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Abstract

The problem of testing for lack of fit in exponential family regression models is con-

sidered. Such nonlinear models are the natural extension of Normal nonlinear regression

models and generalized linear models. As is usually the case, inadequately specified models

have an adverse impact on statistical inference and scientific discovery. Models of interest

are curved exponential families determined by a sequence of predictor settings and mean

regression function, considered as a sub-manifold of the full exponential family. Constructed

general alternative models are based on clusterings in the mean parameter components and

allow likelihood ratio testing for lack of fit associated with the mean, equivalently natural

parameter, for a proposed null model. A maximin clustering methodology is defined in this

context to determine suitable clusterings for assessing lack of fit. In addition, a geometrically

motivated goodness of fit test statistic for exponential family regression based on the infor-

mation metric is introduced. This statistic is applied to the cases of logistic regression and

Poisson regression, and in both cases it can be seen to be equal to a form of the Pearson χ2

statistic. This same statement is true for multinomial regression. In addition, the problem

of testing for equal means in a heteroscedastic Normal model is discussed. In particular, a

saturated 3 parameter exponential family model is developed which allows for equal means

testing with unequal variances. A simulation study was carried out for the logistic and Pois-

son regression models to investigate comparative performance of the likelihood ratio test,

the deviance test and the goodness of fit test based on the information metric. For logistic

regression, the Hosmer-Lemeshow test was also included in the simulations. Notably, the

likelihood ratio test had comparable power with that of the Hosmer-Lemeshow test under

both m- and n-asymptotics, with superior power for constructed alternatives. A distance

function defined between densities and based on the information metric is also given. For



logistic models, as the natural parameters go to plus or minus infinity, the densities become

more and more deterministic and limits of this distance function are shown to play an im-

portant role in the lack of fit analysis. A further simulation study investigated the power of

a likelihood ratio test and a geometrically derived test based on the information metric for

testing equal means in heteroscedastic Normal models.
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Chapter 1

Introduction

The problem of testing for lack of fit in exponential family regression models is considered.

Such nonlinear models are the natural extension of Normal nonlinear regression models and

generalized linear models. As is usually the case, inadequately specified models have an ad-

verse impact on statistical inference and scientific discovery. Models of interest are curved

exponential families determined by a sequence of predictor settings and mean regression

function, considered as a sub-manifold of the full exponential family. Constructed general

alternative models are based on clusterings in the mean parameter components and allow

likelihood ratio testing for lack of fit associated with the mean, equivalently natural parame-

ter, for a proposed null model. A maximin clustering methodology is defined in this context

to determine suitable clusterings for assessing lack of fit. In addition, a geometrically moti-

vated goodness of fit test statistic for exponential family regression based on the information

metric is introduced. This statistic is applied to the cases of logistic regression and Poisson

regression, and in both cases it can be seen to be equal to a form of the Pearson χ2 statistic.

This same statement is true for multinomial regression. In addition, the problem of testing

for equal means in a heteroscedastic Normal model is discussed. In particular, a saturated

3 parameter exponential family model is developed which allows for equal means testing

with unequal variances. A simulation study was carried out for the logistic and Poisson

1



regression models to investigate comparative performance of the likelihood ratio test, the

deviance test and the goodness of fit test based on the information metric. For logistic

regression, the Hosmer-Lemeshow test was also included in the simulations. Notably, the

likelihood ratio test had comparable power with that of the Hosmer-Lemeshow test under

both m- and n-asymptotics, with superior power for constructed alternatives. A distance

function defined between densities and based on the information metric is also given. For

logistic models, as the natural parameters go to plus or minus infinity, the densities become

more and more deterministic and limits of this distance function are shown to play an im-

portant role in the lack of fit analysis. A further simulation study investigated the power of

a likelihood ratio test and a geometrically derived test based on the information metric for

testing equal means in heteroscedastic Normal models.

Chapter 2 reviews the literature associated with exponential family nonlinear regression

models. Several methods of checking lack of fit are reviewed, including tests for generalized

linear models, a broad class of the exponential family regression models.

Chapter 3 reviews the necessary geometry for maximum likelihood estimation in exponen-

tial family nonlinear regression models, and presents general alternative models for assessing

lack of fit associated with the mean function. The construction of such general alternatives

is based on clusterings in the mean components. A maximin power clustering methodology

is defined in the context of exponential family nonlinear regression models to determine

suitable clusterings for assessing lack of fit. In addition, a geometrically motivated goodness

of fit test statistic for exponential family regression based on the information metric is in-

troduced. Curved exponential family models and generalizations are discussed to exemplify

the general discussion, including tests for generalized linear models and equal means testing

for heterogenous Normal models.

Chapter 4 presents the results of simulation studies for lack of fit tests discussed in Chap-

2



ter 3. A simulation study was carried out for the logistic regression model to investigate

comparative performance of the likelihood ratio test with the deviance test and the Hosmer-

Lemeshow test, along with a goodness of fit test based on the information metric. Subse-

quently, an analytical explanation for unusual patterns observed in the power results is

presented. The analysis involves consideration of limits to infinity of an information based

distance function, and provides guidance for the selection of parameters in the logistic re-

gression model for appropriate study. A simulation study for the Poisson regression model

is also considered. The comparative power performance of the likelihood ratio test, the

deviance and a goodness of fit test based on the information metric is presented. An in-

vestigation of power for testing equal means with different data generators is considered for

heteroscedastic Normal models.

Chapter 5 discusses the necessary asymptotic distributional results associated with the like-

lihood ratio statistics described in Chapter 3. The derivation of the asymptotic non-central

chi-square distribution under local parameter alternatives is based in part on the correspond-

ing array of distributions being locally asymptotic Normal (LAN). As described in Chapter

5, a key condition to ensure LAN for exponential family nonlinear regression models is that

the array of exponential family distributions be uniformly differentiable in quadratic mean.

Establishing the L2 differentiability of the parametric array of densities associated with

the array of exponential family distributions, and hence LAN, is carried out in Chapter 5.

Based on LAN, the asymptotic non-central chi-square distribution for the sequence of log

likelihood ratio statistics is provide by Theorem 1 in this chapter.

Chapter 6 summarizes conclusions and suggests topics for future research.

3



Chapter 2

Literature Review

The problem of assessing model adequacy is historically old and has generated much re-

search related to certain statistical models. On the other hand, limited study of general

exponential family regression models has been done, although much work regarding the

statistical behavior for models in certain subclasses (e.g. generalized linear models) has

been accomplished as noted by Wei (1998). In particular, checking model adequacy in the

general case of exponential family regression models has not been well developed. A geo-

metric development of exponential family regression models is given by Wei (1998). The

following reviews general inference techniques for exponential family nonlinear regression

models, along with model adequacy tests for particular models within the general class of

exponential family regression models.

Cordeiro and Paula (1989) presented improved likelihood ratio tests for exponential family

nonlinear models based on earlier work by Cordeiro (1983) on generalized linear models. Fer-

rari and Cordeiro (1996) developed a corrected score test which gives more accurate size

performance for finite sample sizes in exponential family nonlinear models. The adequacy

measures for varying dispersion in exponential family nonlinear models has been considered

by Wei, Shi, Fung, and Hu (1998), developing a score statistic and an adjusted score statistic

4



for Normal, Inverse Gaussian and Gamma nonlinear models. For the large sample case, the

accuracy of the diagnostic tools based on Normal approximations was considered by Cook

and Tsai (1990). The authors mainly considered methods of assessing the magnitude of

the difference between large sample and likelihood based confidence regions for exponential

family parameters. Under a sequence of Pitman alternatives, Lemonte (2011) considered

the local power of likelihood ratio, Wald, score and gradient test statistics for the nun-null

distribution functions of exponential family nonlinear models, generalizing the results by

Cordeiro and Ferrari. Considering the fact that the likelihood ratio test statistic does not

follow the chi-square asymptotic limit, when the models are misspecified, Choi and Kiefer

(2011) discussed the geometry of the log likelihood ratio statistic in misspecified models.

By converting the complicated nonparametric regression in exponential families to a normal

theory regression problem, Brown, Cai, and Zhou (2010) developed a method of fitting

regression models in exponential families. They have proposed an approach that uses a

mean matching variance stabilizing transformation on the data. Using an R-square measure,

a goodness of fit test was developed by Cameron and Windmeijer (1997). The authors have

applied this method to a class of exponential family regression models, including logit,

probit, Poisson, Geometric, Gamma and Exponential. The R-square measure considered

here is based on the Kullback-Leibler divergence which measures the proportionate reduction

in uncertainty due to the inclusion of predictor variables.

Stute and Zhu (2002) proposed a non-parametric test for checking the adequacy of the

generalized linear model based on empirical processes given by the residuals of the observa-

tions. Extending the idea of four goodness of fit tests, Zheng (2000) developed a method for

model selection in random effects and marginal models to the case of longitudinal data. Pan

and Lin (2005) developed methods for checking the adequacy of generalized linear mixed

models based on the cumulative sums of residuals over covariates or predicted values of the

response variable. A lack of fit test for the mean function of generalized linear models was

5



developed by Su and Wei (1991), which can handle the case of non-replication. This test is

designed to detect the inaccuracy of the mean function, even if the variance of the response

variable is misspecified. Pregibon (1980) developed a test to check the accuracy of the link

function in generalized linear models. Claeskens and Hjort (2008) discuss order selection

tests and Neyman smooth-type tests to assess model adequacy in general, and in particular

for the generalized linear model. Considering a generalized partially linear model, Hardle,

Mammen, and Muller (1998) developed a test statistic to decide between a parametric and

a semi-parametric model. The generalized linear model is perturbed here with a nonlinear

function, and using two examples the authors tested the null hypothesis of a parametric

model versus the semi-parametric alternative. Addressing the problem of over dispersion

and under dispersion in count data, Sellers and Shmuelli (2010) introduced a method of fit-

ting Poisson models. This method was based on the Conway-Maxwell-Poisson distribution.

Using the exponential family properties, the leverages, Deviance and Pearson residuals are

also computed and diagnostic methods presented.

Several approaches for assessing the goodness of fit of logistic regression models have been

proposed. Tsiatis (1980) proposed a goodness of fit test based on partitioning the space

of covariates into distinct regions, and using a score statistic for the coefficients for the

grouping variable. A strategy for determining the groups was not indicated. Hosmer and

Lemeshow (1980) considered a goodness of fit test for the multiple logistic regression model

by using the chi-square test statistic for contingency tables. The method used different ways

of calculating the expected frequencies with some predefined grouping strategies. Hosmer,

Lemeshow, and Klar (1988) developed another goodness of fit statistic for logistic models

when the estimated probabilities are small. Hosmer et al. (1997) made a comparison of the

Hosmer and Lemeshow test with four other tests in an effort to assess the disadvantages

of the previous test. They used simulation methods to compare their chi-square test with

a test based on smoothed residuals developed by Cessie, Van Houwelingen and Royston,

a score test for an extended logistic model by Stukel, unweighted residual sum of squares
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and the Pearson’s chi-square test. Archer et al. (2007) proposed a goodness of fit based on

the residuals of the observations, when the data are from complex sampling designs. The

importance of assessing the adequacy of a logistic model is discussed by Sarkar and Midi

(2010), giving an overview of the likelihood ratio test, Hosmer Lemeshow test, Osius-Rojek

large sample approximation test and the test developed by Stukel.

Foundational issues of statistical modeling are discussed by McCullagh (2002), and var-

ious approaches to assessing model adequacy are discussed by Lindsay and Liu (2009)

and Shmueli (2010). The emphasis in this dissertation is on the development of statis-

tical tests for checking the correctness of a proposed exponential family nonlinear regression

model as compared to constructed general alternative models based on clusterings in the

mean parameter components. Additionally, a goodness of fit test statistic for exponential

family regression based on the information metric is defined and investigated for use in

checking the correctness of a specified model.
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Chapter 3

Lack of Fit Tests for Exponential
Family Regression Models

3.1 Geometry of Exponential Families

The following reviews some geometrical aspects of exponential families and introduces no-

tation that is used subsequently. Regression for the mean function is considered, and seen

to determine a sub-manifold of the full exponential family. Maximum likelihood estimation

equations are presented for the regression parameters. In addition, a geometrically moti-

vated goodness of fit test statistic for exponential family regression based on the information

metric is introduced.

Let Ω ⊂ Rk for some k. For g : Ω→ R, g(x) > 0 ∀ x ∈ Ω, let S consist of the k-parameter

manifold of densities, p(x, η) = g(x)eη·x−ϕ(η) for x ∈ Ω, η ∈ Rk, with dominating measure

dµ which is assumed to be σ-finite on the Borel sets of Rk. Further, the parameter η must

be restricted to the subset N of Rk such that
∫

Ω
g(x)eη·xdµ(x) < ∞. The corresponding

exponential family of densities is assumed to be regular of order k (cf Brown (1986)).
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The condition ∫
Ω

g(x)eη·x−ϕ(η)dµ(x) = 1

determines the function ϕ(η) as

ϕ(η) = log

∫
Ω

g(x)eη·xdµ(x)

so that
∂ϕ

∂ηi
(η) = Eη(xi).

Then, writing X = (x1, x2, ..., xk), it can be shown that

Eη(X) = ∇ϕ =

(
∂ϕ

∂η1

(η), ...,
∂ϕ

∂ηk
(η)

)
V arη(X) = ∇′∇ϕ =

(
∂2ϕ

∂ηi∂ηj
(η)

)
.

Note that the log-likelihood for x is given by

l(x, η) = log p(x, η) = η · x− ϕ(η) + log g(x)

so that ∂l
∂ηi

= xi − ∂ϕ
∂ηi

. The information metric is then given by

gij(η) = Eη

(
∂l

∂ηi

∂l

∂ηj

)
=

∫
Ω

(
xi −

∂ϕ

∂ηi

)(
xj −

∂ϕ

∂ηj

)
eη·x−ϕ(η)g(x)dµ(x).

Thus,

(gij(η)) =

(
∂2ϕ

∂ηi∂ηj
(η)

)
= V arη(X).

The matrix
(

∂2ϕ
∂ηi∂ηj

(η)
)

is assumed to be positive definite, and gij(η) will denote the inverse

matrix of gij(η).
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Consider the mapping µ : N → Rk given by

µ(η) = ∇ϕ(η) =

(
∂ϕ

∂η1

, ...,
∂ϕ

∂ηk

)
.

The Jacobian matrix for the transformation is
(

∂2ϕ
∂ηj∂ηi

)
which is nonsingular, so µ is a local

diffeomorphism (e.g. Kass and Vos (1997)). The parameters η = (η1, η2, ..., ηk) which are

used to define S are called the natural parameters for S. The parameters µ = (µ1, µ2, ..., µk)

are called the mean parameters for S, and µi = ∂ϕ
∂ηi

(η). The tangent space to S at p(x, η),

denoted TηS, is spanned by the random variables,

∂l

∂ηi
(x, η) = xi −

∂ϕ

∂ηi
(η).

Note

∂µi
∂ηj

=
∂2ϕ

∂ηj∂ηi
= gij(η)

so that
∂ηj
∂µi

= gij(η)

which gives
∂l

∂ηi
=
∑
m

∂µm
∂ηi

∂l

∂µm
=
∑
m

gim
∂l

∂µm

and
∂l

∂µj
=
∑
n

∂ηn
∂µj

∂l

∂ηn
=
∑
n

gjn
∂l

∂ηn
.

Thus, writing <,>η for the information metric on TηS and using Einstein’s summation

convention, in which the summation is automatically taken without the symbol Σ for such

indices as appear twice in one term, once as a subscript and once as a superscript,〈
∂l

∂ηi
,
∂l

∂µj

〉
η

=

〈
∂l

∂ηi
, gjn

∂l

∂ηn

〉
η

= gjn
〈
∂l

∂ηi
,
∂l

∂ηn

〉
η

so that

〈
∂l

∂ηi
,
∂l

∂µj

〉
η

= gjngni = δji .
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Also, 〈
∂l

∂µi
,
∂l

∂µj

〉
η

=

〈
gim

∂l

∂ηm
, gjn

∂l

∂ηn

〉
η

= gimgjn
〈
∂l

∂ηm
,
∂l

∂ηn

〉
η

= gimgjngmn

= gimδjm = gij(η).

Now consider regression for the mean as determined by a regression function f(z, β) where

z ∈ Rp is a vector of predictor variables and β ∈ B ⊂ Rq is a vector of regression parameters.

Then a sequence Z = (z1, z2, ..., zk) of predictor settings and mean function f determines

M = {p ∈ S : µi(p) = f(zi, β), for some β ∈ B and each i, 1 ≤ i ≤ k },

a q-dimensional sub-manifold of S parameterized by β = (β1, β2, ..., βq) in terms of the

mean parameters for S. Since the mapping η → µ is one-to-one, the densities of M may

be indexed by the corresponding η instead of µ. With additional structure, M becomes a

curved exponential family (CEF).

An m-dimensional CEF can be defined as follows with two regularity conditions as given

by Kass and Vos (1997). Starting with a full exponential family S = {pη : η ∈ N}, consider

a subfamily S0 = {pη ∈ S : η ∈ N0} where η is restricted to a subspace N0 of N . A

common way subfamilies are defined is through a mapping θ → η(θ), which generates a

subset N0 = η(Θ) and thus the corresponding S0. Equivalently, S0 may be defined by a

mapping θ → µ(θ), which would restrict µ to lie in a subset of the mean-value parameter

space. The sub-manifold M defined above using a regression function is an instance of such

S0.

Given a mapping θ → η(θ) that defines S0 [via N0 = η(Θ)], the subfamily S0 is an m-

dimensional CEF provided Θ is an open subset in Rm and
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1. the mapping is one-to-one and smooth (infinitely differentiable), and of rank m, mean-

ing that the m× k derivative matrix Dη(θ) has rank m everywhere and

2. writing φ : N0 → Θ for the inverse mapping, if a sequence {ηn ∈ N0} converges to

a point η0 ∈ N0, then the corresponding sequence {φ(ηn) ∈ Θ} must converge to

φ(η0) ∈ Θ.

Next note for p ∈M such that µi(p) = f(zi, β), µi = ∂ϕ
∂ηi

(η). In addition, the tangent space

to M at p, denoted TpM , is spanned by the random variables

∂

∂βa
(l(x, µ(β))) =

∂µi
∂βa

∂l

∂µi
(x, µ(β)) =

∂f

∂βa
(zi, β)

∂l

∂µi
(x, µ).

Thus,

〈
∂l

∂βa
(x, µ(β)),

∂l

∂βb
(x, µ(β))

〉
p

=
∂f

∂βa
(zi, β)

∂f

∂βb
(zj, β)gij(η).

Given data y ∈ Ω, maximum likelihood estimation (MLE) chooses β such that l(y, η(β)) =

l(y, η(µ(β))) is maximized. Thus, for each 1 ≤ a ≤ q, such β satisfies the equation

0 =
∂

∂βa
(l(y, η(µ(β)))) =

∂µj
∂βa

(β)
∂ηi
∂µj

(µ)
∂l

∂ηi
(y, η(β))

=
∂µj
∂βa

(β)gij(η)

(
yi −

∂ϕ

∂ηi
(η)

)
=
∂µj
∂βa

(β)(yi − µi)
〈
∂l

∂µi
(x, µ),

∂l

∂µj
(x, µ)

〉
p

.
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That is, for each 1 ≤ a ≤ q,

0 =

〈
(yi − µi)

∂l

∂µi
(x, µ),

∂µj
∂βa

(β)
∂l

∂µj
(x, µ)

〉
p

=

〈
vy(µ),

∂l

∂βa
(x, µ(β))

〉
p

.

Thus, vy(µ) ∈ Tp(µ)M
⊥ where

vy(µ)(x) = (yi − µi)
∂l

∂µi
(x, µ),

a random variable with respect to x. Here the superscript ⊥ represents orthogonal comple-

mentation.

Summarizing, the geometry placed on exponential families above involves two tangent bun-

dles: TS = {TηS} and TM = {TpM}, such that TpM is a linear subspace of TpS. In

addition, the information metric (i.e. Fisher information inner product) <,>η is defined on

TηS for each p(η) ∈ S, and hence on the tangent space for M . Each point p ∈ M thus has

two vector spaces associated with it: a k-dimensional vector space TpS and a q-dimensional

subspace TpM . If p̂ = p(µ(β̂)) maximizes the likelihood function then vy(µ̂) is orthogonal

to Tp̂M .

Differential-geometrical methods for statistical inference are more completely discussed

by Amari (1982, 1985), Amari et al. (1987) and Amari and Nagaoka (2000), for example. In

particular, S as defined above is a Riemannian manifold with the information metric, and

M is a smooth sub-manifold imbedded in S.
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For an exponential family, a distance (squared) can now be defined between densities p1 and

p2 as

S(p1, p2) = S(µ1, µ2) =

∥∥∥∥∥
n∑
i=1

(µ1i − µ2i)
∂

∂µi

∥∥∥∥∥
2

Information metric at µ2

where µ1 and µ2 are the mean vectors for p1 and p2, respectively. Note this is not symmetric

in (p1, p2).

If M is a parametric subfamily of the exponential family S, then S(p1, p2) can be used to

define a goodness of fit statistic for M by, with y denoting the data vector,

S(y) = S(y, µ̂) =

∥∥∥∥∥
n∑
i=1

(yi − µ̂i)
∂

∂µi

∥∥∥∥∥
2

Information metric at µ̂

where µ̂ is the MLE for µ given y.

Since µ̂ is determined by the vector field vy =
∑n

i=1(yi−µi) ∂
∂µi

being perpendicular to TµM ,

this represents a very reasonable definition for the distance (squared) from the data point

y to M .

In the following, this is applied to the cases of logistic regression and Poisson regression. In

both cases it can be seen to be equal to a form of the Pearson χ2 statistic, by comparing

the respective formulas to those given in Dobson and Barnett (2008). It can be shown that

this same statement is true for multinomial regression.

In the case of logistic regression, S(µ1, µ2) has the nice property that it has limits as the

natural parameters go to ±∞. Further, for logistic models as the natural parameters go

to ±∞, the densities become more and more deterministic and those limits can play an

important role in the lack of fit analysis.

Other facts about S(µ1, µ2) include:

1. For Normal families with fixed covariance matrix
∑

, the information matrix in the
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mean coordinates is constant equal to
∑−1 and S(µ1, µ2) is the Mahalanobis distance.

2. In general, for µ1 close to µ2, S(µ1, µ2) gives the quadratic approximation of the

Kullback-Leibler (KL) distance from p1 to p2.

3.2 Lack of Fit and Construction of General Alterna-

tive Models

The following presents the structure of the alternative full models to be considered and

a basic orthogonality condition that will be imposed. In particular, constructed general

alternative models are based on clusterings in the mean parameter components. A maximin

clustering methodology is defined in the context of exponential family nonlinear regression

models in order to determine suitable clusterings for assessing lack of fit.

An exponential family of probability densities for n independent but not identically expo-

nentially distributed random variables can be written as

p(y1, y2, ..., yn; η) =

(
n∏
i=1

g(yi)

)
e
∑n
i=1 ηiyi−

∑n
i=1 ϕ(ηi)

with the log-likelihood function given by

l(y1, y2, ..., yn; η) =
n∑
i=1

ηiyi −
n∑
i=1

ϕ(ηi) +
n∑
i=1

log g(yi).

The natural parameters and mean parameters are, respectively,

η = (η1, η2, ..., ηn)

µ = (µ1, µ2, ..., µn)
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where µi = E(yi) = ϕ′(ηi) with corresponding variance σ2
i = var(yi) = ϕ′′(ηi). Further, the

information matrix with respect to the natural and mean parameters is

I(η) = diag(σ2
1, σ

2
2, ..., σ

2
n) and

I(µ) = diag(σ−2
1 , σ−2

2 , ..., σ−2
n ) ,respectively.

The basic model is µi = f(zi, β) which is equivalently given by ηi = u(zi, β) where u =

(ϕ′)−1 ◦ f . The adequacy of the mean regression function is to be tested.

A general full model for comparison is given by ηi = u(zi, β) + hi(β, s) with hi(β, 0) = 0.

The likelihood function can be written as

p(y1, .., yn; s, β) =
[
e
∑n
i=1 hi(β,s)yi−

∑n
i=1 ϕ(u(zi,β)+hi(β,s))

] n∏
i=1

g(yi)e
∑n
i=1 u(zi,β)yi .

Note if β = β0 is fixed then

p(y1, .., yn; s) =
[
e
∑n
i=1 hi(β0,s)yi−

∑n
i=1 ϕ(u(zi,β0)+hi(β0,s))

]
v(y1, ..., yn, β0) where

v(y1, ..., yn, β0) =
n∏
i=1

g(yi)e
∑n
i=1 u(zi,β0)yi .

