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Abstract 

Suspended sediment concentration (SSC) in water is one of the most important 

parameters to evaluate water quality. Monitoring SSC provides important information on 

determining sediment transport for soil erosion research and soil/water conservation practices. 

Sediment mass transported at a given time can be assessed by simultaneous SSC and water flow 

velocity measurements. Fouling, including bio-fouling, has damaging impact on optical SSC 

measurements over the long term. In this study, an inexpensive, real-time, self-cleaning, optical 

sediment and flow velocity sensor was developed.  

Laboratory experiments were conducted on a previously designed SSC sensor. A light 

modulation algorithm was designed to reduce the influence of ambient light, especially sunlight, 

on measurement accuracy. Statistical models to predict SSC based on measured light intensities 

were established and compared with neural network models. The statistical analysis showed that 

soil texture played an important role in SSC measurement accuracy while the designed sensor 

was capable of reducing the effect of water color on sensor performance. Neural-network models 

can further remove the influence of soil texture type on SSC measurement. The sensor design 

was simplified based on a stepwise selection analysis.  

Long-term field experiments were conducted in Kansas and Georgia to evaluate the 

sensor performance, the effect of fouling, including bio-fouling, on sensor lenses, and the effect 

of temperature on the measurement. Methods of removing the fouling effect through data 

correction were developed. Results indicated that the designed optical SSC sensor was capable of 

providing rapid response to SSC fluctuations in water flow. Temperature of the water body has 

an insignificant impact on SSC measurement. 

In order to reduce fouling, an air-blast cleaning mechanism was integrated into the optical 

sediment sensor. Laboratory experiments in a manually created fouling environment were 

conducted to observe the fouling process on sensor cases made of different materials, and to 

verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that air-blast 

cleaning mechanism was capable of reducing clay/silt fouling on sensor signals. The duration 

and frequency of air-blast cleaning can be determined and adjusted depending on actual field 

conditions. An air pressure drop test was conducted on the hose carrying pressurized air. Results 

showed negligible pressure drop.   

 



A flow velocity measurement function based on the cross-correlation principle was 

integrated into the optical sediment sensor. An experiment was conducted in laboratory to 

examine the sensor performance on velocity measurement using a closed circulation system. A 

solution of blue colorant, Brilliant Blue FCF, was used as an artificial source to absorb light 

emitted by LEDs in the sensor and the signal variation patterns were measured. The results 

indicated that the cross-correlation-based velocity sensor was capable of measuring water flow 

velocity within in a certain velocity range using the dye injection method.  
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Abstract 

Suspended sediment concentration (SSC) in water is one of the most important 

parameters to evaluate water quality. Monitoring SSC provides important information on 

determining sediment transport for soil erosion research and soil/water conservation practices. 

Sediment mass transported at a given time can be assessed by simultaneous SSC and water flow 

velocity measurements. Fouling, including bio-fouling, has damaging impact on optical SSC 

measurements over the long term. In this study, an inexpensive, real-time, self-cleaning, optical 

sediment and flow velocity sensor was developed.  

Laboratory experiments were conducted on a previously designed SSC sensor. A light 

modulation algorithm was designed to reduce the influence of ambient light, especially sunlight, 

on measurement accuracy. Statistical models to predict SSC based on measured light intensities 

were established and compared with neural network models. The statistical analysis showed that 

soil texture played an important role in SSC measurement accuracy while the designed sensor 

was capable of reducing the effect of water color on sensor performance. Neural-network models 

can further remove the influence of soil texture type on SSC measurement. The sensor design 

was simplified based on a stepwise selection analysis.  

Long-term field experiments were conducted in Kansas and Georgia to evaluate the 

sensor performance, the effect of fouling, including bio-fouling, on sensor lenses, and the effect 

of temperature on the measurement. Methods of removing the fouling effect through data 

correction were developed. Results indicated that the designed optical SSC sensor was capable of 

providing rapid response to SSC fluctuations in water flow. Temperature of the water body has 

an insignificant impact on SSC measurement. 

In order to reduce fouling, an air-blast cleaning mechanism was integrated into the optical 

sediment sensor. Laboratory experiments in a manually created fouling environment were 

conducted to observe the fouling process on sensor cases made of different materials, and to 

verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that air-blast 

cleaning mechanism was capable of reducing clay/silt fouling on sensor signals. The duration 

and frequency of air-blast cleaning can be determined and adjusted depending on actual field 

conditions. An air pressure drop test was conducted on the hose carrying pressurized air. Results 

showed negligible pressure drop.   

 



A flow velocity measurement function based on the cross-correlation principle was 

integrated into the optical sediment sensor. An experiment was conducted in laboratory to 

examine the sensor performance on velocity measurement using a closed circulation system. A 

solution of blue colorant, Brilliant Blue FCF, was used as an artificial source to absorb light 

emitted by LEDs in the sensor and the signal variation patterns were measured. The results 

indicated that the cross-correlation-based velocity sensor was capable of measuring water flow 

velocity within in a certain velocity range using the dye injection method.  
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CHAPTER 1 - INTRODUCTION 

1.1 General Background 

1.1.1 Suspended sediment and its impacts 

Sediment is identified by the U.S. Environmental Protection Agency (EPA) as an 

important non-point source (NPS) pollutant (EPA, 2008) and the single most widespread 

pollutant affecting the beneficial uses of the Nation’s rivers and streams (EPA, 1998). Sediment 

in natural watercourses commonly has two forms: suspended sediment and benthic sediment. In 

national water quality assessment glossary (USGS, 2009), suspended sediment refers to very fine 

soil particles that remain in suspension in water for a considerable period of time without contact 

with the bottom, in contrast to benthic sediment that moves downstream by rolling or sliding 

along the streambed.  

Suspended sediment concentration (SSC) is defined as the ratio of the mass of dry 

sediment in a water-sediment mixture to the mass of the water-sediment mixture, which is 

expressed in milligrams of dry sediment per liter of water-sediment mixture (mg/L) (USGS, 

2009).  

When sediments stay in suspension, it has adverse impacts on aquatic ecosystems. 

Aquatic biota responds to both the concentration of suspended sediments and duration of 

exposure to excessive suspended sediment, much as they do for other environmental 

contaminants (Newcombe and MacDonald, 1991). Excessive sedimentation is considered the 

most important factor limiting fish habitat due to the fact that the increased light attenuation 

caused by sedimentation shortens the depth of the photic zone, and alters the vertical 

stratification of heat in the water column (Moore, 1978). Sedimentation has been linked to the 

increasing level of imperilment in the diverse fish fauna of the southeastern United States 

(Burkhead and Jelks, 2001), and one of the significant contributors to declines in populations of 

North American aquatic organisms (Henley et al., 2000).  

Suspended sediment is also a potential source of contamination when it carries toxic 

chemicals during its transportation from industrial waste and sewage discharge, storm water 

runoff from city streets and farms, and natural sources. Contaminated sediment poses not only 
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ecological but also human health risks. EPA (1998) estimates that 10 percent of the nation's lakes, 

rivers, and bays have sediment contaminated with toxic chemicals that fish and bottom-dwelling 

organisms can accumulate and pass to the food chain. In addition, billions of dollars of economic 

activity are potentially affected by contaminated sediment, because of the loss of recreational and 

commercial use of contaminated water bodies and the increased cost of disposing of 

contaminated material (EPA, 1998).  

1.1.2 Suspended sediment monitoring 

Monitoring SSC is essential for assessing water quality and evaluating the extent of 

potential adverse impacts. Determining the amount of sediment being transported by rivers is 

also fundamental to determine the environmental impact on reservoirs and to estimate their life 

span (Cochrane et al., 2004). Water and waste treatment processes demand measurement of 

suspended sediments as one of the critical parameters for monitoring various treatment stages 

(Murren, 1993). Military activities may cause extensive soil erosion and reduced water quality 

especially when heavy military training vehicles pass unpaved roads and stream crossings. Many 

programs of Department of Defense’s (DoD), including the Strategic Environmental Research 

and Development Program (SERDP), and the Environmental Security Technology Certification 

Program (ESTCP), have been working with various organizations to assess the impact of this 

pollution on surface water quality and to reduce soil erosion due to military activities by 

monitoring suspended sediment level in a long term (SERDP, 2009; ESTCP, 2009). In addition, 

accurate SSC monitoring helps to develop total maximum daily load (TMDL) for impaired 

waters, and to employ best management practices (BMPs) under section 303(d) of the Clean 

Water Act law (EPA, 2009).  

Optical measurement is relatively simple and inexpensive. In-situ optical devices that 

measure transmitted or backscattered light caused by suspended sediment have been studied by 

many researchers and showed remarkable ability to record rapid temporal fluctuations in SSC 

(Maa, 1988; Daraigan et al., 2005; 2006; Bunt et al., 1999).  

1.1.3 Fouling effect  

Fouling is the accumulation of undesirable living or un-living material on a solid surface 

in an aquatic environment (EBSCO, 2009). Particularly, biofouling refers to the fouling that is 
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caused by the accumulation of bacteria, plants, algae, or animals on submerged surfaces (CTI, 

2009). Fouling is often used interchangeably with biofouling.  

Immersed surfaces without anti-fouling protection absorb inorganic material and 

macromolecules right after they are submerged in water (Delort et al., 2000). The colonization of 

bacterial and microbial then quickly occurs on these surfaces, resulting in a microfouling slime 

layer (a sticky coating). When the thickness of this layer is sufficient, it provides a food source to 

larger organisms, such as barnacles, mussels, polychaetes, and various species of bryozoans and 

hydroids, which results in a macrofouling - the development of the communities of larger and 

complex organisms (Delort et al., 2000; CTI, 2009).  

Various factors have a significant impact on the degree of fouling, such as season, 

sunlight, temperature, flow rates, salinity and water depth. Winter months, less sunlight, colder 

temperature, higher and variable flow rate, a swing to extremely low or high salinity, and deeper 

waters generally lead to reduced fouling (CTI, 2009).. 

Many researchers have reported the extremely damaging impact of fouling on submerged 

optical instruments (Lillycrop and Howell, 1996; Sherwood et al., 1989). It is one of the most 

prevalent hindrances in obtaining continuous, in situ, optical SSC measurements of long term, 

because the buildup of residue on the optical lens causes the degradation of measurement 

accuracy over time. In order to obtain long term, meaningful SSC measurement, a cleaning 

mechanism has to be considered in optical SSC sensor design. 

1.1.4 Flow velocity measurement 

Great interest has existed in the determination of sediment load to lakes, reservoirs, and 

rivers for resource mangers. Measurements of sediment transport can also provide information 

on soil loss rate due to erosion in a certain watershed (Walling, 1994). Flow velocity 

measurement is usually conducted with SSC measurement using separate sensors to assess 

sediment mass transport at a given time and depth so that the net sediment transport rate can be 

determined by calculating the time average of the product of the two measurements (Huntley and 

Hanes, 1987; Burkhead and Jelks, 2001). However, flow velocity and sediment concentration 

measurements that were conducted by different sensors could result in time mismatch between 

the measurements and high cost for equipment. An integrated sensor that can measure SSC and 

water flow velocity simultaneously is highly desirable. 
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1.2 Research Objectives 
The overall mission of this research is to design a real-time, inexpensive, optical SSC 

sensor integrated with flow-velocity and self-cleaning mechanisms. The specific objectives of 

this proposed research are:  

1) to further study and modify a real-time, optical SSC sensor based on a spectrum analysis 

conducted by a former student in the Instrumentation and Control Laboratory at Kansas 

State University;  

2) to evaluate the sensor performance during long term SSC monitoring in field, including 

the sensor waterproof package, the signal stability, and effects of fouling on the sensor; 

3) to design a lens cleaning mechanism for the optical sensor to reduce fouling effect; 

4) to develop a stream flow-velocity mechanism and integrate it into the SSC sensor. 
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CHAPTER 2 - DESIGN OF A REAL-TIME, OPTICAL 

SEDIMENT CONCENTRATION SENSOR  

Abstract. SSC in water is one of the most important parameters to evaluate the water quality. In 

this study, an optical sensor was developed to measure SSC in streams on a real-time basis. 

Three light emitting diodes (LED), emitting lights of different colors (blue-green, infrared, 

orange), were used as the light sources, and nine phototransistors were used to detect 

backscattered, scattered and transmitted lights at 45º, 90º and 180º angles for the LEDs. A light 

modulation algorithm was designed to remove the influence of ambient light, especially the 

sunlight, on measurement accuracy. Models to predict SSC based on measured light signals were 

established and compared in statistics and neural network. A statistical analysis showed that soil 

texture played an important role in SSC prediction while the designed sensor was capable of 

reducing the effect of water color on sensor performance. An R-square value of higher than 0.99 

for the prediction model was achieved for individual soil type and the R-square value was 

reduced to 0.8845 when all soil types were combined. Neural-network models derived for the 

training and two validation data sets achieved R-square values of 0.9961, 0.9670, and 0.9476, 

respectively. The sensor design was simplified based on a statistical stepwise selection procedure.  

Keywords. Suspended-sediment, concentration, prediction model, water quality. 

2.1 Literature Review 

2.1.1 Traditional method for SSC measurement 

Various methods have been used to measure suspended sediments (Wren et al., 2000). 

The traditional method to determine SSC involves both field collection using bottles or 

automatic samplers, and laboratory procedures involving filtering, drying and weighting. Water 

samples should be taken back to the laboratory for filtration within 24 hours. Most other 

techniques are calibrated against the traditional sampling method. However, the traditional 

filtration method is time consuming and labor intensive. Although automatic samplers mitigate 

labor consumption to some extent, field personnel still need to replace sampling bottles inside 

samplers during rainy days due to the limited storage space within the samplers. Manual or 
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automatic sampling lacks the temporal resolution required to capture rapid and intermittent 

flushes of suspended sediment during storm events (Cochrane et al., 2004). The peak sediments 

concentrations which are responsible for carrying the vast majority of the total sediment load are 

usually missed with the traditional method (Burkhead and Jelks, 2001).  

2.1.2 Acoustic measurement 

Many researchers studied acoustic measurement for SSC (Hay and Sheng, 1992; Thorne 

and Hanes, 2002; Gartner, 2004). In acoustic techniques, high frequency sound (1-5 MHz) 

generated by a transducer is directed to the measurement volume (Wren and Kuhnle, 2002). The 

backscattered portion of the sound is directed back to the transducer. The strength of acoustic 

backscattered signals can be used to determine SSC with a pre-calibrated relationship between 

SSC in water and output signals provided by the acoustic instrument.  

Acoustic measurement is non-intrusive to the water flow. It can conduct SSC 

measurement in a vertical range on the order of several meters (Wren et al., 2000). However, 

Acoustic measurement has its disadvantages. Acoustic signal tends to attenuate at high particle 

concentrations (Wren et al., 2000). Acoustic signal is also susceptible to absorption by biological 

materials. Acoustic devices usually have flow depth limitation so that they can’t be used for SSC 

measurement in shallow rivers (Meral, 2008). 

2.1.3 Remote sensing 

Remote sensing techniques were used to measure SSC remotely through the infrared 

radiation reflected from a water body based on the relationship between the amount of radiation 

and SSC values (Li et al., 2003; Doxaran et al., 2003; Ruhl et al., 2001; Nilsson et al., 1996). 

Generally, the spectrometer that measures the reflected radiation is located on an air plane or 

satellite. Remote sensing method is able to measure broad areas. However, the resolution is low. 

With higher sediment concentrations in water body, the measuring depth is limited to the top 

meters of the water column (Wren et al., 2000).  

2.1.4 Laser diffraction 

The term laser diffraction is from light scattering physics. When angular scattering from a 

particle is examined in small forward angles, it appears identical to the diffraction pattern from 

an aperture with the same diameter. This property made it possible to consider particles as same-
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sized apertures. For this reason, the method was called laser diffraction. A laser diffraction 

sensor uses a laser beam as the light source. The diffracted laser lights caused by particles with 

different size are detected by a series of ring-shaped detectors with a graduate increasing 

diameter (Wren et al., 2000). Thus, the diffraction angle of the laser beam, which is related to 

different particle sizes, is determined. The SSC is determined by summarizing the volume of the 

sediment at each particle size class if the particle density is known (Gray et al., 2009). 

Current practice using laser diffraction technique to measure SSC is dominated by the 

Laser In-Situ Scattering and Transmissometry (LISST) series instruments made by Sequoia 

Scientific, Inc. of Bellevue, Washington. Agrawal and Pottsmith (2000; 2003) introduced two 

LISST series laser diffraction sensors that measure concentration and size distribution of 

suspended sediment. The LISST sensors measure the diffraction of a laser around the suspended 

particles, and infer the particle size distribution of the suspended sediment being measured based 

on the diffraction signal.  

In situ laser sensors were tested in various watersheds as an alternative method for 

measuring the suspended sediment distribution and transport (Melis et al., 2002; Wei et al., 

2007). A disadvantage of the LISST instrument is its large size, which causes a significant flow 

obstruction.  

2.1.5 Digital image analysis 

The rapid improvements in computer and imaging technology provide the possibility to 

use video and image analysis for SSC measurement. In this technique, a video camera records 

the water-sediment mixture on a real time basis. A computer-controlled analysis system is used 

to analyze SSC and the size distribution. The measurement accuracy is based on the resolution of 

the video system and the image processing method (Wren et al., 2000). The disadvantage of this 

SSC measurement is the large size of the housing of the equipment, which may cause flow 

disturbance when submerged in water. In addition, fouling on the glass wall of the housing, 

which the video device is faced, may reduce the measurement accuracy.  

2.1.6 Capacitance sensors 

Capacitance sensors have been used widely to measure water content in soils. Since 

sediment-water mixture also has solid and liquid phases, different partitions of sediment and 

water in the mixture can be determined by measuring the dielectric constant of the mixture. Li et 
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al. (2005) investigated a method to measuring SSC with two types of capacitance sensors, a 

parallel plate type and a cylindrical type. In their study, the relationships between the sediment 

concentration in flowing water and the output capacitance of capacitance sensor were established. 

Results showed that suspended sediment concentrations were linearly correlated with the outputs 

of capacitance sensors over a wide range. The capacitance sensor measurement is subject to 

temperature changes. 

2.1.7 Optical measurement 

Optical measurement has been proved to be a reliable method to measure SSC. Usually, it 

measures backscatter, scatter, or transmission of visible or infrared light through the water 

sediment samples.  

Turbidity is often used as a surrogate measurement to estimate SSC in water after 

determining the correlation between turbidity and SSC (Gao et al., 2008; Sadar, 2002). However, 

this correlation can be inconsistent with large variability caused by constituents in water other 

than suspended sediment, such as finely divided inorganic and organic matters, soluble, colored 

organic compounds, and plankton and other microscopic organisms (EPA, 1999; APHA et al., 

1998). Turbidity is an optical property, not a true measure of SSC (Riley, 1998; Davies-Colley 

and Smith, 2001). In addition, the establishment of suspended sediment/turbidity relationship is 

time-consuming (Sadar and Engelhardt, 1993), and this relationship is not explicitly transferable 

between different watersheds (Marquis, 2005).  

Optical backscatterance (OBS) sediment sensors have been used by many researchers in 

sediment load and transport measurement (e.g. McKee et al., 2006; Kineke and Sternberg, 1992; 

Sherwood et al., 1989). OBS sensors measure light backscattered from soil particles in water and 

respond linearly to a wide range of SSC. Although OBS sensors tend to reach saturation at high 

sediment concentrations, the saturation problem can be overcome by careful adjustment of the 

instrument’s gain (Kineke and Sternberg, 1992). 

Transmitting light techniques are attractive in small sediment concentration ranges, 

although they cannot be used for relatively high suspended sediment concentrations due to the 

extreme light attenuation. SSC measurements have been successfully conducted using this 

method by many researchers (Gregory and Nelson, 1986; Maa, 1988; Daraigan et al., 2006). 
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Buttmann (2001) reported that scattered light is the most suitable parameter to measure 

sediment concentration since 90° scatterance is more constant over all particle sizes comparing 

with backscatterance and transmittance. Scatter light measurements were used by many 

researchers (Daraigan et al., 2005; 2006; Goldberg et al., 1987).  

As a part of a research project supported by SERDP (Strategic Environmental Research 

and Development Program), “Assessing the impact of maneuver training on NPS pollution and 

water quality” (CP-1339), an optical sediment sensor was developed to measure pure sediment 

concentration in the Instrumentation and Control Laboratory at Kansas State University (Stoll, 

2004). The sediment sensor was designed to be insensitive to non-soil, suspended and dissolved 

objects, such as algae, organic matter, various microorganisms, and soil properties, such as 

texture and color, so that the measurement reflects only soil sediment concentration. In order to 

reduce the influence of water type and soil texture on sediment measurement accuracy, the 

sensor used light sources of different wavelengths in the visible and infrared wavebands and light 

detectors arranged at different angles from the light sources (Stoll, 2004).  

2.1.8 Objective 

In order to examine the effects of water and soil on the measurement accuracy, the SSC 

sensor designed by Stoll (2004) was further studied and tested in this research. A simpler sensor 

design was achieved based on an statistics analysis. An algorithm was also developed to reduce 

the influence of ambient light on the measurement. An outdoor experiment was conducted to 

verify the effectiveness of the light modulation algorithm. 

2.2 Methodology 

2.2.1 Sensor design 

The original design of the sensor was developed by Stoll (2004). Its “three-ring” design 

was based on two assumptions: 1) Sediment measurement errors caused by difference in water 

color may be reduced by using multiple light sources at different “feature wavelengths”; 2) 

Sediment measurement errors caused by difference in soil texture may be reduced by using light 

detectors placed at multiple angles from the light source.  
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Figure 2.1 3-D view of the sediment sensor illustrating locations of light emitters and 

detectors (Stoll, 2004). 

