/kECHANICAL TRANSLATION OF SOFTWARE REQUIREMENTS SPECIFICATIONS:
FROM ENTITY-RELATIONSHIP-ATTRIBUTE TO WARNIER-ORR/

by ot

DONALD E. WOLFE

B.S., The Ohio State University, 1877

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Depatment of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Appr veﬂ by:

@//%é%z

Na“or Professor

NO HEEEO S

—_——

B
F o
(!Q

=<
®

CONTENTS

o~
Mg

hpter One....l...............

Lo VLR SN

- . L] -

| Allz202 555454_

® & & % % 9 8 B S v e e E

& & 8 5 0 a0

INtroduUCtioN.e.ieeresceccsssscsssssescnosscsssasns
Definitions and ReStrictionS..ceecesccss
LIteratiure ReVIBWsess s s s pona i s oma®s
Summary in Relation to the Literature..........

hapter TWOI'...'ID.Ql...l"ll...-l..'.......‘...lll
.1 RequirementsS......oeecesceccnssssancccns

2.2 DeSign D'ECiSions..lll..l..ll...lll.lll....llll.

Chapter Three....lﬂtﬂl.'ll.l....I..IIIII'.II.
3.1 Design Overview..... e T InTr e

3.2 Hierarchy DiagramS...ceseeacsesccssssses

3.3 Data StructureS.ecceeseess b Rl R SR e

Chapter FOUF.vcatecanacncanncnaa

lllll * % s e 88 o8 p

s 88 s a0

4.1 Implementation.||uiloillllotll..oo...t... ------

8.2 TeStING.essvewsnswsonamesss

Chapter FiVe.cessocsassssnssoss

-------- e s s s 0w

5.1 COHClUSiQﬂS.-.----.--cuu--uc--o-...o-o....-----

5.2 Possible Extensions.......

* o 5 5 008 088w

Appendix A -- Process-language BNF
Specification..l‘....................Ill.ll...ll..'-

Appendix B -- User's Manual....

Appendix € == SoUrce COOe: s wsvesvisas os oo o

Referencesullo'.'.......l..lo..

39
36
41
58

Figure
Figure
Figure
Figure

Figure

LIST OF FIGURES

Masters-project WO-diagram..eeeeeecocsacsscas
ERALTT WOSCLAGYEM . s sow wow w0 w08 508 500 400 978 90 009 w0 W06 0
PLorder WO-diagrame.scevescesenasnssnnansannnss
HOedit WO=GLagraliee s v s s sw 5w w8 » @ $78 570 508 5

WOOUt wo_diagrami'I-obtoa.-.ohl.ao".--vttllo

-ii_

20
21
22
22
23

1., Chapter One

1.1 Introduction

The generation of software from reguirements specifications
with absolute fidelity to those specifications 1is an
important goal of software engineering. Other goals such as
increasing productivity or improving the man-machine
interface are also worthwhile, but they must be viewed as
strictly secondary to the goal of providing correct answers
to data processing problems, In order to be able to
engineer the correct solutions consistently, the discipline
is increasingly turning to the computer 1itself to help
manage software generation. Certainly a major factor behind
this is the fact that the proklem has consistently proven
itself to be beyond our unaided ability to solve. Software
engineering would benefit greatly 1f programs could be
generated directly from requirements specifications in the
same way that compilers generate machine instructions from

today's high-level languages.

To the extent that program generation can be automated,
software engineering will be freed from its current
preoccupation with managing the software "production 1line"
and allowed to address its other pressing concerns.
Automatic programn generation from reguirements

specificaticns 1s thus a legitimate and important goal of

software engineering. This goal immediately establishes a
common cencern between software engineering and the
automatic programming (AP) subfield of artificial

intelligence. ‘%’

Unfortunately program generation from unconstrained
requirements specifications 1is not yet feasible due to
various reasons, most notable of which is the fact that we
simply cannot yet describe in suitable detail the thought
processes that go into creating algorithms. Some progress
has been made by workers in AP, but they are still woefully
short of software engineering's goal. The current state of
the art in AP depends on the constraints that one is willing
to accept -- whether the starting point in the program
generation process 1is a very high level language (VHLL)
specification '*! or a natural language problem statement,
whether the AP system must be fully generalized or if it may
be limited to a specific problem area, etc. The programs
that can be automatically generated today by completely
general AP systems (pattern-matching algorithms for example)
are still almost toys compared to the programs that software
engineering reqguires. The programs that can be generated by
more restricted knowledge-based systems are more
sophisticated, but étill inadequate from software
engineering's viewpoint. On the other hand, software

engineering does not yet appear to understand the problem of

designing systems well enough to benefit from sophisticated
algorithm generators even if they were available. Hopefully
a mutually beneficial synergy will result between these two

fields in the future.

Mechanical translation of reguirements specifications 1is a
useful intermediate goal from scoftware engineering's
viewpoint since it gives the user additional tools with
which t¢ control the software generation process. This
pragmatic justification by itself is certainly sufficient to
warrant additional work in this area. The "horror" stories
that appear in various trade magazines attest to the urgent
need for improved tools to help manage software generation.
Any mechanical aid that would help reduce the occurrence of
missed deadlines and delivered products that don't satisfy

the user's requirements would be of real benefit.

As a useful side effect, mechanical translation of
requirements specifications would also aid the ultimate goal
of automatic programming by high-lighting the 1issues that
must be addressed before that will become possible. The
sheer number of competing methodologies illustrates the fact
that we don't yet really know the best way to turn a
regquirements specification into software, or even the best
way to create the specification in the {first place.
Howden's survey '?’ for example 1lists seven different

reguirements methodologies and nine different design

methodologies -- without being exhaustive. Perhaps there
isn't a "best” way to deal with software specifications.
Perhaps some methodologies are better than others for a
certain class of problems while others are more appropriate
for a different class, just as some programming languages
are more appropriate than others in a given situation.
Hopefully the effort required to create software capable of
transforming requirements specifications into design
specifications and design specifications into software will
help to clarify what advantage (if any) a given methodology

has when compared with the others.

The goal of this project was to translate an Entity-
Relationship-Attribute (ERA) requirements specification into
a Warnier-Orr hierarchical design specification. ERA was
selected as the source specification primarily because it
fit in with several other Masters' projects being worked on
at the same time., Warnier-Orr was selected as the target
specification primarily because of perscnal preference; in
an earlier software engineering course it had impressed me
as the methodology that would have been most Appropriate for
dealing with business data processing problems, i.e. input-

output intensive file/data-base processing programs.

1.2 Definitions and Restrictions

The term "requirements specification" will be used in this
paper to mean the specification of a computational process
in terms of what the end-user reguires, while the term
"design specification" will be wused to mean the more
detailed specification of a process in terms that reflect
how the process will actually be implemented so as to
accomplish the goals of the requirements specification.
Normally any reference as to "how" a goal 1is to be
accomplished is inappropriate in a reguirements
specification. For example, a requirements specification
may legitimately specify that an output file should be
ordered based ~on a specified key, but it would be
inappropriate for it to specify the sorting algorithm to be
used. Similarly, a requirements specification should
specify the input and output characteristics ¢f a process,
but it 1is inappropriate for it to specify the format (or
even the existence) of any intermediate data that may be
necessary for the process. Having stated this rule, it is
now conceded that there are occasionally cases when a
requirements specification may legitimately specify . details
of how a process is to be implemented; these special cases
arise when the reguested process will be embedded into an
existing system. Excessively detailed reguirements

specifications are to be avoided for the practical reason

that they will constrain the design specification
unnecessarily, and pessibly prevent the achievement of the

best solution to the problem being addressed.

The Entity-Relationship-Attribute specification that was
defined to be the input to this project requires some
additional explanation. To begin with, there 1is no such
thing as an Entity-Relationship-Attribute methodology in the
sense that there 1is a Warnier methodolcgy; the ERA
specification referred-to above and through the remainder of
this paper is simply one instantiation of a specification
that might be derived by appealing to the concepts
associated with the "Entity-Relationship"” mode of thought.
This approach derived originally from attempts to abstract
database models (and is still most active in the database
area), but is now beginning to be applied in other areas.
The basic concept is extremely general, simply that any
system can be described as a collection of entities (and
associated attributes) together with their relationships to
other entities. The specification that served as input to
this project was simply a definition of a computational
system where the entities were defined as computational
processes (Activity) and data items {Input, Output,
Input/Output) and the relationships were the connections
between them. Comments about the ERA specification are in

reference to this particular instantiation. There are

doubtless many other "ERA" specifications that are equally
valid from a theoretical standpoint and that may be either

better or worse than this one based upon the standards of

evaluation used in this paper.

The selection of Warnier-Orr as the target methodology
suggested that the range of preblems to be dealt with be
somewhat restricted. Warnier's methodology specifically
addresses itself to programs for manipulating files of
records as opposed to non-record oriented programs, e.g.
operating systems. While this methodology could be
stretched to cover applications other than file/data-base
processing, these other types of problems are not its
"natural" realm. Discussions and subjective evaluations 1in
this paper will all be in the context of appropriateness to
file/data-base processing, which is where the Warnier-Orr

methodology is most suitable.

1.3 Literature Review

Manna and Waldinger's article ‘?) attempted to illustrate the
current capabilities of the automatic programming effort by
first discussing general techniques, and then applying them
in the context of a program synthesizer that they are
developing. The sample programs they 1included in their
article dealt with sets and operations thereon, had only a

small amount of intrinsic knowledge about the problem

domain, and worked with a VHLL input styled somewhat like
the Kent Recursive Calculator. Their approach relied
heavily on the reasoning ability of the program synthesizer
since it incorporated very few heuristics about the problems
to be solved. They concluded, "We hope we have managed to
convey ... the promise of program synthesis, without giving
the false 1impression that automatic synthesis is likely to

be immediately practical."