Examples:

• Case 1: Let hi(β, s) = sγi(β), 1 ≤ i ≤ n, so that the full model is ηi(β, s) = u(zi, β) +

sγi(β). For β = β0 fixed, this gives a curve with Efron’s statistical curvature equal to

0 and
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p(y1, .., yn; s) =
[
es(
∑n
i=1 γi(β0)yi)−

∑n
i=1 ϕ(u(zi,β0)+sγi(β0))

]
v(y1, ..., yn, β0),

so that
∑n

i=1 γi(β0)yi is a sufficient statistic for parameter s with β = β0 held fixed.

• Case 2: Let hi(β, s1, ..., sk) =
∑k

j=1 sjγij(β). For β = β0 fixed,

p(y1, ..., yn, s1, ..., sk) =
[
e
∑k
j=1 sj(

∑n
i=1 γij(β0)yi)−

∑n
i=1 ϕi(u(zi,β0)+

∑k
j=1 sjγij(β0))

]
v(y1, ..., yn, β0)

so that (
∑n

i=1 γi1(β0)yi,
∑n

i=1 γi2(β0)yi, ...,
∑n

i=1 γik(β0)yi) is a sufficient statistic for

(s1, s2, ..., sk) with β = β0 held fixed.

In constructing alternative models, it is natural to impose that VS(β) ∈ (Tη(β,0)M)⊥ where

VS(β) =
∑

i
dηi
ds

∂
∂ηi

is a generating vector field for the lack of fit part of the full model.

With hi(β, s) = sγi(β),

VS(β) =
∑

i γi(β) ∂
∂ηi

=
∑

i σ
2
i (β)γi(β) ∂

∂µi
=
∑

i αi(β) ∂
∂µi

, say, since ∂
∂ηi

= σ2
i
∂
∂µi

.

Thus, letting Wβk =
∑

i
∂ηi
∂βk

∂
∂ηi

at s = 0, the general orthogonality condition is

0 = 〈VS,Wβk〉η(β) =
∑

i σ
2
i (β)∂u(zi,β)

∂βk
γi(β) =

∑
i
∂u(zi,β)
∂βk

αi(β), 1 ≤ k ≤ q, since γi = αi
σ2
i
.

In order to determine a full model in the mean components, it is proposed to use the maximin

clustering methodology developed by Miller et al. (1998, 1999) and Neill et al. (2000, 2002)

for univariate and multi-response linear models, and Neill and Miller (2003) and Munasinghe

(2010) for nonlinear models with additive error, to construct general alternative models.

The exponential family regression models are nonlinear models which allow for non-additive

errors, and the generalization of the maximin method in this context is discussed next.

Accordingly, the definition of a weighted inner product on Rn is reviewed, along with the

corresponding orthogonal projection operator.
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A weighted inner product on Rn can be defined as < a, b >= aTV −1b where V is a symmetric

positive definite matrix. For example, when working in the mean representation,

V =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

...
0 0 · · · σ2

n

 .

Next suppose A is an n×p matrix of rank p. Then ATV −1A is an invertible p×p symmetric

matrix.

Let

PA = A(ATV −1A)−1ATV −1.

Then

P 2
A = A(ATV −1A)−1ATV −1A(ATV −1A)−1ATV −1

P 2
A = A(ATV −1A)−1ATV −1 = PA.

Thus, PA is idempotent. Further,

V −1PA = V −1A(ATV −1A)−1ATV −1

P T
A = V −1A(ATV −1A)−1AT

so that V −1PA = P T
AV

−1, the generalized symmetric property. Thus, < a, PAb >= aTV −1PAb =

aTP T
AV

−1b = (PAa)TV −1b so that < a, PAb >=< PAa, b >, which is the inner product sym-

metric property. Hence, < PAa, PAa >=< a, P 2
Aa >=< a, PAa >.

Note PAA = A, so that each column of A is an eigenvector of PA with eigenvalue 1. Thus,

PAa = a for a ∈ C(A) so that C(A) ⊂ range PA. But by construction, for any vector v,

PAv = Aw ∈ C(A) for some vector w so that range PA ⊂ C(A). Thus, range PA = C(A)

and C(PA) = C(A).
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Now suppose, b ∈ C(A)⊥. For any vector a, < a, PAb >=< PAa, b >= 0 so that PAb = 0.

Thus, b ∈ C(A)⊥ implies PAb = 0. Conclude that PA is the orthogonal projection operator

onto C(A) with the inner product defined using the matrix V −1.

For comparison with the proposed null model, constructed alternative models can be deter-

mined by decomposing the lack of fit space according to clusterings (cf Christensen (1989,

1991)). A particular clustering can then be selected according to a maximin power strategy

to specify a full model against which to test the null model for lack of fit. The maximin

clustering methodology will now be defined for exponential family regression models. For

specified ηi = ui(β1, β2, ..., βq), q < n, let

V1 =
n∑
i=1

∂ηi
∂β1

∂

∂ηi
=

n∑
i=1

σ2
i

∂ηi
∂β1

∂

∂µi

V2 =
n∑
i=1

σ2
i

∂ηi
∂β2

∂

∂µi

...

Vq =
n∑
i=1

σ2
i

∂ηi
∂βq

∂

∂µi
,

a basis set of vectors for TβM under the null model. Note σ2
i = σ2

i (β1, β2, ..., βq).

Then, for a particular value of β, say β∗ = (β∗1 , β
∗
2 , ..., β

∗
q ), σ

2
i and ∂ηi

∂βj
are known, and the

n× q matrix

Tβ∗ =


σ2

1
∂η1
∂β1

· · · σ2
1
∂η1
∂βq

σ2
2
∂η2
∂β1

· · · σ2
2
∂η2
∂βq

...
...

...

σ2
n
∂ηn
∂β1

· · · σ2
n
∂ηn
∂βq


is such that C(Tβ∗) represents Tβ∗M by its mean parameter components.

Let Z be any clustering matrix. Then C(Z)β∗ is considered to be that subspace of Tβ∗S
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obtained using the column elements of C(Z) as the mean parameter components of a tangent

vector. That is, 
γ1

γ2
...
γn

 ∈ C(Z) 
n∑
i=1

γi
∂

∂µi

∣∣∣∣∣
β∗

.

Now let Z be any clustering matrix. Then

Bβ∗(Z) = C(Z)β∗ ∩ C(Tβ∗)
⊥

represents the exponential family nonlinear analogue to so-called between-cluster lack of fit.

Within-cluster lack of fit in this context is obtained by replacing C(Z)β∗ with (C(Z)β∗)
⊥.

All indicated subspaces are to be interpreted as subspaces of Tη(β∗)S. Regarding notation,

it is emphasized that TpM ⊂ TpS where p = p(µ) = p(η) with η = η(β∗). Further,

TpS = TµS = TηS and (TηM)⊥ ⊂ TηS.

The focus of the current work is to test for between-cluster lack of fit, and the maximin

clustering methodology is employed in the simulation study of Chapter 4 for testing model

adequacy for the cases of logistic regression and Poisson regression.

Given a collection of candidate clusterings, a maximin power clustering maximizes

lZβ∗ = inf

{
‖ν‖2

τ(β∗)(ν)
: ν ∈ Bβ∗(Z), ν 6= 0

}

where τ(β∗) is a positive definite quadratic form on the lack of fit subspace (Tβ∗M)⊥. In

analogy with previous work (cf Munasinghe (2010)), let

τ(β∗)(ν) =
∑
Zij

wij

∥∥∥PBZij ν∥∥∥2
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where the sum is taken over all acceptable edge clustering matrices, and the weights wij

are nonnegative and sum to one. Further, the norms are calculated with respect to the

information inner product discussed above.

The following steps can be used to determine Bβ∗(Z) and PBβ∗ (Z) for a given clustering

matrix Z. For notational brevity, the dependence on β∗ has been largely suppressed.

1. PZ = Z(ZTV −1Z)−1ZTV −1.

2. Let X0 = PZTβ∗ , an n× q matrix.

3. PX0 = X0(XT
0 V

−1X0)−1XT
0 V

−1.

4. PBZ = PZ − PX0 , an n× n matrix.

5. Determine the eigenvectors of PBZ having positive eigenvalues, > 10−5 for computa-

tional purposes. These eigenvectors generate a basis for BZ with respect to the mean

parameter basis.

To calculate τ(β∗), for each acceptable edge clustering let Zij be the edge clustering matrix,

and let BZij = C(Zij)β∗ ∩C(Tβ∗)
⊥. Use steps one to four given above to obtain PBZij . Then∥∥∥PBZij ν∥∥∥2

= (PBZij ν)TV −1PBZij ν

= νTP T
BZij

V −1PBZij ν

= νTV −1P 2
BZij

ν

= νTV −1PBZij ν

so that τ(β∗)(ν) =
∑
Zij

wZijν
TV −1PBZij ν.

Note in the case dim Bβ∗(Z) = 1, step five above is used to obtain 0 6= ν ∈ Bβ∗(Z) for a

given clustering matrix Z. Then
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lZβ∗ =
‖ν‖2

τ(β∗)(ν)
=
νTV −1ν

τ(β∗)(ν)
.

Regarding the constructed lack of fit part of the full model, when Z has been chosen and

ν ∈ Bβ∗(Z) = C(Z)β∗ ∩ C(Tβ∗)
⊥ is determined as

ν =
n∑
i=1

αi(β
∗)

∂

∂µi
,

take VS(β∗) =
n∑
i=1

γi(β
∗)
∂

∂ηi
= ν

with γi(β
∗) =

αi(β
∗)

σ2
i (β

∗)
.

3.3 Curved Exponential Family Models and General-

izations

Generalized linear models make up a broad class of exponential family regression models.

Maximum likelihood estimation for general constructed alternatives discussed in the pre-

ceding section are considered for this class of models in the first subsection below. In the

following subsection, the problem of testing for equal means in a heteroscedastic Normal

model is discussed. In particular, a saturated 3 parameter exponential family model is

developed which allows for equal means testing with unequal variances.

3.3.1 Generalized Linear Models

A generalized linear parametric model (GLM) in the exponential family with canonical link

function is given by
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ηi =

q∑
j=1

zji βj for 1 ≤ i ≤ n.

A perturbation of this GLM within the exponential family is given by

ηi =

q∑
j=1

zji βj + sγi(β) for 1 ≤ i ≤ n

with model parameters (β, s) = (β1, β2, ..., βq, s).

The information matrix for the (β, s) model is

I(β, s)jl =



I(η)
(
∂η
∂βj
, ∂η
∂βl

)
=
∑n

i=1 σ
2
i (β, s)

(
zji + s ∂γi

∂βj

)(
zli + s∂γi

∂βl

)
for 1 ≤ j ≤ q, 1 ≤ l ≤ q

I(η)
(
∂η
∂βj
, ∂η
∂s

)
=
∑n

i=1 σ
2
i (β, s)

(
zji + s ∂γi

∂βj

)
γi(β) for 1 ≤ j ≤ q, l = q + 1

I(η)
(
∂η
∂s
, ∂η
∂s

)
=
∑n

i=1 σ
2
i (β, s)γ

2
i (β) for j = q + 1, l = q + 1.

Along the GLM given by s = 0, I(β, 0)
(
∂η
∂βj
, ∂η
∂s

)
=
∑n

i=1 σ
2
i (β, 0)zji γi(β). In order to satisfy

the general orthogonality condition this term is zero for 1 ≤ j ≤ q. Thus, with αi = σ2
i γi,

(α1, α2, ..., αn) are chosen so that,
∑n

i=1 z
j
iαi = 0 for 1 ≤ j ≤ q and γi(β) are taken as

γi(β) = αi
σ2
i (β,0)

for 1 ≤ i ≤ n.

Observed information for the (β, s) model is given by the negative value of the second partial

derivative matrix of the log-likelihood evaluated at the MLE. Note that
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l(y1, y2, ..., yn, β, s) =
n∑
i=1

yi

(
q∑
j=1

zji βj + sγi(β)

)
−

n∑
i=1

ϕ

(
q∑
j=1

zji βj + sγi(β)

)

+
n∑
i=1

log g(yi)

so that l(y1, y2, ..., yn, β, s) =

q∑
j=1

(
n∑
i=1

zji yi

)
βj +

(
n∑
i=1

γi(β)yi

)
s−

n∑
i=1

ϕ

(
q∑
j=1

zji βj + sγi(β)

)

+
n∑
i=1

log g(yi).

Thus,

∂l

∂βj
=

n∑
i=1

zji yi +

(
n∑
i=1

∂γi
∂βj

yi

)
s−

n∑
i=1

ϕ′

(
q∑
l=1

zliβl + sγi(β)

)(
zji + s

∂γi
∂βj

)
∂l

∂s
=

n∑
i=1

γi(β)yi −
n∑
i=1

ϕ′

(
q∑
l=1

zliβl + sγi(β)

)
γi(β)

so that
∂2l

∂βm∂βj
=

(
n∑
i=1

∂2γi
∂βm∂βj

yi

)
s−

n∑
i=1

ϕ′

(
q∑
l=1

zliβl + sγi(β)

)
∂2γi

∂βm∂βj
s

−
n∑
i=1

ϕ′′

(
q∑
l=1

zliβl + sγi(β)

)(
zmi + s

∂γi
∂βm

)(
zji + s

∂γi
∂βj

)

and
∂2l

∂s∂βj
=

n∑
i=1

∂γi
∂βj

yi −
n∑
i=1

ϕ′

(
q∑
l=1

zliβl + sγi(β)

)
∂γi
∂βj

−
n∑
i=1

ϕ′′

(
q∑
l=1

zliβl + sγi(β)

)
γi(β)

(
zji + s

∂γi
∂βj

)

and
∂2l

∂s2
= −

n∑
i=1

ϕ′′

(
q∑
l=1

zliβl + sγi(β)

)
γi(β)2.
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These equations can be written as

∂2l

∂βm∂βj
=

n∑
i=1

(yi − µi(β, s))
∂2γi

∂βm∂βj
s−

n∑
i=1

σ2
i (β, s)

(
zmi + s

∂γi
∂βm

)(
zji + s

∂γi
∂βj

)
∂2l

∂s∂βj
=

n∑
i=1

(yi − µi(β, s))
∂γi
∂βj
−

n∑
i=1

σ2
i (β, s)

(
zji + s

∂γi
∂βj

)
γi(β)

∂2l

∂s2
= −

n∑
i=1

σ2
i (β, s)γi(β)2.

Thus, for fixed (β, s), taking the expectations of the y′is using p(y1, y2, ..., yn, η(β, s)) the

negative of the matrix I(β, s) is obtained.

The MLE equations are
∂l

∂βj
= 0, 1 ≤ j ≤ q,

∂l

∂s
= 0.

These equations can be written as

n∑
i=1

(yi − µi(β, s))
(
zji + s

∂γi
∂βj

)
= 0, 1 ≤ j ≤ q

n∑
i=1

(yi − µi(β, s))γi(β) = 0,

which states that the vector
∑n

i=1(yi − µi(β, s)) ∂
∂µi

is perpendicular to the vectors

n∑
i=1

∂ηi
∂βj

∂

∂ηi
, 1 ≤ j ≤ q

and
n∑
i=1

∂ηi
∂s

∂

∂ηi

with respect to the information inner product. As specific examples of the GLM, the logistic

and Poisson regression models are considered in Chapter 4.
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3.3.2 Testing for Equal Means in a Heteroscedastic Normal Model

Let Ω = {(x1, x2)|x2 = x2
1} ⊂ R2 and let θ = (θ1, θ2) denote the natural parameters. Then,

with dµ(x) = dx1 on Ω and g(x1, x2) = 1,∫
Ω

g(x)eθ·xdµ(x) =

∫
Ω

g(x)eθ1x1+θ2x2dµ(x) =

∫ ∞
−∞

eθ1x1+θ2x21dx1

=

∫ ∞
−∞

e
θ2
(
x21+

θ1
θ2
x1
)
dx1 =

∫ ∞
−∞

e

[
θ2
(
x1+

θ1
2θ2

)2
− θ21

4θ2

]
dx1

= e
−θ21
4θ2

∫ ∞
−∞

e
θ2
(
x1+

θ1
2θ2

)2
dx1

Write σ2 = −1/2θ2 so that θ2 = −1/2σ2 < 0. Then

∫
Ω

g(x)eθ·xdµ(x) = e
−θ21
4θ2

∫ ∞
−∞

e
−
(
x1+

θ1
2θ2

)2
/2σ2

dx1 = e
−θ21
4θ2 σ
√

2π

= e
−θ21
4θ2

√
π

−θ2

Thus,

ϕ(θ) = log

∫
Ω

g(x)eθ·xdµ(x)

=
−θ2

1

4θ2

+
1

2
log

(
π

−θ2

)
= − θ2

1

4θ2

− 1

2
log(−θ2) +

1

2
log(π).

Further, the mean parameters are given by
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µ1 = E(x1) =
∂ϕ

∂θ1

= − θ1

2θ2

= µ

µ2 = E(x2) =
∂ϕ

∂θ2

=
θ2

1

4θ2
2

− 1

2θ2

= µ2 + σ2.

Also,
∂2ϕ

∂θ2
1

= − 1

2θ2

= σ2

and
∂2ϕ

∂θ2∂θ1

=
θ1

2θ2
2

= 2µσ2.

Hence, on Ω, the exponential density is the Normal given by

p(x, θ) = g(x)eθ·x−ϕ(θ) =
1

σ
√

2π
e−(x1−µ)2/2σ2

.

With the parameters µ and σ2 given above, tangent vectors are given by

∂

∂µ1

=
∂µ

∂µ1

∂

∂µ
+
∂σ2

∂µ1

∂

∂σ2
=

∂

∂µ
− 2µ1

∂

∂σ2

∂

∂µ2

=
∂µ

∂µ2

∂

∂µ
+
∂σ2

∂µ2

∂

∂σ2
=

∂

∂σ2
.

Thus, given an observation (x1, x2) = (x1, x
2
1) on Ω, the vector field in terms of (µ1, µ2)

coordinates is

→
vx = (x1 − µ1)

∂

∂µ1

+ (x2 − µ2)
∂

∂µ2

,

and in terms of (µ, σ2) coordinates,

→
vx = (x1 − µ)

∂

∂µ
+ [(x1 − µ)2 − σ2]

∂

∂σ2
.

The MLE (µ̂1, µ̂2) satisfies,
→
vx(µ̂1, µ̂2) ∈ T(µ̂1,µ̂2)M

⊥.
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Thus,in terms of (µ, σ2) coordinates, the information metric is

g

(
∂

∂µ
,
∂

∂µ

)
=

1

σ2

g

(
∂

∂µ
,
∂

∂σ2

)
= 0

g

(
∂

∂σ2
,
∂

∂σ2

)
=

1

2σ4
.

Now consider n independent samples on Ω, (x1i, x2i) for 1 ≤ i ≤ n where x2i = x2
1i. With

r > 0, m real and ki nonzero, taking

− θ1i

2θ2i

= m so θ1i = −2mθ2i

− 1

2θ2i

= r2k2
i so θ2i = − 1

2r2k2
i

corresponds to the parametric model

xi = m+ rkiZ

where Z ∼ N(0, 1) and writing x1i = xi for the data, 1 ≤ i ≤ n. Thus, E(xi) = m and

V ar (xi) = r2k2
i , 1 ≤ i ≤ n, where m and r are considered as the parameters and the ki are

specified nonzero covariate values.

Next consider a reparameterization by letting

t1 =
m

r2
, t2 = − 1

2r2
so m = − t1

2t2
, r2 = − 1

2t2
.

Also let ξi = 1
k2i
> 0. Then

θ1i =
m

r2

1

k2
i

= ξit1

θ2i = ξit2, t2 < 0.
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More generally, consider the model with unequal means given by

θ1i =ξit1 + sγi

θ2i =ξit2, t2 < 0,
n∑
i=1

γi = 0

where the condition
∑n

i=1 γi = 0 represents the general orthogonality condition on the lack

of fit part of the full model, the null model corresponding to the preceding model with equal

means.

Note that

E(xi) = − θ1i

2θ2i

=
−t1ξi − sγi

2t2ξi
= − t1

2t2
− s

2t2

γi
ξi

so that s = 0 indeed corresponds to the equal means model. Maximum likelihood estimation

of the parameters is considered in order to construct test statistics for testing equal means

in a heteroscedastic Normal model.

The joint density function for the unequal means model is

p((x1i, x2i); s, t1, t2) = e[
∑n
i=1 x1i(ξit1+sγi)+

∑n
i=1 x2i(ξit2)−

∑n
i=1 ϕ(ξit1+sγi,ξit2)]

= e[x1t1+x2t2+sx̃−
∑n
i=1 ϕ(ξit1+sγi,ξit2)].

Note (x1 =
∑n

i=1 ξix1i, x2 =
∑n

i=1 ξix2i, x̃ =
∑n

i=1 γix1i) are the sufficient statistics for the

parameters (t1, t2, s). The preceding provides a 3 parameter model with sufficient statistics

x1 =
∑n

i=1 ξix1i, x2 =
∑n

i=1 ξix2i and x̃ =
∑n

i=1 γix1i, functions of (x1i, x2i), 1 ≤ i ≤ n, with

x2i = x2
1i.

Now consider the sample space for (x̄1, x̄2, x̃) for the case of general n. Write x1i = xi, x2i =

x2
i , 1 ≤ i ≤ n, and x = (xi). The sufficient statistic mapping Φ : Rn → R3 for the above
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3-parameter model is given by

Φ(x) =


n∑
i=1

ξix1i︸ ︷︷ ︸
x1

,

n∑
i=1

ξix2i︸ ︷︷ ︸
x2

,

n∑
i=1

γix1i︸ ︷︷ ︸
x̃

 .

Recall that
∑n

i=1 γi = 0 and ξi > 0, 1 ≤ i ≤ n, so that the vectors (ξi) and (γi) are linearly

independent. Since the derivative matrix of Φ is given by

DΦ(x) =

 ξ1 ξ2 ... ξn
2ξ1x1 2ξ2x2 ... 2ξnxn
γ1 γ2 ... γn

 ,

the (row) rank of DΦ(x) is at least 2 since (ξi) and (γi) are linearly independent. Further,

the rank of DΦ(x) is equal to 2 if and only if there exist numbers α and β such that

(ξixi) = α(ξi) + β(γi). That is, ξixi = αξi + βγi so that xi = α + β
(
γi
ξi

)
, 1 ≤ i ≤ n.

That is, if and only if (writing as column vectors)
x1

x2
...
xn

 = α


1
1
...
1

+ β


γ1/ξ1

γ2/ξ2
...

γn/ξn



if and only if


x1

x2
...
xn

 ∈ Span



1
1
...
1

 ,


γ1/ξ1

γ2/ξ2
...

γn/ξn


 .

Otherwise, DΦ(x) has maximal rank. Note that if DΦ(x) has maximal rank then Φ(x) is

an interior point of the image of Φ in R3.
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Let M = {(xi) ∈ Rn | (xi) ∈ span(1, (γi/ξi))}. Suppose (xi) ∈ M so there exist α and β

such that xi = α + β
(
γi
ξi

)
, 1 ≤ i ≤ n. Using

∑n
i=1 γi = 0,

x̄1 =
∑
i

ξixi =
∑
i

ξiα +
∑
i

βγi = α

(∑
i

ξi

)

x̃ =
∑
i

γixi =
∑
i

γiα +
∑
i

βγ2
i /ξi = β

(∑
i

γ2
i /ξi

)
x̄2 =

∑
i

ξix
2
i =

∑
i

ξi
(
α2 + 2αβγi/ξi + β2γ2

i /ξ
2
i

)
x̄2 =

(∑
i

ξi

)
α2 +

(∑
i

γ2
i /ξi

)
β2

x̄2 =
1

(
∑

i ξi)
x̄1

2 +
1

(
∑

i γ
2
i /ξi)

x̃2.

Thus, Φ(M) is contained in a paraboloid in R3 given in Figure 3.1.

Given (x̄1, x̄2, x̃) such that

x̄2 =
1

(
∑

i ξi)
x̄1

2 +
1

(
∑

i γ
2
i /ξi)

x̃2,

take

α =
x̄1∑
i ξi
, β =

x̃∑
i γ

2
i /ξi

and (xi) = α1 + β(γi/ξi) ∈M.

Then
∑
i

ξixi =
∑
i

ξiα +
∑
i

βγi = (
∑
i

ξi)α = x̄1∑
i

γixi =
∑
i

γiα +
∑
i

βγ2
i /ξi = x̃

and
∑
i

ξix
2
i =

∑
i

ξi

(
α2 + 2αβ

γi
ξi

+ β2γ
2
i

ξ2
i

)
= (
∑
i

ξi)α
2 + (

∑
i

γ2
i /ξi)β

2 = x̄2.

This shows that Φ(M) gives all of the paraboloid.
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Figure 3.1: Paraboloid in R3 containing Φ(M)

Let µi = E(xi) and σ2
i = V ar(xi), 1 ≤ i ≤ n. Then

E(x̄1) = E(
∑
i

ξixi) =
∑
i

ξiµi

E(x̄2) = E(
∑
i

ξix
2
i ) =

∑
i

ξiE(x2
1) =

∑
i

ξiµ
2
i +

∑
i

ξiσ
2
i

E(x̃) = E(
∑
i

γixi) =
∑
i

γiµi.
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It follows that

E(Φ(x)) = (E(x̄1), E(x̄2), E(x̃))

E(Φ(x)) = Φ((µi)) +

(
0,
∑
i

ξiσ
2
i , 0

)
.

