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Abstract

The purpose of this work is to study Hopf algebra analogs of constructions in the theory
of p-adic representations of p-adic groups.

We study Hopf algebras and comodules, whose underlying vector spaces are either Ba-
nach or compact inductive limits of such. This framework is unifying for the study of contin-
uous and locally analytic representations of compact p-adic groups, affinoid and o—affinoid
groups and their quantized analogs. We define the analog of Frechet-Stein structure for
Hopf algebra (which play role of the function algebra), which we call CT-Stein structure.
We prove that a compact type structure on a CT-Hopf algebra is CT-Stein if its dual is a nu-
clear Frechet-Stein structure on the dual NF-Hopf algebra. We show that for every compact
p-adic group the algebra of locally analytic functions on that group is CT-Stein. We describe
admissible representations in terms of comodules, which we call admissible comodules, and
thus we prove that admissible locally analytic representations of compact p-adic groups are
compact inductive limits of artinian locally analytic Banach space representations.

We introduce quantized analogs of algebras U,.(sly, K') from [7] thus giving an example
of infinite-dimensional noncommutative and noncocommutative nonarchimedean Banach
Hopf algebra. We prove that these algebras are Noetherian. We also introduce a quantum
analog of Ul(sly, K) and we prove that it is a (infinite-dimensional non-commutative and
non-cocommutative) Frechet-Stein Hopf algebra.

We study the cohomology theory of non-archimedean comodules. In the case of modules
and algebras this was done by Kohlhasse, following the framework of J.L.. Taylor. We use
an analog of the topological derived functor of Helemskii to develop a cohomology theory
of non-archimedean comodules (this approach can be applied to modules too). The derived

functor approach allows us to discuss a Grothendieck spectral sequence (GSS) in our context.



We apply GSS theorem to prove generalized tensor identity and give an example, when this

identity is nontrivial.
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Introduction

The purpose of this work is to study Hopf algebra analogs of constructions in the theory
of p-adic representations of p-adic groups.

Non-archimedean Banach Hopf algebras and comodules were first studied in the series
of papers by B. Diarra. Diarra used Hopf algebras and comodules to study continuous
representations of compact p-adic groups.

The breakthrough in the p-adic representation theory of p-adic groups was made in
papers by P. Schneider and J. Teitelbaum. Motivated by examples of p-adic representations,
which they found in their study of cohomologies of Drinfeld upper-half planes, they studied
locally analytic p-adic groups and their p-adic representations in general. They studied
categories of continuous representations of p-adic groups in Banach spaces over K (the orbit
maps are continuous), locally-analytic representations (orbit maps are locally-analytic) of
p-adic groups in topological Frechet K-vector spaces of compact type (i.e. inductive limits
of p-adic Banach spaces, endowed with inductive limit topology) and relations between these
two types of representations. They singled out “good” categories of representations of both
types, which they called admissible representations.

Schneider and Teitelbaum’s approach is to pass from a representation to its dual space,
which has a structure of a module over the algebra of distributions on the group GG. To the
author’s knowledge, in the case of continuous representations and continuous distributions
this was first noticed by Diarra (see references in [5]). Schneider and Teitelbaum found
a special structure on the algebra D(G, K) of K-valued locally analytic distributions on a
compact p-adic group, which they called a Frechet-Stein structure. This structure is the
main tool in the work of M. Strauch and S. Orlik on the irreducibility of locally analytic
principal series representations, in the works of Schneider and Teitelbaum and in most other
works in this area.

For a compact group G, the Frechet-Stein structure on D(G, K') consists of a projective



system of Banach algebras D, (G, K), s.t. D(G, K) is a projective limit of D, (G, K) and

i) all D,(G, K) are noetherian Banach algebras; and

ii) the transition maps in that system are flat.

In particular, the algebras D, (G, K) contain a Banach subalgebra U, (g, K'), which is
a completion of the universal enveloping algebra U (gx) (gx = Lie(G) ® K), and, as a
U, (g, K)-module, D,.(G, K) is finitely generated. The algebras U,.(g, K) also form projective
system with projective limit U(g, K'), which is called the hyper-enveloping algebra, and
U(g, K) is a subalgebra of D(G, K).

Admissible locally analytic representations on a space V are defined as those for which
the topological dual V' is a separately continuous D(G, K)-module M (= V' as a vector
space), which is a projective limit of finitely generated D, (G, K)-modules M,. Schneider
and Teitelbaum prove that if for all r > s (s is fixed) M, are simple modules, then V' is an
irreducible representation.

Attempts to introduce a quantized version of this theory started with the empirical idea
(of Yan Soibelman) that, although the subject is technically difficult, introducing one more
variable (¢) may actually help with some difficulties and provide an insight into the non-
quantized case. In the quantum case, Hopf algebras and modules and comodules give the
language one must use. Thus one must understand first whether the results and construc-
tions of locally analytic representation theory have analogs in the framework of Banach and
topological Hopf algebras and comodules. To answer this question was the purpose of this
work.

In Chapter 1 we study Hopf algebras and comodules whose underlying vector spaces
are either Banach or compact inductive limits of such. This framework is unifying for the
study of continuous and locally analytic representations of compact p-adic groups, affinoid
and o—affinoid groups and their quantized analogs. In the algebraic setting it was outlined
by Z. Lin in [19]. We prove various results about Banach comodules over K-Banach Hopf

algebras, including results on simplicity and finite cogeneratedness for artinian comodules



over artinian Banach Hopf algebras. We define the analog of Frechet-Stein structures on
Hopf algebra (which play role of the function algebra), which we call CT-Stein structures.
We prove that the compact type structure on a CT-Hopf algebra is CT-Stein if its dual
is a nuclear Frechet-Stein structure on dual NF-Hopf algebra. This allows us to describe
admissible representations in terms of comodules, which we call admissible comodules (in a
special case this description was noticed by Emmerton).

In Chapter 2 we show that the algebra of locally analytic functions on a compact p-adic
group is CT-Stein. We introduce quantized analogs of U, (sly, K) and prove that they are
Noetherian. We also introduce a quantum analog of U(sly, K) and we prove that it is a
(infinite-dimensional non-commutative and non-cocommutative) Frechet-Stein Hopf alge-
bra.

The motivation for the study of U, (g, K) and U(g, K) comes from the following: Consider
a compact locally analytic group G. So far, all known examples of irreducible admissible
representations of G arise as duals of simple D(G, K)-modules that are projective limits of
simple D, (G, K)-modules. While in general there might be simple D(G, K)-modules not
of this type, this is a natural class to consider first. This motivates the study of simple
D, (G, K)-modules. Any compact group G has a system of neighborhoods, consisting of
open normal subgroups. Fix such a subgroup H. Then we have an isomorphism of vector

spaces

C”’H (GvK) = Z OTH (gH7K>

geG/H

and by duality

DSTH <G7 K) = Z DSTH (gHvK)a
geG/H
where 7 is the r which corresponds to locally H—analytic functions. Since H is normal,

by results of Kohlhasse [15] on supports of p-adic distributions (which can be extended to
the case of D<,, (G,K)), D<,, (G, K), is a G/H-graded algebra and Clifford theory gives
a relation between simple D, (G, K) —modules and simple D, (H, K) —modules. But

C,, (H,K) is a space of power series on H and its dual is the algebra U, (g5, G). Thus

3



in order to study simple D, (G, K)-modules one must start with simple U,(g, K)-modules.
The later task is known to be extremely complicated even in the algebraic case of U(g)-
modules. The study of quantizations of these algebras may appear to be useful in view of
the above and also due to other relations in the algebraic case between quantum groups and
representation of their classical counterparts.

In order to prove the Frechet-Stein property of our quantized algebras we found it con-
venient to introduce the skew-commutative analogs of Tate algebras. We call those algebras
skew-Tate algebras and we found that the Weierstrass division and preparation theorems
also hold in the skew-commutative case.

In Chapter 3 we study a cohomology theory for non-archimedean comodules. In the
case of modules and algebras this was done by Kohlhasse [16], following the framework
of J.L. Taylor [30]. In the algebraic case the cohomology of comodules was studied by
various authors. It was believed for a long time that the derived functor approach was
not suitable for developing such a theory even in the case of modules. It was first done
in the thesis of T. Buhler [4], who developed the derived functor approach in the case of
bounded cohomology. We use an analog of the topological derived functor of Helemskii to
develop a cohomology theory of non-archimedean comodules (this approach can be applied to
modules too). The derived functor approach allows us to discuss the Grothendieck spectral
sequence (GSS) in our context (one needs to be careful since our category is not abelian,
but quasi-abelian). While the GSS theorem itself is very similar to the classical one, in
the application of the situation is more complicated than in the algebraic case. We apply
the GSS theorem to prove a generalized tensor identity, which is the main result of this
chapter. While in the case of continuous representations of compact locally analytic groups
on Banach spaces the locally analytic induction functor is exact and the above identity is
just zero, in the case of comodules over Hopf algebras of rigid analytic functions the situation
is different. The celebrated theorem of Noskov from the theory of bounded cohomology is

also a (straightforward) consequence of our GSS theorem.



Chapter 1

Preliminaries

In this section we recall some preliminary notions and some results, mostly without proof.

One may find all missing details in the references cited.

1.1 Notations

In this paper the following will mean:
K or L - a finite extension of Q,
|-| x - the norm on K, extending the norm on Q,
| K| - value group of K (as a set it is a set of values of || ;)
ok - its ring of integers
Z, C Q, - the ring of p-adic integers
A 4- the coaction of coalgebra or comodule A

€4- the counit of coalgebra A

1.2 Some nonarchimedean functional analysis

Here we recall some definitions and facts about nonarchimedean topological vector spaces
and Banach spaces. The main references are [24], but see also [6, 23, 31].

Recall that a (nonarchimedean) seminorm ¢ on V' is a function ¢ : V- — R s.t.

1. g(av) = |a|kq (v) for any a € K and v € V,



2. ¢(v+w) <max(q(v),q(w)) for any v,w € V.

From these axioms it is easy to check that ¢ (0) = 0 and ¢ (v) > 0 for any v € V.
A seminorm is called a norm if ¢(v) = 0 implies v = 0.

Since any K —vector space is also an ox—module, we can consider its ox—submodules.

Definition 1.2.1. A lattice L in V is an oxg—submodule of V', s.t. for any v € V there

exists 0 #a € K : av € L.

The intersection of two lattices is again a lattice.

For any seminorm ¢ we can define two ox—submodules of V' :

L(q) = {v € V‘q(v) < 1} and L™ (q) = {v € V‘q(v) < 1}.

L (q) and L~ (q) are lattices.

Conversely, for any lattice L in V' we define its gauge py, by

prL - V — R
v — inf|a|g -
vealL

pr, 1s a seminorm on V.

Definition 1.2.2. Let (L;),.; be a family of lattices in the K —vector space V' such that
(lc1) for any j € J and a € K* there is k € J such that L, C aL;;
(1c2) for any two i,j € J there exists a k € J such that L, C L, N L;.
Such a family form a base of a topology, which is called locally convex topology on V

defined by the family <Lj)j€J‘

Definition 1.2.3. Let (g;);., be a family of seminorms on the K—vector space V. The
topology defined by the family (qj)jej is the coarsest topology on V such that
i) all g; : V' — R are continuous;

ii) for any v € V the translation v +.: V — V is continuous.



For any finitely many seminorms g¢;,,...,q;, in the given family (qj)je ; and any real
€ > o define

V(Qj177qu7€):{U€VQJ1 SEv"'qur(U)Se}'

Lemma 1.2.4. V (g;,,...,q;,;€) is a lattice in V.

The topology on V given by a family of seminorms (qj)jeJ coincides with the topology,
giwen by the family of lattices V (qj,, ..., qj,;€) -

The topology given by a family of lattices (Lj)jeJ can also be defined by the family of

gauges (pr,) .o,
Proof. [24, par. 4]. ]

Definition 1.2.5. Let V be a topological K —vector space. V' is said to be locally convex
(LCVS) if the topology of V' is given by a family of seminorms (g;),; or, equivalently, by a

family of lattices.

Definition 1.2.6. Let H = (H,7y) be a topological K —vector space (H is a K—vector
space, Ty is a topology on it). H is called a K—Banach space if there is a norm ||-|| on H,

which induces the topology 7 and H is complete w.r.t. ||-||.

A Banach space is an LCVS whose topology is defined by a single seminorm, which is a
norm.

If we have a K —Banach space (H, ||-||,) then exists another norm ||-||,, which is equivalent
to ||-||; such that values of |||, lies in |K|.

Two important examples are [31, 3.B, 3.A]
co (X) = {(cs),ex € K¥[Ve>0: the number of z such that |c,|; > e is finite}

and

(X)) = {(C:r)xex € KX\EIC’ > 0:sup e, < C’}



For K discretely valued, any K-Banach space is topologically isomorphic to a space cy(X)
for some X.

Now let us review the concept of orthogonality in Banach spaces.

Definition 1.2.7. Let H be a K—Banach space with a norm ||-|| and M be a closed

subspace. A vector v € H is called ||-||-orthogonal to M, if inf,cps ||z + v]| = ||v]|.

