range in-
cludes the experimental result obtained by Komanduri shown in
Fig. 6.3 and by Abdelmoneim shown in Fig. 6.5. The reason that
the tangential force becomes zero at a certain rake angle is that,
the division of the metal flow in front of the tool creates shear
stresses that cause friction forces on the tool face that have
opposite sense; and at some rake angle these forces become equal and
cancel out. Since the theoretical value of the rake angle at which
the tangential force on the tool face is zero is supported by experi-
ments, the shape of the dead zone used in the development of the
slip-line field, is believed to be close to the real one.

The results obtained in using the slip-line solution in solving
metal cutting problems with high negative rake are encouraging. How-
ever, it would be valuable to conduct experiments to test the accuracy

of the proposed slip-line field.
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To further improve the theory the curved surface BP should be
changed so that the friction conditions are satisfied at each point
along the curve. This will be more complex than the present theory
in which average conditions are used. It is also believed that the
reglon outside the plastic region may be overstressed and that this
can be overcome by extending the plastic region (slip-line field)
around and under the tip of the tool for a short distance. This
would provide important information about the stresses on the flank
of the tool which would help explain and predict flank wear of the

tool.
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APPENDIX I
SLIP-LINE ANALYSIS

Angles and Lengths

In the slip-line field of Fig. 4.1, the following angles are
denoted by:
angle S5AB =
angle BHP = angle BOP = 8
angle HBO = angle HPO = Ny
angle PCD =

angle EPD

i
-

From the geometry of the slip-line fields it is required to have

o}

angle AHB = angle HAS = 45

angle FEP = angle CDP = 90.0
angle OPV = angle OB''= 90°
angle HPF = angle FPE = 45°,

The rake angle is «.

In triangle PDC

)

angle CDP = 90, angle DPC = 90 -~ ﬂ3
In triangle BOP

In triangle BHP

L]
n

angle BHP 8, angle HPO

Mg

90° - 8/2 - n,, angle HBP = 90 - 8/2 + n

H

angle HPB

2 2
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In triangle BPV
angle OPV = 90°, angle BPV = angle OPV - angle OPB = §/2

In triangle HAR

e}

angle HBA = 90~ - n1

At point B
angle HBA + angle HBO + angle OBP + angle PBC = 180°
angle PBC = Ny " Ny + 8/2

In triangle BPC

angle BPC = A + &/2
angle BCP = 180° - (4 + 8 + n, - n,)
At point P

angle EPD + angle DPC + angle CPB + angle OPB

+ angle OPF + angle FPE = 360°

Q
Hence, ¢ - N, + A M, = 90

Angle VPU
FPU is a straight line, so angle OPF + angle OPB

+ angle BPV + angle VPU = 180°

Hence, angle VPU = 450 + N,

Angle ABRB'

angle ABB' = 90° - angle HBA - angle OBH = Ny TN,

In triangle OTB

900, angle OBT = 90 - nl + n,

angle OTB

angle TOB Ny TN,



In Quadrilateral OPNM
angle OMN = angle PNM = 90°
angle POM = 360° - angle OMN - angle PNM - angle OPC
=n, *tny - ¢
Angle PCF

90 - o

angle RCF
angle PCF = angle BCF - angle BCP

+ 8 +A-n, -a - 90

M 9

In triangle FPC

angle PFC = 180° - angle PCF - angle FPC
= 135° - (nl + 8+ A+ ¢~ nz-n3-—a)
but ¢ + & - Ny ~ n3 = 900
hence, angle PFC = 45° + o - ny 8
In triangle HPQ
angle HPQ = angle CFE
angle CFE = 45 - angle PFC
angle CFE = angle HPQ = Ny +68 -0

In determining the lengths, the sine law is used, that is,

a_ .. B c
sinA sinB sinC

Let PD = PE = R

In triangle PDC

]

PC PD/sinn3

DC

1]

PC cosn3
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In triangle BPC

sin(lSO-nl-e-A+n2)

s1n(n1-n2 +68/2)

PE = PC

sin(A + 8/2)
sin(nl-n2 +8/2)

BC

In triangle HPB
sin(90—8/2-n2)

- B -
HB E sing
sin(90-6/2+n2)
HP = PB -
siné

In triangle BOP

5in(50-9/2)

OB = 0P = PB ;
siné

In triangie HPQ
angle HQP = 90°
HQ = HP sin(n1+6-u)
but, HQ = Depth of cut, D
Hence,
p  sin(180-n -6-4+n,) 5in(90-6/2+n,)

51n83 szn(nl-n2+6/2) siné

sin(n1+6-u)

In triangle HAB

_ sin&5
AR = B TGS
sin(90—n1)
H_A'_—

B sin(45+n1)