Note µi = − θ1i
2θ2i

= − (ξit1+sγi)
2ξit2

= − t1
2t2
− s

2t2

(
γi
ξi

)
for 1 ≤ i ≤ n.

Thus, (µi) ∈ span(1, (γi/ξi)). Hence, (µi) ∈ M so that Φ((µi)) is on the paraboloid and it

follows from the above equation that E(Φ(x)) = (E(x̄1), E(x̄2), E(x̃)) is in the interior of S,

where S denotes the set of points in R3 such that

x̄2 ≥
1

(
∑

i ξi)
x̄1

2 +
1

(
∑

i γ
2
i /ξi)

x̃2.

If the parameters are changed from (t1, t2, s) to (τ1, t2, τ2) where

τ1 = − t1
2t2

, t2 = t2, τ2 = − s

2t2
, t2 < 0,

then

µ = µ(τ1, τ2) = τ1


1
1
...
1

+ τ2


γ1/ξ1

γ2/ξ2
...

γn/ξn

 .

Also,

σ2
i = − 1

2θ2i

= − 1

2ξit2

so that ξiσ
2
i = − 1

2t2
and thus,

n∑
i=1

ξiσ
2
i =

(n
2

)(
− 1

t2

)
and

n∑
i=1

(ξiγi)σ
2
i = 0.
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Hence,

E(Φ(x)) = Φ(µ(τ1, τ2)) +

(
0,
(n

2

)(
− 1

t2

)
, 0

)
where Φ(µ(τ1, τ2)) is on the paraboloid and

(
n
2

) (
− 1
t2

)
ranges over (0,+∞).

This formula gives E(Φ(x)) in terms of the parameters determining the probability distri-

bution which determines the expectations.

For a given point (x̄1, x̄2, x̃) in the interior of S, the following steps show that parameters

(t1, t2, s), or equivalently (τ1, t2, τ2), can be chosen so that E(Φ(x)) = (x̄1, x̄2, x̃).

1. First choose t2 < 0 such that x̄2 − x̄12∑
i ξi
− x̃2∑

i γ
2
i /ξi

= n
−2t2

.

2. Then take τ1 = x̄1∑
i ξi

and τ2 = x̃∑
i γ

2
i /ξi

.

3. Lastly take t1 = (−2t2)τ1 and s = (−2t2)τ2.

Thus, given data (xi), (x̄1, x̄2, x̃) can be calculated and parameters (t1, t2, s) uniquely deter-

mined having (x̄1, x̄2, x̃) as E(Φ(x)).

These formulae for (t1, t2, s), equivalently (τ1, t2, τ2), give the MLE for the full 3-parameter

model.

Now consider the MLE for the model s = 0 within the (t1, t2, s) model. The log-likelihood

function is,

l((x1i, x2i); s, t1, t2) = x̄1t1 + x̄2t2 + sx̃−
n∑
i=1

ϕ (ξit1 + sγi, ξit2) ,
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which, for s = 0, is

l((x1i, x2i); t1, t2) = x̄1t1 + x̄2t2 −
n∑
i=1

ϕ (ξit1, ξit2) .

Given data (x1i) with x2i = x2
1i, the MLE equations are

0 =
∂l

∂t1
= x̄1 −

n∑
i=1

µ1i(ξit1, ξit2)ξi since
∂ϕ

∂θ1

= µ1

0 =
∂l

∂t2
= x̄2 −

n∑
i=1

µ2i(ξit1, ξit2)ξi since
∂ϕ

∂θ2

= µ2

and µ2i = E(x2
1i) = µ2

1i + σ2
i .

For s = 0, τ2 = 0 so that µ1i = τ1 = − t1
2t2
, 1 ≤ i ≤ n, and thus the first MLE equation gives

x̄1 −
n∑
i=1

τ1ξi = 0 so that τ1 =
x̄1∑n
i=1 ξi

.

The second MLE equation gives

x̄2 −
n∑
i=1

(τ 2
1 + σ2

i )ξi = 0 so that x̄2 − (τ 2
1 )

(
n∑
i=1

ξi

)
−

n∑
i=1

σ2
i ξi = 0.

But σ2
i ξi = − 1

2t2
so that

x̄2 −
x̄1

2∑
i ξi

+ n

(
1

2t2

)
= 0.

Thus, the MLE for the s = 0 model is{
τ̂1 = x̄1∑

i ξi
−n
2t̂2

= x̄2 − x̄12∑
i ξi

= x̄2 − (
∑

i ξi)τ̂1
2.

Recall that (t1, t2, s) is equivalent (τ1, t2, τ2) where t2 < 0, and s = 0 if and only if τ2 = 0.

Further, τ2 = 0 gives E(xi) = µ1i = τ1 for 1 ≤ i ≤ n so that the model has all the E(xi)

equal.

Comparing the parameter estimates gives

35



1. (τ1)null − (τ1)full = 0.

2. (τ2)null − (τ2)full = −(τ2)full = − x̃∑
i γ

2
i /ξi

since (τ2)null = 0.

3.
(

n
−2t2

)
null
−
(

n
−2t2

)
full

= x̃2∑
i γ

2
i /ξi

=
(
− 1

2t2

)
true

S1, thus defining S1

as

S1 =
x̃2

var(x̃)
=

(
∑

i γix1i)
2∑

i γ
2
i σ

2
i

where

V ar(x̃) =
∑
i

γ2
i σ

2
i =

∑
γ2
i (−1/2ξit2)

V ar(x̃) =

(
− 1

2t2

) n∑
i=1

γ2
i

ξi
.

Further, E(x̃) =
∑

i γiµi, and under the null model the µi’s are equal so E(x̃) = 0 since∑
i γi = 0. Now x̃ =

∑n
i=1 γix1i is Normal, so that S1 is distributed χ2 with 1 degree of

freedom under the null model.

To determine a statistic based on S1 (and hereafter referred to as the S1 statistic),
(
− 1

2t2

)
full

is used in place of
(
− 1

2t2

)
true

. This comparison of parameter estimates can be graphically

illustrated as in Figure 3.2.

A geometrical meaning of the S1 statistic in terms of Fisher information is

S1 =
<
∑

i γi
∂
∂θ1i

,
∑

i x1i
∂

∂µ1i
>2∑

i γ
2
i σ

2
i

so that S1 =

<∑i γi
∂
∂θ1i

,
∑

i x1i
∂

∂µ1i
>∣∣∣∑i γi

∂
∂θ1i

∣∣∣
2
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Figure 3.2: Graphical Comparison of Parameter Estimates

where the inner product and norm are calculated with respect to the information matrix

which depends upon (estimated) parameters.

Note that the condition
∑n

i=1 γi = 0 gives the required orthogonalities. Recall

σ2
i = − 1

2θ2i

= − 1

2t2ξi
so that ξiσ

2
i = − 1

2t2
.

Also, I ( ∂
∂θ1
, ∂
∂θ1

)
I
(

∂
∂θ1
, ∂
∂θ2

)
I
(

∂
∂θ2
, ∂
∂θ1

)
I
(

∂
∂θ2
, ∂
∂θ2

) =

[
σ2 2µσ2

2µσ2 2σ4 + 4µ2σ2

]
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and

∂

∂t1
=
∑
i

ξi
∂

∂θ1i

,
∂

∂t2
=
∑
i

ξi
∂

∂θ2i

,
∂

∂s
=
∑
i

γi
∂

∂θ1i

,

so that 〈
∂

∂s
,
∂

∂t1

〉
=
∑
i

σ2
i ξiγi = − 1

2t2

∑
i

γi = 0〈
∂

∂s
,
∂

∂t2

〉∣∣∣∣
s=0

=
∑
i

2µiσ
2
i ξiγi = 2m

∑
i

σ2
i ξiγi = 0,

since all the means are equal when s = 0.

Because there is only one orthogonality condition, clusters determined by the γi will use only

two groups in order to accommodate a one dimensional lack of fit subspace. Further, in order

to use the geometric analysis previously discussed for the unequal means model, the γi must

not depend on the parameters (t1, t2) since
∑

i γixi is part of a sufficient statistic. Thus, the

∂
∂θ1i

components are to be clustered. That is, in the current context, for a clustering matrix

Z the meaning of C(Z)β∗ is as follows. For

γ =


γ1

γ2
...
γn

 ∈ C(Z),

γ denotes the vector ∑
i

γi
∂

∂θ1i

∣∣∣∣∣
β∗

=
∑
i

γiσ
2
i

∂

∂µi

∣∣∣∣∣
β∗

.

Since the γi cannot depend upon (t1, t2), this rules out the use of fuzzy clusters (cf Munas-

inghe (2010)).
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Consider a clustering determined by the following structure

(γi) =



a
...
a
b
...
b


where there are l number of a’s and (n − l) number of b’s. According to the condition∑

i γi = 0,

la+ (n− l)b = 0 so that a = −
(n
l
− 1
)
b.

Taking the length squared of the γ vector to be n,

la2 + (n− l)b2 = n

and thus,

l
(n
l
− 1
)2

b2 + (n− l)b2 = n

b2

[
l
(n
l
− 1
)2

+ (n− l)
]

= n

so that b =

√
l

n− l
and a = −

√
n− l
l

= −1

b
.

A method to determine the number of components in each of the two clusters (i.e. l)is given

in Chapter 4 for use with the S1 and likelihood ratio statistics to test for equal means in

the heterogenous Normal model.
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Chapter 4

Simulation Results

4.1 Logistic Regression Model

An exponential family model for Binomial proportions is the logistic regression model, which

represents a generalized linear model with response variables measured on a binary scale.

The canonical link function is the logit transformation, which with one predictor variable z

is given by

η = log

(
π

1− π

)
= β0 + β1z.

The simulations carried out in this section involve n independent Binomial observations with

parameters (mi, πi) for 1 ≤ i ≤ n. The asymptotic distribution of goodness of fit or lack of

fit test statistics is obtained by letting n become large. If the number of distinct predictor

settings also increases with n, then each value of mi tends to be small, leading to so-called

n-asymptotics. If the number of distinct predictor settings is held fixed and n is allowed

to become large, then each value of mi also tends to become large, leading to so-called

m-asymptotics. Note that when there is at least one continuous predictor in the model

then the number of distinct predictor settings approximates n, and represents a frequently

encountered case in applications. This terminology is utilized by Hosmer and Lemeshow
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(2000), for example. The simulations for the logistic regression model will illustrate results

corresponding to both m- and n-asymptotics.

Properties of the logistic model with canonical link function include

l(y, η) =
n∑
i=1

[
yiηi −milog(1 + eηi) + log

(
mi

yi

)]
ϕ(η) =

n∑
i=1

milog(1 + eηi)

and

ηi = log
πi

1− πi
, 0 < πi < 1

πi =
eηi

1 + eηi
, 1− πi =

1

1 + eηi

µi =
∂ϕ

∂ηi
=

mi

1 + eηi
eηi = miπi

σ2
i =

∂2ϕ

∂η2
i

= mi

[
(1 + eηi)eηi − eηieηi

(1 + eηi)2

]
σ2
i = mi

eηi

(1 + eηi)2
= miπi(1− πi).

The power of the LRT statistic, the deviance (cf Dobson and Barnett (2008)), the Hosmer

Lemeshow test statistic (cf Hosmer and Lemeshow (2000)), Wald test statistics as given

in Boos (1992) and Shao (2003), and the test statistic S based on the information metric

presented in Chapter 3 was investigated for detecting between-cluster lack of fit. In addition,

the power for these tests was assessed when the data was generated by a functionally different

model as compared to the constructed full model based on between-cluster lack of fit.

Specifically, Uniformly distributed predictor values for z on the interval (−3, 3) were used

to generate data sets with sizes n = 50 and n = 100. One set of data was generated for each
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specified size with mi = 50, using R software (cf Appendix A). Such will illustrate the case of

m-asymptotics. Later in this section, the case of n-asymptotics will be illustrated with mi =

1. As discussed in Munasinghe (2010), a cover for the predictor space was determined by di-

viding the interval (−3, 3) into the five cells {(−3,−1.8), [−1.8,−0.6), [−0.6, 0.6), [0.6, 1.8), [1.8, 3)},

with three associated overlapping subsets given by {(−3,−0.6), [−1.8, 1.8), [0.6, 3)} specify-

ing the cover elements. Since the cardinality of the set of crisp clustering consistent with this

cover becomes very large with increasing data size, a subset comprised of ordered partitions

from the full collection was utilized for computational feasibility in the simulation studies.

This led to candidate clusterings consisting of 156 crisp clusterings for the data with n = 50

and 690 crisp clusterings for the data with n = 100. The maximin power clustering criterion

discussed in Neill and Miller (2003) and adapted to the logistic regression model (cf section

3.2) was then used to determine the best crisp clustering Zn(β) at each of chosen β values.

A grid search was utilized to determine the MLE of parameters in the logistic and alternative

models used for the simulation study. An appropriate grid over which to search the β values

for a logistic regression model is motivated by noting that

πi =
eηi

1 + eηi
=

1

1 + e−ηi

dπi
dηi

= (−1)(1 + e−ηi)−2(−e−ηi) =
e−ηi

(1 + e−ηi)2

lim
ηi→−∞

πi = 0, lim
ηi→+∞

πi = 1, π(0) =
1

2
.

Since the densities become more and more deterministic as the natural parameters go to

±∞, the grid is obtained by constraining the η and thus the β. Later in this section, a

simulation without such constraints shows that the test statistics can achieve zero power

for specified parameter settings. In addition, an analytical explanation of such phenomena
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is presented and is based on the information distance (squared) (cf section 3.1) involving

limits to infinity.

Constraints of the form δ1 ≤ ηi ≤ δ2 with δ1 < 0 < δ2 will be imposed on the η. Such

bounds are determined by excluding values of π nearly equal to 0 or 1. Specifically, the

excluded values are πi < 10−5 and πi > 1− 10−5. With πi = eηi
1+eηi

, the approximate values

of δ1 and δ2 can be calculated as -12 and 12, respectively.

Now write ηi = β0 + β1zi, with zi in some bounded interval for 1 ≤ i ≤ n, and let z̄i =

a(zi + c) = azi + ac with a > 0. Then

ηi = β0 + β1

(
1

a
z̄i − c

)
= (β0 − β1c) +

β1

a
z̄i.

Thus,

ηi = β̄0 + β̄1z̄i with β̄0 = β0 − β1c, β̄1 =
β1

a
.

Without loss of generality, a and c can be chosen such that 0 ≤ z̄i ≤ 1 for 1 ≤ i ≤ n. Thus,

it is desired to have δ1 ≤ β̄0 + β̄1z̄i ≤ δ2 where 0 ≤ z̄i ≤ 1 for 1 ≤ i ≤ n. The region R̄, say,

in the (β̄0, β̄1) plane for which these all hold is given by

R̄


δ1 ≤ β̄0 ≤ δ2

δ1 − β̄0 ≤ β̄1 ≤ δ2 − β̄0.

Grid points can now be determined directly by transformation from the (β̄0, β̄1) plane. Since

the region R̄ is horizontally simple, the grid on R̄ can be obtained as follows:

1. Break up the β̄0 axis from δ1 to δ2.
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2. Then, for each β̄0 value from step (1), break up the interval δ1 − β̄0 ≤ β̄1 ≤ δ2 − β̄0.

Then

β̄0 = β0 − β1c

β̄1 = β1
a

}
⇒ β0 = β̄0 + caβ̄1

β1 = aβ̄1

This gives the grid points for (β0, β1) in the R region, say. Figure ( 4.1) depicts an example

of this transformation.

Figure 4.1: Example of the Grid Transformation from the R̄ Region to the R Region

With the constraints specified by δ1 = −12, δ2 = 12, and with the predictor z values coming

from the Uniform distribution on (−3, 3), a = 1/6 and c = 3. Thus, −12 ≤ β̄0 ≤ 12 and

−24 ≤ β̄1 ≤ 24 but restricted within the parallelogram shaped region R̄, and this leads to

−12 ≤ β0 ≤ 12 and −4 ≤ β1 ≤ 4 but restricted within the diamond shaped region R.

In this selected grid, twenty-one (β1, β2) values were chosen and the crisp maximin cluster-

ings were calculated using the method described in section 3.2. The results are shown in
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Figure 4.2. The plot is color coded in such a way that the points with like coloring corre-

spond to the same maximin clustering. The numbered clusterings are listed in Appendix

B.

Figure 4.2: Maximin Crisp Clusterings for the Logistic Model

Using these crisp clusterings, a size analysis for the LRT was carried out to check the validity

of the null χ2 distribution using a grid search method. Before presenting the simulated size

results corresponding to the twenty-one (β1, β2) values in Figure 4.2, the grid search method

employed is discussed.

In particular, based on the grid developed in the preceding, estimation of the parameters
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for alternative models of the sort given in Chapter 3 for the GLM is considered. That is,

ηi(s) =

q∑
j=1

zji βj + sγi(β) = ξi + sγi(β)

where

ξi = ηi(0) =

q∑
j=1

zji βj.

Let

σ2
i (s) = σ2

i (ηi(s)) = σ2
i (ξi + sγi(β))

µi(s) = µi(ηi(s)) = µi(ξi + sγi(β))

σ2
i (0) = σ2

i (ξi) and µi(0) = µi(ξi).

Then µi(s) = miπi(s) where πi(s) = eηi(s)

1+eηi(s)

so that

πi(s) =
eξiesγi(β)

1 + eξiesγi(β)
=

eξi

eξi + e−sγi(β)
.

Next let f(s) denote the derivative of the log-likelihood with respect to s for fixed β to

obtain

f(s) =
n∑
i=1

(yi − µi(s))γi(β)

f(s) =
n∑
i=1

(
yi −

mie
ξi

eξi + e−sγi(β)

)
γi(β).
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It is the root of f(s) = 0 that is of interest in order to obtain the MLE under the full model.

Note that the derivative of f(s) is less than zero. Also, since

πi(s) =
eξi

eξi + e−sγi(β)
=

eξi

eξi + es(−γi(β))

it follows that

1. γi(β) > 0 gives

lim
s→+∞

πi(s) = 1, lim
s→−∞

πi(s) = 0

2. γi(β) < 0 gives

lim
s→+∞

πi(s) = 0, lim
s→−∞

πi(s) = 1

3. γi(β) = 0 gives

πi(s) =
eξi

1 + eξi
= πi(0).

Thus,

lim
s→+∞

f(s) =
∑

i∈Positive

(yi −mi)γi(β) +
∑

i∈Negative

yiγi(β) +
∑
i∈Zero

(yi −miπi(0))γi(β)

lim
s→−∞

f(s) =
∑

i∈Positive

yiγi(β) +
∑

i∈Negative

(yi −mi)γi(β) +
∑
i∈Zero

(yi −miπi(0))γi(β).

Note the two preceding limits are negative and positive valued, respectively. Further,

σ2
i (s) = miπi(s)(1 − πi(s)) so that unless γi(β) = 0, lim

s→±∞
σ2
i = 0. Based on the pre-

ceding, the following bisection method was used in estimating the value of s that maximizes

the log-likelihood function under the constructed alternative:

1. Select negative s1 and positive s2, both large in magnitude.

2. Check the values of f(s) at the chosen s1 and s2.
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3. If f(s1) is not positive and/or f(s2) is not negative then adjust the s values.

4. Choose the midway value between s1 and s2, and check whether f(s) is positive or

negative.

5. If it is positive then assign s1 for that chosen middle value. If it is negative then assign

s2 to that middle value.

6. Repeat steps 4 and 5 until the root is found.

This procedure gives the value of s that maximizes the log-likelihood function for fixed

(β0, β1) on the selected grid. Then choosing the grid point corresponding to the maximal

log-likelihood function provides the (approximated) MLE of the parameters (β0, β1, s) in

the full model. Similarly, direct evaluation of the log-likelihood function for the null model

across the grid provides the (approximated) MLE of the parameters (β0, β1) in the null

model. Thus, the calculation of the log LRT statistic can be approximated for a simulated

data vector.

Returning to the size analysis for the LRT corresponding to the twenty-one (β1, β2) values

in Figure 4.2, the results are given in Figures 4.3, 4.4, 4.5, 4.6 for sample size n = 50,

and in Figures 4.7, 4.8, 4.9, 4.10 for sample size n = 100. Different simulation parameters

were considered in calculating the size values, including the number of simulations (B) and

the density of the grid. Note the dimension of TβM is equal to two and the dimension

of all between cluster-lack of fit subspaces is equal to one. Thus, χ2
1 is the proposed null

distribution and the specified nominal level was taken as .05.

According to the plots it can be concluded that the χ2 distribution is particularly valid in

the central part of the grid. With increasing values of the simulation parameters n, B and

grid density, the desired nominal level is well approximated except at certain β settings

near the grid boundary. In subsequent subsections, the four values of β = (β0, β1) taken as
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Figure 4.3: LRT Size Values for Logistic Model with n=50, B=500 and 625 Grid Points

Figure 4.4: LRT Size Values for Logistic Model with n=50, B=1000 and 625 Grid Points
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Figure 4.5: LRT Size Values for Logistic Model with n=50, B=500 and 2401 Grid Points

Figure 4.6: LRT Size Values for Logistic Model with n=50, B=1000 and 2401 Grid Points
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Figure 4.7: LRT Size Values for Logistic Model with n=100, B=500 and 625 Grid Points

Figure 4.8: LRT Size Values for Logistic Model with n=100, B=1000 and 625 Grid Points
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Figure 4.9: LRT Size Values for Logistic Model with n=100, B=500 and 2401 Grid Points

Figure 4.10: LRT Size Values for Logistic Model with n=100, B=1000 and 2401 Grid
Points
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{(−1,−1), (−1, 1), (1,−1), (1, 1)} in the central part of the grid will be used for illustration

purposes. Alternative full models based on the four multiple maximin clusterings will be

considered subsequently, with fuzzy clusterings employed to facilitate the grid search for

the MLE. Fuzzy clusterings, as discussed in Munasinghe (2010), are determined from the

four maximin clusterings corresponding to the four selected β settings. Further, based on

the selected cover of the predictor space, the dimension of the fuzzy clusterings is equal to

three.

Table 4.1 gives the crisp maximin clusterings Zn(β) for the two sizes of data sets at each of

the four selected β settings. The results indicate that the crisp clusterings are not constant

across the chosen β settings, with considerable difference in selected clusters as n increases.

values of β Zn(β)
n=50 n=100

(-1,-1) {x1 : x17} {x1 : x37}
{x18 : x33} {x38 : x62}
{x34 : x50} {x63 : x100}

(-1,1) {x1 : x17} {x1 : x37}
{x18 : x29} {x38 : x80}
{x30 : x50} {x81 : x100}

(1,-1) {x1 : x17} {x1 : x37}
{x18 : x29} {x38 : x80}
{x30 : x50} {x81 : x100}

(1,1) {x1 : x17} {x1 : x37}
{x18 : x33} {x38 : x62}
{x34 : x50} {x63 : x100}

Table 4.1: Maximin Clusterings for the Logistic Model with n=50 and n=100 for the
Selected (β0, β1) Values
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4.1.1 Data Generation by Perturbing the Proposed Logistic Model
(Using the Constructed Full Model)

The data were simulated by using the perturbed logistic model with ηi = β0 + β1zi + sγi

where (γi) is a basis vector for the between-cluster lack of fit subspace at selected values of

β = (β0, β1). The grid is chosen as discussed above with δ1 = −12, δ2 = 12 and with the

z values drawn from the Uniform distribution on (−3, 3). For each of twenty-five equally

separated values of β̄0 between δ1 = −12 and δ2 = 12, twenty-five corresponding and

equally separated values of β̄1 were chosen in the R̄ region, resulting in 625 grid points

for approximation of the MLE parameter estimates. The power of the LRT statistic with

nominal size .05 was investigated. The results were obtained by using B = 500 simulations,

and are given in Table 4.2 for different values of (β0, β1) with n=50. Table 4.2 gives the

power of the LRT for both the cases of a single maximin clustering as well as for fuzzy

clusterings. Also, the corresponding power values for the Hosmer-Lemeshow goodness of fit

test for the logistic model was included for comparison. It can be observed from Table 4.2

that the LRT has superior power as compared to the Hosmer-Lemeshow test for the cases

considered in this simulation study, especially for smaller values of the parameter s. Further,

there is not an observed difference in the use of a single maximin clustering as compared to

the use of fuzzy clusterings, except for the (β0, β1) = (1, 1) case.