In nonarchimedean case this condition is equivalent to the following:
Vo e M, pe K [[Ax+ pol| = max([A[ (2], |ulx [[0]])

A base in an LCVS is a linearly independent subset of vectors, such that the linear hull

of this subset is dense.

Lemma 1.2.8. Suppose that for K—Banach space H the values of ||-|| lies in |K|. Since K

18 discretely valued,

1. the space H has an orthogonal base;

2. every closed subspace in H has an orthogonal complement.

Proof. This is a combination of results from [31]. For K discretely valued, every Banach
space is of the form ¢y (X) . This is a condition ¢) of [31, Thm. 5.16] for s = 1 (see [31, 3.H]),
which is equivalent to the conditions 7) of [31, Thm. 5.16] and () of [31, Thm. 5.13]. O

Remark 1.2.9. 2 also follows from [31, 4.7] or [24, sec.10].
V' = L(V, K) will denote the set of continuous linear functionals on V. We will equip

V'’ with a topology.

Definition 1.2.10. Let V be an LCVS with the topology given by seminorms ¢;. A subset
B C V is called bounded if ¢;(B) is bounded for every i.

Definition 1.2.11. Let V be a LCVS. The strong topology 1, on V' is the topology, defined
by family of seminorms pp (f) = sup |f (v)|, with B running over all bounded subsets of
vEB

V. We denote V' with strong topology by V) = (V', 7).

8



If V' is a Banach space, then the strong topology on V' is the topology defined by the
dual norm. By [31, p.52 and 3.Q] we have (co(X)), = 1*(X).

The map f: V — W of two LCVS is called strict if the subspace topology on the image
is equivalent to the quotient topology.

We always have V C (V}), by [24, sec. 9].
Definition 1.2.12. An LCVS V is called reflezive if V = (V})),.
A Banach space is reflexive iff it is finite dimensional (if K is discretely valued).

Definition 1.2.13. An ox—submodule A C V is called c-compact if, for any decreasingly

filtered family (L;),., of open lattices L; € V' the canonical map
A — lgnA/ (L;NA)

is surjective.

Definition 1.2.14. A continuous map f : V — W between two LCVS is called compact
if there is an open lattice L C V such that the closure of the image f (L) is bounded and

c-compact.
If f:V — W is compact then f': W, — V} is also compact.

Definition 1.2.15. A continuous map f : V — W between two LCVS is called completely

continuous if it belongs to the closuse of the subspace of maps with finite-dimensional image

in L(V,W).

In case of Banach spaces the classes of compact and completely continuous maps are the

samme.

Definition 1.2.16. Consider a sequence of LCVS (V,,) with maps ¢pm : V, = V. On
inductive limit V' = lim_, V|, consider the strongest locally convex topology such that all

inclusions V,, C V are continuous. Equipped with this topology, V' is called locally convex

9



inductive limit of V,. If the transition maps ¢,,, are compact, the V is called a compact

limit of the sequence V/,.

Definition 1.2.17. Let V be a LCVS. V is said to be of compact type (or a CT- or

LS-space) if it is an compact limit of an inductive system (V,,, ¢.) of Banach spaces V/,.

Remark 1.2.18. A Banach space H can be presented as a limit of the stationary sequence
V,, with V,, = H. H is of compact type iff it is finite dimensional. This follows from the fact
that only in this case the identity map is compact.

Every Banach space is an algebraic inductive limit of its finite-dimensional subspaces,

but the inductive limit topology in this case is not even metrizable.

Definition 1.2.19. We call an LCVS V' a Frechet space if it is complete and metrizable.

Equivalently, the topology on V' is defined by a countable family of seminorms.

Each Frechet space is countable projective limit of Banach spaces.

Next we discuss nuclearity. For any ox—submodule A C V in an LCVS V' we can form
a K —vector space V4 = K ®,, A and equip it with the topology defined by the gauge pa.
Denote by ‘//; the Hausdorff completion of Vy. It is a Banach space w.r.t. the continuous
extension of p4.

If A = L is an open lattice in V| then the identity map on V gives a continuous map
V' — Vp with dense image.

If f:V — W is a continuous linear map into a Banach space W, then there exists
unique fg, : X//Z — W, where L is a preimage of the unit ball in W, such that we have a

commutative diagram

10



When M C L is a second open lattice in V' then the identity map can be viewed as a
continuous map Vj; — V. By taking completions and using the above universal property

we get a canonical continuous map Vy; — V7.

Definition 1.2.20. An LCVS V is called nuclear if for any open lattice L C V' there exists

another open lattice M C L such that the canonical map \//J\\/f — \//Z is compact.
Any nuclear Frechet space (NF-space) is reflexive and its dual is a CT-space.

Definition 1.2.21. An LCVS V is called of countable type if there is a countable dense

subset in V.

Remark 1.2.22. In [12] it is proved that any CT-space is of countable type. In [21] it is
proved that any NF-space is of countable type. Thus in most places we can safely assume

that our spaces are of countable type. Mostly we will not use this assumption.
Definition 1.2.23. Let V' be a Banach space.

1. Let U be a closed subspace of V. We define U+ C V}/ as

UL:{¢€VI)’

¢(u):0vueU}.

2. Let W be a closed subspace of V,/. We define

Ker(W):WLmvz{vev‘mv):ov(pew}.

It follows from Hahn-Banach theorem, that if U is a proper closed subspace of V', then

U+ #0. It is also clear that
Ker (W) = (7] Ker (¢)

peW
and Ut and Ker (W) are closed subspaces.

The following lemma is obvious.

Lemma 1.2.24. Let V and W be two CT-spaces. If ¢ : V — W is a continuous surjection,

then ¢' : W, — V| is a continuous injection.

11



Lemma 1.2.25. Let U be a subspace of a Banach space V. Then the largest Hausdorff
quotient of V/U is isomorphic to V/U.

Proof. The topology on V/U is given by quotient seminorm under the projection 7 : V —
V/U. The points of U = 7~ *({0}), which are not in U, in this topology are infinitely
close to zero, and thus if 7 (u) € 7 (U) , then Vv € V/U the points v and v + 7 (u) are not
separated. In any Hausdorff quotient ¢ : V/U — W if ¢ (v) and ¢ (v + 7 ((u))) are separated
in W with non-intersecting neighborhoods W,y and W ytr((u)), then ot (W¢(v)) and
o1 (W¢(U+W((u)))) are non-intersecting neighborhoods of v and v + 7 (u) .

Thus the quotient of V/U is Hausdorff iff 7 (U) goes to zero. Clearly V/U = (V/U) / (U/U)

is the largest quotient with this property. O

Corollary 1.2.26. Let U be a subspace of a space V of compact type. Then the largest
Hausdorff quotient of V/U is isomorphic to V/U.

1.3 Complete tensor products

Let V and W be two LCVSs (see, for example [24, sec. 17]).
The inductive tensor product topology is the finest locally convex topology on V & W,
K

such that the canonical bilinear map
VxW—=VeoW
K

is separately continuous. We write V. ® W for V ® W equipped with this topology. The
K,i K
space V' ® W is characterized by the universal property that for any bilinear separately
K,

continuous map f : V x W — U the induced map f

V xW

12



is continuous.
The projective tensor product topology is the finest locally convex topology on V ® W,
K

such that the canonical bilinear map
VW -=VeW
K

is (jointly) continuous. We write V' ® W for V ® W equipped with this topology. The
K, K

space V' ® W is characterized by the universal property that for any bilinear continuous
K,

map f:V x W — U the induced map f

U
f ~
/f

VoW

K,

is continuous.
Proposition 1.3.1. Let V and W be two LCVS.

1. If V.and W are Frechet (in particular, Banach) spaces, then the projective and injective

tensor product topologies coincide.

2. If Vand W are CT spaces, then the projective and injective tensor product topologies

coincide.
Proof. 1) [24, 17.6]; 2)[6, 1.1.31]. O]

Thus we will usually write V @ W meaning the above topology and V & W for Hausdorff
K
completion of V @ W.
K

Lemma 1.3.2. If V and W are a) Banach; b) Frechet; c¢) nuclear Frechet; d) CT spaces,
then V@ W s also of the same type.

Proof. [6, 1.1.28,29,32.] 0

13



The categories of a) Banach; b) Frechet; ¢) nuclear Frechet; d) CT spaces are tensor

categories with the tensor structure given by & (the morphisms are continuous maps).

Lemma 1.3.3. Let W and V be both either Frechet or CT spaces and let U be a linear
subspace of V.
Then W& (V/U) =W & (V/U).

The following is the analog of the ”integration” theorem of [26, Thm. 22]

Proposition 1.3.4. Let A be a CT LCVS and A’ is its dual NF LCVS. Then we have

continuous K-linear isomorphisms

1) Ly(AV) gA’g@V
2) Ly(A, V)= A@V (the "integration” map)
for any V of compact type.

Proof. The first isomorphism is [24, 20.9]. For the second observe that, if V' = lim V},, then
%
Ly (A, V) =lim L, (A, V,)) and AQV = lim A® V,, and apply [26, Prop. 1.5]. H
— —

The above proposition does not hold for K-Banach spaces (see [24, 18.11]).

Lemma 1.3.5. For any K-Banach space A and any Banach space V

ARV =C (A, V)=CC(A,V)

where C(-,+) denotes compact maps and CC' (-, -) completely continuous maps, respectively.

Lemma 1.3.6. Let f : V — W be a strict map of Banach spaces. Then1® f UV —

U&®W is also strict for any Banach space U.

Proof. Im(1® f) =U&Im(f). O

14



1.4 Seminormed spaces

We call a topological vector space E seminormed if its topology is defined by a seminorm

PE.
If E is a topological vector subspace of F' and pg is a seminorm on F, then it induces a

seminorm p’ on E and p” on F/E, defined by
Y (@) =p(@) and p (z+E) = inf p(o+ ).
ec

Thus in the category of seminormed spaces one can take a quotient by an arbitrary linear
subspace.
The seminormed space X is called complete if any net in X has an accumulation point.
Every seminormed space X can be embedded into a complete seminormed space X,

which is the space of Cauchy nets in X.

1.5 Nonarchimedean topological algebras.

Let A be alocally convex algebra, that is A is an LCVS with an associative unital K-algebra
structure such that the algebra multiplication m : A ® A — A is continuous and thus can

be continued to the map m: AQ A — A.

Definition 1.5.1. A seminorm ¢ on A is called an algebra seminorm if there exists ¢ > 0
such that

q(ab) < cq(a)q(b) for any a,b € A.
The seminorms, defining topology on A, are necessarily algebra seminorms.

Definition 1.5.2. An algebra seminorm is called submultiplicative if ¢ = 1, i.e.
q(ab) < q(a)q(b) for any a,b € A

and unital if ¢ (1) = 1.

15



Definition 1.5.3. A locally convex algebra A is called a K-Banach algebra if its topology

is given by a single seminorm ||-|| ,, which is a norm.
Proposition 1.5.4. [27, Prop. 2.1]Let A be a (left) noetherian K-Banach algebra.

e Fach finitely generated A-module carries a unique K-Banach space topology (called the

canonical topology) such that the A-module structure map A X M — M is continuous;

o cvery A-submodule of a finitely generated module is closed in the canonical topology;

in particular, every (left) ideal in A is closed;

e any homomorphism of finitely generated A-modules is continuous and strict for the

canonical topologies.

Finitely generated modules over a Noetherian K —Banach algebra form an abelian cat-
egory.

Since K is discretely valued, when values of ||-|| , are a subset of the value group of K,
we can equip such A —Banach algebra with an integral, complete, separated, decreasing
filtration

F,A = {a € A‘ lla|l , < p‘”} .

Thus we can view A as a filtered ring.

A locally convex algebra A is called a (nuclear) Frechet algebra if it is a (nuclear) Frechet

LCVS.

Definition 1.5.5. A Frechet algebra A is called Frechet-Stein algebra, if it is a projective
limit of a projective system of K —Banach algebras (A, ¢nm), where ¢p,, = A, — Ap, such

that
1. the A, are noetherian K —Banach algebras;

2. the maps ¢,, are flat algebra homomorphisms, i.e. A,, is a flat A,-module under

Onm = Ap — Ap.

16



The system (A, ¢nm) is called a Frechet-Stein structure on A.

Definition 1.5.6. A module M over a Frechet-Stein algebra A is called coadmissible with
respect to the Frechet-Stein structure (A, ¢pm) , if M is isomorphic to a projective limit of

a projective system (M, V) of a finitely generated A, —modules, such that

An & Mn+1 l"Mn.

An+1

Coadmissible modules over a Frechet-Stein algebra form an abelian category (see [27]).

Lemma 1.5.7. Let I be a closed two-sided ideal in a Frechet-Stein algebra A. Then A/I is

also a Frechet-Stein algebra.

Proof. [27, Prop. 3.7]. O
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Chapter 2

Nonarchimedean Hopf algebras and
comodules

2.1 Nonarchimedean Hopf Algebras

Throught this chapter we assume K is a nonarchimedean discretely valued complete field.

Unless specified otherwise, for any LCVS V| V' will mean the strong dual V}.

