
  

 

 

 

EFFECT OF MEMORY ACCESS AND CACHING ON HIGH PERFORMANCE 

COMPUTING 

 

 

by 

 

 

JAMES GROENING 

 

 

 

B.S., Kansas State University, 2010 

 

 

 

A THESIS 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Electrical and Computer Engineering 

College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2012 

 

Approved by: 

 

Major Professor 

Dr. Dwight Day 

  



  

Copyright 

JAMES GROENING 

2012 

 

  



  

Abstract 

High-performance computing is often limited by memory access. As speeds increase, 

processors are often waiting on data transfers to and from memory. Classic memory controllers 

focus on delivering sequential memory as quickly as possible. This will increase the performance 

of instruction reads and sequential data reads and writes. However, many applications in high-

performance computing often include random memory access which can limit the performance 

of the system. Techniques such as scatter/gather can improve performance by allowing 

nonsequential data to be written and read in a single operation. Caching can also improve 

performance by storing some of the data in memory local to the processor. 

In this project, we try to find the benefits of different cache configurations. The different 

configurations include different cache line sizes as well as total size of cache. Although a range 

of benchmarks are typically used to test performance, we focused on a conjugate gradient solver, 

HPCCG. The program HPCCG incorporates many of the elements of common benchmarks used 

in high-performance computing, and relates better to a real world problem. Results show that the 

performance of a cache configuration can depend on the size of the problem. Problems of smaller 

sizes can benefit more from a larger cache, while a smaller cache may be sufficient for larger 

problems. 
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Chapter 1 - Introduction 

 The “memory wall [1] [2]” is a problem that has been around for a long time. While 

memory speeds have continually increased, they have not been able to keep up with 

microprocessors. Microprocessor performance has increased at a rate of 60% per year, while 

DRAM performance has increased by only 10% [3]. This wall is also caused by the Von 

Neumann bottleneck [4]. The CPU must access both program and data memory through the same 

bus. This leads to a limited throughput of memory to the CPU; therefore the CPU will have idle 

cycles while it waits for the memory to be accessed. In addition to this, the memory performance 

is highly dependent on how it is accessed [5]. The increase in CPU speed along with the increase 

in memory size has only made the problem worse. 

 Several methods have been implemented in order to alleviate this problem. The 

integration of CPU and memory onto a single chip should lead to lower latency and increased 

bandwidth [3] [6]. However, because memory and processor technology are so different, 

tradeoffs must be made, such as smaller amounts of memory and a less complex processor 

architecture. A new type of memory controller that intelligently accesses memory can increase 

performance for certain applications [7]. But this adds complexity and latency for the memory 

controller. Changes to the hierarchical structure of memory access have also been proposed [8]. 

Caches are an important part of the hierarchical memory structure. Cached memory can 

dramatically reduce the access time of data. There are several different cache architectures. 

 Cache Structure 

The cache of a CPU is designed to provide data quickly to the processor in order to speed 

up execution. This way the processor is not idle while waiting for data from main memory. The 
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cache is limited in size because of cost and power considerations and cannot contain all of main 

memory. Therefore, cache controllers have different algorithms for deciding where to store data 

in the cache [9]. Different procedures are also used for writing to cache and main memory. 

A cache is generally divided into blocks of memory called cache lines. Cache lines have a 

set size, but the size may vary from cache to cache. When a CPU loads a word from memory, the 

cache is checked first. If a copy of the data resides in the cache, the data will be loaded from the 

cache. This is considered a cache hit. Otherwise the data will be loaded from main memory and 

the cache will be updated with the new data. This is considered a cache miss. In general, for a 

cache miss, an entire cache line is replaced. If there is a cache miss then there must be an 

algorithm for determining which cache line the newly retrieved memory will fill. The 

associativity of the cache determines where data will be stored in cache. 

A direct-mapped cache is the simplest algorithm for deciding cache location. In a direct-

mapped cache, every location in main memory has one cache line it is associated with. The 

location is determined by the address of the data. The address can be divided into a tag, index, 

and block offset as in Figure 1.1. In this case the address contains 28 bits, for 256MB of 

memory. 

 

 

Figure 1.1 Example of a 28-Bit Memory Address 

 

The block offset simply determines the data desired within the cache line. In this example 

the block offset is 4 bits, meaning each cache line contains 16 bytes. The index specifies which 

cache line the address is associated with. The index along with the block offset determines where 
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the data should be stored in the cache. The index of 9 bits, along with the 4-bit block offset, 

indicates a cache size of 8kB. Since multiple memory segments can be stored in the same cache 

line, there must be a way to tell which memory segment is currently stored in each cache line. 