4.1.2 Data Generation by a Functionally Different Model than
the Constructed Full Model

A functionally different model given by ηi = β0 + β1zi + αz2
i is next considered as the data

generator in checking the simulated power of several test statistics, including the LRT statis-

tic, Wald statistics, the deviance, the Hosmer-Lemeshow statistic and the S(y, µ̂) statistic

(cf section 3.1), which is based on the information metric.
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with with with with
single multiple H-L single multiple H-L

(β0,β1) s maximin maximin test (β0,β1) s maximin maximin test
clusters clusters clusters clusters

(-1,-1) 0 0.036 0.036 0.036 (-1,1) 0 0.074 0.074 0.052
0.4 0.236 0.236 0.072 0.4 0.164 0.164 0.074
0.8 0.694 0.694 0.254 0.8 0.534 0.534 0.188
1.2 0.95 0.95 0.58 1.2 0.84 0.84 0.436
1.6 0.998 0.998 0.848 1.6 0.97 0.97 0.724
2 1 1 0.972 2 1 1 0.9

2.4 1 1 0.998 2.4 1 1 0.992
2.8 1 1 1 2.8 1 1 0.998
3.2 1 1 1 3.2 1 1 1

(1,-1) 0 0.056 0.056 0.052 (1,1) 0 0.052 0.052 0.034
0.4 0.178 0.178 0.088 0.4 0.238 0.168 0.122
0.8 0.532 0.532 0.242 0.8 0.736 0.58 0.344
1.2 0.868 0.868 0.482 1.2 0.966 0.902 0.738
1.6 0.984 0.984 0.778 1.6 1 0.992 0.96
2 1 1 0.96 2 1 1 0.998

2.4 1 1 0.994 2.4 1 1 1
2.8 1 1 0.998 2.8 1 1 1
3.2 1 1 1 3.2 1 1 1

Table 4.2: Power of the LRT and Hosmer-Lemeshow Tests for Logistic Model with n = 50
at Selected (β0, β1, s) Values

Recall from Chapter 3 that S(y, µ) = ‖(yi − µi)
∂
∂µi
‖2
Information at µ, so that S(y, µ) =∑n

i=1
(yi−µi)2
σ2
i (µ)

for the logistic model with µi = miπi and σ2
i = miπi(1 − πi) where mi is

the number of Bernoulli trials and πi is the probability of success. A test statistic for good-

ness of fit is thus S(y, µ̂) where µ̂ is the MLE of the proposed model. This can be seen to be

equal to the Pearson χ2 goodness of fit test statistic as given in Dobson and Barnett (2008),

for example. Note that the Hosmer-Lemeshow, deviance and S statistics do not depend

on a constructed alternative model, and hence do not depend on specified clusterings. For

the LRT and Wald statistics, the single maximin power clustering for β = (1, 1) was used

to investigate simulated power for these test statistics. The χ2 distribution was used to
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α Power of the Test

LRT WaldB WaldS S deviance H-L

0 0.052 0.048 0.046 0.058 0.054 0.04
2 0.41 0.324 0.308 0.072 0.148 0.16
4 0.548 0.352 0.326 0.074 0.018 0.274
8 0.352 0.432 0.422 0.074 0.02 0.228
12 0.242 0.188 0.214 0.282 0.002 0.116
16 0.122 0.0.038 0.034 0.420 0 0.046
20 0.012 0.004 0.002 0.0.124 0 0.016
24 0.002 0 0 0.022 0 0.006
28 0 0 0 0 0 0
32 0 0 0 0 0 0
36 0 0 0 0 0 0

Table 4.3: Power of the LRT, WaldB,WaldS, S(y, µ̂), Deviance and Hosmer-Lemeshow
Statistics for Logistic Model with n = 50 for (β0, β1, α) = (1, 1, α) Values

determine critical points, set according to the .05 nominal level.

To demonstrate the usefulness of the bounded grid discussed in the first part of this chapter,

the simulated power results are given in Table 4.3, and graphically illustrated in Figure 4.11,

where the data generators do not satisfy the constraints imposed by the grid. Note that

the predictor space for these simulated powers was taken as Uniform on (0, 1). Recall that

the grid restricts the search for MLE estimates of the parameters in such a way as to

avoid parameter values that correspond to (nearly) deterministic densities. Although the

simulated size for all of the test statistics approximates the desired nominal size equal to

.05, it can be observed that the simulated power ultimately decreases to zero for increasing

values of the parameter α in the data generator. Upon further investigation, when the grid

is allowed sufficiently large, the estimates for (β0, β1) were noted to become large and thus

allow the null model to fit well, even though the data came from a rogue data generator.

Accordingly, for the cases considered, the power decreases to zero and remains so.
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Figure 4.11: Power of LRT, WaldBoos,WaldShao, S(y, µ̂), Deviance and Hosmer-Lemeshow
Tests for Logistic Model with n = 50 at Selected (β0, β1, α) Values

For comparison, the results given in Table 4.4 reflect the case that the data generators do

satisfy the bounded constraints of the grid. In particular, the simulated power for the test

statistics is comparable, with the simulated power increasing to one for large α in all cases.

In addition, it can be observed that the simulated power for the deviance and Hosmer-

Lemeshow tests lags behind the other tests for small values of the parameter α. Note that

the predictor space for these simulated powers was taken as Uniform on (−3, 3).

An analytical explanation of the phenomena observed in Table 4.3, and graphically illus-

trated in Figure 4.11, is presented next. The analysis is based on the information distance

(squared) (cf section 3.1) involving limits to infinity.

Consider the test statistic defined above as S(y, µ̂) where µ̂ is the MLE estimate of the

mean, with µi = miπi and variance σ2
i = miπi(1− πi). Then
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Power of the Test

α LRT WaldB WaldS S Deviance H-L

0 0.044 0.05 0.044 0.056 0.074 0.04
0.05 0.222 0.22 0.2 0.156 0.118 0.112
0.1 0.638 0.584 0.628 0.694 0.346 0.548
0.15 0.884 0.782 0.892 0.976 0.724 0.932
0.2 0.976 0.96 0.978 0.982 0.956 0.998
0.25 0.998 0.994 0.998 1 0.998 1
0.3 1 1 1 1 1 1
0.35 1 1 1 1 1 1
0.4 1 1 1 1 1 1
0.45 1 1 1 1 1 1
0.5 1 1 1 1 1 1

Table 4.4: Power of the LRT, WaldB,WaldS, S(y, µ̂), Deviance and Hosmer-Lemeshow
Statistics for Logistic Model with n = 50 for (β0, β1, α) = (1, 1, α) Values

S(y, π) =
∑
i

1

miπi(1− πi)
(yi −miπi)

2

S(y, π) =
∑
i

mi

πi(1− πi)

(
yi
mi

− πi
)2

.

The following cases are considered, assuming that the null model is true. i.e. the limits for

π are along the null model.

1. For yu = (m1,m2, ...,mn),

S(yu, π) =
∑

i
mi

πi(1−πi)(1− πi)
2 =

∑
i
mi
πi

(1− πi)

so that lim
π→1

S(yu, π) = 0.

2. For yl = (0, 0, ..., 0),
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S(yl, π) =
∑

i
mi

πi(1−πi)π
2
i =

∑
i

(
mi

1−πi

)
πi

so that lim
π→0

S(yl, π) = 0.

3. Suppose y∞ = (yi) with yi = mi or yi = 0. Then

S(y∞, π) =
∑

yi=mi
mi
πi

(1− πi) +
∑

yi=0

(
mi

1−πi

)
πi

so that limyi = mi gives πi → 1
yi = 0 gives πi → 0


S(y∞, π) = 0.

4. Suppose πi → 1 or πi → 0 for each i

but ∃i with mi = yi but πi → 0 or

∃i with yi = 0 but πi → 1.

Then lim
π
S(y∞, π) = +∞.

5. Suppose yi 6= mi and yi 6= 0 for some i and πi → 0 or πi → 1 for that i.

Then lim
π
S(y∞, π) = +∞.

From the above analysis, it is clear that the extreme situations (i.e. basically deterministic)

present anomalies when assessing the adequacy of the logistic model. In order to simulate

data corresponding to controlled πi values in the full range of (0,1), without going to ex-

tremes, the method employed by Hosmer et al. (1997) was used to further investigate power

for the test statistics.

In particular, the data generator for the logistic model with η = β0 + β1z+ β2z
2, for chosen

values of the three parameters determined by π(−1.5) = 0.05, π(3) = 0.95 and π(−3) = J

where J = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, was used in a power simulation study
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J 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

β0 -1.138 -1.489 -1.697 -1.846 -1.963 -2.059 -2.142 -2.214
β1 1.257 1.139 1.070 1.020 0.981 0.949 0.922 0.898
β2 0.035 0.113 0.159 0.192 0.218 0.239 0.258 0.274

Table 4.5: Values of β0, β1, β2 with Increasing J Values

for the tests under consideration. Here the predictor z values are generated as Uniform

on (−3, 3), and π is evaluated corresponding to the three values −1.5,−3, 3. Eight models

are thus considered to investigate the simulated power with omission of a squared predictor

term. This method assures that the generated models with lack of linearity in the logit

function become progressively more profound with increasing J values. Table 4.5 gives

values of β0, β1, β2 with increasing J values.

The grid is again selected such that δ1 = −12, δ2 = 12. With this setup, the power is

investigated using a single maximin clustering for different values of J using the same test

statistics as before. The results are given in Table 4.6. The clustering generated at (β0, β1) =

(1, 1) was again used in constructing the general alternative models. Note that the S,

deviance and Hosmer-Lemeshow statistics do not depend on clusterings or the specification

of an alternative model.

The simulated power for the test statistics is seen to be comparable, although the deviance

and Hosmer-Lemeshow tests lag in power for lower J values. In addition, the simulated

power corresponding to lower J values for the S statistic is best in Table 4.6.

Next the power is investigated with the same setup but using multiple maximin clusterings.

The power values are given in Table ( 4.7). The same four (β0, β1) points that have been

used previously were chosen in the grid for calculating the multiple clusterings. Note again

that S, the deviance and Hosmer-Lemeshow statistics do not involve alternative models in

checking for LOF, and hence also do not depend on the clusterings, thus giving the same
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Power of the Test

J LRT WaldB WaldS S deviance H-L

0.01 0.142 0.154 0.158 0.312 0.094 0.1
0.02 0.866 0.844 0.874 0.878 0.406 0.74
0.03 0.976 0.98 0.978 0.968 0.782 0.976
0.04 0.998 0.998 1 0.998 0.934 1
0.05 1 1 1 1 0.986 1
0.06 1 1 1 1 0.998 1
0.07 1 1 1 1 0.998 1
0.08 1 1 1 1 1 1

Table 4.6: Power of the LRT, WaldB,WaldS, S(y, µ̂), Deviance and Hosmer-Lemeshow
Statistics for Logistic Model with n = 50 for Different J Values Using a Single Maximin
Clustering

power values as in the case for single maximin clusterings.

The conclusions using the multiple maximin clusterings are somewhat similar to the single

maximin case. However, with clusterings selected more nearly equal to the chosen (β0, β1),

the multiple clusterings setup may provide better results. In any case, a measure of robust-

ness is illustrated with the current choice of clusterings.

4.1.3 n-Asymptotics for Logistic Model

Thus far, consideration has been given to the case of m-asymptotics in the logistic regression

model. In this subsection, the case of n-asymptotics will be considered. The simulations

are carried out with n = 100 and mi = 1 to illustrate the n-asymptotics case. The same

setup for the grid search to determine approximate MLE parameter estimates will be used

as before. Also, the clusterings were selected and a size analysis is carried out as before.

The size at selected grid points is shown in Figures 4.12, 4.13, 4.14, 4.15.

According to the plots it can be concluded that the χ2 distribution provides a reasonable
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Power of the Test

J LRT WaldB WaldS S Deviance H-L

0.01 0.128 0.158 0.132 0.312 0.094 0.1
0.02 0.766 0.742 0.792 0.878 0.406 0.74
0.03 0.926 0.93 0.934 0.968 0.782 0.976
0.04 0.98 0.982 0.98 0.998 0.934 1
0.05 0.996 0.994 0.996 1 0.986 1
0.06 1 1 1 1 0.998 1
0.07 1 1 1 1 0.998 1
0.08 1 1 1 1 1 1

Table 4.7: Power of the LRT, WaldB,WaldS, S(y, µ̂), Deviance and Hosmer-Lemeshow
Statistics for Logistic Model with n = 50 for Different J Values Using Multiple Maximin
Clusterings

approximation to the null distribution of the LRT statistic, for the values of the simulation

parameters B and grid density considered. The desired nominal level of .05 is reasonably

approximated except at certain β settings near the grid boundary.

Simulated power for the LRT is next investigated with constructed full models based on

between-cluster lack of fit. Single maximin clusterings and multiple maximin clusterings

corresponding to the same four values of β = (β0, β1) (i.e. {(−1,−1), (−1, 1), (1,−1), (1, 1)})

will be used for illustration purposes. Note that the fuzzy clusterings were also calculated

using the same four points considered previously.

The simulated power is given in Table 4.8. The power for the Hosmer-Lemeshow test is

also included for comparison. It can be observed from Table 4.8 that the LRT generally has

superior power as compared to the Hosmer-Lemeshow test for the cases considered in this

simulation study, especially for smaller values of the parameter s.

Next the data are generated using a functionally different model as in m-asymptotics case.

The same model, η = β0 + β1z + β2z
2, is used to generate the data in calculating the power
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Figure 4.12: Size Values for Logistic Model in the n-asymptotics Case with n=100, B=500
and 625 Grid Points

Figure 4.13: Size Values for Logistic Model in the n-asymptotics Case with n=100, B=1000
and 625 Grid Points
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with with with with
single multiple H-L single multiple H-L

(β0,β1) s maximin maximin test (β0,β1) s maximin maximin test
clusters clusters clusters clusters

(-1,-1) 0 0.066 0.07 0.032 (-1,1) 0 0.076 0.082 0.052
0.05 0.382 0.19 0.064 0.05 0.3 0.146 0.08
0.1 0.91 0.422 0.272 0.1 0.762 0.26 0.242
0.15 0.998 0.714 0.634 0.15 0.98 0.41 0.652
0.2 1 0.912 0.92 0.2 1 0.576 0.934
0.25 1 0.99 0.996 0.25 1 0.8 0.992
0.3 1 0.998 1 0.3 1 0.94 1
0.35 1 1 1 0.35 1 0.986 1
0.4 1 1 1 0.4 1 1 1

(1,-1) 0 0.072 0.072 0.046 (1,1) 0 0.078 0.088 0.05
0.05 0.286 0.264 0.138 0.05 0.396 0.618 0.236
0.1 0.792 0.834 0.432 0.1 0.938 1 0.678
0.15 0.99 0.99 0.816 0.15 1 1 0.984
0.2 1 1 0.974 0.2 1 1 1
0.25 1 1 1 0.25 1 1 1
0.3 1 1 1 0.3 1 1 1

Table 4.8: Power of the LRT and Hosmer-Lemeshow Tests for Logistic Model with n =
100,mi = 1 at Selected (β0, β1, s) Values
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Figure 4.14: Size Values for Logistic Model in the n-asymptotics Case with n=100, B=500
and 2401 Grid Points

of the LRT, S, Wald and Hosmer-Lemeshow statistics. The data generator as explained in

section 4.1.2 is used with different values of J controlling the πi values as before. The cor-

responding (β0, β1, β2) values are given in Table 4.9, along with the simulated power values

in Table 4.10 for the single maximin clusterings and Table 4.11 for multiple maximin clus-

terings. Note that the S and Hosmer-Lemeshow statistics do not depend on the clustering

or an alternative model, thus giving the same values in both cases.

The simulated power for the test statistics is seen to be comparable, except for the fluc-

tuations for the S statistic. Notably, the LRT has comparable power under both m- and

n-asymptotics.
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Figure 4.15: Size Values for Logistic Model in the n-asymptotics Case with n=100, B=1000
and 2401 Grid Points

J 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

β0 -2.337 -2.742 -3.012 -3.232 -3.435 -3.638 -3.859 -4.128 -4.534
β1 0.857 0.722 0.632 0.558 0.491 0.423 0.35 0.26 0.125
β2 0.301 0.391 0.451 0.5 0.545 0.59 0.639 0.699 0.789

Table 4.9: Values of β0, β1, β2 with Increasing J Values for n-asymptotics

4.2 Poisson Regression Model

Another exponential family model involves the Poisson regression model, which represents

a generalized linear model with each response variable equal to the count or frequency of

events associated with the corresponding predictor setting. The canonical link function is

the natural logarithm transformation, which with one predictor variable z is given by
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Power of the Test

J LRT WaldB WaldS S H-L

0.1 0.402 0.552 0.428 0.632 0.476
0.2 0.636 0.718 0.66 0.772 0.728
0.3 0.798 0.812 0.82 0.85 0.834
0.4 0.894 0.874 0.902 0.834 0.914
0.5 0.96 0.9 0.956 0.802 0.956
0.6 0.976 0.906 0.978 0.78 0.972
0.7 0.996 0.95 0.994 0.744 0.996
0.8 0.998 0.97 0.998 0.69 0.998
0.9 1 1 1 0.454 0.998

Table 4.10: Power of the LRT, WaldB,WaldS, S(y, µ̂) and Hosmer-Lemeshow Statistics
for Logistic Model with n = 100 for Different J Values Using a Single Maximin Clustering

Power of the Test

J LRT WaldB WaldS S H-L

0.1 0.466 0.65 0.496 0.632 0.476
0.2 0.708 0.822 0.728 0.772 0.728
0.3 0.836 0.888 0.85 0.85 0.834
0.4 0.92 0.926 0.93 0.834 0.914
0.5 0.968 0.944 0.972 0.802 0.956
0.6 0.984 0.964 0.984 0.78 0.972
0.7 0.998 0.97 0.988 0.744 0.996
0.8 0.998 0.98 0.996 0.69 0.998
0.9 1 0.996 0.998 0.454 0.998

Table 4.11: Power of the LRT, WaldB,WaldS, S(y, µ̂) and Hosmer-Lemeshow Statistics
for Logistic Model with n = 100 for Different J Values Using a Multiple Maximin Clustering
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η = log(λ) = β0 + β1z.

The simulations involve n independent Poisson observations with parameter λi where 1 ≤

i ≤ n. Properties of the Poisson model with its canonical link function include

l(y, η) =
n∑
i=1

[yiηi − eηi − log(yi!)]

ϕ(η) =
n∑
i=1

eηi

ηi = log λi, λi > 0

µi =
∂ϕ

∂ηi
= eηi = λi

σ2
i =

∂2ϕ

∂η2
i

= eηi = λi

The power of the LRT statistic, the deviance (cf Dobson and Barnett (2008)) and the

test statistic S based on the information metric presented in Chapter 3 was investigated for

detecting between-cluster lack of fit. In addition, the power for these tests was assessed when

the data was generated by a functionally different model as compared to the constructed

full model based on between-cluster lack of fit. The predictor variable was generated as

Uniform on (-3,3) with size n = 50 and n = 100 (cf Appendix A).

Similar to logistic regression, an appropriate grid over which to search the β values for a

Poisson regression model is considered. The method used in section 4.1 can also be used for

the Poisson model by considering constraints on the mean of the distribution. In particular,

with λ > 0 and excluding larger values of λ (i.e. excluding λ > 105, for example) leads to

the approximate values of δ1 and δ2 as 1 and 12, respectively. With the z values drawn from

the Uniform distribution on (−3, 3), a = 1/6 and c = 3, β̄0, β̄1 range within the R̄ region
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according to 1 ≤ β̄0 ≤ 12 and −11 ≤ β̄1 ≤ 11, and by transformation, β0, β1 range within

the R region according to 1 ≤ β0 ≤ 12 and −11
6
≤ β1 ≤ 11

6
.

In this selected grid, seventeen (β0, β1) values were chosen and the crisp maximin clusterings

were calculated using the method described in section 3.2. The results are shown in Fig-

ure 4.16. The plot is color coded in such a way that the points with like coloring correspond

to the same maximin clustering. The numbered clusterings are listed in Appendix B.

Figure 4.16: Maximin Crisp Clusterings for the Poisson Model

Using these crisp clusterings, a size analysis for the LRT was carried out to check the validity

of the null χ2 distribution. Approximation of the MLE of the parameters for alternative

69



Figure 4.17: LRT Size Values for Poisson Model with n=50, B=500 and 529 Grid Points

models of the sort given in Chapter 3 for the GLM is considered, using a grid search based

on the bisection method as in section 4.1. The simulated size for the LRT corresponding

to the seventeen (β0, β1) values in Figure 4.16 is given in Figures 4.17, 4.18, 4.19, 4.20 for

sample size n = 50, and Figures 4.21, 4.22, 4.23, 4.24 for sample size n = 100. Different

simulation parameters were considered in calculating the size values, including the number

of simulations (B) and the density of the grid. Note the dimension of TβM is equal to two

and the dimension of all between cluster-lack of fit subspaces is equal to one. Thus, χ2
1 is

the proposed null distribution and the specified nominal level was taken as .05.

According to the plots it can be concluded that the χ2 distribution is particularly valid in

the lower central part of the grid. With increasing values of the simulation parameters n, B

and grid density, the desired nominal level is well approximated except at certain β settings

near the grid boundary. In subsequent subsections, the four values of β = (β0, β1) taken

as {(4.5,−0.5), (4.5, 0.5), (6.5,−0.5), (6.5, 0.5)} in the lower central part of the grid will be
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Figure 4.18: LRT Size Values for Poisson Model with n=50, B=1000 and 529 Grid Points

Figure 4.19: LRT Size Values for Poisson Model with n=50, B=500 and 2025 Grid Points
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Figure 4.20: LRT Size Values for Poisson Model with n=50, B=1000 and 2025 Grid Points

Figure 4.21: LRT Size Values for Poisson Model with n=100, B=500 and 529 Grid Points

72



Figure 4.22: LRT Size Values for Poisson Model with n=100, B=1000 and 529 Grid Points

Figure 4.23: LRT Size Values for Poisson Model with n=100, B=500 and 2025 Grid Points
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Figure 4.24: LRT Size Values for Poisson Model with n=100, B=1000 and 2025 Grid
Points

used for illustration purposes. Alternative full models based on the four multiple maximin

clusterings will be considered subsequently, with fuzzy clusterings employed to facilitate

the grid search for the MLE. Fuzzy clusterings, as discussed in Munasinghe (2010), are

determined from the four maximin clusterings corresponding to the four selected β settings.

Further, based on the selected cover of the predictor space, the dimension of the fuzzy

clusterings is equal to three.

Table 4.12 gives the crisp maximin clusterings Zn(β) for the two sizes of data sets at each of

the four selected β settings. The results indicate that the crisp clusterings are not constant

across the chosen β settings.
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values of β Zn(β)
n=50 n=100

(4.5,-0.5) {x1 : x17} {x1 : x37}
{x18 : x40} {x38 : x75}
{x41 : x50} {x76 : x100}

(4.5,0.5) {x1 : x17} {x1 : x37}
{x18 : x28} {x38 : x80}
{x29 : x50} {x81 : x100}

(6.5,-0.5) {x1 : x17} {x1 : x37}
{x18 : x40} {x38 : x75}
{x41 : x50} {x76 : x100}

(6.5,0.5) {x1 : x17} {x1 : x37}
{x18 : x28} {x38 : x80}
{x29 : x50} {x81 : x100}

Table 4.12: Maximin Clusterings for the Poisson Model with n=50 and n=100 for the
Selected (β0, β1) Values

4.2.1 Data Generation by Perturbing the Proposed Poisson Model

The data were simulated by using the perturbed Poisson model with ηi = β0 + β1zi + sγi

where (γi) is a basis vector for the between-cluster lack of fit subspace at selected values

of β = (β0, β1). Here the mean function of the distribution is µi = exp(ηi). The grid

is chosen as discussed above with δ1 = 1, δ2 = 12 and with the z values drawn from the

Uniform distribution on (−3, 3). For the LRT, 529 grid points were used for approximation

of the MLE parameter estimates. For the S(y, µ̂) statistic, grids with 529 and 2025 points

were used for parameter estimation under the null, as well as fitting the null model directly

with the glm function in the R software package. The power of the LRT statistic, the

deviance and the S(y, µ̂) statistic was investigated. Note S(y, µ̂) can be seen to be equal

to the Pearson χ2 goodness of fit test statistic as given in Dobson and Barnett (2008), for

example. The χ2 distribution was used to determine critical points, set according to the .05

75



nominal level.

The results were obtained by using B = 500 simulations, and are given in Table 4.13 for

n = 50 and Table 4.14 for n = 100. Tables 4.13 and 4.14 give the power of the LRT for

both the cases of a single maximin clustering as well as for fuzzy clusterings. It can be

observed from the tables that the LRT tests have superior simulated power as compared

to the deviance and S tests for the cases considered in this simulation study, especially

for smaller values of the parameter s. The differences are more pronounced for larger n.

Further, the power for the S test calculated with the R software lags the power obtain for

S based on the grid search with either grid density.

4.2.2 Data Generation by a Functionally Different Model than
the Constructed Full Model

A functionally different model given by ηi = β0 + β1zi + αz2
i is next considered as the data

generator in checking the power of the LRT statistic, the deviance and the S(y, µ̂) statistics.