Given the obvious superficial similarity between this
project as a specification-transformation and the program-
transformation approach to AP, one might hope for some help
from that area. Unfortunately Partsch and Steinbruggen's ¢ <’
survey of work in this specific area indicated that no one
is currently investigating the program-transformation
approach to the class of programs that this project is
concerned with. Virtually all of the work surveyed dealt
with either neon-numerical functions written in LISP (in one
of its various incarnations) or matrix-processing programs

in FORTRAN or Pascal.

Barr and Feigenbaum's discussion of automatic programming ¢!°?
indicated that while a fully generalized AP system may not
be feasible in the near future, suitable restricticn ¢f the
problem domain may make specialized systems realizable. Of

particular interest was Protosystem I, an automatic-

programming system being developed at the M.I.T. Laboratory

for Computer Science. This system 1is reported to be
currently capable of generating reasonably optimized PL/1
programs and the associated IBM 0S5/360 Job Control Language
statements for input/output intensive batch-oriented
problems. The current input to this program generator 1is

the program statement in a very high level language, SSL.

Hammer and Ruth ‘®’ provided an evaluation of automatic
programming today by comparing and confrasting the two
paradigms of VHLL and knowledge-based systems. Beyond the
discussion of AP capabilities however, they also pointed ocut
the very real benefits that this research will have for
other areas of computer science (such as software
engineering). Some of these benefits include the
development of improved specification languages (as a result
of better understanding exactly what must be specified), a
better understanding of the programming process itself, and

a more rigorous taxonomy of reasonable program structures.

The generality of the Entity-Relationship methodology (as
well as its strong attachment to the data-base discipline)
was illustrated by the papers presented at the International
Conference on Entity-Relationship Approach to Systems
Analysis and Design. Teichroew et al (¢’ asserted that their
Problem Statement Language was based on the concepts of
entities, relationships, and attributes, and then reported

on a preoject aimed at medeling various design methodologies

(including Warnier's) in PSL. Solvberg ‘’’ attempted to show
that the Entity-Relationship approach could be used to
attempt to harmonize different world-views rather than
forcing different groups to compromise on a view that was
not totally natural to either cne (for example, the view
that software designers have of the enterprise's information

store versus the view of the user community).

Warnier's two books combined tc¢ enunciate an almost
algorithmic approach for translating a reguirements
specification ("Unit of Achievement"” or UA in his
terminology) into appropriate programs, Logical

Construction of Programs ‘*’ (LCP) dealt with the mechanics

of deriving a program from specified data structures, while

Logical Construction of Systems ‘*’ (LCS) dealt with the

larger questions of the design of optimal bases of data and
systems of programs to deal with an organization's data
processing requirements. It is precisely this concern with
addressing the organization's entire base of data that
Orr ‘*°®) cited as the major advantage the Warnier-Orr

methodology has over its competitors.

Steward ‘!!! attempted to downplay the competing claims of
the proponents of the various design methodologies, and
stressed the common goals and compatibilities of the
different approaches. To illustrate this, he demonstrated a

technique for converting data-flow diagrams into Warnier-Orr

hierarchical diagrams and vice versa. Accomplishment of
this required some notational extensions to both forms,
which had the nice side effect of increasing the usefulness
of each. Warnier-Orr diagrams acquired indicators of the
data elements "moving" from activity to activity -- which
provided a graphic illustration of the extent of coupling in
a given design. Data-flow diagrams acquired control
information indicating when different flows were mutually
exclusive -- which certainly helps to explicate control flow

when this technigue is used.

Griffiths' article '*?’ surveyed seven major methodologies in
an attempt to identify both their immediate usefulness based
upon their existing capabilities and their prospects for

long-term value based upon their fundamental assumptions.
1.4 Summary in Relation to the Literature

Griffiths' evaluation consistently favored the "data-
structured" methodologies of Warnier and Michael Jackson
over their competitors primarily because they derive their
problem solutions (programs) directly from the problem
statement (data). He generally favored Jackson's Structured
Design methodolegy over Warnier's because of its greater
ability to handle the "structure clashes" that occur when
radically different data organizations must be processed

together,. but he remarked, "...it may be wondered,

._12_

especially since the mechanisms used to resolve the
structure clashes are themselves complex, whether the
LCP/LCS emphasis on simple data structures at the system
level -- in MJSD [Michael Jackson Structured Design] terms
the design of the system with the fewest possible structure
clashes -- is not more profitable than the MJSD approach
which, by concentrating on program design is willing to

accept a situation where many clashes have to be resolved."

It should be explicitly noted here that this project does
not implement Warnier's methodology, it merely attempts to
translate an ERA specification into a Warnier-Orr style
diagram. Warnier's methodology by definition wuses the
data's structure to derive the program's structure. As soon
as an ERA specification descends below its uppermost level
where the program’'s global input/output requirements are
stated, it dictates a priori elements of the program's
logical structure which may or may not be 1in harmony with
the program structure that would be obtained by derivation
from its data definitions. This does not however invalidate
this project. On the contrary, the project's handling of
Warnier-Orr style diagrams actually coincides with the
actual usage of this technigue by many practitioners. A
good example of this is Steward's article; he used Warnier-
Orr style diagrams simply to take advantage of their clear

hierarchical structure and largely ignored Warnier's

13.

methodology for their derivation.

Steward's article provided an alternate basis for this
project with its assertion that translations between the
various design methodologies are both possible and
reasonable. As it turned out, the translation between the
two methodologies addressed in this project was relatively
straightforward. The real problems encountered arose when
an effort was made to derive the program control indicators
normally associated with Warnier-Orr diagrams. These
contrel indicators (alternation, iteration, etc.) were not
explicitly given in the ERA Activity description. Neither
could they be inferred from an Activity's data linkages
since no syntax was specified for indicating optional or
mutually exclusive input/output items. This lack is
currently addressed by the provision for post-translation
editing and updating of the design specification, as will be

detailed the the following chapters.
2. Chapter Two

2.1 Regquirements

The first requirement was that of basic functionality; the
system had to read in ERA specifications and produce
Warnier-Orr style diagrams. This reguirement, however, was

not really as straight forward as it scunded. The fact that

this project 1is part of a larger software engineering
research tool meant that its environment would be subject to
change. This is especially true in relation to the ERA
specification itself, which has already undergone several
minor changes during the past year. In order to protect the
system as much as possible from these changes, a minimal
subset of the ERA specification necessary for this project's
purposes was defined and documented (see the User's Manual
in Appendix B) and any unrecognized data in the input text

file is simply passed over without comment.

The second requirement was that the system would run under
the UNIX* operating system, and be written in either C or
Pascal. UNIX was chosen because its currently expanding
popularity combined with its availability on a wvariety of
different computers seems to 1indicate 1its long-term
viability as an operating system. C language was an obvious
candidate because of its association with UNIX, and Pascal
was considered a possibility because of its current
popularity with wvarious academic institutions (including

Kansas State).

The third reguirement was to use the information available

in the ERA specification to impose a suitable structure on

* UNIX is a trademark of AT&T Bell Laboratories

15

the Warnier-Orr hierarchy. Part of the project actually
consisted of defining exactly the subset of the available

information that was appropriate for the purpose at hand.

The fourth reguirement was to maintain a relatively high
degree of modularity so as to minimize the impact of future
changes to the system and/or its input. Given the
prototypical nature of the software engineering tool that
this project is a part of, this was «clearly an important
requirement, It alsc had the benefit of aiding the
development of this project itself. Individual €£functions
could be developed without impacting the rest of the system,
and then integrated with the other functions after testing

and debugging.

The fifth requirement was to provide a simple interface
whereby additional functions could be added to the system at
a future time. This was important due to the severely
limited amount of code that would be generated by any one
individual project. It was hoped that provision of such an
interface might encourage future projects to also use the
same conventions so that ultimately a significant body of

software capable of working together would be generated.

16

2.2 Design Decisions

The first requirement had little real impact on the logical
structure of the system; it merely defined the input and
output. The format of the Warnier-Orr diagram produced by
the system fcllowed the pattern of showing the data-flow
along the branchs of the hierarchy (as suggested by
Steward). Given the nature of an ERA specification, the
data names associated with each Activity were easily
available. Their availability on the hierarchy chart
provided a nice wvisual means of assessing the coupling

present in the design.

All of the modules in this system were written in C-language
in compliance with requirement two, and because C is by
definition available on any computer that runs UNIX while
Pascal 1is not. C also by virtue of its close association
with UNIX has standard access to various system functions,
while the 1interface between Pascal and UNIX is not so well

defined.

The third requirement suggested the creation of a directed
graph to represent the specification, since that would make
it easier to manipulate. The encapsulization of functions
(PLin and PLout) to automatically build the graph from a
text file (and vice versa) made this complex data structure

feasible in spite of the high modularity of the system.

The second, fourth, and fifth requirements combined to
recommend the wuse of a structured text string to pass
information between the various modules in the system. The
wide range of utilities that UNIX provides to support text
files makes them a natural choice for a communication medium

between modules running under it.

The ERA requirements specification has no syntactical
element to indicate either iteration of an Activity or that
an Activity might never occur. Therefore it will be
initially assumed for translation purposes that every
Activity occurs exactly one time. If this is not the case,
then the process-language text must be updated subseguent to
the 1initial processing of the ERA specification. An
interactive editor was written specifically to facilitate

this necessary function.