Based on an analysis of the spectral characteristics of three types of waters – distilled 

water, lake water, and stream water, Stoll (2004) selected three “feature wavelengths”. LEDs 

with spectral responses peaking near these wavelengths were used in a prototype sensor as 

the light sources. For each LED, three phototransistors were strategically placed at various 

angles from the incident light to measure transmitted (180°), scattered (90°), and 

backscattered (45°) lights, respectively. Figure 2.1 shows the 3-D view of the sediment 

sensor illustrating locations of light emitters and detectors (Stoll, 2004). Figure 2.2 shows the 

prototype sensor with a waterproof package. A waterproof box with a rubber seal, purchased 

from Digi-Key Corporation (Thief River Falls, MN), was used as the sensor case. An 

aluminum tube with an internal diameter of 0.75 inch and thickness of 0.125 inch was cut to 

halves using a milling machine to be used as the “sensor tube”. Holes were drilled on the 

sensor tube using the milling machine to ensure accurate sizes and orientations. Optical 

elements (LEDs and PTs) were glued in these holes using Epoxy. Connectors were soldered 

on these optical elements and a 12-pin panel receptacle screened in the sensor box with 

waterproof O-rings. A cable with a user-defined length linked the sensor through a 12-pin 

cable connector to its signal conditioning and processing circuitry.  
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Figure 2.2 Prototype sensor in a waterproof package. 

 

2.2.2 Light modulation algorithm to remove ambient light on SSC measurement 

Optical sensors are sensitive to ambient light conditions. For field applications, sunlight 

usually has the strongest effect. In order to reduce the influence of ambient light on sediment 

measurement, a relative light index, “Ir” was used in the prediction model analysis: 

Ir = Ion – Ioff                                           (2.1) 

where: 

Ion = signal recorded when LED is turned on (mV); 

Ioff = signal recorded when LED is turned off (mV); 

 

When the LED is turned on, the signal detected by the phototransistors (Ion) reflects the 

combined effect of the LED and the ambient light. On the other hand, when the LED is turned 

off, the signal (Ioff) reflects only the effect of the ambient light. If the signal is subtracted from 

the Ion signal, the effect of ambient light can be reduced. In this study, light modulation was 

accomplished using the datalogger. The frequency of modulation was programmed to be 50 Hz. 

 2.2.3 Laboratory experiments 

2.2.3.1 Measurement system setup 

Figure 2.3 illustrates the laboratory experiment setup for the prototype sensor. The setup 

consisted of the optical sediment sensor, a CR5000 datalogger (Campbell Scientific Inc., Logan, 
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Utah), a specially designed signal conditioning and processing board (Appendix A), a power 

supply, and a personal computer.  

 

  
Figure 2.3 Prototype sensor laboratory experiment setup. 

 

A pump-driven circulation system (Figure 2.4) was designed to maintain uniform 

sediment concentrations for the sensor test. A compact, submersible, centrifugal pump was used 

to drive the water/sediment mixture circulating in the system, which had a total volume of 2.5L. 

The CR5000 datalogger was programmed using the PC9000 software (Campbell Scientific Inc., 

Logan, Utah) to turn on and off each LED in a predefined sequence every second, while reading 

and processing the signals from the phototransistors (Appendix B). Data was downloaded from 

the datalogger for statistics and Neural Network analysis after the experiment was completed. 
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The prototype sensor was tested at combinations of four water types (Three-mile Creek at 

Fort Riley, Wildcat Creek in Manhattan, KS, Tuttle Creek Reservoir in Pottawatomie county, 

Kansas, and distilled water) and five soil types (sandy loam1, sandy loam2, clay, clay loam and 

silty clay loam). The texture compositions of the five soil types are given in Table 2.1. Water 

analyses for the water types are shown in Table 2.2. 

2.2.3.2 Experiment design 
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Figure 2.4 A Circulation system that provides uniform concentrations.  
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Table 2.1 Texture compositions and sampling sites for five soil types. 

Texture Soil Type Soil Sampling Site % Sand %Silt %Clay 
Sandy Loam 1 Stafford County, KS 74 20 6 
Sandy Loam 2 Shawnee County, KS 50 44 6 

Loam Cherokee County, KS 32 50 18 
Clay Loam Wabaunsee County, KS 24 56 20 

Silty Clay Loam Marshall County, KS 14 54 32 
 

Table 2.2 Water analysis results. 

Water 
sample 

Total 
Suspended 

Solids 
(mg/L) 

pH 
Ortho 

Phosphorus 
(ppb) 

Ca 
Calcium
(ppm) 

K 
Potassium

(ppm) 

Mg 
Magnesium

(ppm) 

Na 
Sodium
(ppm)

NH4-
N** 

(ppm) 

NO3-
N 

(ppm)

Conductivity 
(dS/m) 

Total 
Dissolved 
Solids*** 

(mg/L) 

Total 
Nitrogen

(ppm) 

Total 
Phosphorus 

(ppm) 

Three-
Mile 

Creek 
Water 

257 8.2 9 113 2.9 45 28 0.04 ND* 0.520 364 0.21 0.08 

Tuttle 
Creek 
Water 

2 8.2 205 86 13.9 23 35 0.05 1.23 0.440 308 1.56 0.23 

Wildcat 
Creek 
Water 

67 8.2 76 136 5.6 46 20 0.05 0.46 0.562 393 0.73 0.19 

Distilled 
Water ND 6.1 ND ND 0.35 ND 0.63 0.09 0.02 8.81 6.2 ND ND 

 

*ND = None Detected; 

**Detection limit of 0.01 ppm on NH4-N (Ammonium); 

***A factor of 700 was used to convert electrical conductivity (dS/m) to total dissolved solids (mg/L). 

 



2.2.3.2.1 Preliminary experiment on the circulation system 

A preliminary experiment was designed to test the performance of the pump-driven 

circulation system in maintaining uniform concentrations. Seven concentrations were used in this 

experiment. At each concentration, one water sample was taken right after the datalogger took 

readings from the sensor. All 35 water samples were sent to the Soil Testing Laboratory at 

Kansas State University for SSC analysis.  

2.2.3.2.2 Sensor experiment 

A complete randomized factorial design experiment was conducted to study the effects of 

water color and soil composition on the signals, and to verify the effectiveness of the sensor 

design in reducing or removing the impacts of water color and soil composition on the accuracy 

of the prediction models in measuring SSC. The experiment was carefully designed to produce 

three statistically independent data sets as three replications by making three samples for each 

soil-water combination, one of which was used to train statistical and neural-network models for 

predicting SSC, whereas the remaining two sets were used to validate the models. Eleven soil 

concentrations were tested at each soil-water combination within the range 0~5000mg/L to cover 

possible sediment concentrations in natural streams. At each soil concentration, three repeated 

measures were taken. These eleven soil concentrations were selected on a base-100 logarithm 

scale (Figure 2.5) in order to create small intervals within the low concentration range and 

relative larger interval within the high concentration range.  
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Figure 2.5 Concentration categories selections using a base-100 log curve. 

2.2.4 Outdoor experiment  

An outdoor experiment was conducted to test the effect of ambient light, especially the 

sunlight, on sensor signals, and the effectiveness of light modulation on SSC measurement 

accuracy. Only one soil type (sandy loam 2) was used in this experiment. 

 
Figure 2.6 Circulation system used in outdoors experiment. 

 

Because sun light conditions are not controllable, the experiment was conducted at 

different times in the day, from 9 am to 11 pm, over a period of two weeks, to obtain a wide 

range of ambient light intensity. Sensor signals recorded with all LEDs off in a completely dark 

environment were considered as the base line. An index, ambient light intensity (I), was created 
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by subtracting the base line value from sensor readings taken with all LEDs off under different 

light conditions to indicate various ambient light conditions.  

IA = Ioff – Ib                                  (2.2) 

where: 

IA = ambient light intensity (mV); 

Ib = sensor signals recorded with all LEDs off in a completely dark environment (mV). 

 

There were a total of 18 tests conducted in the outdoor experiment. For each test, twelve 

soil concentrations were created using another pump-driven circulation system (Figure 2.6). 

Gains of the signal conditioning circuits for each sensor were adjusted to avoid out-of-range data. 

Calibration models were once again established using the outdoor experiment data. To ensure the 

statistical correctness, the experiment data were divided into three statistically independent data 

sets for calibration, validation and test purposes, respectively.  

2.3 Results  

2.3.1 Preliminary experiment on the circulation system 

Figure 2.7 shows the performance test results of the pump-driven circulation system. 

Large errors were observed for Sandy Loam 1 (contains 74% sand). This was due to the fact that 

it is relatively difficult for the circulation system to keep sandy soil particles floating all the time. 

Polynomial regression models between the actual concentration and target concentration for four 

soil types were developed (Table 2.3). They were used in data analysis to reduce prediction 

errors caused by the incapability of the circulation system in maintaining a uniform 

concentration distribution. 
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Figure 2.7 Results of the circulation system performance experiment for maintaining a 

uniform concentration distribution. 

 

Table 2.3 Regression models between actual and target oncentrations. 

Soil Type Regression models R-square value for  
the regression 

Sandy Loam 1 Second order polynomial 1.0000 
Sandy Loam 2 Linear model 0.9996 

Loam Linear model 0.9996 
Clay Loam Linear model 0.9999 

Silty Clay Loam Linear model 0.9999 

2.3.2 Laboratory experiment results 

Results of the laboratory experiment indicated that the sediment sensor had relatively 

better linear responses to SSC for sandy soil than clay soil. Two example calibration curves for 

Sandy Loam 1 soil and Silty Clay Loam soil with the same water (Three-mile Creek Water) were 

plotted in Figures 2.8 and 2.9, respectively. The signal for of backscattered light measured by 

phototransistors at 45º angle (BG45, IR45 and ORA45) increased with SSC. This was because 

that more soil particles at higher concentrations scattered more light. The transmitted light 
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measured by phototransistors at 180ºangle (BG180, IR180 and ORA180) had a decreasing trend 

and tended to reach zero when SSC increased. This was due to the fact that more soil particles in 

water blocked more light. For the silty clay loam, the BG90 and ORA90 signals increased at 

lower sediment concentrations and then decreased at concentrations higher than 2000mg/L. The 

increasing trend of IR90 slows down at higher SSC for the silty clay loam. This was probably 

due to the fact that soil particles at higher concentrations partially blocked the light and partially 

scattered light. When the light emitted by LEDs was blocked more than that was scattered, the 

light detected at 90ºangle showed a decreasing trend. On the contrary, when the light emitted by 

LEDs was scattered more than that was blocked with less soil particles at lower sediment 

concentrations, an increasing trend of the light detected at 90ºangle was observed. For the sandy 

loam 1, the scattered light measured by phototransistors at 90º angle (BG90, IR90 and ORA90) 

did not have the same significant trend as that for the soil of silty clay loam. From these figures, 

it is clear that the impact of soil texture on sensor signals is not negligible.  

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Actual SSC Added in Circulation System (mg/L)

Se
ns

or
 S

ig
na

ls 
(m

V
)

BG180

BG90

BG45

IR180

IR90

IR45

ORA180

ORA90

ORA45

 
Figure 2.8 Sensor signals vs. actual SSC using sandy loam 1 and Three-Mile Creek water. 
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Figure 2.9 Sensor signals vs. actual SSC using silty clay loam and Three-Mile Creek water. 

 

Comparison between Figure 2.8 and 2.9 also indicated that sensor output signal has a 

wider range for silty clay loam than that for sandy loam, which is especially obvious for 

backscattered signals at 45º angles and transmitted signals at 180º angles. This is most likely 

due to the fact that finer sediment has more surfaces for reflecting or blocking light per unit mass 

(Schoellhamer and Wright, 2003).  

Since measurements of transmitted light are sensitive to SSC at lower concentrations and 

approaching zero at higher concentrations, whereas backscattered light measurements are more 

responsive at relatively high sediment concentrations. The combination of measurements of 

transmitted and backscattered lights made the optical sediment sensor useable within a wide SSC 

range. 

2.3.3 Effect of soil texture on sensor signals  

The “reg” procedure in SAS was used to develop a multiple regression model for each 

soil texture data and for combined 5 soil texture data in all waters using the calibration dataset. 
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These models were validated using the two validation datasets. The R-square values and RMS 

errors are summarized in Table 2.4. SSC prediction models established for individual soil types 

were capable of providing very accurate sediment concentration prediction with R-square values 

of higher than 0.95 for three datasets, indicating almost complete elimination of the influence of 

water color on measurement accuracy. However, the prediction accuracy was reduced when all 5 

soil types were combined – R-square values were 0.8845, 0.8536 and 0.8717 for calibration and 

two validations, respectively.  

 

Table 2.4 R-square values and RMS errors achieved for individual soil type using the 

calibration dataset and two validation datasets. 

Soil type Sandy 
loam 1 

Sandy 
loam 2 Loam Clay 

loam 
Silty clay 

loam 
Soil type 
combined

R2 value 0.9918 0.9995 0.9996 0.9991 0.9992 0.8845 
Calibration RMSE 

(mg/L) 131.49 32.84 30.06 46.01 42.00 481.91 

R2 value 0.9813 0.9989 0.9968 0.9950 0.9987 0.8536 Validation 
1 RMSE 

(mg/L) 216.66 118.67 133.80 117.21 71.97 544.92 

R2 value 0.9569 0.9854 0.9988 0.9923 0.9890 0.8717 Validation 
2 RMSE 

(mg/L) 304.00 187.09 61.41 151.70 174.57 511.53 

 

Figure 2.10 shows the predicted SSC vs. actual SSC results using five separate prediction 

models developed for five individual soil texture types, whereas Figure 2.11 used the model 

developed across five soil texture types for calibration dataset. It is obvious that the prediction 

accuracy was greatly reduced when soil texture types were mixed. By observing Figure 2.11, it 

can also be found that the impact of sand content on the predicted concentration played an 

important role in SSC prediction. The SSC for soil type with a higher sand content tended to be 

underestimated and SSC for soil type with a lower sand content was relatively overestimated 

when using the combined model developed across all five soil types, indicating that the soil 

texture played an important role in SSC prediction accuracy. Figures 2.12 and 2.13 show 

predicted SSC vs. actual SSC results using the combined prediction model across all five soil 

types with combined water types for two validation datasets, respectively. 
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Figure 2.10 Predicted vs. actual SSC for calibration dataset using individual prediction 

model for each soil type with combined water types.  
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Figure 2.11 Predicted vs. actual SSC for calibration dataset using the combined prediction 

model across all five soil types with combined water types. 
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Figure 2.12 Predicted vs. actual SSC for validation dataset 1 using the combined prediction 

model across all five soil types with combined water types. 
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Figure 2.13 Predicted vs. actual SSC for validation dataset 2 using the combined prediction 

model across all five soil types with combined water types. 

 

2.3.4 Effect of water type on sensor signals 

When the “reg” procedure in SAS was used to develop a multiple regression model for 

each water type, R-square values of 0.9111, 0.9245, 0.9002 and 0.8959 were achieved for 

distilled Water, Wildcat Creek Water, Tuttle Creek Water and Three-Mile Creek Water, 

respectively (Table 2.5). When all 4 water types were combined across all soil texture types 

using the calibration dataset, the R-square value slightly reduced to 0.8845, which indicated that 

water color has relatively limited impact on SSC prediction accuracy.  

 

 

 

 27



 

Table 2.5 R-square values and RMS errors achieved across five soil types using the 

calibration dataset and two validation datasets. 

Water type Distilled 
water 

Wildcat 
Creek water

Tuttle 
Creek 
water 

Three-Mile 
Creek water 

Water type 
combined 

R2 value 0.9111 0.9245 0.9002 0.8959 0.8845 Calibration RMSE 433.00 398.92 458.59 468.34 481.91 
R2 value 0.8043 0.7830 0.7887 0.8542 0.8536 Validation 

1 RMSE 651.37 780.62 678.85 584.11 544.92 
R2 value 0.7378 0.8701 0.7808 0.8681 0.8736 Validation 

2 RMSE 772.60 531.17 686.60 530.46 504.82 
 

Figure 2.14 shows the predicted SSC vs. actual SSC using four prediction models 

developed for each individual water types, whereas Figure 2.15 used the model developed across 

four water types. It can be seen from these figures that prediction errors using individual models 

varied within a wide range. The SSC Measurement accuracy using the individual models (Figure 

2.14) was not improved significantly compared to that using the four water types combined 

model (Figure 2.15), which further indicated the relatively small effect of water color on SSC 

measurement accuracy. These models were validated using two validation datasets as well. 

Figures 2.16 and 2.17 show predicted SSC vs. actual SSC results using the combined model for 

all four water with combined soil texture types for two validation datasets, respectively 
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Figure 2.14 Predicted vs. actual SSC for calibration dataset using individual prediction 

models for each water with combined soil texture types. 
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Figure 2.15 Predicted vs. actual SSC for calibration dataset using the combined model for 

all four water with combined soil texture types. 
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Figure 2.16 Predicted vs. actual SSC for validation dataset 1 using the combined model for 

all four water with combined soil texture types. 
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Figure 2.17 Predicted vs. actual SSC for validation dataset 2 using the combined model for 

all four water with combined soil texture types. 

 

2.3.5 Neural-network models for SSC prediction in the indoor laboratory experiment 

Neural-network models were developed based on experiment data obtained at 

combinations of four water types and five soil types (Appendix C). R-square values and RMS 

errors for neural-network models were derived for the training (calibration) and two validation 

data sets, respectively. Table 2.6 compares the results achieved from statistical and neural-

network models. The R-square values for both calibration and validation datasets were greatly 

improved using the neural-network models. In the same time, RMS errors were decreased. 
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Table 2.6 R-square values and RMS errors achieved from statistical and neural-network 

models. 

Model Dataset Training 
(calibration) Validation 1 Validation 2 

R-square value 0.9961 0.9670 0.9476 Neural-network 
models RMS error 

(mg/L) 88.66 259.41 326.17 

R-square value 0.8845 0.8536 0.8736 
Statistical models RMS error 

(mg/L) 481.91 544.92 504.82 

 

 

Figures 2.18 and 2.19 show the predicted vs. actual SSC for calibration dataset using the 

neural-network model for all five soil types with combined water types. By comparing with 

Figures 2.11 and 2.15, it can be seen that prediction errors in Figures 2.18 and 2.19 had a 

relatively smaller range. These results indicated an improved result in reducing the influence of 

soil type on sediment concentration measurement using the neural-network models. Figures 2.20 

and 2.22 show the predicted vs. actual SSC for all five soils with combined water types for 

validation datasets, respectively. Figures 2.21 and 2.23 show the predicted vs. actual SSC for all 

four water with combined soil texture types for validation datasets, respectively.  
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Figure 2.18 Predicted vs. actual SSC for calibration dataset using the model trained for all 

five soil types with combined water types. 
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Figure 2.19 Predicted vs. actual SSC for calibration dataset using the model trained for all 

four water types with combined soil texture types. 
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Figure 2.20 Predicted vs. actual SSC for validation dataset 1 using the model trained for all 

five soil types with combined water types. 
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Figure 2.21 Predicted vs. actual SSC for validation dataset 1 using the model trained for all 

four water types with combined soil texture types. 
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Figure 2.22 Predicted vs. actual SSC for validation dataset 2 using the model trained for all 

five soil types with combined water types. 
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Figure 2.23 Predicted vs. actual SSC for validation dataset 2 using the model trained for all 

four water types with combined soil texture types. 

 

2.3.6 Statistics analysis for the indoor laboratory experiment 

The “mixed” procedure in SAS was used to analyze the data obtained from indoor 

laboratory experiment, in order to study the impact of water type, soil texture, and their 

interaction on SSC prediction accuracy (Appendix D). Water, soil, SSC, the interactions between 

water and soil, between SSC and water, and among concentration, water and soil, were 

considered as the fixed effects. Replications and the repeated measurements were considered as 

random effects. The results are summarized in Table 2.7. 
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Table 2.7 Results of statistics analysis for the indoor laboratory experiment. 

Pr > F 
Signal 

Water Soil Water*Soil Conc. Water*Conc. Soil*Conc. Water*Soil
*Conc. 

BG45 0.1545 <0.0001 0.2533 <0.0001 0.0016 <0.0001 0.0004 
BG90 <0.0001 <0.0001 <0.0001 <0.0001 0.1100 <0.0001 0.9108 
BG180 0.1303 <0.0001 0.9959 <0.0001 0.9289 <0.0001 0.9996 
IR45 0.0663 <0.0001 0.7487 <0.0001 0.0141 <0.0001 <0.0001 
IR90 <0.0001 <0.0001 <0.0001 <0.0001 0.0459 <0.0001 0.0001 
IR180 0.0691 <0.0001 0.5467 <0.0001 0.1034 <0.0001 0.1439 

ORA45 0.8296 <0.0001 0.5817 <0.0001 <0.0001 <0.0001 <0.0001 
ORA90 0.3560 <0.0001 0.0026 <0.0001 0.3077 <0.0001 0.1038 
ORA180 0.0006 <0.0001 0.0004 <0.0001 0.8802 <0.0001 0.9288 

 

Soil, SSC, and the interaction between soil and SSC were found to have a significant 

effect on sensor responses, P< 0.0001. Water type only has a significant effect on BG90, IR90, 

and ORA180 signals when the significance level α = 0.01 was used, indicating water type has a 

relatively small effect on the sensor signals and the sensor was capable of partially removing the 

influence of water color on SSC prediction.  

2.3.7 Sensor design simplification 

In order to avoid over-fitting in prediction models and allow a simpler sensor design, the 

“stepwise” procedure in SAS was used to determine the most useful predictors among the 9 

signals (Appendix E). The prediction results for the calibration dataset and the two validation 

datasets using the simplified model were compared in Table 2.8. As a result, BG90, IR45, 

ORA45 and ORA180 were selected in the final model. With these signals, an R-square value of 

0.8750 with a RMS error of 537.4 was achieved across all water and soil types. The simplified 

model had slightly lower R-square values and slightly larger RMS errors compared to the model 

including all nine signals.  
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Table 2.8 Result comparison between the combined model (9 predictors) and the simplified 

model (4 predictors). 

Calibration Validation 1 Validation 2 
Dataset Combined 

model 
Simplified 

model 
Combined 

model 
Simplified 

model 
Combined 

model 
Simplified 

model 
R-square value 0.8845 0.8823 0.8536 0.8563 0.8736 0.8735 

RMS error (mg/L) 481.91 484.62 544.92 534.05 504.82 484.62 
 

Based on the statistical analysis, the optical sediment sensor was simplified from a 

“three-ring” design to a “two-ring” design (Figure 2.24).  

       
                                                           (a)                                                    (b) 

Figure 2.24 The simplified two-ring design. (a) 3-D view of the simplified design; (b) 

Waterproof package of the simplified design.  