The crisp clustering at each point is used for the single clustering simulated power, while

the four crisp clusterings are used in calculating the fuzzy clustering results for the LRT.

The χ2 distribution was used to determine critical points, set according to the .05 nominal

level.

The results were obtained by using B = 500 simulations, and are given in Table 4.15 for

n = 50 and Table 4.16 for n = 100. Tables 4.15 and 4.16 give the power of the LRT for both

the cases of a single maximin clustering as well as for fuzzy clusterings. Notably, the S test

outperformed the LRT and deviance tests. The LRT tests in turn have better simulated

power than the deviance test, in particular for smaller values of the α parameter. The

differences are more pronounced for larger n. Further, the power for the S test calculated

with the R software lags the power obtain for S based on the grid search with either grid
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with single with multiple deviance S statistic
(β0,β1) s maximin maximin test

clusters clusters 529 g.p. 2025 g.p. fit

(4.5,-0.5) 0 0.05 0.05 0.042 0.07 0.07 0.034
1 0.17 0.17 0.068 0.094 0.094 0.054
2 0.51 0.51 0.106 0.14 0.14 0.076
3 0.884 0.884 0.278 0.304 0.304 0.212
4 0.984 0.984 0.476 0.492 0.492 0.382
5 1 1 0.738 0.754 0.754 0.654
6 1 1 0.918 0.918 0.918 0.886
7 1 1 0.986 0.988 0.988 0.974
8 1 1 0.996 0.992 0.992 0.99

(4.5,0.5) 0 0.054 0.07 0.044 0.074 0.074 0.03
1 0.126 0.22 0.05 0.082 0.082 0.044
2 0.342 0.422 0.09 0.112 0.112 0.076
3 0.658 0.628 0.158 0.174 0.174 0.132
4 0.85 0.832 0.254 0.294 0.294 0.228
5 0.98 0.926 0.416 0.476 0.476 0.388
6 0.996 0.982 0.66 698 698 0.61
7 1 0.99 0.822 0.862 0.862 0.808
8 1 1 0.944 0.96 0.96 0.928

(6.5,-0.5) 0 0.048 0.048 0.048 0.074 0.074 0.044
2 0.116 0.116 0.05 0.078 0.078 0.046
4 0.312 0.312 0.082 0.116 0.116 0.066
6 0.644 0.644 0.12 0.168 0.168 0.092
8 0.874 0.874 0.234 0.29 0.29 0.198
10 0.974 0.974 0.368 0.426 0.426 0.326
12 0.998 0.998 0.584 0.638 0.638 0.528
14 0.998 0.998 0.762 0.798 0.798 0.744
16 1 1 0.91 0.92 0.92 0.886

(6.5,0.5) 0 0.058 0.066 0.038 0.054 0.054 0.032
2 0.08 0.082 0.04 0.07 0.07 0.04
4 0.196 0.144 0.06 0.086 0.086 0.044
6 0.404 0.238 0.1 0.118 0.118 0.086
8 0.614 0.394 0.14 0.19 0.19 0.118
10 0.81 0.558 0.2 0.258 0.258 0.17
12 0.924 0.696 0.3 0.354 0.354 0.258
14 0.989 0.868 0.464 0.516 0.516 0.414
16 1 0.914 0.588 0.654 0.654 0.55

Table 4.13: Power of the LRT, Deviance and S Tests for Poisson Model with n = 50 at
Selected (β0, β1, s) Values
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with single with multiple deviance S statistic
(β0,β1) s maximin maximin test

clusters clusters 529 g.p. 2025 g.p. fit

(4.5,-0.5) 0 0.048 0.048 0.058 0.07 0.07 0.054
1 0.32 0.32 0.076 0.09 0.09 0.056
2 0.812 0.812 0.166 0.174 0.174 0.136
3 0.994 0.994 0.354 0.378 0.378 0.298
4 1 1 0.696 0.696 0.696 0.626
5 1 1 0.936 0.94 0.94 0.912
6 1 1 0.996 0.996 0.996 0.994
7 1 1 1 1 1 1
8 1 1 1 1 1 1

(4.5,0.5) 0 0.058 0.046 0.046 0.068 0.068 0.032
1 0.142 0.122 0.05 0.07 0.07 0.046
2 0.428 0.374 0.084 0.098 0.098 0.066
3 0.742 0.66 0.144 0.148 0.148 0.118
4 0.928 0.906 0.242 0.252 0.252 0.198
5 0.99 0.97 0.352 0.366 0.366 0.308
6 1 1 0.58 0.582 0.582 0.496
7 1 1 0.762 0.772 0.772 0.712
8 1 1 0.884 0.894 0.894 0.856

(6.5,-0.5) 0 0.056 0.056 0.056 0.068 0.068 0.054
2 0.186 0.186 0.08 0.098 0.098 0.072
4 0.566 0.566 0.104 0.12 0.12 0.088
6 0.904 0.904 0.198 0.23 0.23 0.174
8 0.992 0.992 0.382 0.418 0.418 0.342
10 0.998 0.998 0.592 0.61 0.61 0.556
12 1 1 0.828 0.842 0.842 0.802
14 1 1 0.94 0.948 0.948 0.934
16 1 1 0.992 0.992 0.992 0.982

(6.5,0.5) 0 0.062 0.056 0.048 0.068 0.068 0.04
2 0.116 0.106 0.52 0.068 0.07 0.044
4 0.262 0.252 0.06 0.072 0.098 0.044
6 0.51 0.46 0.086 0.112 0.148 0.068
8 0.758 0.67 0.126 0.152 0.252 0.106
10 0.908 0.86 0.186 0.206 0.366 0.156
12 0.974 0.952 0.278 0.306 0.582 0.25
14 0.988 0.992 0.42 0.45 0.772 0.376
16 1 1 0.574 0.612 0.894 0.534

Table 4.14: Power of the LRT, Deviance and S tests for Poisson Model with n = 100 at
Selected (β0, β1, s) Values
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density, especially for smaller values of the α parameter.

4.3 Testing for Equal Means in a Heteroscedastic Nor-

mal Model

This subsection presents the results of a simulation study for the LRT and S1 tests, as

discussed in section 3.3.2. Specifically, power for these statistics is investigated for detecting

unequal means under various data generators based on heteroscedastic Normal data.

First consider the data generator

xi = m+ αki + rkiZ

where Z ∼ N(0, 1).

Then

xi = m+ (α + rZ)ki = α

[
m

α
+

(
1 + r

Z

α

)
ki

]

so that for large α, xi ≈ αki. Thus,

x̄2 ≈
∑
i

(
1

k2
i

)
α2k2

i = nα2

x̄1 ≈
∑
i

(
1

k2
i

)
αki = α

∑
i

(
1

ki

)
x̃ ≈

∑
i

γiαki = α
∑
i

γiki,

and
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with single with multiple Deviance S statistic
(β0,β1) α maximin maximin test

clusters clusters 529 g.p. 2025 g.p. fit

(4.5,-0.5) 0 0.05 0.05 0.042 0.07 0.07 0.034
0.01 0.136 0.136 0.082 0.296 0.294 0.074
0.02 0.384 0.384 0.23 0.878 0.874 0.21
0.03 0.778 0.778 0.634 1 0.986 0.634
0.04 0.944 0.944 0.944 1 0.992 0.94
0.05 0.998 0.998 0.996 1 0.998 0.996
0.06 1 1 1 1 1 1

(4.5,0.5) 0 0.054 0.036 0.044 0.074 0.074 0.03
0.01 0.12 0.29 0.086 0.402 0.402 0.07
0.02 0.408 0.806 0.258 0.98 0.976 0.266
0.03 0.732 0.986 0.662 1 0.978 0.652
0.04 0.95 1 0.934 1 0.986 0.942
0.05 1 1 0.998 1 1 0.998
0.06 1 1 1 1 1 1

(6.5,-0.5) 0 0.048 0.048 0.048 0.074 0.074 0.044
0.005 0.226 0.226 0.112 0.432 0.432 0.098
0.01 0.682 0.682 0.44 0.988 0.988 0.406
0.015 0.964 0.964 0.896 1 1 0.894
0.02 0.998 0.998 1 1 1 1
0.025 1 1 1 1 1 1
0.03 1 1 1 1 1 1

(6.5,0.5) 0 0.058 0.066 0.038 0.054 0.054 0.032
0.005 0.216 0.408 0.098 0.668 0.668 0.076
0.01 0.6 0.956 0.494 1 1 0.466
0.015 0.916 1 0.908 1 1 0.9
0.02 0.988 1 1 1 1 1
0.025 1 1 1 1 1 1
0.03 1 1 1 1 1 1

Table 4.15: Power of the LRT, Deviance and S Tests for Poisson model with n = 50 at
Selected (β0, β1, α) Values
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with single with multiple Deviance S statistic
(β0,β1) α maximin maximin test

clusters clusters 529 g.p. 2025 g.p. fit

(4.5,-0.5) 0 0.048 0.048 0.058 0.074 0.074 0.054
0.01 0.238 0.238 0.126 0.494 0.494 0.126
0.02 0.692 0.692 0.432 1 1 0.456
0.03 0.97 0.97 0.936 1 1 0.94
0.04 1 1 1 1 1 1
0.05 1 1 1 1 1 1
0.06 1 1 1 1 1 1

(4.5,0.5) 0 0.058 0.046 0.046 0.068 0.068 0.032
0.01 0.584 0.496 0.11 0.734 0.734 0.102
0.02 0.998 0.982 0.546 1 1 0.56
0.03 1 1 0.944 1 1 0.956
0.04 1 1 1 1 1 1
0.05 1 1 1 1 1 1
0.06 1 1 1 1 1 1

(6.5,-0.5) 0 0.056 0.056 0.056 0.068 0.068 0.054
0.005 0.37 0.37 0.176 0.802 0.802 0.158
0.01 0.898 0.898 0.834 1 1 0.826
0.015 0.998 0.998 1 1 1 1
0.02 1 1 1 1 1 1
0.025 1 1 1 1 1 1
0.03 1 1 1 1 1 1

(6.5,0.5) 0 0.062 0.056 0.048 0.068 0.068 0.04
0.005 0.778 0.716 0.168 0.972 0.972 0.156
0.01 1 1 0.846 1 1 0.842
0.015 1 1 1 1 1 1
0.02 1 1 1 1 1 1
0.025 1 1 1 1 1 1
0.03 1 1 1 1 1 1

Table 4.16: Power of the LRT, Deviance and S Tests for Poisson model with n = 100 at
Selected (β0, β1, α) Values
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(−2t2)full ≈ n

[
nα2 − α2 (

∑
i (1/ki))

2∑
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2 − α
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∑

i γiki)
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2
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∑
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Hence,

lim
α→±∞
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∑
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2
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,

so that the clustering (i.e. γ) should be determined by maximizing
(
∑
i γiki)

2∑
i γ

2
i k

2
i

.

Power for both LRT and S1 statistics was investigated for different values of α by generating

the ki values from Uniform on (1, 2) and Uniform on (1, 5). Table 4.17 shows the simulated

power for different values of l (cf section 3.3.2 which discusses the clustering structure) with

m = 1, r = 1 for the case when the ki values were drawn from the Uniform on (1, 2) for

the LRT statistic. Table 4.18 shows the simulated power for the S1 statistic, along with the

limit of S1 in the last row.

Figure 4.25 illustrates the values of the S1 limit with changing l.

Note that the limit of S1 is maximized at l = 17. Thus, the power was investigated with

changing parameter values of m and r for different values of α at l = 17. The power did

not vary with changing m values so the power was calculated for different values of r and

the results are given in Table 4.19 for the LRT test and Table 4.20 for the S1 test.

The same data generator was used with the ki drawn from Uniform on (1, 5), and the

simulated power values for changing l are given in Table 4.21 for the LRT and Table 4.22

for the S1 statistic.
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Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.064 0.06 0.059 0.058 0.048 0.053 0.05
1 0.184 0.207 0.2 0.175 0.158 0.149 0.118
2 0.523 0.602 0.582 0.523 0.437 0.362 0.27
3 0.843 0.901 0.889 0.825 0.766 0.636 0.483
4 0.979 0.99 0.989 0.973 0.937 0.839 0.669
5 0.999 1 1 0.998 0.985 0.95 0.829
6 1 1 1 1 0.999 0.985 0.931
7 1 1 1 1 1 0.998 0.979
8 1 1 1 1 1 1 0.991

Table 4.17: Power of the LRT for Different Values of α with Changing l values in the
Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 2)

Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.067 0.063 0.062 0.062 0.057 0.06 0.052
1 0.194 0.22 0.209 0.192 0.167 0.157 0.126
2 0.537 0.612 0.595 0.533 0.455 0.375 0.285
3 0.852 0.905 0.895 0.838 0.779 0.647 0.492
4 0.98 0.99 0.99 0.977 0.94 0.851 0.689
5 0.999 1 1 0.999 0.987 0.952 0.834
6 1 1 1 1 0.999 0.988 0.94
7 1 1 1 1 1 0.999 0.982
8 1 1 1 1 1 1 0.993

S1 limit 101.0714 165.7049 146.6116 90.1098 58.4003 35.9093 22.102

Table 4.18: Power of the S1 Statistic for Different Values of α with Changing l Values in
the model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 2)
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Figure 4.25: Limit of S1 for Changing l with ki ∼ Uniform(1, 2)

Power when l=17

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.055 0.055 0.053 0.054 0.059 0.058
1 0.221 0.098 0.076 0.224 0.081 0.075
2 0.597 0.221 0.113 0.631 0.195 0.134
3 0.906 0.399 0.197 0.922 0.374 0.215
4 0.992 0.597 0.314 0.993 0.571 0.317
5 1 0.786 0.432 1 0.774 0.464
6 1 0.906 0.574 1 0.89 0.611
7 1 0.971 0.704 1 0.952 0.745
8 1 0.992 0.796 1 0.992 0.861

Table 4.19: Power of the LRT for Different Values of α with Different (m, r) Combinations
in the Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 2)
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Power when l=17,S1 limit= 167.5127

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.063 0.063 0.057 0.059 0.066 0.062
1 0.238 0.102 0.08 0.234 0.094 0.081
2 0.607 0.238 0.124 0.646 0.213 0.139
3 0.909 0.409 0.211 0.924 0.39 0.23
4 0.993 0.607 0.326 0.994 0.588 0.328
5 1 0.801 0.445 1 0.784 0.488
6 1 0.909 0.588 1 0.895 0.629
7 1 0.973 0.713 1 0.955 0.755
8 1 0.993 0.806 1 0.992 0.865

Table 4.20: Power of the S1 Test for Different Values of α with Different (m, r) Combina-
tions in the Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 2)

Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.054 0.056 0.065 0.063 0.058 0.058 0.055
0.5 0.219 0.214 0.199 0.171 0.135 0.11 0.087
1 0.659 0.631 0.547 0.458 0.359 0.262 0.193

1.5 0.944 0.929 0.87 0.743 0.641 0.468 0.331
2 0.997 0.992 0.978 0.927 0.841 0.676 0.465

2.5 1 0.999 0.998 0.988 0.945 0.832 0.613
3 1 1 1 0.999 0.982 0.92 0.724

3.5 1 1 1 1 0.994 0.969 0.823
4 1 1 1 1 0.999 0.99 0.905

Table 4.21: Power of the LRT for Different Values of α with Changing l Values in the
Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 5)
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Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.058 0.059 0.07 0.066 0.062 0.61 0.059
0.5 0.227 0.227 0.208 0.18 0.149 0.116 0.094
1 0.676 0.655 0.556 0.47 0.372 0.274 0.206

1.5 0.947 0.937 0.878 0.762 0.662 0.485 0.343
2 0.998 0.994 0.979 0.931 0.852 0.694 0.488

2.5 1 0.999 0.998 0.989 0.952 0.845 0.634
3 1 1 1 0.999 0.984 0.928 0.74

3.5 1 1 1 1 0.995 0.975 0.843
4 1 1 1 1 0.999 0.99 0.911

S1 limit 159.9188 137.667 82.3965 46.9392 29.8855 18.6205 11.4605

Table 4.22: Power of the S1 Test for Different Values of α with Changing l Values in the
Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 5)

Figure 4.26 illustrates the values of the S1 limit with changing l.

Note that the limit of S1 is maximized at l = 11. Thus, the power was investigated with

changing parameter values of m and r for different values of α at l = 11. The power did

not vary with changing m values so the power was calculated for different values of r and

the results are given in Table 4.23 for the LRT test and Table 4.24 for the S1 test.

Next consider the data generator xi = m+αki+βi+rkiZ with β = 0.001. Again the power

was investigated for different values of l and different parameter values of r for the LRT and

S1 statistics. The results are given in Tables 4.25 and 4.26 for changing l and Tables 4.27

and 4.28 for changing r with l = 17 when the ki are drawn from Uniform on (1, 2), and

Tables 4.29, 4.30, 4.31, 4.32 for ki Uniform on (1, 5). Here Tables 4.29 and 4.30 show power

values with changing l and Tables 4.31 and 4.32 show power values with changing r when

l=11, where the limit of S1 is maximized.

The data generator xi = m+αk2
i + rk2

iZ was also used to investigate the power for different
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Figure 4.26: Limit of S1 for Changing l with ki ∼ Uniform(1, 5)

Power when l=11

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.057 0.049 0.057 0.054 0.049 0.06
0.5 0.224 0.088 0.089 0.223 0.108 0.072
1 0.658 0.223 0.143 0.657 0.247 0.128

1.5 0.929 0.426 0.225 0.935 0.445 0.229
2 0.996 0.654 0.364 0.995 0.658 0.37

2.5 0.999 0.832 0.504 1 0.83 0.5
3 1 0.935 0.662 1 0.931 0.625

3.5 1 0.98 0.781 1 0.983 0.783
4 1 0.997 0.883 1 0.995 0.878

Table 4.23: Power of the LRT for Different Values of α with Different (m, r) Combinations
in the Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 5)
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Power when l=11,S1 limit=162.155

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.062 0.049 0.064 0.06 0.053 0.063
0.5 0.235 0.093 0.094 0.227 0.115 0.075
1 0.669 0.232 0.154 0.673 0.261 0.141

1.5 0.944 0.44 0.235 0.938 0.458 0.244
2 0.996 0.666 0.377 0.995 0.663 0.386

2.5 1 0.84 0.524 1 0.839 0.509
3 1 0.938 0.679 1 0.935 0.64

3.5 1 0.983 0.793 1 0.985 0.793
4 1 0.997 0.89 1 0.995 0.887

Table 4.24: Power of the S1 statistic for Different Values of α with Different (m, r) Com-
binations in the Model xi = m+ αki + rkiZ where ki ∼ Uniform(1, 5)

Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.067 0.056 0.062 0.063 0.055 0.062 0.062
0.75 0.157 0.165 0.148 0.148 0.129 0.115 0.1
1.5 0.388 0.396 0.377 0.343 0.301 0.242 0.194
2.25 0.66 0.708 0.693 0.617 0.536 0.467 0.332

3 0.86 0.903 0.893 0.848 0.742 0.64 0.507
3.75 0.965 0.981 0.976 0.957 0.899 0.806 0.657
4.5 0.994 0.997 0.995 0.991 0.971 0.907 0.775
5.25 0.999 1 1 0.999 0.996 0.962 0.872

6 1 1 1 1 0.999 0.992 0.93

Table 4.25: Power of the LRT for Different Values of α with Changing l Values in the
Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 2)
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Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.07 0.063 0.068 0.066 0.057 0.065 0.066
0.75 0.165 0.174 0.155 0.156 0.136 0.117 0.109
1.5 0.404 0.41 0.392 0.357 0.315 0.254 0.205
2.25 0.674 0.72 0.705 0.623 0.549 0.481 0.348

3 0.87 0.914 0.902 0.856 0.753 0.658 0.523
3.75 0.969 0.982 0.977 0.959 0.901 0.818 0.672
4.5 0.996 0.997 0.996 0.991 0.973 0.914 0.793
5.25 0.999 1 1 0.999 0.997 0.965 0.88

6 1 1 1 1 0.999 0.995 0.935
S1 limit 101.0174 165.7049 146.6116 90.1098 58.4003 35.9093 22.1027

Table 4.26: Power of the S1 Statistic for Different Values of α with Changing l Values in
the Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 2)

Power when l=17

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.052 0.054 0.059 0.063 0.054 0.06
0.75 0.158 0.086 0.073 0.145 0.081 0.066
1.5 0.417 0.137 0.094 0.417 0.138 0.104
2.25 0.718 0.245 0.147 0.719 0.246 0.134

3 0.898 0.39 0.198 0.913 0.383 0.215
3.75 0.981 0.556 0.283 0.981 0.552 0.302
4.5 0.999 0.688 0.38 0.997 0.688 0.389
5.25 1 0.822 0.48 1 0.804 0.486

6 1 0.903 0.594 1 0.907 0.598

Table 4.27: Power of the LRT for Different Values of α with Different (m, r) Combinations
in the Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 2)
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Power when l=17,S1 limit=167.5127

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.057 0.063 0.066 0.067 0.061 0.063
0.75 0.163 0.088 0.078 0.154 0.09 0.074
1.5 0.425 0.149 0.1 0.438 0.146 0.111
2.25 0.733 0.266 0.153 0.733 0.257 0.143

3 0.904 0.404 0.205 0.915 0.402 0.221
3.75 0.982 0.573 0.294 0.983 0.57 0.315
4.5 0.999 0.704 0.394 0.99 0.705 0.399
5.25 1 0.831 0.5 1 0.817 0.504

6 1 0.91 0.617 1 0.907 0.616

Table 4.28: Power of the S1 Statistic for Different Values of α with Different (m, r) Com-
binations in the Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 2)

Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.057 0.053 0.063 0.046 0.052 0.053 0.056
0.5 0.231 0.229 0.18 0.17 0.158 0.121 0.109
1 0.673 0.658 0.599 0.474 0.379 0.303 0.201

1.5 0.933 0.936 0.894 0.803 0.669 0.499 0.346
2 1 0.999 0.981 0.952 0.862 0.691 0.501

2.5 1 1 0.998 0.992 0.96 0.853 0.649
3 1 1 1 0.999 0.993 0.938 0.762

3.5 1 1 1 1 0.999 0.979 0.844
4 1 1 1 1 1 0.994 0.898

Table 4.29: Power of the LRT for Different Values of α with Changing l Values in the
Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 5)
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Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.065 0.058 0.065 0.051 0.058 0.061 0.06
0.5 0.246 0.235 0.192 0.181 0.164 0.127 0.115
1 0.686 0.668 0.614 0.495 0.391 0.316 0.216

1.5 0.939 0.939 0.899 0.82 0.684 0.517 0.365
2 1 0.999 0.984 0.957 0.868 0.714 0.517

2.5 1 1 0.998 0.994 0.966 0.863 0.666
3 1 1 1 0.999 0.994 0.945 0.777

3.5 1 1 1 1 0.999 0.984 0.857
4 1 1 1 1 1 0.996 0.905

S1 limit 159.9188 137.667 82.3965 46.9392 29.8855 18.6205 11.4605

Table 4.30: Power of the S1 Statistic for Different Values of α with Changing l Values in
the Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 5)

Power when l=11

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.063 0.042 0.053 0.053 0.064 0.06
0.5 0.225 0.09 0.075 0.245 0.093 0.091
1 0.677 0.226 0.138 0.668 0.254 0.153

1.5 0.939 0.424 0.224 0.94 0.466 0.24
2 0.998 0.643 0.368 0.997 0.679 0.385

2.5 1 0.829 0.517 1 0.841 0.523
3 1 0.95 0.664 1 0.938 0.677

3.5 1 0.985 0.786 1 0.985 0.791
4 1 0.997 0.88 1 0.997 0.879

Table 4.31: Power of the LRT for Different Values of α with Different (m, r) Combinations
in the Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 5)

91



Power when l=11,S1 limit=162.155

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.067 0.044 0.058 0.055 0.071 0.066
0.5 0.239 0.094 0.08 0.258 0.1 0.096
1 0.695 0.238 0.145 0.682 0.265 0.163

1.5 0.942 0.44 0.24 0.945 0.477 0.25
2 0.998 0.656 0.39 0.999 0.687 0.398

2.5 1 0.839 0.536 1 0.847 0.539
3 1 0.954 0.679 1 0.943 0.692

3.5 1 0.985 0.797 1 0.985 0.802
4 1 0.997 0.883 1 0.999 0.888

Table 4.32: Power of the S1 Statistic for Different Values of α with Different (m, r) Com-
binations in the Model xi = m+ αki + βi+ rkiZ where ki ∼ Uniform(1, 5)

values of l and different parameter values of r for the LRT and S1 statistics. The results

are given in Tables 4.33, 4.34, 4.35, 4.36 with the ki drawn from Uniform on (1, 2), and

Tables 4.37, 4.38, 4.39, 4.40 for ki Uniform on (1, 5). Tables 4.33 and 4.34 show power

values with changing l, and Tables 4.35 and 4.36 are for changing values of r when the ki

are drawn from Uniform on (1, 2). Tables 4.37 and 4.38 show power with different l values

and Tables 4.39 and 4.40 are for different r values when the ki are from Uniform on (1, 5).