Since Warnier's methodology seems entirely adequate for
dealing with the class of programs it chooses to address,
this project did not embellish wupon his minimal set of
control structures. In LCP he stated ‘*’, "All programs,
however complex, can be built up by nesting, in hierarchical
order, repetitive and alternative structures." In keeping
with this view, the only control specifications supported by
this system are repetition and alternation, the second of
which automatically implies a repetition factor of "0 or 1

times". Also in line with Warnier's methodology, an

alternative processing path must have Iits alternative
specified (even 1if it 1is a null procedure). This is

analogous to the COBCL formulation:
IF <condition> THEN <action> ELSE NEXT SENTENCE,

The editor function will enforce this by generating a dummy
operator (prefixed with "!") is cases where an alternative

operation does not exist.

3. Chapter Three
3.1 Design Overview

The most salient feature of the design 1is the process-
language text string which provides a central communication
medium for all the modules in the system. 1Its structure is
detailed in a later section on "Data Structures™. It
contains all of the information that the system needs to
generate Warnier-Orr style diagrams for a given

specificaticn.

The internal representation of the process-language is a
directed graph (digraph) consisting of T"operator™ and
"argument" nodes. The digraph's information content 1is
identical to that of the process-language text from which it
is derived. 1Its structure is likewise detailed in the "Data

Structures" section.

The process-language specification is critical since it |is
ultimately intended that the information contained therein
combined with that in the data-dictionary will be sufficient
to fully determine a <correct implementation of the

requirements specification,

"Standard"” function PLin reads the process-language string
from the input file (usually stdin) and builds the internal
operator-argument graph, while PLout converts the internal
graph into process-language texf and writes it to the output

file (usually stdout).
3.2 Hierarchy Diagrams

3.2.1 Overview of the Entire System The system was

originally conceived of as the two modules ERAin and WOout
communicating via the process-language interface. The
module PLorder was added later so as tc relieve the user
from the necessity of having to physically order the ERA
Activities into their logical sequence. The module WOedit
was created to facilitate on-line viewing and updating of
the process-language text in a more user-friendly
environment than that provided by the standard UNIX editor.

This system overview is diagramed in Figure 1.

3.2,2 ERAin This module reads the ERA specification from
standard input and builds operator and argument nodes for

each ERA Activity. It then uses the "subpart_is”

.20

<ERA_specification
-ERALN
(1 time)
>PL_specification

<PL_specification
-PLorder
(1 time)
>PL_specification
<ERA specification
-Masters préject———————=r-
(1 time)
>Warnier-Orr_diagram
<PL_specification
-Woedlt
(0 or 1 times)
>PL_specification

(+)
-1Woedit
<PL_specification
-WOout

{1 time)
>Warnier-Orr_diagram

Figure 1. Masters-project WO-diagram
relationships that were coded to rearrange the operator
nodes. It continues to make passes over the graph
rearranging operators wuntil it makes one complete pass
during which it could not rearrange any operators. It then
writes the specification to standard output via PLout. The

gross structure of this module is diagramed in Figure 2.

3.2.3 PLorder This module reads the process-language
specification from standard input via PLin, which constructs
an appropriate digraph. t then makes one pass over the

graph reordering operator-nodes based upon their input-

21

<ERA_specification
-Read_ERA_specification
(1 time)
>PL_graph

<PL_graph
-mergeoperator
(1 time)
>updated_PL_graph
<ERA_specification
“ERAIn--=-———=====--------
(1 time)
>PL_specification
<updated_ PL_graph
-PLGUL
(1 time)
>PL_specification

Figure 2, ERAin WO-diagram
output arguments. Within each level (a brace encompasses
one level 1in a Warnier-Orr diagram), all operators whose
input is not generated by another operator on that level 1is
moved to the beginning (top) of that level. All operators
whose output is nct consumed by another operator on that
level is moved to the end (bottom) of that level. It then
writes the modified process-language specification to
standard output via PlLout. The gross structure of this

module is diagramed in Figure 3.

3.2.4 WOedit This module facilitates interactive viewing
and updating of the specification. The format of the
displayed information is Warnier—ofr in the same style wused
by WOout, but 1in this case only a "window" covering the
"current" operator and 1its suboperators is displayed.

Commands are supplied to allow the operator to change the

..22_

<PL_specification
-PLin
(1 time)
>PL_graph

<PL_graph
-orderoperators
(1 time)
>updated_PL_graph
<PL_specification
=PLioY der-essm e
(1 time)
>PL_specification
<updated_PL_graph
-PLout
(1 time)
>PL_specification

Figure 3. PLorder WO-diagram
"current" operator, display the current "window", update
repetition counts, indicate alternative operators, and to
update the process-language text on secondary storage. The

gross structure of this module is diagramed in Figure 4.

<PL_specification
-PLin
(1 time)
>PL_graph

<PL_graph
-updatePL
(1 time)
>updated_PL_graph
<PL_specification
=HOEQ it~ =rsr s
(1 time)
>PL_specification
<updated_PL_graph
-PLout
(1 time)
>PL_specification

Figure 4. WOedit WO-diagram

3.2.5 WOout This module reads the process-language
specification from standard input wvia PLin. The prune
function then uses the input parameters (or its defaults) to
break excessively deep operator nestings so that the output
diagram will fit on a page. The recursive function
printoperatorlist then writes the operator-argument digraph
to standard output in the style of a Warnier-Orr diagram,
The gross structure of this module is diagramed in Figure 5.

<argc

<argv_array
-analyzearguments

(1 time)

>columnsperline

<PL_specification

-PLin
(1 time)
>PL_graph
<PL_specification
-WOout—------=——=---—------
(1 time)
>PL_specification
<columnsperline
<PL_graph
-prune
(1 time)

>pruned_PL_graph

<pruned PL_graph
-Write_Warnier-Orr_diagram
(1 time)
>Warnier-Orr_diagram

Figure 5. WOout WO-diagram

3.3 Data Structures

Although it is just a text string, the construction of the
process-language specification is important since it defines
the interface between all modules in the system. The
Backus-Naur-Form syntax for the process-language
specification 1s shown in Appendix A. The basic building-
block out of which the process-language strings are built is
the process-unit, which is strictly analogous to the ERA
Activity (or the data-flow activity node). The process-unit
is comprised of exactly one operator, a variable number of
input arguments, and a variable number of output arguments,
The colon is a reserved character; it is used to separate
the operator's text from it's repetition count. The comma
is a reserved character that is used to separate elements in
the argument lists. The 1left and right parentheses are
reserved characters that are used to group operators and
arguments., The operator and optional arguments are
represented by text strings that do not contain any reserved
characters. These elements are grouped to form process-

units in the following manner:
((<output_args>) <operator> : <#_times> (<input_args>))

1f the repetition count is egual to 1, it and the colon are
omitted. 1f either argument list is empty, the parentheses

enclosing that list are omitted. Note that both of the

...25...

above omissions are optional 1in that the system will
correctly process repetition counts of "1" and null argument
lists., These are merely abbreviations used by the system
when it builds process-language strings. Process-language
text output by PLorder or WOedit will never contain
repetition counts of "1" or null argument lists even if the

original process-language text they read contained them.

Alternation is handled by the creation of a fake Activity
which has all of the alternative Activities as its subparts.
This fake Activity is flagged by a special three-character
segquence that immediately precedes 1its operator. This
seguence consists of an or-bar followed by a two-digit

number, e.,g. "|01".

The process-units are in turn grouped into process-unit
strings by an outer pair of parentheses. A process-unit
string may be preceded by an operator; this indicates that
this string 1is an expansion of the named operator. As an
example of the above rules, consider the following ERA

specification:

Activity : Pl Activity : Pl.1 Activity : P1,2
input : I input : I input : temp
output : Ol output : Q1 output : 02
output : 02 output : temp
subpart_is : Pl.1 Activity : P1.3
subpart_is : P1l,2 input : temp
subpart_is : P1.3 output : 02

ERAin would translate this into the following process-

26

language specification:

(((01,02)P1(1)))
P1(((01,temp)P1.1(1))((02)P1l.2(temp))((02)P1l.3(temp)))

If WOedit subsequently was used tc indicate that Pl.2 and
P1.3 were actually alternative processes (which seems
reascnable from their input/output characteristics), the

process-language specification would then become:

(((01,02)P1(1)))
P1(((01,temp)P1.1(1))(|01P1))
[01P1(((02)P1.2:0 or 1(temp))((02)P1.3:0 or l(temp)))

The operator-argument digraph is the internal representation
of the process-language specification. It is composed of
"operator" and "argument” nodes. The operator-node consists
of two character strings, a counter, and four pointers. The
character strings are named "oprtext" and "oprtimes", and
correspond to the operator and repetition fields of the
process-unit. The count field is named "oproprcount™ and is
the count of suboperators that occur in the expansion of
this operator. Two pointers, ‘"oprnext"™ and "oproprroot",
may point to other operator-nodes; two pointers, "oprinput”
and "oproutput", may point to argument-nodes. The
argument-node consists of one character string corresponding

to the name of the argument is represents, and a pointer

named "argnext" that is used to chain these nodes together,

Each process-unit maps into an operator-node. The operator-
nodes corresponding to the process-units in a process-unit
string are chained into a list by the oprnext field. The
operator-nodes corresponding to the one or more unprefixed
process-unit strings are formed into another 1list (again
chained wvia the oprnext field), and the first of these is
pointed to by a root pointer -- called operatorroot in all
of the modules in the system. Each operator-node points to
the list (if any) that represents its expansion wvia the
oproprroot field, and has the number of operator-nodes in
this list noted in its oproprcount field. If the same
operator occurs more than once in the design and has an
expansion, these separate operator-nodes will point to the
same operatcr-node list to represent that expansion —-- thus
the data structure is a digraph rather than a tree. Each
argument named 1is mapped into an argument-node. Where
multiple 1input or output arguments exist for a given
operator, they are chained into a 1list via the argnext
field. Each operator-node points to 1its associated input
and output arguments via the fields oprinput and oproutput
respectively. The argument-node lists, unlike the
operator-node 1lists, are never pcinted at by more than one
parent operator-node. The operator-nodes corresponding to

the above example would be organized as follows:

._28_

operatorroot --> Pl -=-> 0

!

