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Ill

NOMENCLATURE '

CO. P. = coefficient of performance

c = specific heat at constant volume, Btu/lbm-R
V ^

c = specific heat at constant pressure, Btu/lbm-R

e = efficiency of compression; defined in Appendix B
c

e = efficiency of expansion; defined in Appendix A

F = mechanical energy converted to thermal energy by friction,

ft-lbf/lbm

2
g = gravitational acceleration, ft/sec

h = specific enthalpy, Btu/lbm ^

3 = 778.161 ft-lbf/Btu

k = ratio of specific heats .
'

U = mass flow, Ibm '
• ' >

n = polytropic exponent in pv = a const.

n' = polytropic exponent for the reversible path that has the same

flow of rotary shaft work as the irreversible path

n" = polytropic exponent for the reversible path that has the same

heat flow out as the irreversible diabatic path

p = pressure, psiaor psfa

= heat flow, Bty

R = gas constant = 53.342 ft-lbf/lbm-R for air

s = specific entropy, Btu/lbm-R

S = entropy, Btu/R

t = temperature, F

T = temperature, R >' /

u = specific internal energy, Btu/lbm



V = specific volume, ft /ibm

3 "
'•

'

:* ' .
V = volume, ft " -

V = velocity, ft/sec

W = work, Btu . ;, ;

•• \

W = rotary shaft work, Btu

X = quality

2 = elevation, ft

«p = ratio of compression work and heat flow, defined in Section 1.7

T) = compression efficiency, defined in Section 2.2

A = symbol for finite difference

Subscripts

adiab = adiabatic ,

diab = diabatic

in = input .

irrev = irreversible ,

'

isen = isentropic

i = intermediate state along the path

i,r = intermediate state along the isentropic path

i' = intermediate state along the reversible path that has the same

flow of rotary shaft work as the irreversible path

= output '

rev = reversible

I, II = first and second stage of the two-stage turbine or the two-stage

compressor



INTRODUCTION
'

In this study of gas power cycles and vapor refrigeration cycles,

gas turbines, gas compressors and vapor compressors are to be considered.

If a fluid at an initial condition (p ,v. ,T ) undergoes a change through

a turbine or a compressor to a final state condition (p2,V2,T2), at least

two of the three variables pressure, volume, and temperature must change.

During the change, work must be accomplished by or on the thermodynamic

system, the internal energy of the system may increase or decrease, and

heat may be either added or removed. Gas turbines develop power as a

result of gas expansion and, by means of power input, compressors are used

to compress gases and vapors. Work depends upon the types of expansions

or compressions. In a frictionless or reversible process, work input or

work output may be represented by areas on the pressure-volume plane and

the temperature-entropy plane.

As frictional forces always occur in actual cases, reversible pro-

cesses are merely ideal ones. Unfortunately, it is not possible to

represent accurately an irreversible process on either a pressure-volume

or a temperature-entropy plane; only an approximate path may be drawn.

Work cannot be judged from areas on those planes when these planes contain

only lines which are approximations of irreversible processes. It is

necessary, therefore, to find an equivalent reversible path which has an

equal amount of work as the actual one. Cy comparing the reversible path

of an ideal process and the equivalent reversible path the work lost in

expansion, or the extra work required for compression, may be represented

by an area on the plane.



The flow of rotary work has been represented on the pressure-volume

plane for a long period of time and by a large number of authors. However,

the representation of the flow of rotary shaft work involved in turbines

and compressors on the temperature-entropy plane has, to the knowledge of

the author, not been used except in a limited and rather complex manner in

one instance.*

The main purpose of this report is to develop a suitable technique

for the accurate representation of the flow of rotary shaft work, by

means of areas on the temperature-entropy plane and to correlate these

areas with those on the pressure-volume plane which also represent rotary

shaft work. The development of this technique will give another use to

the temperature-entropy diagram (whose main use now is the representation

of heat flow) and will, it is hoped, encourage further use of the entropy

concept and Second Law analysis.

i H

/ 7 i

* Page 49,50, and 51 of reference (1).



PART I

GAS POWER CYCLES



SINGLE-STAGE GAS TURBINES

1.1 Reversible adiabatic gas turbine

The gas turbine expands gases from a given state of higher pressure

and temperature to a new state of lower pressure and temperature. If

there is no friction and heat flow in the expansion process, it is defined

as a reversible adiabatic process.

As shown in Figure 1,1, hot air expands according to the reversible

adiabatic process from 1 to 2, The flow of rotary shaft work done by the

turbine is represented on the pressure-volume diagram by area (a).

It can be proved as follows for perfect gases that the heat added at

8 constant pressure of p. from 3 to 1, and represented on the temperature-

entropy diagram by area (a), equals the flow of rotary shaft work represented

on the pressure-volume diagram.

The Bernoulli equation is.

i
^£dv _ P2^2 - Pl^l ^ ^2 -^1

^ "2 -^1
^ ^ , F

J
J J • 2gJ J s.o J

or in its equivalent form,

- vd£^!2_i ^ "2 "l ^ ^F
Jj J 2gJ J ^ s,o * J

2 2
V2 - v:
2 1

Neglecting the kinetic energy —^-j— , the difference in elevation

^2 "
''l F

J
, and the friction -r, the flow of rotary shaft work out for the rever-

sible turbine becomes ^ - ,

(^
'

.

s,o J

This is represented by the area (a) on the pressure-volume diagram.
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FIG. 1.1 TEIffERATURS-ENTROPJ: jWD PRESSURE-VOLUME DIAGRAMS FOR

REVERSIBLE ADIABATIC GAS TURBINE



Consider the closed cycle 1-2-3-1 on the temperature-entropy

diagram, where !„ = T^.

W = W -W
s,o, cycle s.o,l-2 s, in. 2-3

or

w = w + w .

-

s, 0,1-2 s,o, cycle s, in, 2-3 (1.1)

From the First Law of Thermodynamics, the cyclic work may be written

as,

"s, 0, cycle
~

*^in, 3-1 "^0,2-3 ^^'^^

The steady flow equation is,

d s, in, 2-3 3 0,2-3

Since T2 and T„ are chosen equal, h^ = h„ and

^. in. 2-3 =^0.2-3 ^''^^

Substituting equations (1.2) and (1.3) in (1.1),

s,o, 1-2 in, 3-1

Assume one pound of air expands under reversible adiabatic conditions

from an initial pressure and temperature of 100 psia and 2000 R to a final

pressure of 10 psia. For air k equals 1.40.

The temperature of the air after reversible adiabatic expansion equals,

(k-l)/k (1.4-1)/1.4
^? in

T2 = Tj i—) = 2000 (y—) = 1035.894 R

The gas turbine cycle may be analyzed by use of enthalpy values and the

First Law steady flow energy equation. Neglecting the kinetic energy and

potential energy, the rotary shaft work output for the adiabatic turbine is.



%,o=\'h=S-h=^in,2-l=-\,'f

= c (T, - T„)
p 1 2

'in, 3-1
J J

J

= 0.239922 (2000 - 1035.894)

= 231.310 Btu

1.2 Irreversible adiabatic gas turbine

Actual turbines have irreversible expansion processes owing to fric-

tion. If the efficiency of expansion is 0.0 for an irreversible adiabatic

gas turbine, the value of n equals

n = 1 + e (k - D* = 1 + 0.8 (1,4 - 1) = 1.32
e

The data are the same as those for the reversible adiabatic gas turbine.

M = 1 lb of air; p = 100 psia; T = 2000 R; p^ ~ ^^ P^^^

The temperature of the air after expansion equals
(n-l)/n (1.32 - 1)/1.32

T„ = T, (-^) = 2000 (7^) = 1144.473 R
2 1 Pi 100

The flow of rotary shaft work output is

W = h, - h„ = c (T, - T„) = 0.239922 (2000 - 1144.473) = 205.259 Btu
s,o 1 2 p 1 2

The ideal expansion work under the process 1 to 2 is,

,2

^ (n ! 1) J
^"^1 - "^2^ "^ ^°1 ^32^^-1 ^^°°° " 1144,473) = 183.267 Btu

The efficiency of expansion is defined as

- -"--' " £dv . .
.

J

0, ideal, 1-2
f

*Jl
* See part A in Appendix.