The power for changing values of r was investigated with l that maximized the limit of S1.

The conclusions are similar for all three data generators. When the power was investigated

with changing l, the simulated power reached the value one more quickly with the l values

that maximized the S1 limit. This is true for both test statistics LRT and S1. With changing

r values, with l fixed at the point that the S1 limit was maximized, the simulated power

reached one more quickly with smaller values of r.
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Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.058 0.052 0.06 0.058 0.061 0.055 0.058
0.5 0.308 0.368 0.361 0.328 0.303 0.249 0.202
1 0.809 0.893 0.886 0.839 0.778 0.673 0.539

1.5 0.985 0.997 0.995 0.989 0.975 0.94 0.845
2 1 1 1 1 0.998 0.994 0.968

2.5 1 1 1 1 0.999 1 0.995
3 1 1 1 1 1 1 0.999

3.5 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1

Table 4.33: Power of the LRT for Different Values of α with Changing l Values in the
Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 2)

Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.06 0.053 0.068 0.069 0.066 0.063 0.062
0.5 0.325 0.381 0.373 0.348 0.32 0.256 0.21
1 0.821 0.897 0.89 0.849 0.789 0.689 0.556

1.5 0.987 0.997 0.996 0.99 0.977 0.941 0.857
2 1 1 1 1 0.999 0.994 0.971

2.5 1 1 1 1 0.999 1 0.996
3 1 1 1 1 1 1 0.999

3.5 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1

S1 limit 101.0174 165.7049 146.6116 90.1098 58.4003 35.9093 22.102

Table 4.34: Power of the S1 Statistic for Different Values of α with Changing l Values in
the Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 2)
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Power when l=17

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.058 0.061 0.061 0.065 0.059 0.048
0.5 0.357 0.123 0.084 0.383 0.135 0.084
1 0.88 0.346 0.221 0.887 0.359 0.17

1.5 0.995 0.657 0.398 0.996 0.672 0.344
2 1 0.899 0.594 1 0.871 0.552

2.5 1 0.978 0.782 1 0.974 0.734
3 1 0.998 0.906 1 0.996 0.864

3.5 1 1 0.959 1 1 0.959
4 1 1 0.993 1 1 0.988

Table 4.35: Power of the LRT for Different Values of α with Different (m, r) Combinations
in the Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 2)

Power when l=17,S1 limit= 167.5127

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.062 0.065 0.068 0.068 0.065 0.055
0.5 0.369 0.128 0.091 0.4 0.142 0.087
1 0.889 0.362 0.227 0.896 0.371 0.186

1.5 0.997 0.678 0.412 0.996 0.682 0.357
2 1 0.906 0.613 1 0.881 0.565

2.5 1 0.98 0.793 1 0.975 0.746
3 1 0.998 0.914 1 0.997 0.873

3.5 1 1 0.959 1 1 0.961
4 1 1 0.994 1 1 0.988

Table 4.36: Power of the S1 Statistic for Different Values of α with Different (m, r) Com-
binations in the Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 2)
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Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.055 0.049 0.049 0.052 0.057 0.068 0.058
0.1 0.293 0.308 0.295 0.245 0.206 0.183 0.145
0.2 0.738 0.768 0.737 0.652 0.592 0.454 0.36
0.3 0.967 0.972 0.957 0.911 0.863 0.756 0.625
0.4 0.997 1 0.999 0.994 0.977 0.925 0.826
0.5 1 1 1 1 0.999 0.983 0.93
0.6 1 1 1 1 1 0.994 0.983
0.7 1 1 1 1 1 1 0.995
0.8 1 1 1 1 1 1 0.998

Table 4.37: Power of the LRT for Different Values of α with Changing l Values in the
Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 5)

Power when m=1,r=1

α l=10 l=15 l=20 l=25 l=30 l=35 l=40

0 0.058 0.053 0.051 0.06 0.065 0.068 0.064
0.1 0.309 0.325 0.31 0.261 0.222 0.198 0.155
0.2 0.744 0.781 0.746 0.67 0.611 0.47 0.37
0.3 0.969 0.975 0.958 0.918 0.871 0.769 0.64
0.4 0.997 1 0.999 0.994 0.977 0.937 0.837
0.5 1 1 1 1 0.999 0.986 0.936
0.6 1 1 1 1 1 0.996 0.989
0.7 1 1 1 1 1 1 0.997
0.8 1 1 1 1 1 1 0.999

S1 limit 159.9188 137.667 82.3965 46.9392 29.8855 18.6205 11.4605

Table 4.38: Power of the S1 Statistic for Different Values of α with Changing l Values in
the Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 5)
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Power when l=11

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.052 0.053 0.048 0.055 0.056 0.055
0.1 0.294 0.116 0.071 0.25 0.1 0.066
0.2 0.753 0.286 0.152 0.72 0.261 0.144
0.3 0.968 0.513 0.278 0.97 0.516 0.25
0.4 0.998 0.745 0.434 0.999 0.747 0.416
0.5 1 0.896 0.594 1 0.89 0.574
0.6 1 0.969 0.758 1 0.969 0.72
0.7 1 0.996 0.879 1 0.993 0.844
0.8 1 1 0.94 1 1 0.937

Table 4.39: Power of the LRT for Different Values of α with Different (m, r) Combinations
in the Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 5)

Power when l=11,S1 limit=162.155

α r=1 r=2 r=3 r=-1 r=-2 r=-3

0 0.056 0.058 0.053 0.056 0.06 0.056
0.1 0.313 0.126 0.075 0.263 0.109 0.073
0.2 0.762 0.298 0.159 0.738 0.268 0.153
0.3 0.97 0.528 0.289 0.971 0.534 0.263
0.4 0.998 0.749 0.456 0.999 0.757 0.429
0.5 1 0.9 0.609 1 0.896 0.591
0.6 1 0.973 0.765 1 0.971 0.738
0.7 1 0.996 0.89 1 0.993 0.854
0.8 1 1 0.946 1 1 0.939

Table 4.40: Power of the S1 Statistic for Different Values of α with Different (m, r) Com-
binations in the Model xi = m+ αk2

i + rk2
iZ where ki ∼ Uniform(1, 5)
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Chapter 5

Asymptotics

This chapter discusses the asymptotic non-central χ2 distribution property of the log LRT

statistic for testing H0 : s = 0 versus Ha : s 6= 0 in an exponential family regression model

with

ηi = u(zi, β) + hi(β, s)

where hi(β, 0) = 0 as given in section 3.2. In particular, the case with hi(β, s) = sγi(β)

is considered. With β ∈ Rq and s ∈ R, let θ = (β, s) ∈ Rc where c = q + 1 so that

ηi = ηi(θ). For asymptotic purposes, a parametric array of densities (pni,θ, 1 ≤ i ≤ n, n ≥ 1)

is considered where

pni(y, θ) = g(y)eηni(θ)y−ϕ(ηni(θ))

so that

97



lni(y, θ) = ηni(θ)y − ϕ(ηni(θ)) + log g(y).

The proof of the asymptotic distribution of the log LRT statistic is based in part on the

requirement that the array is locally asymptotic normal (LAN). A key condition to ensure

LAN is that the array of exponential family densities satisfy the following definition.

Definition:

A parametric array (pni,θ, 1 ≤ i ≤ n, n ≥ 1) of densities is uniformly differentiable in

quadratic mean (i.e. uniform q.m.d.) at θ if for each 1 ≤ i ≤ n and n ≥ 1 there exists a

measurable function `′ni,θ such that∫ (√
pni,θ+h̃ −

√
pni,θ −

1

2
h̃T `′ni,θ

√
pni,θ

)2

dµ = o

(∥∥∥h̃∥∥∥2
)

independent of n and i as h̃→ 0 in Rc where pni,θ denotes the density of yni.

Lemma 1 below gives mild conditions under which uniform q.m.d. obtains for the array of

exponential family densities.

Lemma 1: Fix θ ∈ Rc and suppose that the predictor settings zni are contained in a

compact set in Rp for all 1 ≤ i ≤ n, n ≥ 1. Suppose ∂ηni
∂θl

and ∂2ηi
∂θk∂θl

are uniformly bounded

in n and i on a neighborhood of θ, and that ϕ(ηni), along with the first two derivatives,

are uniformly bounded as well. Then the array of exponential family densities for nonlinear

regression models is uniform q.m.d. at θ.

Proof:

Note
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pni(y, θ) = elni(y,θ)

pni(y, θ)
1/2 = e

1
2
lni(y,θ)

and let r(t) =
√
pni(y, θ + th) = e

1
2
lni(y,θ+th) for t ∈ R, h ∈ Rc. Then

r′(t) =
1

2
r(t)

c∑
k=1

∂lni
∂θk

(y, θ + th)hk

so that

r′′(t) =
1

2
r′(t)

[
c∑

k=1

∂lni
∂θk

(y, θ + th)hk

]
+

1

2
r(t)

[
c∑

k=1

c∑
l=1

∂2lni
∂θl∂θk

(y, θ + th)hkhl

]
.

That is,

r′′(t) =
1

4
r(t)

[
c∑
l=1

∂lni
∂θl

(y, θ + th)hl

][
c∑

k=1

∂lni
∂θk

(y, θ + th)hk

]

+
1

2
r(t)

[
c∑

k=1

c∑
l=1

∂2lni
∂θl∂θk

(y, θ + th)hkhl

]

where

99



∂lni
∂θk

(y, θ + th) =
∂ηni
∂θk

(θ + th)y − ϕ′(ηni(θ + th))
∂ηni
∂θk

(θ + th)

=
∂ηni
∂θk

(θ + th) [y − ϕ′(ηni(θ + th))]

∂2lni
∂θk∂θl

(y, θ + th) =
∂2ηni
∂θk∂θl

(θ + th)y − ϕ′′(ηni(θ + th))
∂ηni
∂θl

(θ + th)
∂ηni
∂θk

(θ + th)

− ϕ′(ηni(θ + th))
∂2ηni
∂θk∂θl

(θ + th)

= [y − ϕ′(ηni(θ + th))]
∂2ηni
∂θk∂θl

(θ + th)− ϕ′′(ηni(θ + th))
∂ηni
∂θl

(θ + th)
∂ηni
∂θk

(θ + th)

Thus,

r(0) =
√
pni(y, θ)

r′(0) =
1

2

√
pni(y, θ)

c∑
k=1

∂lni
∂θk

(y, θ)hk.

By Taylor’s theorem, r(t) = r(0) + r′(0)t+ 1
2
r′′(τ)t2 for some 0 ≤ τ ≤ t. Thus, setting t = 1

and rearranging terms gives

r(1)− r(0)− r′(0) =
1

2
r′′(τ)

for some 0 ≤ τ ≤ 1. That is,
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√
pni(y, θ + h)−

√
pni(y, θ)−

1

2

√
pni(y, θ)

c∑
k=1

∂lni
∂θk

(y, θ)hk

=
1

2

[
1

4

√
pni(y, θ + τh)

(
c∑
l=1

∂lni
∂θl

(y, θ + τh)hl

)(
c∑

k=1

∂lni
∂θk

(y, θ + τh)hk

)

+
1

2

√
pni(y, θ + τh)

(
c∑

k=1

c∑
l=1

∂2lni
∂θl∂θk

(y, θ + τh)hkhl

)]

for some 0 ≤ τ ≤ 1. This implies that

(√
pni(y, θ + h)−

√
pni(y, θ)−

1

2

√
pni(y, θ)

c∑
k=1

∂lni
∂θk

(y, θ)hk

)2

=
1

16
pni(y, θ + τh)

[
1

2

(
c∑
l=1

∂lni
∂θl

(y, θ + τh)hl

)(
c∑

k=1

∂lni
∂θk

(y, θ + τh)hk

)

+

(
c∑

k=1

c∑
l=1

∂2lni
∂θl∂θk

(y, θ + τh)hkhl

)]2

=
1

16
pni(y, θ + τh)

1

4

(
c∑
l=1

∂lni
∂θl

(y, θ + τh)hl

)2( c∑
k=1

∂lni
∂θk

(y, θ + τh)hk

)2

+

(
c∑
l=1

∂lni
∂θl

(y, θ + τh)hl

)(
c∑

k=1

∂lni
∂θk

(y, θ + τh)hk

)(
c∑

k=1

c∑
l=1

∂2lni
∂θl∂θk

(y, θ + τh)hkhl

)

+

(
c∑

k=1

c∑
l=1

∂2lni
∂θl∂θk

(y, θ + τh)hkhl

)2


for some 0 ≤ τ ≤ 1. Substituting for ∂lni
∂θl

(y, θ + τh) and ∂2lni
∂θl∂θk

(y, θ + τh) and writing

ηni(θ + τh) = ηni, the preceding equation becomes
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(√
pni(y, θ + h)−

√
pni(y, θ)−

1

2

√
pni(y, θ)

c∑
k=1

∂lni
∂θk

(y, θ)hk

)2

=
1

16
pni(y, θ + τh)

1

4
[y − ϕ′(ηni)]4

(
c∑
l=1

∂ηni
∂θl

hl

)2( c∑
k=1

∂ηni
∂θk

hk

)2

+ [y − ϕ′(ηni)]2
(

c∑
l=1

c∑
k=1

∂2ηni
∂θk∂θl

hkhl

)2

+ ϕ′′2(ηni)

(
c∑
l=1

c∑
k=1

∂ηni
∂θl

∂ηni
∂θk

hkhl

)2

− 2ϕ′′2(ηni) [y − ϕ′(ηni)]

(
c∑
l=1

c∑
k=1

∂2ηni
∂θk∂θl

∂ηni
∂θl

∂ηni
∂θk

h2
kh

2
l

)

+ [y − ϕ′(ηni)]3
(

c∑
l=1

∂ηni
∂θl

hl

)(
c∑

k=1

∂ηni
∂θk

hk

)(
c∑
l=1

c∑
k=1

∂2ηni
∂θk∂θl

hkhl

)

− [y − ϕ′(ηni)]2 ϕ′′(ηni)

(
c∑
l=1

∂ηni
∂θl

hl

)(
c∑

k=1

∂ηni
∂θk

hk

)(
c∑
l=1

c∑
k=1

∂ηni
∂θl

∂ηni
∂θk

hkhl

)]

for some 0 ≤ τ ≤ 1.

Thus, by taking moments with respect to pni(y, θ + τh) and using the Schwarz inequality,

∫ (√
pni(y, θ + h)−

√
pni(y, θ)−

1

2

√
pni(y, θ)

c∑
k=1

∂lni
∂θk

(y, θ)hk

)2

µ(dy) ≤ B ‖h‖4

where B serves as a bound for all terms involving the ∂ηni
∂θl

, ∂2ηi
∂θk∂θl

and ϕ(ηni). �

Note that under conditions of Lemma 1, `′ni,θ =
∂log pni,θ

∂θ
.

The following lemma gives conditions under which a uniform q.m.d. array of exponential

family densities can be shown to be LAN.

Lemma 2: Pni,θg
2
ni,θ ≤ ‖h‖

2C and Pni,θg
4
ni,θ ≤ ‖h‖

4D, for some constants C and D, and

for all n ≥ 1 and 1 ≤ i ≤ n where gni,θ = hT `′ni,θ.
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Proof:

Note that

`′ni,θ =
∂ log(pni,θ)

∂θ
=

∂

∂θ
[yηni − ϕ(ηni)]

=
∂

∂θ
[yηni(θ)− ϕ(ηni(θ))]

=

[
y
∂ηni
∂θ1

− ϕ′(ηni)
∂ηni
∂θ1

, ..., y
∂ηni
∂θc
− ϕ′(ηni)

∂ηni
∂θc

]T
=

[
(y − ϕ′(ηni))

(
∂ηni
∂θ1

)
, ..., (y − ϕ′(ηni))

(
∂ηni
∂θc

)]T
= (y − ϕ′(ηni))

[
∂ηni
∂θ1

, ...,
∂ηni
∂θc

]T

Then, using the bounds specified in Lemma 1 and the Schwarz inequality,

Pi,θ g
2
ni,θ = Pni,θ

c∑
j=1

c∑
k=1

hjhk

(
`′ni,θ

(
`′ni,θ

)T)
jk

= Pni,θ

c∑
j=1

c∑
k=1

hjhk[y − ϕ′(ηni)]2
(
∂ηni
∂θj

∂ηni
∂θk

)
≤ C ‖h‖2

for some constant C for all n and i. Similarly, using the bounds specified in Lemma 1 and

the Schwarz inequality,
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Pni,θg
4
ni,θ = Pni,θ

c∑
j=1

c∑
k=1

hjhk

(
`′ni,θ

(
`′ni,θ

)T)
jk

c∑
l=1

c∑
m=1

hlhm

(
`′ni,θ

(
`′ni,θ

)T)
lm

= Pni,θ

c∑
j=1

c∑
k=1

hjhk[y − ϕ′(ηni)]2
(
∂ηni
∂θj

∂ηni
∂θk

) c∑
l=1

c∑
m=1

hlhm[y − ϕ′(ηni)]2
(
∂ηni
∂θl

∂ηni
∂θm

)
≤ D ‖h‖4

for some constant D for all n and i. �

It follows from Reider (1994), Theorem 2.3.9, that an array of exponential family densities

satisfying the conditions of Lemmas 1 and 2 is LAN. In particular, it suffices to establish

that the following Lindeberg and differentiability conditions hold for such a uniform q.m.d.

array of exponential family densities. In addition, it is presently only assumed that
√
nI
−1/2
n,θ

is bounded. Here, In,θ =
∑n

i=1 Ini,θ is a c × c matrix, assumed to be positive definite, and

Ini,θ = Pni,θ`
′
ni,θ(`

′
ni,θ)

T denotes the Fisher information matrix with dPni,θ = pni,θ.

Condition 1 (Lindeberg):

For all t ∈ Rc and for all ε ∈ (0,∞),

lim
n→∞

n∑
i=1

∫
{∣∣∣tT I−1/2

n,θ `′ni,θ

∣∣∣>ε}
(
tT I
−1/2
n,θ `′ni,θ

)2

dPni,θ = 0.

Proof:

Note for a fixed ε > 0 and t ∈ Rc,

n∑
i=1

∫
{∣∣∣tT I−1/2

n,θ `′ni,θ

∣∣∣>ε}
(
tT I
−1/2
n,θ `′ni,θ

)2

dPni,θ

=
n∑
i=1

∫
{∣∣∣tT√nI−1/2

n,θ `′ni,θ

∣∣∣>√nε}
(
tT

1√
n

√
nI
−1/2
n,θ `′ni,θ

)2

dPni,θ.
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Let h =
√
nI
−1/2
n,θ t and note that h is bounded since

√
nI
−1/2
n,θ is bounded and t is fixed. Then

the above expression becomes

1

n

n∑
i=1

∫
{|hT `′ni,θ|>

√
nε}

(
hT `′ni,θ

)2
dPni,θ.

By Lemma 2, Pni,θg
4
ni,θ with gni,θ = hT `′ni,θ, are uniformly bounded in n and i. Thus, the

collection of random variables g2
ni,θ is uniformly integrable (cf Billinglsey (1995), p.338).

Thus, for sufficiently large n, ∫
{g2ni,θ>nε2}

g2
ni,θdPni,θ

is arbitrarily small for all such n and 1 ≤ i ≤ n. Therefore,

lim
n→∞

1

n

n∑
i=1

∫
{g2ni,θ>nε2}

g2
ni,θdPni,θ = 0

for all ε ∈ (0,∞). Thus, the Lindeberg condition holds. �

Condition 2 (Differentiability):

For all b ∈ (0,∞),

lim
n→∞

sup
‖t‖≤b

n∑
i=1

∫ (
√
pni,θn(t) −

√
pni,θ

(
1 +

1

2
tT I
−1/2
n,θ `′ni,θ

))2

dPni,θ = 0

Proof:

The local parameter alternatives θn(t) about θ are given by θn(t) = θ + I
−1/2
n,θ t. Let h̃ =

1√
n

(√
nI
−1/2
n,θ t

)
so that θn(t) = θ + h̃. Note that h̃→ 0 uniformly with ‖t‖ bounded. Note

also that

sup
‖t‖≤b

n∑
i=1

∫ (
√
pni,θn(t) −

√
pni,θ

(
1 +

1

2
tT I
−1/2
n,θ `′ni,θ

))2

dPni,θ

= sup
‖t‖≤b

n∑
i=1

∫ (√
pni,θ+h̃ −

√
pni,θ −

1

2
h̃T `′ni,θ

√
pni,θ

)2

dPni,θ = sup
‖t‖≤b

n∑
i=1

o

(∥∥∥h̃∥∥∥2
)
.
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The last equality comes from the uniform q.m.d. array of exponential family densities at θ

as provided by Lemma 1. Also,
∥∥∥h̃∥∥∥2

= O
(

1
n

)
since

√
nI
−1/2
n,θ is bounded and t is fixed, and

thus the differentiability condition holds. �

Conditions 1 and 2 imply the L2 differentiability of the parametric array (pni,θ, 1 ≤ i ≤

n, n ≥ 1) at a fixed θ (cf Reider (1994), Definition 2.3.8), and thus the desired log-likelihood

expansion indicated below.

In particular, it is now assumed that 1
n
In,θ → Iθ where Iθ is positive definite, and hence

√
nI
− 1

2
n,θ → I

− 1
2

θ . Let hn =
√
nI
− 1

2
n,θ tn where tn → t ∈ Rc. Thus, hn → h ∈ Rc where

h = I
− 1

2
θ t. Thus, t = I

1
2
θ h so that ‖t‖2 = hT Iθh and tT I

− 1
2

n,θ = hT I
1
2
θ

(√
nI
− 1

2
θ

)(
1√
n

)
. The

local parameter alternatives θn(tn) about θ are given by θn(tn) = θ + I
− 1

2
n,θ tn, and with the

preceding identification for hn, θn(tn) = θ + hn√
n
. Accordingly, a L2 differentiable array of

exponential family densities is LAN by Theorem 2.3.9 of Reider (1994). That is,

log
dPn,θ+hn/

√
n

dPn,θ
= tT I

− 1
2

n,θ

∑
i

`′ni,θ(yni)−
1

2
‖t‖2 + oPn,θ(1)

= hT I
1
2
θ

√
nI
− 1

2
n,θ ∆n,θ −

1

2
hT Iθh+ oPn,θ(1)

where ∆n,θ = 1√
n

∑
i `
′
ni,θ(yni) are random vectors such that ∆n,θ ⇒ Nc(0, Iθ) as n → ∞

under Pn,θ.

Based on LAN of the array of exponential family densities for the nonlinear regression

models considered, the asymptotic non-central χ2 distribution property of the sequence of

log LRT statistics for testing H0 : s = 0 versus Ha : s 6= 0 is provided by Theorem 1 below.

The proof of Theorem 1 below follows from the general proof of Theorem 1 in Munasinghe

(2010). In addition, the required
√
n-consistency of the MLEs for the proof of Theorem

1 below is provided under regularity conditions, including the convergence of the average

Fisher information, by Wei (1998) (cf Theorem 4.1).
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Theorem 1

Suppose that the conditions that were indicated under Lemma 1 and Lemma 2 hold at

θ = (β, 0) for an array of exponential family densities, and that the 1
n
In(β, 0) converge to

I(β, 0), say. Additionally, suppose that the matrices `′′ni,θ of second order partial derivatives

are locally bounded. If the unrestricted and restricted (by H0 : s = 0) MLEs θ̂n and

θ̂n,0, respectively, are
√
n-consistent under (β, 0), then the sequence of log LRT statistics

Λn for testing H0 : s = 0 versus Ha : s 6= 0 converges under (β, s/
√
n) in distribution

to a random variable distributed according to the χ2(1, δ) distribution with noncentrality

parameter δ = (0, s)T I(β, 0)(0, s).
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Chapter 6

Conclusions and Future Research

The geometry for maximum likelihood estimation in exponential family nonlinear regres-

sion models was reviewed, and a geometrically motivated goodness of fit test statistic for

exponential family regression based on the information metric was introduced. General al-

ternative models for assessing lack of fit associated with the mean function for a proposed

model was presented. The construction of such general alternatives was based on clusterings

in the mean components. A maximin power clustering methodology utilized by Munasinghe

(2010) for nonlinear regression with additive error was defined in the context of exponential

family nonlinear regression models to determine suitable clusterings for assessing lack of fit.

Curved exponential family models and generalizations were discussed to exemplify the gen-

eral discussion, including tests for generalized linear models and equal means testing for

heterogenous Normal models. It is worthwhile to note that the constructed alternatives

used for comparison with a proposed generalized linear model are not restricted to be gen-

eralized linear models, as is the usual case for testing hypotheses associated with generalized

linear models. In addition, a saturated three parameter exponential family model was also

developed which allows for equal means testing with unequal variances. A LRT and a test

determined by comparing MLE parameter estimates, each based on clusters in the alterna-
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tive model, were developed to test the equal means hypothesis in a heteroscedastic Normal

model.