2.1.1 Banach and topological Hopf algebras.

Recall that the categories of Banach, NF and CT spaces are tensor categories with the

tensor structure given by Q.

Definition 2.1.1. We say that A is a K—Banach Hopf algebra, if it is a Hopf algebra
in the category of K —Banach spaces, i.e. there are continuous maps (mau, e, Aa,€4,54)

satisfying all usual axioms of Hopf algebras.

If A is a K-Banach Hopf algebra with structure maps (ma, e, Aa,€4,S54) , then A’ is
also a K-Banach Hopf algebra with structure maps (A%, €%, m%, €%, S%), where * denotes
the dual map.

Let {A,, ¢} be an inductive system of K-Banach Hopf algebras A,, with injective tran-
sition maps ¢, : A, = A,i1, s.t. ¢, are morphisms of K—Banach Hopf algebras. Then

A =1lim A, is a Hopf algebra in the category of locally convex K-vector spaces, with Hopf
%
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algebra maps (m, e, A ¢, S) defined by the corresponding maps (my, €,, A, €,,S,) and uni-

versal property of inductive limit.

Definition 2.1.2. Suppose ¢,, are compact maps. Then A is a locally convex vector space
(LCVS) of compact type (CT-space or LS-space). In this case we call A a K-Hopf algebra
of compact type (or CT-Hopf algebra).

The dual A’ is a nuclear Frechet vector space, which is a projective limit A" = liin Al
of K-Banach spaces A;,, with compact transition maps ¢y : A; ., — A;. The maps ¢ are
also morphisms of K-Banach Hopf algebras. Thus A’ is a topological Hopf algebra with
structure maps (A*, e*, m*, e*, S*) and it is a compact projective limit of K —Banach Hopf

algebras A),.

Definition 2.1.3. We call A a nuclear Frechet K-Hopf algebra (or NF-Hopf algebra) if it is

topologically isomorphic to compact projective limit of K-Banach Hopf algebras.

So, if A is a CT-Hopf algebra, then A" is an NF-Hopf algebras. Since spaces of compact

type are reflexive, by duality we have an anti-equivalence of categories

{CT-Hopf algebras} <— {NF-Hopf algebras} .

Definition 2.1.4. If A’ =1lim A/, we say that A/ defines a NF structure on A. We say that
e
NF structures {A]}, {B/,} are equivalent if they are equivalent (in the sense of [6, 1.2.7])

in the category of projective systems of K —Banach Hopf algebras.
It is known that any two NF structures are equivalent [6, 1.2.7].

Definition 2.1.5. If A = lim A,, with injective and compact transition maps we say that
—

{A,} defines a compact type structure on A.

If A =limA, and B = lim B, are compact type K-Hopf algebras, then A@ B =
— —
lim (An ® Bn) is a compact type K-Hopf algebra with CT-Hopf structure being inductive
_)

limit of Hopf structure on A, R B,,.
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It is known that if V is an LCVS of compact type and U is a closed vector subspace,
then U and V/U are also of compact type [26, Prop.1.2].

Proposition 2.1.6. If V is a CT-Hopf algebra and U s a closed Hopf subalgebra, then U
is also of compact type. If I is a closed Hopf ideal of V, then V/I is a CT-Hopf algebra.

Proof. By the Banach-Dieudonne Theorem, U C V is closed iff U, = U NV is closed Vn
[13]. Thus U, are Banach subspaces of V,, and, since U is a Hopf subalgebra, are K-Banach
Hopf subalgebras of V,,. Thus U = 1i_r>n U, is a CT-Hopf algebra.

The same argument works for V/I = li_r>n Vo/ I, with I, = I N'V,. O

2.1.2 Normal Hopf algebras

In the algebraic theory of Hopf algebras there are different (but related) notions corre-
sponding to normal subgroups. They arise by generalizing notions natural in two principal
classical cases of Hopf algebras: coordinate function algebras and group algebras.

Since in non-archimedean analysis these two objects have different topological types, the
corresponding notions, corresponding to normal subgroups, and relations between them in
our context are more clear.

We assume that the reader is familiar with Sweedler notations.
Definition 2.1.7. Let (A, m,e, A ¢,S) be a CT- or Banach Hopf algebra.

1. The left adjoint coaction of A on itself is a map
o A— AR A
pi(h) = Z h1S (hs) @ hy
2. The right adjoint coaction of A on itself is a map
pr: A— AR A
pr(h) =) ho @S (h)hs
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3. A Hopf ideal I of A is called normal if p; (I) C A® T and p, (I) C I ® A.

4. We say that a Hopf algebra morphism ¢ : A — B is normal if Ker ¢ is a normal Hopf
ideal of A.

One can write p; as
pr=(m®id)o (id® ce3) 0 (Id®id® S) o (id® Ay) o Aa

and

pr = (id®@m)o (012 ®id) o (S®id®id) o (As®id) oAy
(0;; denotes cyclic permutation of terms from ¢ to j).

Remark 2.1.8. One can check (straightforward) that p; is an A—comodule structure on A
and a morphism of Hopf algebras ¢ : A — B is normal if Ker ¢ is a subcomodule w.r.t. this

structure.
Definition 2.1.9. Let (A, m,e, A ¢,S) be a NF- or Banach Hopf algebra.
1. The left adjoint action of A on itself is a map
(adih) (k) =Y hk (S (hs))
for all h, k € A.
2. The right adjoint action of A on itself is a map
(adyh) (k) = Y S (h) ko
for all h, k € A.
3. A Hopf subalgebra B of A is called normal if (ad;A) (B) C B and (ad,A) (B) C B.
One can see easily that ad;, ad, : A ®A — A and
ady =mo (id®@m)o (id®id® S) o (id ® 0a3) 0 (A4 ® id)
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and

ad, =mo(m®id)o (S®id®id)o (01o®id) o (id® Ayu).
Taking dual map gives
(pay)’ = adary and (pa,) = ada,
and vice verse. Thus one has
Proposition 2.1.10. Let A be a CT-Hopf algebra.

A Hopf ideal I in A is normal (and projection A — A/I is normal) iff (A/I), is a normal
Hopf subalgebra of Aj;.

2.2 Modules and comodules

All our modules and comodules are assumed to be continuous, i.e. multiplication and

comultiplication, respectively, are continuous maps.

2.2.1 Modules and comodules.

Definition 2.2.1. Let A be a CT- (Banach) Hopf algebra and V' an LCVS of compact type.

1. We say that V' is a right CT-comodule (Banach comodule) over A if exists p: V —

V ® A, a K-linear continuous map such that

(idv@ﬁA) o py = Zdv
(pv ®ida) o py = (idy @ Ap)opy

Right CT (Banach) comodules form a category Comoder — A (Comodp., — A) with

morphisms being continuous morphisms of comodules.

2. By duality, V} is an NF- (Banach) space which is a continuous right Aj—module.
We will say that V) is a module, dual to comodule V. Denote the category of right

continuous A’-modules that are NF spacesby modypr — A’.
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3. On V there is also a left A’—module structure
m: AQV =V
K,
A@Qui=r A-v = (idy®A)opy (v).

Such modules (with Aj-module structure coming from the comodule structure on V)

are called rational.

4. In Banach case, left A’—module structure on V' gives a continuous left A—comodule
structure on V’. Equipped with this comodule structure, we will call V' a dual comod-

ule.

5. Similarly, if W is a Banach space, one can give a structure of a continuous right

A’—module to the space L, (V,W).

Now if V is a left A’—module and a compact type LCVS, then “integration” theorem

implies existence of a map py

(where i (v) (A\) = A-v), such that the A’—module structure on V is exactly A\-v = (id, ® A\)o
pv (v). The module axioms for V' imply that py satisfies the right comodule axioms (|29,

2.1.1]). Thus we have

Proposition 2.2.2. All continuous A'—modules on an LCVS of compact type are rational

(in the sense of [29, 2.1]).

Let A be a Banach K-Hopf algebra and M a left continuous Banach module over A’.
Following [29, 2.1], we define

Lb (A,a M)

p: M —
m = p(m):  pm)(c)=cm’ (2.2.1)
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There is a natural embedding

M®A < Ly(A,M)
mea — f(m®a): f(m®a)(c)=c"(a) - m"

Now Prop.1.3.5 says that we have

Proposition 2.2.3. M is rational if p(M) C C(A', M) ji.e. p(m) is a compact map for

every m € M.

Now let V be a compact type comodule over A. The dual V} is a nuclear Frechet LCVS.
Since taking dual invert all arrows in diagrams, expressing comodule properties of V, V}/ is a

right module over A" which is continuous. All together, we have an equivalence of categories

comodcr — A ~ A — modcr
and anti-equivalence of categories
comodcr — A ~ modyp — A’ .

Note that if the antipode of a Hopf algebra A’ is involutive (i.e. S% = Id), then the

categories of left and right modules are equivalent.

Proposition 2.2.4. Let V be a right CT-comodule over A and U a closed subcomodule of

A. Then U and V/U are right A-comodules of compact type and the exact sequence
0=->U—->V-=>V/U—=0
give rise to the exact sequence of right A'—modules
0— (V/U), =V} = U —0
with strict maps.

Definition 2.2.5. We call a topological comodule simple, if it does not have any closed

subcomodules.
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Proposition 2.2.4 gives

Corollary 2.2.6. C'T A-comodule V is simple if and only if V| does not have closed proper

A’ —submodules.

Lemma 2.2.7. Let V be a Banach A-comodule and V' be an A’—module.

1. If U is a closed subcomodule of V then Ut is a closed submodule of V.

2. If U is a closed submodule of V' then U = Ker (U’) is a closed subcomodule of V.

Proof. (1) If € U+ and A\ € A’ then for any u € U

(A6) (1) = (ND6) 0 Aa (1) = S A (o) &

since u; € U.

(2) Let u € U. Then Ay (u) = > up ® u; can be written as Ay (u Zaz ® U,

el
where {a;},.; is an orthogonal base of A. Let \; be a functional, dual to a;. But then

(XNi@) (u) = ¢ (u;) for any ¢ € V'. Since U’ is a submodule, Vo € U’ : (\;¢) (u) = ¢ (u;) =0

and thus u; € U. So U is a subcomodule. O
Lemma 2.2.8. Let A be a Banach Hopf algebra and V be a Banach A-comodule. Then

1. Vs simple if V' is simple;

2. Vis simple if and only if it is simple as an A’—module.

Proof. (1) If 0 - M — V — V/M — 0 is an exact sequence of A—comodules, then, by
lemma 1.2.24, (V/M), is a closed submodule of V}.
(2) is proved in [5]. O

The following is the analog of [26, Lemma 3.9]

Proposition 2.2.9. Let V be a compact type comodule over A, which is an compact inductive
limit of Banach comodules V,, over A, and pv|v, = pv,.,|v, = pv,. Suppose there exists

N > 0 such that V,, are simple for alln > N. Then V is simple.

25



Proof. Let U C V be a proper closed subcomodule. Since V' is of compact type, U = lim U,,,
_)

such that for each n U, is a closed subspace of V,,. Since U and V,, are subcomodules of

V, U, is A, —subcomodules of V,,. Since U is a proper subspace of V, U, must be proper

subspaces of V,, for all n > N for some N > 0 and this completes the proof. O]

Remark 2.2.10. [26, Lemma 3.9] is proved for coadmissible modules over Frechet-Stein al-
gebra, i.e. the duals of V,, are required to be finitely generated over A and A/ are required
to be Noetherian. These assumptions are not required in our result. On the other hand,
our result is for CT-comodules, which on the dual side mean a nuclear Frechet module, and

nuclearity is not required in [26, Lemma 3.9].

For K-Banach spaces an operator is compact iff it is completely continuous. Since the

later are limits of finite-dimensional operators, they motivate the following
Definition 2.2.11. Let M be a Banach module over A’.
e m € M is called finite if A'm is finite dimensional.

e N € comoder — A. n € N is called finite if py (n) is a finite sum in N® A (i.e.

pN(n)EN%A)

Proposition 2.2.12. n € N is finite as an element of the comodule N if and only if n is

finite as a vector of the A'—module N iff p(n) (see 2.2.1) is a finite-dimensional operator.

Proof. Let px (n) = a;®@n1+- - -+ax®@n,. Then for any ¢ € A" p-n = ¢ (a1) n1+- - -+¢ (ag) ny.
Taking as ¢ the functional, dual to a;, gives n; € A'n. Thus A'n = Kny + --- + Kny and

this proves the first part. The second part is clear. O

Example 2.2.13. Examples from representation theory:

o If N =A=C(Z, K) - the continuous functions on Z,, then all polynomials are finite

elements and they are dense in A.
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e fN=1 ndgLQ(Zp) (x) — the continuous principal series representation from [25] (viewed
as comodule over C' (GLy (Z,), K)) with dominant integral x, then the only finite ele-
ments are the elements of the space of corresponding rational representation and they

are not dense.

e If as above, y is such that the representation is topologically irreducible, then there

are no finite elements in N.

2.2.2 Induction

Let A and B be Banach or compact type K—Hopf algebras. Let (M, py) be a right
A—comodule and let (N,7n,pn) be an A — B—comodule with left A—coaction 7y and

right B—coaction py.