2.3.8 Outdoor experiments  

A SAS program was used to evaluate the effectiveness of the light modulation in the 

outdoor experiment (Appendix F). Results are given in Figures 2.25-2.27. From Figures 2.25a, 

2.26a, and 2.27a, it can be seen that signals for all four phototransistors increased with ambient 

light. However, when the relative light index “Ir” was used, the effect of ambient light intensity 

was basically eliminated (Figure 2.25b. 2.26b, and 2.27b). This result demonstrated the 

effectiveness of the light modulation in reducing the impact of ambient light on sensor 

measurement.  
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(b) 

Figure 2.25 Comparison between non-modulated and modulated signals at concentration 

200mg/L: (a) signals without light modulation; (b) signals with light modulation. 
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(b) 

Figure 2.26 Comparison between non-modulated and modulated signals at concentration 

1200mg/L: (a) signals without light modulation; (b) signals with light modulation. 
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Figure 2.27 Comparison between non-modulated and modulated signals at concentration 

200mg/L. (a) Signals without light modulation; (b) Signals with light modulation. 
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The light modulation algorithm resulted in accurate concentration measurement under 

variable, outdoor light conditions. Table 2.9 shows that, for the calibration and validation data 

sets, which were randomly selected from 18 tests conducted at different times in the day over a 

two-week periods, all the prediction models achieved R-square values of higher than 0.99. 

Figures 2.28 and 2.29 give comparisons between the predicted and actual concentrations for the 

calibration and validation datasets, respectively. Good predictions were achieved for the 

calibration and both validation datasets. 

 

Table 2.9 R-square values and RM errors for the outdoor experiment.  

Dataset Calibration Validation 1 Validation 2 

R-square value 0.9954 0.9992 0.9924 
RMS error (mg/L) 181.12 220.41 249.95 

 

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000
Actual Concentration (mg/L)

Pr
ed

ic
te

d 
C

on
ce

nt
ra

tio
n 

(m
g/

L)

 
Figure 2.28 Predicted vs. actual SSC for the calibration data set in the outdoor experiment. 
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Figure 2.29 Predicted vs. actual SSC for the validation data sets in the outdoor experiment: 

(a) validation 1; (b) validation 2. 
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2.4 Conclusions 
SSC sensor developed in this study was designed to measure soil sediment concentrations 

in water. Statistical analysis indicated a significant effect of soil texture on SSC measurement, 

P<0.0001, whereas water type has a relatively small effect on the sensor performance.  

Multiple regression models were developed for individual soil types to predict SSC. R-

square values of higher than 0.99 were achieved for sandy loam1, sandy loam2, loam, clay loam 

and silty clay loam, indicating that the influence of water color on measurement accuracy was 

almost completely eliminated for these soil texture types. When all five soil types were 

combined, the R-square value was reduced to 0.8845.   

When multiple regression models for SSC measurement were established for individual 

water types, R-square values of 0.9111, 0.9245, 0.9002, and 0.8959 were achieved for distilled 

Water, Wildcat Creek Water, Tuttle Creek Water and Three-Mile Creek Water, respectively. 

When all four water types and five soil textures were combined, the R-square value was slightly 

reduced to 0.8845, indicating that water color had relatively limited impact on SSC measurement 

accuracy. 

Neural-network models were developed to predict SSC using the sensor data. R-square 

values of 0.9961, 0.9670, and 0.9476, were achieved for the calibration and two validation 

datasets, respectively, indicating that the neural-network models can further remove the 

influence of soil texture type on SSC measurement and provide higher accuracy for SSC 

measurement. 

In order to avoid over-fitting in prediction models and allow a simpler sensor design, a 

stepwise regression analysis was conducted to select from the nine optical signals the ones that 

were more effective in measuring SSC. The final model kept all three color LEDs and reduced 

the number of phototransistors from nine to four, which resulted in a simpler and more feasible 

design for the sensor. Based on this analysis, the optical sediment sensor was simplified from a 

“three-ring” design to a “two-ring” design.  

An outdoor experiment demonstrated the effectiveness of light modulation and a relative 

light index of “Ir” in reducing the impact of ambient light, especially the sunlight, on SSC 

measurement. For a specific SSC, the relative light index maintained a relatively stable level 

when the ambient light varied significantly.  
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CHAPTER 3 - LONG-TERM FIELD EXPERIMENT OF A REAL 

TIME, OPTICAL SSC SENSOR 

Abstract. Monitoring SSC in field settings is fundamental to determining sediment 

transportation for soil erosion research and soil/water conservation practices. Optical sensors 

have been proved to be powerful tools to measure SSC in a variety of environments in water 

flows. An optical sediment-concentration sensor was developed to allow long-term, real-time 

monitoring of sediment concentration. Field experiments were conducted at various sites to 

evaluate the sensor performance, the effect of fouling on sensor lenses, and the effect of 

temperature on the measurement. Results at two low-water crossings in Kansas and Georgia 

were analyzed and discussed. Methods of removing the fouling effect through data correction 

were also developed. Results indicated that the designed optical SSC sensor was capable of 

providing rapid response to SSC fluctuations in water flow. Temperature of water body has small 

impact on SSC measurement. 

Keywords. Sediment, Optical sensor, Water quality, Low-water crossing, Fouling. 

3.1 Literature Review 
Optical sediment sensors have been studied by many researchers (McKee et al., 2006; 

Kineke and Sternberg, 1992; Sherwood et al., 1989). In situ optical sensors that measure 

backscattered or transmitted light caused by suspended sediment passing between the light 

source and detector have shown remarkable ability to measure SSC in a variety of environments 

in water (Downing ea al, 1981; Green and Boon, 1993). Optical measurement is relatively simple 

and inexpensive. However, several factors, such as fouling, were found to have impact on SSC 

measurement accuracy for long term monitoring in field settings (Sherwood et al., 1989).    

An optical sensor that measures transmitted light is very sensitive to the existence of soil 

particles at low sediment concentration range and insensitive at high concentration range, 

whereas, an optical backscatter sensor has the opposite characteristics – it is relatively less 

sensitive at low concentration range but has a wide concentration measurement range. An optical 

SSC sensor was designed by Stoll (2004) for measuring pure suspended sediment in water 

integrated backscatter and transmittance measurements into one sensor frame. This design 
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overcame the above disadvantages and strengthened the sensor performance. The sensor used 

light emitting diodes (LED) as the light sources and silicon NPN phototransistors as the light 

detectors. The advantage of using LEDs is its relatively low power consumption and ability to be 

modulated electronically at rapid rates (Maffione and Dana, 1997). Laboratory experiments have 

proved that using light sources of different wavelengths in the visible and infrared wavebands 

can help reduce the effect of water color on sediment concentration measurement (Stoll, 2004).  

3.2 Objectives 
In order to evaluate the sensor performance on long-term SSC monitoring, field 

experiments were conducted at several experiment sites. Results of the experiments conducted at 

two low-water stream crossings (LWSC) in Kansas and Georgia were discussed in this 

dissertation. Effects of temperature and fouling on the SSC measurement were studied. Methods 

of correcting the fouling effect through data analysis were also discussed as well. 

3.3 Methodology 

3.3.1 Experiment sites 

SSC sensors with simplified, two-ring design were used in the field study. Field 

experiments were conducted at four sites (Table 3.1).  

 

Table 3.1 Experiment sites and time period. 

Experiment site Time period 

Fort Riley, Kansas August 16, 2005 ~ April 12, 2006 

Fort Benning, Georgia June 4, 2006 ~ February 1, 2007 

Little Kitten Creek, Manhattan, Kansas August 25, 2006 ~ April 29, 2009 

Mission, Kansas August 17, 2007 ~ August 19, 2008 

 

At the Fort Riley site, there was no water in the creek during the test period. At the 

Mission site, insufficient data was available for analysis. Only data from Little Kitten Creek, 

Manhattan, Kansas and Fort Benning, Georgia were discussed in this chapter. 

 53



3.3.2 Sensor installation 

The optical sensors have been deployed in various environments to measure sediment 

concentration. In order to avoid possible damages caused by log collision or high water flow 

during severe weather conditions, three types of mounting methods were tested at the experiment 

sites based on local conditions.  

3.3.2.1 L-shaped metal plate 

Two sensors were installed in Mission, Kansas to measure sediment concentrations in 

storm drainage water. A flat aluminum plate was bended to an “L” shape (90° angle). The short 

leg of the plate was anchored to the concrete base. The sensor was mounted to the long leg of the 

plate (Figure 3.1). This mounting method provided a simple solution for concrete surface. It also 

has the minimum disruption to surrounding environment without installing T-post in downtown 

area of the city of Mission. 

 

        
Figure 3.1 Sensor mounted using an L-shaped aluminum plate at Mission, Kansas. 

3.3.2.2 Galvanized steel pipe  

Figure 3.2 gave a mounting solution to secure the sensor and protect the electric cables. A 

1-1/4'' galvanized steel pipe was driven into the ground. Three sensors were mounted to the pipe 

by U-bolts at three different heights to monitor the vertical profile of SSC. Sensor cables were 

enclosed in the galvanized steel pipe and PVC pipe to protect the cables from animal chewing. 

 54



 

 
Figure 3.2 Sensors were mounting using a galvanized steel pipe at Fort Riley, Kansas.  

 

Figure 3.3 shows a mounting method using a stand fabricated from a galvanized steel 

pipe with a concrete bottom. The sensor was mounted using U-bolts to the pipe. The concrete 

bottom can stand at the stream bed due to its heavy weight. The top of the steel pipe was tied to a 

T-post for secure mounting.   

    
Figure 3.3 Sensor mounted using a galvanized steel pipe with a concrete bottom at Little 

Kitten Creek, Manhattan, Kansas.  
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3.3.2.3 T-post  

The mounting method using a galvanized steel pipe with a concrete base (Figure 3.3) was 

replaced by heavy duty T-post mounting (Figure 3.4) at Little Kitten Creek, Manhattan, Kansas, 

due to the fact that the concrete base of the galvanized steel pipe was not driven into the stream 

bed and it was washed away by high speed water flow during heavy storms. Eliminating the 

galvanized pipe and directly using the T-post also simplify the mounting design. The sensor in 

Figure 3.4 was not covered by water because the photograph was taken during non-rain season.  

 
Figure 3.4 Sensor was mounted using heavy duty metal stakes (green T-post) at Little 

Kitten Creek, Manhattan, Kansas. 

 

Mounting method using PVC pipes and T-post shown in Figure 3.5 was proved to be 

feasible for installations in streams with water all the time. Two sensors were mounted to the 

PVC pipe at two different heights using U-bolts. Two U-bolts were also used to tie the sensor 

mounting unit to the T-post which was driven into the stream bed. The photograph shows the 

mounting method before the sensors were submerged into the water. 

 

 56



 
Figure 3.5 Sensors were mounted using PVC pipe and metal stakes (green T-post) at Fort 

Benning, Georgia. 

3.3.3 Field setup of SSC monitoring system 

3.3.3.1 Field setup at Little Kitten Creek, Manhattan, Kansas 

The SSC measurement system at Little Kitten Creek in Manhattan, Kansas comprises an 

open-bottom optical sediment sensor, a signal conditioning circuit box, a CR10X datalogger 

manufactured by Campbell Scientific, Inc., and a 12 V deep cycle battery powered by a 15W 

solar panel manufactured by Brunton, Inc. The relative light index (Ir) was used to reduce the 

influence of ambient light on the measurement. A datalogger program developed using PC208W 

software (PC208W, 2000) was used to calibrate the sensor in the laboratory (Appendix G). 

Another datalogger program was developed using PC208W for the field experiment to control 

and take measurements every 10 seconds (Appendix H).  

The sensor was installed in the mid-section of the creek, about 0.2 m above the creek bed 

to make sure it was submerged under water all the time. A 12 m-long cable that transmitted 

electrical current signals was enclosed in PVC pipes for protection. The PVC pipes were secured 

by steel bars that were driven into the creek bed and bank. A protection fence was built at the 

upstream side using metal stakes to protect the sensor from floating logs and other flotsam. The 

datalogger and the signal conditioning box were placed in a waterproof enclosure manufactured 
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by Campbell Scientific, Inc. (Figure 3.6b). The SSC measurement system was powered by a 12V 

deep cycle car battery, which was charged by a 15W solar panel. 
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ntains datalogger and the signal conditioning 

box. 

 

erature potentially have adverse impacts on opto-

cause errors in SSC measurement (Lawler and Brown, 

perature effect on optical sensor 

the PVC pipe along with the sensor cable. The 

measur n an accurate 

te  

3.3.3.2 Field setup at Fort Benning, Georgia 

SSC sensors, two signal conditioning circuit boxes, a CR10X datalogger manufactured by 

                                     (a)                                                                         (b) 

Figure 3.6 Little Kitten Creek site installation: a) Protect

creek to bank; b) waterproof enclosure that co

Fluctuations in water body temp

electronic components and, therefore, 

1992; Orwin and Smart, 2005). In order to observe the tem

signals, a T-type thermocouple was enclosed in 

ing junction of the thermocouple wire was placed near the sensor to obtai

mperature measurement. Datalogger was programmed to record temperature readings each

time it took SSC measurement. 

A construction work at Fort Benning to “harden” a crossing site using articulated roadbed 

system (cable concrete) started on August 22, 2006, and was completed on October 22, 2006. 

Two SSC measurement systems and four optical sediment sensors continuously measured 

sediment concentrations at the site to study the effectiveness of the hardened structure on 

reducing soil erosion caused by military training. Each SSC measurement system comprises two 
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Campbell Scientific, Inc., and a 12V deep cycle battery powered by a 15 W solar panel 

manufactured by Brunton, Inc (Figure 3.7). Dataloggers were programmed to control and take 

measurement every 1 minute. On each side of the creek, two sensors were installed about 30 m 

 sensor about 0.1 m above the creek bed, and the 

top sensor about 0.25 m above the bottom

   

downstream of the crossing, with the “bottom”

 sensor (Figure 3.5). Sensors were securely mounted 

with U-clamps and bolts on T-posts that were driven about 1 meter into the creek bed. 

Dataloggers were mounted in weatherproof enclosures. The 12V deep cycle batteries to power 

dataloggers were mounted on a wooden platform next to datalogger enclosures. The solar panel 

to charge the battery was mounted above the datalogger enclosure at a 45 degree angle to capture 

sunlight. Tree branches and foliage were removed from around the solar panels to ensure that 

sufficient sunlight would reach the solar panels. The measurement system on each bank was 

mounted sufficiently high to ensure that water levels would not submerge the data loggers, 

batteries, or solar panels when creek levels rose during storm events. Wiring from the sensors to 

the dataloggers was contained in PVC pipes running along the creek bottom. The PVC pipes 

were anchored to metal stakes driven securely into the creek bed with plastic wire ties to protect 

the cable from flotsam in the creek and from the current.   

 

             
Figure 3.7 SSC measurement system installation at a LWSC in Fort Benning, Georgia.  
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3.3.4 Sensor calibration 

Due to the variation of optical sensor signals caused by particle size and reflectivity, 

many researchers used different methods to calibrate their sediment sensors. Kineke and 

Sternberg (1992) used a pumping system to obtain water samples to calibrate their sensor in situ. 

Butt et al. (2002) investigated the possibility of calibrating sediment sensors in glycerol to avoid 

using complicated recirculation equipment for calibration since glycerol is a clear fluid with a 

higher viscosity than water. However, the conversion relationship between water and glycerol 

must be defined beforehand. More and more researchers calibrated their optical sediment sensors 

using the sediment taken from the bottom of the creek before the field installation, and by 

filtering water samples taken from the test site for laboratory calibration analysis after the field 

installation (Schoellhamer and Wright, 2003; Sherwood et al., 1989; Presto et al., 2006). 

Although it is quite difficult to obtain in situ water samples near the sensor, especially under 

severe weather conditions, taking water samples after the sensor was deployed provides an 

important check on the sensor performance (Downing, 1983).  

The sensor calibration method used in this study included pre-calibration in the 

laboratory using the sediment from the bottom of the creek taken from the site before the field 

installation and post-calibration by collecting water samples close to the sensors after the field 

installation. The post-calibration was only conducted at Little Kitten Creek, Manhattan, Kansas 

during June 6, 2008 – January 11, 2009. This method involved filtering, drying and weighing 

process in laboratory to obtain real SSC values from water samples. Each grab sample was taken 

from the creek after manually cleaning the sensor lenses. The time when each water sample was 

taken was also recorded to find the corresponding sensor signals recorded at the same time. In 

the laboratory, water samples were filtered through 0.45 micron filters using a vacuum 

pump. SSC was calculated based on EPA method 160.2., adjusted by filtering the whole water-

se r 

sensor accuracy and signal stability analysis. 

diment mixture instead of only filtering a subset of the sample. All SSC data were used fo

3.4 Results  
Results from the field experiments at Little Kitten Creek, Manhattan, Kansas and Fort 

Benning, Georgia were discussed in the following sections.  
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3.4.1 Rapid response to SSC flux changes 

The optical sediment sensor developed in this study was able to quickly respond to rapid, 

intermittent flushes of suspended sediment during storms. Figure 3.8 shows the sensor signals 

received during three storm events within a 31-hour period. Figure 3.9 shows the measured 

sediment concentrations. Rainfall data was provided by the NSF Long Term Ecological Research 

Program at Konza Prairie Biological Station. The station is 8 miles away from the experiment 

site.  
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Figure 3.8 Sensor signals in three storm events recorded within a 31-hour period. 
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Figure 3.9 Measured SSC in three storm events recorded within a 31-hour period. 

 

a blue-green LED was not shown in Figure 3.8. The gains of all signals (BG90, IR45, ORA45, 

and ORA180) were carefully adjusted in laboratory to meet two requirements: 1) signals should 

be within the measuring range of the datalogger under strong sunlight; 2) signals should be 

detectable under dark conditions. The adjustment of BG90 signal couldn’t meet these 

requirements: when the gain was adjusted to avoid the signal from exceeding the range under 

strong sunlight, the signal would become too small to detect under dark conditions.  

3.4.2 Fouling effect and correction 

Fouling, including bio-fouling, on optical lenses has been a common problem for optical 

sensors exposed to various pollutants in water. Field experiments at Little Kitten Creek showed 

that fouling effect caused signal deterioration (Figure 3.10). This can be observed from the fact 

that, each time the sensor was manually cleaned, the signals went back to their original levels. 

Usually, fouling of the sensor lenses caused the transmitted signal to decrease and the 

BG90 signal that represents scattered light detected by phototransistor at 90º degree from 
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 63

backscattered signal to increase. In order to maintain meaningful signals, the lenses need to be 

cleaned periodically.  

              

, 2007). The 

ore the sensor signals. A MATLAB (MATLAB, 2006) 

program

6000

Figure 3.10 Signal deterioration due to fouling. Precipitation data source: 

www.weatherunderground.com. 

 

During data post-processing, correction algorithms may be applied to restore the signals. 

In this study, a correction algorithm was developed by determining the fouling trend through a 

regression analysis on peak signal values taken during no-rain periods (Zhang et al.

fouling trend was then removed to rest

 was developed to complete the signal correction (Appendix I). IR45 signal corrected 

using this algorithm and sediment concentration calculated using the corrected signal are shown 

in Figure 3.11 and 3.12, respectively. 
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Figure 3.11 Backscattered signal (IR45) correction result. 

 
Figure 3.12 Sediment concentration data restored using the correction algorithm. 

Precipitation data source: www.weatherunderground.com. 
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At Fort Benning site, the fouling effect is corrected by the same algorithm. Since fouling 

for individual sensors differed greatly, the regression models of fouling trend and the 

corresponding fouling correction were conducted based on data from individual sensors.  

It can be observed that from Figure 3.13, the signals acquired at Fort Benning site during 

the winter time, especially in January, 2007, didn’t show a significant fouling effect. This 

observation is related to the fact that, during winter, plant and animal growth and activities slow 

down significantly. Thus, it can probably be concluded that the fouling problem observed on the 

sensors signals is mainly a bio-fouling problem. The predicted sediment concentration based on 

the corrected sensor signals is shown in Figure 3.14.  

 

 
Figure 3.13 Unprocessed signals measured in January, 2007. Precipitation data source: 

www.weatherunderground.com. 
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15000

 
Figure 3.14 Sediment concentration calculated by the corrected sensor s als

Precipitation data source: www.weatherunderground.com. 

3.4.3 Clogging effect and correction 

Two types of SSC sensor were used in the field experiment at Fort Benning: a closed-

bottom design (Figure 3.15a) and an open-bottom design (Figure 3.15b).  

ign . 

 
a)                                                   b) 

Figure 3.15 Optical SSC sensor design used in field experiments. PT stands for 

phototransistor. a) 3-D view of the closed-bottom design; b) 3-D view of the open-bottom 

design. 

 

1/3 19:16 1/10 17:56 1/17 16:36 1/24 15:16 1/31 13:56 2/ 67 12:3
0

5000

10000

L)
 

Precipitation (inch) * 10000
Concentration (mg/L)

1.5 

Time (month/day hour:minute)

P
re

d
(m

g/

 

ic
te

d 
C

on
ce

nt
ra

tio
n

P
re

ci
pi

ta
tio

n 
(in

ch
) 1 

0.5

0 

 66



It was found that the closed-bottom design caused severe clogging problems. For the 

open-bottom design, the clogging problem improved significantly because there was no place for 

sediment to settle down at the bottom. A correction algorithm was applied to the data recorded 

by closed-bottom sensors in order to recover clogged signals. The MATLAB program 

(MATLAB, 2006) developed to correct the fouling effects also included corrections for clogging 

(Appendix I). The basic assumption for the clogging correction was that there should not be 

sudden rises or falls in the light signal unless materials covering the lenses are washed away 

within a short period of time. Based on this assumption, the clogging correction was done by 

removing sustained steep rises in the signals using a set of carefully selected thresholds, 

including 1) a threshold for the width of a moving-average window that smoothed the raw 

signals, 2) a signal rise/fall contrast threshold that detects the occurrence of sudden signal rises 

and falls, and 3) a threshold for the width of a moving-average window that smoothed the 

clogging-corrected signals as a preparation for a regression analysis that determines the fouling 

trends. The signal rise/fall contrast, C, was defined as follows. 