That is the purpose of the tag. The tag is made of the remaining bits of the address. The cache 

will store a list of tags on the memory segments currently stored. When memory is accessed the 

cache will check the tag table to see if the memory is already cached. 

Another algorithm for determining where a memory location is stored in cache is 2-way 

set associative. Instead of each memory address associating with one cache line, each memory 

location is associated with 2 cache lines. If both associated cache lines are already full then a 

decision must be made about which cache line will be evicted. One of the easiest ways to decide 

this is using the least recently used algorithm (LRU). The LRU algorithm also only requires one 

additional bit for each set of cache lines. 4-way set associative and higher associative caches also 

exists and work on similar principles. 

 Access Character of SDRAM 

Another import aspect of memory management is the way it is accessed. Most systems 

today use some form of SDRAM. Most SDRAM adheres to the JEDEC standard [10]. A typical 

SDRAM DIMM contains several SDRAM chips. Each SDRAM chips is divided into memory 

banks. Banks must be active in order to access the data within them. Each bank consists of rows 

and columns. As with banks, rows must be active in order to access the data within them. Once a 

bank and row are active then a column may be accessed. This will result in the access of one bit. 

Several SDRAM chips can be used to access multiple bits at one time. Each access has quite a 

bit of delay from accessing bank, row, and column. There are techniques to decrease the access 

time of memory. 
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In page mode memory, a row can be held active so multiple columns can be accessed 

within the row, called a burst. A burst read will access the specified data and the sequential data 

following this address. This can be very useful for instruction reads and sequential data access. If 

an address in a different row or a different bank is needed then the current banks and row must 

be closed before the next access. 

Memory can also be interleaved [11]. In noninterleaved memory composed of multiple 

banks, data will be stored sequentially in one bank then continued on into the next bank. Figure 

1.2 shows noninterleaved memory. 

 

 

Figure 1.2 Noninterleaved Banks 

 

After the request for data 0 is sent, the system must wait until the access is complete 

before it accesses data 1. While the first access is slower than subsequent accesses, there is still 

some latency between accesses. Figure 1.3 shows the timing for noninterleaved memory access. 
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The timing in Figure 1.3 and Figure 1.5 are not real timings and are meant to show the concept 

of non-interleaved and interleaved memory. 

 

 

Figure 1.3 Noninterleaved Access Timing 

 

In interleaved memory, sequential data is stored on alternating banks, with multiple banks 

open. Multiple buffers must be used on interleaved memory in order to access the different 

banks. Figure 1.4 shows how interleaved memory is organized. 

 

 

Figure 1.4 Interleaved Banks 

 

While the memory from one bank is being accessed the request for the next address can 

be sent to the second bank. For example, after the request for Data 0 is sent, the request for Data 
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1 can be sent without waiting for Data 0 to finish. This results in a faster overall access of 

memory. Figure 1.5 shows the timing for interleaved access. 

 

 

Figure 1.5 Interleaved Access Timing 

 

As state earlier, these are not real timings, but they do show the concept of interleaved 

memory, and how much it can help with performance for sequential access. 

 Scatter-Gather 

Scatter-gather is a technique that can be used to gather data from or scatter data into 

multiple locations. One example of scatter-gather is its use in vector processing for sparse 

matrices [12]. A sparse matrix is primarily composed of zero values. It is usually stored in a 

compacted form. The indices of the nonzero elements can be stored in order to more easily 

access the nonzero elements of the sparse matrix. The scatter-gather operation works well with 

this implementation. The gather operation will use the index vector to load the correct data from 

the sparse matrix. After the data is loaded the operation can be carried out by the vector 

processor. The values can then be stored using the scatter operation. The scatter operation uses 

the same index vector to update the computed values back in memory. Many recent 

supercomputers have these scatter-gather operations. These methods provide a faster alternative 

to looping through the sparse matrix in a traditional fashion. 
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The scatter-gather operations can also be applied at the memory control level [7]. The 

scatter-gather operations are used to access physical memory through indirection vectors. 

Normal memory access will return a burst of sequential words. For sparse matrix operations, 

only one of these words is used, resulting in wasted memory bandwidth. Implementing the 

scatter-gather operations at the memory controller level helps to reduce this wasted bandwidth. 