The chip thickness, d = HA cos(45-h1)



1

sin(lSD—nl-B—A+n2) sin(90~-3/2-n,)

Hence, d + R

In triangle OTB
TB = 0B sin(

BO cos(

0T
In triangle 0ZP

OP cos(

0z

PZ = OP sin(

In triangle FPE

PF = PE/sin

FP cosé4

i

FE

”1-”2)

nl-nz)

n2+n3'¢)

n2+n3-¢)

5

5

sin(nl-n2 + 5/2)

T cos(&S-nl)

Other lengths required in the analysis are

QL = FP sin(45—n1-e+u)
ZIM = PC/2

oM = 0z + 2
HL = HQ + QL = d_

Velocity Relationship

The hodograph is
field of Fig. 4.1 the
mined.

In triangle PBA

angle PAB

angle APB

In triangle PCB

angle CPB

angle PBC

shown in Fig. 4.2.

From the slip-line

following angles in the hodograph can be deter-

135, angle PBA = n1+8~u
45-(n1+6?a)
nl+6+A—n2—a-90 angle PCR = 180-n3

n3-nl-9‘a+n2+a+90



In triangle FPA

angle PAF = 450, angle FPA = 45+n2

angle PFA = 90-n2
In triangle PEF
angle EPF=8, angle PFE = 90-6/2
angle PEF = 90-8/2—n2
In triangle PDE
angle PED=90, angle DPE = Ny,
angle PDE = 90—nl
Let the unit velocity be PB=U

Using the law's of sine, the velocity discontinuities can be
determined as

In triangle PAB
sin(hS-n1-8+a)

% =
Ug = ¥ ain 135
sin(n, +6-a)
U = U ......_—_._1_.._._...
GH sin 135

In triangle PCB
sin(nl+8+ﬁ—n2—u190)

%
UDC v sin(lSO—n3)

. sin(nB-nl-e—&+n2+a+90)
PC sin(lBO-ns)

U

In triangle PFB

sin(n1+8;a)

UTNP =4 sin(90—n25
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In triangle PEF

sin(n1+6~a} sin(90—612+n2)

UTNB =i sin(90-n2) sin(go-e/z—nzi

In triangle DPE

sin(n1+6—a) sin(90—6/2+n2) sin(90+n2)
sa = U SIa(30-n) sIn(90-8/2-n,) 5in(90-n,)

sin(n1+3‘d) Sin(90‘9/2+n2) sin(nl-nz)
) sin(90—8/2—n2) sin(90“n1)

* =
UBH 4 sin(90-—n2

Stress Distributions

The normal stresses pl to pyg in Fig. 4.3(a) are compressive,

The stresses on an element on a slip-line can be determined from the
Mohr's circles of Fig. 4.3(b). The values are given as follows:
On HA
pl=0, free surface
p2= -2k
No shear stresses, Sl=s2=0
On AB
Py= —k(l+sin2n1)
P,= —k(l—sinan)
53=kc052n1

54= —kcosZﬂl

On HB
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On

On

On

On

On

On

HP

HV

ov

GH

GE

PE

p,= -k (1+28)
Pg” -k (1+28)
s7=k
g™ -k
P =k (1+2y)
Pr= ~k (1+2y)
Sv=k’ ST= -k
at Vv
l_____
P, k(l+2w+sin2n2)

T o o r
Pr k(1429 51n2n2)

'= ‘= -
sV kcosan, s kc032n2

T
P, ,= ~2k(1+8)
p8A= -2ko
B4 Sga 0

p7B= -k (1+28)

= -k (l+
Pgp k(1+28)

s..=k, -k

7B = Sgr”

Pgy= -k (1+28)
Py~ —k(1+28)

s .= -k,

9 S0
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Oon OP

-k(1+208+24)

= -k(1+26+24)

= -k, 8,.,%k

12

= —kcos2n3, s

: -k{(1+26+42¢)
= -k(1+28+24)

= -k, 8,k

16

it

= -k(1+28+2¢+sin2n3)

= ~k(1+2e+2¢~sin2n3)

4=kc 0521'13

= _ ;
p7 k(l+28+51n2n2)
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APPENDIX TI

Check of Yield Criterion at Points of Stress Singularity

In order that yielding of the vertices in Fig. 2.9 shall not
occur the inequalities mentioned in Section 2.3.7.3 must apply.
Vertex PHB; angle PHB=9

This is case (iii) as described in Section 2.3.7.3. That is,

P."P sinf g<w
5 08 ’ -
- 2k

-(&-m), b>7

but hera, from Appendix I

p6_p8
2k 8

Therefore, the above inequality becomes
820> sin0, for 0 <8 <
and thus there is no restrictions on 6.

