This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

A problem in analysis

A. G. Ramm

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Ramm, A. G. (2012). A problem in analysis. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Ramm, A. G. (2012). A problem in analysis. Analysis, 32(2), 107-110.

Copyright: © Oldenbourg Wissenschaftsverlag, München 2012

Digital Object Identifier (DOI): doi:10.1524/anly.2012.1152

Publisher's Link: http://www.oldenbourg-link.com/loi/anly

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at <u>http://krex.ksu.edu</u>

Analysis 32, 1001–1003 (2012) / **DOI** 10.1524/anly.2012.1152 © R. Oldenbourg Verlag, München 2012

² A problem in analysis

3 A. G. Ramm

4 Received: Nov. 17, 2011

5 Summary: Assume that $D \subset \mathbb{R}^2$ is a bounded domain, diffeomorphic to a disc, star-shaped, with 6 a $C^{1,\lambda}$ boundary $C, \lambda > 0$, which can be represented in polar coordinates as $r = f(\phi)$, where 7 f > 0 is a smooth 2π -periodic function. Let $\psi_{\pm n} := \psi_{\pm n}(\phi) := e^{\pm in\phi} f^n(\phi)$.

a Theorem. Assume that

$$\int_{0}^{2\pi} \psi_{\pm n} f^{2}(\phi) d\phi = 0 \qquad n = 1, 2, \dots$$

10 Then f = const.

11 1 Formulation of the result

Assume that $D \subset \mathbb{R}^2$ is a bounded domain, diffeomorphic to a disc, star-shaped, with a $C^{1,\lambda}$ boundary $C, \lambda > 0$, which can be represented in polar coordinates as $r = f(\phi)$, where f > 0 is a smooth 2π -periodic function. Let $\psi_{\pm n} := \psi_{\pm n}(\phi) := e^{\pm in\phi} f^n(\phi)$.

15 **Theorem 1.1** Assume that

16

9

$$\int_{0}^{2\pi} \psi_{\pm n} f^{2}(\phi) d\phi = 0 \qquad n = 1, 2, \dots$$
 (1.1)

17 Then f = const.

Remark 1.2 A similar result is true for $D \subset \mathbb{R}^m$, m > 2. Its proof is essentially the same.

Remark 1.3 The author raised the question, answered in Theorem 1.1, while thinking about the Pompeiu problem, see Chapter 11 in [1]. This question is of interest regardless of its relation to the Pompeiu problem since it gives an unusual result concerning completeness of a set of functions.

In Section 2 a proof is given.

AMS 2010 subject classification: 42C30 Key words and phrases: Completeness of a set of functions

25 **2 Proof**

²⁶ Assumption (1.1) implies that

$$\int_{D} h_n dx = 0 \qquad n = 1, 2, \dots,$$
(2.1)

where $h_n := r^{|n|} e^{\pm in\phi}$ are harmonic functions regular at the origin, $x \in \mathbb{R}^2$, $x = (r, \phi)$, where (r, ϕ) are polar coordinates. To see that (1.1) is equivalent to (2.1), write the lefthand side of (2.1) in polar coordinates, integrate over r from 0 to $f(\phi)$, and get (1.1).

Let $y \in \mathbb{R}^2$, B_R be a ball (disc), centered at the origin and containing D inside, B'_R be its complement in \mathbb{R}^2 , and $G(x, y) = \frac{1}{2\pi} \ln \frac{1}{|x-y|}$ be the fundamental solution of the Laplace equation in \mathbb{R}^2 . Let

$$r := |x|, \qquad r' := |y|, \qquad x \cdot y = rr' \cos \theta$$

³⁵ Then, for r > r', one has

$$2\pi G(x,y) = -\left[\ln r + \frac{1}{2}\left(\ln\left(1 - \frac{r'}{r}e^{i\theta}\right) + \ln\left(1 - \frac{r'}{r}e^{-i\theta}\right)\right)\right], \qquad r > r'.$$
(2.2)

Expanding $\ln(1 - \frac{r'}{r}e^{\pm i\theta})$ in Taylor series, which is possible since $\frac{r'}{r} < 1$, one gets

$$\ln\left(1 - \frac{r'}{r}e^{i\theta}\right) = -\sum_{n=1}^{\infty} \frac{h_n}{nr^{n+1}}, \qquad r > r', \quad h_n = (r')^n e^{\pm in\theta}.$$
 (2.3)

We conclude from the assumption (2.1) and from (2.2)–(2.3) that

$$\int_{D} G(x, y) dy = -\frac{1}{2\pi} |D| \ln r, \qquad r > R,$$
(2.4)

41 where |D| denotes area of D.