Simplifying equation (1.4)

7=(l-e) 2iv_Q_ Q Q) 193.267= 36.653 Btu

In Figure 1,2, area (a+b+c) on the pressure-volume diagram equals

_
I

vd2. ^ _nR
(T - T ) (15)

J (n-l)J ^^1 ^2^ ^^-^^

•^ 1

= n ^= 1.32 (183.267) = 241.912 Btu

—^ - j= 241.912 - 36.653 = 205.259 Btu

The Bernoulli equation gives,

W = -'

s.o

•'I

This answer checks with the one calculated from the steady flow equation.

Now assume there is a reversible expansion process which has the equal

amount of rotary shaft work. The new exponent of polytropic expansion n' may

be found by applying equation (1.5).

- vdn _ n'R
•s,o J (n'-l)J ''1 " ^2""(n'-l)J ^1

-^ 1

W. (T, - T,,)=7-^" T,
I

1 - (%
(n'-lMi'>

205
r in (n'-l)/nn

.259 = -T-r 0.068549(2000) 1 - (T^n>n -1 100 J

By trial and error,

n' = 1.6812 :,'

In Figure 1.2, the reversible path is represented by solid lines

), the actual path by a sequence of circles ( O O ),

-). Theand the equivalent reversible path by broken lines (

path from 1 to 2' is the equivalent path for the irreversible adiabatic ex-

pansion from 1 to 2.
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Area (a) represents the actual flow of rotary shaft work for the

irreversible adiabatic gas turbine. In comparison with the reversible

adiabatic turbine, area (b) represents the penalty for irreversibility.

The expansion path from 1 to 2 is an actual path. If it is assumed

to be a reversible one, the area under the expansion path 1-2 on the tem-

perature-entropy plane represents the heat input which also equals the work

due to friction in the irreversible case.

The First Law non-flow equation may be written,

= 0.171373 (1144.473 - 2000) + 183.267

= 36.653 Btu

Area (b') under the constant pressure line 2r-2 on the temperature-

entropy diagram represents the heat input from 2r to 2 at a constant pressure,

0- o o = c (T^ - T^ ) = 0.239922(1144.473 - 1035.894)
^in,2r-2 p 2 2r

' = 26.051 Btu

Area (a+b) represents the expansion rotary shaft work for the reversible

turbine. Area (b) may be calculated by subtracting the area (a),

(b) = (a-fb) - (a)
'

= 231.310 - 205.259

= 26.051 Btu

Since area (b) equals area (b'), it may be stated that area (b) is

the non-recoverable part of work due to friction. Area (c) is the recover-

able part of work due ta friction and equals,

(c) = (c + b') - (b*) = 36.653 - 26.051 = 10.602 Btu



,./.'-T?^^-.''
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Area (c) may be calculated from the pressure-volume diagram also,

since area (a+b+c) represents the rotary shaft work from 1 to 2.

(c) = (a+b+c) - (a+b) = 241.912 - 231.310 = 10.602 Btu

The work lost in this case is 11.26 per cent.

SINGUE-STAGE GAS COMPRESSORS

1,3 Reversible adiabatic gas compressor

Compressors are used to compress air and other gases. As shown in

Figure 1.3, air is compressed according to the reversible adiabatic process

from 1 to 2, The work done on the gas by the compressor is represented on

the pressure-volume diagram by area (a).

r2
W .

=
s,in

J

vdp

J

1

or

Consider the closed cycle 1-2-3-1 on the temperature-entropy diagram.

W = W -W
s, in, cycle s, in, 1-2 s,o,3-l

W.-^=W. ,+W ^ . (1.6)
s, in, 1-2 s, in, cycle s,o,3-l

From the First Law of Thermodynamics, the cyclic work can be written as,

s, in, cycle o,2-3 in, 3-1

The steady flow equation is,

h^ + 0. o , = h, + W ^ ,3 in, 3-1 1 s, 0,3-1

Since T. and T„ are chosen equal, h, = h^ and

'5i„,3-i = "s,or3-i ^
<i-s>

Substituting equations (1.7) and (1.8) in (1,6),

"s, in. 1-2 ='^0.2-3 '^•^•'^-
.

;
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This proves that the area (a) on the temperature-entropy diagram repre-

sents the equal amount of rotary shaft work.

Assume one pound of air is compressed under reversible adiabatic condi-

tions from an initial pressure and temperature of 10 psia and 500 R to a

final pressure of 100 psia.

The temperature of the air after reversible adiabatic compression is,

(k-l)/k (1.4-1)/1.4

T^ = T, i% = 500 (7^) = 965.349 R
^ 1 p, lu

From the steady flow energy equation, the rotary shaft work input for

the reversible adiabatic gas compressor is,

W . = h„ - h, = c (T„ - T.) = 0.239922 (965.349 - 500)
s.in 2 1 p 2 1

' = 111.647 Btu

1,4 Irreversible adiabatic gas compressor

Let the efficiency of compression be 0.8 for an irreversible adiabatic

gas compressor, the value of n equals

n = 1
+'- (k-1) * = 1 + ^ (1.4-1) = 1.5

e u.o
c

The data are the same as those for the reversible adiabatic gas compressor,

M = 1 lb of air; p, = 10 psia; T^ = 500 R; P2 = 100 psia

The temperature of the air after compression equals

(n-l)/n (1.5-1)/1.5

T« = T, (~) = 500 (•—) = 1077.217 R
^ 1 P

,

IvJ

The rotary shaft work input is,

'^s,in = h2 - h^ = c (T2 - T^) = 0.239922 (1077.217 - 500)= 138.487 Btu

*See part B in Appendix.
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The ideal compression work under the process 1 to 2 is,

f 1"=0rfe"l-V=T7gF (500-1077.217)

= -79.135 Btu

The efficiency of compression is defined as,

W
in, ideal. 1-2

c W. , ^

J, ^

,2

Eiv F_
J J

1

(1.9)

Simplifying equation (1,9)

7= (1 - - ) ^ = (1 -^) (-79.135) = 19.784 Btu
J e J O.o

In Figure 1.4, the area (a+b) on the pressure-volume diagram equals,

^ = - (-—jj (Tj - Tg) = -n
2|v ^ _j^5 (-79.135) = 118.703 Btu

^ ... -^1

The Bernoulli equation gives,

^^s in
~

1
"^^

J
~ 11S«'^03 -• 19.784 = 138.487 Btu

' / 1

This answer checks with the one calculated from the steady flow equation.

Now we assume there is a reversible compression process which has the

equal amount of the flow* of rotary shaft work. The new exponent of polytropic

compression n' may be found by applying equation (1.5).
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rr

w.
s.in

138.487

^\

vdp _ >n' R . T t
- "' R T

J (n'-l)J ^h ^2^ - (n'-l)J M

(n'-D/n*

16

P2
(—

)

(n'-l)/n' .

-1

0.068549 (500)
iOOj
^10 '' -1

n'-l

By trial and error,

n' = 1.818

The path from 1 to 2' is the equivalent reversible path for the irrever-

sible adiabatic compression from 1 to 2.

Area (?+-b*c) represents the actual flow of rotary shaft work for the

irreversible adiabatic gas compressor.

The temperature of the air after compression equals

„ (n'-l)/n' (1.818-1)/1.818

T„, = T, (-^)
2 1

pj
500 (j^)

= 1409.013 R

In comparison with the reversible adiabatic gas compressor, area (b+c)

represents the extra work required for compression.

Areas which represent the heat flow or rotary shaft work may be calcu-

lated from the temperature-entropy diagram.

In Figure 1.5, the heat flow under the constant pressure line from 2r to 2

is represented by area (b+d+f).

Figure 1.5 Temperature-entropy diagram.
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0. = (b+d+f) = c (T„ - T„ ) = 0.239922 (1077.217 - 965.349)
in p 2 ^r

= 26.840 Btu

The heat input under the reversible path from 1 to 2 is represented

by area (d+f).

9 2

= 0.171373 (1077.217 - 500) - 79.135 = 19.784 Btu

(b)= (b+d+f) - (d+f) = 26.840 - 19.784 = 7.056 Btu

The heat input under the constant pressure line from 2 to 2' is repre-

sented by area (e+g).