Vertex EPD; angle EPD=¢

This is the same case as vertex PHB., Here,

Pig T1p s
2k

and the condition of stability becomes
$ > ¢ > sing, for 0 < ¢ <
which is true for any ¢.
Vertex HGF, angle HGF=45°"
This is case (iv). Hence,

Pga"Pgp
K

£
=

m m m
142 (o= 7) > > 2cos{a- 7) -1, 7 <o <
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or
Pa,~P
8A “8B
1> k > 1
Here,
PsaPay _ |
k

Therefore, the vertex HGF is not overstressed.
Vertex AHB
o}
angle AHB=45

This is case (iv) with py=0. That is

Py"P
1 Pg
=gl

Here,

By Pe

= 1

Therefore, the vertex is not overstressed,
Vertex DPC, angle DPC=90—n3
The shearing stresses are directed towards the vertex according

to Eq. (2.18), since

T R T
¢13 = 5 sin = (45 n3)
and, s
¢12 = % sin " _%E = A3

It is necessary that,

angle DPC 3_[¢13—¢12[ = 90—n3.

This is true in this case. From Eqs. (2.20)

P1,7P
12 13 - l _ _ Gis _m
( % }max =3 [cos(90)+cos( 90+2n3)}+[90 n3+45 45+n3 3

= 5 31n2n3
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Similarly,
p12-p13 - L sin2
7K . 2 fg
min
Here,
Plz'P13 l sin2
7k 7] N3

Thus, the yielding inequalities are satisfied for any Ny

Vertex PCD, angle PCD=n3

One shear stress (815) igs directed towards, and the other (513)

away from the vertex. According to Eq. (2.18). Since,

1, =1 %13 _

bpg =g s T pT S aEey
5 . -1 %15 _

@15 = 5 sin ~ 45,

It is necessary that, angle PCD 3_I¢13—¢15} = ngs which is true in

this case.

From the yield inequality Egs. (2.20), it can be shown that

r2 =

[pIS—P13 .
—_— sin2n

2k 3

o

[pls"P13

o 81n2n3.

]min

Pye”P
15 13 _ 1
Here, '"Eif-— =3 51n2n3.

Therefore, the yield criterion is satisfied for any Nj-

Vertex ABH, angle ABH=90~n1

Both shear stresses are directed toward the vertex. Since,



90

_1 . -1%3 _
| ¢3 5 sin == (45 nl)
by = 45.

L}

It is necessary that, angle ABH > |¢ 3-¢6] 90—nl, which is

true in this case.

From the yield inequality equations

p6-p3 = l sin?2 p6_P3 = l sin2
) 0y 5 7k Lt B
max

ro

But, at the vertex from Mohr's circle of Fig. 4.3(b)

Pg Py _
2K

1 .
5 51n2n1.

Thus, the yield criterion is satisfied for any n -
Vertex HAB, angle HAB=45+n1'

On one side there is no shearing stress, but on the other S,

We have

. =1

$.=0, and 6, = £ sin"! 22 = 45-n
170 3732 X

1
It is required that, angle HAB > |¢3*¢1| = 45—n1, which is

true at the vertex.

From Equations 2.20

P,_P Py7P
1-P3) 1 : . (P17P3 . | .
[ 5% ] =3 (1+s1n2n1), [ o ] =3 (1+81n2nl)+cos2nl.
max min
P17P3 _ 1
At the vertex, T (1+sin2nl).

Therefore, %(1+sin2n1) > % (l+sin2n1) > - % (1+sin2n1) + cosan

which is true for any ny So the vertex does not yield.
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Vertex HBP, angle HBB'' = 90+n2.

Both shear stresses are directed away from the vertex. Hence,

1
=3 %% 1, -1

s
with ¢6= % sin = — = =45, ¢ = = sin X 45—n2. It is necessary

k v 2 k
that, angle HBB'' > [¢6-¢V] = 9O+n2; which is true in this case.

From Equations 2.20

1

- s
EE—EE = l-si.n2 s P6 Pv - -1 sin2n,-2
7k 2 Rod |7 2% |, 2 Np74Ny
max min
By Py 1
Here, at the vertex, B = 7 sinan. Hence, the vertex does not
yield for any ure

Vertex HPB, angle HPV=90—n2

Both shear stresses are directed towards the vertex. So, with

1 ... -1 % _ I T
¢8 =3 sin "~ 45, ¢V =5 si = (45 nz).

It is necessary that, angle HPV > l¢8—¢VI = 90—n2; which is
true in this case.

Using equations 2.20, it can be shown that

Pg Py 1. Pg Py} 1 .
[ o ] o = 51n2n2; { ok }— 3 51n2n2. But, at the vertex
max
. 5451n2n2. S0, the vertex does not yield for any Nye

Vertex BPC, angle CPV=A

The shear stresses s and s , are directed away from the vertex.