                                                      
downS

upS
C =                                                (3.1) 

where 

- slope for the trend when the signal is going up; 

e signal is going down. 

occurred more frequently on the closed-bottom sensors. Using an orange signal measured at 180°  

angle (ORA180) as an example, Figure 3.16 compares the signals before and after clogging and 

fouling corrections.  

upS

down

 

Lower threshold values were used for the closed-bottom design because clogging 

S  - slope for the trend when th
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Figure 3.16 Original signal and signal corrected for clogging and fouling. Precipitation data 

weatherunderground.com
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ffect on sensor performance 

A total 270 grab water samples were manually taken from Little Kitten Creek, Manhattan, 

Kansas, during the period of June, 2008 to January, 2009. The lenses of the sensor were cleaned 

using a piece of soft cloth before each water sample was taken. 12 water samples were excluded 

as outliers (Table 3.2). The remaining 258 water samples were collected under various weather 

conditions within a temperature range of 1.6-22.4 ºC. The SSC of the water samples obtained 
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m the data acquired at Fort Benning, it is clear th
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. 

Although during data post-processing, correction algorithms may be applied to restore the 

signals, an active lens cleaning method should be explored in the future to more effectively 

reduce the fouling problem. 

3.4.4Temperature e

 68



from laboratory weighting and drying process ranges from 0 – 4382 mg/L and the distribution 

was listed in Table 3.3.  

 

Table 3.2 Outliers excluded from grab water samples. 

Sampled Date and Time 
Dried SSC

(mg/L) 
Reason for being outlier 

00:19, Jun. 12, 2008 1719.04 

00:19, Jun. 12, 2008 1764.48 

Suspicious sampling time: no recorded 

sampling activities to match 

21:25, Jun. 24, 2008 989.18 

21:25, Jun. 24, 2008 994.24 

21:44:30, Jun. 24, 2008 914.74 

21:44:30, Jun. 24, 2008 914.62 

Suspicious sampling time: no recorded rain 

event to match high SSC 

10:00, Sep. 12, 2008 1257.96 

10:00, Sep. 12, 2008 1299.33 
Inaccurate sampling time and location  

11:29, Nov. 6, 2008 4.52 

11:29, Nov. 6, 2008 6.55 

11:38, Nov. 6, 2008 2.11 

11:38, Nov. 6, 2008 2.79 

unlight 

ORA45 signal was out of range due to 

strong s

 

Table 3.3 The SSC distribution of all 258 grab water samples. 

Dried SSC Range 

(mg/L) 
Quantity 

< 10  77 samples 

10 ~ 100  61 samples 

100 ~ 500  102 samples 

500 ~ 1000  6 samples 

>1000  12 samples 

 

Figure 3.17 shows the temperature effect on the three output signals. Seventy-seven water 

samples with SSC concentration less than 10mg/L were used in order to exclude the effect of 

suspended sediment concentration on sensor signals. Regression models were established for all 
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three output signals to determine the temperature effect. Results showed that the temperature 

coefficients for ORA180, ORA45, and IR45 signals were 5.53mV/ºC, 3.74mV/ ºC, and 

3.36mV ºC, respectively.  

 

              
 

Figure 3.17 Temperature effect on sensor signals (K i oefficient).  

 

Temperature compensation based on these regression models was applied to SSC 

prediction anal ere shown in 
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SSC before and after temperature compensation were als d for actual SSC higher and 

lower than 500mg/L, respectively. The results indicated that 1) R-square value is 0.9776 before 

temperature compensation and 0.9773 after compensation for SSC higher than 500mg/L; 2) R 

square value is 0.9015 b rature compensation and 0.9057 after compensation for SSC 

lower than 500mg/L.  
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(b) 

Figure 3.18 SSC prediction before and after temperature compensation (SSC> 500mg/L): a) 

before temperature compensation; b) after temperature compensation. 
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(b) 

Figure 3.19 SSC prediction before and after temperature compensation (SSC< 500mg/L): a) 

before temperature compensation; b) after temperature compensation. 
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An ANOVA analysis using the GLM procedure in SAS (SAS, 2003) was conducted to 

analyze the effects of actual SSC, temperature, and the interaction between actual SSC and 

temperature on predicted SSC (Appendix J). All 258 grab samples taken from Little Kitten Creek 

were used for the analysis. The results indicated that 1) there was a significant effect of 

interaction between actual SSC and temperature on predicted SSC when the significance level α 

= 0.01 was used (p=0.0021); 2) the temperature has no significant effect on predicted SSC 

(p=0.8336).  

Based on above analysis, a conclusion can be drawn that temperature has limited effect 

on SSC measurement. 

3.4.5 Individual signals at all measured SSC 

Individual signals measured at the times the 258 grab samples were taken are plotted 

against the SSC in Figure 3.20. By observing the three signals, transmitted signals measured at 

180° angle (ORA180) approached zero at higher SSC; two backscattered signals measured at 45° 

angle (IR45, ORA45) showed big variations at lower SSC. These observations indicated that the 

sensor was not capable of measuring SSC greater than 4500 mg/L or lower than 500 mg/L 

because large error would take place.  
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Figure 3.20 Individual signals at all measured SSC.   

3.5 Conclusion 
Long-term field experiments were conducted in Kansas and Georgia. Through these 

experiments, the performance of the optical sensors developed in this study was evaluated. 

Results showed that the optical sediment sensor was capable of long-term, real-time SSC 

monitoring.  

Temperature effect on sensor measurement was analyzed. Results showed that the 

temperature coefficients for ORA180, ORA45, and IR45 signals were 5.53mV/ºC, 3.74mV/ ºC, 

and 3.36mV/ ºC, respectively. For SSC greater than 500mg/L, R-square values of 0.9776 and 

0.9773 were achieved before and after temperature compensation, respectively. For SSC lower 

than 500mg/L, the R square values of 0.9015 and 0.9057 were achieved before and after 

temperature compensation, respectively.  An ANOVA analysis indicated that temperature had no 

significant effect on sensor signals (p=0.8336). 
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Signals of the optical sediment sensor deteriorated by lens fouling. Fouling of the sensor 

lenses caused the transmitted signal to decrease and the backscattered signal to increase. A 

fouling correction algorithm was developed by determining the fouling trend through a 

regression analysis on peak signal values taken during no-rain periods. The fouling trend was 

then removed to restore the sensor signals.  

The field experiment at Fort Benning indicated that the open-bottom design provided 

higher-quality signals than the closed-bottom design, mainly because of reduced clogging and 

fouling problems. Furthermore, the fouling effect on signals was reduced significantly during 

winter seasons. Thus, it can be concluded that the fouling problem observed on the sensors was 

mainly a biofouling problem.  
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CHAPTER 4 -  SSC 

SENSORS  

Abstract. Many researchers have reported the extremely damaging impact of fouling, including 

bio-fouling, on submerged optical instruments. It is one of the most prevalent hindrances in 

obtaining long-term, continuous, in situ optical SSC measurements. In order to solve this 

problem, an air-blast cleaning mechanism was integrated into a previously designed SSC sensor. 

Laboratory experiments in a manually created fouling environment were conducted to observe 

the fouling process on sensor cases made of different materials, and to verify the effectiveness of 

air-blast cleaning in reducing fouling. Results indicated that 1) sensors with an aluminum case 

experienced serious bio-fouling whereas sensors with polyethylene case didn’t; 2) an air-blast 

cleaning mechanism was capable of reducing fouling effect on sensor signals. The duration and 

frequency of air-blast cleaning can be determined and adjusted depending on actual field 

conditions. Because long plastic tubing was required to provide pressurized air to the sensor in 

field installation, an air pressure drop test was also conducted on the hose between an air 

compressor and the sensor. Results showed negligible pressure drop.   

Keywords. Air-blast cleaning, Sediment, Optical sensor, Fouling. 

 

4.1 Literature Review 
Fouling of moored optical instruments is the most prevalent deterrent in obtaining long-

term, continuous, optical SSC measurements. Various lens-cleaning techniques have been 

studied by many researchers and optical sensor manufacturers.  

A wide variety of antifoulant coatings have been attempted (Manov et al., 2004). 

However, many antifoulants are tributyltin (TBT)-based, which has a direct negative 

environmental impact and has been found to cause surface roughness (McLean et al., 1997).  

Flemming et al. (1998) used a pulsing jet of fresh water from two small tubes to flush 

directly onto the glass window every half hour for 20 seconds to prevent fouling on sensor lenses. 

Suspended solids sensors manufactured by RWT (2009) are equipped with a jet-cleaning system 

to blast air or water on a timed basis. D15/76 system is a turbidity monitor unit manufactured by 

AIR-BLAST CLEANING FOR OPTICAL
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Analytical Technology, Inc. that uses a burst of compressed air to automatically clean the sensor 

the 

sampling cell with a biologically d when a measurement is not taking 

place. The reference fluid is replaced with the water to be measured before the measurement and 

strial cleaning processes, 

ove swarf or other polishing 

sidue from parts that are immersed in oil, grease, or paint. This technique usually involves the 

istry selection, and relatively longer cleaning time (Maxsonic Inc., 

2006).  

could be compensated using a four-beam

one at 

and maintain reliable measurements (ATI, 2009).  

Lillycrop and Howell (1996) developed an optical lens protection method that fills 

 resistant reference flui

is brought back to the cell immediately after the measurement.  

Ridd and Larcombe (1994) described a simple wiper mechanism, in which a soft rubber 

pad is mounted upon a small wiper blade that rotates like a windshield wiper on a vehicle. 

Another DTS-12 turbidity sensor manufactured by FTS (2009) also uses a self-cleaning wiper 

system. Fondriest Environmental, Inc. uses a wiper mechanism on their YSI 6136 turbidity 

sensor to clean residue buildup on the surface of the sensor for fouling prevention (FEI, 2009).  

WTW (2009) integrates an ultrasonic module that can generate a permanent oscillation 

on the optical windows in the micrometer range to avoid biofouling on their VisoTurb® 700 IQ 

and ViSolid® 700 IQ sensors. The ultrasound source has maximum vibration amplitudes at the 

center of the measurement window to minimize its impact on SSC measurements, because the 

light paths were placed away from the center. An oceanographic sensor with in-situ cleaning and 

bio-fouling prevention system developed by Edgerton (1977) entails the use of sonic energy 

which varies in frequency and energy intensity level. In the indu

ultrasonic cleaning is used for a wide range of applications to rem

re

proper temperature and chem

Besides active lens cleaning techniques discussed above, proper algorithms were also 

used by researchers to remove fouling on sensor signals obtained from specially designed optical 

structures. Buttmann (2001) and Postolache et al. (2007) suggested that fouling of the optics 

 technology. The four-beam sensing method includes 

two light sources and two light detectors. Each light source has one detector at 90°and the other 

180°angle. Two light sources were switched on alternatively while two light detectors 

took readings. From the four readings, a rationmetric algorithm was used to calculate turbidity 

values (HEI, 2009).  
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During data post-processing, correction algorithms could be applied to restore the signals. 

For example, Zhang et al. (2007) developed a correction algorithm to determine and remove the 

fouling

4.3 Methodology 

 trend found through a regression analysis on peak signal values taken during no-rain 

periods. 

4.2 Objective 
Taking into account the cost and simplicity, a method of air-blast cleaning to reduce 

fouling on optical lenses of the previously designed optical sensor was investigated. Different 

cleaning durations and intervals were used in the laboratory cleaning experiments. Fouling on 

SSC sensors with aluminum and polyethylene cases were studied and compared.  

4.3.1 Sensors with embedded air passages used in laboratory cleaning experiments 

Optical SSC sensors designed in 2006 with an aluminum case (Figure 4.1a) and in 2008 

with a polyethylene case (Figure 4.1b) were used in laboratory cleaning experiments. Air 

passages were embedded in the sediment sensors. For the sensor with an aluminum case, 

positions of three air outlets were selected based on the available space in the sensor tube. For 

the sensor with a polyethylene case, two air outlets were placed on the two LED/PT rings, about 

135o from the orange LEDs. The other two air outlets were designed to give an extra air-blast for 

better cleaning. The stretch-out views of the sensor tube with air outlets for the aluminum and 

polyethylene case sensors are showed in Figure 4.2 and Figure 4.3, respectively.  

 

          
                               (a)                                                                        (b) 

Figure 4.1 Two types of sensors used for cleaning experiments: (a) SSC sensor design with 

an aluminum case (2005); (b) SSC sensor design with a polyethylene case (2008) 

 80



       
Figure 4.2 The stretch-out view of air outlets in the sensor tube with an aluminum case. 

 

 

Orange 180 PT Blue-green LED

Blue-green 90  PT

Air Outlets

Orange LED

Orange 45 PT Infrared 45 PT

Infrared LED

 
Figure 4.3 The stretch-out view of air outlets in the sensor tube with a polyethylene case. 

4.3.2 Laboratory cleaning experiment  

Four laboratory cleaning experiments were conducted. 
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4.3.2.1 Aluminum sensors with 12-hour cleaning intervals 

An indoor experiment was conducted from July 15 to August 23, 2008 to study fouling 

on sensors with aluminum cases and to test the effectiveness of air-blast cleaning. Figure 4.4 

shows the laboratory setup for the experiment, which consisted of two sensors with aluminum 

case, a 10-Gallon fish tank, a 12V normally closed solenoid valve (Aerocon Systems Co., San 

Jose, CA), a submergible air pump, a 12V air compressor equipped with a 3.5 liter air tank 

(Omega Research and development, Inc., Douglasville, GA), two signal conditioning and 

processing units, a relay circuit to drive the air compressor, a Campbell Scientific CR10X 

datalogger (Campbell Scientific Inc., Logan, UT), and a car battery as the power supply.  

 

 
Figure 4.4 Laboratory setup of air-blast cleaning experiment. 

 

The fish tank was divided into two chambers with a rigid plastic sheet. Two sensors with 

aluminum cases were placed side by side in one chamber of the tank and an air pump was placed 

in the other chamber to keep the water circulating and to maintain sediments suspended all the 

ti t 

could be cleaned when pressurized air blasts water into the sensor. The other sensor had no 

r comparison. The air compressor worked as a high 

pressur 5 psi. The pressure was regulated 

me during the experiment. One sensor was designed to have embedded air passages so that i

embedded air passages and it was used fo

e air source with the maximum output air pressure of 11
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to 60 psi in this experiment and introduced to the sensor through embedded air passages. The 

CR10X

was used. Two aluminum sensors were tested.  

4.3.2.3 Polyethylene sensors with 2-minute cleaning intervals 

A cleaning experiment using two polyethylene sensors was conducted during November 

26 ~ December 12, 2008. Water for the experiment was taken from Tuttle Creek Lake, 

Manhattan, Kansas, to intentionally create an aqueous environment rich in biological organism in 

order to investigate the bio-fouling effect on polyethylene sensors. Air-blast cleaning mechanism 

was activated for 2 seconds every 2 minutes before each measurement was taken. Air pressure of 

70 psi was used.  

4.3.2.4 Comparison between aluminum sensor and polyethylene sensor  

In order to compare the differences in fouling between sensors with aluminum and 

polyethylene cases, and the effects of air-blast cleaning on these sensors, an experiment was 

conducted during December 19, 2008 to January 6, 2009 using two aluminum sen

polyethylene se ater with high 

sediment concentration was taken from Little Kitten Creek. A submersed pump was used to 

circulat

 datalogger was programmed to turn on a solenoid valve for two seconds every 12 hours 

to clean the sensor (Appendix K). Water in the fish tank was taken from Little Kitten Creek, 

Manhattan, Kansas, with high suspended sediment concentration.  

4.3.2.2 Aluminum sensors with 2-minute cleaning intervals 

A cleaning experiment using Little Kitten Creek water with a higher cleaning frequency 

was conducted from October 31 to November 19, 2008. Air-blast cleaning mechanism was 

activated for 2 seconds every 2 minutes, before taking each measurement. Air pressure of 70 psi 

sors and two 

nsors in a small swimming pool with a capacity of 70 gallons. W

e the water to create fouling. Four sensors were placed away from the pump to avoid 

erosion of the fouling buildup caused by the high-speed water flow at the pump outlet. Lagoon 

water from the research unit of Animal Science Department of Kansas State University was also 

added to the swimming pool to enrich a bio-fouling environment. Air-blast cleaning mechanism 

was activated every 12 hours with a cleaning duration of 2 seconds. 
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4.3.3 Pressure drop test 

A pressure drop test with 50 feet air tubing was also conducted to investigate air pressure 

loss in long paths. Five pressure settings (41, 63, 81, 91 and 105 psi) were used in this 

experiment. The air system consisted of an air compressor with a 3.5 liter tank, a pressure 

r 

fittings (F

reducing valve; gauge 2 m

 

aused by fouling and signal 

recovery due to air-blast cleaning. The transmitted signal and backscattered signals went back to 

their normal levels after each cleaning. Figure 4.7 shows signals measured from the sensor 

reducing valve, a solenoid valve, three pressure gauges, a 12V car battery, and necessary ai

igure 4.5). Pressure gauge 1 measures the air pressure at the outlet of the pressure 

easures the pressure at the outlet of the solenoid valve; gauge 3 

measures the outlet pressure at the sensor end. The pressure difference between gauge 1 and 3 

was considered pressure loss after 50 feet plastic tubing. 

 

 
Figure 4.5 Pressure drop test setup. 

 

4.4 Results and Discussion 
Two types of fouling were observed and discussed in this dissertation, including bio-

fouling (refers to the organic growth on the sensor’s surfaces while submerged in water) and 

clay/silt fouling (refers to the accumulation of finer soil particles on sensor’s surfaces and lenses).

4.4.1 Aluminum sensors with 12-hour cleaning intervals 

Sensor signals in Figure 4.6 indicated signal deterioration c

Gauge 1 Gauge 2 Gauge 3 
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without cleaning mechanism. Fouling of the sensor lenses caused the transmitted signal 

(ORA180) to decrease and the backscattered signal (IR45 and ORA45) to increase except the 

sudden changes (Figure 4.7). These sudden changes were probably due to washout of the fouling 

materials accumulated on the lens by the water flow. Obviously, these signal variations made the 

sensor useless in SSC measurement. Comparison between Figure 4.6 and 4.7 indicated that the 

air-blast cleaning mechanism was capable of reducing fouling effect on sediment sensors. 
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Figure 4.6 Signal deterioration due to fouling and recovery due to air-blast cleaning. Air-

nism was activated for 2 minutes every 12 hours. 
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Figure 4.7 Signal deterioration due to fouling measured from the sensor without air-blast 

cleaning. Air-blast cleaning mechanism was activated for 2 minutes every 12 hours. 

 

Clay/silt coating or the growth of biological organisms on optical lenses is the most 

possible cause for deterioration of the light signals. When fouling occurred on the lenses of the 

LEDs, lights detected at remote transistors at all angles would reduce. When fouling occurred on 

t  

detected. O placed 45º 

from the light source, less backscattered light would be detected. However, the fact that two 

backscattered signals were increasing due to fouling was probably because the buildups of 

clay/silt or bacteria on lenses caused more scattered light, which was detected by phototransistor 

at 45º angle. 

Cleaning results obtained from the aluminum sensor during July 15 to August 23, 2008 

were shown in Figure 4.8. Sharp spikes due to air-blast cleaning were clearly observed on IR45 

and ORA180 signals during the first 28 days of the experiment (before August 6). Less fouling 

effect was observed on ORA45 signal. Signals deterioration was accelerated after August 11, 

he lens of a phototransistsor placed 180º from the light source, less transmitted light would be

n the other hand, when fouling occurred on the lens of a photo detector 
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2008. The results indicated that the cleaning mechanism could only maintain the lenses clean for 

a limited period of time (28 days in this experiment), beyond which the mechanism only had a 

limited effect on reducing fouling.  
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ure 4.8 Signal measured from the sensor with air-blast cleaing within a 40-day perioFig d. 

Signals deterioration was accelerated after 28 days. 

 

Sensor cases were painted black using ultra flat paint before the experiment. However, 

paint around the optical component and sharp edges of drilled holes were washed off easily and 

the metal surfaces were then exposed to the fouling environment. Photographs indicating fouling 

effects on sensor aluminum case and sensor tube are shown in Figure 4.9.  

 



 
(a) 

hs taken right after 

the sensor were taken out from water when sensors were still wet, (b) photographs taken 

two days after the sensors were taken out from water.  

 

Sticky materials were observed to adhere to sensor cases and bare metal surfaces around 

optical components for both cleaned and uncleaned sensors due to improper painting. They were 

hard to remove. This was probably due to bio-fouling caused by bacterial growth on the metal 

surfaces. A thin clay/silt layer was only observed on sensor case and lenses of optical 

components on the sensor without cleaning. Air-blast cleaning was more effective in remove 

 
(b) 

Figure 4.9 Photographs showing clay/silt fouling and bacterial fouling on sensors after a 

40-day cleaning experiment (July 15 ~ August 23, 2008): (a) photograp

Sensor with cleaning Sensor without cleaning Sensor with air-blast cleaning

Sensor with cleaningSensor with air-blast cleaning Sensor without cleaning 
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clay/silt fouling. Results also indicated that cleaning twice per day might not be sufficient under 

extremely dirty environment. For field deployment, the cleaning frequency and duration will 

need to be adjust ions.

The sticky fouling materials were scraped off the aluminum sensors and cultured in two 

sheep blood agar plates (SBAP) under 37ºC and 25ºC, respectively. The growth medium was 

prepared with 50ml/L (5%) defibrinated sheep blood, 20g tryptone, 15g agar agar, and 1000ml 

H2O. After culturing for 6 days, a number of bacterial colonies, such as Staphylococcus, 

Streptococcus, Enterococcus, Heterotroph, Pseudomonas, Bacillus, were observed in both plates. 

The growth patterns under two temperatures were identical. The culture results proved that the 

fouling observed on metal surfaces was bio-fouling caused by bacteria. 

4.4.2 Aluminum sensors with 2-minute cleaning intervals 

Sensor signals with 2-minute cleaning intervals (Figure 4.10) indicated that air-blast 

cleaning with h e foulin 180 signal. Sensor 

signals without cleaning (Figure 4.11) showed serious signal deterioration on both IR45 and 

ORA180 signals. After a 12-day cleaning experiment (November 12, 2008), signal deterioration 

on both sensors accelerated due to serious fouling. By comparing Figure 4.10a and 4.10b, less 

fouling was observed on ORA45 signal, even without air-blast cleaning.  

 

ed based on actual field condit  

igher frequency helped reduc g, especially for the ORA
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 (b) 

Figure 4.10 Signals measured from aluminum sensors with 2-minute cleaning intervals:  

(a) sensor with air-blast cleaning; (b) sensor without Cleaning. 
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By observing photographs of the sensors taken 20 days after the experiment started 

(Figure 4.11), bio-fouling spots were found on aluminum case of both sensors (Figure 4.11a). 