This memory controller is also able to reorganize memory addresses so that scatter-gather 

operations will fill a cache line resulting in more cache hits. These changes result in a significant 

improvement in sparse matrix calculation times. This improvement comes at the cost of 

increased memory controller and compiler complexity. 
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Chapter 2 - Cache 

  For this project the Virtex-5 FXT FPGA ML507 Evaluation Platform was used. This 

board uses the XC5VFX70TFFG1136 chip. This board was chosen based on its availability and 

speed. A 64-bit hardware timer was used in order to time the different operations, and an FPU 

was added to speed up floating point operations. A 32-bit hardware cache monitor was used in 

order to evaluate the cache performance. There are many different caching parameters for the 

MicroBlaze soft processor. The MicroBlaze is able to have an instruction cache and a data cache 

[13]. Each can be turned on and off independently and each can have their own settings. 

 Instruction Cache 

The instruction cache can be used to increase performance when the instructions are 

located in off-chip memory. The instruction cache can be set to cache a range of the addresses 

within the memory address space. The instruction cache cannot cache memory located within the 

Local Memory Bus (LMB) address range. The base address and high address parameters change 

the cacheable region of memory. The addresses must be of size 2
N
, where N is a positive integer. 

Each address is divided into two parts, the cache address and the tag. The size of the cache can 

be from 64 bytes to 64kB; therefore the cache address can be between 6 and 16 bits. The rest of 

the address is stored as the tag address. If the size of the cache is below 2kB then distributed 

RAM is used to implement the tag lookup. A parameter can be set to always use distributed 

RAM for the Tag lookup if the cache size is 8kB or less for 4 word cache lines or 16kB or less 

for 8 word cache lines. 

 Figure 2.1 shows how an instruction address is decoded. For an instruction fetch, the 

instruction cache will detect if the address is within its cacheable range. The cache will then 

check if the tag for the cache location matches. If the tag does match then it is a cache hit and the 



9 

 

cache will read the instruction from cached memory. If not, then it is a cache miss and the cache 

will request the instruction from memory over the instruction CacheLink interface. The cache 

line will be updated with the new memory when it becomes available. 

 

 

Figure 2.1 Instruction Cache Organization 

 

 Stream buffers and victim caches can also be used to increase performance of the 

instruction cache. If enabled the stream buffer will speculatively fetch cache lines that 

sequentially follow the last instruction that was fetched. If the next instruction is located in the 

stream buffer, the CPU will not have to wait for the instruction to be loaded from memory. This 

can be helpful, especially in sequential code with no loops. The victim cache will store evicted 

cache lines and serves as a second chance cache. The victim cache can be specified to hold 2, 4, 

or 8 cache lines. 

 The instruction cache can also be enabled and disabled in software by setting the 

Instruction Cache Enable (ICE) bit in the Machine Status Register (MSR). The Write to 
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Instruction Cache (WIC) instruction can be used to invalidate cache lines. This can be used 

periodically along with parity checks to avoid random bit errors. 

 Data Cache 

 The data cache can also improve performance. The data cache is very similar to the 

instruction cache, but it caches data instead of instructions. The data cache checks for a load 

instruction to determine if the memory access is for data. Figure 2.2 shows the structure of the 

data address is decoder. 

 

 

Figure 2.2 Data Cache Organization 

 

 The data cache does, however, differ from the instruction cache is a few ways. It does not 

include the option for a Stream Buffer, but it does have the option for a Victim Cache. The 

victim cache can only be enabled when the write-back policy is used. 

 The data cache can have two different write policies: write-back and write-through. The 

write-back policy will update the data in cache and only update memory when needed. If there is 
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a cache miss and the data already contained in the cache is dirty (it differs from main memory) 

then the memory will be updated with the cached value. The cache will then be updated with the 

new data. The write-through protocol will always update both cache and external memory, so the 

data in the cache will never be dirty. 
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Chapter 3 - Benchmarks 

There are several benchmarks used for high-performance computing. While all measure 

performance in a similar manner, they all use different computations that will yield a difference 

in performance. Some of the benchmarks used in high-performance computing are LINPACK, 

STREAM, and RandomAccess [14]. We use HPCCG from the Mantevo project. 

 LINPACK Benchmark 

Floating-point performance is important in HPC. Floating-point operations generally take 

more clock cycles to compute than other operations. Most CPUs have a dedicated floating-point 

unit (FPU) to deal with floating-point operations. Floating-point numbers are used in many HPC 

applications and are one of the limiting factors for performance. Floating-point numbers are used 

in HPC applications because they represent real-world elements better than integers. Floating-

point numbers also have a much wider range of values than integers. The LINPACK benchmark 

offers a good way to test the floating-point operation performance of supercomputers. The 

LINPACK benchmark is used to build the Top500 list of the world’s most powerful 

supercomputers. The LINPACK benchmark is based on the LINPACK library, which was used 

to analyze and solve linear equations and linear test-squares problems [15]. The benchmark has 

changed over the years, such as additional testing for parallel computering, but the idea of testing 

a systems floating-point performance still remains the same. 