T 1
s s
; =L gt To as- = g el B
So, with ¢ = o sin = £ (45 nz) and ¢4 = 7 sin = 45 Ny
it is necessary that, angle CPV 3'I¢14—¢v| = 90-n,-n,.
Py P13 1

At this vertex 5 (2¢ +sin2n3—sin2n2) must be within

2k

the following limits:
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P,'P
v 13 _ 1 N ) ) )
[mZk ] =3 [cos(QO 2?‘13) + cos(2n2 90)| + (& 45*n2+45 n3-fr/2)
max
1 (.. Y |
3 (51n2n3 + 51n2n2] + (A+n2—ﬂ3mn/2), for a+¢v+¢13iﬂ/2
Similarly
p!-p
v “13 - X . . _ _ o
[ 7k ] 2 [51n2n3 + 31n2n2} cos(A+n2 n3), for A ¢v ¢13 irﬁlz
max
i
'B;"F
v _"13 ko '
T } =3 [31n2n3 + 51n2n2) + cos(A+q3 nz), for A ¢v ¢13 Z /2
min
Py P13 1
Tk ]min =" 3 (sxn2n3 + 51n2n2) - (A+n3—n2-ﬁ/2), for

b=0,70152 T2
and

A > 90—n3'—n2
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APPENDIX III

Computer Program



1 94
| $.J08
. C #%**% PROGRAM TO DETERMINE THE GEOMETRY OF THE SLIP-LINE FIELD.
. C *%% THE DIMENSIONLESS STRESS DISTRIBUTICN AND THE CIMENSICNLESS
. C *%*% FORCES EXERTED 8Y THE TOOL.THE NOMENCLATURE USED IN
. C ®*% THE PROGRAM IS SIMILAR TO THE ONE USED IN THE THESIS.
10 FORMATI10X+ALPHAD? 10X+ 'DELTAD?, 12X, 'PHID ,11X,*TETAD",11X,
LY ETALD s L1Xo?ETAZD® W 11Xo YETA3D? b 16X+ "HOV /13X, *FVD? 213X, 'FHO Y,
113Xe *FTD' 413X s "'SBCY y14Xe?S3"e13Xs "SVA'»13X+?S13%415X,°'D"/
113X, *PBC? 14X+ "P39, 13X TPVA's 13X, 'P131,12X,'CHID* ,12X,*PMOK"*,
IL3Xe? VOH? 4 14X« YACMCY/ /)
15 FORMAT(8F16.8)
20 FORMATI5X, YADHES ION COEFFICIENT=ACM*)
WRITE(6,20)
ACM=0.5
WRITE(6,15) ACM
WRITE(6410)
C *#%% ALPHAD=RAKE ANGLE IN DEGREES
ALPHAD=60.0
PI=22.0/7.0
RAD=PI/180.0
ALPHAR=ALPHAD*RAD
DEL=1.0%RAD
RHO=ARCOS{ACM) /2.0
SN=SORT(2.0)%(1.0+P1/2.042.0%RHC+SIN(2.0%RHO) )/
1{2.0%50RT{2.0)+4.0%SIN(RHO) )}
ARLIM=1.0~0.52%(1.0-ACM} *%0.325
FA=ACM*ARLIM/SN/2.0
B2=ARLIM/{1.0-ARLIM)}/SN
Bl={1.0=-ARLIMI®EXP(B2#*SN)
8S FORMAT(®_*,10X,'0DID NGT CCNVERGE")
EPSS=0.00001
EPS=0.0001
C *%% | 00P FOR VARYING ADHESIUN COEFFICIENT
C *®x* [ TERATICN FOR ETA 1
DEl=10.0%RAD
TETAL=PI/2.0
I ITER=0
310 ITER=0
311 P3=1.0+SINI{TETAL)
[FIP3/2.0.GT-SN) GO TO 312
ELITEST=FA%*( 1.0+SIN(TETAL))-COSITETA 1)
GO TO 313
312 ELTEST=ACM*{1.0-Bl*EXP{-B2*P3})-CCSITETAL)
313 IF(E1TEST.LT.0.0) GO TO 322
TELSAV=TETAL
TETAL=TETA1-DElL
[ TER=ITER+1
IF {ITER.GT.12) GO TO 370
GO TO 311
322 IITER=IITER+L
IF (IITFR.GT.19) GO TO 900
DIFF=TELSAV-TETAL
IF (ABS(ELTEST).LT.EPS) GO TO 900
DEl=DIFF*0.1
TETAL=TE1SAV
GO TO 310
370 WRITE(6.89)
900 ETALR=TETAL*¥0.5
ETALDO=ETAIR/RAD
DO 100 [=1,3