However, clay/silt fouling was only found on the sensor without the cleaning mechanism (Figure 

4.11b). Results shown in Figure 4.10 and photographs shown in Figure 4.11 both verified that 1) 

air-blast cleaning at 2-minute intervals was more effective in removing clay/silt fouling than that 

at 12-hour intervals; 2) Bio-fouling persisted even when the cleaning was activated at 2-minute 

intervals; 3) To avoid bio-fouling, aluminum material should not be used. Manov et al. (2004) 

suggested that copper-based materials could be employed for optical sensors for long-term 

submersed deployments due to the fact that copper can significantly reduce marine fouling. 
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(a) 

 

Sensor with air-blast cleaning Sensor without cleaning 

 
(b) 

 

Figure 4.11 Photographs showing clay/silt fouling and bacterial fouling on sensors after a 

20-day cleaning experiment (October 31 – November 19, 2008): (a) bacterial fouling spots 

on both sensor cases; (b) clay/silt fouling only on the tube surface of the sensor without 

cleaning. 

4.4.3 Polyethylene sensors with 2-minute cleaning intervals 

corded for the sensors with and without cleaning during 

the 17-day experiment. For the sensor with cleaning at 2-minute intervals (Figure 4.12a), signals 

Figure 4.12 shows the signals re

Sensor with Sensor without cleaning Sensor with air-blast cleaning



were relatively clean when compared with signals shown in Figure 4.10a. Figure 4.13 shows 

photographs s completed. T

on either sensor. Bio-fouling around optical components and on sensor cases was observed on 

aluminum sensors during the previous experiment. It was not found on the polyethylene sensors 

during this experiment. 

Figure 4.12a shows an increasing trend on the transmitted signals (ORA180) and a 

decreasing trend on the backscattered signals (IR45 and ORA45), which was probably due to the 

continuous settling of the suspended sediment in the fishing tank. Lower concentration of 

suspended sediments resulted in stronger transmitted signal and weaker backscattered signal. 

Without frequent lens cleaning, fouling on sensor lenses caused transmitted signals to decrease 

and backscattered signal to increase, as can be seen in Figure 4.12b, where an obvious decreasing 

trend and an increasing trend are observed on the ORA180 and IR45 signal, respectivel  

noticed from Figure 4.12b that the ORA45 signal displayed a relatively smaller fouling 

comparing to other two signals. The reason is unknown. 
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(b) 

Figure 4.12 Indoor cleaning experiment using two polyethylene sensors: (a) signals of the 

sensor with cleaning; (b) signals of the sensor without cleaning. 
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               Sensor with air-blast cleaning                      Sensor without air-blast cleaning 

(a) 

                
                Sensor with air-blast cleaning                     Sensor without air-blast cleaning 

(b) 

Figure 4.13 Photographs comparing sensors with and without air-blast cleaning after a 16-

day cleaning experiment (November 26 ~ December 12, 2008) was completed: (a) side view; 

(b) bottom view. 

 

Careful observation of clay/silt fouling on the sensor without air-blast cleaning (Figure 

4.13) indicates that, clay/silt was accumulated at places where LEDs and PTs of 0 and 180 

degrees were located. Future design of the sediment sensor may consider placing optics further 

away from sensor edges to avoid fouling on lenses due to clay/silt accumulation on these places. 
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4.4.4 Comparison between aluminum sensor and polyethylene sensor 

Sensor signals from the aluminum and polyethylene sensors with 12-hour cleaning 

intervals are shown in Figure 4.14a and 4.15a, respectively, indicating signal deterioration by 

fouling and signal recovery due to air-blast cleaning. Signals measured from the aluminum 

sensor without cleaning (Figure 4.14b) clearly indicated that fouling of the sensor lenses caused 

the transmitted signal (ORA180) to decrease and the backscattered signals (IR45 and ORA45) to 

increase. Signals measured from the polyeth or without cleaning (Figure 4.15b) showed 

fouling. Fouling had a relatively small effect on ORA45 signal. 
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(b) 

Figure 4.14 Signals recorded during the four sensor comparison experiment: (a) 

polyethylene sensor with air-blast cleaning; (b) polyethylene sensor without cleaning. 
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(b) 

Figur num e 4.15 Signals recorded during the four-sensor comparison experiment: (a) alumi

sensor with air-blast cleaning; (b) aluminum sensor without cleaning. 
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Observation of the sensors after they were operating under water for four days showed 

that air-blast cleaning was effective in removing clay/silt fouling (Figure 4.16 and 4.18). 

Observations made 18 days after the start of the experiment showed that both clay/silt fouling 

and bio-fouling persisted on both aluminum sensors, even with air-blast cleaning (Figure 4.17). 

On both polyethylene sensors, however, only clay/silt fouling was observed (Figure 4.19). 

Activating the air-blast cleaning mechanism every 12 hours was not sufficient to completely 

eliminate clay/silt fouling, when clay/silt continuously accumulated for a long term. By 

observing the sensors without air-blast cleaning (Figure 4.17 and 4.19), the majority amount of 

clay/silt was again found at sensor edges where LEDs and PTs were located at 0 and 180 degrees. 

For the sensors with air-blast cleaning (Figure 4.17 and 4.19), sensor edges were clean. However, 

there was still small amount of clay/silt found at places where PTs were located at 45 and 90 

degrees. In order to have a better cleaning result, more frequent cleaning and modification of the 

embedded air paths should be considered. 

 

 
Figure 4.16 Aluminum sensors after working in water for four days (December 19 ~ 23, 

2008). 

 

 

Sensor with air-blast cleaning Sensor without cleaning 



 
Figure 4.17 Aluminum sensors after working in water for 18 days (December 19, 2008 ~ 

January 6, 2009). 

 

Sensor with air-blast cleaning Sensor without cleaning 

     
Figure 4.18 Polyethylene sensor after working in water for four days (December 19 ~ 23, 

2008). 

 

 

Sensor with air-blast cleaning Sensor without cleaning 
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Figure 4.19 Polyethylene sensor after working in water for 18 days (December 19, 2008 ~ 

January 6, 2009). 

4.4.4 Pressure drop test 

pressure loss of less than 0.2 psi with 50 feet tubi

sensor and air compressor in actual field installations

will not cause problems for the system.  

 

Table 4.1 Air pressure drop test. 

Gauge 1 (psi) Gauge 2 (psi) 

Sensor without cleaning Sensor with air-blast cleaning

 

The pressure drop test result is shown in Table 4.1. The air-blast cleaning system had a 

ng. Because the maximum distance between the 

 will be less than 50 feet, air pressure drop 

Gauge 3 (psi) Total pressure drop (psi) 
105 104.9 104.8 0.2 
91 90.5 90.5 0.5 
81 80 79.9 0.2 
63 63 0 63 
41 41 41 0 

 

4.4.5 Cost estimation 

Table 4.2 shows estimated costs of the components required to build a complete air-blast 

cleaning system. 
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Table 4.2 Cost estimation for one complete set of . 

Component Estimated cost ($) 

 air-blast cleaning system

Air Compressor 170 

Solenoid Valve 100 

Pressure Reducing Valve 100 

Air Fittings and Plastic Tubings 20 

Electronics Components (Wires, Circuit Board) 10 

Total Estimated Cost 400 

 

4.5 Conclusion 
Two types of fouling - clay/silt fouling due to clay/silt accumulation on sensor lenses and 

l contamination - were observed on the SSC sensors. Both fouling 

effects 

ced severe bio-fouling even with air-blast cleaning.  

nly clay/silt fouling was found on polyethylene sensors. Air-blast cleaning mechanism 

was capable of reducing clay thylene cases. Effect of bio-

fouling nsign eth or ylene 

sensors with air-blast cleaning s be appropri

The current design of em ed air paths lyethylene sensors  not effective to 

clean lenses at 45 and 90 degree s, however, rat fective to lenses at 0 and 180 degrees. 

Higher cleaning frequency and longer cleaning duration help improve the cleaning function 
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bio-fouling due to bacteria

caused transmitted signals to decrease and backscattered signals to increase.  

Clay/silt fouling and bio-fouling were both observed on sensors with aluminum case. Air-

blast cleaning mechanism was capable of reducing clay/silt fouling on aluminum cases. The 

sensor tube of aluminum sensor experien

O

/silt fouling on sensors with polye

seems to be i ificant on poly ylene cases. F field applications, polyeth

eem to ate.  
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CHAPTER 5 - AN OPTICAL SEDIMENT SENSOR 

sedim

conce ent sensors could result in time 

meas

were conducted in the laboratory to examine the sensor performance on velocity measurement 

was use

the colo

the cross-correlation principle. The results indicated that the cross-correlation-based velocity 

sensor was capable of measuring water flow velocity using the dye injection method.  

Keywords. Cross-correlation, Flow velocity measurement, Brilliant Blue FCF, Optical sensor. 

5.1 Literature Review 
Flow velocity measurements have been conducted together with SSC measurement to 

determine sediment transportation in various field environments. Huntley and Hanes (1987) 

conducted SSC measurements from a backscattered sediment sensor with simultaneous velocity 

measurement from an electromagnetic flow meter. They employed five sediment sensors at five 

different heights above the seabed, and an electromagnetic current meter at only one height for 

velocity measurement. Downing et al. (1981) developed an instrumentation system to investigate 

sediment suspension process in shallow marine environment. This system consisted of an 

electromagnetic current meter for flow velocity measurement, and a five-element array of optical 

backscattered sensors for SSC measurement. The U. S. Army Corps of Engineers conducted 

research to estimate flux and direction of suspended material transport on the central California 

continental shelf during their harbor development projects. They used a vector-measuring current 

meter for velocity measurement paired with optical backscatterance sensor for SSC 

determination (Sherwood et al., 1989). Presto et al. (2006) studied the temporal and spatial 

INTEGRATED WITH FLOW VELOCITY MEASUREMENT  

Abstract. Flow velocity measurement is usually conducted with SSC measurement to assess 

ent mass transport at a given time and depth. However, flow velocity and sediment 

ntration measurements that were conducted by differ

mismatch, and high cost for equipment. An optical sediment sensor integrated with flow velocity 

urement based on cross-correlation principle was tested in this study. Two flow experiments 

using a closed circulation system, respectively. A solution of blue colorant, Brilliant Blue FCF, 

d as an artificial absorbent to create signal variation pattern when water flow that carries 

rant passed through the sensor. Flow velocity was calculated based on the patterns using 
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variability of the flow velocity and dispersal of suspended-sediment on a fringing reef flat, 

Molokai, H

op or 52 cm 

d 

Garcia (2002) used two acoustic Doppler velocimeters (ADV) and an optical backscatter sensor 

ater flows 

f 

 1997). Doppler-type meters determine flow velocity by measuring 

the change in frequency of light or ultrasound waves reflected from moving sediment or air 

bubbles (Simpson, 2001; USBR, 1997). This type of 

awaii, using an electromagnetic current meter installed 20 cm above the bed, two 

tical backscatter sensors 20 and 50 cm above the bed, respectively, a pressure sens

above the bed, and a transmissometer 70 cm above the bed (Presto et al., 2006). Holmes an

for velocity and sediment concentration measurement over bedforms in sand-bed rivers, 

respectively. They had to use a compass/tilt/roll sensor to determine orientation of the ADVs. 

However, flow velocity and sediment concentration measurements that were conducted by 

different data acquisition systems could result in time mismatch between the time series of the 

sediment and flow data. If these two measurements were done at multiple locations, high cost 

would be required for equipment/instrumentation setup.  

Traditional flow measurement devices were designed based on various physical 

principles and each has its advantages and limitations. Anemometer and propeller meters use 

mechanical movement of anemometer cup wheels or propellers to sense flow velocity (Hooper et 

al., 2000; GPI, 2009). This type of flow meter does not sense direction of velocity (USBR, 1997). 

Electromagnetic meters use the principle of electromagnetic induction. When w

through a magnetic field, a voltage is induced, from which the flow rate is inferred. This type o

meter is directional (USBR,

meter requires the presence of suspended 

particles or air bubbles and is not suitable for clean waters (FWS, 2006). Optical strobe velocity 

meters use the strobe effect to determine surface velocity of streams. For this type of meter, no 

parts are immersed in the flowing stream (USBR, 1997). Changes in flow velocity can be 

converted to pressure changes by a pressure transducers attached to a standard wading rod. This 

type of meter does not produce good results in shallow waters or in slow-moving water flows 

(FWS, 2006). Transit-time flow meters measure the difference between transit times of a high-

frequency ultrasonic wave in the upstream and downstream directions to calculate the flow 

velocity. These meters require clear water to operate properly (FWS, 2006). 

Cross-correlation techniques have been widely used to determine the time delay between 

two or more signal series (Keech, 1991; Bendat and Piersol, 2000). Critten (1974) invented a 

flow meter based on cross-correlation principle. His invention consisted of a pair of acoustic-to-
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electric transducers that were positioned apart in the flow direction to measure acoustic radiation 

generated by random fluctuations in a flowing fluid system. Keech (1991) invented a cross-

correlation apparatus and method to measure traveling speed of a cable along a predetermined 

path. He conducted the measurement by detecting electrostatic charges induced on cable surface 

by two electrostatic charge sensors which were spaced in the direction of the cable. Wren et al. 

(2006) used the cross-correlation method to compare the timing and shape of dynamic 

electromyography (EMG) signals. Eam-O-Pas et al. (1994; 1997) developed a correlation-based 

flow velocity sensor to measure velocity of glass beads flowing through a pipe. A previously 

designed optical sediment concentration sensor that can measure SSC on real time has been 

developed in Instrumentation and Control Laboratory, Kansas State University. This device was 

applied to a long-term field experiment at low water stream crossings in Kansas and Georgia 

(Stoll, 

 

2004; Zhang et al., 2006; Zhang, Y. et al., 2007). Zhang N. et al. (2007) proposed to add 

cross-correlation-based flow velocity measurement to the sediment sensors through a simple 

structure modification. The integrated sensor allows simultaneous measurement of sediment 

concentration and flow velocity using one data acquisition system, hence, guaranteeing time 

synchronization between the SSC and flow velocity measurements. The simple optical design 

would also provide an integrated SSC/flow velocity sensor at a very low cost.  

5.2 Objective 
The integrated SSC/flow velocity sensor was tested to evaluate its performance on flow 

velocity measurement based on the cross-correlation principle. The experiment was conducted 

using a closed circulation system in the laboratory. An injection system using pressurized air and 

the gravity principle was designed to inject colorant to the water flow as an artificial absorbent 

for cross-correlation calculation. Results of the flow velocity experiment were discussed and 

compared with a commercial flow meter. 

5.3 Methodology 

5.3.1 Sediment/velocity sensor design 

The optical sediment sensor used in this study was developed from a previous design. It 

used three Light Emitting Diodes (LED) that emitted lights of different colors (blue-green, 

infrared, orange) as the light sources and nine phototransistors that were placed at 45º, 90º and
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180º angles with respect to each LED (Stoll, 2004; Zhang et al., 2006). In order to avoid over-

fitting in prediction models and allow a much simpler sensor design, the sediment sensor was 

then simplified over the previous design. The simplified design adopted a 2-ring structure 

(Figure 5.1a) that consisted of four phototransistors, BG90, IR45, ORA45 and ORA180, and 

three LEDs (Zhang et al., 2006). Zhang, N. et al. (2007) proposed to add a third ring for cross-

correlation-based flow velocity measurement. In Figure 5.1b, the first two rings viewed from the 

far end were the original sediment sensor structure. The velocity measurement was enabled by 

using the “Orange LED 1” and two phototransistors (PT) on the first ring and the “Orange LED 

2” and two PTs on the added third ring. Obviously, Orange LED 1 and its two PTs on the first 

ring were responsible for both SSC and water flow velocity measurement. The pin description of 

the sediment/velocity sensor was shown in Appendix L. 

 

 

Cross-correlation is the correlation between two signals and is widely used for 

delays or pattern shift in signal processing techniques (Bendat and Piersol, 

2000; Beck and Plaskowski, 1987). Given two signal series that have identical shape but differ 

ulation of cross-correlation coefficient can determine 

how m

 
(a) (b) 

 

Figure 5.1 Flow-velocity measurement added to the SSC Sensor: (a) the two-ring SSC 

sensor, (b) the three-ring, integrated SSC/flow-velocity sensor (Zhang, N. et al., 2007). The 

first and added third rings are used for velocity measurement. 

5.3.2 Cross-correlation principle 

measurement of time 

by a time delay along the time axis, calc

uch one signal has to shift along the time axis to coincide with the other signal. The cross-

correlation coefficient has the maximum value of 1 when two signals, one measured at an 
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upstream location and the other downstream, exactly match (Bendat and Piersol, 2000; Bourke, 

1996).   

The working principle of the optical flow velocity sensor is shown in Figure 5.2.  The 

“Orange LED 1” and two phototransistors (45º PT 1 and 180º PT 1) in ring 1 measure the 

upstream signal. The “Orange LED 2” and two phototransistors (45º PT 2 and 180º PT 2) located 

in ring 3 (Figure 5.2a) measure the downstream signal. The spacing between the two rings was 

40 mm. For a stable flow, the upstream and downstream signals measured by two groups of PTs 

should be identical in shape because the PTs at the upstream and downstream locations were 

seeing the same water flow, with a time delay (Figure 5.2b). 
Ring 1 

 
(a) 

 
(b) 

Figure 5.2 (a) 3-D view of the sensor structure for flow velocity measurement; (b) Identical 

signals measured at the upstream and downstream locations. 

Ring 3 

   D=40 mm 

Flow direction

45º PT 1 180º PT 1Orange LED 1 

Orange LED 2 45 PTº 2 180 PTº 2
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When sediment or air bubbles travel with a stream flow, identical variations in measured 

transmitted and backscattered light signals can be observed at both upstream and downstream 

with a time delay. This time delay can be identified as the time at which the cross-correlation 

coefficient of the upstream and downstream signals reaches the maximum value. By knowing the 

time delay and the distance between two rings, flow velocity can be determined by dividing the 

distance by the time delay: 

                                                                            
dT

DV =                                              (5.1) 

where 

V = flow velocity (m/s); 

D = distance between two rings (m); 

Td = Tim en  and downstream signals (s). 

 

Assume  and  represent the upstream and downstream signals, respectively, 

cross-correlation coefficient 

e delay betwe upstream

)(tX )(tY

xyρ  can be calculated as (Eam-O-Pas et al., 1994): 

)(xyR

)0()0( yyxx
xy RR ⋅
=

τ
ρ                                (5.2)               

where 

τ  = time delay; 

 = cross-correlation function; 

and  = autocorrelation functions. 

)(τxyR

)0(xxR )0(yyR

τ is a continuous variable. It can be calculated by discretization for discrete signals as 

follows: 

      ih=τ                                                 (5.3) 

where 

   = number of data points shifting;     

h  = time interval between data points. 

i

The cross-correlation coefficient for discrete signals is: 
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where 

nX = data points in the upstream signal series; 

nY  = data points in the downstream signal series;  
−
X  = mean value of the upstream signal series; 

ownstream signal series; 

uring time period T for each signal series. 

ransit time can be calculated by: 

−
Y   = mean value of the d
N  = number of data points recorded d

 

T T

S
i

T m=
                                                      (5.5) 

where: 

= number of data shifting when the cross-correlation  

       value; 

pling frequency (Hz). 

 

The cross een -1 and +1, with zero indicating no 

correlation b n the ith exactly the same shape have a cross-

correlatio

relation coefficient (Appendix M). 

5.3.3 Preliminary color test 

Since natural water flows do not always contain sufficient measurable sediment or air 

bubbles to generate useable signal patterns for cross-correlation analysis, flow measurement by 

injectin . Possible markers can be color 

markers, air bubbles, radioactive isotopes, temperature fluctuations, ions, etc. (Beck and 

Plaskowski, 1987). The injection of dye was selected for flow experiments in this study because 

various food colors are readily available and food dyes injected to water generally do not change 

mi  coefficient reached the maximum 

S  = Sam

-correlation coefficient lies betw

etwee  two signals. Two signals w

n coefficient of 1. A MATLAB program was developed to conduct the calculation of 

cross-cor

g tagging markers into water flow has its advantages
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the density of water. A preliminary experiment was conducted to find the dye color that gives the 

greatest contrast in light signals generated by an orange LED. Six food dyes (Blue, Green, Pink, 

Purple, Yellow, Red) purchased from a grocery store were used for the experiment. For each 

food dye, the same amount of color was added to a fixed volume of water in a plastic container. 

A Labview program was developed to turn on orange LEDs in the velocity sensor and record 

sensor sig with a sampling frequency of 2000 Hz 

(Appendi aned after each test.  

5.3.4 Flo

In sensor performance on flow velocity 

measurem of 3000 

mg/L was used to create measurable signal variations for cross-correlation analysis.  

y ity experiment (Figure 5.3) consisted of a velocity 

sensor, an F-1000-RB paddle flow rate meter (Blue-White Industries Ltd., Huntington Beach, 

CA), a p (G te water, 

PVC pipes, a signal conditioning unit to convert light to electronic signals, and the dye injection 

system. T

drop tube (R&D Sprayers, Opelousas, LA), a 12V normally closed solenoid valve (Aerocon 

Systems Co., San Jose, CA), a 12V air compressor equipped with a 3.5 liter air tank (Omega 

Research and development, Inc., Douglasville, GA), a pressure reducing valve (McMaster-Carr 

Supply

d by adding a rigid plastic tube as the bottom so that 

it could be connected to the circulation system. The sensor was mounted bottom up because: 1) 

tus can be observed through the clear plastic bottom to check the 

system

nals under each dye color for 5 seconds 

x N). The container and the sensor were fully cle

w velocity experiment 

door experiments were conducted to test the 

ent using a closed circulation system. A dye solution with a concentration 

The laborator  setup for flow veloc

 compact, submersible centrifugal pum rainger, Inc., Chicago, IL) to circula

he dye injection system consisted of a bottle with specially designed spray header and 

 Company, Robbinsville, NJ),  a diaphragm check valve (Ark-Plas Products, Inc., Flippin, 

AR), two relay circuits to control the air compressor and the solenoid valve, respectively, a car 

battery as the power supply, and plastic tubing for air or dye.  