\Y
P1.1 --> |01P1 --> O
| I
\ Y
0 Pl,2 --> P1.3 --> 0
l |
\Y v
0 0

Recursion is not simulated by the operator-node digraph,
since this structure was specified as having no cycles. The
first recursive invocation points at another operator-node
where oprtext again names the recursive routine, but the
oproprroot field of this suboperator is zero. The
processing module must recognize that recursion has occurred
(if this is important to it) by detecting the reoccurrence
of the same operatornode.oprtext in the path it is tracing.
A specific pointer back to the first instance of the
recursive procedure could be implemented, but this was not
done at this time since there was no clear need for this

facility.
4. Chapter Four

4,1 Implementation

Currently all modules function independently of each other,
but they can be conveniently executed as one entity (except
for WOedit) through the use of pipes. Since the input to

all modules (other than ERAin) and the output of all modules

(other than WOout) is the process-language text string, the
relative ordering and optional inclusion of any individual
module is largely at the user's discretion. If for example
the user did not want PLorder to attempt to order Activities
based upon input/output dependencies, then that module could

simply be left out of the "pipe-chain".

Unlike the other modules in the system, WOedit reads/writes
the PL-specification from/to a text file other than
stdin/stdout. This is because it must use stdin for
communicating with the terminal user. This text file can be
supplied as a parameter when WOedit is invoked; if it is
not, the module will prompt the user to enter the file's

name,

I1f it was necessary for efficiency purposes, the modules
could be easily collapsed together since they all deal with
the same internal data structure, the operator-argument

digraph.

In order to ease maintenance and to facilitate addition of
new functions in the future, all common definitions, data
structures, and functions are located in separate text files
and "#include"d at compile time. Listings of these files
are included in Appendix C. It should be noted that there
are strong dependencies between these files; there are

multiple files just for convenience and not because each

file is logically self-contained. Inclusion of "structures”
requires the inclusion of "defines", inclusion of "PLin"
requires the inclusion c¢f "defines", "structures", and

"functions", etc.

An effort was made to insure that the system would be
portable to other UNIX environments. All character data is
coded in its graphic form so that recompilation should
correct for whatever internal representation is used on a
given machine (ASCII, EBCDIC, etc.). 2ll modules were
screened by the "lint" utility, and most of its complaints
were resolved. Those remaining are not easily resolved and
are probably not critical, such as the complaint when malloc
is called to obtain storage for a structure rather than a
simple character string. This warning is issued in spite of
the fact that a cast is used when the returned pointer 1is
assigned to a pointer variable, and that the number of bytes

requested is determined by an appropriate "sizeof".
4.2 Testing

Testing of the system consisted of running specifications
for wvarious types of programs through the system. It was
noted that the implementation was not especially robust when
some types of input errors were encountered, but since the
task of editing the BERA specification was explicitly

assigned to another project being developed at the same time

this was not viewed as & significant failing.

The "standard” chess specification worked correctly,
although the output was of limited utility due to the lack
of a perceptible structure in that specification. A
specification of an actual batch accounting system provided

more useful output.

The hierarchy diagrams included in chapter three of this
report were generated using this system. One modification
was made to the original output produced by the system in
the case of the diagram for WOout. This was to reverse the
order of the suboperators "PLin" and "analyzearguments" to
reflect their seguence in the actual code. Actually these
two functions are completely independent and their order of
execution 1is arbitrary, so the diagram produced by the

system was equally correct.

5. Chapter Five
5.1 Conclusions

This project has satisfied all of its initial requirements.
It reads 1in ERA requirements specifications and generates
Warnier-Orr style design reguirements based upon them. The
system 1is written in C and runs under UNIX. The system can
infer some before-after ordering rules from input-output

linkages and apply them to the generated Warnier-Orr diagram

if desired. The system is highly modular, both externally
(where each major function resides in a separate module) and
internally (as exemplified by the common modules PLin and
PLout). An interface has been provided to facilitate future
enhancements of the system, namely the process-language text

as a common medium of communication between functions.

Beyond satisfying the basic reqguirements, additional
functions have been implemented through the WOedit module.
This module provides for reasonable on-line viewing of the
potentially large Warnier-Orr diagrams through its "window"
display. It also provides a way for the user to provide
iteration and alternation notations even these could not be

reasonably inferred from the ERA specification.

If agreement could be reached on the exact semantics of some
of the currently unprocessed keywords in the ERA
specification, they might allow additional structuring of
the process-language. One example of this is the entity
"Periodic_function". 1In the sample specification that we
were given as a reference point it was used to represent twoe
very different kinds of processing; in one case it
represented an activity that was triggered by an event
totally asynchronous to the system (timer interrupts} while
in the other case it was triggered by data flows within the
system (a function often referred to as a "demon" 1in the

literature). Asynchronous events do not seem to fit

smoothly into Warnier's methodology, but demons are data
driven processors and certainly could be incorporated.
Demons should either be coded as Activity entries or (if it
is felt that their role is really different than that cf the

Activity) a new type of entry should be created.

A method £for specifying more information about the
conditions governing control and/or data flow would allow
more structuring of the Warnier-Orr diagram by ERAin, While
it may be undesirable to inject too many formal requirements
into the ERA syntax, it does seem reasonable that at the
regquirements stage the requestor of the system should
indicate if some outputs were mutually exclusive. Optional
inputs and outputs to processes are so common that a method
for indicating that an input is not required or that an
output might not be generated should be formally
incorporated into the ERA syntax. In ERA'S present
definition this information could admittedly be tacked onto
the specification in the free-format text of "Assertions",
but this does not seem satisfactory for such an important

piece of information.

5.2 Possible Extensions

One easy extension would be to provide modules to translate
between data-flow diagrams and the process-language text.

The mapping between the two is almost trivial; the only

_34.—

interesting thing here would involve the actual data-flow
format. Perhaps a useful interface to a graphics device

could be implemented.

A more ambitious extension would be to use a data-dictionary
to infer additional (not specified in the ERA input)
activities, and to insert them into the process-language
stream. This offers the opportunity to begin to utilize
Warnier's methodology in earnest. The procedures outlined
in LCP offer some guidance in how this should be dorne. Each
field in the output file would give rise to a process-unit,
These precess-units would be gathered together as an
expansion of a higher-level operator reflecting a logical
record or a subset thereof. After this process-unit pyramid
has been expanded to encompass the entire output file, it
should be possible to integrate this with the superstructure
created by the ERA input file. The most obvious problem
would be the guestion of how to deal with mismatches between
the program structure derived from the data-dictionary and
the program structure specified in the ERA input. One could
take the attitude that such a mismatch indicated an bad ERA
specification, but it is not clear that this is always the
case, At the very least, such a project would be
instructive in the relative merits of the different

methodologies.

6. Appendix A -- Process-language BRF specification

<process_text> ::= <process_string>

| <process_text><process_string>
<process_string> ::= (<process_unit>)

| <operator_text>{<process_list>)
<process_list> ::= <process_unit>

| <process_list><process_unit>
<process_unit> ::= (<operator>) | (<output_args><operator>)

| (<operator><input_args>)

| (<output_args><operator><input_args>)
<input_args> ::= (<argument_list>)
<output_args> ::= (<argument list>)
<argument_list> ::= <argument> | <argument>,<argument_1ist>
<argument> ::= <text_char> | <argument><text_char>
<operator> ::= <operator_text>

| <operator_text>:<repetition>

<repetition> ::= <text_char> | <repetition><text_char>

<operator_text> ::= <text_char> | <operator_text><text_char>

<text char> ::=2 | B| C|D|E|F|G|H|I|J]|K
|L{M|N|[O[P|Q|R|S|T]|]U]|YV

|wlx]Y]z]alblc|]alel]ltf]g

36

7. Appendix B —- User's Manual
7.1 ERA Syntax

Since a Backus-Naur-Form specification of the ERA syntax was
generated and used by several different people engaged in
various projects centering around this type of
specification, it 1is assumed that the reader has access to
this document., This appendix will merely document any non-
obvious assumptions made by ERAiIn in its processing of the

input specification.

ERAin's parser delimits input strings using the normal OUNIX
definition for T"white space*, i.e. Dblanks and new-line
characters. Commas and colons are reserved characters and
may not be embedded in any character string that will be

processed by this system.

The keywords recognized by ERAin are follows:

Activity : The character string following this keyword is
used as the name of the appropriate process-
language operator. No repetition field is
appended, so it defaults to "1 time",

input : The character string following this keyword is
assumed to be an input argument of the preceding
Activity.

output : The character string following this keyword is

assumed to be an output argument of the preceding

_3?....

Activity.

subpart_is : The character string following this keyword |is
assumed to be the name of an Activity that is
defined as a sub-activity of the preceding
Activity. An operatornode will be built for the
named sub-activity even if it 1is not formally

named by another Activity keyword.
7.2 Ezxecuting the System

7.2.1 ERAin This module has no command-line arguments. It
simply reads the ERA specification from standard input and
writes the process-language specification to standard

output.