C %t
o T

208

210
211

212
213

717
2117

L *%*

412
411

413
414

422

4717
430

ITERATION FOR ETA 2

GUESS FOR TETAD=TETGD
TETGD=20.0

TETG=TETGD*RAD

TETAZ=P1/2.0

TETA3=P1/2.0

PHIR=60.0%RAD

DO 200 J=1.90

PHID=PHIR/RAD

JITER=0

{1 ITER=0

DE2=10.0%RAD

ITER=0
PV=0.5*%(1.0+TETG+SIN(TETAZ))
IF(PV.GT.SN) GU TO 212
E2TEST=FA*PV%*2,.0-COS(TETAZ}
GO TO 213
E2TEST=ACM¥ (1. 0-BLl*EXP{-B2*PV))-COS(TETA2}
IFIE2TEST.LE.0.0) GO TO 222
TE25AV=TETAZ2

TETA2=TETA2~DE2

ITER=ITER+1

IF(ITER.GTL12) GO TO 77

60 TO 211

IITER=IITER+1
IF{IITER.GT.19) GO TO 277
DIFF=TE2SAV-TETAZ2
IF(ABSUE?2TESTI.LT.EPS) GO TO 277
DEZ=DIFF*0.1

TETA2=TE25AV

G0 TO 210

WRITE(6.89)

ETAZR=TETA2%0.5
ETAZ2D=ETA2R/RAD
SV=COSI{2.0%ETAZR)

ITERATICN FOR ETA 3
DE3=10.0%*kAD

IITER=0

ITER=0

Pl3K=1l. 02 O¥TETG+2. 0*%PHIR+SINI{TETA3)
IF{P13K/2.0.6T.5N) GO TO 413
E3TEST=FA*P13K~-COS{TETA3)

GO TO 414
EITEST=ACM*{1.0-B1l*EXPI-B2*%P13K/2.0))-COS(TETA3)
IF(E3TEST.LE.D.0) GO TO 422
TE3SAV=TETA3

TETA3=TETA3-DE3

ITER=ITER+1

IFIITER.GT.203 GO TO 477

GO TG 411

IITER=ITTER+]
IF{IITER.GT.19) GO TO 430
DIFF=TE3SAV-TETA3
IF{ABS(E3TEST).iLTLEPS)I GO TO 430
DE3=DIFF%0.1

TETA3=TE3S5AvV

GO T4 412

WRITE (6.+89)

ETA3R=TETA3%0.5
ETA3D=ETA3R/RAD
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ALPHAR=ALPHAD#*RAD
DELTAD=9).0+ETA3D-PHID+ETA2D
DELTAR=DELTAD#*RAD
TETAR=ATANU(SINI(PI-ETA3RI*SINI{PI/ 4. 0-ETALR+ALPHAR )}~
1SIN{3.0%P[/4.0)%2SINC(ETAIR+DELTAR-ETA2R-ALPHAR=PI/2.01)1/
H{SIN{PI-ETA3R)*COS(PI/4.0-ETALR+ALPHAR) +SIN{3.0%P1/4.0) %
1COS(ETAIR+DELTAR-ETAZ2R—ALPHAR~PI/2.0)))
TETAD=TETAR/RAD
*x*% CHECKING THE GUESSED VALUE CF TETAD
TETD=TETAR-TETG
IF{ABSITETD).LT.EPSS) GO TO 600
TETG=TETAR
GO TO 209
6QC R=1.0
**%* CHECK IF VERTEX BPC IS NOT OVER STRESSED
PD={PHIR#2 .0+SIN(2.0%ETA3RI-SINI2.0*ETA2R)) /2.0
Al=DELTAD-45.0+ETA2D+45.0-ETA3D
IF{AL.LT.90.0) GO TO 800
PMAX=0.5%(SIN{2.0%ETA3R}+SINI2.0%ETAZRI] )+
1{DELTAR+ETAZR-ETA3R-P1/2.0}
GO TO 801
800 PMAX=0.,5%({SIN(2.0%*ETA3RI+SINI2.0*ETA2R) )
1-COS(DELTAR+ETAZR-ETA3R)
BO1l IF(PD.GT.PMAX]) GO TO 700
A2=DELTAD+45.0-ETA20-45.0+ETA3D
IFIA2.6GT.90.0) GO T4 850
PMIN==0.5%(S5IN(2.0%ETAZR)I+SIN(2.0%ETAZR) )+
1COS{DELTAR+ETAZR-ETAZR )
GO TO 851
850 PMIN==0.5%{SIN{2.0%ETA3R)+SIN{2.0%ETA2R) )~
1{DELTAR+ETA3R-ETAZR-PIL/2.0)
851 IFIPD.LTLPMIN) GO TO 700
TETAR=ATANL ISINIPI-ETABR)IFSINIPI/ 4. 0-ETALR+ALPHAR }~
1SINI30O%PI/4.0)%SINIETALR+DEL TAR-ETAZR-ALPHAR-PI/2.001)/
1{SIN(IPI-ETA3RI*COS(PI/4.0-ETALR+ALPFAR) +SIN(3.0#%P1/4.0)*
1COS{ETALR+DELTAR—-ETAZR~ALPHAR~P I/ 2.0)1])
TETAD=TETAR/RAD
IF{TETAD.LE.D.0) GO TQ 700
8CP=180.0-ETALD-TETAD-DELTAD+ETAZD
[F(BCP.LE.D.0) GO TA 700
*%x¢ GEOMETRICAL PROPERTIES REFER FIG.4.1.
*%2 LENGTHS
*#%¥ R=FAN RADIUS
R=1.0
PD=R
PC=PD/SINIETA3R)
DC=PC*COS{ETA3R)
PB=PC*SINIPI-ETALR-TETAR-DELTAR+ETAZR)/
ISIN{ETALR-ETAZR+TETAR/2.0)
BC=PC*SINIDELTAR+TETAR/2.0)/SINI{ETALIR—-ETAZR+TETAR/2.0)
HB=PRB*SINI{PI/2.0-TETAR/2.0~ETAZ2RI/SINITETAR)
HP=PRASIN(PI/2.0-TETAR/2 .0+ETAZR) /SINITETAR)
O0B=PB*SIN(PI/2.0-TETAR/2.0)/SINI(TETAR)
opP=00