The open-bottom sensor was modifie

the dye movement and LED sta

 operations; 2) this orientation allowed most of dye to flow through LED/PT pairs. The 

flow meter was installed inline with the sensor, following installation directions, to measure the 

flow rate in Gallon per minute (GPM). A laboratory flow experiment with a total of 11 flow 

velocity settings and two repeats at each velocity setting was conducted. All GPM values were 

converted to meter per second (MPS) based on the inside diameter of the sensor tube.  
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Figure 5.3 Flow velocity laboratory experiment setup using a closed circulation

Sensor mounted 
up-side down Flow meter Pump 

 system. 

 Instruments Corporation, Austin, 

TX).  

 

The air compressor worked as the air source and its outlet pressure was regulated to 5psi 

through the pressure reducing valve. The diaphragm check valve with the cracking pressure of 1 

psi was attached at the end of the plastic tubing through a hole on the sensor mounting bracket 

(Figure 5.4). This normally closed valve required a positive pressure that is higher than its 

cracking pressure to open. Once the positive pressure disappears, the diaphragm automatically 

returns back to its original position, closing the valve (SSL, 2009). Figure 5.4 also shows a metal 

plate attached to the bracket to direct the dye flow. A stretch out view showing the check valve 

position and the LED/PT pairs of the flow sensor is shown in Figure 5.5. A Labview program 

(Appendix N) was developed to control the LEDs and the dye flow, and acquire transmitted and 

backscattered signals using a NI6025E DAQ board (National
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Figure 5.4 A metal piece used to dire low for velocity measurement. 

Check 
Valve 

Metal Plate to 
direct dye flow 

ct the dye f

 

 

Figure 5.5 Stretch-out view of the flow velocity sensor. 

In order to eliminate the air compressor from velocity measurement, the container of dye 

solution was mounted upside down so that dye can be injected by gravity (Figure 5.6). For this 

method, a hole was drilled at the bottom of the bottle to allow outside atmospheric pressure to act 

on dye solution in the bottle. 
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Solenoid 
valve 

2.65m (8.7 ft) 

Figure 5.6 Flow velocity injection system using gravity principle. 

 

Because the cracking pressure of the check valve is 1 psi, pressure on the upstream side 

of the air hose must be greater than 1 psi for the valve to open. The minimum head H, i.e. the 

hanging height of the dye bottle from the check valve, to achieve a 1 psi pressure, can be 

calculated as follows (Spellman, 2001). 

    31.2
433.0
1

433.0
===

PH (ft)                                      (5.4) 

where 

P – cracking pressure of the check valve (psi). 

 

 this study, the bottle was actually hung on the ceiling of the laboratory, which was 

2.65m 

 

 

In

(8.7 feet) from the check valve. This gave 3.77 psi on the check valve when the solenoid 

valve is turned on. 
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5.4 Result 

5.4.1 Preliminary color test 

The preliminary color test showed a significant signal contrast between blue color and 

clean water (Figure 5.7), which indicated that blue colorant can absorb orange light emitted by 

the orange LEDs in the velocity sensor. Thus, a dye named Brilliant Blue FCF (CAS number 

3844-45-9) was selected for the sensor. This dye is commonly used in foods, drugs and 

cosmetics. It is soluble in water, e solution has a maximum absorption at 630 nm (O’Neil 

et al., 2001). The orange LED used in flow velocity measurement has a peak wavelength of 610 

nm. When a drop of dye is flowing through the sensor, lights emitted from the orange LEDs on 

the upstream and downstream locations are absorbed by the dye, resulting in a significant signal 

drops for the PTs.   

 

 and th
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5.4.2 Comparison of velocity measurements using backscattered and transmitted 

signals 

Ts at 45º angle (ORA45) in the flow velocity sensor and the 

calcula

 water situations. In addition, ORA180 signals tend to decrease and could 

become insensitive to dye at high sediment concentrations. However, the ORA45 signals will 

still respond to dye flow under high SSC conditions since it has an increasing trend when the 

SSC increases. ORA45 PTs are probably more useful than ORA180 PTs in flow velocity 

measurement. 

 

 

 

 

 

Signals measured by P

ted cross-correlation coefficient are shown in Figure 5.8. The upstream and downstream 

signals have the same trend but with an obvious time delay. The calculated cross-correlation 

coefficient is plotted in Figure 5.8b. The time delay was determined when the cross-correlation 

coefficient reached its first peak. 

Signals measured by PTs at 180º angle (ORA180) in the flow velocity sensor are shown 

in Figure 5.9. The signal fluctuated more than the ORA45 signals (Figure 5.8a). These results 

indicated that the transmitted light (ORA180) had high sensitivity to dye solution under clean 

water conditions, but the ORA45 signals were more stable in determination of cross-correlation 

coefficient for clean
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Figure 5.8 (a) Signals measured by ORA45 PTs in the flow velocity sensor; and (b) cross-

correlation coefficient. 
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Figure 5.9 (a) Signals measured by ORA180 PTs in the flow velocity sensor; and (b) cross-

correlation coefficient. 
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5.4.3 Flow velocity experiment  

Results of 11 tests using a closed circulation system are shown in Table 5.1. The flow 

velocities were only calculated from the ORA45 signals. The results showed good agreement 

between flow velocities measured by the sensor and the flow meter except for measurements 

conducted at low velocity range (<0.24 m/s). This is because that the flow meter’s working range 

is 3-30 GPM (BWI, 2009), which corresponds to a flow velocity range of 0.66 - 6.64 m/s for the 

pipe used in the experiment (0.75 inch inside diameter). 

 

Table 5.1 Comparison between sensor measured velocity and flow meter measured velocity 

(2 repeats for each flow velocity setting). 

Flow meter (GPM) Flow meter (m/s) Sensor measurement (m/s) 

1.18 4.83 1.07 1.18 
0.95 4.53 1.00 0.95 
0.95 4.29 0.95 0.95 
0.80 3.78 0.84 0.80 
0.69 3.21 0.71 0.69 
0.61 2.53 0.56 0.61 
0.43 2.04 0.45 0.43 
0.34 1.49 0.33 0.34 
0.28 1.09 0.24 0.30 
0.25 0.49 0.11 0.24 
0.23 0.08 0.02 0.22 

 

 the sensor and the flow mFlow velocities measured by eter within the operating range of 

the flow meter are compared in Figure 5.10. Taking flow meter results as the true values, the R 
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Square value of the sensor was 0.9715. The Root Mean Square Error (RMSE) of the sensor 

measurement was 0.05m/s, and the average relative error was 2.89%. 
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Figure 5.10 Comparison of flow ities measured by the velocity sensor and the flow 

meter. 

5.5 Conclusion 
A correlation-based flo ocity measurement function was added to a previously 

designed optical sediment sensor by adding a third LED/PT ring. This integrated design provides 

a low-cost s or simultaneous m ents of sediment concent and flow velocity.  

A solution of Brilliant Blue has a maximum absorption at  and can absorb 

orange light emitted by the orange LEDs which has a peak wavelength of 610nm. Thus, blue 

colorant Brilliant Blue FCF was selected for flow tests.  

Indoor laboratory experiments were conducted to test the sensor performance on flow 

velocity m rement using a closed circulation system. Results showed good agreement 

between velocities measured by the sensor and a flow meter. Compared with the flow meter 

results,

 veloc

cross- w vel

olution f easurem ration 

FCF  630 nm

easu

 the root mean squre error (RMSE) for the measurement was 0.05m/s and the average 

relative error was 2.89%. 
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CHAPTER 6 - 

6.1 C
ation sensor developed in this study was designed to measure pure 

texture

relative  developed for 

comple

five so

models established for individual water types had R-square values of higher than 0.89, indicating 

0.94 were achieved for the calibration and two validation datasets taken at all soil type and water 

type combinations, indicating that the neural-network models can further remove the influence of 

soil texture type on SSC measurement.  

In order to avoid over-fitting in prediction models and allow a simpler sensor design, the 

optical sediment sensor was simplified from a “three-ring” design to a “two-ring” design based 

on a statistical “stepwise selection” analysis. 

Results of an outdoor experiment indicated that a relative light index based on light 

modulation was capable of reducing the impact of ambient light on sensor measurement.  

Long-term field experiments conducted in Kansas and Georgia indicated that the optical 

sediment sensor was capable of long-term, real-time SSC monitoring. The effect of temperature 

on SSC measurement was studied using grab samples taken within a seven-month period. R-

square values of 0.9776 and 0.9773 were achieved for prediction models established without and 

with temperature compensation for SSC greater than 500mg/L, respectively. For SSC lower than 

500mg/L, the R-square values were 0.9015 and 0.9057, respectively. An ANOVA analysis 

indicated that temperature had no significant effect on sensor signals at a 0.01 significance level. 

CONCLUSIONS AND RECOMMENDED FUTURE 

WORK 

onclusions 
Sediment concentr

suspended sediment concentrations (SSC) in water. Overall statistics analysis indicated that soil 

 played an important role in SSC measurement accuracy, whereas water type had a 

ly small effect on the sensor performance. Multiple regression models

individual soil types all achieved R-square values of higher than 0.99, indicating almost 

te elimination of the influence of water color on SSC measurement accuracy. When all 

il types were combined, the R-square value was reduced to 0.8802. Multiple regression 

that water color has relatively limited impact on SSC measurement accuracy.  

Neural-network models were developed to predict SSC. R-square values of greater than 
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Signals of the optical sediment sensor deteriorated from fouling during the long-term 

fouling trend through a regression  taken during no-rain periods. 

The field experiment at Fort Benning indicated that the open-bottom design of sensor case 

lity signals than the closed-bottom design, mainly because of reduced 

cloggin

fouling even with 

air-blas

sediment concentration and flow velocity. The 

solution

 LEDs 

which 

field experiments. Fouling on optical lenses caused the transmitted signal to decrease and the 

backscattered signal to increase. A signal correction algorithm was developed by determining the 

analysis on peak signal values

provided higher-qua

g and fouling problems.  

In order to reduce fouling problems, an air-blast cleaning mechanism was integrated into 

the optical sediment sensor. Laboratory experiments in manually created fouling environments 

were conducted to study the fouling on sensors with aluminum and polyethylene cases, and to 

evaluate the effectiveness of the air-blast cleaning. Two types of fouling, clay/silt fouling due to 

clay/silt accumulation on sensor lenses and bio-fouling due to bacterial contamination, were 

observed on sensors. Both forms of fouling caused transmitted signals to decrease and 

backscattered signals to increase. Results showed that air-blast cleaning was capable of removing 

clay/silt fouling on sensor signals. Aluminum sensors experienced severe bio-

t cleaning. The effect of biofouling was not significant on sensors with polyethylene 

sensors. The current design of embedded air paths in polyethylene sensors needs to be modified 

to allow more effective cleaning. Higher cleaning frequency and longer cleaning duration would 

help enhance the cleaning power. 

A cross-correlation-based flow velocity measurement function was added to the optical 

sediment sensor by adding a third LED/PT ring. This integrated design provided a low-cost 

solution for simultaneous measurement of 

 of Brilliant Blue FCF was selected for flow experiments as artificial tagging markers. It 

has a maximum absorption at 630 nm and can absorb orange light emitted by the orange

has a peak wavelength of 610nm. Results of laboratory flow tests conducted in a closed 

circulation system showed good agreement between velocities measured using the sensor and a 

flow meter. The RMS errors of the measurement was 0.05m/s and the average relative error was 

2.89% when compared with the flow meter. 
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6.2 Re

her cleaning frequency and longer cleaning duration are needed. 

This is

commended Future Work 
The indoor cleaning experiment has proved that the air-blast cleaning mechanism was 

capable of removing fouling on sensor lenses. However, the current air outlet design did not 

allow the pressurized air to be blasted directly onto the lenses. Redesign of the air passages is 

highly recommended.  

Another problem is electric power supply for the cleaning mechanism for field 

deployment, especially when hig

 especially critical if an air-blast cleaning system has to be responsible for an array of 

sensors at the same installation site. A more efficient air pressure source that consumes less 

power consumption is recommended. 

In this study, flow experiments were conducted within a limited velocity range. Future 

research work on flow velocity measurements using equipment with an expanded velocity range 

is highly recommended. If situation permits, hydraulic equipment that provides stable, laminar 

flow should be developed for the experiments. In addition, the laboratory flow experiments were 

only conducted with clean water. Future laboratory and field experiments on water flows with 

various sediment concentrations will need to be conducted to verify the sensor performance on 

simultaneous SSC and flow velocity measurement. 
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Appendix B - CR5000 Program for Laboratory Calibration 

'CR5000 
'Yali Zhang 

ent sensor program 

(18) 

00)  
  

ple(18,photran(),FP2)   

(0,0,0,0) 
ple(18,averag(),FP2) 

 and scanning setup //////////////// 

2 step 1 

00) 

Trigger=0 then 
000000,&B0000000) 

000000,&B1000000) 
xitdo 

 loop 
 
 For j = 0 To 499 Step 1  'loop for 30 seconds 
 
  Scan(60,msec,2,1)   
   
   Portset(1,1)      
   VoltSE(photran(1),3,0,1,1,400,2000,1,0)  

'8/22/2004 
'Suspended sedim
 
'///////////////////// Variable declarations ////////////////////  
Dim photran(18)  
Dim averag
Dim i,j,k 
Dim Trigger 
 
'//////////////////////// Data tables setup //////////////////// 
DataTable(result,1,10
 DataInterval(0,0,0,0)
 Sam
EndTable 
 
DataTable(avresult,1,50) 
 DataInterval 
 Sam
EndTable 
 
'/////////////// Main program
BeginProg 
 
For i=0 to 3
 
 do 
  readio(Trigger,&B100000
 
  if 
   writeio(&B1
  else 
   writeio(&B1
   e
  endif 
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   Portset(1,0)      

   Portset(2,1)      
 VoltSE(photran(7),3,0,4,1,400,2000,1,0)   

 Portset(2,0)      
an(10),3,0,4,1,400,2000,1,0)  

   
00,2000,1,0)   

Portset(3,0)      
 VoltSE(photran(16),3,0,7,1,400,2000,1,0)  

N Then  
riteIO(&B1000,&B1000) 

 
vgrun(averag,18,photran(),500) 

NextScan 

result 

   VoltSE(photran(4),3,0,1,1,400,2000,1,0) 
    

  
  
  
   VoltSE(photr

   
   Portset(3,1)   

VoltSE(photran(13),3,0,7,1,4   
  

   
  
 
   For k = 1 TO 18 step 1 

an(k)= NA    If photr
     W
    End If 

 Next k   
  

   A
    
   CallTable result 
 

  
   

t j    Nex
 
 CallTable av
 
Next i 
 

riteio(&B01000000,&B0) w
 
EndProg 
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Appendix C - Neural Network Program for Laboratory Experiment 

Analysis 

clear all; 
  
%import data 
data=xlsread('anndata.xls','a2:m1981'); 

,5)./-5500 data(1:1980,6)./-5500 data(1:1980,7)./-5500 data(1:1980,BG=[data(1:1980 8)./-5500 
12)./-5500 

lication 3 as calibration set; 
80,1:9)'; 

(661:1320,10)'; 
1:9)'; 

% TT=BG(1:660,10)'; 
  
output=[]; 
result=[]; 
for n=3:9 
%Training 
net=newff(minmax(A),[n,1],{'tansig','tansig'},'trainlm'); 
net=init(net); 
  
    for i=1:60 
        net.trainParam.epochs=1; %Maximum number of epochs to train 
        net.trainParam.show=5; %Epochs between showing progress 
        net.trainParam.goal=0.0001; %Performance goal 

data(1:1980,9)./-5500 data(1:1980,10)./-5500 data(1:1980,11)./-5500 data(1:1980,
data(1:1980,13)./-5500 data(1:1980,4)./5000]; 
  
%replication 2 as calibration set; 
A=BG(661:1320,1:9)'; 
T=BG(661:1320,10)'; 
VA=BG(1:660,1:9)'; 
VT=BG(1:660,10)'; 

 TA=BG(1321:1980,1:9)';
TT=BG(1321:1980,10)'; 
  
% %replication 1 as calibration set; 

 A=BG(1:660,1:9)'; %
% T=BG(1:660,10)'; 

)'; % VA=BG(661:1320,1:9
% VT=BG(661:1320,10)'; 

 TA=BG(1321:1980,1:9)'; %
% TT=BG(1321:1980,10)'; 
  
% %rep

 A=BG(1321:19%
% T=BG(1321:1980,10)'; 

 VA=BG(661:1320,1:9)'; %
% VT=BG
% TA=BG(1:660,
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        net.trainParam.max_fail=5; %Maximum validation failures 
        net.trainParam.mem_reduc=1; %Factor to use for memory/speed tradeoff 

        net.trainParam.mu_dec=0.1; %Mu decrea
        net.trainParam.mu_inc=10; %Mu increas
        net.trainParam.mu_max=1e10; %Maximum Mu 

.time=inf; %Maximum time to train in second 
r]=train(net,A,T); 

./555.*5000.*5000); 
rrcoef(VT,Y2); 

TT-Y3).*559./555.*5000.*5000); 
T,Y3).*corrcoef(TT,Y3); 

se_va rmse_ta rsq_a(2,1) rsq_va(2,1) rsq_ta(2,1)]; 
ew]; 

; 

        net.trainParam.min_grad=1e-10; %Minimum performance gradient 
        net.trainParam.mu=0.001; %Initial Mu 

se factor 
e factor 

        net.trainParam
        [net,t
     
        %Simulation and calculation 
        Y1=sim(net,A); 
        rmse_a=sqrt(var(T-Y1).*559./555.*5000.*5000); 
        rsq_a=corrcoef(T,Y1).*corrcoef(T,Y1); 
        Y2=sim(net,VA); 
        rmse_va=sqrt(var(VT-Y2).*559
        rsq_va=corrcoef(VT,Y2).*co
        Y3=sim(net,TA); 
        rmse_ta=sqrt(var(
        rsq_ta=corrcoef(T
     
        resultnew=[n i rmse_a rm
        result=[result;resultn
         
    end; 
    outputnew=[n Y1]; 
    output=[output;outputnew]
end; 
  
%export files 
xlswrite('result',result); 
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Appendix D - SAS Program for Laboratory Experiment Analysis  

SAS Program: 
 
*option ls=80; 
proc import dbms=excel out=one replace 
  datafile='c:\zhangyl\Dissertation\Statistics\March08\data.xls'; 
  getnames=yes; 
run; 
data yalidata; 
set one (firstobs=2 rename=(replication=run Repeated=rep)); 
format concentration 6.2; 
run; 
 
Title 'BG45'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model BG45= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
    *lsmeans con*soil/pdiff ; 
     random rep(water*soil) run; 
run; 
 
Title 'BG90'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model BG90= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
    *lsmeans con*soil/pdiff ; 
     random rep(water*soil) run; 
run; 
 
Title 'BG180'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model BG180= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
    *lsmeans con*soil/pdiff ; 
     random rep(water*soil) run; 
run; 
 
Title 'IR45'; 
proc mixed data=yalidata ; 
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 class run water soil rep; 
 model IR45= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
   * lsmeans con*soil/pdiff ; 
     random rep(water*soil) run; 
run; 
 
Title 'IR90'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model IR90= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
   * lsmeans con*soil/pdiff ; 
     random rep(water*soil) run; 
run; 
 
Title 'IR180'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model IR180= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
  ans con*soil/pdiff ;   *lsme
     random rep(water*soil) run; 
run; 
 
Title 'ORA45'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model ORA45= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
  ans con*soil/pdiff ;  * lsme
     random rep(water*soil) run; 
run; 
 
Title 'ORA90'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
 model ORA90= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
  ans con*soil/pdiff ;   *lsme
     random rep(water*soil) run; 
run; 
 
Title 'ORA180'; 
proc mixed data=yalidata ; 
 class run water soil rep; 
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 model ORA180= water soil water*soil concentration concentration*water concentration*soil 
concentration*water*soil; 
 *lsmeans water soil water*soil con con*water con*soil /pdiff cl ; 
  ans con*soil/pdiff ;   *lsme
     random rep(water*soil) run; 
run; 
 
 

SAS Output: 
 

1．BG45              
 

                                            Num     Den 
                   Effec
 

t                    DF      DF    F Value    Pr > F 

                   Water                      3      40       1.85    0.1545 
                   Soil                       4      40      30.80    <.0001 

          Water*Soil                12      40       1.31    0.2533 
Concentration              1    1898    25794.7    <.0001 

entration*Water        3    1898       5.13    0.0016 

                  

                                            Num     Den 
                   Effect                    DF      DF    F Value    Pr > F 

Water                      3      40      12.18    <.0001 
                      4      40      44.01    <.0001 

r*Soil                12      40       7.42    <.0001 

ncentration*Water        3    1898       2.01    0.1100 
1    <.0001 

Concentra*Water*Soil      12    1898       0.51    0.9108 

       
              

                    Num     Den 
ct                    DF      DF    F Value    Pr > F 

ter                      3      40       1.99    0.1303 
7    <.0001 
3    0.9959 

entration              1    1898    19462.4    <.0001 
entration*Water        3    1898       0.15    0.9289 

                   Concentration*Soil         4    1898     158.66    <.0001 
          Concentra*Water*Soil      12    1898       0.15    0.9996 

         
                   
                   Conc
                   Concentration*Soil         4    1898     820.53    <.0001 
                   Concentra*Water*Soil      12    1898       3.00    0.0004 

                         
 
2． BG90              
 

 
                   
                   Soil 
                   Wate
                   Concentration              1    1898     879.30    <.0001 
                   Co
                   Concentration*Soil         4    1898     204.5
                   

 
 
 
3． BG180      
                          

                        
                   Effe
 
                   Wa
                   Soil                       4      40      65.9

Water*Soil                12      40       0.2                   
                   Conc
                   Conc
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4． IR45              
 

                         Num     Den                    
                   Effe
 

ct                    DF      DF    F Value    Pr > F 

                   Water                      3      40       2.59    0.0663 
                   Soil                       4      40      20.17    <.0001 
                   Water*Soil                12      40       0.69    0.7487 

          Concentration              1    1898     132113    <.0001 
            Concentration*Water        3    1898       3.54    0.0141 

              Concentration*Soil         4    1898    3084.04    <.0001 
                 Concentra*Water*Soil      12    1898       4.21    <.0001 

 
5． IR90
 

l         4    1898     354.07    <.0001 
  Concentra*Water*Soil      12    1898       3.24    0.0001 

                       

6． IR18

                 Concentra*Water*Soil      12    1898       1.43    0.1439 

         
       
     
  

 

              

                                            Num     Den 
                   Effect                    DF      DF    F Value    Pr > F 
 