Definition 2.2.14. The space M%N = Ker (py ®idy — idy @ Ty) is called the cotensor

product of M and N over A. It has a right B—comodule structure with coaction idy; ® py-.

Since M %N is a kernel of a continuous map, it is a closed subspace of M & N. Thus if
M and N are both Banach or CT spaces, then M %N is Banach or CT respectively.

It is straightforward to check (using Hahn-Banach Theorem) the following

/!
!/

= MJ®N, (Mé®Né> — M"RN"
Ay Ay

Lemma 2.2.15. <M®N>
A , At

b

Let 7 : A — B be a morphism of topological Hopf algebras (either Banach or compact

type). Then A is a left and right B—comodule via maps
pir = (T ®idy) o Ay

and

Pro = (idA®7T) oAy.

Denote those comodules by A and A, respectively.
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Definition 2.2.16. Let V € comod. — B. Then V%ﬂA is called induced A-comodule. We
have V%FA € comod.— A. We also denote the induced right A-comodule by V™. The functor

(—)" is called induction.

Definition 2.2.17. For V' € comod. — A V, will denote the B—comodule V with coaction
VA V®AS V& B. The functor (=), is called restriction.

In order to justify the names of our functors we need to prove Frobenius reciprocity, i.e.

that induction functor is a left adjoint to restriction.

Proposition 2.2.18. (Frobenius reciprocity)
Let w: A — B be a continuous morphism of CT K-Hopf algebras, M be a CT-comodule
over B and N be a CT-comodule over A.

There is a topological isomorphism
Comodecr — A <N, M%WA> ~ Comodcr — B (N, M),

where Comoder — A (V,W) is a space of continuous comodule morphisms between V and

W, with the topology induced from Ly (V,W).
First we prove a technical

Lemma 2.2.19. The map id®¢4 : M%WA — M sending m®a — €4 (a) m is a morphism

of B-comodules (M%IWA> and M.

Proof. We need to prove the commutativity of the following diagram:

d® Ay dR@idm

M®A M®ARA M®ARB
d® T id®@m® id
idQeq M®B id@es®id| M B® B
id®ep id®ep ® 1
M o M®B
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Let m®a € M%WA. This means that we have

Y mg@muy@a=Y mer () ®ag.

The left and bottom parts composed are clearly > m ® a — Y m@y ® myea (a).

The top and right parts composed are giving

S meas Y mee(r(aw)) (o) =Y mees (5 (@) 7 (@) =
- Zm @7 (a) ) €p <7r (a)(Q)) == Zm ® 7 (a)y €a (a@) = Zm(o) ® m1yea (a) .

]

Proof of prop.2.2.18. Define morphisms

¢ +—— (id®ea)o ¢ :dsz(if@(ﬁBOW))od)‘

(Y®id)opy = b «— (Y:N— M)

The fact that qg is a morphism of B—comodules follows from equality
(#@id) o py, = (idep @ id) o (id @ 7w @ id) o (9@ id) o (1d @ 7) 0 piy =

= (id@eg @ id)o (id @ TR 7)o (¢ ®id)opy = (idRep @ id)o (id @ TR 7)o (id ® Ag)op =
## g . ~
= py o (id®eg) o (id @) o p = ppr o @,

where (##) is given by Lemma 2.2.19.
The identity

(pv ®id) o ¢ = (py ®'id) o (Y ®id) o py = (Y ®id ®id) o (pn, ®id) © px =

— (W ®id®id) o (id® 1 ®id)o (id®As) o py =

=(idem®id) o (id® Ax)o (P ®id)opy = (idR 7 ®id) o (id R Ay) o)

means that the image of @/; belongs to M %WA.
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The identity
Prsa© ¥ = (id®Ay)o (Y @id) o py = (b ®id ®id) o (id ® As) 0 py =

— (W @id®id) o (py ®id) 0 py = @@z’d) .
shows that ¢ is a morphism of A—comodules from N to M %WA.
Let us show that gz:é = ¢ and 1Z = .

$= (q~5®id>opN:(id®6A®id)o(¢®id)opN:(id®€A®id)opM®ﬂAogb:
B

= (id®es®id)o (id®Ay)od =

P = (id®ea) o (Y ®id) o py = (id®e4) 0 par 0 Y = .

Since the topologies on the spaces Comoder— A (N, M%WA) and Comodcr— B (N, M)
are induced from L, (N , M @)A) and Lj (N, M) respectively, the continuity of our linear
bijections follows from the argument same as in [24, sec.18]. Namely, composition with
linear continuous map W — U is a linear continuous map Ly, (V, W) — L, (V,U) . Since our

(*) maps are compositions of continuous maps, they are continuous. O

Remark 2.2.20. Proposition 2.2.18 is also true for Banach comodules over Banach K —Hopf

algebras. The proof is the same.

2.2.3 Tensor Identities

One can define the tensor product of topological comodules as in the algebraic case.

Definition 2.2.21. Let (M, pys) and (N, px) be two right Banach or CT comodules over a
Banach or CT Hopf algebra A respectively. Then on M ® N there is an right A-comodule

structure

Pran = (idy ®@idy ®ma) o (idy ® 093 ®ida) o (py @ pn),
making M ® N an A-comodule of appropriate type.
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Proposition 2.2.22. (Tensor identities) Let m1 : A — B be a continuous morphism of
topological K-Hopf algebras (either Banach or compact type), and let W be a comodule over
B and V a comodule over A (of appropriate type), then

(i) V& (W%W/Q ~ (V, 8 W) R, A,

XD

ﬁy(wgﬂ)®vzov®m)ﬂA

XD

both isomorphisms being as topological A-comodules.

Proof. We include a complete proof, since it is not present in any source known to us.
(i) Both V& (W%ﬂA) and (V7r ® W) %WA are embedded into V& W & A. Their ele-

ments satisfy the following identities in respective order:

() Zv@w(o) ® w1y ® h = ZU@QU@?TUZ(U) ®h(2) (2.2.2)
(>|<>|<) Z V(0) @ W) @ W(U(l))w(l) Qh = Z VR W R W(h(l)) X h(z) (2.2.3)
inVeWeB® A
Let ¢ be the map

p: VRIWRA — VRW®A
YUvRQW®h — Y vy ®@wuayh

Suppose that ) v ® w ® h satisfies (*). For ) vy @ w @ vayh (**) takes the following form

> V(0)0) @ W) @ T(vo))wa) @ vmh = Y v0) @ w T(va)yw)T(ha)) @ vaye)he)

A direct check shows that (***) is obtained from (*) by applying to the left and right hand

side the maps enlisted below
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YU wie) @way @ h Zv®w®7r(h(1))®h(2)

py ®id ® id ® id po ®id ® id ® id
> 0(0) © V(1) @ W) @ way @ h Y00 ©@ vy @w @ T (hay) @ )
po Rid ®id ® id ® id idRAj ®id R id R id
2 V©)(0) ® V(o)1) @ 7\)(1) ® w(o) ® way @ h 2 V() ® V1)) @ 71(1)(2‘) Qw7 (ha)) ® h)
(id@id@m]g®id)00’230(id@ﬂ@id@id®mA)00'35 (id@id@m]g®id)Oaggo(id®ﬂ®id®id®mA)OU35
> v(0)0) ® wo) @ T (Vo)) Wiy @ vyh Yo ®@weT (vayw) T (hw) @ vay@he

which can be easily seen to be identical (¢;; means cyclic permutation from the j™ to the
it" entry).
Thus ¢ maps V & <W|/§I7TA> to (V7T ® W) %WA.

Let us show that ¢ is a morphism of right A—comodules, i.e.

(OO Py 5 (1, a) = PlrrEWGa

We have
YvRuweh
pv@(w&m)
¢
> V(0) ® w R vyh > V(0) ® W ) ® vyl
""(Vﬂ@W)%wA Nﬁ@id
2 v0) @ W vaymha) ® vaye)he) 2 V0)(0) ® W vy 1) @ vayhe)

The equality follows from
(py ®id® Ay) (Zv®w®h) = ZU(O) ® vy @w @ hy @ by =

— (py @id@id2id®id) (Y ve @y @we ho) @ he) ) =
= Z V(0)(0) ® V(0)(1) @ V(1) @ W @ h(1y & hz) =
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= (id® A, ®id ® id @ id) (Z Vo) ® vy ® W hyy ® h(g)) -
= Z V(0) ® V(a)(1) ® V(a)y2) @ W R h(1y ® h)
Now let

v: VWA — VWA
SvRQweh > Y vo @w®Sa (vay) k-

Suppose Y v ® w ® h satisfies (**). For Y vy ® w ® S(vy)h (*) takes the form:

> v ® wioy @ way @ S(wy)h =Y v @ w e {(7®id) o (Sa (va)) h)} =

= v @weT(Sa (V) he) -

The last part of the above formula equals
(1d ®id ®id @ my) 0 094 0 (id ® id ® id @ my, & id) o 0340
0(ld®RidRXTRid®id®id) o (id ® Sy ® S4 ®id ® id ® id) o

o((id®Aa)opy @id@id®id) (Y v@wen (b)) he
—_——— ”

N

I H by (**)
(py ®ida) o py > o) @ o) @7 (vay) way ® h
= v 0 @7 (S (voym)) 7 (U(l)) wy ® S (Vo) h =

= Z V(o) @ wio) ® wy ® S (v)) hy
where the last equality is due to
ZU(O)(O) QT (SA (U(O) U(l) Z?} (%9 7T SA ) )) =

=D v ®ea(v) =ve@ L.
Thus v maps (V,T ® W) %WA to V&
We have
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> V0)(0) ®w®5( )h(1)®v (U )h(Q)_
= > Vo) ®w®5( )h(1)® Vo)1) (1) (Uo)(l)(z) 2 =

-~

|
¢ (voy)

= o) ) ®w® S (v) hay ® Ay,

where the (#) equality is due to

(pv@AA)OpV = (id@AA®id)O(pv®id) o py.

On the other hand

Pve W) &r

Sveweh  —" Y v@wehe®he T v @we S (vy) ha) ® he =
= vooe (on) ®w® S (vg) ha) @ he
Thus 1 is morphism of right A—comodules.

™

The verification that ¢ o = id(vﬂ W) and Y o ¢ = Zdv@ e ) is trivial. Since all
involved maps are continuous, ¢ and ¢ are topological isomorphisms.

The proof of (i) is the same up to permutation of some terms in tensor products.  [J
Corollary 2.2.23. If B= K, m = €4 and W = K then we have a comodule isomorphism
VR®AZV, A,

where Vi, means the underlying vector space of V with trivial comodule structure.

2.3 Admissible comodules

Recall [6, 1.2.8] that a module M over A’ is called coadmissible (w.r.t. a fixed nuclear

Frechet structure A], on A’), if we have the following data:
1. a sequence of finitely generated Banach modules M,, over A’ ;

2. an isomorphism of Banach A’ —modules A’ ® M1 ~ M,;

n+1
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3. an isomorphism of topological A—modules M =~ lim M,, (projective limit is taken
(—

w.r.t. transition maps M, ; — M, induced by 2).

It is known that if M is coadmissible w.r.t. one nuclear Frechet structure on A, then it is

coadmissible w.r.t. any [6, 1.2.9].

Definition 2.3.1. Let V' € comodcrA. We call V' admissible, if exists a sequence {V,}, of

comodules over A,, s.t.

1. V,, are Banach right comodules over A,, and there is an embedding of V,, into a finite

product of copies of A,s;

2. we have an isomorphism of A, —comodules Vn+1A® A, ~V, (A, is a left and right
n+1

A, +1—comodule, so we can take completed cotensor product);

3. we have an isomorphism of topological comodules V' ~ lim V,.
—

Proposition 2.3.2. Let ¢ : A — B be a morphism of compact type K—Hopf algebras and
suppose that A is admissible as both a left and right B—comodule. Then:

o [f Vis an admissible A-comodule then V,, is an admissible B-comodule;

o If Wis an admissible B-comodule then W is an admissible A-comodule.
Proof. In both cases we have to check the three conditions of admissibility.

e Vy case

1. If V, is embedded into A* and A, is embedded into B™, then we have an em-

bedding V,, < Bf™.

2. We have V1 K A, 2V, and (Ant1)y X B, (An)g- Then
An+1 Bn+1

(Vn+1)¢ Bg Bn = (‘/11+1A|Z An+1)¢3& Bn = vn+1AX, (An+1)¢> BX, Bn =
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3. (V), =lim (V,,), follows from V = li_r>n Vi

—

o W case:

B‘IL

1. If W, < B™, then Wn§¢An < B"K A, = <Bn§¢An> >~ A,

2. We have

I

n+1 Brni1 Bpni1

(Wn+1 b ¢An+1) N A, =W, K o An = Wi 5 (Bn®¢An>
Bn+1 A By

= (WnJrlB& Bn) &¢An = Wn§¢An

n+1 Bn

with the last isomorphism due to the admissibility of W,.

3. We = W§I¢A = lim (Wn@¢An> (clear).
B — By

Definition 2.3.3. Let M be a topological left A—comodule.
e M is called s-cofiat, if the functor —%M : comod. — A — LCV Sk is exact.
o M is call s-cofree if M =V & A for some vector space V (Banach or compact type).