"C *%x* HO=DEPTH OF CUT

HO=HP*SIN{ETALR+TETAR~ALPHAR)

[F(HOL.LT.0.0) GO TO 700

AB=HB*SIN(PI/4.0)/SIN(PI/4.0+ETALR)

HA=HR*SIN{PI/2.0-ETALR)/SINI(PI/4.0+ETAZR)
%% CHTD=CHIP THICKNESS
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CHTD=HA*COS(PI/4.0-ETALR)/HQ
TB=0B*SIN(ETALR~ETAZR]
NT=0B*%*COSIETALR-ETAZR)
0Z=0P*COS{ETAZK+ETA3R~-PHIRI)
PZ=CP*SIN{ETA2R+ETA3R-PHIR])
FP=PC/SINIPI/%.0)
CL=FP*SINIPI/4.0-ETALR-TETAR+ALPHAR)

IM=pPC /2.0

OM=0Z+7IM

TC=TB+BL

HL=HEIGHT UOF CHIP FORMATION
HL=HQ+ QL

AC=AB+BC

D=HO/ HL

DIMENSICNLESS STRESS DISTRIBUTICNS.REFER TO FIGa%4 %
S=SHEAR STRESS K

S=1.0
P3=S%{1.0+S5IN{2.0%ETALR))
S$3=5%C0OS{2.0%ETALR)
SV=S*C0S5{2.0%ETAZR)

PY=S& {1 0+TETAR+SIN{2.0%ETAZR]})
P13=S5*{1.,0+¢2.0*TETAR+2.0%PHIR+SINI(2 .0%ETA3R))
S13=S#%¥COS(2.0%ETA3R)

CONDITIGNS OF EQUILIBRIUM ON THE DEAD IONE.REFER FIG.4. 4-
FORCE ON DEAD ZIONE PARALLEL TQ THE TOOL FACE. ]rx!
513T=513%PC

P13T=P13*%PC

S13TX=S13T*COSI{PI-ETALR-TETAR-DELTAR+ETA2R)
PL3TX=P13T*SINI{PI-ETAIR-TETAR~-DEL TAR+ETA2R)
PVYTX=S5%(B*[COSIETALR-ETAZR)-COS(ETAIR-ETA2R+TETAR) +2.0%*
LESIN(ETAIR-ETAZR+TETAR)-TETAR®CCS(ETALR~ETAZR+TETAR} -
1SIN(ETALR-ETAZR) I-SIN{2.0%ETA2R)F{COS{ETAIR-ETAZR+TETAR )~
1COS{ETALR-ETA2R)}) )

SVTX=5%08%CGS{ 2. 0%ETAZR) *#{L0S{PI/ 2. 0-ETALR+ETAZR-TETARI) -
ICOS(PI/2.0-ETALR+ETAZR))

RX=SVTX+P13ATX~-S13TX-PVTX

SHEAR STRESS GN 'BC!