                   Water                      3      40      12.53    <.0001 
                   Soil                       4      40      31.12    <.0001 
                   Water*Soil                12      40      28.27    <.0001 
                   Concentration              1    1898    19665.9    <.0001 
                   Concentration*Water        3    1898       2.67    0.0459 
                   Concentration*Soi
                 

                       
 

0             
                                            Num     Den 
                   Effect                    DF      DF    F Value    Pr > F 
 
                   Water                      3      40       2.55    0.0691 
                   Soil                       4      40      56.62    <.0001 
                   Water*Soil                12      40       0.91    0.5467 
                   Concentration              1    1898    80740.9    <.0001 
                   Concentration*Water        3    1898       2.06    0.1034 
 
  
                  Concentration*Soil         4    1898    1906.71    <.0001 

 
 
7． ORA45             
 

                                            Num     Den 
                   Effect                    DF      DF    F Value    Pr > F 
 
                   Water                      3      40       0.29    0.8296 
                   Soil                       4      40      28.15    <.0001 
                   Water*Soil                12      40       0.87    0.5817 
                   Concentration              1    1898     112033    <.0001 
                   Concentration*Water        3    1898       7.80    <.0001 
                   Concentration*Soil         4    1898    4052.52    <.0001 
                   Concentra*Water*Soil      12    1898       3.85    <.0001 
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8． ORA90             

                                            Num     Den 
  F Value    Pr > F 

                 Water                      3      40       1.11    0.3560 

 
9． ORA180             

                             Num     Den 
  F Value    Pr > F 

Pr > F 

 

                   Effect                    DF      DF  
 
  
                   Soil                       4      40      66.69    <.0001 
                   Water*Soil                12      40       3.23    0.0026 
                   Concentration              1    1898    5846.22    <.0001 
                   Concentration*Water        3    1898       1.20    0.3077 
                   Concentration*Soil         4    1898     193.19    <.0001 
                   Concentra*Water*Soil      12    1898       1.54    0.1038 

 
 
               
                   Effect                    DF      DF  
 
                 Water                      3      40       7.13    0.0006   

                   Soil                       4      40      69.21    <.0001 
                   Water*Soil                12      40       4.03    0.0004 
                   Concentration              1    1898    39528.3    <.0001 
                   Concentration*Water        3    1898       0.22    0.8802 
                   Concentration*Soil         4    1898     621.92    <.0001 

                    Concentra*Water*Soil      12    1898       0.48    0.9288
 
 
 
 

Proc mixed summary 
 

Signal 
er*Soil*Conc.Water Soil Water*Soil Conc. Water*Conc. Soil*Conc. Wat

BG45 0.0004  0.1545 <0.0001 0.2533 <0.0001 0.0016 <0.0001 
BG90 0.9108  <0.0001 <0.0001 <0.0001 <0.0001 0.1100 <0.0001 

BG180 0.9996  0.1303 <0.0001 0.9959 <0.0001 0.9289 <0.0001 
IR45 <0.0001 0.0663 <0.0001 0.7487 <0.0001 0.0141 <0.0001 
IR90 <0.0001 <0.0001 <0.0001 <0.0001 0.0459 <0.0001 0.0001 

IR180 0.0691 <0.0001 0.5467 <0.0001 0.1034 <0.0001 0.1439 
ORA45 0.8296 <0.0001 0.5817 <0.0001 <0.0001 <0.0001 <0.0001 
ORA90 <0.0001 0.1038  0.3560 <0.0001 0.0026 <0.0001 0.3077 

ORA18 0.9288 0 0.0006 <0.0001 0.0004 <0.0001 0.8802 <0.0001 
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App lection in Laboratory 

SAS Pr

endix E - SAS Program for Stepwise Se

Experiment  

ogram: 
 
*option ls=80; 
proc import dbms=excel out=one replace 
dat '; afile = 'c:\zhangyl\Dissertation\Statistics\data.xls
getname =yes; s
run; 
 
data yalidata; 
set one (firstobs=2 rename=(replication=run Repeated=rep)); 
format concentration 6.2; 
run; 
 
Title 'Stepwise selection'; 
proc reg; 
 A45 model concentration = BG180 BG90 BG45 IR180 IR90  IR45 ORA180 ORA90  OR
/selectio =stepwise; n
run; 
 
Title 'Residual plot for all 9 variables'; 
proc reg; 
 odel concentration = BG180 BG90 BG45 IR180 IR90  IR45 ORA180 ORA90  ORA45/r; m
 plot r.*p.; 
  out=sun r=residual ; output
run; 
 
T sid d vitle 'Re ual plot for 4 selecte ariables'; 
proc reg; 
 od n G9 RA 45/rm el conce tration =B 0 IR45 O 180 ORA ; 
 plot r.*p.; 
 ut u al o put out=s n r=residu ; 
run; 
 
Title 'Resid o es w 0 eual plot f r 3 variabl ith BG9 xcluded'; 
proc reg; 
 odel concentration = IR45 ORA180 ORA45/r; m
 plot r.*p.; 
 output out=sun r=residual ; 
run; 
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SAS Output: 

                                 
 
                                             Sum of           Mean 

                 DF        Squares         Square    F Value    Pr > F 

       Model                     8     3915357432      489419679    1540.29    <.0001 
                 1971      626276460         317746 

 4541633892 

                                  Stepwise selection       10:52 Wednesday, June 4, 2008   6 

                          The REG Procedure 

ndent Variable: Concentration Concentration 

                              Stepwise Selection: Step 8 

  Parameter     Standard 

ept      -4556.79382    611.39553     17650366    55.55  <.0001 
         BG180              0.55182      0.20668      2265108     7.13  0.0076 

             BG90              -1.50083      0.12654     44700375   140.68  <.0001 
9555      0.13794      4101081    12.91  0.0003 
5254      0.11009      5369250    16.90  <.0001 

1.79209      0.45890      4845770    15.25  <.0001 
      8601      0.22454     24858198    78.23  <.0001 

tion 

               Number  Partial   Model 
Step E bel         Vars In R-Square R-Square  C(p)   F Value Pr > F 

  1  IR45                        IR45              1    0.8258   0.8258  512.659 9379.64 <.0001 
    0.0094   0.8352  380.946  112.25 <.0001 
    0.0161   0.8513  153.535  213.27 <.0001 
    0.0090   0.8602  27.3269  126.78 <.0001 
    0.0003   0.8605  24.8292    4.46 0.0349 

90              6    0.0004   0.8610  20.5263    6.26 0.0124 
 O A90             7    0.0006   0.8616  13.6483    8.85 0.0030 
 BG180                       BG180             8    0.0005   0.8621   8.5214    7.13 0.0076 

 
 

     Analysis of Variance 

         Source  
 
  
         Error 
         Corrected Total        1979    
 
 
 
     
 
              
                                          Model: MODEL1 
                         Depe
 
     
 

                             
              Variable          Estimate        Error   Type II SS  F Value  Pr > F 
 
              Interc
     
 
              BG45               0.4

    IR90               0.4          
              IR45              -5.16949      0.24440    142155940   447.39  <.0001 
        ORA180            -1.40801      0.19717     16203110    50.99  <.0001       
              ORA90              
        ORA45              1.9
 
 
 
 
                                  Summary of Stepwise Selec
 
      Variable      Variable     
 ntered       Removed       La
 
 
   2  ORA45                       ORA45             2

                        BG90              3   3  BG90
  4  O RA180                      ORA180            4

          BG45              5   5  BG45              
  6  IR 90                        IR
 RA90                       OR  7 
   8 
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Appendix F - SAS Program for Outdoor Ambient Light Experiment 

Correlation analysis between regulated signal and ambient light: 
 
SAS Program: 
 
*option ls=80; 
proc import dbms=excel out=one replace 
datafile = 'c:\zhangyl\Dissertation\Statistics\outdoor.xls'; 
getnames=yes; 
run; 
 
proc corr data=one; 
var BG90ON_OFF IR45ON_OFF ORA45ON_OFF ORA180ON_OFF; 
with Ambient_Light ; 
run; 
 
proc sort data=one out=eachtrial; 
by trial; 
run; 
proc corr data=eachtrial; 
var BG90ON_OFF IR45ON_OFF ORA45ON_OFF ORA180ON_OFF; 
with Ambient_Light ; 
by trial; 
run; 
 
proc sort data=one out=sorted; 
 by concentration; 
run; 
proc corr data=sorted; 
  var BG90ON_OFF IR45ON_OFF ORA45ON_OFF ORA180ON_OFF; 
with Ambient_Light ; 
by concentration; 
run; 

 140



SAS Output: 

 

                               BG90ON_       IR45ON_      ORA45ON_      ORA180ON_ 

                      OFF           OFF           OFF            OFF 

bient_Light       0.48823      -0.44514      -0.49495        0.50365 

        Ambient_Light        <.0001        <.0001        <.0001         <.0001 

. 

BG90on-off 

Ambient light vs. 

IR45on-off 

Ambient light vs. 

ORA45on-off 

Ambient light vs. 

ORA180on-off 

1. Across all concentrations: 
                            

Pearson Correlation Coefficients, N = 216 

                                  Prob > |r| under H0: Rho=0  

 

  

               

 

             Am

     

 

 

2. At each trial: 
 

Ambient light vsConcentration 

level  

(mg/L) Coefficient P-valve Coefficient P-valve Coefficient P-valve Coefficient P-valve

Trial 1 0.45047     <.0001  -0.36189     0.0018  -0.37956     0.0010  0.41872 0.0003

Trial 2 0.55233     <.0001  -0.50833     <.0001  -0.57059     <.0001  0.55054 <.0001

Trial 3 0.47143     <.0001  -0.48787     <.0001  -0.56739     <.0001  0.56530 <.0001
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3. At each concentration: 
 

s. Ambient light vs. 

IR45on-off 

Ambient light vs. 

ORA45on-off 

Ambient light vs. 

ORA180on-off 

Ambient light v

BG90on-off 
Concentration 

level  

(mg/L) Coefficient P-valve Coefficient P-valve Coefficient P-valve Coefficient P-valve

0 0.39466 0.1051 0.44924 0.0614 -0.09127 0.7187 -0.02347 0.9263

200 0.64922 0.0036 0.54048 0.0206 -0.15248 0.5458 0.02853 0.9105

400 0.71511 0.0009 0.32778 0.1842 -0.11634 0.6457 0.14325 0.5707

600 0.58927 0.0101 0.33433 0.175 -0.19447 0.4394 0.29669 0.2319

800 0.55244 0.0174 0.03021 0.9053 -0.31599 0.2015 0.33497 0.1742

1000 0.49683 0.0359 -0.20987 0.4037 -0.26824 0.2818 0.34721 0.1580

1200 0.55971 0.0157 -0.28277 0.2556 -0.19530 0.4374 0.37834 0.1216

1500 0.60123 0.0083 -0.16042 0.5249 -0.09917 0.6954 0.21623 0.3888

2000 0.34136 0.1656 0.60285 0.0081 0.36883 0.1320 -0.52883 0.0240

4000 -0.7732 0.0002 0.99989 <0.0001 0.53789 0.0213 -0.9541 <0.0001

6000 -0.90048 <0.0001 1.000 <0.0001 0.3049 0.2186 -0.93416 <0.0001

8000 -0.83569 <0.0001 1.000 <0.0001 -0.00989 0.9689 -0.85264 <0.0001
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Append X  L ali

;{CR10X} 
;Yal
;4/29/2006 
;Suspended Sedim  C n 
 
*Table 1 Program 
01:0.0625    Execution Interval (seconds) 

 
1:  Read Ports (P25) 
 1: 16 ask (0
 2: 1        Loc [ trigger   ] 
 
2:  If (X<=>F) (P89) 
 1: 1  Loc [ t
 2: 1        = 
 3: 16
 4: 30       Then Do 
 
3:  Beginning of Loop (P87) 
 1: 1  lay 
 2: 80       Loop Count 
 
4:  Do (P86) 
 1: 10 t Outp g ) 
 
5:  Real Time (P7
 1: 221      Day,Hour/Minute,Seconds (midnight = 2400) 
 
6:  Set Port(s) (P20) 
 1: 0000     C8,C7,C6,C5 Options 
 2: 0001     C4..C1 = low/low/low/high 
 
7:  Volt (SE) (P1) 
 1: 1        Reps 
 2: 15       2500 mV Fast Range 
 3: 1        SE Channel 
 4: 2        Loc [ bg90on    ] 
 5: 1        Mult 
 6: 0        Offset 
 
8:  Sample (P70) 
 1: 1        Reps 
 2: 2        Loc [ bg90on    ] 
 
9:  Set Port(s) (P20) 

ix G - CR10 Program for aboratory C bration  

i Zhang 

ent Sensor alibratio Program 

       M ..255) 

      X rigger   ] 

       F 

      De

       Se ut Flag Hi h (Flag 0

7) 
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 1: 0000     C8..C5 = low/low/low/low 
 2: 0000     C4,C3,C2,C1 Options 

 1: 1        Reps 
00 mV Fast Range 
Channel 
 [ bg90off   ] 

ff   ] 

w/low/high/low 

s 
ast Range 

l 

70) 

,C1 Options 

 Fast Range 
el 

) 

5off   ] 

ptions 
low/high/low/low 

 
10:  Volt (SE) (P1) 

 2: 15       25
 3: 1        SE 

c 4: 3        Lo
 5: 1        Mult 
6: 0        Offset  

 
11:  Sample (P70) 
 1: 1        Reps 
 2: 3        Loc [ bg90o
 
12:  Set Port(s) (P20) 
1: 0000     C8,C7,C6,C5 Options  

 2: 0010     C4..C1 = lo
 

E) (P1) 13:  Volt (S
 1: 1        Rep
 2: 15       2500 mV F
3: 2        SE Channe 

 4: 4        Loc [ ir45on    ] 
 5: 1        Mult 
 6: 0        Offset 
 
14:  Sample (P
 1: 1        Reps 
2: 4        Loc [ ir45on    ]  

 
15:  Set Port(s) (P20) 
1: 0000     C8,C7,C6,C5 Options  

 2: 0000     C4,C3,C2
 
16:  Volt (SE) (P1) 
1: 1        Reps  

 2: 15       2500 mV
ann 3: 2        SE Ch

 4: 5        Loc [ ir45off   ] 
 5: 1        Mult 
 6: 0        Offset 
 
17:  Sample (P70
1: 1        Reps  

 2: 5        Loc [ ir4
 
18:  Set Port(s) (P20) 
1: 0000     C8,C7,C6,C5 O 

 2: 0100     C4..C1 = 
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19:  Volt (SE) (P1) 
 1: 2        Reps 
 2: 15       2500 mV Fast Range 

l 
 ] 

0) 

: 6        Loc [ orgon_1   ] 

(P20) 
ptions 

: 0000     C4,C3,C2,C1 Options 

: 15       2500 mV Fast Range 
l 

rgoff_1  ] 

0) 

: 8        Loc [ orgoff_1  ] 

mperature (P17) 

mp (DIFF) (P14) 

: 5        DIFF Channel 
pper-Constantan) 

emp (Deg. C) Loc [ panel     ] 

) 
: 1        Reps 

p      ] 

8:  End (P95) 

econds) 

nd Program 

 3: 3        SE Channe
 4: 6        Loc [ orgon_1  
 5: 1        Mult 
 6: 0        Offset 
 
20:  Sample (P7
 1: 2        Reps 
 2
 
21:  Set Port(s) 
 1: 0000     C8,C7,C6,C5 O
 2
 
22:  Volt (SE) (P1) 
 1: 2        Reps 
 2
 3: 3        SE Channe
 4: 8        Loc [ o
 5: 1        Mult 
 6: 0        Offset 
 
23:  Sample (P7
 1: 2        Reps 
 2
 
24:  Internal Te
 1: 10       Loc [ panel     ] 
 
25:  Thermocouple Te
 1: 1        Reps 
 2: 1        2.5 mV Slow Range 
 3
 4: 1        Type T (Co
 5: 10       Ref T
 6: 11       Loc [ temp      ] 
 7: 1        Mult 
 8: 0        Offset 
 
26:  Sample (P70
 1
 2: 11       Loc [ tem
 
27:  End (P95) 
2
*Table 2 Program 
02:0.0000      Execution Interval (s
*Table 3 Subroutines 
E

 145



Appendix H - CR10X Program for Field Experiment  

nt Sensor Field Test Program  

val (seconds) 

 a 
ame units as above) 

igh (Flag 0) 

7) 
our/Minute,Seconds (midnight = 2400) 

) 
w/high/low 
w/low/high 

/Ex (units = 0.01 sec) 
 After Ex (units = 0.01 sec) 

ation 

g90on    ] 

) 

;{CR10X} 
Yali Zhang ;

;8/20/2006 
ime;Suspended Sed

 
Table 1 Program *

01:1    Execution Inter
 

1:  If time is (P92) 
1: 0     -- Minutes (Seconds --) into 

 2: 10    -- Interval (s
 Do  3: 30       Then

 
2:  Do (P86) 
 1: 10       Set Output Flag H
 
3:  Real Time (P7
1: 221      Day,H 

 
P204:  Set Port(s) (

 1: 0010     C8..C5 = low/lo
2: 0001     C4..C1 = low/lo 

 
5:  Volt (SE) (P1) 
1: 1        Reps  

 2: 15       2500 mV Fast Range 
annel  3: 1        SE Ch

 4: 2        Loc [ bg90on    ] 
 5: 1        Mult 
 6: 0        Offset 
 

P22) 6:  Excitation with Delay (
annel  1: 1        Ex Ch

 2: 0        Delay W
3: 100      Delay 

 4: 0        mV Excit
 
7:  Sample (P70) 
1: 1        Reps  

 2: 2        Loc [ b
 
8:  Set Port(s) (P20
 1: 0100     C8..C5 = low/high/low/low 

C1 Options  2: 0000     C4,C3,C2,
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9:  Volt (SE) (P1) 
 1: 1        Reps 
 2: 15      
 3: 1  
 4: 3        Loc [ bg90off   ] 

ult 
et 

Ex (units = 0.01 sec) 
01 sec) 

) (P20) 

ast Range 

 

 = 0.01 sec) 
units = 0.01 sec) 

itation 

/low/low/low 
C2,C1 Options 

ast Range 

: 0        Offset 

 2500 mV Fast Range 
      SE Channel 

 5: 1        M
 6: 0        Offs
 
10:  Excitation with Delay (P22) 
1: 1        Ex Channel  

 2: 0        Delay W/
 3: 100      Delay After Ex (units = 0.
 4: 0        mV Excitation 
 
11:  Sample (P70) 
 1: 1        Reps 

off   ]  2: 3        Loc [ bg90
 
12:  Set Port(s
 1: 0110     C8..C5 = low/high/high/low 
2: 0010     C4..C1 = low/low/high/low  

 
13:  Volt (SE) (P1) 
1: 1        Reps  

 2: 15       2500 mV F
 3: 2        SE Channel 
 4: 4        Loc [ ir45on    ] 
5: 1        Mult  

 6: 0        Offset 
 
14:  Excitation with Delay (P22)
 1: 1        Ex Channel 
 2: 0        Delay W/Ex (units

y After Ex ( 3: 100      Dela
 4: 0        mV Exc
 
15:  Sample (P70) 
 1: 1        Reps 
 2: 4        Loc [ ir45on    ] 
 
16:  Set Port(s) (P20) 
1: 1000     C8..C5 = high 

 2: 0000     C4,C3,
 
17:  Volt (SE) (P1) 
1: 1        Reps  

 2: 15       2500 mV F
 3: 2        SE Channel 
 4: 5        Loc [ ir45off   ] 
5: 1        Mult  

 6
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18:  Excitation with Delay (P22) 
annel 

01 sec) 
 Ex (units = 0.01 sec) 

) 
: 1        Reps 

high/low/low 

nge 
: 3        SE Channel 

1   ] 

Delay (P22) 
annel 

01 sec) 
 Ex (units = 0.01 sec) 

20) 
: 1100     C8..C5 = high/high/low/low 

ange 
: 3        SE Channel 

ff_1  ] 

lay (P22) 

 sec) 
: 100      Delay After Ex (units = 0.01 sec) 

tion 

 

) 

 1: 1        Ex Ch
 2: 0        Delay W/Ex (units = 0.
 3: 100      Delay After
 4: 0        mV Excitation 
 
19:  Sample (P70
 1
 2: 5        Loc [ ir45off   ] 
 
20:  Set Port(s) (P20) 
 1: 1010     C8..C5 = high/low/high/low 
 2: 0100     C4..C1 = low/
 
21:  Volt (SE) (P1) 
 1: 2        Reps 
 2: 15       2500 mV Fast Ra
 3
 4: 6        Loc [ orgon_
 5: 1        Mult 
 6: 0        Offset 
 
22:  Excitation with 
 1: 1        Ex Ch
 2: 0        Delay W/Ex (units = 0.
 3: 100      Delay After
 4: 0        mV Excitation 
 
23:  Set Port(s) (P
 1
 2: 0000     C4,C3,C2,C1 Options 
 
24:  Volt (SE) (P1) 
 1: 2        Reps 
 2: 15       2500 mV Fast R
 3
 4: 8        Loc [ orgo
 5: 1        Mult 
 6: 0        Offset 
 
25:  Excitation with De
 1: 1        Ex Channel 
 2: 0        Delay W/Ex (units = 0.01
 3
 4: 0        mV Excita
 
26:  Sample (P70) 
 1: 2        Reps 
 2: 6        Loc [ orgon_1   ]
 
27:  Sample (P70
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 1: 2        Reps 
 2: 8        Loc [ orgoff_1  ] 

] 

Temp (DIFF) (P14) 

nge 
: 3        DIFF Channel 

per-Constantan) 
lT    ] 

: 1.0      Mult 

20) 
: 0000     C8,C7,C6,C5 Options 

its = 0.01 sec) 
: 300      Delay After Ex (units = 0.01 sec) 

n 

4:  Pulse (P3) 

Channel 1 
unts 

m   ] 

 

5:  If time is (P92) 
o a 

e units as above) 

: 1        Reps 
_mm   ] 

m 
rval (seconds) 

Table 3 Subroutines 

 
28:  Internal Temperature (P17) 
 1: 13       Loc [ panelT    
 
29:  Thermocouple 
 1: 1        Reps 
 2: 1        2.5 mV Slow Ra
 3
 4: 1        Type T (Cop
 5: 13       Ref Temp (Deg. C) Loc [ pane
 6: 14       Loc [ T         ] 
 7
 8: 0.0      Offset 
 