A simulation study was carried out for the logistic and Poisson regression models as partic-

ular examples of the generalized linear model. An investigation of comparative performance

of the LRT, the deviance test and the goodness of fit test based on the information met-

ric was carried out. For logistic regression, the standard Hosmer-Lemeshow test was also

included in the simulations. Notably, the LRT had comparable power with that of the

Hosmer-Lemeshow test under both m- and n-asymptotics, with superior power for con-

structed alternatives. The simulated power for the goodness of fit test statistic based on

the information metric was very competitive with the LRT in the case of m-asymptotics,

while the deviance test did not have comparable power. In the case of Poisson regression,

the LRT was compared with the deviance and the goodness of fit test statistic based on the

information metric. For constructed models, the LRT had superior power. However, the

goodness of fit test outperformed the LRT and deviance for certain data generators differing

from the constructed full model for Poisson regression.

A grid search was utilized to determine the MLE of parameters in the logistic and alternative

models used for the simulation study. This holds also for the simulation study for the Poisson

regression model. Specifically, for logistic regression, the densities were noted to become

more and more deterministic as the natural parameters go to ±∞. This behavior motivated

the use of a grid obtained by constraining the η and thus the β parameters in the model in

such a way as to avoid parameter values that correspond to (nearly) deterministic densities.

The usefulness of the bounded grid was illustrated via simulation using data generators that

did not satisfy constraints imposed by the grid. In particular, the simulation without such

constraints showed that the test statistics can achieve zero power for specified parameter

settings. An analytical explanation of such phenomena is presented and is based on the

information distance (squared) involving limits to infinity.
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Simulated power for testing equal means in a heteroscedastic Normal model, using the LRT

and a test determined by comparing MLE parameter estimates, was comparable for both

tests using various data generators. Superior power was achieved by two group clustering

strategy involving the limit of the S1 statistic.

Asymptotic distributional results associated with the likelihood ratio statistics for one di-

mensional between cluster lack of fit were derived. The derivation of the asymptotic non-

central chi-square distribution under local parameter alternatives was based in part on the

corresponding array of distributions being LAN. To ensure LAN for exponential family non-

linear regression models, the key condition was shown to be the requirement that the array

of exponential family distributions be uniformly differentiable in quadratic mean. L2 dif-

ferentiability of the parametric array of densities associated with the array of exponential

family distributions was then established, and hence LAN. Based on LAN, the asymptotic

non-central chi-square distribution for the sequence of log likelihood ratio statistics was

concluded.

The following points are suggested topics for future research:

1. Development of tests in this work to more general exponential family regression models

to further test the effectiveness of the proposed cluster based lack of fit tests, as well

as the geometrically motivated goodness of fit test statistic for exponential family

regression based on the information metric.

2. Extension of the proposed procedures to test nonlinear within-cluster lack of fit and

also mixtures of between-cluster within-cluster lack of fit.

3. Development of computational approaches for higher dimensional predictor spaces to

accommodate implementation of the clustering based tests, including the extension of

ordered partitions to higher dimensions.
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4. Asymptotic analysis of the distribution for the LRT for higher dimensional predictor

spaces, and further asymptotic analysis of the information based distance function

to assess lack of fit in general exponential family regression models. Application of

noncentral χ2 for power analysis.
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Appendix A

Generated Dial Settings for Logistic
and Poisson models

-2.68667657 -2.48197830 -2.42802302 -2.13745227 -2.00318555
-1.95941877 -1.69872844 -1.59118778 -1.56786299 -1.50355328
-1.42593390 -1.31627511 -1.25794782 -1.16061046 -0.84807659
-0.72372107 -0.71894608 -0.58391733 -0.42173272 -0.16859679
0.01478212 0.05951435 0.21546714 0.25615356 0.34210246
0.45218965 0.45445007 0.53302232 0.63596014 0.83929070
0.86315950 0.93246935 1.05064720 1.25633511 1.25733595
1.26047923 1.28097711 1.30209739 1.50219093 1.58049510
1.92063971 1.99529495 2.28118479 2.29621865 2.46422383
2.46846361 2.49383085 2.53782106 2.58729063 2.62606696

Table A.1: : Generated and sorted n = 50 Uniform [-3,3] values
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-2.95512624 -2.83734196 -2.68667657 -2.53651432 -2.4819783
-2.42802302 -2.34434466 -2.31650772 -2.15560175 -2.13745227
-2.07580989 -2.02323166 -2.00318555 -1.95941877 -1.8153121
-1.7979381 -1.69872844 -1.62537257 -1.59118778 -1.56786299
-1.50355328 -1.4259339 -1.38068114 -1.31627511 -1.25794782
-1.24070817 -1.16061046 -1.05677897 -0.9692665 -0.93217621
-0.91166776 -0.89128479 -0.84807659 -0.74177582 -0.72372107
-0.71894608 -0.60717476 -0.58391733 -0.42173272 -0.33716353
-0.30362781 -0.16859679 0.01478212 0.05951435 0.21546714
0.25615356 0.34210246 0.45218965 0.45445007 0.53302232
0.59122192 0.63596014 0.75428478 0.76121893 0.8392907
0.84006936 0.85191938 0.8631595 0.89617543 0.93246935
1.0506472 1.09889655 1.14392149 1.2120276 1.24452919
1.25633511 1.25733595 1.26047923 1.28097711 1.30209739
1.32421541 1.37130392 1.39563853 1.45556928 1.50219093
1.5804951 1.61730259 1.64826562 1.74307128 1.77939755
1.92063971 1.99529495 2.2659975 2.28118479 2.29621865
2.35097442 2.43089541 2.46422383 2.46846361 2.49383085
2.51545912 2.53782106 2.5491042 2.58643838 2.58729063
2.62606696 2.66733335 2.85818869 2.87399123 2.88522763

Table A.2: : Generated and sorted n = 100 Uniform [-3,3] values
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Appendix B

Crisp Clustering for Logistic and
Poisson Models
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Crisp Clustering
(β0, β1) x1 : x17 x1 : x17 x1 : x17 x1 : x17 x1 : x17 x1 : x17

Point Coordinate x18 : x40 x18 : x36 x18 : x33 x18 : x32 x18 : x29 x18 : x28

x41 : x50 x37 : x50 x34 : x50 x33 : x50 x30 : x50 x29 : x50

1 (11,0) x
2 (5,-2) x
3 (5,0) x
4 (5,2) x
5 (0,-3) x
6 (0,-2) x
7 (0,0) x
8 (0,2) x
9 (0,3) x
10 (-5,-2) x
11 (-5,0) x
12 (-5,2) x
13 (-11,0) x
14 (-1,-1) x
15 (1,-1) x x
16 (-1,1) x x
17 (1,1) x
18 (-3,0) x
19 (3,0) x
20 (-2,0) x
21 (2,0) x

Table B.1: Crisp clustering for logistic model at selected 21 points when n=50
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Crisp Clustering
(β0, β1) x1 : x37 x1 : x37 x1 : x37 x1 : x37 x1 : x37

Point Coordinate x38 : x80 x38 : x66 x38 : x62 x38 : x57 x38 : x51

x81 : x100 x67 : x100 x63 : x100 x58 : x100 x52 : x100

1 (11,0) x
2 (5,-2) x
3 (5,0) x
4 (5,2) x
5 (0,-3) x
6 (0,-2) x
7 (0,0) x
8 (0,2) x
9 (0,3) x
10 (-5,-2) x
11 (-5,0) x
12 (-5,2) x
13 (-11,0) x
14 (-1,-1) x
15 (1,-1) x
16 (-1,1) x
17 (1,1) x
18 (-3,0) x
19 (3,0) x
20 (-2,0) x
21 (2,0) x

Table B.2: Crisp clustering for logistic model at selected 21 points when n=100
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Crisp Clustering
(β0, β1) x1 : x17 x1 : x17 x1 : x17 x1 : x17

Point Coordinate x18 : x40 x18 : x38 x18 : x36 x18 : x28

x41 : x50 x39 : x50 x37 : x50 x29 : x50

1 (11.5,0) x
2 ( 8.5,-1) x
3 ( 8.5,0) x
4 (8.5,1) x
5 (6.5,-1.5) x
6 (6.5,0) x
7 (6.5,1.5) x
8 (4.5,-1) x
9 (4.5,0) x
10 (4.5,1) x
11 (1.5,0) x
12 (4.5,-0.5) x
13 (6.5,-0.5) x
14 (8.5,-0.5) x
15 (4.5,0.5) x
16 (6.5,0.5) x
17 (8.5,0.5) x

Table B.3: Crisp clustering for Poisson model at selected 17 points when n=50
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Crisp Clustering
(β0, β1) x1 : x37 x1 : x37 x1 : x37 x1 : x37 x1 : x37

Point Coordinate x38 : x80 x38 : x75 x38 : x62 x38 : x63 x38 : x51

x81 : x100 x76 : x100 x63 : x100 x64 : x100 x52 : x100

1 (11.5,0) x
2 ( 8.5,-1) x
3 ( 8.5,0) x
4 (8.5,1) x
5 (6.5,-1.5) x
6 (6.5,0) x
7 (6.5,1.5) x
8 (4.5,-1) x
9 (4.5,0) x
10 (4.5,1) x
11 (1.5,0) x
12 (4.5,-0.5) x
13 (6.5,-0.5) x
14 (8.5,-0.5) x
15 (4.5,0.5) x
16 (6.5,0.5) x
17 (8.5,0.5) x

Table B.4: Crisp clustering for Poisson model at selected 17 points when n=100
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Appendix C

R Code for Implementing the Power
Calculations for Heterogeneous
Normal Model

############################################################

# Calculating the power of the LRT for 2 replicate case #

# based on Sufficient Statistics #

############################################################

n<-50

set.seed(2250)

ki<-sort(runif(n,1,2))

si<-1/(ki^2)

l<-17

z<-c(rep(1,l),rep(0,n-l))

b<-sqrt(l/(n-l))

a<--1/b

c(a,b)
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gammai<-c(rep(a,l),rep(b,n-l))

# initial values

m<-1

r<-1

alpha0<-seq(0,8,by=1)

B<-1000

LLRlist<-lapply(as.list(1:length(alpha0)),function(i)

{

alpha<-alpha0[i]

set.seed(722)

Z<- matrix(c(rnorm(n*B,0,1)),n,B,byrow=F)

likelihood<-lapply(as.list(1:B),function(j,x1)

# function calculating the log-likelihood ratio

{ x1<-m+ alpha*ki+r*ki*Z[,j]

x2<-x1^2

x1bar<-sum(si*x1)

x2bar<-sum(si*x2)

xthil<-sum(gammai*x1)

# parameters for the full model

t2f<--n/(2*(x2bar-x1bar^2/sum(si)-xthil^2/sum(gammai^2/si)))

tau1f<-x1bar/sum(si)

t1f<--2*tau1f*t2f

tau2f<-xthil/sum(gammai^2/si)
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sf<- -2*tau2f*t2f

theta1f<-si*t1f+sf*gammai # creating nx1 theta vectors

theta2f<-si*t2f

# log likelihood for full

lf<-x1bar*t1f+x2bar*t2f+xthil*sf-sum(-(theta1f^2)/(4*theta2f)

+(1/2)*log(pi/(-theta2f)))

# parameters for null model

t2n<--n/(2*(x2bar-x1bar^2/sum(si)))

tau1n<-x1bar/sum(si)

t1n<--2*tau1n*t2n

tau2n<-0

sn<-0

theta1n<-si*t1n+sn*gammai

theta2n<-si*t2n

# log likelihood for null

ln<-x1bar*t1n+x2bar*t2n+xthil*sn-sum(-(theta1n^2)/(4*theta2n)

+(1/2)*log(pi/(-theta2n)))

# log likelihood ratio

llr<--2*(ln-lf)

llr
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S<-xthil^2/((-1/(2*t2f))*sum(gammai^2/si))

c(llr,S)

}) # end of likelihood calculation function

}) # end of LLRlist calculation function

power.mat<-sapply(as.list(1:length(LLRlist)),function(j)

{

mle.mat1<-LLRlist[[j]]

mle.mat2<-matrix(0,B,2)

power<-numeric(2)

for (i in 1:2)

{

mle.mat2[,i]<-sapply(mle.mat1, function(x) x[i])

power[i]<-sum(ifelse(mle.mat2[,i]>=qchisq(0.95,1),1,0))/B

power

}

power

}) # end of power.mat calculation function

Slim<-(n/(n-((sum(1/ki))^2/(sum(1/ki^2)))-((sum(gammai*ki))^2/

(sum(gammai^2*ki^2)))))*((sum(gammai*ki))^2/sum(gammai^2*ki^2))

print(Slim)

power<-cbind(alpha0,t(power.mat))

colnames(power)<-c("alpha","llr","S1")

power
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Appendix D

R Code for Implementing the Power
Calculations for Logistic Model

##########################################################

# Function to calculate the overlapping subsets (covers) #

##########################################################

cover<-function(n,m,k,l,xs)

{ # n- number of observations

# xs - generated x values

c<-sapply(1:m,function(i)

{

# cover [k,l] divided in to m=5 cells

# here we consider cells based on values c1:[-3,-1.8), c2:[-1.8,-0.6),...c5:[1.8,3]

c<-ifelse(xs<(k+i*(l-k)/m) & xs>=(k+(i-1)*(l-k)/m),1,0)

}) # end of c calculation function

overlap<-sapply(1:m,function(i)

# function calculates the ovelapping subsets
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{

if (i%%2==0) rep(0,n)

else if (i==1) os<- c[,i]+c[,i+1]

else if (i==m & i%%2==1) os<-c[,i-1]+c[,i]

else if (i%%2==1) os<-c[,i-1]+c[,i]+c[,i+1]

}) # end of overlap calculation function

# taking the odd columns in overlap

index<-seq(1,m, by=2)

z<-overlap[,index] # matrix indicating the overlapping subsets for the selected cover

colnames(z)<-c("Fn1","Fn2","Fn3")

ca<-(sum(c[,2])+1)*(sum(c[,4])+1) # cardinality of Kn,0

B<-matrix(rep(0,(n*(n-1))),n) # matrix for the edge sets

out<-list(z,B,ca,c)

names(out)<-c("z","B","ca","c")

out

} #end of cover function

###################################################################

#Finding tangent space to the expectation surface at each x. #

#logistic model f(x, beta0, beta1)=beta0+beta1*x) is used. #

###################################################################

tm<-function(xs,V)

{ # V - covariance matrix of xs

B<-cbind(rep(1,n),xs)

TM<-V%*%B%*%ginv(t(B)%*%V%*%B)%*%t(B)
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TM

}

###############################################################

#Finding perpendicular projection operator for a vector space.

###############################################################

ppo<-function(c,V)

{

# c is the matrix that we want to project onto

Ppo<-c%*%ginv(t(c)%*%ginv(V)%*%c)%*%t(c)%*%ginv(V)

Ppo

}

###################################################################

#Finding basis set for the matrix based on output from ppo function.

###################################################################

basis<-function(ppo.out)

{

ba<-ppo.out%*%t(ppo.out)

e<-eigen(ba,symmetric=T) # calculating eigen values and vectors

e.vals<-e$values

e.vects<-e$vectors

n.evals<-e.vals[abs(e.vals)>10e-5] # avoid the prblem of decimal places

used in R to get correct d.f.

n1<-length(n.evals)

Basis<-e.vects[,1:n1] # the final basis set

Basis
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}

##########################################

# selecting maximin power clusterings #

##########################################

atoms<-function(z,ca,c1,c2,c3,c4,c5,V)

{ # z - overlapping subsets from cover function

# ca - cardinality

# c1-c5 - elements corresponding to 5 cells

atom<-list(length=ca)

a<-1 # index counter for number of atoms

ZZa<-matrix(rep(0,nrow(z)*ncol(z)),nrow(z),ncol(z))

# creating an empty crisp atom matrix

for (i in 1:nrow(z))

{

ZZa[i,1]<-c1[i]

ZZa[i,2]<-c3[i]

ZZa[i,3]<-c5[i]

}

for (j in sum(c1):sum(c1+c2))

# consider elements in first even cell correspond to 1st column

{

ZZa[j,1]<-1

for (k in (j+1):sum(c1+c2))

# consider elements in first even cell correspond to 2nd column

ZZa[k,2]<-1

if (j>sum(c1))
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# cleaning up extra 1’s in second column before the required elements

{

for (l in sum(c1):j)

ZZa[l,2]<-0

}

for (m in sum(c1+c2+c3):sum(c1+c2+c3+c4))

# consider elements in 2nd even cell corresponds to 2nd column

{

ZZa[m,2]<-1

for (o in (m+1):sum(c1+c2+c3+c4))

# consider elements in 2nd even cell corresponds to 3rd column

ZZa[o,3]<-1

if (m>sum(c1+c2+c3))

# cleaning up extra 1’s in 3rd col before the required elements

{

for (p in sum(c1+c2+c3):m)

ZZa[p,3]<-0

}

for (q in 1:nrow(z))

# cleaning up extra 1’s in second col after the required elements

{

if (sum(ZZa[q,])>1)

ZZa[q,2]<-0

}

PZZ<-ppo(ZZa,V)-ppo(ppo(ZZa,V)%*%tm(xs,V),V)

#gives perpendicular projection of tm(beta1, beta2) onto zza (crisp atoms)#

PZZb<- basis(PZZ)#basis set for pzz, use for calculation of tau#
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cat(PZZb,file="Basis.txt","\n",append=TRUE) #stores the basis set in R#

atom[[a]]<-ZZa

a<-a+1

} # end of m loop

} # end of j loop

atom

} # end of function atoms

################################################

# creating non-overlapping subset of odd cells #

################################################

zz<-function(c1,c2,c3,c4,c5)

{

z1<-matrix(0,n,ncol(z))

{

if (sum(c1)<2)

{

z1[,1]<-c1+c2

if (sum(c3)<2)

{

z1[,2]<- c3+c4

z1[,3]<-c5

}

else

{

z1[,2]<-c3
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z1[,3]<- c4+c5

}

}

else

{

z1[,1]<-c1

z1[,2]<-c2+c3

z1[,3]<-c4+c5

}

z1

}

}

####################################################

# calculating the positions of 1’s in columns of z #

####################################################

posi<-function(z,i)

{

x<-z[,i] # consider the columns of z

k<-rep(0,length(x)) # vector to store the positions for each col of z

for (j in 1:length(x))

{

if (x[j]!=0) # get the non-zero elements of the cols of z

k[j]<-j # assign those positions to k

}

a<-k[k!=0] # get the non-zero positions of non-zero elements of the cols of z

{
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combn(a,2) # find all the combinations taking 2 at a time

}

}

###################################################

# Function to get w values using correct x values #

###################################################

# B is the edge set

w.values<-function(z,xs,B)

{

for (a in 1:(nrow(z)-1))

{

if (sum(B[,a])>1)

break

}

for (ab in 1:nrow(z))

{

if (B[ab,a]==1)

break

}

for (ac in ab+1:nrow(z))

{

if (B[ac,a]==1)

break

}

w<-(((xs[ab])-(xs[ac]))^2) # weights for a particular element in edge set

cat(w,file="weights.txt","\n",append=T)
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}

#######################################

# Function to calculate the edge set #

#######################################

edges<-function(z)

{

m<-1

B.list<-list()

for (j in 1:ncol(z))

{

pos<-posi(z,j) # combinations of positions of 1’s in cols of z

for (k in 1:ncol(pos))

{

B<-matrix(0,n,(n-1))

pos1<-pos[,k] # consider each combination seperately

h<-pos1[1] # choose the column in edge set to assign 1

B[pos1,h]<-1 # assign 1’s for 2 points in same cluster

for (a in 1:pos1[1]) # assign 1’s for individual clusterings

{

B[a,a]<-1

}

for (l in (pos1[1]):(pos1[2]))

{

if (sum(B[l,])==0) B[l,l]<-1

}

for (i in 1:nrow(B))
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{

if (sum(B[i,])==0) B[i,(i-1)]<-1

}

weight<-w.values(z,xs,B)

B.list[[m]]<-B

m<-m+1 # index counter for number of edge sets

}

}

B.list

}

###########################################################

# Function to calculate (w_Z_n) that belongs to edge set #

###########################################################

wzn<-function(wi)

{

for (i in 1:nrow(wi))

{

ww<-wi[i,]/sum(wi)

cat(ww,file="totalweights.txt","\n",append=T)

}

}

####################################################################

# Function to calculate (l_Z_n) and tau that belongs to each atom #

####################################################################

# ’weight’ W_Z_n values based on edge sets#
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# vv’s are the basis for each atom

lzn<-function(Basis,weight,edgeset,V)

{

lzn1<-sapply(1:nrow(Basis),function(i)

{

tau<-0

vv<-Basis[i,]

tau.d<-sapply(1:length(edgeset),function(d) # calculate tau for each edgeset

{

B<-edgeset[[d]]

x0<-ppo(B,V)%*%tm(xs,V)

tau1<-weight[d]%*%(t(vv)%*%((ppo(B,V)-ppo(x0,V))%*%ginv(V))%*%vv)

tau1

}) #end of calculation of tau for each atom

#calculate l_z_n before loop takes this to the next atom)

tau<-sum(tau.d)

lZn<-(t(vv)%*%vv)*(1/(tau))

lZn

})

}

###############################################

#function to calculate g in fuzzy clusterings #

###############################################

g<-function(x)

{

if (x<=0) gx<-0
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if (x>0 & x<1) gx<-1/32*(-5*(2*x-1)^7+21*(2*x-1)^3+35*(2*x-1)+16)

if (x>=1) gx<-1

gx

}

#######################################################################

# Function to calculate the fuzzy clusterings for a given beta vector #

#######################################################################

zbeta<-function(z,beta,b1,b2)

{ # z- list of crisp clustering matrices

# beta - point to find the fuzy clusters

# b1,b2 - points of th crisp clusters

znb<-list()

n1<-length(b1)

n2<-length(b2)

if (beta[1]<=b1[1])

for (j in 1:n2) znb[[j]]<-z[[1+(j-1)*n1]]

if (beta[1]>b1[n1])

for (j in 1:n2) znb[[j]]<-z[[j*n1]]

if (beta[1]>b1[1] & beta[1]<=b1[n1])

{

for (i in 1:n1)

{

if (beta[1]>b1[i] & beta[1]<=b1[i+1])

{

for (j in 1:n2)

znb[[j]]<-(1-g((beta[1]-b1[i])/(b1[i+1]-b1[i])))*z[[(i+(j-1)*n1)]]
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+g((beta[1]-b1[i])/(b1[i+1]-b1[i]))*z[[(i+1+(j-1)*n1)]]

}

}

}

if (beta[2]<=b2[1]) zn<-znb[[1]]

if (beta[2]>b2[n2]) zn<-znb[[n2]]

if (beta[2]>b2[1] & beta[2]<=b2[n2])

{

for (j in 1:n2)

{

if (beta[2]>b2[j] & beta[2]<=b2[j+1])

zn<-(1-g((beta[2]-b2[j])/(b2[j+1]-b2[j])))*znb[[j]]+g((beta[2]-b2[j])/

(b2[j+1]-b2[j]))*z[[j+1]]

}

}

zn

}

####################################################################

# function that calculates the fine grid for a given x range (b,d) #

####################################################################

gridp<-function(delta1,delta2,b,d,dis)

{ # function that calculates the fine grid for a given x range (b,d)

# b= lower limit of x

# d= upper limit of x

# dis = gap between grid points

c<--b
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a<-1/(c+d)

b0bar<-seq(delta1,delta2,by=dis)

b1bar<-matrix(0,length(b0bar),length(b0bar))

grid<-list()

grid_bar<-list()

j<-1

for (i in 1:length(b0bar))

{

b1bar[i,]<-seq(delta1-b0bar[i],delta2-b0bar[i],by=dis)

for (k in 1:length(b1bar[i,]))

{

b1<-a*b1bar[i,k]

b0<-b0bar[i]+c*a*b1bar[i,k]

grid[[j]]<-c(b0,b1)

grid_bar[[j]]<-c(b0bar[i],b1bar[i,k])

j<-j+1

}

}

grid

}

# Function used for Hosmer Lemeshow method

hosmerlem = function(y, yhat, g) {

cutyhat = cut(yhat,

breaks = quantile(yhat, probs=seq(0,

1, 1/10)), include.lowest=TRUE)
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obs = xtabs(cbind(mi - y, y) ~ cutyhat)

expect = xtabs(cbind(mi - yhat, yhat) ~ cutyhat)

chisq = sum((obs - expect)^2/expect)

P = 1 - pchisq(chisq, 10 - 2)

return(c(chisq=chisq,p.value=P))

}

# End of set of functions in the program

#############################

# main body of the program #

#############################

library(MASS)

betamatrix<-matrix(c(-1,1,-1,3,1,1,1,3),4,2,byrow=T)

ni<-50

n<-50 # number of samples (dial settings)

k<-0

l<-1

set.seed(2250)

x<-runif(n,k,l) # x vales from Uniform[0,1]

xs<-sort(x) # sorted x values

m<-5 # number of clusters

cover.out<-cover(n,m,k,l,xs)