SBC=RX/8BC

I1FISBC.GT.1.0) GO TO 700

FORCE ON DEAD ZONE NORMAL TO TOOL FACE. 'RY!
P13TY=PLAT*COS{PI-ETALR-TETAR-DELTAR+ETAZR)
S13TY=S13T*SIN{(PI-ETAIR-TETAR-DEL TAR+ETAZR)

PYTY=53%*0B*{ SINIETALR-ETAZR+TETAR)}-SIN{ETAIR~-ETAZR )} #+2.0%
LICOS{ETALR-ETAZ2R+TETAR)I+TETAR*SIN{ETALR-ETA2R+TETAR) ~
LCOSIETALR-ETAZR ) J-SINI{2.0*ETAZR)I*(SIN{ETAIR-ETAZR+TETAR )=
1SINTETALR-ETA2R) )]
SVTY=5%0B%C0S(2.0*%ETA2R)*{SINIPI/2.0-ETAIR+ETAZR) -
ISINIPL/2.0-ETALR+ETAZR-TETAR} }

RY=S13TY#P13TY+PVTIY+3VTY

PBC=RY/BC

PBCZ2=PRC/2.0

LOCATION OF THE RESULTANT FORCE OGN THE LDEAD ZCNE. tIR?
SVTO=S*UB*0B*COS12.0%ETAZRIFTET AR
RYTR=PL3T#0OM-S13T*PZ+SVTG-aX*QT

TR=RYTR/RY

IF{(TR.LT.TB)Y GO TO 700

IFITR.GT.TL) GO TO 70G

ADHES ICHN COEFFICIENT BETWEEN DEAD ICNE AND TOOL FACE
ACMC=AVERAGE ADHESICON CUEFFICIENY OGN TOOL FACE BC.
ACMC=0.5
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[T=0
RC=0.5%¥ARCOS{ ACMC)
SNC=S50RTI{2.0)% {1 .0+P[/2.0+2.0%RL+SIN(2.0%RLC)})/
1{ 2.0%SORT{2.0)+4.,0#SINIRC))
ARLC=140-0a52%(1.0~-ACMC)*%0,325
B82C=ARLC/ (1 .0-ARLCI/SNC
BIC={1l.0-ARLC)*EXPIB2C*¥SNC)
ARC=1.0-B1C*EXP{-B2C*PBL2)
ACMCC=ABSI{SBL)/ARC
DMC=ACMCC—-ACMC
IF{ABS{DMC) sLELEPS) GO TO 982
ACMC=ACMCC
IF{ABS{ACMCl<GT1.0] ACMC=0.98
IT=]T+1
IFIIT.GE.20) GO TG 982
G0 TO 980
DM=ACMC-ACM
[FIPBC2.LELSN) GO TO 970
FLC=ACM*BL*B2%EXP{-B2¥%PRL2)/2.0
60 TOo 983
FOC=ACM®ARLIM/2.0/5N
IFIPBC2.LE.SNC) GO TO 981
FCC=ACMC*B1C*B2C*EXP(-B2C*PBL2) /2 .0
GO TO 971
FCL=ACMC#ARLL/2.0/SNC
DFC=FCC-FC
TOTAL HORIZONTAL AND VERTICAL FORCES ON THE TOOL. 'FHGFV?
P3Y=P3#%AB
53X=53*%A8
FT=S3X+RX
FTD=FT/HO
FH=COS{ALPHAR J*#{RY#+P3Y)-SIN{ALPHAR) *{RX+S3X)
FV=SIN{ALPHAR)*(PAY+RY)+COS{ALPHAR) *{S3X+RX)
AVERAGE NORMAL CUOMPRESSION STRESS ON TOOL
PMOK=FV/AC/S
RATIO OF VERTICAL FORCE TOD HORIZUONT AL FORCE
VOH=FV/FH
DIMENSIONLESS TDTAL HORIZONTAL ANC VERTICAL FORCES GN TOOL
FHD=FH/HQ
FVD=FV/HQ
SVvA=SYV
PVA=PV
WRITE(6,15) ALPHADDELTADPHID«TETADCETALDL.ETAZ2D,ETA3D,HA,
LEVD «FHD +FTD oSBL e S3¢SVA+S1340,
1IPBC+P3ePVAPLICHTD +PMOK o VOH 4 ACMC
PHIR=PHIR-DEL
IF{PHIR.LE.0Q.0) GO TGO 710
CONTINUE
ALPHAD=ALPHAD+5.0
CONTINUE
ST0P
END
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Table 3. Dimensionless Forces
m o FHD FVD FTD MOk VOH
0.1 50 8.95 11.12 0.28 1.54 1.24
55 12.08 17.95 0.39 2.20 1.49
60 17.24 31.00 0.55 3.03 1.80
65 21.72 48,57 0.82 3.94 2.24
70 25,47 73.26 1.09 4.85 2,88
75 27.45 107.72 1,30 5.75 3.92
76 26,60 112.68 1.39 5.93 4,24
77 38.67 170.85 0.66 6.12 4,42
78 73.37 338.53 -1.57 6.32 4.61
79 1253.23 6047.25 -79.76 6.53 4,83
0.3 50 6.23 8.38 0.61 1.63 1.35
55 6.77 11.10 g.82 2.28 1.64
60 7.91 15.83 1.06 3,03 2.00
65 8.84 22.13 1.33 3.88 2.50
70 9.26 30.20 1.61 4,77 3.26
75 "12.49 51.32 1.19 5.59 4.11
80 35.53 180.30 -3.78 6.42 5.08
81 61.75 328.44 ~9.80 6.60 5.32
82 287.21 1604.08 -62.11 6.77 5.59
0.5 50 4.96 7.47 1.00 1.89 1.50
55 5.46 9,96 1.23 2.55 1.82
60 6.02 13.41 1.49 3.31 2.23
65 6.40 17.85 1.73 4,12 2.79
70 8.07 26.54 1.49 4,78 3.29
75 11.71 45,55 .46 5.47 3.89
80 24.08 113.65 -4.04 6.19 4,72
81 31.64 155.83 -6.97 6.34 4,93
82 47 .31 243.48 -13.10 6.50 5.15
83 99.81 537.80 -33.84 6.65 5.39
0.7 45 4.70 6.53 1.29 1.61 1.39
50 4,51 7.70 1.49 2.36 1.70
55 4,88 10.02 1.74 3.04 2.05
60 5.65 13.35 1.77 3.59 2.36
65 7.07 18.70 1.49 4.06 2.65
70 9.11 27.57 0.89 4,62 3.03
75 13.65 47,18 -1.00 5.18 3.46
80 27.25 111.06 -7.61 5.81 4£.08
81 34.93 147 .52 -11.51 5.94 4,22
82 49.49 216.83 ~-18.96 6.07 4,38
83 87.93 400,01 -38.76 6.20 4.55
B4 481.08 2275.41 -241.97 6.34 4.73
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Table 3 - cantinued