30:  Sample (P70) 
 1: 2        Reps 
 2: 13       Loc [ panelT    ] 
 
31:  Set Port(s) (P
 1
 2: 0000     C4,C3,C2,C1 Options 
 
32:  Excitation with Delay (P22) 
 1: 1        Ex Channel 
 2: 0        Delay W/Ex (un
 3
 4: 0        mV Excitatio
 
33:  End (P95) 
3
 1: 1        Reps 
 2: 1        Pulse 
 3: 2        Switch Closure, All Co
 4: 15       Loc [ rain_m
 5: 0.254    Mult 
 6: 0        Offset
 
3
 1: 0        Minutes (Seconds --) int
 2: 5        Interval (sam
 3: 10       Set Output Flag High (Flag 0) 
 
36:  Totalize (P72) 
 1
 2: 15       Loc [ rain
*Table 2 Progra
02:0.0000      Execution Inte
*
End Program 
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Appendix I - Program for Fouling/Clogging Correction Algorithm 

ion; 

me,'g2:g65535'); 
ad(filename,'g2:g65535'); 
ame,'d2:d65535'); 
ename,'c2:c65535'); 
d(filename,'h2:h65535'); 

); 

)/2:L-(width_t-1)/2 

ean(ora180_m(i-(width_t-1)/2:1:i+(width_t-1)/2)); 

:L-(width_f-1)/2 

80_m(i-(width_f-1)/2:1:i+(width_f-1)/2)); 

% Written for For Benning Data Correct
ng; % Naiqian Zha

% January 28, 2007; 
  
clear all; 
  

m'; filename = 'Juneasybotto
ad(filenaora180_m=xlsre

%ora180_n=xlsre
ime=xlsread(filent

weather=xlsread(fil
lsreaprecipitation=x

L=length(time); 
L = 20500; %

Sclear=ora180_m(L+1
  
  
hreshold = 0; t

ripple = 0; 
minilift = 10; 
contrast = 4; 
mean_upslope = 0; 
mean_downslope = 0; 
eg = L; s

width_t = 5; 
width_s = 11; 
width_f = 21; 
  
  
ora180_t=ora180_m(1:L); 
  

1for i = (width_t+
   if(width_t ~= 1)  

        ora180_t(i) = m
    end;  
end; 
  

ra180_f = ora180_t(1:L); o
  

+1)/2for i = (width_f
    if(width_f ~= 1) 

mean(ora1        ora180_f(i) = 
    end;  
end; 
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cv_t=std(ora180_t)/mean(ora180_t) 
cv_f=std(ora180_f)/mean(ora180_f) 

% [b,a] = ellip(6,5,50,cutoff); 
 
 

1:L),ora180_m(1:L),'c-',time(1:L),ora180_t(1:L),'r-
),ora180_f(1:L),'b',time(1:L),weather(1:L)*2000,'g') 

th_t)]); 
ed Signal','ora180_f Filtered Signal'); 

-ora180_f(i); 

ope(L) = 0; 

+1)/2:L-(width_s-1)/2 
= 1) 
 mean(slope(i-(width_s-1)/2:1:i+(width_s-1)/2)); 

th_s-1)/2 

r i = L-(width_s-1)/2: L 

  
pe(L) = 0; 

, ora180_f(1:L)/50,'r-') 

 0 40]); 
[filename, 'Slope filter width = ', num2str(width_s)]); 

gend('Slope', 'Filtered signal/50'); 

  
% cutoff = 0.1; 

% ora180_f(1:L) = filter(b,a,ora180_m(1:L));
filter(b,a,ora180_m(1:L));% ora180_t(1:L) = 

  
gure fi

plot(time(
ime(1:L',t

xlabel('Time (minute)'); 
ylabel('Signal (mV)'); 
axis([0 L -500 2500]); 

2str(widtitle ([filename, 'Filter width = ', num
legend('Measured Signal','ora180_t Filter
grid on; 
  
for i=1:L-1 
    slope(i)=ora180_f(i+1)

d;     en
sl
  

th_sfor i = (wid
    if(width_s ~

=        slope(i) 
    end;  
end; 
  
for i = 1:(wid
    slope(i) = 0; 
end; 
  
fo
    slope(i) = 0; 

d; en
%slopet = slope'; 
  
% for i=1:L-1 

pe(i)=ora180_f(i+1)-ora180_f(i); %     slo
d;   % en

 slo%
% slopet = slope'; 
  
figure 

(1:L),'b-',time(1:L)plot(time(1:L),slope
xlabel('Time (minute)'); 

lope(mV/min)'); ylabel('S
[0 Laxis(

tle (ti
le
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grid on; 
  
% converge = 0; 

t0 = 1; 
verge = 1;  

r i=1:seg-1 
 < ripple 

alley = i+1; 
downslope = mean(slope(peak:valley-1)); 

     end; 

0 

ean_upslope = mean(slope(valley:peak-1)); 
ora180_f(peak) - ora180_f(valley); 

         if(mean_upslope >= threshold && mean_upslope>contrast*abs(mean_downslope) && 

i 
           mean_upslope = mean_upslope 

                 mean_downslope = mean_downslope 

  Pstart=ora180_f(1); 
a180_f(valley); 

             
=ora180_f(1); 

y ~= 1) 
] = coeffcom(1,valley,Pstart,Pend,Sini0,Sini1); 

                 %Correction; 
        for j=1:valley 

)=ora180_t(j)-E(j); 

% limit = 3; 
% iteration = 0; 
% while (converge ~= 1) 
     
%
    %con
    %converge1 = converge; 
    %iteration = iteration + 1; 
  
peak = 1; 
valley = 1; 
peak_all=[]; 
valley_all=[]; 
  
fo
    if slope(i)
        if(slope(i+1)) >= 0 
            v
            mean_
   
    else 
        if slope(i+1) < 
            peak = i+1; 
            m
            lift = 
   
lift>minilift) 
%                 i = 
%      
%
%                 lift = lift 
                
              
                Pend=or
   
                Sini0
                Sini1=ora180_f(peak); 
                 
                if (valle
                    [a1, a0
   
            
                        E(j)=a1*time(j)+a0; 
                        ora180_t(j
                    end; 
                else 
                    ora180_t(valley) = ora180_t(peak); 
                end; 
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             for j = valley+1:peak-1 

0_t(j) = ora180_t(peak); 
;     

all;peak]; 
          valley_all=[valley_all;valley]; 

 

recipitation(1:seg)*1500,'g-',time(1:seg), ora180_f(1:seg),'b-', time(1:seg), 

             xlabel('Time (minute)'); 
label('Signal (mV)'); 
is([0 seg 0 3000]); 

 ([filename, ', Filter width=',num2str(width_t),', Slope filter width=',num2str(width_s),', 
2str(minilift), ', Contrast=',num2str(contrast), ', Time=', num2str(i)]); 

             legend('Percipitation', 'ora180_f Filtered signal', 'ora180_t clogging-corrected signal'); 
 on; 

180_t(valley), 'x', peak, ora180_t(peak), 'o'); 

_f slope'];  

ora180_t(1:L),200,[0,45000,400,5000]); 
,1),peak(:,2),'o'); 

a180_t(1);peak]; 

m_peak 
 0 

_t; 
ew_peak-1 

(i+1,1),New_peak(i,2),New_peak(i+1,2),Sclear,Sclear); 
; 

   
                    ora18
                end
                
                peak_all=[peak_
      
                
                figure; 
                plot(time(1:seg), p
ora180_t(1:seg),'r-') 
   
                y
                ax
                title
Minilift=',num
   
                grid
                hold on; 
                plot(valley, ora
                 
            end; 
        end; 
    end; 
end;         
ora180_tt = [ora180
  
figure 
plot(time(1:L),ora180_t(1:L),'-'); 
grid on; 
hold on; 
  
%peak=[peak_all ora180_f(peak_all(:,1))]; 
peak=fpeak(time(1:L),
plot(peak(:
title('Peak Detection'); 
  
peak=[1 or
New_peak = []; 
Num_peak = length(peak(:,1)) 
for i = 1:Nu
    if weather(peak(i,1)) ==
        New_peak = [New_peak; peak(i,1) peak(i,2)]; 
    end;         
end; 
  
Num_new_peak = length(New_peak(:,1)); 
ora180_n=ora180
for i=1:Num_n
    [a1, a0] = coeffcom(New_peak(i,1),New_peak
    %Correction
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    for j=New_peak(i,1):1:New_peak(i+1,1) 

ra180_n(1:New_peak(Num_new_peak)); 
180_t); 

me(1:L_new),ora180_n,'r-') 

(1:L), precipitation(1:L)*1500,'g-',time(1:L), ora180_f(1:L),'b-', time(1:L), ora180_n(1:L),'r-') 
e (minute)'); 

ignal (mV)'); 
0 L 0 1500]); 

lename, ', Filter width=',num2str(width_t),', Step threshold=',num2str(threshold)]); 
d signal', 'clogging/fouling-corrected signal'); 

 grid on; 

d concentration using integral; 

lope rate and intercept of the concentration regression; 
a180_slope=xlsread(filename,1,'I2'); 

 

 conc_ora180(i)=ora180_n(i)*ora180_slope+ora180_intercept; 

0(i) = 0; 

ummulative area 
 -  

dnew=0; 

ral; 

        E(j)=a1*time(j)+a0; 
        ora180_n(j)=ora180_t(j)-E(j); 
    end; 
end; 
  
ora180_t=ora180_t(1:New_peak(Num_new_peak)); 
ora180_n=o
L_new=length(ora
  
figure 
plot(time(1:L_new),ora180_t,'b-',ti
xlabel('Time (minute)'); 
ylabel('Signal (mV)'); 
%axis([0 50000 -500 2500]); 
title ([filename, ', Fouling Correction']); 
legend('Measured Signal','Corrected Signal'); 
grid on; 
  
% figure 
% plot(time
% xlabel('Tim
% ylabel('S
% axis([
% title ([fi
% legend('Percipitation', 'Filtere
%
  
% Part IV: Calculating accumulate
  
% Read s
or
ora180_intercept=xlsread(filename,1,'J2'); 
  
% Calculating concentration;
for i = 1:L_new 
   
    if(conc_ora180(i) < 0) 
        conc_ora18
    end; 
end;     
  
% Initialize parameters; 
% sednew - c
% sed
se
precinew=0; 
sed=[]; 
preci=[]; 
  
%Calculate integ
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for i=1:L_new-1 
       if precipitation(i) ~= 0 
           sednew=sednew+conc_ora180(i); 

if precipitation(i+1) == 0  
            sed=[sed;sednew]; 

    end; 

t concentration vs. precipitation linear regression; 
 slope rate of the linear line; 

 

(1:L_new), precipitation(1:L_new)*5000,'g-',time(1:L_new), conc_ora180(1:L_new),'b-') 
le([filename,', width_t=',num2str(width_t),', width_f=',num2str(width_f),', 

',num2str(contrast),', Slop=',num2str(sediment(1)/100000)]); 

tion(mg/L)'); 

000','concentration'); 

ure 

le([filename,', Accumulated Concentration vs. Precipitation']); 

)'); 

axis([0 50000 -500 2500]); 

           
   
               preci=[preci;precipitation(i)]; 
               sednew=0; 
           end; 
   
end; 
  
% Accumulated sedimen
% The first value is the
sediment=polyfit(preci,sed,1);
  
figure 
plot(time
tit
Contrast=
xlabel('Time (minute)'); 
ylabel('Predicted Concentra
axis([0 seg 0 15000]); 
legend('Precipitation*5
%axis([0 50000 -500 2500]); 
grid on; 
  
fig
plot(preci, sed, 'o', preci,polyval(sediment,preci), '-') 
tit
xlabel('precipitation (inch)'); 
ylabel('Accumulated Concentration (mg
legend('Concentration','Regressing Line'); 
%
grid on; 
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Appendix J - SAS Program for the Analysis of Temperature Effect 

SAS Program: 
 
DATA; 
INPUT ActualSSC Temperature PredicedSSC; 
CARDS; 
……………… 
……………… 
……………… 
; 
 
*/PROC ANOVA; 
 */CLASS ActualSSC Temperature; 
proc glm; 
 MODEL PredicedSSC = ActualSSC Temperature ActualSSC*Temperature; 
RUN; 
*/proc glm; 
*/ MODEL PredicedSSC = ActualSSC Temperature; 

*/RUN; 

 
 
SAS Output: 

Number of Observations Read         258 

                                     Sum of 

    Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        3     88040554.16     29346851.39    10750.8    <.0001 

      Error                      254       693355.81         2729.75 

      Corrected Total            257     88733909.97 

 

                    R-Square     Coeff Var      Root MSE    PredicedSSC Mean 

                    0.992186      23.52136      52.24698            222.1257 

 

      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

 

      ActualSSC                    1     88014237.23     88014237.23    32242.6    <.0001 

      Temperature                  1           59.25           59.25       0.02    0.8830 

 

                                       The GLM Procedure 

                            

 

Dependent Variable: PredicedSSC 
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      ActualSSC*Temperatur         1        26257.68        26257.68       9.62    0.0021 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

    ActualSSC                    1     151742.8277     151742.8277      55.59    <.0001 

20.6735        120.6735       0.04    0.8336 

SSC*Temperatur         1      26257.6813      26257.6813       9.62    0.0021 

                                      Standard 

         Parameter                    Estimate           Error    t Value    Pr > |t| 

453881     10.96869349      -0.13      0.8945 

       <.0001 

mperature              -0.126107736      0.59978690      -0.21      0.8336 

01030386      -3.10      0.0021 

 

 

  

      Temperature                  1        1

      Actual

 

 

                 

 

 

ntercept                -1.456          I

    ActualSSC                 1.698362876      0.22779156       7.46     

          Te

          ActualSSC*Temperatur     -0.031957056      0.
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Appendix K - Program for Sediment Sensor Laboratory Cleaning 

ali Zhang 
2008 

uspended Sediment Sensor Air-blast Cleaning Test Program; Air-blast Cleaning Mechanism is 

gram 
:1    Execution Interval (seconds) 

 1: 221      Day,Hour/Minute,Seconds (midnight = 2400) 
 
3:  Set Port(s) (P20) 
 1: 0000     C8,C7,C6,C5 Options 
 2: 0001     C4..C1 = low/low/low/high 
 
4:  Volt (SE) (P1) 
 1: 2        Reps 
 2: 15       2500 mV Fast Range 
 3: 1        SE Channel 
 4: 1        Loc [ bg90on_1  ] 
 5: 1        Mult 
 6: 0        Offset 
 
5:  Set Port(s) (P20) 
 1: 0000     C8,C7,C6,C5 Options 
 2: 0000     C4,C3,C2,C1 Options 
 
6:  Volt (SE) (P1) 
 1: 2        Reps 
 2: 15       2500 mV Fast Range 
 3: 1        SE Channel 
 4: 3        Loc [ bg90off_1 ] 
 5: 1        Mult 
 6: 0        Offset 
 
7:  Set Port(s) (P20) 
 1: 0000     C8,C7,C6,C5 Options 

Experiment 

;{CR10X} 
;Y
;7/10/
;S
activated every 12 hours for 2 seconds. 
 
*Table 1 Pro
01
 
1:  Do (P86) 
 1: 10       Set Output Flag High (Flag 0) 
 
2:  Real Time (P77) 
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 2: 0010     C4..C1 = low/low/high/low 
 
8:  Volt (SE) (P1) 
 1: 2        Reps 

 4: 5        Loc [ ir45on_1  ] 
 5: 1        Mult 
 6: 0        Offset 

) (P20) 
8,C7,C6,C5 Options 

[ ir45off_1 ] 

low/high/low/low 

 Fast Range 
el 

20) 
Options 

,C1 Options 

 Fast Range 
el 

) 

_1  ] 

 2: 15       2500 mV Fast Range 
 3: 3        SE Channel 

 
9:  Set Port(s
 1: 0000     C
 2: 0000     C4,C3,C2,C1 Options 
 

0:  Volt (SE) (P1) 1
 1: 2        Reps 
 2: 15       2500 mV Fast Range 

: 3        SE Channel  3
 4: 7        Loc 
 5: 1        Mult 

: 0        Offset  6
 
11:  Set Port(s) (P20) 

: 0000     C8,C7,C6,C5 Options  1
 2: 0100     C4..C1 = 
 
12:  Volt (SE) (P1) 

: 4        Reps  1
 2: 15       2500 mV

ann 3: 5        SE Ch
 4: 9        Loc [ oraon_1   ] 
 5: 1        Mult 
 6: 0        Offset 
 
13:  Set Port(s) (P

: 0000     C8,C7,C6,C5  1
 2: 0000     C4,C3,C2
 
14:  Volt (SE) (P1) 

: 4        Reps  1
 2: 15       2500 mV

ann 3: 5        SE Ch
 4: 13       Loc [ oraoff_1  ] 
 5: 1        Mult 
 6: 0        Offset 
 
15:  Sample (P70

: 12       Reps  1
 2: 5        Loc [ ir45on
 
16:  If time is (P92) 
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 1: 660      Minutes (Seconds --) into a 
 2: 1440     Interval (same units as above) 

 

igh/low/low/low 

ith Delay (P22) 
: 1        Ex Channel 

x (units = 0.01 sec) 
 0.01 sec) 

) 
7,C6,C5 Options 

s 

2) 
: 1320     Minutes (Seconds --) into a 

me units as above) 

2:  Set Port(s) (P20) 
 high/low/low/low 

C1 = low/low/low/low 

lay (P22) 

y W/Ex (units = 0.01 sec) 
 After Ex (units = 0.01 sec) 

: 1        mV Excitation 

: 0000     C4,C3,C2,C1 Options 

rval (seconds) 

tines 

 3: 30       Then Do
 
17:  Set Port(s) (P20) 
 1: 1000     C8..C5 = h
 2: 0000     C4..C1 = low/low/low/low 
 
18:  Excitation w
 1
 2: 100      Delay W/E
 3: 100      Delay After Ex (units =
 4: 1        mV Excitation 
 
19:  Set Port(s) (P20
 1: 0000     C8,C
 2: 0000     C4,C3,C2,C1 Option
 
20:  End (P95) 
 
21:  If time is (P9
 1
 2: 1440     Interval (sa
 3: 30       Then Do 
 
2
 1: 1000     C8..C5 =
 2: 0000     C4..
 
23:  Excitation with De
 1: 1        Ex Channel 
 2: 100      Dela
 3: 100      Delay
 4
 
24:  Set Port(s) (P20) 
 1: 0000     C8,C7,C6,C5 Options 
 2
 
25:  End (P95) 
 
*Table 2 Program 
02:0.0000      Execution Inte
 
*Table 3 Subrou
 
End Program 
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Appendix L - Pin Description of Sediment/velocity Sensor 

2 contacts (View on termination side of contact insert): 

mber Description 

C091 31N012 2002: Socket, panel, 1

 

 

 

 

 

 

 

Pin nu
A BG90 PT emitter 
B IR45 PT emitter 
C ORA45_1 PT emitter, Upstream 
D ORA180_1 PT emitter, Upstream 
E ORA45_2 PT emitter, Downstream 
F ORA180_2 PT emitter, Downstream  
G BG LED cathode 
H IR LED cathode 
J ORA LED_1 cathode, Upstream  
K ORA LED_2 cathode, Downstream  
M Anodes of all 4 LEDs 
L Collectors of all 6 PTs 

 

nds for phototransistor 

 Note: 

 PT sta
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Appendix M - MATLAB Program of Cross-Correlation Analysis 

 Yali Zhang 
 Aug. 5, 2008 

clear all
  
%read upstream signal 
X=xlsread('33.xls',1,'a1:a500'); 
%read downstream signal 
Y=xlsread('33.xls',1,'c1:c500'); 
%data points 
N=length(X); 
%sampling frequency 
S=500; 
%total m asuring time 
time=0:1/S:(N-1)*1/S; 
  
%calculate autocorrelation functions 
sse_x=0; 
sse_y=0; 
for j=1:N 
    sse_x_new=(X(j)-m (X))^
    sse_x=sse_x+sse_x_new; 
    sse_y_new=(Y(j)-m (Y))^
    sse_y=sse_y+sse_y w; 
end; 
Rxx_zero=sse_x/N; 
Ryy_zero=sse_y/N; 
  
%compute cross-correlation coe
sse_xy=0; 
Rxy=[]; 
  
for i=0:N-1 
    for j=1:N-i 
        %m  
        Xs=X(1:N-i); 
        Ys
        Xb =sum(
        Yb =sum(
         
        sse_xy_new=(X(j)-Xbar)*(Y(j+i)-Ybar); 
        sse_xy=sse_xy+sse_xy_new; 
    end; 
    

%Computes and plot cross-correlation coefficients of up- and down-stream signals     
%
%
  

; 

e

ean 2; 

ean 2; 
_ne

fficient array 

ean value of X and Y

=Y(i+1:N); 
ar Xs)/(N-i); 
ar Ys)/(N-i); 
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    Rxy_new=[sse_xy/(N-i) i]; 
    Rxy=[Rxy;Rxy_new]; 

  

nals in time domain 

X,'r',time,Y,'b') 

nstream ORA45 signals'); 

tream signal'); 

 coefficient in time domain 

 Coefficient vs Time'); 

oss-correlation coefficient') 

ion coefficient 
1))); 

    sse_xy=0;  
end; 

Xcorr=[Rxy(:,1)/sqrt(Rxx_zero*Ryy_zero) Rxy(:,2)]; 
  
%plot original sig

gure fi
plot(time,

rid on; g
%axis([0 1.4 2.6 4]); 
title('Original Upstream and Dow
xlabel('Time (Second)'); 
ylabel('Signal (V)'); 

eam signal','Downslegend('Upstr
  
%plot cross-correlation
figure 
plot(time',Xcorr(:,1)) 
grid on; 

axis([0 1.4 -0.8 1.2]); %
title('ORA45 Signals Cross-correlation

me (second)') xlabel('Ti
ylabel('Cr
  
%find the maximum cross-correlat

corr(:,im=find(Xcorr(:,1)==max(X
  
%compute velocity 

(im-1)/S Tm=
V=0.04/Tm 
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Appendix N - LABVIEW Program for Flow Velocity Experiment 

 

Front Panel: 
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Block Diagram: 

 

Sequence 1: 

 
 

Sequence 2: 
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Sequence 3: 

 
 

Sequence4: 
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Sequence 5: 
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