This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

A problem in analysis

A. G. Ramm

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Ramm, A. G. (2012). A problem in analysis. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Ramm, A. G. (2012). A problem in analysis. Analysis, 32(2), 107-110.

Copyright: © Oldenbourg Wissenschaftsverlag, München 2012

Digital Object Identifier (DOI): doi:10.1524/anly.2012.1152

Publisher's Link: http://www.oldenbourg-link.com/loi/anly

A problem in analysis

A. G. Ramm

Received: Nov. 17, 2011

5 Summary: Assume that $D \subset \mathbb{R}^{2}$ is a bounded domain, diffeomorphic to a disc, star-shaped, with a $C^{1, \lambda}$ boundary $C, \lambda>0$, which can be represented in polar coordinates as $r=f(\phi)$, where $7 f>0$ is a smooth 2π-periodic function. Let $\psi_{ \pm n}:=\psi_{ \pm n}(\phi):=e^{ \pm i n \phi} f^{n}(\phi)$.
8 Theorem. Assume that

1 Formulation of the result

Assume that $D \subset \mathbb{R}^{2}$ is a bounded domain, diffeomorphic to a disc, star-shaped, with a $C^{1, \lambda}$ boundary $C, \lambda>0$, which can be represented in polar coordinates as $r=f(\phi)$, where $f>0$ is a smooth 2π-periodic function. Let $\psi_{ \pm n}:=\psi_{ \pm n}(\phi):=e^{ \pm i n \phi} f^{n}(\phi)$.

Theorem 1.1 Assume that

$$
\begin{equation*}
\int_{0}^{2 \pi} \psi_{ \pm n} f^{2}(\phi) d \phi=0 \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

Then $f=$ const.

Remark 1.2 A similar result is true for $D \subset \mathbb{R}^{m}, m>2$. Its proof is essentially the same.

Remark 1.3 The author raised the question, answered in Theorem 1.1, while thinking about the Pompeiu problem, see Chapter 11 in [1]. This question is of interest regardless of its relation to the Pompeiu problem since it gives an unusual result concerning completeness of a set of functions.
$24 \quad$ In Section 2 a proof is given.
AMS 2010 subject classification: 42C30
Key words and phrases: Completeness of a set of functions

2 Proof

Assumption (1.1) implies that

$$
\begin{equation*}
\int_{D} h_{n} d x=0 \quad n=1,2, \ldots \tag{2.1}
\end{equation*}
$$

where $h_{n}:=r^{|n|} e^{ \pm i n \phi}$ are harmonic functions regular at the origin, $x \in \mathbb{R}^{2}, x=(r, \phi)$, where (r, ϕ) are polar coordinates. To see that (1.1) is equivalent to (2.1), write the lefthand side of (2.1) in polar coordinates, integrate over r from 0 to $f(\phi)$, and get (1.1).

Let $y \in \mathbb{R}^{2}, B_{R}$ be a ball (disc), centered at the origin and containing D inside, B_{R}^{\prime} be its complement in \mathbb{R}^{2}, and $G(x, y)=\frac{1}{2 \pi} \ln \frac{1}{|x-y|}$ be the fundamental solution of the Laplace equation in \mathbb{R}^{2}. Let

$$
r:=|x|, \quad r^{\prime}:=|y|, \quad x \cdot y=r r^{\prime} \cos \theta .
$$

Then, for $r>r^{\prime}$, one has

$$
\begin{equation*}
2 \pi G(x, y)=-\left[\ln r+\frac{1}{2}\left(\ln \left(1-\frac{r^{\prime}}{r} e^{i \theta}\right)+\ln \left(1-\frac{r^{\prime}}{r} e^{-i \theta}\right)\right)\right], \quad r>r^{\prime} \tag{2.2}
\end{equation*}
$$

Expanding $\ln \left(1-\frac{r^{\prime}}{r} e^{ \pm i \theta}\right)$ in Taylor series, which is possible since $\frac{r^{\prime}}{r}<1$, one gets

$$
\begin{equation*}
\ln \left(1-\frac{r^{\prime}}{r} e^{i \theta}\right)=-\sum_{n=1}^{\infty} \frac{h_{n}}{n r^{n+1}}, \quad r>r^{\prime}, \quad h_{n}=\left(r^{\prime}\right)^{n} e^{ \pm i n \theta} \tag{2.3}
\end{equation*}
$$