m a FHD FVD FTD BEMOk VOH
0.9 40 3.55 5.24 1.73 2.08 1.48
45 4.05 6.65 1.84 2.40 1.64
50 4.68 8.48 1.86 2,70 1.81
55 5.50 10.99 1.79 3.03 2.00
60 6.58 14.55 1.57 3.39  2.21
65 B,13 19.95 1.06 3.76  2.46
70 10.60 29.04 -0.04 4.18 2.74
75 15.40 47.42 ~2:063 4.62 3,08
80 29.75 103.81 -11.33 5.08 3.49
81 36.34 130.67 -15.53 5.18 3.60
82 47.36 175.39 ~22.59 5.30 3.70
83 69.08 263.73 -36.58 5.40 3.82
84  131.77 518.95 =71.11 5.51 3.H3
0.999 35 4,12 5.59 2.22 1.84 1.34
40 4.49 6.73 2.27 2.03 1.50
45 5.12 8.47 2.37 2.20 1.65
50 5.84 10.64 2.36 2.41 1.82
60 9.22 20.43 2.22 2.70 2.21
65 10.81 26.38 1.34 2.95 2.44
70 13.14 35.47 -0.23 3:23  2.70
75 18.57 55.26 -3.67 3.43  2.98
80 30.47 99.50 -12.78 3.63 3.27
85 8.56 247.16 -46.91 3491 3.60
86 96.65 35182 -72.13 3.91 3.63
87 141.50 525.860 -114.12 3.98 3.71
88  297.04 1109.80 =258 .82 3.99 3.74
89 5185.11 19788.11. -4851.38 4,06 3.81
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ABSTRACT

A slip-line field which leads to an upper bound solution to a
problem of metal cutting with large negative rakes is developed
based on experimental observations. The slip-line field consists
of a prow and a dead zone which are formed in front of the tool.

The prow is the material of the workpiece which is in the state of
leaving the workpiece material and becoming a chip. The dead zone

is the stagnant region ahead of the tool which separates the flow

of workpiece metal that becomes a chip and that which rejoins the work-
piece material as the machined surface.

The slip-line field can be used to calculate the cutting forces
required to cut a material whose physical properties and friction
conditions can be estimated. This slip-line field accounts for the
experimental fact that the tangential force on the tool face becomes
zero for a certain high negative rake. Also, it accounts for the
experimental facts that: there is a certain negative rake angle at
which the tool deces not cut; the vertical component of the cutting
force is larger in magnitude than the horizontal component; and
the cutting force components increase as the rake angle becomes
more negative. The slip-line sclution presented explains why friction

is necessary in cutting with large negative rake tools.