Q. = (e+g) = c (T^,- T^) = 0.239922 (1409.013-1077.217)

= 79.605 Btu

The entropy change from 1 to l' is equal to the entropy change from

2r to 2.

^2 ^l' R ^^1'

S. , - S, = S^ - S^^ = c^ln =r- = c In ;p t In -

—

1 1 2 2r p T2^ p Tj J pj

°'
T, T,

" n7(n'-l)

c^ln -^ = c in ;p^ - 7 m (=r^)
p T2^ P Tj J Tj

In this equation only T. , is unknown.

Solving for T.

i

Tj, = 675.189 R

The heat input under the line from 1 to l' is,

Q. = (f) = c (T,.-T,)+ ^^= c (T, , - T ) -7-r^^-r(T. ,-T )
^in V. 1 1

I

*^ V 1 1 in -1;J 1 1

= 0.171373 (675,189 - 500) -
ff^^fflj)

(675.189 - 500)

= 15.342 Btu
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(d) = (d+f) - (f) = 19.784 - 15.342 = 4.442 Btu

The heat input under the line from l' to 2' is represented by area (g)

on the temperature-entropy diagram.

hn-\^\^'V^ (
"?= V^2-^l'>-(lfej(V-^l'^

= 0.171373 (1409.013 - 675.189) -
[^J^q^q^^

^C 1409.013 - 675.189)

= 64,263 Btu

(e) = (d+g) - (g) = 79.605 - 64.263 = 15.342 Btu

Therefore, area (e) equals area (f).

The area (c) in Figure 1.4 is represented by area (e+d) here,

(c) = (e+d) = (d+f) = 4.442 + 15.342 = 19.784 Btu

In Figure \A, area (b) represents the heat that must be rejected when

following the irreversible isentropic path 1 to 2r. Therefore, area (b) is

called the irreversible isentropic friction factor.*

Area (c) represents the part of work due to friction which changes

mechanical energy into thermal energy. It is called the irreversible adiabatic

friction factor.*

Both areas (b) and (c) are non-recoverable parts of work, and represent

the double penalty for the irreversible adiabatic compressor. The extra work

in this case is 24.04 per cent.

1.5 Reversible isothermal gas compressor

Assume one pound of air is compressed under reversible isothermal

conditions from an initial pressure and temperature of 10 psia and 500 R to a

final pressure of 100 psia.

See part C in Appendix,



•V-f:-,- - .-^

19

In Figure 1.6, area (a) represents the flow of rotary shaft work input,

which is,

W. ,•„ = f T, In r^ = 0.068549 (500) In 7^ = 78.920 Btu
s, in J 1 p. 10

1.6 Irreversible isothermal gas compressor

Let the efficiency of compression be 0.8 for an irreversible isothermal

gas compressor.

The data are the same as those for the reversible isothermal gas com-

pressor.

M = 1 lb of air; pj = 10 psia; T = T2 = 500 R; P2 = 100 psia

In the isothermal process, the flow of rotary shaft work equals the work

of compression. This may be proved from the steady flow equation and the non-

flow equation.
- t

h, + W, . = h^ + ' '

. 1 s,in 2

Since Tj = T2 , h = h^ and

•'•^s.in-Qo •
^1-10>

.

Win = "2 - "1 " '^0

Since T. = T^ , u = U2 and

.'. W. = Q„ . . (1.11)
in

\ i.ii/

Equations (1.10) and (1.11) give

W . = W. O.E.D,
s.in m ^ •

The rotary shaft work input for the irreversible gas compressor equals,

= ^s, in, ideal ^ 78.920 ^
s,in e * 0.8 ^O'O^*" t^^"

r

..S



20

S^
/

T,°R ^^^ X <^
500

2 ^y^
1

a-78.920

:*

100

p,psla

V, ftVlbm

FIG. 1.6 TEI'fl'ERATURE-ENTROPY AND PRESSURE-VOLUME DIAGRAMS FOR
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The equivalent reversible path for the irreversible one may be found

from the equation (1,5),

2'

W
s,in

vdp _ n'R „
J ~ (n'-l)J 1

(n'-D/n*

k Pi
•)

98,650 = -T-K 0,068549) 500
n -1

(<i^,
*"'-"^"'

-z]

By trial and error,

n' = 1,230

The temperature of the air after compression equals

P2
T^, = T, (-^)
2 1 p

(n'-D/n* (1.23-1)/1.23

= 500 i^) = 769,063 R

The work due to friction is.

vd£ .

J ^

= (1 -.- ) (,
s.in reV

) = ^ . 1_
) (. 78.920) = 19.730 Btu

e J u,o
c

In Figure 1,7, area (a+b) represents the rotary shaft work input, which

equals, '
. /

'

W .

W . = ^'^"'^^^
-^ 7 = 78.920 + 19.730 = 98.650 Btu

The answer checks with the one calculated from the efficiency equation.

Area (b) represents the extra work due to friction. In this case there

is a 25 per cent increase in the work required.
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1,7 Reversible diabatic gas compressor

The reversible diabatic gas compressor means that there is heat flow

during the compression process. The compression work and heat flow ratio

9 is defined as, . ;. . <
; .

i. I

Pdv , ..>;

e
c
J

<P
=

J

1

"^in

Assume one pound of air is compressed under reversible diabatic

conditions from an initial pressure and temperature of 10 psia and 500 R

to a final pressure of 100 psia. If 9 = 5, e = 1, the value of n equals,
c

n = 1 + - (k-1) (1 - h* = 1 + (1.4 - 1) (1 - !) = 1.32
e^ <p 5

The temperature of the air after compression equals,

(n-l)/n (1.32-1)71.32

To = T, (—) = 500 (^) = 873,764 R
2 1 p 10

The rotary shaft work input is,

W . = ^= -il!L_ (T_ - T,) = I'll ,
(0.068549) (873.764 - 500)

s.in J (n-l)J 2 1 1.32-1

= 105.687 Btu

The heat flow may be calculated from the steady flow equation,

h, + W . , o = h^ + ,0
1 s, in, 1-2 2 0,1-2

or

, = W .
, o + h, - h„ =

0,1-2 s,in,l-2 1 2

W . , o
« c (T, - T„) = 105.687 + 0.239922 (500 - 873,764)

s, in, 1-2 p« 1 d

= 16.013 Btu

*See part D in Appendix.
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The compression work is,

fV = 0^ "i - ^2' = xlfr <«» - «^^-^"'

-' 1

.5 = -80.066 Btu
' '

The work may be calculated from the non-flow equation also.

Qin.l-2= "a-^l-" ^
-*

1

or

/2

^ = u, - u^ - Q„ , = c„ (T. - T^) - Q,J 1 <: 0,1-2 p 1 2 c0,1-2 p 'n "2' ''0,1-2

J I

= 0.171373 (500 - 873.764) - 16.013 = - 80.066 Btu

In Figure 1.8, area (a) represents the rotary shaft work input for the

reversible diabatic gas compressor.

Area (a+b) represents the rotary shaft work input (111.647 Btu) for

the reversible adiabatic gas compressor. (See Section 1.3)

Area (b) represents the work saved in this case, which is 5.960 Btu

(5.338%). - •
•

1.8 Irreversible diabatic isentropic gas compressor

If the efficiency of compression e = 0. 8, cp = 5, the value of n equals,

n = 1 + i (k-i) (1 - i) = 1 + J^ (1.4-1) (1 - ^) = 1.4
e cp O.o 5

For this value of n, the compression follows the isentropic path.

The data are the same as those for the reversible diabatic gas compressor.

M = 1 lb of air; p^ = 10 psia; T^ = 500 R; P2 = psia

The temperature of 'the air after compression equals,

(n-l)/n (1.4-l)/l.4

T^= T- (—) = 500 (~) = 965.349 R
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The change of internal energy is,

"2 "
"l

" \ ^'^2 " "^1^ "" 0.171373 (965,349 - 500) = 79.740 Btu

E^= (X - T ) =
(n,-l)J

0.068549
1.4-1

(500 - 965.349)

= -79.748 Btu

The heat flow out from 1 to 2 (See Figure 1.9) is,

r2

•^o
= "1 - "2 -

e
E^= .79.748 + 12^

1

= 19.937 Btu

The work due to firction is,

c ,

pdv _= (1 - -—) (-79.748) = 19.937 Btu

0.8

Therefore, the work due to friction is equal to the heat out.