 STREAM Benchmark 

As discussed the memory wall can be a problem on any system. The STREAM 

benchmark assesses the performance of machines in terms of sustained memory bandwidth. The 

STREAM benchmark executes four simple sequential vector operations [16]. The vector length 
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can be set so the cache cannot hold the entire vector. This will cause the system to have many 

cache misses, and spend most of its time waiting for those misses to be satisfied. The STREAM 

benchmark will therefore show the systems sequential memory access performance. 

 RandomAccess Benchmark 

 Memory has been designed for sequential access. This helps when reading instructions 

and data in many applications. Some applications however will access data in a seemingly 

random way. The RandomAccess benchmark measures performance of random memory access. 

The RandomAccess benchmark will access a table at pseudo-random indices [17]. If the table is 

large enough then there will be cache misses and the time taken will be dominated by these 

misses. 

 HPCCG 

 The benchmark used for this project was HPCCG from the Mantevo project. We used 

this benchmark because it represents a real world problem. “HPCCG is intented to be the ‘best 

approximation to an unstructured implicit finite element or finite volume application, but in 8000 

lines or fewer’” [18]. HPCCG incorporates many of the elements of the other benchmarks. It 

includes floating-point operations, sequential memory access, and random memory access. 

Floating-point numbers are used in the calculations. The vectors are accessed in a sequential 

manner, and HPCCG uses a sparse matrix, which will cause some seemingly random access. 

HPCCG reads a sparse matrix, right side vector, solution vector, and initial guess then solves the 

conjugate gradient and prints the results. A few alterations were made in order to get better and 

faster results. The MicroBlaze can have a 32 bit FPU. Because of this single-precision floating-

point numbers were used instead of double precision. This greatly decreased the amount of time 

taken to solve the problem. Since different matrix sizes were used as input, the number of 
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iterations used to converge to the same residual would also be different. Because of this a fixed 

number of iterations were used. The residual at the end of each test is therefore different, but the 

same number of operations is used for the different sizes of matrices. Data for the different 

components of the conjugate gradient solve was also captured. With the conjugate gradient solve 

there are a number of dot products, weighted-vector adds, and sparse-matrix vector 

multiplications. Data cache hit rates and times were recorded for each of these parts. Using all of 

this data we can see how a real-world problem, HPCCG, is affected by different cache 

configurations. 
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Chapter 4 - Results 

The system used for this project was the ML507 from Xilinx. Although the Virtex 5 

device on the board contains a hard-wired PowerPC, we used the MicroBlaze soft processor 

because of its flexibility. The PowerPC has a fixed cache size of 32kB, while the MicroBlaze has 

a variable cache. The MicroBlaze’s cache has a variable size, cache line length and write policy, 

which the PowerPC does not have. We were unsuccessful in implementing the write-back policy; 

however we were able to look into the effect of cache line length and cache size on the 

performance of HPCCG. We believe the write policy will have little effect on the performance of 

the system. 

 Setup 

For all of the results presented we are using a MicroBlaze soft processor running at 

125MHz. The MicroBlaze also contains a 32-bit FPU to improve performance. A 4kB local 

memory is used to contain the boot loop. All other code and data are stored on the 256MB DDR2 

SDRAM SO-DIMM. A UART was used for transmitting the results. The instruction cache for 

the MicroBlaze was set at a size of 2kB and cache line length of 4 words for all tests. The 

cacheable range for the instruction cache was the address range of the DDR2 memory. Stream 

buffers and victim caches were not used for the instruction cache. We kept the instruction cache 

consistent for all tests because the instruction cache consistently had hit rates around 99%. This 

gave us very little interesting data for the instruction cache. We focused on reconfiguring the 

data cache instead, which gave varied results. The data cache varied in size and cache line 

length. The cacheable range for the data cache was also set to be the address range of the DDR2 

memory. 
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Two custom Intellectual Property (IP) cores were used to monitor performance. A 64-bit 

timer was designed in order to keep track of the computation time for the different tests. A 64-bit 

timer is needed because a 32-bit timer will roll over after 34.36 seconds. A 64-bit timer will 

provide more than enough time, rolling over after 4676.34 years. The timer simply consists of a 

counter, which will increment at the positive edge of the clock. Since the bus interface between 

the timer IP and MicroBlaze is 32-bits wide, two successive reads are needed in order to read the 

lower and upper halves of the 64-bit counter. Because of this an error could occur when reading 

the second set of 32 bits. For example, the lower 32 bits are read first. Before the upper 32 bits 

are read they are incremented, reporting an incorrect time to the processor. To prevent this error 

the upper 32 bits are registered when the lower 32 bits are read. When the processor first reads 

the timer, the lower 32 bits are sent over the bus, and the upper 32 bits are stored in a separate 

register. When the processor reads the timer again the registered upper 32 bits are sent over the 

bus. The software must then convert the counter reading into a time. This can be easily done by 

dividing by the bus frequency. The timer can be reset by writing to the timer IP, but this feature 

is not used in this project. 