7.2.2 PLorder This module has no command-line arguments.
It simply reads the process-language specification from
standard input and writes the modified process-language

specification to standard output.

7.2.3 WOedit This module facilitates the interactive
editing of the process-language specification. You may
specify the file name where the process language text exists
as a parameter on the command 1line, e.g. T"WOedit
<filename>". 1If you do not, it will prompt you to enter the

file name as soon as it begins to execute.

Currently implemented commands are as follows:

alternate (abbreviated "a") reguires two arguments which are

display

the names of the two nodes that are to be made
alternatives to each other. If there is no second
node (i.e., one procedure is optional, but there is
no alternative processing when it is not wused) the
second argument 1is entered as "!". 1In this case,
WOedit will create a dummy alternative procedure

with a name that is the name of the first operator

prefixed with a "!".

(abbreviated "d") reguires no arguments. It
requests WOedit to display the "window" consisting
of the current operatcr and 1its sub-operators (if

any).

goto (abbreviated "g") requires one argument which is the

name of the operator that 1is to be made the
"current" operator. WOedit will search the operator
graph below and lateral to the "current" operator,
if it cannot find the named operator a diagnostic
message will be issued and the first operator in the
graph (the root operator) will be made the current
operator. The épecial argument "root" may be used

to return to the graph's first operator.

Quit (abbreviated "Q") requires no arguments, It reguests

WOedit to terminate immediately without updating the

39

process text file.

repeat (abbreviated "r") requires one argument which is the
text string that is to be inserted in the repetition
field of the current operator. A maximum of eight

characters is allowed.

switch (abbreviated "s") requires two arguments which are
the names of the two suboperators cf the current

operator that are to be interchanged.

write (abbreviated "w") requires no arguments. It reguests
Woedit to terminate after writing the updated
process language text back to the file that it was

originally read from.

7.2.4 WOout This module allows the use of run-time
parameters to specify the dimensions of the Warnier-Orr
diagram that it will write. The option "-c<number>" allows
the wuser to specify the width of a column on the output
diagram. The opticn "-l<number>" allows the user to specify
the width of the page the output diagram will be printed on.

Column-width defaults to 32 and page-width defaults to 132,

7.2.5 Process-chaining Since standard input and standard

output are wused exclusively for all modules except for
WOedit, it will often make sense for the user to connect

these processes via pipes. The following command structure

40.

is one that the author has found useful in testing:
cat <era.file(s)> | ERAin | PLorder | tee <pl.file> | WOout

This produces (on standard output) a listing of the
Warnier-Orr structure obtained from the input ERA
specification(s) and leaves a copy of the process-language
text in <output.file> where it may be subsequently edited

via WOedit if necessary.

8.

#def ine
#def ine
#def ine
¥aef ine
=~def ine
#def ine

Appendix C -- Source Code

ARGUMENTSTRING 32

FALSE O
MAXSTRING 32
OPERATORSTRING

TRUE 1

struct operatornode {
struct operatornode
struct operatornode
struct argumentnode
struct argumentnode
short oproprcount;
unsigned PLoutflag
unsigned WOouifiag
unsigned waspruned
unsigned i1sbranch :
char oprtext[OPERATORSTRING+1];
char oprtimes[OPRTIMESSTRING+1];

¥3

struct argumentnode {
struct argumentrnode *argnext:
char argtext[ARGUMENTSTRING+1];

T

32
CPRTIMESSTRING 8

*oprnext;
*oproprroot;
“oproutput;
*oprinput;

13
: |
1

1:

defines

structures

functions

struct operatornode *obuildoperatornode ()

{ struct cperatornode *newopr;
newopr = {struct operatornode *) malloc{sizeof(struct operatornode});
newopr->oprnext = newopr->aproprroot = O;
newopr->oproutput = newopr->oprinput = O;

nawopr->PLoutflag = newopr->Wloutflag = newppr->waspruned = newopr->isbranch

newopr->oprtimes[0] = ‘1’ ;
newopr->oprtimes{ 1] = newapr-soprtext[C] = “\o’;
return(newopr);

1
deleteoperatornode (root, victim} Struct operatornode **root, **victim;

if (=*root == *victim) {
*root = (*victim)->oprnext;
free(>victim);
*yictim = 0

b
else |
Struct operatornode *scanpcinter = *root;
while (scanpointer->oprnext != =*victim) scanpointer = scanpointer->oprnext;

scanpointer->oprpext = (*victim)->oprnext;
free(*victim);
*victim = scanpointer;

e

}

mergeoperator (candidate,thisoperator) struct operatornode *candidate, *thisoperator;

{ int mergecount = O;
do

if {candidate != thisoperator && candidate->oproprroot != thisoperator)

if {thisoperator->oproprroot)

mergecount += mergeoperator(candidate, thisoperator->oproprroot}:

else if (Istrngdif(thisoperator->oprtext,candidate->oprtext))
thisoperator->oproprroot = candidate->oproprroot;
thisoperator->oproprcount = candidate->oproprcount;
if (!thisoperator->oprinput)
thisoperator->oprinput = candidate->oprinput;
if (!thisoperator->pproutput)
thisoperator->cproutput = candidatz->oproutput;
mergecount++;
}
} while (thisoperator=thisoperator->oprnext):
return(mergecount);

strngcpy (si1, s2) /* string copy function =/
char *s1, *s2; /* copies s2 into st =/
{ while {(*st++ = *g52++) . }

strngdif (s1, s2) /* string_difference function */
char =*s1, *s2; /* returns <0 if s1<s2, O if si==s2, >0 if si»s2 =*/
{
for (; *s1 == *s2: si+4, g2++)
if (*g1 == *\Q‘) return(C);
return{*ct - *52};

SE;

PLin

struct operatornode *PLin (file) FILE *file;
{
/* written by Donald E. Wolfe:; June 1984 */
siruct cperatornode *thisoperator=C, =lastmainopr=C, *lastsubopr=0, =*operatorrooct=0;
int ¢ = 0, mergecount;
while (c 1= EOF) {
int i = ¢, level = Q;
char string{MAXSTRING+1]1;

while (c != EDOF && level == CJ {
switch (c = getc(file)) {
case "(’:
string[i] = '\D’; .

thisoperator = buildoperatornode(};
if (operatorroot) lastmainopr = lastmainopr->oprnext = thisoperator;
else Tastmainopr = operatorroot = thisgpetrator:
strngepy(thisoperator->oprtext,string};
level = 1;
case 'Q:
i =0
case ' ‘:
string{i]l = * ’;
break;
default:
if {i<MAXSTRING) string[i++] = c;
}
}
while (¢ != EOF && level) {
switch (c = getc(file)) {
struct argumentnode =currentarg;

case ‘[‘:
level++;
stringli] = ‘\O’;
if (level == 2) {

thisoperator = buildoperatornode();

if (lastmainopr->oproprroot)} lastsubopr->oprnext = thisoperator;
else lastmainoor->oproprroot = thisoperator;

lastsubeopr = thisoperator:

lastmainopr->oproprocount++;

else if (string[0] == ’:’) strngcpyl(thisoperator->cpriimes,string+1):
else if (string[Q] '= ¢ ‘) strngcpy(thisoperator->oprtext,string);
io= 0:
string[0] = '\O’;
break:
case *)’:
level--;
case ‘', ’:
strirngli] = N0’
if (stringl0] != "\C’)
if {level >= 2) { struct argumentnode *newarg;
newarg={siruct argumentnode *) malloc{sizeof(struct argumentnodel);
newarg->argrext = 0;
strngepy(newarg->argtext,stringl;
if (thisoperator->oprtext[0] == ‘\0’')
if (thisoperator->cproutput) currentarg->argnext = newarg;
else thisoperator->gproutput = newarg:
else if {thisoperator->oprinput} currentarg->argnext = newarg;
else thisoperator->oprinput = newarg;
currentarg = newarg;

L

else if (strina{C]l==-:.’') strngcpy(thisoperator->oprtimes,.string+1);
else strngcpy(thiscperator->oprtext,string);
i = 0
stringl[0] = ‘\O’;
preak;
case ‘'’
stringli] = ‘\Q";
strngcpy(thisoperator->oprtext,.string);
L
default:
strang[i++] = c;

~

1
}
for (thisoperator=operatorroot; thisoperator; thisoperator=tnisoperator->oprnext)
if (thisoperator->oprtext[{0] == ‘\0‘) |{
strngcpy(thisoperator->oprtext, thisoperator->oproprroot->aprtext);
strngepy(thisoperator->oprtimes, thiscperator->oproprroot->cprtimes);
thisoperator->oproutout = thisoperator->cproprroot->oproutput;
thisoperater->oprinput = thisoperator->oprcprroot->oprinput;
thisoperator->oproprcount = thisoperator->oproprroot->oproprcount;
lastsubopr = thisoperator->oproprroot:;
thisoperator->oproprroct = thisoperator->oproprroot->oproprroot;
free(lastsubopr);
}
do {
mergecount = 0O;
for (thisoperator=operatorroot; thisoperator;
thisoperator=thisoperator?thisoperator->oprnext:operatorroot) {
mergecount += ¢ = mergeoperators(thisoperator,operatcrroot);
if (c) deleteoperatornade(&operatorroot,&thisoperator);
5
J
} while (mergecount);:
return(operatorroot);