Clearly all s-cofree modules are s-coflat.

2.4 Compact Type-Stein Hopf algebras

In this section we define the structure dual to the structure of Frechet-Stein algebra and

prove analogs of some results from [27] in terms of comodules.

2.4.1 Artinian comodules

Let A be a Banach Hopf algebra. Recall that a (co)module is called Noetherian if any in-
creasing chain of its sub(co)modules stabilises and Artinian if any decreasing chain stabilises

In our case we restrict to closed sub(co)modules.
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Proposition 2.4.1. Let V be an A-comodule. Then
V is Artinian if V) is a Noetherian Ay—module.

If Vi is a Noetherian A,—module then (V})), is Artinian (A}), —comodule.

Proof. Let V' be Noetherian and let V' O X; D X3 D ... be a descending chain of closed
subcomodules in V. Then X;* form an ascending chain of closed submodules of V. Since
V' is Noetherian, there exists N : Xt = X3 for all n > N. But, since (X,,/X,1) =
X;h /X, =0, this imply that X,, = X,,4; for all n > N.

The proof of the second assertion is similar. n

In Noetherian modules over Noetherian rings every submodule is finitely generated. To

prove similar property for Artinian comodules first we need to prove the next simple lemma.

Lemma 2.4.2. Let A be a coalgebra, B C A be a subcoalgebra and M be a subspace of
A = @A, such that A (M) C M ® B.
i=1
Then M C B™.

Proof. Tt is enough to prove this in the case n = 1. If Ay (M) C M ® B then (¢4 ®1) o
A (M)C K®B = B. O

Proposition 2.4.3. Let A be an Artinian Banach Hopf algebra and let V be a Banach
A-comodule. Then
V' is Artinian if and only if for any quotient V. — M there is an embedding M — A"

for some n.

Proof. “Only if” part: If the statement holds then in the dual A’—module V' every sub-
module is finitely generated. Since A’ is Noetherian, V"’ is Noetherian and by proposition
2.4.1 V is Artinian.

“If” part: Let V' be an Artinian A—comodule and let V' — M be a quotient of V. Then
V' is a Noetherian A’—module and M’ is an A’—submodule of V’. Since A’ is Noetherian

we have a surjection M’ « (A’)". By duality, we have an embedding ¢ : (M')" — ((A'))".
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Since ¢ is a morphism of comodules and M is a closed A—subcomodule of M”, the coaction

of ((A")")" sends M to ((A"))" ® A. By lemma 2.4.2, ¢ : M < A" O

2.4.2 Flatness and Coflatness. CT-Stein structure.

Proposition 2.4.4. Let A be a Banach K-Hopf algebra and V be a Banach A-comodule.
Then

1. Vs a coflat A-comodule if V} is a flat A’-module;
2. V' is a flat A-module if V; is a coflat A”-comodule.

Proof. Let
O—M-—->N-—=>L—0

is a short exact sequence in Comod-A. By Corollary 4.1.3, which will be proved indepen-

dently, exactness of the above sequence is equivalent to the exactness of the sequence
0— Ly, — N, — M| — 0.
Since V) is a flat A’-module, we have an exact sequence
0— L’%V’ — N’%V’ — M’%V’ — 0.

of Banach spaces. By lemma 2.2.15 this sequence is exactly

/ / /

- (M%V) 50

0— (L%V) - (N%V) b

b b

The same Corollary 4.1.3 give us the exactness of the sequence

0 — MRV — NXV — LKV — 0
A A A

of Banach spaces.

The proof of (2) is similar. O

Recall that
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Definition. An NF-Hopf algebra A = l(iLnAn is called nuclear Frechet-Stein (NFS) if
1. A, are Noetherian;
2. A, is a flat A, ;—module.
Definition 2.4.5. A CT-Hopf algebra A = liinAn is called compact type-Stein (CTS) if
1. A, are Artinian;
2. A, is coflat A, ;—comodule.
Propositions 2.4.1 and 2.4.4 together give us the following
Theorem 2.4.6. Let A be a CT-Hopf algebra and let {A,} be a CT-structure on A. Then
1. {A,} is CTS-structure for A if {AL} is a NFS-structure for Aj.
2. {Al} is a NFS-structure for Ay if {Al} is a CTS-structure for A.

3. Let A be such that {A,} be a CTS-structure for A and {A!} is a NFS-structure for

Ay, Then an A-comodule V is admissible if V'’ is coadmissible A'-module.

Conjecture 2.4.7. The above theorem is true for "iff” statement.
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Chapter 3

Examples

3.1 Examples from representation theory.
3.1.1 Finite dimension.

Any finite group G can be thought as p-adic Lie group with finite dimensional algebra of
K —valued functions equal to the group algebra K [G]. It is both a Banach and CT-Stein
K —Hopf algebra.

More generally, any finite-dimensional Hopf algebra over K is a Banach and CT-Stein

Hopf algebra.

3.1.2 Locally analytic compact groups.

Let G be a uniform compact locally analytic group. Then
G ~7!
as locally analytic manifolds. The space of locally analytic functions C'* (G, K) is isomorphic
to the space of Mahler series
Cl (G, K) = C'* (2!, K) = ?()fn ("), rer|wr>1: 1l =0
The space of locally analytic distributions D' (G, K) on G thus can be described as

Dla(GaK)nga(Zz,K): d:ZdnanT>1: limsup]dn\Kr|”|<oo ’

n|=0
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where {b,} is the dual basis for Mahler polynomials <w>
n
Consider the space of locally analytic functions of order h (denoted C!* (G, K)). These
are the functions, whose restriction to any ball of radius p” is a power series. By the Amice

Approximation Theorem [1, I11.10, Cor. 3] we have the following description

o

x n
Ci (G, K)=C (Z,K) =3 > fa (n) , fe K‘ fal e R0 % (3.1.1)

[n|=0

(5]

is a Banach space w.r.t to the norm

where Rj, = inf {R‘Vn eN:

< R”} :liI%linf<” 1/‘[1%]!‘1() > 1. C4 (G, K)

/11, = max|ful By

We have inclusions C¥¢. (G, K) — C§ (G, K) for h < s and these inclusions are compact

maps of Banach spaces. Thus we have an topological isomorphism
C"(G,K) =1limCg (G, K)
%

and the spaces Cf (G, K) with give C' (G, K) a compact type structure. C% (G, K) and
C'" (G, K) are topological Hopf algebras with comultiplication, counit and antipode induced
from the group operations. Thus each C’fgh (G, K) is a commutative Banach Hopf algebra
and C' (G, K) is a commutative CT-Hopf algebra.

The space (C}gh (G, K))/ can be described as

D2, (G, K) = (Cla (G, K)) = d="Y" dub,| limsup |d,| , R, < o0
In|=0 "
By duality, D%, (G,K) are cocommutative Banach Hopf algebras and D" (G, K) is a

cocommutative NF-Hopf algebra.

Proposition 3.1.1. The Banach Hopf algebras {C}% (G,K)} give C'“(G,K) a CT-Stein

structure.
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Proof. In [27, 4] it is proved that the algebras D%, (G, K) are Noetherian and the transition
maps between them are flat. Thus { D%, (G, K)} is a NFS-structure on D' (G, K) and by
theorem 2.4.6 {C}¢ (G, K)} is a CTS-structure. O

Similarly to [27, 5] one prove the above proposition for any locally analytic compact
group. Thus for all compact locally analytic groups the Hopf algebras of locally analytic

functions are C'T-Stein.
Algebras of germs and hyperenveloping algebras

For G as above, the algebra of germs of locally analytic functions at identity C%¥ (G, K) =
li_r}n C* (G, K) from [26] is also a compact type K —Hopf algebra. Its dual C¥ (G, K) =:
U (g, K) is a “hyperenveloping algebra” (g = Lie(G)). It is a nuclear Frechet-Stein K —Hopf
algebra and U (g, K) = limU, (g, G) = limUs, (g,G). Since (C7" (G, K)) = U (g,G),
CY (G, K) is CT-Stein. It is known that U(g, K) does not depend on G.

3.2 Examples from quantum enveloping algebras

Here we construct an example of noncommutative and noncocommutative NFS-Hopf alge-
bra, by completing the quantum enveloping algebra of the Lie algebra sly. In this section

the base field is denoted by L.

3.2.1 Preliminaries on a quantum group SL,(2,L).

Here we will recall some notions from theory of quantum groups. There are numerous
references on that subject, we will use [14]. For any unknown notation in this section one
should look in [14].
Through this paper the words quantum group mean the quantized function algebra on
a corresponding group G. Quantum enveloping algebras will be referred to as is QEA.
The quantum matrix algebra M, (2, L) is a bialgebra, defined as a quotient of free algebra

L{a,b,c,d) by the following relations
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ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb,
ad — da = (q—q’l)bc.

The comultiplication is given by formulas

Ala)=a®@a+b®c Ab)=ab+b®d
Alc)=c®a+d®@c A(d)=c®b+d®d

The counit is given by
e(a)=1 €(b)=0 €(c)=0 €(d)=1

The quantum determinant det, = ad — qbc is a central group-like element in this algebra.
The quantum group SL,(2, L) is a quotient SL,(2,L) = M,(2,L)/ (det, = 1).
The set {a™b"c" b™c"d™ }, n; € N is a vector space basis for SL,(2, L).

It is a Hopf algebra with the antipode
S(a)=d, S(b)=—q'b, S(c)=—qc, S(d)=a.

The transposition morphism 6, g is an automorphism of SL, (2, L), given by the following

formulas
Oup (a) = aa, O,5(b) = Bec, Oap(c) =B7'b, Oup(d)=a"'d.
Uq (5[2’[/).

The QEA U, (sly 1) is the associative algebra over the field L (¢) with generators E, F, K

and K~! and the following relations

K-K'=K' K=1,

KE = ¢EK |
KF = ¢ ?FK | (3.2.1)
-1
q—q
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The algebra [?q (sly ) has the same generators but different relations

K‘K_IZK_I-K:1’

KE = qEK ,
KF =q¢'FK

2 -2

pr-FE=2 "R 7
¢—q

The set {E”Fle}, n,l >0 and m € Z, is a basis for both algebras.
There is an injective algebra homomorphism

Uq (5[2,L) — Uq (5[27]4)

é: E — EK
) F —  K'F 7
K — K?

but the two algebras are not isomorphic.

Both algebras admit an automorphism

E — «oF
0,: F — o 'F.
K — K

The Hopf algebra structure on U, (sl2 1) is given by comultiplication

AE)=EQK+1®FE
AF)=F1+K'®F,
AK)=K®K

counit

and antipode

S(F)=—-KF, S(E)=—-EK™', S(K)=K'.
Duality between U, (sly ;) and SL,(2,L).

There is a non-degenerate pairing (-, -) between U, (sly ) and SL,(2, L), see [14, 1.4.4].
There is also a pairing (-, -)"for U, (sly.1) and SL,(2, L), [14, 1.4.4 Prop.22):

(KmEnF! dscr i) = gnr)” { s } ot
n—r
if0<n-—r=1I0—t<s, <KmE"Fl, dscrbt>“: 0 otherwise, and
<KmEnFl’ ascrbt>vz 5rn5tl’}/78”

mnt
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where
- qm(s+r—t)/2q—s(n+l)/2 (q2’ q2)l (q2, q2)n

Tmnt = n(n— — n ’
t q ( 1)/2ql(l 1)/2 (1 . qg)H‘

(a;q),=(1—a)(1—ag)...(1—ag"™") .

There is a relation between these pairings

(2,y) = (@ (2) 01,4712 (1)) = (¢ 0 Oprr2) (2) )"

Remark 3.2.1. A direct check shows that if |1 —g¢|, < 1, then |2f,|, = 1 . This mean
that any K™E"F' is a bounded linear functional on SL,(2, L) with norm 1. In the case
|1 —q|, =1 any K™E"F' is just a bounded linear functional. The condition |1 —¢|, < 1
corresponds to the case when ¢ = exp(h) for some h € Z, s.t. exp(h) converges, i.e. the

case when SL,(2, L) and U, (sl ) are deformations of SL(2, L) and U (sly 1) respectively.

3.2.2 Skew-Tate algebras.

Let A be a K—Banach algebra, A’ = {z € A|||z|, <1} and A% = {z € A| |||, < 1}. A°
and A% are complete K°—submodules of A and A = A°/A% is a k—vector space. Denote
the image of f € A% in A by f.

First we recall the definition of Ore extension.

Definition 3.2.2. Let A be aring, o : A — A is an injective homomorphism and § : A — A
is an a-derivation of A. The Ore extension Alx,a,0d] is a ring of polynomials A[z] with a

new multiplication, defined by the relation z-a =« (a)x + 90 (a), a € A.
If o is an automorphism and A is left Noetherian, then A[z, a, 0] is also left Noetherian.

Lemma 3.2.3. Let B = Alx,a,0] be an Ore extension of A (o : A — A automorphism
of A and § is an a—derivation of A). Consider the “Gauss R-norm” on B: for f € B,
f= 22 fnx", then || fll gauss, p = maxy || full 4 B (R € R). Suppose [laf <1, [|6]] <1 and

|R| > 1. Then ||| guuss.r 15 @ submultiplicative non-archimedean algebra norm on B.
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Proof. Tt is clear that ||-|| g,y 15 @ K —vector space norm (as in commutative case).