We conclude from the assumption (2.1) and from (2.2)-(2.3) that

$$
\begin{equation*}
\int_{D} G(x, y) d y=-\frac{1}{2 \pi}|D| \ln r, \quad r>R \tag{2.4}
\end{equation*}
$$

where $|D|$ denotes area of D.
Using the method from [2] (see also [3]) we derive from (2.4) that D is a disc.
It follows from (2.4) that the harmonic in $D^{\prime}=\mathbb{R}^{2} \backslash D$ function

$$
\begin{equation*}
u(x):=\int_{D} G(x, y) d y=-\frac{1}{2 \pi}|D| \ln r, \quad r>R \tag{2.5}
\end{equation*}
$$

solves the equation

$$
\begin{equation*}
\Delta u(x)=-\eta|D|, \tag{2.6}
\end{equation*}
$$

where η is the characteristic function of D, that is, $\eta=1$ in D, and $\eta=0$ in D^{\prime}. Let C_{R} be the boundary of B_{R}. A harmonic in B_{R} function h satisfies the conditions

$$
\begin{equation*}
\int_{C_{R}} h_{N} d s=0, \quad \int_{C_{R}} h d s=2 \pi h(0) . \tag{2.7}
\end{equation*}
$$

It follows from (2.5) that the functions $u(x)$ and $u_{N}(x)$ are constant on C_{R}, since the normal \mathbf{N} on C_{R} is directed along the radius. Multiply (2.6) by an arbitrary regular at the origin harmonic function $h=h_{n}$, integrate over a disc B_{R}, and use (2.7) to get

$$
\begin{equation*}
\int_{D} h d x=\int_{C_{R}}\left(u h_{N}-u_{N} h\right) d s=\operatorname{ch}(0), \quad c=\text { const } . \tag{2.8}
\end{equation*}
$$

If h is harmonic in B_{R}, then so is $h(g x)$, where g is a rotation by an arbitrary angle α around z-axis, the axis perpendicular to D. Since $h(g 0)=h(0)$, one can replace $h(x)$ by $h(g x)$ in (2.8), differentiate with respect to α and then set $\alpha=0$. This yields

$$
\begin{equation*}
\int_{D} \nabla h(x) \cdot\left[e_{3}, x\right] d x=0 \tag{2.9}
\end{equation*}
$$

where e_{3} is a unit vector along z-axis, • stands for the scalar product, $\left[e_{3}, x\right]$ is the vector product in \mathbb{R}^{3}, and h is an arbitrary harmonic function in B_{R}, regular at the origin. One has

$$
\begin{equation*}
\nabla h(x) \cdot\left[e_{3}, x\right]=\nabla \cdot\left(h\left[e_{3}, x\right]\right) \tag{2.10}
\end{equation*}
$$

because $\nabla \cdot\left[e_{3}, x\right]=0$. Thus, integrating by parts in (2.9), one gets

$$
\begin{equation*}
\int_{C}\left(-N_{1} s_{2}+N_{2} s_{1}\right) h d s=0 \tag{2.11}
\end{equation*}
$$

where $N_{j}, j=1,2$, are the components of the outer unit normal \mathbf{N} to C. It is proved in [2] that the set of restrictions of all harmonic functions in B_{R}, regular at the origin, onto a closed curve $C \subset B_{R}$, diffeomorphic to a circle, is dense in $L^{2}(C)$. Therefore, (2.11) implies

$$
\begin{equation*}
-N_{1} s_{2}+N_{2} s_{1}=0 \quad \forall s \in C \tag{2.12}
\end{equation*}
$$

Let us derive from equation (2.12) that C is a circle. Geometrically equation (2.12) means that the radius-vector $\mathbf{r}:=s_{1} e_{1}+s_{2} e_{2}$ of the boundary C is parallel to the normal \mathbf{N} to C, namely, $[\mathbf{r}, \mathbf{N}]=0$. The unit tangential vector to C is $\mathbf{t}=d \mathbf{r} / d s$, where s is the arclength of C, and the normal \mathbf{N} is directed along $d \mathbf{t} / d s$.

Since the normal \mathbf{N} is orthogonal to \mathbf{t}, and \mathbf{N} is parallel to \mathbf{r} according to (2.12), it follows that $\mathbf{t} \cdot \mathbf{r}=0$. Thus,

$$
\begin{equation*}
d \mathbf{r} / d s \cdot \mathbf{r}=0 \quad \forall s \in C \tag{2.13}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\mathbf{r} \cdot \mathbf{r}=\text { const } \quad \forall s \in C \tag{2.14}
\end{equation*}
$$

Therefore, C is a circle, and D is a disc.
Theorem 1.1 is proved.

References

[1] Ramm, A. G., Inverse Problems, Springer, New York, 2005.
[2] Ramm, A. G., A symmetry problem, Annal. Polon. Math., 92, (2007), 49-54.
[3] Hoang N.S. and Ramm, A. G., Symmetry problems 2, Annal. Polon. Math., 96, N1, (2009), 61-64.
A. G. Ramm

Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602
USA
ramm@math.ksu.edu