7= 0„ =. 19.937 Btu V

The rotary shaft work input equals,

W . =( ^+^=-n| ^+^= (-1.4)(-79. 748) + 19.937
s,in J J I J J

^1 -^1

= 131.584 Btu

The equivalent path for the irreversible diabatic isentropic compression

may be found by applying the equation (1.5).

2' (n'-D/n*

W
r p-
(—

)

Pi

- vd£ _ n'R
s,in

J
J. (n'-l)J 1

131.584 = -?-7- (0.068549) (500)
n -1

(lOOj
^ 10-*

-1

(n'-D/n* ^
-1
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By trial and error,

n* = 1.6999

Now assume there is a reversible path from 1 to 2" (See Figure 1.9)

which has the equal amount of heat flow out from 1 to 2 and the same

pressure as p^. The exponent of polytropic compression n'' may be found by

the following manner,

(n"-l)/n"

or

W
s,in =

vdp _ n"R „
(n"-l)J '1

1

r P2
(—

)

Si^ ' -1

= V-^l"^ ^0,1-2" =^p ^V -Ti)*0o.l-2

T
= C„ T, i^^ -1) + 0. ., n = C T

p ^1 ^T
1

k R

(k - 1) J 1

r P2
(—

)

Pi

0,1-2 p 1

(n"-l)^"

r P2
(—

)

(n"-l)/n"

-1 +0
0,1-2

-1 +
0,1-2

n" R

(n"-l)J l[ Pj

(n"-l)/n"

T, (—

)

-l] = k R

^J (k-l)J h

n -1
(0.068549) (500)

(lOOj
^10 '

(n"-l)/n"
-1

Po
(—

)

Pi

1.4

(n"-l)/n"

-1 + 0,0.1-2

(0.068549) X

(n"-l)/n"

^10 '

1.4-1

(500)

+ 19.937

By trial and error,

n" = 1.3005

In Figure 1.9, area (a) represents the rotary shaft work input from

1 to 2", which is

-1
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t
•

i ; .

2"
^^ , ^ (n"-l)/n"

vdp _ n"R ~
J (n"-l)J 1 ('pj

P2
(—) -1

=
a?3005-l)

^0-068549) (500)

= 104.189 Btu

,n„ (1.3005-1)/!. 3005

ho ' -1

Area (b) represents the extra heat that must be rejected when follow-

ing the irreversible diabatic path 1 to 2". Therefore, area (b) is called

the irreversible diabatic friction factor,*

Area (c) represents that part of work due to friction which changes

mechanical energy into thermal energy. It is called the irreversible diabatic

isentropic friction factor.* '

Both areas (b) and (c) are non-recoverable parts of work, and represent

the doublt penalty for the irreversible diabatic isentropic compressor.

Area (a+b+c) represents the rotary shaft work input for this case.

1.9 Irreversible diabatic gas compressor

If the efficiency of compression e = 0.8, and <p = 2.5, the value of n
c

equals.

n = 1 f 1 (k-1) (1 - ^) = 1 + rr^ ( 1.4-1) (1 - ^) = 1.30
e <p 0.8 2.5

The data are the same as those for the reversible diabatic gas

compressor.

M = 1 lb of air; p, = 10 psia; T = 500 R; P2 = 100 psia

The temperature of the air after compression equals

P,^""^^''" 100 (1- 3-1)71.

3

T„ = T, {—) = 500 (—) = 850.627 R
<: 1 p, 10

*See part E in Appendix.



30

The change of internal energy is,

"2 "
"l

~ % ^^2 " ^1^ ~ 0.171373 (850.627 - 500) = 60.088 Btu

1^=u^":-V = Tffn<=°°-«^-^^"

= -80.117 Btu •

The heat flow out from 1 to 2 (See Figure 1.10) is,

•^0 = "1 - "2 -
e

24^ = -60.088 + ^4^ = 40.058 Btu
J U.o

1

The work due to friction is, ,.

""

,

7=(1--) ^=(1- r^) (-80.117) = 20.029 Btu
J e

I
J 0.8

^ J 1

The rotary shaft work input may be calculated from the steady flow

equation. •

"

Ws,in,l-2 = ^2 -^l-^'^o. 1-2 =^p ^^2-^1 ^•"^0.1-2

= 0.239922 (850.627 - 500) + 40.058

', •
•

,
= 124.181 Btu • ^

2 ,2

—2-= -n ^= (-1.3) (-00.117) = 104.152 Btu

1 J 1

W • 10= ^ + 7= 104.152 + 20.029 = 124.181 Btu

-'I

1

This answer checks with that calculated from the steady flow equation.
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a=10U.l52

" ^^
^

p,psia

s, Btu/lbra-R

3.15 U.32
V, ft^/lbm

FIG. 1,10 TQ-IPERATURE-ENTROPY AND PRESSURE-VOLUME- DIAGRAMS FOR

18.52

IRREVERSIBLE DIABATIC GAS C014PRESS0R
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The equivalent reversible path for the irreversible diabatic com-

pression may be found by applying the equation (1.5),

/2' (n'-D/n* .

s,in J (n -l;j 1
(^

p-

(n'-l)/n'
124.181= -T-r (0.068549) (500)

n -1

lOOj

ho ^ •]

By trial and error,

n' = 1.5821

In Figure 1.10, area (a+b) represents the rotary shaft work input for

this case. Area (b) represents the part of work due to friction,

MUUTI -STAGE GAS TURBINES

1.10 Reversible adiabatic two-stage reheat gas turbine

One pound of air in the first stage of the turbine expands under

reversible adiabatic conditions from an initial pressure p, = 100 psia and

temperature T. = 2000 R to an intermediate pressure P; = Po ~
P"^* ^'^^

temperature 1^ is reheated to T^ = T. by means of a combustion chamber.

The air in the second stage then expands under reversible adiabatic conditions

from the pressure p. and temperature T^ to a final pressure p, = 10 psia

(See Figure 1.11).

The intermediate pressure is selected to give the maximum amount of

rotary shaft work output for the entire expansion.

Pi=/^^'
= 100 (10)

= 31.623 psia

*See part F in Appendix.

« •£
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The temperature of the air after the first stage expansion is,

(k-D/k

T = T (—^)
„ ,^„ (I.4-D/I.4

= 2000 ( \'qq ) = 1439.371 R

Since T^ = T , the final temperature T^ = T2.

The rotary shaft work output is the same for both stages of the turbine.

W T
= W TT = h, - h^ = c (T. - T^)

s.o.I 8,0, II 1 2 pi 2

-. " = 1.239922 (2000 - 1439.371) = 134.508 Btu

. The total rotary shaft work output is ' r

'

W^ « T + W^ . TT = 2 (134.508) = 269.016 Btu
s,o,I s ,0, II

For the single-stage gas turbine, the rotary shaft work output was

found to be 231.310 Btu (See Section 1.1).

The increase in rotary shaft work for reheating versus no reheating is

represented by area (b) in Figure 1.11.

(b) = 269.016 - 231.310 = 37.706 Btu

or

(b) = c T,
P u

(k-l)/2k

1 - 2(—

)

Pi

(k-l)/ki*

= 0.239922 (2000) 1 - 2(-^)
^ '^^lOO'

+ (—

)

I

Pi
^

(1.4-1)/2(1.4)

^100

(1.4-1)/1.4'

increase

= 37.706 Btu

37.706
0.1630 or 16.30 per cent

231.310

Area (a+b) represents the total shaft work output for this case, while

area (a) represents that for the single-stage gas turbine.

*See part G in Appendix.
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1,11 Irreversible adiabatic two-stage reheat gas turbine

If the efficiency of expansion is 0.0 for an irreversible adiabatic

two-stage reheat gas turbine, the value of n for each stage equals

n = 1 + e (k-1) = 1+0.8 (1.4-1) = 1.32
e

The data are the same as those for the reversible adiabatic reheat gas

turbine.
,

M = 1 lb of air; p, = 100 psia; 1^ = 12= 2000 R;

Pj = P2 = P3 =/P 1P4 = 31.623; p^ = 10 psia

The temperature of the air after the first stage expansion is,

p.
^"^^"

r., ,-jo a. 32-1/1. 32

To = T, (^) = 2000 r :?i ) = 1512.927 r
^ 1 p^ lUU

Since To = T,, the final temperature T. = T2.