Let us prove submultiplicativity, i.e. || f9llgauss z < IfllGauss.r 19l Gauss.i -

One can prove (using induction) that 2" - a = Y ;_, cui (@) 2%, where ¢y, () is the sum
of all words with k—letters a and (n — k) —letters d, applied to a. Since ||af] < 1, ||0]| < 1,

then |[cu (a)]| 4 < ||lal|, . Now let f = Z;:o faxz™ and g = > _, gra®. Then

! s l s
Wil = | (S 00) (L) = (Swane) -
n=0 k=0 Gauss,R n=0 k=0 Gauss,R
l s n l n s
=190 91 15 RPN FE IS ) of7S of D oUSTARES) | RS
n=0 k=0 =0 Gauss,R n=0 =0 k=0 Gauss,R
n s
< max > Fucui (gi) 2 = maxmaxmax (|| full 4 lles (ge)ll 4 B*) <
=0 k=0 Gauss,R ’

= maxmaxmax (|| ful s &) (Ilgxlla B*) < 190l Gass - max [ full 4 B =

n

- ||g||Gauss7R ’ mT?‘X ||anA Rn - ||f||Gauss7R ||g||Gauss7R .

Denote the completion of B = Az, a, 0] w.r.t. ||| gauesr bY A{7/R, 0,0}

Remark 3.2.4. it is clear that if |s|,, = R, then A{z/R,a,0} = A{z, a, s 10} with z mapped

to sz.

Definition 3.2.5. An algebra of the form K {z1,04,01} ... {@n, an, 60} With ||| qpuss =

[l gauss,1 Will be called a skew-Tate algebra.

For Tate algebras there are Weierstrass division and preparation theorems. We now
prove corresponding results for skew-Tate algebras.

Definition 3.2.6. An element f € A{x,«,d} with || f]|5,.. = 1 is called regular of degree
d—1

d if f has the form Az¢ + Z c;2" with A € k* and ¢; € A.

1=0

Theorem 3.2.7. (Weierstrass division and preparation)
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1. (Division) Let f be a reqular element of A{z,«,d} of degree d. Then for any g in

A{z a, 0} there exists unique q and r such that g=qf+r and degree of r is less then d.

MOT’@O'U@’/’, HgHGauss = max (Hq”Gauss ’ HTHGauss) .

2. (Preparation) Let f be a reqular element of A{x,a,d0} of degree d. Then there exists
w € Alz,a,d], s.t. f=w-e, where e is a unit in B, and w is reqular of degree d. If

f € Alx,a,d] then e € Alx,a, 0] also.
d—1
Proof. (1) We have f = fy — D, where fo = \z% + ch-zi, ¢i = A% and || D|| gpues < 1. Let
=0
us prove that the statement of (1) is true for fy. Let us first prove the statement for powers

of z,i.e. 28 = q;fy + r;. We clearly have z¢ = \~! (/\Zd + Zcizi — Zcizi> = qafo+ 7q

d—1
with ¢g = A\™' and rgy = A 7! (Z cz-zl) and for i < d ¢ = 0. Now for z""! we have
=0
d—1
=z =2 (qufo+ra)=(2-q0) fotz -, Ifr, = Z cni2", then from commutation
=0

relations we get
d—1
(Cni) 2+ 0 (cpi)) 2 =

SM

d—1
2Ty = Z A Cm
1=0
d—1

= o (eaan) 2"+ Y (0 (ei—n)) + 0 (eni)) 2" =

1=0

d—1
= (Cn(dfl)) (A_lf() + Td + Z cn (i—1) + d (cm)) =
1=0

d—1
= & (Ca@=1)) A fo+ @ (caga=n) ra+ Y _ ( (eui=n)) + 6 (cui)) 2
1=0

Thus 2"™ = guy1fo + rps1, Where guin = 2+ @ + A (Coa—1)) and 71 = a (Coga—1)) 74 +
d—1

Z (a (cn(i_l)) +9 (cm)) 2. It is clear that in this formulas the norms of the coefficients do
i=0

not increase, and thus for any g = Z gnz" we have
n=0

9= (Z gnQn) Jo+ (Z gmm)
n=0 n=0
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with both sums being convergent in A {z, o, d}.
Now let us prove the division property for f. We have fo = f+ D and for any g we have
g=qofo+r0=qof + g1+ 10

where g, = qoD. Since the norm is submultiplicative, we have

HgluGauss S ”qOHGauss ||DHGauss S HgHGauss ”DHGauss .
Next
G =qfotri=aqf+g+r,

where go = ¢1 D and

||g2||Gauss S ||Q1||Gauss ||DHGauss S ||gl||Gauss ”DHGauss S ||g||Gauss HDHQGauss .

Continuing by induction, we have zero sequences ¢,, ¢, and r, s.t. g, = quf + gni1 + Tn-

Adding up all these recurrence relations gives

RESIES

and
o0 o0
||g||Gauss = max ( an ) Zrn > ’
n=0 Gauss n=0 Gauss
Now let us prove uniqueness. If we have g = ¢1f + 11 = qof + r2, we have 0 =
(1 — @2) f + (11 — r2) . Since the norm of f is one, we have ||¢1 — @2/l guuss = 1171 — "2/l Gurss

and multiplication by an appropriate number makes both norms equal 1. But then in

A{z a, (5}0 JA{z, «, (5}00 we have ¢; — qo - f = r1 — ro, and this is impossible, since on left
hand side we have a skew-polynomial of degree > d and on the right hand side < d.

(2) Since f is distinguished, by (1) there exists ¢’ and 7’ s.t. 2% = €' f +r and deg (r) < d.

d

Define w = z¢ — r. We have w = €' f. Since [|1]|gpu.s < ||2 =1, we have ||w]| g4 = 1

d
HGauss
and w is distinguished of degree d. Then in A {z, «, (5}0 JA{z, «a, (5}00 we have @ = ¢’ f with
@ and f being unitary skew-polynomials of the same degree. This means that e’ is a unit
in A{z a,0}° JA{z a,6}* and ¢ is a unit in A{z a,d}. If f is a polynomial then so must

e be. O
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3.2.3 Completion of U, (sl 1)

Consider the QEA U, (sly 1) . It is generated by elements F, E and K*! subject to relations
3.2.1 . We want to define a completion of U, (sl 1) with respect to certain norm.
In order to do so, let us recall [11, Prop. 6.1.4] that U, (sly1) is a Noetherian algebra,

obtained by a sequence of Ore extensions

L [K, Kﬁl] = A()"—>A1 = A() [F,O./o,O]
(7)) (K) = q2K
and

Al ‘-}Ag = Al [E, Qaq, 5]

ar (FUK") = ¢ FIK!
6(F) = KK

o . (3.2.2)
§ (FIK") Z FI7'§ (F) (¢ K) K

S K) =0

Let Ay be the algebra of bidirectional Laurant series in K,

= {anm im | f,| Ry :0}

nez

with fixed Rg. It is a Banach K —algebra w.r.t.

1£1lr = max | fal , Rk

Let |q|;, = 1. Then
Qg . 1210 — Ao, (o) (K) = q2K

is an automorphism of norm 1. Then, by lemma 3.2.3, the algebra A, = A {RiF, o, O} is

a Banach flo—algebra

A = {Z anF"|a, € Ay, s.t. nh%ngO lan|; R =0, }
n=0

or a K —Banach algebra of skew-commutative convergent series in F, K*! with radius of

convergence (Rp, Rk) .
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Consider Ay = A, [E, ay,0]. Since |¢|, = 1, ||a|| = 1. In order to apply lemma 3.2.3, we

need ||d]] < 1. From formulas 3.2.2 we see that |0 < 1 if

Ry < Rp. So, under
L
this condition, the Gauss Rp—norm is a norm on Ay and A (the completion of Ay) is a

-1

K —Banach algebra.
We denote by U, (sls,1) (Rk, Rp, Rg) or just U, g (sly 1) the algebra A,.

Note that, due to symmetry between F' and F, instead of condition

Rix < Rp,
L

q—qt

Rk < Rp (and first extend Ao by E instead of F').
q—q L
From the formulas in the section 3.2.1 for comultiplication, counit and antipode one can

we can take

1

see that (A, S, €) are bounded maps only if R = 1. So, in case Rx = 1, U, (sly 1) (Rp, Rg) ==

).

L
The projective limit U, (sly 1, L) = im U, g (sly,;,) is a noncommutative and noncocom-
e

U, (slo.r) (1, Rr, Rg) is a Banach K—Hopf algebra (Rp or Rg > ‘(q —¢H!

mutative weak Frechet-Stein algebra. The topology on U, (sly 1, L) is given by the family of
norms Vg : Vg (Z cnmlF"KmEl) = sup (|cnml|L R%R%R%) .

Equivalently, one can take the family of norms vy, = sup <|Cnml . ‘ [n],!

wg|, RrRRR)
(similarly to [15, 1.2.8]). This is possible due to an estimate (4.1.1.1) from [32], which implies
that 3C' > 1:

< CMpr1
TP

(note, that in [32], [n]q =l+q+..+¢" "= [[n]]q in notation of [14], and one needs to use
[n], = ¢~ [n]], . [11, 6.1.1. (1.7))).

Remark 3.2.8. Let us describe the corresponding completion of SL,(2, L).

The pairing from 3.2.1 gives the following pairing between U, (sl 1, L) and SL,(2, L):

(KmE"F, doc'tf) = g LL . T} (R
q2
if0<n—r=1I0—-t<s,
(K™E"F',d°c"b') = 0 otherwise, and

n(n+l) | I(I-1)
(P V) = i g (50
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The norm on SL,(2, L) as on algebra of continuous functionals on U, (sl 1, L) is given
by
@ € 8Ly(2, K) + flallp = sup[(z,0)l, = € Uy (sl2r) : [l2lp < 1.
Since (from [14, 2.1.1. (3)])

m(m—1)

(q%), =m,)- (1=¢)"-q¢ >,

then in the case |¢|, = 1, we have

], = |,
Thus
[(K™E"F'a*c"b")|, = 6rnbu

L ‘[Z]q!

and the norm of a®c"b" as of functional on Uy, g (8ls,) (the completion of U, g (sla,1) w.r.t.

|
[n]q' L
Vi) is equal to Ry R,

For elements of the form d*c"b' we have

EM F!
KM= )| = { s }
], 1], . n=rle|,

due to [11, 6.1.1 (1.8)] and [32, 4.1.1.2]. Thus the norm of d°c"d" as of functional on

<1

Uy r (slar) is equal to Ry Ry".
We get a completion of SL,(2,L), which we denote by C%" (SL, (2)), which consist of
series > pmra™b™c® + 37 Brmb™ckid with

, 1\*/ 1\™
olim ol (R_E) (R_) =90,

_ I\ 7/ 1\™
ol Bl (R_E> (R_) =0

It is a Banach algebra w.r.t. “sup”-R norm. The comultiplication, counit and antipode are
also bounded, so it is an L—Banach Hopf algebra.

The injective limit C¥ (SL, (2)) = 1i_r>n CF (SL, (2)) is an LCVS of compact type (simi-
larly to [24, 16.11]). So, C* (SL, (2)) is a noncommutative and noncocommutative L—Hopf

algebra of compact type.
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Remark 3.2.9. More generally, one can take R,, Ry, R., Ry < 1 and define a completion of
SLy(2,L) in a similar way. The norm will not be submultiplicative (i.e. multiplication is
not continuous w.r.t. Gauss-R norm), but comultiplication will be bounded, so in this case

we get a noncocommutative coalgebra. Moreover, the completion can be done if |¢|; < 1

and in this case the Haar functional of SL, (2, L) [14, 4.2.6] is bounded.

Remark 3.2.10. We have a relation between Ri and Rp. It does not exist for completion of

the 2-parameter quantum group U, , (sls,) of Takeuchi with [p —¢™!|, = 1.

Remark 3.2.11. The subalgebras flo and Al of U, g (sly,) are also Banach L—Hopf algebras.

One can obtain corresponding subalgebras Ay and A; of U, (sly.z,, L) .

3.2.4 Frechet-Stein property for U, (sly 1, L)

We will show that U, (sl 1, L) is a Frechet-Stein algebra. In order to do this we note that in
the same way as in the previous section, one can form a projective system of algebras Ar =

k{K,M}{F/Rp,ay, 0}{E/REg, 1,01}, with §; defined similarly to 3.2.2 by d (F') = f_;%

and take a projective limit A = lim Ag. Note that U, (sly 1) (Rp, Rg) = Ar/(KM — 1),
«—
and Uy (sly, L) = A/(KM — 1). Thus to show that U, (sl 1, L) is Frechet-Stein, by lemma

1.5.7 it is enough to show that A is Frechet-Stein.