PLout

PiLout (file,operatorroot,recursivecall)
FILE *file; struct operatornode *operatorroot; int recursivecall;
{
/= written by Donald E. Wolfe; June 1884 =/
struct operatornode =thisoperator;
struct argumentnode *argument;
do {
if (!'recursivecall)} {
fprintf(file,"\n((");
if (argument = operatorroot->oproutput) {
fprintf(file,"(%s".argument->argtext):
wnile (eargument=argument->argnext)
fprintf(file," %s" ,argument->argtext);
fprintf(file,")");
F
fprintf(fiie, "%s",operatorroot->oprtext);
if (operatorrgot->oprtimes{0] != “1’)
fprintf(file,": :%s",operatorroot->oprtimes’;
if (argument = operatorroot->oprinput) {
fpraintf(file, "(%s",argument->argtext);
while (argument=argument->argnext)
fprintf(file,", %s" , argument->argtext);
fprintf(file,")"};
}
fprintf(file,"))");

if ((thisoperator=operatarrcot->oproprroot) && 'thisoperator->PLoutflag) {
fprintf{file, "\n %s(",operatorroot->oprtext):
do {
fprintf(file,"(");
if (argument = thisoperator->oproutput) {
fprintf(file, "(%s".argument->argtext):
while (argument=argument->argnext)
fprintf(file,",%s" . .argument->argtext);
fprintf(file,")");
A
4
fprintf(file,"%s", thisoperator->oprtext);
if (thisoperator->oprtimes[(Q] !'= “1’)
forintf(file,":%s",thisoperator->oprtimes);
thisoperator->PLoutflag = TRUE;
if {argument = thisoperator->oprinput) {
fprintf(file, " (%s",argument->argtext):
while (argument=argument->argnext)
fprintf(file, ", %s" . argument->argtext);
ferintf(file,")");
}
Fprintf(file,")");
} while (thisoperator = thisoperator->oprnext);
fprintf(file,")");
PLout{file,operatorroot->oproprroot,recursivecall+1t);

S\

Pl
} while (operatorroot = operatorroci->oprnrext);

#include "stdio.h"

#include "defines"
#include “"structures"
#include "functions"
#include "PLout"

addargument {currentoperator, ioflag) struct operatornode *currentoperator; char ioflag;
{ struct argumentnode *newarg, *temppointer;
newarg = (struct argumentnode *) malloc(sizeof(struct argumentnode));

newarg->argnext = 0:
getstring(newarg->argtext, ARGUMENTSTRING) ;
if {(ioflag == 'i’) if (temppointer = currentoperator->oprinput) <
while (temppointer->argnext != Q) temppointer = temppointer->argnext;

temppointer->argnext = newarg:

else currentoperator->oprinput = newarg;

else if {temppointer = currentoperator->oproutput) {
while (temppointer->argnext != Q) temppointer = temppointer->argnext;
temppointer->argnext = newarg;

else currentoperator->oproutput = newarg;

}

getstring (string,limit) char string[]; int limit;
{ int c, 1 = 0;
while ({c = getchar()) == ¢ 7);
while (1) {
switch(c) {
case ‘' ':
case ‘0Q:
stringli]l = ‘\O’;
return;
default:
if (i < 1imit) string[i++] = c;

Lt

c = getchar();
}

main () {
/* written by Donald E. Wolfe: June 1984 */
struct aoperatornode *currentoperator=0. *currentsubopr=0, *operatorroot=0;
int c = O, chainsmerged, i = O;
static char Activity{] = "Activity®, input[] = "input",
cutput{] = “output®., subpart_is[] = “"subpart_is*;
char string[MAXSTRING+1];
for (i=0; i<MAXSTRING; i++) string[i] = ‘x’;
string[MAXSTRING+1] = *\O’;
i = 0;

while (c != EDF} {
c = getchar(};
switeh (c) {
case ‘:':
string[il = *'\O’;
if (Istrngdif(string.Activity)) {
if (lcurrentoperator) currentoperator = cperatorroot = buildoperator();
eise currentoperator = currentoperator->oprnext = buildoperator(};
getstring(currentoperator->oprtext, OPERATORSTRING);

if (!strngdif{string, 1nput)) addargument(currentoperator,‘i’)
if (!strngdif(string.output)) addargument(currentoperator.’o’
if {!strngdif(string,subpart_is)) {
if (currentoperaztor->oproprroot)
currentsubopr = currentsubopr->oprnext = buildoperatornode():
else currentsubopr = currentoperator->oproprroot = buildoperatornode();
getstring(currentsubopr->oprtext, OPERATORSTRING);

)i

case 'O:
stringli] = 'x*;
i=0;
case ' ‘.
string[i]l = "\O‘;
obreak;
default:
if (i && (stringli] == "\0“)) {
stringlil = "x’;
i = 03
}
if (1<MAXSTRING) stringli++] = c;
}
}
do {

chainsmerged = O;
for (currentoperator=operatorrooi; currentoperator;
currentoperator=currentoperator?currentoperator->oprnext:operatorroot)
{
chainsmerged += i = mergeoperator(currentoperator,operatorroot);
if (i) deleteoperatornode(&operatorroct,¤tcperator):;
b
} while {(chainsmerged);
PLout(stdout,operatorroot,0);

PLorder

Finclude "stdio.h"

#¥incluoge "defines"
#include "structures'
Finclude *"functions"
#include "PLinN"
#include "PLout"

orderoperators (root) struct operatornode *root;
{ struct operatornode *oprinrcot=0, *oprinlast=0, =*oproutroot=0, *oproutlast=0;
struct operatornode *tnisoperator. “oprscaner;
struct argumentnode *argument, *argscaner;
for (thisoperator=root; thisoperator; thisoperator=thisoperator->oprnext) ({
int noiinkage = TRUE;
if (thisoperator->oproprroot) orderoperators(thisoperator->oproprroot};
for (argument=thisoperator->oprinput: nolinkage &3 argument;
argument=argument->argnext)
for (oprscaner=rcot; nolinkage && oprscaner: oprscaner=pprscaner->cprnext)
if (oprscaner != thisoperator)
for (argscaner=oprscaner->oproutput; nolinkage && argscaner;
argscaner=argscaner->argnext)
if (!strngdif{argument->arytext,argscaner->argtext))
nolinkage=FALSE;
if (nolinkage) /* then move this operator to the input 1ist =/
if (oprinlast) oprinlast = oprinlast->oprnext = thisoperator;
else cprinlast = oprinroot = thisoperztor;
else if (oproutlast) oproutlast = oproutlast->oprnext = thisoperator;

else oproutlast = oproutroot = thisoperator;
y

if {oproutlast) oproutlast = oproutlast->oprnext = QO;
for (thisoperator=oprautroot, oproutroot=Q; thisoperator;
thisoperator=thisoperator->oprnext) { int nolinkage = TRUE;
for (argument=thisoperator->oproutput; nolinkage && argument:
argument=argument->argnext)
for (oprscaner=oproutroot; noiinkage &R oprscaner;
oprscaner=gprscaner->oprnext)
if (oprscaner != thisoperator)
for (argscaner=oprscaner->oprinput; nolinkage 8& argscaner;
argscaner=argscanser->argnext)
if (!strngaif(argument->argtext,argscaner->argtext))
nolinkage=FALSE;
if {nolinkage)
if (cproutlast) oproutlast = oproutlast->oprnext = thisoperator;
else oproutlast = oproutroot = thisoperator;
else if (opriniast) oprinlast = oprinlast->oprnext = thisoperator:
else oprinlast = oprinrcot = thisoperator;
?
if (oproutlast) oproutlast->cprnext = Q;
if (opriniast) oprinlast->oprnext = oproutroot:
else oprinroot = oproutroot;
/* oprinroot now points to the nead of a unified (possibly reordered) list. */

/> because we dare not move the physical location of the first item in the */
/* list, if opprinreoot != rooct we must swap the contents of the nodes. =/
if (oprinroot !'= root) {
struct operatornode temp;
temp.oproprroot = root->oproprroot;
root->oproprroot = oprinroot->aopraprroot;
oprinroot->oproprroot = temp.oproprroot;
temp.oproutput = root->oproutput:
rogt->oproutput = oprinrcot->oproutput:
cprinroot->oproutput = temp.oproutput:;
temp.oprinput = rcot->oprinput;
root->eprinput = aprinroot->oprinput;
cprinroot->oprinput = temp.opringut;
temp .oproprcount = reot->oproprcount;
root->oproprocount = oprinroot->oproprceount;
cprinroot->pproprcount = temp.opropracount;
strngcpy(temp.oprtext,rooct->opriext):
strngcpyiroot->oprtext,oprinroot->oprtext);
strngcpy{oprinroot->aprtext, temp.oprtext);
strngcpy{temp.oprtimes, root->oprtimes);
strnocpy{root->oprtimes,oprinroot->cprtimes};
strngcpy(oprinroot->oprtimes, temp.oprtimes);
for {(thiscperator=oprinrecot; tnisoperator->oprnext != root;
thisoperator=thisoperator->poprnaxt)} ;
if {thisoperator == pprinrcot) { /* oprinroot points at root */
thisoperator->oprnext = root->oprnext;
root->oprnext = thisoperator;
R
J
else {
thisoperator->oprnext = oprinroot:
temp.oprnext = root->oprnext;
root->oprnext = oprinroot->oprnext;
oprinroot->oprnext = temp.oprnext:

}

main (} {
/* written by Donald E. wWolfe: June 1884 */
struct operatornode *operatorroot:
aperatorroot = PLin(stdin):
ordergperators(operatorroot);
PLout(stdout,operatorroot,C);