#cover.out
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z<-cover.out[[1]]

ca<-cover.out[[3]]

B<-cover.out[[2]]

c<- cover.out[[4]]

c1<-c[,1]

c2<-c[,2]

c3<-c[,3]

c4<-c[,4]

c5<-c[,5]

maximin<-lapply(as.list(1:(nrow(betamatrix))),function(i)

{

# initial values

betavec<-betamatrix[i,]

# generating data

eta<-cbind(rep(1,n),xs)%*%betavec # linear predictor

pii<-exp(eta)/(1+exp(eta)) # probabilities

set.seed(4650)

yi<-rbinom(n,ni,pii)

V<-diag(as.vector(ni*pii*(1-pii)))

dataset<-cbind(xs,pii,yi,ni)

colnames(dataset)<-c("xi","pi","yi","ni")

dataset # generated data set

cat("number of crisp atoms=",ca,"\n")
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atom<-atoms(z,ca,c1,c2,c3,c4,c5,V) # ordered atoms

#atom

nonoverlap<-zz(c1,c2,c3,c4,c5) #creating non-overlapping subset of odd

cells to apply edgeset function

#nonoverlap

edgeset<-edges(nonoverlap) # calculation of edgesets

#edgeset

cat("number of edge sets=",length(edgeset),"\n")

wi<-as.matrix(read.table("weights.txt")) # output from w.values function inside

the edges function

wzn(wi) # running wzn function

weight<-as.matrix(read.table("totalweights.txt")) # read the ourput from wzn

Basis<- as.matrix(read.table("Basis.txt")) # read the output basis, from

atoms function

lzn.val<-lzn(Basis,weight,edgeset,V) # caculating lzn values

lzn.val

lzn.max<-max(lzn.val) # get the maximum of lzn values

lzn.max

position<-0 # finding the position of max(lzn)

for (j in 1:length(lzn.val))

if (lzn.val[j]==lzn.max) position<-j

position
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maximin<-atom[[position]] # the atom correspond to max(lzn)

cat("beta vector :",betavec,"\n")

cat("position of atom =",position,"\n")

cat("maximum lzn =",lzn.max,"\n")

file.remove("weights.txt")

file.remove("totalweights.txt")

file.remove("Basis.txt")

print(maximin)

})

# Calculating the power corresponding to one set of (beta0,beta1) values generating

data from constructed full model

grid2<-gridp(-12,12,0,1,0.5)

Z<-matrix(rep(c(1,0,1,0,1),c(6,50,22,50,22)),n,3) # maximin[[3]] creating the

maximin atom according to the beocat output

betav<-c(1,1)

s.vec<-c(0,2,4,8,12,16,20)

powerf<-sapply(1:length(s.vec),function(k)

{

s<-s.vec[k]

# proposed (null) model

eta.n<-cbind(rep(1,n),xs)%*%betav # linear predictor for proposed model (null)

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities
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mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)

V<-diag(as.vector(mi*pi.n*(1-pi.n)))

# altrenative (full) model

betai<-basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V))

v<- betai/sigma2.n

eta.f<- eta.n + s*v

for (a in 1:length(eta.f)) {if (eta.f[a]>7.08e+02) eta.f[a]<-7.08e+02}

pi.f<-exp(eta.f)/(1+exp(eta.f)) # probabilities

mu.f<-mi*pi.f

sigma2.f<-mi*pi.f*(1-pi.f)

#set.seed(6745)

B<-500

Y<-matrix(rbinom(n*B,mi,pi.f),n,B)

like<-sapply(1:B,function(j)

{

yi<-Y[,j]

mle<-sapply(1:(length(grid2)),function(i) # finding beta which maximizes

the likelihood

{

betavec<-grid2[[i]]

eta.n<-cbind(rep(1,n),xs)%*%betavec

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities
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mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)

V<-diag(as.vector(mi*pi.n*(1-pi.n)))

betai<-basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V))

v<- betai/sigma2.n

logl.n<- sum(yi*eta.n-mi*log(1+exp(eta.n)))

v.pos<-numeric(n); v.neg<-numeric(n); v.ze<-numeric(n)

for (i in 1:length(v))

{

if (v[i]>0) { v.pos[i]<-v[i] ; v.neg[i]<-0; v.ze[i]<-0 }

if (v[i]<0) { v.pos[i]<-0 ; v.neg[i]<-v[i]; v.ze[i]<-0 }

if (v[i]==0) { v.pos[i]<-0 ; v.neg[i]<-0; v.ze[i]<-v[i]}

}

fs.pl<-sum((yi-mi)*v.pos)+sum(yi*v.neg)+sum((yi-mi*pi.n)*v.ze) # positive

infinity limit of f(s)

fs.nl<- sum(yi*v.pos)+sum((yi-mi)*v.neg)+sum((yi-mi*pi.n)*v.ze) # negative

infinity limit of f(s)

if (fs.pl*fs.nl>0) print(grid2[[i]]) # non convergence points

else

{

s1<--100; s2<-100

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]<-7.08e+02}

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))
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pi.f2<-exp(eta.f2)/(1+exp(eta.f2))

fs1<-sum((yi-mi*pi.f1)*v)

fs2<-sum((yi-mi*pi.f2)*v)

if (fs1<0) # finding a positive f(s1)

{

while (fs1<0)

{

s1<-s1-1

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

fs1<-sum((yi-mi*pi.f1)*v)

}

}

if (fs2>0) # finding a negative f(s2)

{

while (fs2>0)

{

s2<-s2+1

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]

<-7.08e+02}

pi.f2<-exp(eta.f2)/(1+exp(eta.f2))

fs2<-sum((yi-mi*pi.f2)*v)

}

}
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while (fs1>1e-5 & fs2<(-1e-5))

{

s1.new<-(s1+s2)/2

eta.f1<- eta.n + s1.new*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

fs1<-sum((yi-mi*pi.f1)*v)

if (fs1>0)

{

s1<-s1.new

}

if (fs1<0)

{

s2<-s1.new

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]

<-7.08e+02}

pi.f2<-exp(eta.f2)/(1+exp(eta.f2))

fs2<-sum((yi-mi*pi.f2)*v)

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

fs1<-sum((yi-mi*pi.f1)*v)

}

}
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logl.f<- sum(yi*eta.f1-mi*log(1+exp(eta.f1)))

}

cat(c(betavec,s1.new,logl.f,logl.n),file="result.txt","\n",append=T)

}) # end of mle calculation function

results<-as.matrix(read.table("result.txt")) # read the ourput

file.remove("result.txt")

maxl.f<-max(results[,4])

maxl.n<-max(results[,5])

posi.f <-match(maxl.f,results[,4])

mle.f<-c(results[posi.f,1:3])

mle.f

posi.n<-match(maxl.n,results[,5])

mle.n<-c(results[posi.n,1:2])

mle.n

cat(c(mle.f,mle.n,maxl.f,maxl.n),file="likelihood.txt","\n",append=T)

}) # end of like calculation function

likelihood<-as.matrix(read.table("likelihood.txt")) # read the ourput

file.remove("likelihood.txt")

llr<--2*(likelihood[,7]-likelihood[,6])
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power<-sum(ifelse(llr>=qchisq(0.95,1),1,0))/B

power

print(power)

}) # end of power calculation function

cbind(s.vec,powerf)

plot(s.vec,powerf,type="b")

# Calculating the maximin clustering matrix at 4 given (beta0,beta1) values

grid2<-gridp(-12,12,0,1,0.1)

z11<-matrix(rep(c(1,0,1,0,1),c(17,50,23,50,10)),n,3) # beta(-1,1)

z12<-matrix(rep(c(1,0,1,0,1),c(11,50,17,50,22)),n,3) # beta(-1,3)

z21<-matrix(rep(c(1,0,1,0,1),c(6,50,22,50,22)),n,3) # beta(1,1)

z22<-matrix(rep(c(1,0,1,0,1),c(6,50,22,50,22)),n,3) # beta(1,3)

z<-list(z11,z21,z12,z22)

b1<-c(-1,1)

b2<-c(1,3)

fuz<-list(NULL)

fuzzy<-lapply(1:(length(grid2)),function(i)

{

fuz<-zbeta(z,grid2[[i]],b1,b2)

fuz

})
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# R-code to Implement Power Calculations with Rogue Data Generator with

Hosmer-Lemeshow data generator

source("functions.r")

library(MASS)

mi<-50

n<-50 # number of samples (dial settings)

k<--3

l<-3

set.seed(2250)

x<-runif(n,k,l) # x vales from Uniform[0,1]

xs<-sort(x) # sorted x values

grid2<-gridp(-12,12,-3,3,0.5)

Z<-matrix(rep(c(1,0,1,0,1),c(6,50,22,50,22)),n,3) # maximin[[3]] creating the

maximin atom according to the beocat output

J<-c(0.01,0.02,0.03,0.04,0.05,0.06)

powerf<-sapply(1:length(J),function(k)

{

J1<-J[k]

b1<-(log(0.95/0.05)-log(J1/(1-J1)))/6

152



b2<-(2*log(0.95/0.05)-4.5*b1)/6.75

b0<-log(0.95/0.05)-3*b1-9*b2

betav<-c(b0,b1)

# data generator

eta.n<-cbind(rep(1,n),xs)%*%betav+b2*xs^2 # linear predictor for proposed model

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities

#set.seed(56479)

B<-500

Y<-matrix(rbinom(n*B,mi,pi.n),n,B)

like<-sapply(1:B,function(j)

{

yi<-Y[,j]

mle<-sapply(1:(length(grid2)),function(i) # finding beta which maximizes

the likelihood

{

betavec<-grid2[[i]]

eta.n<-cbind(rep(1,n),xs)%*%betavec

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities

mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)

V<-diag(as.vector(mi*pi.n*(1-pi.n)))

betai<-basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V))
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v<- betai/sigma2.n

logl.n<- sum(yi*eta.n-mi*log(1+exp(eta.n)))

v.pos<-numeric(n); v.neg<-numeric(n); v.ze<-numeric(n)

for (i in 1:length(v))

{

if (v[i]>0) { v.pos[i]<-v[i] ; v.neg[i]<-0; v.ze[i]<-0 }

if (v[i]<0) { v.pos[i]<-0 ; v.neg[i]<-v[i]; v.ze[i]<-0 }

if (v[i]==0) { v.pos[i]<-0 ; v.neg[i]<-0; v.ze[i]<-v[i]}

}

fs.pl<-sum((yi-mi)*v.pos)+sum(yi*v.neg)+sum((yi-mi*pi.n)*v.ze) # positive

infinity limit of f(s)

fs.nl<- sum(yi*v.pos)+sum((yi-mi)*v.neg)+sum((yi-mi*pi.n)*v.ze) # negative

infinity limit of f(s)

if (fs.pl*fs.nl>0) print(grid2[[i]]) # non convergence points

else

{

s1<--100; s2<-100

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]<-7.08e+02}

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

pi.f2<-exp(eta.f2)/(1+exp(eta.f2))

fs1<-sum((yi-mi*pi.f1)*v)

fs2<-sum((yi-mi*pi.f2)*v)
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if (fs1<0) # finding a positive f(s1)

{

while (fs1<0)

{

s1<-s1-1

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

fs1<-sum((yi-mi*pi.f1)*v)

}

}

if (fs2>0) # finding a negative f(s2)

{

while (fs2>0)

{

s2<-s2+1

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]

<-7.08e+02}

pi.f2<-exp(eta.f2)/(1+exp(eta.f2))

fs2<-sum((yi-mi*pi.f2)*v)

}

}

while (fs1>1e-5 & fs2<(-1e-5))

{

s1.new<-(s1+s2)/2
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eta.f1<- eta.n + s1.new*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

fs1<-sum((yi-mi*pi.f1)*v)

if (fs1>0)

{

s1<-s1.new

}

if (fs1<0)

{

s2<-s1.new

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]

<-7.08e+02}

pi.f2<-exp(eta.f2)/(1+exp(eta.f2))

fs2<-sum((yi-mi*pi.f2)*v)

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

pi.f1<-exp(eta.f1)/(1+exp(eta.f1))

fs1<-sum((yi-mi*pi.f1)*v)

}

}

logl.f<- sum(yi*eta.f1-mi*log(1+exp(eta.f1)))

}

cat(c(betavec,s1.new,logl.f,logl.n),file="result.txt","\n",append=T)
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}) # end of mle calculation function

results<-as.matrix(read.table("result.txt")) # read the ourput

file.remove("result.txt")

maxl.f<-max(results[,4])

maxl.n<-max(results[,5])

posi.f <-match(maxl.f,results[,4])

mle.f<-c(results[posi.f,1:3])

mle.f

posi.n<-match(maxl.n,results[,5])

mle.n<-c(results[posi.n,1:2])

mle.n

cat(c(mle.f,mle.n,maxl.f,maxl.n),file="likelihood.txt","\n",append=T)

cat(c(mle.f,mle.n,maxl.f,maxl.n),file="like.txt","\n",append=T)

}) # end of like calculation function

likelihood<-as.matrix(read.table("likelihood.txt")) # read the ourput

file.remove("likelihood.txt")

llr<--2*(likelihood[,7]-likelihood[,6])

power<-sum(ifelse(llr>=qchisq(0.95,1),1,0))/B

power

print(power)
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}) # end of power calculation function

plot(J,powerf,type="b")

cbind(J,powerf)

# Part of the code used to calculate Wald-Shao Statistic

s<-mle.f[3]; b0<-mle.f[1]; b1<-mle.f[2]

eta.n<-cbind(rep(1,n),xs)%*%c(b0,b1) # linear predictor for proposed model (null)

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities

mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)

V<-diag(as.vector(mi*pi.n*(1-pi.n)))

betai<-basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V))

vi<- betai/sigma2.n

logl<-expression(yi*(b0+b1*xs+s*vi)-mi*log(1+exp(b0+b1*xs+s*vi)))

dls<- eval(D(logl,"s")) # logl wrt s

dlb0<-eval(D(logl,"b0")) # logl wrt b0

dlb1<-eval(D(logl,"b1")) # logl wrt b1

d2ls<- sum(eval(D(D(logl,"s"),"s"))) # logl wrt s & s

d2lb0<-sum(eval(D(D(logl,"b0"),"b0"))) # logl wrt b0 & b0
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d2lb1<-sum(eval(D(D(logl,"b1"),"b1"))) # logl wrt b1 & b1

d2lsb0<-sum(eval(D(D(logl,"s"),"b0"))) # logl wrt s & b0

d2lsb1<-sum(eval(D(D(logl,"s"),"b1"))) # logl wrt s & b1

d2lb0b1<-sum(eval(D(D(logl,"b0"),"b1"))) # logl wrt b0 & b1

info<--matrix(c(d2lb0,d2lb0b1,d2lsb0,d2lb0b1,d2lb1,d2lsb1,d2lsb0,d2lsb1,

d2ls),3,3,byrow=T)

H.theta<-c(0,0,1)

wald.stat<-s*ginv(t(H.theta)%*%ginv(info)%*%(H.theta))%*% s

# Part of the code used to calculate Wald-Boos Statistic

s<-mle.f[3]; b0<-mle.f[1]; b1<-mle.f[2]

eta.n<-cbind(rep(1,n),xs)%*%c(b0,b1) # linear predictor for proposed model (null)

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities

mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)

V<-diag(as.vector(mi*pi.n*(1-pi.n)))

betai<-basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V))

vi<- betai/sigma2.n

logl<-expression(yi*(b0+b1*xs+s*vi)-mi*log(1+exp(b0+b1*xs+s*vi)))
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dls<- eval(D(logl,"s")) # logl wrt s

dlb0<-eval(D(logl,"b0")) # logl wrt b0

dlb1<-eval(D(logl,"b1")) # logl wrt b1

d2ls<- sum(eval(D(D(logl,"s"),"s"))) # logl wrt s & s

d2lb0<-sum(eval(D(D(logl,"b0"),"b0"))) # logl wrt b0 & b0

d2lb1<-sum(eval(D(D(logl,"b1"),"b1"))) # logl wrt b1 & b1

d2lsb0<-sum(eval(D(D(logl,"s"),"b0"))) # logl wrt s & b0

d2lsb1<-sum(eval(D(D(logl,"s"),"b1"))) # logl wrt s & b1

d2lb0b1<-sum(eval(D(D(logl,"b0"),"b1"))) # logl wrt b0 & b1

score<-cbind(dlb0,dlb1,dls)

info<--matrix(c(d2lb0,d2lb0b1,d2lsb0,d2lb0b1,d2lb1,d2lsb1,d2lsb0,d2lsb1,

d2ls),3,3,byrow=T)

D<- t(score)%*%score

v.hat<- (ginv(info))%*%D%*%(ginv(info))

H.theta<-c(0,0,1)

wald.stat<-s*ginv(t(H.theta)%*%v.hat%*%(H.theta))%*% s

# Part of the code used to calculate S Statistic

b0<-mle.n[1]; b1<-mle.n[2]

eta.n<-cbind(rep(1,n),xs)%*%c(b0,b1) # linear predictor for proposed model (null)

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities

mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)
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sy<- sum((yi-mu.n)^2/sigma2.n)

# Part of the code used to calculate S-diff Statistic

# calculating sy for full model

s<-mle.f[3]; b0<-mle.f[1]; b1<-mle.f[2]

eta.n<-cbind(rep(1,n),xs)%*%c(b0,b1) # linear predictor for proposed model (null)

for (a in 1:length(eta.n)) {if (eta.n[a]>7.08e+02) eta.n[a]<-7.08e+02}

pi.n<-exp(eta.n)/(1+exp(eta.n)) # probabilities

mu.n<-mi*pi.n

sigma2.n<-mi*pi.n*(1-pi.n)

V<-diag(as.vector(mi*pi.n*(1-pi.n)))

betai<-basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V))

vi<- betai/sigma2.n

eta.f<- eta.n + s*vi

for (a in 1:length(eta.f)) {if (eta.f[a]>7.08e+02) eta.f[a]<-7.08e+02}

pi.f<-exp(eta.f)/(1+exp(eta.f)) # probabilities

mu.f<-mi*pi.f

sigma2.f<-mi*pi.f*(1-pi.f)

# calculating sy for null model

b00<-mle.n[1]; b11<-mle.n[2]

eta.nn<-cbind(rep(1,n),xs)%*%c(b00,b11) # linear predictor for proposed model

for (a in 1:length(eta.nn)) {if (eta.nn[a]>7.08e+02) eta.nn[a]<-7.08e+02}

pi.nn<-exp(eta.nn)/(1+exp(eta.nn)) # probabilities

mu.nn<-mi*pi.nn

sigma2.nn<-mi*pi.nn*(1-pi.nn)
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sy.f<- sum((yi-mu.f)^2/sigma2.f)

sy.n<- sum((yi-mu.nn)^2/sigma2.nn)

# Part of the program to calculate the power of HL test

set.seed(357)

B<-500

Y<-matrix(rbinom(n*B,mi,pi.f),n,B)

like<-sapply(1:B,function(j)

{

yi<-Y[,j]

y<-cbind(yi,(mi-yi))

mod<- glm(y~xs,family="binomial")

fit<-mi*fitted(mod)

out<-hosmerlem(y<-yi, yhat<-fit,10)

cat(c(out),file="likelihood.txt","\n",append=T)

})

likelihood<-as.matrix(read.table("likelihood.txt")) # read the ourput

file.remove("likelihood.txt")

p<-likelihood[,2]

powerhl<-sum(ifelse(p<0.05,1,0))/B

# Part of the program to calculate the power of Deviance test

set.seed(357)
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B<-500

Y<-matrix(rbinom(n*B,mi,pi.f),n,B)

like<-sapply(1:B,function(j)

{

yi<-Y[,j]

y<-cbind(yi,(mi-yi))

mod<- glm(y~xs,family="binomial")

anov<-anova(mod,test="Chisq")

res.dev<-mod$deviance

p<-1-pchisq(res.dev,mod$df.residual)

cat(c(res.dev,p),file="likelihood.txt","\n",append=T)

# cat(c(dev,p.val,res.dev,p),file="like.txt","\n",append=T)

}) # end of like calculation function

likelihood<-as.matrix(read.table("likelihood.txt")) # read the ourput

file.remove("likelihood.txt")

p<-likelihood[,2]

powerd<-sum(ifelse(p<0.05,1,0))/B
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Appendix E

R Code for Implementing the Power
Calculations for Poisson Model

source("functions.r")

n<-50 # number of samples (dial settings)

k<--3

l<-3

set.seed(2250)

x<-runif(n,k,l) # x vales from Uniform[0,1]

xs<-sort(x) # sorted x values

grid2<-gridp(1,12,k,l,1)

Z<-matrix(rep(c(1,0,1,0,1),c(17,n,23,n,10)),n,3) # maximin[[156]]

betav<-c(5,-0.5)

s.vec<-seq(0,10,by=2)

powerf<-sapply(1:length(s.vec),function(k)
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{

s<-s.vec[k]

# proposed (null) model

eta.n<-cbind(rep(1,n),xs)%*%betav #linear predictor for proposed model

mu.n<-exp(eta.n) # mean

V<-diag(as.vector(mu.n))

# altrenative (full) model

betai<-sqrt(n)*(basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V)))

v<- betai/mu.n

eta.f<- eta.n + s*v

mu.f<-exp(eta.f)

# set.seed(6745)

B<-500

Y<-matrix(rpois(n*B,mu.f),n,B)

like<-sapply(1:B,function(j)

{

yi<-Y[,j]

mle<-sapply(1:(length(grid2)),function(i) #finding beta which maximizes

the likelihood

{

betavec<- grid2[[i]]

eta.n<-cbind(rep(1,n),xs)%*%betav #linear predictor for proposed model

mu.n<-exp(eta.n) # mean
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V<-diag(as.vector(mu.n))

betai<-sqrt(n)*(basis(ppo(Z,V)-ppo(ppo(Z,V)%*%tm(xs,V),V)))

v<- betai/mu.n

logl.n<- sum(yi*eta.n-mu.n)

s1<--1e+2; s2<-1e+2

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02) eta.f1[a]

<-7.08e+02}

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02) eta.f2[a]

<-7.08e+02}

mu.f1<-exp(eta.f1)

mu.f2<-exp(eta.f2)

fs1<-sum((yi-mu.f1)*v)

fs2<-sum((yi-mu.f2)*v)

if (fs1<0) # finding a positive f(s1)

{

while (fs1<0)

{

s1<-s1-1

eta.f1<- eta.n + s1*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02)

eta.f1[a]<-7.08e+02}

mu.f1<-exp(eta.f1)

fs1<-sum((yi-mu.f1)*v)
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}

}

if (fs2>0) # finding a negative f(s2)

{

while (fs2>0)

{

s2<-s2+1

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02)

eta.f2[a]<-7.08e+02}

mu.f2<-exp(eta.f2)

fs2<-sum((yi-mu.f2)*v)

}

}

s1.new<-(s1+s2)/2

while (fs1>1e-5 & fs2<(-1e-5))

{

s1.new<-(s1+s2)/2

eta.f1<- eta.n + s1.new*v

for (a in 1:length(eta.f1)) {if (eta.f1[a]>7.08e+02)

eta.f1[a]<-7.08e+02}

mu.f1<-exp(eta.f1)

fs1<-sum((yi-mu.f1)*v)

if (fs1>0)

{

s1<-s1.new

}
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if (fs1<0)

{

s2<-s1.new

eta.f2<- eta.n + s2*v

for (a in 1:length(eta.f2)) {if (eta.f2[a]>7.08e+02)

eta.f2[a]<-7.08e+02}

mu.f2<-exp(eta.f2)

fs2<-sum((yi-mu.f2)*v)

eta.f1<- eta.n + s1*v

mu.f1<-exp(eta.f1)

fs1<-sum((yi-mu.f1)*v)

}

}

eta.f<- eta.n + s1.new*v

logl.f<- sum(yi*eta.f-exp(eta.f))

cat(c(betavec,s1.new,logl.f,logl.n),file="result.txt","\n",append=T)

}) # end of mle calculation function

results<-as.matrix(read.table("result.txt")) # read the ourput

file.remove("result.txt")

maxl.f<-max(results[,4])

maxl.n<-max(results[,5])

posi.f <-match(maxl.f,results[,4])

mle.f<-c(results[posi.f,1:3])

mle.f
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posi.n<-match(maxl.n,results[,5])

mle.n<-c(results[posi.n,1:2])

mle.n

cat(c(mle.f,mle.n,maxl.f,maxl.n),file="likelihood.txt","\n",append=T)

}) # end of like calculation function

likelihood<-as.matrix(read.table("likelihood.txt")) # read the ourput

file.remove("likelihood.txt")

llr<--2*(likelihood[,7]-likelihood[,6])

power<-sum(ifelse(llr>=qchisq(0.95,1),1,0))/B

power

print(power)

}) # end of power calculation function

cbind(s.vec,powerf)

plot(s.vec,powerf,type="b")
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