The rotary shaft work output is,

W , = W TT = h, - h„ = c (T, - T„)
s,o,I s.o.II 1 2 p 1 2

= 0.239922 (2000 - 1512.927) = 116.861 Btu

The total rotary shaft work output is,

W T + W ^^ = 2(116.861) = 233.722 Btu
s,o, I s,o,II

The equivalent path for each irreversible adiabatic expansion process

may be found by applying equation (1.5).

,2'
. (n'-D/n*

116.861 = -jjTTj (0.060549) 2000 1 - (
^^q

)

By trial and error

n' = 2,2284
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For the single-stage irreversible adiabatic gas turbine, the rotary

shaft work output was found to be 205.259 Btu (See Section 1.2).

The increase in rotary shaft work output for reheating versus no

reheating is represented by area (e-b) in Figure 1.12.

(e-b) = 233.722 - 205.259 = 28.463 Btu

increase = ^^^^^59
"" ^''^^'^ ^"^ ^^'^"^ ^^^ *^®"^

Area (a+d+e) represents the rotary shaft work output for the

irreversible adiabatic two-stage reheat gas turbine. Area (a+b+d) represents

that for the single-stage gas turbine.

MULTI-STAGE GAS CONPRESSORS

1,12 Reversible adiabatic two-stage compressor

A two-stage gas compressor is to be used to compress one pound of air

at a pressure of 10 psia. The air in the first stage of the compressor is

compressed under reversible adiabatic conditions from an initial pressure

p = 10 psia and temperature T = 500 R to an intermediate pressure

p. = Pp = Po' The temperature T2 is cooled by means of the intercooler to

To = T . The air in the second stage is then compressed under reversible

adiabatic from the pressure p. and temperature T^ to a final pressure

p = 100 psia. (See Figure 1.13).

The intermediate pressure is selected to give the minimum amount of

rotary shaft work input for the entire compression process,

p. =/p,P4 = /lO <100) = 31.623 psia

*See part H in Appendix.
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The temperature of the air after the first stage compression is

(k-l)/k (1.4-1)/1.4

T. = T, (-i-) = 500 (^H^> = 694.745 R
2 1 p. 10

Since T^ = T , the final temperature T. = T .

The rotary shaft work input is the same for both stages.

W . , = W . TT = ho - h, = c (T^ - T,)
s.m.I s.xn.II 2 1 p 2 1

= 0.239922 (694.745 - 500) = 46.724 Btu

The total rotary shaft work input is, '

W . ,+W . TT = 2(46.724) = 93.448 Btu
s , in,l s , in,li

For the single-stage gas compressor, the rotary shaft work input was

found to be 111,647 Btu (see Section 1.3).

The saving in rotary shaft work input is represented by area (b) in

Figure 1,13.

(b) = 111.647 - 93.448 = 18.199 Btu

18 199
Saving =. -

.
'

. ._ = 0.1630 or 16.30 per cent

This percentage of saving may be found by the following manner.

(k-D/2k
r Vi

2
f P5
(—

)

Saving = 1 - i>r i
Pc <k-]yk

(~) -1
Pi

a.4-iy2(i,4)

1 - ^^„
^_^y^ ^

-= 0.1630 or 16.30 per cent

(•^) -1MO ^ ^

*See part I in Appendix.
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Area (a+c) represents the total rotary shaft work input for this case,

while area (a+b+c) represents that for the single-stage gas compressor.

1.13 Irreversible adiabatic two-stage gas compressor

If the efficiency of compression is 0.8 for an irreversible adiabatic

two-stage gas compressor, the value of n for each stage equals,

n = 1 + - (k-1) = 1 + -\ (1.4-1) = 1.5
e O.o
c

The data are the same as those for the reversible adiabatic two-stage

gas compressor.

M = 1 lb of air; p^ = 10 psia; T = T^ = 500 R; p. = p = p

=/pTpT = 31.623 psia; p. = 100 psia

The temperature of the air after the first stage compression is,

„ (n-D/n a.S-lVl.S

= 733.900 RT^ = T, (-^)
2 1 pj

= 500 i^k^)
10

Since T^ = T , the final temperature T. = T^.

The rotary shaft work input equals

w
s.in.I = W . TT=ho - h- = c (T^ - T,)

s,in,II 2 1 p 2 1 J

= 0.239922 (733.900 - 500) = 56.118 Btu

The total rotary shaft work input is,

W^ ,•« T + W^ ,•„ TT = 2(56.118) = 112.236 Btu
s, in,I s, in,II

The equivalent path for each irreversible adiabatic compression process

may be found by applyinp equation (1.5). ( ' i)/

W
s,in,I

56.118 =

vdp_ n'R

n*-l

(n'-l)J "1

(0.068549) 300

^^)
pi

. 3l.623 x

^ 10
•'

-1

(n'-D/n* ^

-1
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By trial and error , '

n'= 2.3789

For the single-stage irreversible adiabatic gas compressor, the rotary

shaft work input was found to be 138.487 Btu (see Section 1.4).

The saving in rotary shaft work input is represented by area (c+d-g)

in Figure 1.14.

(c+d-g) = 138.487 - 112.236 = 26.251 Btu

Saving = Voo Voy = 0.1896 or 18.96 per cent

Area (a+b+e+f+g) represents the rotary shaft work input for the irrever-

sible adiabatic two-stage gas compressor. Area (a->f) represents that for

the single-stage gas compressor.
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PART II

VAPOR REFRIGERATION CYCLES
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SINGLE-STAGE VAPOR COUP RESSORS

2,1 Reversible adiabatic vapor compressor

In vapor refrigeration cycles, Freon-12 is commonly used as a refri-

gerant. Assume one pound of dry and saturated vapor Freon-12 is compressed

under reversible adiabatic conditions from an initial temperature of 400 R

to a final pressure of 222,124 psia. The properties of the refrigerant at

each state in the equipment diagram (see Figure 2.1) and the temperature-

entropy diagram (see Figure 2.2) are surmnarized in the following table.

P
psiaState F

1 (sat.vap.) -59.70 5.405

2 . 180.17 222.124

r 140.30 222.124

3 (sat.liq,) 140.30 222.124

4 -59.70 5.405

h

Btu/lb
m

70.727

99.651

70.727

41.242

41.242

Btu/lb R
m

0.17708

0.17708

0.12953

0.08033

0.10354

1

«

0.605

0.606

3
Condenser

2

Sv Expansion
V) Valve W .

s,in

Evaporator Q.

4 1

Compressor

Figure 2.1 Equipment diagram for the single compression,
single expansion refrigeration cycle.

^Superheated vapor.
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In Figure 2.2, if a constant enthalpy line 1-1
' is drawn on the

temperature-entropy diagram, it can be proved that the area under the constant

pressure line from 2 to l' equals the rotary shaft work input from 1 to 2 on

the pressure-volume diagram.

Consider the closed cycle 1-2-1 '-1 on the temperature-entropy diagram.
,

W = W - W I

s, in, cycle s, in, 1-2 s,o,l -1

or /''-'':\^

w . , o = w . , + w ,, ; (2.1)
s,in,l-2 s,in, cycle s,o,l -1

From the First Law of Thermodynamics, the cyclic work may be written as,

^^s, in, cycle
"^

^o,2-l' " ^in,l'-l (2.2)

The steady flow equation is,

•^I'-^^in.l'-l^^^^^s.o.l'-l

Since h, , = h. , and

in,l -1 s ,0, 1 -1

Substituting equations (2.2) and (2.3) into equation (2.1)

Ws.in,l-2= ^0,2-1' '^•^•'^-

Area (a) represents the rotary shaft work input on both temperature-

entropy and pressure-volume planes, which is equal to

W^ . , o = ho - ^1 = 99.651 - 70.727 = 28.924 Btu

The coefficient of performance (CO. P.) of the refrigeration cycle shown

by the equipment diagram of Figure 2.1 is,

_ „ p _ Refrigeration fx)ad

• • * ~ Rotary Shaft Work Input

- ^1 - ^4 _ 70.727 - 41.242 _
~ W . , „ ~ 20.924 ~ i.uiv^

s,in,l-2
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2.2 Irreversible adiabatic vapor compressor

One pound of dry and saturated vapor Freon-12 is compressed under

irreversible adiabatic conditions from an initial temperature of 400 R to

a final pressure of 222,124 psia. The efficiency of compression, t^ = 0,8

and it is defined as

n. = -r^—vT (2.4)
'c h^ - hj

The actual path from 1 to 2 (see Figure 2.3) was plotted by chosen

intermediate pressures (p.) along that path. The enthalpy h. was determined

by equation (2,4).
h. - h, ^

••

h. = h, + ^^ ^

Other properties were found in the Freon-12 table.