The other custom IP is a cache counter. The cache counter will track cache accesses and 

hits. The MicroBlaze can be set up with a Trace bus, and the relevant signals from the Trace bus 

routed to the cache counter IP. The cache counter is able to keep track of cache requests and hits 

for both the instruction and data caches. For the data cache, the cache counter IP will first check 

if the address being accessed is within cacheable range. The data request counter is incremented 

if there is a data request in cacheable range. The data hit counter is incremented if there is a data 

hit for a data request in cacheable range. The counters for the instruction cache are similar; 

however it is assumed that the instruction request is within cacheable range since all of the code 
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is stored on the DDR2 SDRAM. This IP will also keep track of request and hits when there is a 

valid instruction. This is useful for the data cache counters, since a data request should only 

happen with a valid instruction. 

In order to access the different counters the user must specify which counter value he 

wants. This can be done by writing to the cache counter IP. Table 5.1 shows what values will be 

accessed from reading the IP after a value is written. 

 

Value Written to IP Value Read from IP 

0 Data Requests 

1 Data Requests during Valid Instructions 

2 Data Hits 

3 Data Hits during Valid Instructions 

4 Instruction Requests 

5 Instruction Requests during Valid Instructions 

6 Instruction Hits 

7 Instruction Hits during Valid Instructions 

All Other Numbers 0 

Table 4.1 Cache Counter Read Output 

  

For example, if a 0 is written to the IP then the total number of data requests will be sent 

upon a read. Some of these counts were only used during testing and only a few of them are used 

in the actual results. The data requests during valid instructions, data hits during valid 

instructions, instruction requests, and instruction hits are the only values used in the results.  

A few changes needed to be made in order to run the chosen benchmark (HPCCG). The 

MicroBlaze is limited to a 32 bit FPU; therefore, it was decided that single-precision floating-

point numbers would be used. This greatly reduced the amount of time needed to run the tests. 

Similar relationships and trends should be seen for double-precision floating-point numbers. 
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Since there is not a system timer, the mytimer function had to be rewritten to read the 

count values from the timer IP and convert then to a time. The conversion of the time from a 

count to a floating-point value of time will add a small amount of overhead into each call to the 

mytimer function. Instead the function could be changed to return the counter value to store for 

later computation. However we determined that the complexity of changing the behavior of the 

function was not worth the small amount of error the overhead would incur. 

The Benchmark, HPCCG, also uses command line arguments. This is not possible for the 

MicroBlaze. Therefore, we set up the variables at the beginning of the code according to which 

test we wanted to run. The program took the problem size and the type of sparse-matrix storage 

that would be used as arguments. The type of sparse-matrix storage was compressed row storage 

by default, and was not changed in this study. In order to run tests efficiently we created a loop 

that would run HPCCG repeatedly for different problem sizes. The problem size varied from 

1x1x1 to 64x64x64. Running larger test would have been preferred, but there was not enough 

SDRAM for sizes larger than 64x64x64. For each successive test the problem size was doubled. 

First the x-dimension was increased, then the y-dimension, and finally the z-dimension. So the 

problem went from 1x1x1 to 2x1x1 to 2x2x1 to 2x2x2 to 4x2x2 and so on until the problem size 

reached 64x64x64. 

Finally, the cache counter also needed to be read in order to keep track of the cache hit 

rates. Timers had already been set up to keep track of the total times and the times for the major 

components of the conjugate gradient solve: dot product (DDOT), weighted-vector add 

(WAXPBY), and sparse-matrix vector multiply (SparseMV). The timer calls were already 

wrapped around each of these individual function calls, as well as the total conjugate-gradient 

solve. Calls to read and store the cache counters were simply added around these timer calls. A 
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loop reads and stores all the cache counters before the start-timer call. After the function 

completes and the stop-timer call, a loop reads all the cache counters and computes the 

difference and adds that to the total number. The rates are later calculated when the results are 

sent out via the UART. 