Woedit

#incliude "stdio.h"
Finclude "defines®
#include *structures*®
#include "functions®
#include "PLin"
Finclude "PLout"
isdigit (c} char c;

if (c == 'O ‘ c == 4 e == ‘2" || e == ‘3" || c == ‘4’ jj c== 5 [|]
. c == '§ e == 47 c == '8’ || & == '8') return(TRUE);

else return(FALSE);
}
static char formatopr[] = "%s-%-31.31s%c*, formatarg[] = "%s %c%-29.29s%c";

struct operatornode *findoperator{operator,name) struct operatcrnode *operator;
char namel];
{ struct operatornode *temppointer = 0;
do {
if (!strngdif(operator->oprtext,name)) return(cperator};
else if (operator->ocproprroot
&8 (temppointer=findoperator(cperator->oproprroot,name))) return(temppointer):
} while (operator=operator->cprnext):
return{0};
}

printsutoperators (operator, momsname, skipcnt, printent) struct operatornode *operatcr;
char *momsname; int skipcnt, printcnt;
{ static char leadstring{] = " | "
char blank = * ‘., outflag = ‘>’, inflag = ‘<’, nullichar = ‘\0’, orbar = ’|‘;
char trailingchar, workstring[MAXSTRING+1];
while (skipcnt--) operator = operator->oprnext;
while (printecnt--) {
struct argumentnode *argument;
if (!strngdif(operator->oprtext,momsname))
printf(formatopr,leadstring, "<<<recursion<<<" blank);
else {
if (operator->oproprroot) trailingchar = orbar;
else trailingchar = blank;
for (argument=operator->oprinput; argument: argument=argument->argnext)
printf(formatarg, leadstring, inflag,argument->argtext, trailingchar}:
if (operator->oproprroot) {
int i
if (operator->oprtext[0] == *|*) {
for (i=1; 1i<= operator->oproprcount; i++) {
printsucoperators(operator->oprogprroot,operator->cprtext,i-1.1);
if (i<operator->pproprcount) {
printf(formatarg, leadstring,blank,” “,blank);
printf(formatarg. leadstring,blank, " (+)" ,blank!;
printf(formatarg, leadstring,blank," *,plank);

}
}
}
else |{
for (i=0; (workstring{i1]} = operator-zoprtext[i]) != 7 ‘; i++} ;
while (i<OPERATORSTRING) workstring[i++] = ‘-/:
workstringli] = ‘\Q‘:
printf{formatopr,leadstring.workstring, trailingchar);
}

3
4

else printf(formatopr.leagstring,operator->pprtext,trailingchar};
if (operator->oprtext[0) != "|°) .
if (operator->oprtimes[C] == “17)
printf(formatarg, leadstring.blank,"(1 time)", trailingchar);
eise {
sprintf(workstring,"{%s times)", operator->oprtimes);:
printf(formatarg, leadstring.blank,workstring, trailingchar);

}

for (argument=operatcr->cproutput; argument; argumentsargument->argnext)
printf{formatarg, ieadstring,outflag.argument->argtext,trailingchar);
}
if {printcnt) printf(formatarg, teadstring,blank,&nullichar ., blank);
operator = gperator->oprnext:

strngcat(si,s2,s3,smax1) char *si, *s2, *s3; int smax);

}

int i =0, j = 0;

while ((s1[i}=s2[i]) != * - && i < smaxl) i++;
while {(s1[i)=s3[j]) != * * && i < smaxl) i++, j++;
si1{smax1] = *'\O‘;

updatePL (root) struct operatornode *root;

{

struct operatornoage *currentopr = root;
short done = FALSE;
char arg1[MAXSTRING+1], arg2[MAXSTRING+1], command[MAXSTRING]:
while (!acone) { char commandchar = ‘9';
printf("\nreaay:");
scanf("%s",command) ;

{
if (!strngdif(command, "alternate”) || !strngdif(command,"a")}}
commangchar = ‘A’, scanf{"%s %s",argi.arg2};
if (!strngdif{command."display") || !strngdif(commana, “a"})
commandchar = ‘D’;
if (!strngdif(command, "goto”) || !'strngdif(command,"g*))
commandchar = ‘G’, scanf(“%s".argi);
if (!strngdif(command, "repeat*) || !strngdif(command, “r*))
commandchar = ‘R‘, scanf("¥s", argi):
if (!strngdif(command, "switch") || !strngdif(command,®"s®))
commandchar = ‘'S’, scanf("%s %s",argl1.arg2);
if (!'strngdif(command,"Quit") |! !strngdif{command,"Q")) commandchar = 'Q°';
if (!strnogdifi{command,"write*)} || !strngcif(command,"w")) commandchar = °‘W’;
¥

switch(commandchar) {

case(A" j:

{

struct operatornode *altptrl2], *tempptr;
int 1, altnumnext = 0, argfound = 0O:
if (!currentopr->oproprroot) {
fprintf(stderr, "\nnoc suboperators present; command ignored");
break;
3
for (tempptr=currentopr->oproprroot; tempptr: tempptr=tempptr->oprnext)
if (tempptr->oprtext{0] == ‘|’ &% isdigi1t(tempptr->oprtext[1])
&& isadigit(tempptr->oprtext[2])) {
sscanf (&tempptr->oprtext[1], "%2d",&i);
altnumnext = altnumnext>i ? altnumnext : i:

3
5

for (tempptr=currentopr->oprcoprroot; tempptr; tempptr=tempptr->oprnext)
if (!strngdif(tempptr->oprtext,arg1)) {
altptr[argfound++] = tempptr:
arg1[0l = ‘\o’;
3
else if (!strngdif(tempptr->oprtext,arg2)) {
altptr[argfound++] = tempptr;
arg2[0] = ‘\O‘;

if (argfound < 2) if {argfound==1 && !strngdif(arg2,"!")} {
altptr[1] = buildoperatornodel(};
strngcat(altptrlii}->oprtext,"!'",altptr[0]l->oprtext , OPERATDORSTRING) ;

else {
fprintf(stderr, "\ncant find %s %s request ignored",argi,arg2);
break;

}

tempptr = buildoperatornode();
tempptr->oprnext = altptr[1];
tempptr->oproprroot = altptr[0)->oproprroot;
tempptr->oproutput = altptr[0]->oproutput;
tempptr->oprinput = altptr[0]->oprinput;
tempptr->oproproount = altptr[Q]->oproprcount:
strngcpy(tempptr->oprtext,altptr[0]l->oprtext);
strngcpy(tempptr->oprtimes., "0 or 1");
altptr[0Q]->oproprroot = tempptr;:
altptr[0]->oproutput = altptr[0]->oprinput = 0
altptr{0Ol->oproprcount = 2;
sprintfl(altptr{0]->oprtimes, " |%024" ,++altnumnext);
strngcat{altptr[0]->oprtext.altptr{0]->oprtimes,
currentopr->oprtext, DPERATORSTRING) ;
altptri0])->oprtimes[0] = " 1°;
strngecpy{altptr{i)->oprtimes, "0 or 1");
if (strngdif{arg2,"t")) {
for (tempptr=altptr{C)]; tempptr->oprnext!=aittptr[1];
tempptr=tempptr->oprnext) ;
tempptr->oprrnext = altptr[1]l->oprnext;
altptr{il->oprnext = O;
currentopr->oproprcount--:

break;

case('D’):
{ struct argumentnode *argument;
int i, printcnt = (currentopr->pproprcount + 1) / 2:
char plank = * ’, outflag = ‘>’, inflag = ‘<’, orbar = ‘|’, trailingchar;
char leadstring[2], workstring{MAXSTRING+1];
sprintf(leadstring, "\n"J);
if (currentopr->oproprroot} {
printsuboperators{currentopr->oproprroct,currentopr->opriext,{,.printcnt,
trailingchar = orbar;
1
else trailingchar = blank;
for (argument=currentopr->oprinput; argument; argument=argument->argnext)
printf(formatarg, 1eadstring, inflag,argument->argtext, traitlingchar);
if (currentopr->oproprroot) {

for (i=0; {(workstring[i] = currentopr->oprtext[i]) != ‘\Q'; i++);
while (i<DPERATDRSTRING)} workstringl[i++] = -,
workstring[i] = *\0O’;

printf(formatopr, leadstring,workstring,trailingchar);

else printf(formatopr,leadstring.currentopr->oprtext, trailingchar);

if {currentopr-zoprtimesiC] == ‘1)
printf (formatarg, leadstring.blank,"(1 time)",trailingchar);
else {

sprintf{workstring,"(%s times)",currentopr->oprtimes);
printf(formatarg, leadstring.blank,workstring, trailingchar);
}
for (argument=currentopr->oproutput; argument; argument=argument->argnext)
printf(formatarg, leadstring,outflag,argument->argtext,trailingchar);
if (currentopr->oproprrooct)
printsuboperators(currantopr->0proprroot,currentopr->oprtext,printcnt,
currentopr->oproprcount-printent);
}
break ;
case(’'G’):
if {!strngdif(argl,"recct")) currentopr = root:
else if (!{currentopr = findoperator{currentopr,argi))) {
fprintf{stderr,“\nunable toc find %s; currentopr is set to %s*,argft,
root->oprtext);
currentopr = root;
1
break:
case('Q"):
return{Q) /* dont write PL text =/:
case('R’):
argi[OPRTIMESSTRING) = "\O’ /* a little safety device =*/;
strngopy{currentopr->oprtimes,argi);
printf{*\n¥%s iteration count is set to %s",currentopr->oprtext,
currentopr->oprtimes);
pbreak ;