The properties of the refrigerant for some end states are shown in the

following table.

t p h s

State . F psia Btu/lb Btu/lb R^ mm
1 (sat.vapj -59.70 5,405 70,727 0,17708

2r ,. 188,17 222.124 99.651 0.17708

2 226,76 222,124 106,882 0,18799

2' 330.37 222,124 125,838 0,21367

The rotary shaft work input for the irreversible adiabatic vapor

compressor is

W . „ = h^ - h = 106,882 - 70,726 = 36,155 Btu

In Figure 2.3, the reversible adiabatic compression is represented by

the path l-2r. ,
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FIG. 2.3 TEMPERATURE-ENTROPY AND PRESSURE-VOLUME DIAGRAMS FOR

6.U3

IRREVERSIBLE ADIABATIC VAPOR COMPRESSOR
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The equivalent reversible adiabatic path 1-2' which represents the

same rotary shaft work input in this irreversible case ivas found by the

following procedures,

1. Choose several suitable intermediate pressures between 5.405

psia and 222.124 psia.
h. - h

2. Select a ratio of -r^ r— and keep it constant along the whole
i'

" ^1

path to find the enthalpy value h.,.

3. Find the corresponding properties of the refrigerant from the

Freon-12 table for given p. and h.i. . ^

4. Plot the pressure-volume diagram and apply Simpson's Rule to find

J f ::
1 .

5. Calculate the heat flow from 1 to 2' by the non-flow equation.

^in,l-2 2 1 j J

6. Repeat the procedures until by trial and error find a ratio that

gives W . , o. = K' - h, - Q. , r,, = 36.155 Btu. The ratio was found to
s,in,l-2 d, 1 in,l-ii

be 0.5251 in this case. '•

In Figure 2.3, area (a+b+c) represents the rotary shaft work input

(36.155 Btu) for this irreversible adiabatic vapor compressor. Area (a)

represents the rotary shaft work input (28.924 Btu) for the reversible case.

Area (b+c) represents the extra work input due to friction. Both two

parts are non-recoverable.

(bi-c) = (a+b+c) - (a) = 36.155 - 28.924 = 7.231 Btu

As compared xvith the reversible adiabatic vapor compressor, 25 per cent
«

extra work input is needed. T"
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Area (b) represents the irreversible isentropic friction factor and

area (c) represents the irreversible adiabatic friction factor, (See

Section 1.2) •

''"' "

The coefficient of performance (CO. P.) is,

:
' CO P - ^^ " ^^ - 70.727 - 41.242 ^^•°*^- - W . ,

<," 36.155 "-"^^^
s, in, 1-2

This is a 20 per cent decrease in the coefficient of performance.

2.3 Reversible adiabatic Freon-12 expansion engine

One pound of saturated liquid Freon-12 expands under reversible

adiabatic conditions from an initial temperature of 600 R to a final tempera-

ture of 400 R, The constant pressure line from 3 to 3', in which h^i = h^,,

was drawn on the temperature-entropy diagram (see Figure 2.4).

The properties of the refrigerant are summarized in the following table.

• t P1 h s X

State -•

'

F psia Btu/lb
m

Btu/lb
m

1 (sat.ivapj -59. 70 5.,405 70..727 0.17708 1

2 188. 17 222.,124 99..651 0.17708

3 (sat.,liq.) 140. 30 222,,124 41..242 0.08033

3' 103,84 222.,124 32..027 0.06485 «

4 -59. 70 5,,405 41..242 0.10337 0. 606

4' ^ -59. 70 5.,405 32,.027 0.08033 0. 483

In Figure 2.4, the area (a) under the constant pressure line from 3 to 3'

represents the rotary shaft work output for the engine, which is equal to,

W o .,.
= ho - h.. = h„ - h„, = 41,242 - 32.027 = 9.215 Btu

s, 0,3-4 3 4 3 3

*Compressed liquid.
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^
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^

FIO. 2.U TEMPERATUEE-ENTROPY AND PRESSURE-VOLUI-IE DIAGRAMS FOR REVERSIBLE

ADRBATIG FREON-12 EXPAl'JSION EKGINE
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The net rotary shaft work input for the refrigeration cycle with the

equipment of an expansion engine is the difference betxveen the rotary shaft

work input for the adiabatic reversible vapor compressor and the rotary

shaft work output for the expansion engine,

W • ^t = (h^ - h.) - (h^ - hJ =
s, in, net 2 1 J 4

= (99.651 - 70.727) - (41.242 - 32.027) = 19,709 Btu

This amount of rotary shaft work is represented by area (b). Area

(c+d) represents the refrigeration load.

0. . , = h, - h^, = 70.727 - 32,027 = 38.700 Btu
^in,4 -114

Area (d) represents the refrigeration load for the refrigeration cycle

with an expansion valve.

Area (c) represents the increase in refrigeration load.

The coefficient of performance is,

r n P - ^^"-^'-1 - ^Q'^QQ - 1 9636C.O.P. - ^p-; - 19.709" ^'^^'^^

s, in, net

... . "V ^ • 1.9636 - 1.0194 _ ^o ,n
An increase in coefficient of performance is

f7oT94
~ *°

per cent, ''

MULTI-STAGE VAPOR COMPRESSO.IS

2.4 Reversible adiabatic two-stage, vapor compressor with flash intercooler.

One pound of dry and saturated vapor Freon-12 is compressed under

reversible adiabatic conditions in the first stage compressor from an initial

temperature T, = 400 R to an intermediate pressure P2 ~ P3 ~ P6 ~ ^7 ~ ^^ psia.

The equipment diagram is shown in Figure 2,5. The superheated vapor flows into

a flash intercooler at a constant pressure pg, in which it becomes saturated.

The saturated vapor leaving the flash intercooler with 1,71215 pounds in mass
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is compressed under reversible adiabatic conditions in the second stage

compressor from p„ = 56 psia to a final pressure p. = 222.124 psia.

5
Condenser 0,

Expansion
Valve II

Compressor II

W .

s , in

Flash Intercooler

Expansion
Valve I

Compressor I

Evaporator 0-
' in ^^s.in

Figure 2.5 Equipment diagram for the dual compression,

dual expansion refrigeration cycle.

The properties of the refrigerant are summarized in the following table.

psia

5.405

State
F

1 (sat.vap.) -59.70

2 82.45 56

3 (sat.vap.) 44.61 56

4 151.02 222.124

5 (sat.liq.) 140.30 222.124

6 44.61 ,56

7 (sat.liq.) 44.61 56

8 -59.70 5.405

Btu/lb Btu/lb R
m m

70.727 0.17708

87.913 0.17708

81,099 0.16559

92.419 0.16559

41.242 0.00033

41.242 0.08497

18.301 0.03948

18.301 0.04602

0.361

0.300
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The mass in the second stage compressor was found by the energy

balance on the flash intercooler (see Figure 2.5).

Mjh2 + Mjj h^ = Mjh^ + Mjjhg

Mj(h2 - h^) = Mjj (hg - h^) -^^.

K, - ^^ " ^7
V, - B7.913 - 18.301 (,s _ , -.^,.