 Cache Line Length 

The MicroBlaze has two options for cache line length: 4 or 8 words. A word is 32 bits, so 

cache lines can be either 128 or 256 bits. In order to test this we used a 2kB cache with the write-

through policy. All other cache options were left on the default settings. Figure 4.1 shows the 

total data cache hit rate for various problem sizes. The 8-word cache lines outperform the 4-word 

cache lines up until a certain problem size. At this point the hit rates for both 4-word and 8-word 

cache lines drop; however the hit rate for the 8-word cache lines drop below the 4-word cache 

line. 
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Figure 4.1 4-Word vs. 8-Word Cache Line (2kB, Write Through) 

 

The hit rates for DDOT, WAXPBY, and SparseMV have similar trends shown in Figure 

4.2. The difference between the 4-word and 8-word cache lines is more evident in the WAXPBY 

and SparseMV. 
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Figure 4.2 DDOT, WAXPBY, and SparseMV Hit Rates 

 

Figure 4.3 shows the times for the total conjugate-gradient solve and for each of the 

individual operations. Although the times for 8-word cache lines are better for a smaller problem 

size, it does not show well on the linear scale. It is important to note that as the problem size 

increases, performance of the 4-word cache line becomes better than performance of the 8-word 

cache line. The 8-word cache lines retain more data from a read to main memory. Because of this 

the 8-word cache lines perform better at smaller problem sizes. Most of the 8 words in the cache 

line will get hits. When the problem size gets large enough, data will no longer fit into cache. 

This will cause cache misses no matter what the cache line size. Since 4-word cache lines are 

smaller, there is room for more nonsequential data to be in cache at one time. This is believed to 

be why 4-word cache lines to get more hits than 8-word cache lines. 
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Figure 4.3 Total, DDOT, WAXPBY, and SparseMV Times 
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rate. This could be due to the dot product operation having no reuse once the problem size gets 

too large. In other words, data brought into the cache will be replaced before it is used again. The 

WAXPBY and SparseMV operations have some reuse, so the drop in hit rate is not as severe. 

The fact that the total hit-rate curve follows the SparseMV curve so closely shows that most of 

the data accesses in the conjugate-gradient solve come from the SparseMV operation. 

 

 

Figure 4.4 Data Hit Rates for Individual Operations 
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grouped once the cache size reaches 512 bytes. As the problem size increases hit rates for the 

smaller caches drop off. Finally at the largest size the hit rates become tightly grouped again for 

most of the cache sizes. At the largest problem size the 32kB and 64kB caches do not fit into this 

tight grouping. We believe that if test were running on larger problem sizes the 32kB and 64kB 

cache hit rates would eventually drop to a level similar to the other cache sizes. We were not able 

to verify this because amount of memory on the system limited the size of problem we could run. 

 

 

Figure 4.5 Total Data Hit Rate for Varying Cache Size 
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matrix that will no longer fit in cache. When accessing this data the cache must evict cache lines 

once it becomes full, increasing the number of misses and lowering the hit rate. This drop in hit 

rate is less evident for small caches. In the program there is data that increases in size with 

increased problem size and static data that stays at a constant size for every problem size. We 

believe that when the cache size is small enough, the static data has more of an effect on the hit 

rates and the decreases in hit rate become more gradual. 

 

  

Figure 4.6 DDOT and WAXPBY Data Hit Rates for Varying Cache Sizes 

 

Figure 4.7 shows the data hit rates for the SparseMV function. The trends in the total hit 

rate follow the SparseMV hit rate closely. We expect this since the number of data accesses in 

SparseMV is far greater than the data accesses in either DDOT or WAXPBY. For SparseMV 

there are three different “levels” for the hit-rate curve. In between these levels there is a 

significant drop in hit rate. 
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Figure 4.7 SparseMV Data Hit Rates for Varying Cache Sizes 
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significant drop in hit rate occurs when the total memory can no longer fit in cache. For example, 

the 16kB cache has a data cache hit rate of at least 98% for problem size 1 through 64. When the 

problem size increases from 64 to 128 the data hit rate drops from 98.2% to 86.5%. Table 5.2 

shows that the total memory needed for a problem size of 64 is 12.8kB which will fit into the 

16kB cache. For a problem size of 128 the total memory needed climbs to 25.6kB which will no 

longer fit into the 16kB cache. When the cache is full, some old data will be evicted to make 

room for the new data. Some of the data could be the data needed for the SparseMV operation. 

This will lead to fewer cache hits. The calculation for total memory does not take into account 

the static memory that is needed for every problem size. This is likely the reason the drop in hit 

rate becomes less significant for small cache sizes. The access of the static data becomes 

dominant over the dynamic data for small problem sizes. 