Proposition 3.2.12. The algebras Agr are Noetherian if Rp - Rgp > |(q — q_l)_1 .
L

Proof. Let F and F be the images of elements F' and E in the skew-Tate algebra B,

isomorphic to Ag (see remark 3.2.4). Then, if Rp- Rg > |(q¢ — q_l)_1 L then in the residue
algebra B of B F and E commute. Since |1 —¢|, <1, then in the residue field § = 1. So
in this case F and E commute with K and L. All together this gives commutativity of the
residue algebra B and B = [[zy, 7, 73, 74]. Since B is a residue algebra of the Tate algebra
Ty, any ideal of B has an image of a regular element of some degree d. But then a preimage
of this element in B is a regular element of degree d. This proves that any ideal I in B has

a regular element f; of some degree.
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Let I be an ideal in B = L{x1, 1,01} ... {24, 4,94} . By the Weierstrass Division The-
orem [ is generated by f; and by the ideal J = I N L{xy,a1,01}...{x3, a3, 03} [24, aq, d4].
Since L {z1,aq,01}...{x3,as, 03} [r4, a4, 04] is an Ore extension of L {1, 4,01} ... {x3,as,d3},
it is Noetherian if L{xq, 1,01} ... {x3, a3, d3} is Noetherian. If we continue in this way, we
reduce the Noetherianess of L {z1,aq,01}...{x3, as, 03} [24, a4, d4] to that of L, which is a
field. So the ideal J is finitely generated and [ is also finitely generated.

This implies that B is Noetherian and thus Ag is also Noetherian. O]

Corollary 3.2.13. The category of finitely generated (Banach) U, (sly 1) (Rp, Rg) —modules

1s abelian.

Proposition 3.2.14. Let Ar, — Ag, be the inclusion map for Ry > Rs. Then Apg, is a
flat Ar, —module.

Proof. The proof follows the idea from [27]. We view our Banach algebras as complete
filtered rings with the filtration induced by the norm. By [27, Prop. 1.2] the map between
two such rings is flat if the associated graded rings are Noetherian and the associated map
of graded rings is flat.

As in [27] we factor our map Ag, < Ag, into Ag, < A<g, — Ag,, where
Acp, = <Z 4, K5 M™ FF B |q, € Ap, © sup ”a"“AR1 < oo>

is a module with the same relations as for Ag,. A<g, is a Banach algebra w.r.t. supremum
norm and Ag, is a closed subalgebra. Easy to see that the associated graded ring of Ag, is
the ring of polynomials [ [z, 22, x3, 4] and the associated graded ring of A<g, is the ring
of formal power series [ [[x1, X2, 3, 24]]. Since both rings are Noetherian and inclusion of
polynomials into power series is a flat map, the inclusion Ap, — A<p, is flat.

For the second inclusion note that A<z, = L® A%, and A<g, — Ap, is flat iff A%, <
Ag, is flat. It follows from the strong triangle inequality that A% r, 18 a closed subset of

Ag, and thus it is complete w.r.t. the norm filtration of Ag,. So one can apply [27, Prop.
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1.2] in this case too. Similarly to [27, Thm. 4.9] one can show that the map of associated
graded rings of A% r, and Ag, is a localization and thus is flat. This proves that the second

inclusion is also flat. O

Remark 3.2.15. Similarly to the U, (sly,z) case, one can consider arbitrary Drinfeld-Jimbo
QEA U, (g.) for any semisimple Lie algebra g;,. One can form the Banach algebras U, (gz, R) ,
similarly to the sly j, case and U, (g, L) . The above proof of Frechet-Stein property works
for U, (g, L) with the only difference that we quotient the corresponding algebra A also by

quantum Serre relations.
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Chapter 4

Cohomology

4.1 Cohomology of nonarchimedean Hopf algebras

In order to do homological algebra for topological algebras one must work in relative context
8, 9, 30]. That is, one must consider complexes with certain restriction on maps. For
topological algebras the best class of maps is given by strong maps. For nonarchimedean
distribution algebras the relative homological algebra was worked out in [16].

In comodule theory one must impose the same assumption.

Recall that a K —linear map between two LCVS is called strong if it is strict, with closed

image and both the kernel and the image of the map are complemented subspaces.

4.1.1 Banach Hopf algebras.

In this section we will restrict our attention to the Banach Hopf algebras case. In a Ba-
nach space strictness is equivalent to closedness of the image since every closed subspace is
complemented. This also allows us to generalize results of [8, 0.5.2].

Let A be a Banach Hopf algebra.

Lemma 4.1.1. Let ¢ : X — Y be an injective morphism of (co)modules with dense image.

If Wis another (co)module and if L (¢) : Ly (Y, W) — Ly (X, W) is surjective, then so is ¢.

Proof. Since ¢ : X — Y is injective with dense image, L (¢) is injective. By the Open

Mapping Theorem, L (¢) is a topological isomorphism. Any ¢ € W’ gives us surjective
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maps Ly (X, W) — X" and L, (Y, W) — Y’ such that the diagram

L(y,w) "4 L,x, W)
1 \
vy 2 X
is commutative. Since vertical arrows and L (¢) are surjections, ¢ is also a surjection and,

by discussion above, a topological isomorphism. But then ¢” : X” — Y is also a topological

isomorphism and so is ¢, as restriction of ¢” to the closed subspace X C X”. n

Consider a sequence of Banach A—comodules

s Vo oy, My (4.1.1)

For any Banach space W it gives rise to a sequence of Banach A’—modules

L(dn-1)

A v wy e v W) e L (412)

— Ly (Va1 W)
Lemma 4.1.2. Let V and W be as above.
1. If 4.1.1 is exact at V1 and V,,, then 4.1.2 is exact at Ly (V,, W) ;
2. if 4.1.2 1s exact at Ly (Vpi1, W), then Im d,, is closed in Vy;
3. if 4.1.2 1s exact at Ly (V,, W), then Im d,, is a dense subset of Ker d,_1.

Proof. 1. Wehave L (d,_1 0d,) = L(d,)oL (d,—1) = 0and thus ImL (d,,_1) C KerL (d,).
Let f € Ly (V,,W) and L (d,,) (f) = 0. Then f = 0 on Imd,, and, by exactness of 4.1.1,
f =0 on Kerd,,_;. Define gy : Imd,,_1 — W by g (d,—1 (z)) = f (z). By exactness of
4.1.1, Imd,,_; = Kerd,,_ and thus Imd,,_; is closed. By the Open Mapping Theorem
d,_1 is an open map on its image, and thus continuity of f implies continuity of gq.
Since Imd,,_; is complemented, we can extend gy to the whole V,,_; and denote this
extension by g. For any = € V,,_; we have ¢ (d,_1 (z)) = f(x),ie. L(d,-1)(g9) = f.
Thus ImL (d,,_1) = KerL (d,) .
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2. Consider the quotient norm ||-||, on Im d,,. Im d,, is a Banach space with respect to
[[ll,» which is isomorphic to V,,/Ker d,, and d,, is continuous w.r.t. ||-||,. We have a
natural continuous embedding ¢ : V,,/Ker d,, — Im d,. By lemma 4.1.1 we need to
show that L (¢) is surjective, i.e. that for all fy € Ly, (V,,/Ker d,,, W) if f, is continuous
w.r.t. [|-], it is also continuous w.r.t. |-y, . If 2 € Vip4, let h(2) = fo(dn2) . Clearly
h € Ly (Voy1, W) and L (d,,41) (h) = 0. Exactness of 4.1.2 at Ly, (V,, 41, W) implies that
h = L(d,) f for some f € L, (V,,,W). We have f (d,z) = h(z) = fo(d,z) Yz € V41,
ie. f= foonImd,.

3. L(d,)o L(dy—1) = L(d—10d,) = 0 implies Im d,, C Ker d,,_;. Since every closed
subspace is complemented, it is enough to show that every map f € Ly, (V,,, W), which
is zero on Im d,,, is also zero on Ker d,,_; (otherwise, Im d,, is not dense in Ker d,,_1, so
we can construct a map which is zero on Im d,,, but is non-zero on Ker d,,_; ). If f is
zero on Im d,,, then L (d,) (f) = 0. Since 4.1.2 is exact at Ly (V,,, W), f = L (d,—1) (9)
for some g € Ly (V,,—1, W) . But this mean that Vo € V,, : f (z) = g (d,—12) and thus
Ve e Kerd,1: f(z)=g(d,—12) =0.

O

Corollary 4.1.3. The sequence J.1.1 is exact if and only if the sequence is 4.1.2 is exact.

4.1.2 Injective resolutions

Recall that a map is called strong if its kernel and image are closed and complemented. In
a Banach space strictness is equivalent to closeness of the image and every closed subspace
is complemented. Thus in the Banach space case strict and strong maps are the same.

We call a map of Banach (or any topological) (co)modules strong, if it is strong as a

map of the corresponding spaces.

Definition 4.1.4. We call a chain complex of Banach (CT) A—comodules

dn+1

dn
— Vi Vv, — V,.1 —
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is an s-complex if it is a chain complex in which all maps d, are strong maps of Banach
(CT) spaces (equivalently, strict maps of A—comodules). An equivalent requirement is the

existence of a contracting homotopy in the category of Banach (CT) spaces [8, 16, 30].
One defines cochain s-complexes similarly.

Definition 4.1.5. M € Comod — A is called s-injective if the functor Comod-A (—, M)

sends short s-exact sequences of comodules to short exact sequences of K —vector spaces.

One can show by a standard argument that this definition is equivalent to the one in

terms of diagrams, i.e. s-injective comodules are s-injective objects in Comod-A.

Lemma 4.1.6. For any V a Banach (CT) K-vector space, V & A is a right Banach (CT)

A—comodule with coaction py 5 4 = idy ® Ay. Moreover

a: Comod—A(W,V®A) —  L,(W,V)
f — (’idv@EA)of

15 a topological isomorphism.

1

Proof. First statement is obvious. For the second o™ is given by

(FWoV) S (foid)opw: W —VEA).
O

Corollary 4.1.7. V® A is s-injective. Every comodule V is embedded into the s-injective
comodule V @ A with embedding py : V — V & A.

Proof. Follows from the definition 4.1.5 and corollary 4.1.3. m

Thus the category of A—comodules has enough s-injectives.
For every comodule V' one can construct an s-injective resolution, called the CoBar
resolution. One takes

Cob™' (V) =V,
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Cob™ (V) = Cob™ ' (V)® A, n > 0.

The differentials d” : Cob™ (V') — Cob™*! (V) are given by
' = pv,

d" =d""' @ida + (=1)idgop ) © Aa.

The contracting homotopy for the CoBar complex is given by
s": Cob™™ (V) — Cob™ (V),

which imply that the maps d" are strong.
It is standard exercise to prove that any two s-injective resolutions are homotopy equiv-

alent.

4.1.3 The Helemskii approach to derived functor

Let A and B be Banach Hopf algebras.
Consider an additive functor F' : Comod-A — Comod-B. For any object V € Comod-A

take an s-injective resolution V' — I and apply the functor F' to the complex 0 — I.

Definition 4.1.8. The n-th cohomology of the complex 0 — F'([*) is called n-th right
derived functor of F' and is denoted by R"F.

R™F takes value in the category of seminormed comodules over B, i.e. VM € Comod-A :
pyv (RPF (M)) € R"F (M) ®B, where ® is the completion of the tensor product of semi-
normed spaces.

R"F does not depend on the choice of s-injective resolution and thus one can safely take
as I the CoBar resolution.

The following statements are proved similarly to algebraic case.
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Proposition 4.1.9. /8, I11.3.2]Let 0 - X — Y — Z — 0 be a short s-exact sequence in

Comod-A. Then we have a long s-exact sequence
o — RY(X)+— R (Y)«— R (Z)+— R (X)) +—...
Lemma 4.1.10. /8, II1.3.5]If F is left s-exact then R°F is isomorphic to F.

4.1.4 Strict derived functors

For an additive functor F' : Comod-A — Comod-B consider the functors R} F' : Comod-A —
Comod-B, R?F (V) is defined as the largest Hausdorff quotient of R"F' (V') . In general, these
functors do not make a short s-exact sequence into a long exact sequence and are not equal
to R"F.

However these functors can be defined purely in terms of the categories Comod-A —
Comod-B and, more generally, they are direct analogs of algebraic derived functors in quasi-
abelian categories. Also, some identities are naturally expressed with their help, so we find
them worthwhile to discuss.

Much of the below discussion follows from works of Kuzminov and Kopylov.
Quasi-abelian categories

Definition 4.1.11. An additive category is called quasi-abelian if

1. Every morphism has kernel and cokernel,

2. The pull-back of a cokernel along arbitrary morphism is a cokernel and the push-

forward of a kernel along arbitrary morphism is a kernel.

Kernels are also called strict monics and cokernels are also called strict epics.

Definition 4.1.12. A morphism in a quasi-abelian category is called strict if it can be

factors as a composition of a monic with an epic.

Example 4.1.13. Examples
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1. The category of topological abelian groups is quasi-abelian. The monics are injective
maps, the epics are the maps with dense image. The strict maps are the one with

closed image.

2. The categories of Banach, Frechet, LS- and LF-spaces are quasi-abelian (in view of

example 1).

3. The categories of Banach or Frechet modules over a Banach Hopf algebra are quasi-

abelian.
4. The category of Banach comodules over a Banach Hopf algebra is quasi-abelian.