^'ll
- hT^nr '\ - 61.899 - 41.242

^^^ " ^'^^^^^
o 6 ; '

The intermediate pressure vias found by trial and error on the basis of

the best coefficient of performance, which is,

M,(h- - h )

^•"•^; ~ MjChg - hj) + Mjj(h^ - hg)

70 . 727 - 13.301
~ (87.913 - 70.727) + 1.71215 (92.419 - 81.099)

= 1.4894

In Figure 2.6, area (a) represents the rotary shaft work input for the

first stage compressor,

W . T = K^K - h,) = 1 (87.913 - 70.727) = 17.186 Btu
s,in,I -12 1

Area (b) represents the rotary shaft work input for the second state

compressor,

W . „ = VlyAh. - h„) = 1.71215 (92,419 - 81,899) = 18,012 Btu
s,in,II II 4 3

The total rotary shaft ivork input equals 35,198 Btu,

2.5 Comparison of reversible adiabatic two-stage and single-stage vapor

compressors

In this case, one pound of refrigerant in the reversible adiabatic

single-stage vapor compressor in which the refrigeration load Q. = 29.485 Btu

(see Section 2.1) is compared with the reversible adiabatic two-stage vapor

compressor that has the best coefficient of performance (1.4894) as found in
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FIG. 2.6 TaiPERATURE-ElTTROPY MD PRESSURE-VOLmffi DIAGRAMS FOR REVERSIBLE

ADIABATIC Tv-JO-STAGE VAPOR COMPRESSOR
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the previous case and the same refrigeration load as the single-stage

compressor.

Since the ratio of M-, and Mj was found to be 1.71215 in Section 2.4,

the mass of the refrigerant in each stage of the two-stage compressor may

be calculated in the following manner.

'5in
= V^l- V .-

or

""t - u iT" - -rrs nn-r ,q oat " 0.56242 lb
I h. - ho 70,727 - 18.301

Mjj = 1.71215 Mj = 1,71215 (0.56242) = 0,96294 lb

In Figure 2.7, area (a+b+c+d) represents the rotary shaft work input for

the single-stage vapor compressor, which equals 28.924 Btu (see Section 2.1).

Area (c) represents the rotary shaft work input for the first stage

compressor of the two-stage vapor compressor.

^^s,in.l2 - ^2~ h^^^2
' ^l2^ ^ 0.56242 (87.913 - 70.727) = 9.666 Btu

Area (d) represents the rotary shaft work input for the second stage

compressor.

^^s, in, 32-42 = MjjdMp " *^3 ^ = 0.96242 (92.419 - 81.899) = 10,130 Btu

The total rotary shaft work input for the two-stage vapor compressor

equals 19,796 Btu.

Area (a+b) represents the saving in rotary shaft work input, which is

(a+b) = (a+b+c+d) - (c+d) = 28.924 - 19.796 = 9.128 Btu

9 1 98
Saving =

^^ q^. = 0,3156 or 31.56 per cent

The coefficient of performance for the single-stage vapor compressor is

1.0194, while the two-stage vapor compressor is 1,4894, A 46,11 per cent

increase in coefficient of performance is obtained.
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APPENDIX

A. Polytropic exponent for the irreversible adiabatic expansion of a

perfect gas (Section 1.2),

dO = du + dW

Differentiating the ideal gas law results in

dT = (pdv + vdp)/R (3)

Substituting the values for c and dT from relations (2) and (3) in^ V

(1) gives

= r—r ^P'^v + vdp) + e^ pdv <

P I ^ J V ;•<».,
Let n = 1 + e (k-1); pv = a const. - '

.

B. Polytropic exponent for the irreversible adiabatic compression of a

perfect gas (Section 1.4).

dO = du + dW .

•

0= c dT + ^ £dv
(4)

v e J .
'

\ k-1 J ^^\
.

.

dT = (pdv + vdp)/R (3) *

Substituting the; values for c and dT from relations (2) and (3) in

(4) gives -

= :
—7- (pdv + vdp) + — pdv

c

0= djD^L ^ l_(^_^^dv
P I e^

J
V

1 n
Let n = 1 + — *(k-l); pv = a const.
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C, Friction factors for the irreversible adiabatic gas compression of

Section (1.4).

1. Irreversible isentropic friction factor.

This is represented by area (b) in Figure 1.4.

Consider that the path 1-2 (Figure 1.4) represents the process for a

reversible diabatic compression (Section 1.4).

^K ,•« y^,r 1 o = 110.703 Btu area (a+b)
s , in, rev, l-<i

Now consider the case of an irreversible isentropic compression in

which the path l-2r of Figure 1.4 is followed, and where the rotary shaft

work input is equal to the rotary shaft input for the reversible diabatic

path 1-2; i.e.,

,. "s.in,irrev, l-2r=
^l«-^°3Btu area (a+b)

From the steady flow equation

. , ^ = W . . , „ - (h„ - h,)
o,irrev, l-2r s,in,irrev,l-2r 2r 1

From Section 1.4

h„^ - h,- = W^ . , o = 111.647 Btu area (a)
2r 1 s,in,rev,l-2r

Q« ,->.,.^„ 1 Or.
= 110.703 - 111.647 = 7.056 Btu area (b)

, irrev, i-idr r.

W
s,in,irrev,l-2r

J

From Section 1.4

J J irrev.isen
1

2r

^= ''K in r-^v 1 9V.
= 111.647 Btu area (a)

J s , in,rev, l-iir

1

•*•
^J^ irrev. isen = ^^^''^^^ " "^'^^"^ = '^•056 Btu

o,irrev,l-2r area (b)
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If the isentropic process l-2r is reversible the \\fork input equals

111.647 Btu (represented by area (a) ), and no heat is rejected. When the

isentropic process l-2r is irreversible, and the work input equals that

required for the reversible diabatic process 1-2, an additional amount of

rotary shaft work input (7.056) is required to overcome friction. This

additional amount of work input must be rejected as heat in order that

the process by one of constant entropy.

However, in the actual irreversible adiabgtic compression no heat is

rejected, and it is for this reason that the actual path is 1-2. Thus, it

is the above extra work input of 7.056 Btu, required to overcome friction

in the irreversible isentropic case, that causes the path to be shifted

from l-2r to 1-2. The term (F/J). ^„„ . ^„ (7.056 Btu in this Section)

for the irreversible isentropic compression is called the "irreversible

isentropic friction factor,"

2. Irreversible adiabatic friction factor.

This is represented by area (c) in Figure 1.4.

When the process 1-2 of Figure 1.4 is reversible and diabatic, the

"
'"• '»- '

work inout. W . , r, = 118,703 Btu, and, from Section 1.4, the heat
'^

s, in,rev, l-ii

input, Q. , ^ = h„ - h, - W . , o
= 138,487 - 118.703 = 19.784 Btu<

l^ • ^in, rev, 1-2 2 1 s, in, rev, 1-2

In the irreversible adiabatic process 1-2, there is no heat influx, and

the work input is increased by 19.784 Btu to W^
in,irrev,l-2

~ 138,487 Btu,

The extra work input in this case is that necessary to overcome the fric-

tion. (F/J). J- u = 19,784 Btu, represented by area (c) of Section 1.4.
• ' irrev,adiab ' ^

It is this term (F/J). ,. , for the irreversible adiabatic compression
irrev.auiab

that is called the "irreversible adiabatic friction factor."
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Summarizing: . .
.- .

s,in,irrev,l-2 ~
s ,in,rev,l-2r irrev.isen irrev, adiab

138.487 = 111.647 + 7.056 + 19.784

area (a+b+c) = area (a) + area (b) + area (c)

where (F/J). . + (F/J). .. , is. the double penalty for in-
' irrev.isen irrev, adiab *^ ^

efficient adiabatic compressor design.

D. Polytropic exponent for the reversible or irreversible diabatic

compression of a perfect gas (Section 1,7)

dO = du + dW

dQ= c dT+' i- ^ (5)
V e J

c

dO = ^^ i (6)

'c =1^1 (2)
V k-1 J

dT = (pdv + vdp)/R (3)

Substituting the values for dO, c . and dT from relations (6), (2), and

(3) in (5) gives

= j^ (pdv + vdp) -^ (^ - ^) Pdvj = ^ + [l f i^(k-l)(l-i)]d̂v

Let n = 1 + — (k-1) (1 ); pv" = a const.

^c 9

E, Friction factors for the irreversible diabatic gas compression of

Section 1.8,

1, Irreversible diabatic friction factor.

This is represented by area (b) in Figure 1.9.