 

n 1 2 4 8 16 32 64 128 256 512 1024 

nnz 7 16 36 130 262 550 1414 2830 5710 12622 25246 

Total Memory 84 184 400 1264 2544 5296 13104 26224 52848 115312 230640 

 

n 2048 4096 8192 16384 32768 65536 131072 262144 

nnz 50590 105886 211774 423742 866110 1732222 3464830 7003774 

Total Memory 462064 961776 1923568 3848688 7846384 15692784 31388656 63370224 

Table 4.2 Total Memory Needed for Different Problem Sizes 

 

The second drop in the hit rate for SparseMV occurs for almost of the cache sizes. This 

drop occurs when the problem size reaches a quarter of the cache size. This is consistent with 

DDOT and WAXPBY data hit-rate drops. Since the memory required for many of the data arrays 

accessed is four times the size of the problem, we thought that the drop in performance could be 

due to one of these arrays no longer fitting into cache. Several tests were designed to test this 

theory. None of them proved that this was the case. In order to fully understand what is 
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occurring, further study must be performed in order to determine which portion of data is no 

longer getting cache hits. In order to do this, the code and cache requests and hits must be looked 

at closely. This is also the case for the third drop and final plateau. 

The last performance indicator we looked at was the time it took for HPCCG to complete 

for the different cache sizes. We were also able to include results for no cache. Although this test 

did not have a data cache, it still had an instruction cache in order to compare it to the rest of the 

tests. Figure 4.8 shows the total time taken to solve the conjugate gradient for varying cache 

sizes. The number of matrix elements is shown on a linear scale in contrast to the base-2 

logarithmic scale used for the hit rate. This better shows the linear trend for time increase as the 

problem size increases. However this hides what is occurring for the smaller problem sizes. 

Figure 4.9 shows the times for some of the smaller problem sizes. When comparing these two 

figures to hit rate, a significant drop in hit rate corresponds to a significant increase in slope of 

the time taken. From these figures we can also see that having a cache of any size helps 

significantly. This is likely because of how tightly coupled SDRAM and the cache are. When the 

processor requests data the memory controller must bring the data in from the SDRAM. If there 

is a cache, the cache line will be filled and the data given to the processor. If the next data 

request is sequential to the previous request there will likely be a hit in the cache and SDRAM 

will not need to be accessed. If there is no cache the SDRAM will need to be accessed again. 

This can be seen in the hit rates in Figure 4.5. Even for a 64 byte cache and a problem size of 

256k, the hit rate is about 36%. The large difference in time shows that SDRAM access time 

makes up a large portion of the total time. 
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Figure 4.8 Total Time for Varying Cache Sizes 

 

Figure 4.9 Total Time for Varying Cache Sizes (Limited Problem Size) 
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Figure 4.10 shows the times for DDOT, WAXPBY, and SparseMV. Again the times 

correlate to the hit rate. The DDOT and WAXPBY have similar trends. At the larger problem 

sizes the times taken are all about the same as long as there is a cache. No cache shows a 

significant increase in time. The SparseMV time is similar to the total time. This shows that the 

time taken to compute is dominated by the time taken to compute the SparseMV. 

 

  

 

Figure 4.10 DDOT, WAXPBY, and SparseMV Times for Varying Cache Sizes 
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Chapter 5 - Conclusions 

There have been many attempts to overcome the memory wall. The use of an effective 

cache is a popular way of mitigating this problem. Different caching schemes can be effective for 

different problems. This project looks into the effect of cache for high-performance computing 

problems. The access character of SDRAM, which is optimized for sequential data, can cause 

many of these programs to perform poorly. FPGAs provide a way to look at different cache 

configurations using a real system. Many systems are tested using a synthetic benchmark. This 

project uses a real-world problem, conjugate gradient, to characterize the performance of 

different cache configurations. 

The performance of the MicroBlaze is limited, but the flexibility of configuration makes 

it a good test platform. Hardware can also be added to monitor performance, alleviating some of 

the work of the processor. From the two options for cache line length, we determined that a 

cache line length of 4 words performed better than a cache line length of 8 words. A cache line 

length of 8 words would only be better if operating on very small problem sizes. 

After looking into the different cache sizes, the best size is dependent on the problem 

size. If working on a very small problem size many of the cache sizes’ performance was similar. 

Although the 64kB cache always performed the best, the 512B cache had similar performance 

for problem sizes up to 16. Because smaller caches mean less cost and lower power consumption 

a 512B cache may be the optimal size for problems containing 16 or less elements. As the 

problem size increases the performance drops off. The performance drops off at different points 

for different cache sizes. This makes it difficult to determine an optimal cache size. Unless the 

problem size is defined for all programs that will run on the processor it may be best to choose a 

cache size that performs adequately for most problem sizes. A cache size of 2kB or 4kB has 
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good performance for a problem size between 16 and 16384. Finally, at the largest problem sizes 

the difference in performance for the different cache sizes becomes minimal. The 32kB and 

64kB cache sizes performance does not fall to the level of the smaller caches most likely because 

we were not able to run problems of a sufficient size. If the performance of these two sizes were 

to drop to the same level as the other caches, there would be little difference between the 512B 

cache and the 64kB cache. As with the smaller problem sizes, the optimal cache size for large 

problems may be around 512B. 