- Using the method from [2] (see also [3]) we derive from (2.4) that D is a disc.
- It follows from (2.4) that the harmonic in $D' = \mathbb{R}^2 \setminus D$ function

Δ

$$u(x) := \int_{D} G(x, y) dy = -\frac{1}{2\pi} |D| \ln r, \qquad r > R,$$
(2.5)

45 solves the equation

49

44

$$u(x) = -\eta |D|, \qquad (2.6)$$

where η is the characteristic function of D, that is, $\eta = 1$ in D, and $\eta = 0$ in D'. Let C_R be the boundary of B_R . A harmonic in B_R function h satisfies the conditions

$$\int_{C_R} h_N ds = 0, \qquad \int_{C_R} h ds = 2\pi h(0).$$
 (2.7)

⁵⁰ It follows from (2.5) that the functions u(x) and $u_N(x)$ are constant on C_R , since the ⁵¹ normal N on C_R is directed along the radius. Multiply (2.6) by an arbitrary regular at the ⁵² origin harmonic function $h = h_n$, integrate over a disc B_R , and use (2.7) to get

53
$$\int_D h dx = \int_{C_R} (uh_N - u_N h) ds = ch(0), \quad c = const.$$
(2.8)

27

34

36

38

40

⁵⁴ If h is harmonic in B_R , then so is h(gx), where g is a rotation by an arbitrary angle α ⁵⁵ around z-axis, the axis perpendicular to D. Since h(g0) = h(0), one can replace h(x)⁵⁶ by h(gx) in (2.8), differentiate with respect to α and then set $\alpha = 0$. This yields

$$\int_{D} \nabla h(x) \cdot [e_3, x] dx = 0, \qquad (2.9)$$

where e_3 is a unit vector along z-axis, \cdot stands for the scalar product, $[e_3, x]$ is the vector product in \mathbb{R}^3 , and h is an arbitrary harmonic function in B_R , regular at the origin. One has

63

68

75

77

57

$$\nabla h(x) \cdot [e_3, x] = \nabla \cdot (h[e_3, x]), \qquad (2.10)$$

because $\nabla \cdot [e_3, x] = 0$. Thus, integrating by parts in (2.9), one gets

$$\int_{C} (-N_1 s_2 + N_2 s_1) h ds = 0, \qquad (2.11)$$

where N_j , j = 1, 2, are the components of the outer unit normal N to C. It is proved in [2] that the set of restrictions of all harmonic functions in B_R , regular at the origin, onto a closed curve $C \subset B_R$, diffeomorphic to a circle, is dense in $L^2(C)$. Therefore, (2.11) implies

$$-N_1 s_2 + N_2 s_1 = 0 \qquad \forall s \in C.$$
 (2.12)

Let us derive from equation (2.12) that C is a circle. Geometrically equation (2.12) means that the radius-vector $\mathbf{r} := s_1e_1 + s_2e_2$ of the boundary C is parallel to the normal N to C, namely, $[\mathbf{r}, \mathbf{N}] = 0$. The unit tangential vector to C is $\mathbf{t} = d\mathbf{r}/ds$, where s is the arclength of C, and the normal N is directed along $d\mathbf{t}/ds$.

Since the normal N is orthogonal to t, and N is parallel to r according to (2.12), it follows that $\mathbf{t} \cdot \mathbf{r} = 0$. Thus,

$$d\mathbf{r}/ds \cdot \mathbf{r} = 0 \qquad \forall s \in C. \tag{2.13}$$

76 Consequently,

$$\mathbf{r} \cdot \mathbf{r} = const \qquad \forall s \in C. \tag{2.14}$$

Therefore, C is a circle, and D is a disc.

⁷⁹ Theorem 1.1 is proved.

References

- [1] Ramm, A. G., Inverse Problems, Springer, New York, 2005.
- [2] Ramm, A. G., A symmetry problem, Annal. Polon. Math., 92, (2007), 49-54.
- [3] Hoang N.S. and Ramm, A. G., Symmetry problems 2, Annal. Polon. Math., 96, N1,
 (2009), 61–64.
- A. G. Ramm
- 86 Department of Mathematics
- 87 Kansas State University
- 88 Manhattan, KS 66506-2602
- 89 USA
- 90 ramm@math.ksu.edu