Consider the path 1l-2 represents the process for a reversible adiabatic

compression (Section 1.8).
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W . , ^ = 111.647 Btu area (a+b)
s. in, rev, 1-2

Now consider the case of an irreversible diabatic compression in

which the path 1-2" is followed, and where the rotary shaft work input

is equal to the rotary shaft work input for the reversible adiabatic

path 1-2; i.e.,

W . . , o" = 111.647 Btu ^ area (a+b)
s,in,irrev,l-2

o,irrev,l-2 s,in,irrev,l-2 2 1

From Section 1.8

V ^'l
^ ^, in, rev, 1-2" " *^o.rev,l-2"

^o,irrev,l-2"
~

''''s,in,irrev.l-2" " ^"s, in. rev, 1-2" "
"^o. rev, 1-2"^

= 111.647 - (104.189 - 19.937)

= 27.395 Btu area (b+c)

Since Q r>ti was assumed to be 19,937 Btu (area (c)), the addi-

tional heat that must be rejected in this irreversible case is represented

by area (b).

M. • /2"

s,in,irrev,l-2

From Section 1.8

/2"

vdp/J + (F/J). .. .

^ irrev.diab

vdp/J = W . , o" = 104,189 Btu area (a)
^ s, in, rev, 1-2

.*. (F/J). ... = 111.647 - 104.189 = 7.458 Btu area (b)
irrev, diab

If the diabatic process 1-2" is reversible, the work input is represented

by area (a), the heat efflux is 19.937 Btu. Wien the diabatic process 1-2"

is irreversible, and the work input equals that required for the reversible
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adiabatic process 1-2, an additional amount of rotary shaft work input

(represented by area (b)) is required to overcome friction. This additional

amount of work must be rejected as heat in order to keep the diabatic com-

pression process. '
.

However, in the actual irreversible diabatic isentropic compression

the heat efflux is 19.937 Btu, and it is for this reason that the actual

path is 1-2. Thus, it is the above extra work input (b), required to over-

come friction in the irreversible diabatic isentropic case, that causes the

path to be shifted from 1-2" to 1-2. The term ^f/J^irrev diab
^"^'^^ ^^" ^"

this Section) for the irreversible diabatic compression is called the "Irre-

versible diabatic friction factor."

2. Irreversible diabatic isentropic friction factor

This is represented by area (c) in Figure 1.9.

When the process 1-2 is reversible and adiabatic, the work input,

W . , o = 111.647 Btu, and, from Section 1.8, there is no heat flow,
s, in, rev, i-d,

In the irreversible diabatic isentropic process 1-2, there is heat

efflux (represented by area (c)), and the work input increased by 19.937 Btu

to W . . , o = 131.584 Btu. The extra work input in this case is that
s,in,irrev,l-2 ,

'^

'.
'

-1*

necessary to overcome the friction ,(F/J). j- u • = 19.937 Btu, repre-' irrev.diab.isen ^

sented by area (c) of Section 1.8. It is this term (F/J). ... . ^ for
•' irrev,diab,isen

the irreversible diabatic isentropic compression that is called the "irrever-

sible diabatic isentropic friction factor." -

Summarizing:

W . . = w . , n» * (F/J). ^. u + (F/J). J. u •

s,xn,irrev,l-2 s,in,rev,l-2 irrev.diab irrev,diab,isen

131.584 = 104.189 + 7.458 + 19.937

area (a+b+c) = area (a) + area (b) + ' area (c)
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where (F/J).^^^„ .• ^ + ^f/J^,-v.^^„ .i,-aK ;c«„ is the double penalty for
irrev.aiab irrev.aiab.isen '^ ^

inefficient diabatic compressor design.

F, The intermediate pressure p. for the reversible adiabatic two-stage

reheat gas turbine (Section 1.10).

s,o s.ol s.oll

k
7 T.

[
, - (%

k-1 J 1
I Pi

(k-l)/k N

k-1 J 3

(k-l)/ks

1 -(^)

Since T„ = T , the equation may be simplified as follows,
"^ ^

„ (k-l)/k _ (k-l)/k^

s,o k-1 J 1
2 - (^)

Pi
- (^)

Differentiating with' respect to p. and equating to zero.

dW
rk-1.

s^_ n- ^kJ_^Pr^^ ,k-K , (k-l)/k, , (l-2k)/k.

d^^- - °
(¥T)7k " ^—^ ^P4

^ ^Pi ^
^1 D

solving for p. gives

Pi =ypi P4

G. The increase in rotary shaft work for the reversible adiabatic two-

stage reheat gas turbine (Section 1.10),

(b) = (a+b) - (a) J ,

= 2c (T, - T„) - c (T, - T^)
p 1 2 p 1 5

T T
= 2c^ T ( 1 - ;^) - c^ T. ( 1- =^ )pi T p 1 T

f
pi (k-i)/k> ^ '

1 - (—

)

Pi
= 2c T,

P 1 ^P^l

P5
1 - (—

)

Pi

= C T,
P 1

Po
1 - 2 (—

)

(k-l)/k (k-D/kv,
P'i

(k-l)/k.

(7)
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From

Pi=/v7;F7=^

Pi P4 Pi P4

Pi Pi Pi Pi

Pi Pi

Since p2 = Pj and p^ = p^,

Po Pc ^

Pi Pi

(8)

Substituting the value for P2/P1 from relation (8) in (7) gives

(k-l)/2k „ (k-l)/k .

P5,
(b) = c T,

P 1
1 - 2(-^)

Pi
+ (~)

Pi

H. The intermediate pressure p. for the reversible adiabatic two-stage

gas compressor (Section 1.12).

s.in s.in.I s.in.II

• k R

k-1 J 1

(k-l)/k ^

(% -1

Pi

_k_ R
T,

k-1 J 3 Pi

(k-D/k

-1

Since To = T , the equation may be simplified as follows.

(k-l)/k „ (k-l)/k

w = Jl. 2. T
"s.in k-1 J 1 Pi Pi

- 2

Differentiating with respect to p. and equating to zero.

s

'^p^ ' "

(k-i)/k - ^T^ 'P4

Solving for p. gives / \

dW . k-1 , -1/k.1^ = =ir ^Pi ^ .k-K . (k-l)/k. , (l-2k)/k.
Pi (k-i)/k - ^T-^ ^P4 ^ ^Pi ^

p.

Pi=/Pl P4
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I. The saving in rotary shaft work input for the reversible adiabatic

two-stage gas compressor (Section 1.12).

(b) = (a+b+c) - (a+c) = Cp (Tg - T^) - 2Cp (Tg - T^)

T T
= C T, C;;:^ - 1) - 2c T, i;^ - 1)

P 1 Tj

f p^ (k-l)/k
= c T, (—) -1

P U Pi

(k-l)/k

-2^1
P2
{—

)

Pi

(k-l)/k

-1

= c T-
P 1

(k-l)/k

Pi

- 2 (—

)

+ 1

-^= (^) (See part G)

(b) = c T
P 1

(-^)

Pi

(k-l)/k
P5

- 2(—

)

Pi

(k-l)/2k

+ 1

The percentage of saving is
^ ^ (k-l)/k (k-l)/2k

P 1

(—

)

Pi

= 1 -

r T f P^

I Pi
.

fp^ (k-l)/2k
2(—

)

-1

Vl

-2 (—

)

Pi

(k-l)/k

-1

p^ (k-l)/k
(-^) -1

+ 1
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In order to encourage the increased use of the temperature-entropy

diagram in its relation to refrigeration cycles, the flow of rotary shaft

work for several cases is investigated and this work is represented by

areas on the temperature-entropy and pressure-volume planes. The con-

ditions studied include : (1) reversible and irreversible, adiabatic

and diabatic, and single-stage and two-stage processes in gas turbines

and compressors, (2) reversible and irreversible adiabatic, single-stage,

vapor compression, (3) single-stage, reversible, adiabatic vapor expansion,

and (4) reversible, two-stage, vapor compression.

Numerical analyses of all cases investigated have been made, and the

results of these analyses are represented, accurately and to scale, by

areas on the temperature-entropy and pressure-volume planes. Comparisons

of these areas describe, pictorially, the penalties in rotary shaft work

that are the consequence of irreversible processes, and tne advantage of

two-stage operation over single-stage action.
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