Future work can be done to better characterize the results of this study and to further 

investigate the performance of different cache parameters. The plateaus and drops for data cache 

hit rate need to be better defined. A deeper look into what data is causing the cache misses could 

show why those plateaus occur and what could be done to improve the cache performance. The 

caches of the MicroBlaze were direct-mapped. Further research could be done to investigate the 

effect of set-associative caches. 

  



33 

 

References 

[1] W.A. Wulf and S.A. McKee, “Hitting the Memory Wall: Implications of the Obvious,” 

Computer Architecture News, Vol. 23, No. 1, pp. 20-24, Mar 1995. 

 

[2] M.V. Wilkes, “The Memory Wall and the CMOS End-Point,” Computer Architecture News, 

Vol. 23, No. 4, pp. 4-6, Sep 1995. 

 

[3] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, 

R., Yelick, K., “A Case for Intelligent RAM,” Micro, IEEE, vol. 17, no. 2, pp.34-44, 

Mar/Apr 1997. 

 

[4] Backus, J., “Can Programming Be Liberated from the von Neumann Style? A Functional 

Style and Its Algebra of Programs,” Communications of the ACM, Vol. 21, No. 8, pp. 

613-641, 1978. 

 

[5] Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D., “Memory Access 

Scheduling,” ISCA, 27, 2000. 

 

[6] Nowatzyk, A., Fong Pong, Saulsbury, A., “Missing the Memory Wall: The Case for 

Processor/Memory Integration,” 1996 23
rd

 Annual International Symposium on 

Computer Architecture, pp. 90-101, May 1996. 

 

[7] Lixin Zhang, Zhen Fang, Parker, M., Mathew, B.K., Schaelicke, L., Carter, J.B., Hsieh, 

W.C., McKee, S.A., “The Impulse Memory Controller,” IEEE Transactions on 

Computers, vol. 50, no. 11, pp. 1117-1132, Nov 2001. 

 

[8] Mengxiao Liu, Weixing Ji, Zuo Wang, Jiaxin Li, Xing Pu, “High Performance Memory 

Mangagement for a Multi-core Architecture,” Ninth IEEE International Conference on 

Computer and Information Technology, vol. 1, pp. 63-68, Oct 2009. 

 

[9] D.A. Patterson and J.L. Hennessy, “Computer Organization and Design: The 

Hardware/Software Interface,” Morgan Kaufmann, Burlington, MA, 2009. 

 

[10] DDR2 SDRAM Specification, JESD79-2F, Nov 2009. 

 

[11] D. Adams. (1993, Nov 6). Dale Adams on Interleaved Memory on Centris 650 & Quadra 

800 [Online]. Available: http://www.ralentz.com/old/mac/hardware/dale-adams/memory-

quad8-cent650.html 

 

[12] J.L. Hennessy and D.A. Patterson, “Computer Architecture: A Quantitative Approach,” 

Morgan Kaufmann, San Francisco, CA, 2007. 

 

[13] MicroBlaze Processor Reference Guide: Embedded Development Kit EDK 13.4, UG081, 

Jan 2012. 

 

http://www.ralentz.com/old/mac/hardware/dale-adams/memory-quad8-cent650.html
http://www.ralentz.com/old/mac/hardware/dale-adams/memory-quad8-cent650.html


34 

 

[14] (2012, May 4). HPC Challenge [Online]. Available: http://icl.cs.utk.edu/hpcc/ 

 

[15] J. Dongarra. (2007, May 8). Frequently Asked Questions on the LINPACK Benchmark and 

Top500 [Online]. Available: http://www.netlib.org/utk/people/JackDongarra/faq-

linpack.html#_Toc27885709 

 

[16] STREAM Benchmark Reference Information [Online]. Available: 

http://www.cs.virginia.edu/stream/ref.html 

 

[17] D. Koester and B. Lucas. RandomAccess Rules [Online]. Available: 

http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/ 

 

[18] M. Heroux and R. Barrett. Mantevo-Packages [Online]. Available: 

https://software.sandia.gov/mantevo/packages.html 

http://icl.cs.utk.edu/hpcc/
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html#_Toc27885709
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html#_Toc27885709
http://www.cs.virginia.edu/stream/ref.html
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
https://software.sandia.gov/mantevo/packages.html