5. The category of CT-comodules over CT-Hopf algebra is quasi-abelian.

In examples 3-5 the class of strict maps is the same.

Definition 4.1.14. We call an additive functor between two quasi-abelian categories strict

if it preserves strict morphisms.

Remark 4.1.15. In [28] such functors are called regular.

A complex in a quasi-abelian category is called strict or s-complex if all maps are strict.

Definition 4.1.16. Let V.= = — V d"_“> v, LN Vi,_y —> ... bea com-
plex in a quasi-abelian category. One has a canonical morphism «,, : V411 — Ker d,. The
n-th cohomology of V. is H" (V) = Coker (o).

One can prove in the standard way that if two complexes are homotopic then their

cohomologies are isomorphic.

Lemma 4.1.17. [17]Let A, B and C be s-complexes bounded below in a quasi-abelian cate-
gory and 0 — A % BY% C =0 be ashort evact sequence such that ¢" and Y™ are strict.

Then we have a long s-exact sequence of cohomologies.
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Remark 4.1.18. The class of kernel-cokernel pairs in a quasi-abelian category form an exact
structure. Thus any quasi-abelian category is an exact category and strict morphisms are

admissible (strict) with respect to that exact structure.

One can define s-injective (s-projective) objects and resolutions. The proof that any two

s-injective resolutions are homotopy equivalent is standard.
Strict derived functors

Let C be a quasi-abelian category with enough s-injectives and let F' be an additive functor
to a quasi-abelian category D. For any V € C' an s-injective resolution 0 — V' — [ is an

s-exact sequence in C' and 0 — F (V) — F (I') is a complex in D.

Definition 4.1.19. The functor R'F' : C' — D with values R'F' (V) = H" (F (I")) is called
the n-th strict right derived functor of F.
Since any two s-injective resolutions are homotopy equivalent, R?F' does not depend on

the choice of I".

Lemma 4.1.20. If F is left s-exact, then R°F is isomorphic to F.

Lemma 4.1.21. Let 0 - A — B — C' — 0 be a short s-exact sequence. If F is strict, then

we have a long s-exact sequence
0¢— R'F(A)«+— R'F (B)+— RF (B)+— R:F (A) ...

Remark 4.1.22. (Derived functor of Schneiders) Since any quasi-abelian category is an exact
category, one can consider derived categories and functors in exact sense. This was worked

out in detail in [28].
4.1.5 The cohomology of comodules
Consider the fixed-point functor (—)* on Comod — A,
M€ Comod—A: M*={meM: py(m)=me1} =
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PM -
= Ker (M = M A) )
idpr®1 4

Since M* is a kernel, it is closed and M* € Comod — A.
Proposition 4.1.23. (—)" preserves strict monomorphisms (and thus left s-ezact).

Proof. If f : M — N is a strict monomorphism in Comod — A, then f4: M4 — N4 is just a
restriction of f to M“. The image of f# is embedded in N4 NIm (f), since if pys (v) = v &1,
then

pn (f (v) = (f ®ida) o py (v) = f(v) ® 1.

We want to prove that if f (v) € N4 then v € M4, If f (v) € N4 then we have an identity

f)@l=pn (f(v) = (f @ida)opu (v) = (f @ida)o (Z V(o) ® U(l)) =D f (vw) @vq)

in N® A. Since f is injective, f ® id, is also injective and this implies
pu (V) =v® 1.

Thus the image of f4 is equal to N4 NIm (f) and closed, making (—)" preserve strict
monics and thus left s-exact.

The CT case follows from the Banach one, since if M = limM,, then M4 = lim M and
— —

I (£4) = lim I (f4]uz) 0

Definition 4.1.24. The functors H™ (A, —) := R™ (—)" are called n-th cohomology func-
tors.

The functors H™ (A, —) := R" ()" are called n-th strict cohomology functors.

Since the fixed point functor is left s-exact, for any M € Comod— A we have H? (A, M) =
HY (A, M) = M.
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4.2 The Grothendieck Spectral Sequence
4.2.1 Fully s-injective resolutions

In case of abelian category the key element in proving the convergence of the Grothendieck
spectral sequence is the existence of fully injective resolution. Similar results holds in quasi-

abelian case.

Definition 4.2.1. Consider an s-complex C' in a quasi-abelian category. An s-injective

resolution of C' is an s-exact sequence of complexes
0 -C — I > ' - 17 - ... (4.2.1)

such that complexes I" = = _ [n di; i+l _y  consists of s-injective objects

with strict differentials. Thus
0= C"— %" 5 ' — .
is an s-injective resolution of C™.

Define complexes

0—Z'(C)—= 2% — 7Y — ...

0— B'(C)— B" — B" — ...

0— H (C)— H" — HY — ...
with 77 = Ker ("), B =TIm (d&’~') = Ker (Coker (d*')) and H’ = H*(I7).
Definition 4.2.2. The resolution 4.2.1 is called fully s-injective, if the above complexes for
Z'(C), B"(C) and H'(C) are s-injective resolutions.

Lemma 4.2.3. For any s-complex in a quasi-abelian category with enough s-injectives there

exists a fully s-injective resolution.

Proof. The proof is same as in algebraic case (see [18, XX.9.5]) with the application of the

Horseshoe lemma in exact categories ([4, 12.8]). O
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4.2.2 Spectral sequences

Proposition 4.2.4. Let F : Comod-A — Comod-B and G : Comod-B — Comod-C' be an

additive functors between categories of Banach comodules over A, B and C, such that
e A and B have enough s-injectives and,
e Fis strict and maps injective objects into G-acyclic objects.

Then for each M € A there ezists a spectral sequence EP9(A) in the quasi-abelian category

of seminormed comodules over C| such that
EY?(A) = R'G(R'F (A)) = R (G o F) (4).

If G is also strict then EY?(A) is in Comod-C' and thus there is a low-degree terms exact

sequence in Comod-C
0— (R'G) (F(A)) = R" (GF) (A) = G (R'F (A)) — R’G (F (A)) — R*(GF) (4).

Proof. The proof repeats the classical one. If G is strict, it will map a fully s-injective
resolution of the s-complex

0o RF(A) =T

into a double s-complex. Since the elements of the first page of spectral sequence, corre-
sponding to the row filtration of the total complex, are just elements of G (I-) with horizontal
differentials (which are strict by full s-injectivity of I- and strictness of (), the elements of

the second page belong to Comod-C'. [
Corollary 4.2.5. Under the assumptions of proposition 4.2./,
1. if F is s-ezact, then R" (Go F) = R"G o F};

2. if G is s-exact, then R" (G o F) = G o R"F.
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4.2.3 Applications
The Generalized Tensor Identity

Let 7 : A — B be a continuous morphism of Banach K-Hopf algebras.

Denote by RY (%WA> the n-th strict right derived functor of the induction functor
(-%,4).

B
Proposition 4.2.6. Let W be a Banach comodule over B and V be a Banach comodule over
A.

Then

R (%A) (V,@W)=V&R" (%WA) (W). (4.2.2)

Remark 4.2.7. Since V & R <%WA> (W)= V&R" <%WA) (W) one also has
R (R,4) (v, 8W) =VE R (R,4) (W),

Proof. The tensor identity 2.2.22 give us an isomorphism of functors
(—%M) o(Va®—)=(Ve®—)o (—%A)

Since the functor (V7r ® —) - the tensor product over K is strict s-exact, the left hand side
is obtained from 4.2.5.1 by taking Hausdorff completion.

The functor <—%|7,A> is not strict, so one cannot simply apply 4.2.5.2. For any W
consider CoBar resolution of V & <W%WA> :

0> VE(WBA) > VE(WHA)BA—VE (WRA)BABAS ...
By Corollary 2.2.23 one can replace it with resolution

0> VE (W A) = Ve ® (W A) 84—V, 8(WHA) BABAS ... (123)

tr tr

The comodule V & (W%WA) is a subcomodule of a comodule V@ W, @ A 2 V,, @ W, @ A
and thus
Ve (WRA) 2V, & (WiA).
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Putting these observations together, we see that the complex 4.2.3 is isomorphic to the

complex
0 Vi ® (WBA) > V8 (WBA)BA -V, & (WRA)BABA ...
and we have an isomorphism

m (Ve (Wia)) =vam (Wi,

which gives the right hand side of 4.2.2. O

Example 4.2.8. It is known that for locally analytic or continuous representations of com-
pact p-adic groups an induction functor is exact. Thus all of its derived functors are zero
and the generalized tensor identity is trivial. Here we give an example where this is not the
case.

Consider a Banach Hopf algebra of affinoid functions
A=C"(SL(2,Zy),K)=K{a,b,c,d} /(ad — bc — 1)

on SL (2,7Z,) and a Hopf algebra of affinoid functions on its Borel subgroup C' = C** (B, K) =
C* (SL(2,7,),K) /(c). We refer to the functor A%l— as affinoid induction.

Any analytic character A of the maximal torus of SL (2, Z,) gives a 1-dimensional comod-
ule over C, which we also denote by A. It is easy to see that all these characters are algebraic
(also see [3]). Thus we know that if A is dominant then A)\ is non-zero, since it contains
an algebraic induced comodule (actually, this inclusion is an equality). Also it is clear that,
similarly to the case of algebraic groups (see [10, 1.5]), A%)\ is equal to the 0-cohomology
(global sections) of the sheaf L ()\) on Pk (rigid-analytic projective line), associated to \.
Since P}, is a proper rigid-analytic space, we can apply Serre duality [2]. Thus, similarly to
the case of algebraic groups (see details in [10, 11.4,5]), A%)\ ~ Rl (A%) (=) and we see

that in general affinoid induction is not exact.
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Hochshild-Serre for bounded cohomology

A celebrated theorem of Noskov in the theory of bounded cohomology immediately follows
from proposition 4.2.4.

Let G be a (discrete) group.

Theorem. [20/Let N be a normal subgroup of G and V is a bounded G-module such that
Hy (N;V) is Hausdorff. Then H} (N;V) is a bounded G/N-module and there ezists a spec-

tral sequence (E,.) such that
Ey* = HY (G/N;: H] (N:V)) = H™ (G V).

Proof. The condition that H; (N;V) is Hausdorff means that differentials in CoBar resolu-

tion of Vi are strict. O
The Hochshild-Serre spectral sequence for comodules

In the algebraic context the Hochshild-Serre spectral sequence was established in [22]. We
give a simplified treatment of the theory in topological context. We need to make some
assumptions on our Hopf algebras, which are satisfied, for example, in the case of finite
groups.

Let A and B be a topological Hopf algebras and 7 : A — B be a normal surjective map.

Consider p; : A — A® A, the left adjoint coaction on A. By definition of p;, the diagram

A 4 A @ A
Tl + T ®id
B — B ® A
PB

defines an A—comodule structure on B.

Since (A,)” is a left B—homogeneous, (A;)” C A® (4,)" .
Lemma 4.2.9. The normality of m implies
1. (A;)? is a subcoalgebra of A.
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2. For any (M, py;) € Comod—A pyy (M) € (M)? & (4,7, (M,)? is a (Ar)® —comodule.

B (AW)B
3. We have <(]\/[,r) ) = M4

(Ar)"
Proof. 1 and 2 - [22, 3.4, 3.6, 3.8]. For 3, it is clear that M* C ((M,T)B> and also,

since the action on M? is py, the inverse inclusion holds. ]
Since all maps involved in [22, 3.4, 3.6, 3.8] are continuous, one has

Lemma 4.2.10. If H' (B, M) are Hausdorff (Banach spaces), then H' (B, M) are

(A;)? —comodules.

Remark 4.2.11. If H* (B, M) are not Hausdorff, then the coaction from preceding lemma
maps H' (B, M) into H (B, M) @k » (A;)” see section 1.4. The Hausdorff completion of
this space is H' (B, M) ® (A;)" .

Proposition 4.2.12. Under the assumptions of this section, let M be such that all H (B, M)
are Hausdorff and A, is an s-injective B-comodule. Then there exists a spectral sequence
with

EY? = HP (A2 HY(B, M,)) = H"*9 (A, M).

Proof. Lemma 4.2.9.3 means that (—)AE o(=)? = (=) . By lemma 4.2.10 (—)” take values
in Comod—AZ. Thus we have a functor ((—)ﬂ)B : Comod — A — Comod — AB. Since A,
is injective B—comodule, for any M € Comod — A, (—), sends the CoBar resolution of
M into an s-injective resolution of My, thus we have R™ (=) )" = R*(—)" o (=), . Since
both (—)” and (—)_ preserve s-injectives and under (—)” o (=)_ the A—comodule structure
is mapped to AP structure, (—)B o (—), maps s-injective to s-injectives. Proposition 4.2.4

gives the spectral sequence. O

The following example shows that assumption “A; is an s-injective B-comodule” is nat-

ural.
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Example 4.2.13. Let G be a p-adic compact group and H be any locally analytic subgroup
of G. It is known that

C"(G,K)=C"(G/H,K)®C" (H,K).

Thus, if 7 : C'* (G, K) — C'(H, K) then C' (G, K)_ is injective C'* (H, K') —comodule.
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