case(‘S’):
{ struct operatornode *switchptr[2], *tempptr. temp;
int argfound = 0;
if {icurrentopr->oproprroot) {
fprintf(stderr, "\nno suboperators present; command ignored");
break;
K
for (tempptr=currentopr->oproprroct; tempptr; tempptr=tempptr->oprnext)
if {!strngdif(tempptr->opbrtext,argi}) {
switchptr[argfound++] = tempptr;
argi[0] = * /;

i

else if {!strngdif(tempptr->oprtext,arg2)) {
switchptr{argfound++] = tempptr;
argz[o] = * 7

if (argfound < 2)
fprintf(stderr,"\ncant find %s %s request ignored",argi.arg2):
break;

temp.oproprroot = switchptri{O]->oproprroot;
switchptr[0]l->oproprroot = switchptr[i]l->opreprroot;
switchrptr[ti->oproprroot = temp.oproprroot;
temg . oprouiput = switchptr{Cl->oproutput;
switchptr[Qj->cproutput = switchpirit]->oproutput;
switchpir[1]->oproutput = temp.oproutput;:
temp.oprinput = switchptr[0l->oprinput;
switchptr[0]->oprinput = switchptr{i1l->oprinput:
switchptr[1]->oprinput = temp.oprinput;
temp.oproprecount = switchptr[Q]->oproprcount;
switchptr[Q]->oproprcount = switchptr[1i]->oproprecount;
switchptr[1]l->oproprcount = temp.oproprcount:
strngepy(temp.oprtext,switchptr[Oj->oprtext);
strngepy(switchptr[0]->oprtext.switchptr[1]l->oprtext);
strngcpylswitchptr{1]->oprtext, temp.oprtext):
strngcpy(temp.oprtimes,switchptr[O]l->oprtimes);
strngepy(switchptr[Cl->oprtimes,switcnptriil->oprtimes);
strngepv(switchptr[1]->cprtimes, temp.oprtimes);

break;
i
case('W'):
done = TRUE;
break;

default:
fprintf(stderr, "\nunknown command (%s) ignored®,command):
3
}

return(1} /* write PL text */;

main (argc,argv} int argc:
char =argv{];
{
/* written by Donald E. Wolfe; July 1984 =/
struct operatornode *operatorroot;
FILE ~fopen(), =file;
char filename[15];:
if (--argc) sscanf(*(argv+1},"%s",filename);
eise {
printf{"\n%s: enter the name of the PL file that you wish toc edit:",*argv);
scanf("%s",filename);

}

if ({file=fopen{filename,"r")) == NULL) {
fprintf(stderr, "\n%s: cant read %s".*argv,filename);
exit(1);:

b

else {
operatarroot = PLin(file);
fclosel(file);

}

if (updatePL{operatorroot}}
if {(file=fopen(filename, “w"”))==NULL) {
fprintfistderr,"\n%s: cant write to %s",=argv,filename);

exit{2}:

3
J

else {
PLout(file,operatorroot,0);
fclose(file);:

et

WOout
#include "stdioc.h"®
#include "defines"
#include "structures”
#dinclude "functions*
#include "PLin"
static int columnsperline = 4;
static char formatleadstring[] = "%s%32c%chc"
static char formatopr[] = "%s-%-31.31s%c", formatarg[] = “%s %c%-29.29s%c":
printoparatoriist (operator, momsname, leadstring, skipcnt, printcnt) b

struct operatornode *operator: char *momsname, *leadstring; int skipcnt, printcnt;
I
S
char blank = * ‘, outflag = ">’, inflag = ‘<‘, nullchar = ‘\0O’, orbar = "{’;
char trailingchar, newleadstring[128], workstring[MAXSTRING+1];
while (skipcnt--) operator = operator->oprnext;
while (printent--) { int i, subcprprintcnt = {operator->oproprcount + 1) / 2;
if (!strngdif{operator->oprtext,momsname})
printf(formatopr, leadstring, "<<<recursion<<<' blank);
else { struct argumentnode *argument;
if {operator->oproprroot &% cperator->cpriex+t{@li=’|’) {
sprintf(newleadstring.formatleadstring, leadstring,blank,orbar, nulichar};
printoperator)ist{operator->oproprroot,
cperator->oprtext,newleadstring, O, suboprprintcnt);
trailingchar = orbar;

1
]

else trailingchar = blank;
for (argument=cperator->oprinput; argument; argument=argument->argnext)
printf(formatarg. leadstring, infiag,argument->argtext,.trailingchar);
if (operator->oproprroot && operator->oprtext[0]==}")
for (i=1; i<=gperator->oproprcount; i++) {
printoperatoriist(operator->oproprroot,
operator->opriext, leadstring, i-1,1);
if (i<operator->oproprcount) {
printf(formatarg, leadstring.blank,® *.blank);
printf(formatarg, leadstring.blank,*(+)",blank);
printf(formatarg, leadstring.blank, " “.,blank);

H
eise {
if (operator->oproprroot Ii operator->waspruned}
for (i=0; (workstringl[i] = operator->oprtext[il) != ‘\0O‘; i++} :
while (i<OPERATORSTRING) workstring[i++] = /-7;
workstring[il] = nulichar;
printf(formatopr, leadstring.workstring, trailingchar);
1f {(operator->waspruned)
printf{formatarg, leadstring.’-’."(toc be continued}-",trailingchar);
}
else printf(formatopr,leadstring.operator->opriext, trailingchar);
spraintf{workstring,strngdif(operator->ogrtimes, "1")?
“{%s times)":"{(%s time}", operator->oprtimes):
printf{formatarg, leadstring,biank,workstring, trailingchar);
b
i
for (argument=operator->oproutput; argument; argument=argument->argnext)
printf(formatarg, leagstring,outfiag,argument->argtext, trailingechar);
if (operator->oproprroot && operator-»oprtext[0]i=‘|‘)
printoperatoriist(operator->oproprroot.operator->oprtext.newleadstring,
suboprprintcnt,operator->oproprcount-suboprprintcnt};

if (printent)} printf(formatarg, leadstring,blank,&nullchar,blank]);
operator = operator->oprnext;

prune (ancestor ., predecessor,operator, ievel)

struct operatornode *ancestor. **predecesscr. *operator; int level;

{

do {
if (operator->oproprroct)
if (level == columnsperline) {

struct operatornode *newpredecessor, *newoperator;
newpredecessor = buildoperatornode();
newoperator = nawpredecessor->oproprroct = buildoperatornode():
newpredecessor->oproprcount = operatcr->oproprcount;
newpredecessor->oproutput = operator->pproutput:
newpredecessor->oprinput = operator->oprinput;
strngepy(newoperator->oprtext, ancestor->oprtext};
s*rngcpy (newpredecessor->opriext,operator->oprtext);
newpredecessor->isbranch = TRUE;
newpredecessor->oprnext = (*predecessor)->oprnext;
*predecessor = (*predecessor)->oprnext = newpredecessor;
newoperator->oprnext = operator->oproprroot;
operator->oproprroot 0;
aperator->waspruned = TRUE;

}
else prune(ancestor,predecessor,operator->oproprroot,
operator->opriext[0]==']‘2?level.level+1);:
} while (operator = operatcr->oprnext);
1

main (argc,argv) int argc; char *argv[]:

/* written by Donald E. Wolfe; uune 1984 */
struct operatornode *currentoperator, *operatorroot;
int celwidth = 32, linewidth = 132;
while (--argc && =z++argv == ‘=-*) {
char waorkstring[3], *parmpointer = *argv;
if (sscanf(parmpointer,*-c%d",.&colwidth}) {
sprintf(workstring, "%02d",colwidth);
formatleadstringi3] = workstring[Ol;
formatleadstringl4] = workstring[1};
sprintf{workstring, "%02d",--colwidth};
formatopr[5] = formatopr[8] workstringl0l;
formatopr[6] = farmatopr[8] warkstringlt]:
~-colwidth;
sprintf(workstring, "%02d",--cciwidth);
formatargi8] = formatargfi11] = workstringl[OD];
formatarg[8] = formatarg{i2] = workstring[1]:

if (sscanf(parmpointer,"-1%d",&1inewidth}) ;
columnsperline = linewidtn/colwidth;
1
gperatorroot = PLin{stdin};
/* Te continue chains truncated by insufficient linewidth we are now going to */
/= fudge the PlLtree. The last operator that fit an a 1line is marked "waspruned". */
/* A new operator is built immediately after the current one and marked "isbranch®. =*/
for {currentoperator=operatorroot: currentoperator;
curregntcperator=currentoperator->oprnext) {
struct operatornode *workpointer = currentoperator /* modified by prune */;
if {currentoperator->oproprroat)
prune(currentoperator,&workpointer,currentoperator->oproprroot,2);

for {(currenicperator=operatorroct: currentoperator;

currentoperator=currentoperator->oprnextl} {

char leadstringl[3];

sprintf{leadstring, "\n"};

if {currentoperator->isbranch) {
printf{formatarg, "\nDiagram continuation from:". °,

currentoperator->oproprreoet->oprtext, '’);

currentoperator->oproprroot = currentoperator-rogroprroct-r>oprnext;

2}

printoperatorlist{currentoperator, leadstring, leadstring,D, 1);

printf(*\n"}:

bt

10.

..58_

References

Barr, &avron and Edward A, Feigenbaum, The Handbook of
Artificial Intelligence, vol. 2, William Kaufmann, Inc.,
Los Altos, CA, pp.296-380

Howden, William E., "Contemporary Software Development
Environments", Communications of the ACM, vol. 25, no.
5, May 1982, pp. 318-329

Manna, Zohar and Richard Waldinger, "Knowledge and
Reasoning in Program Synthesis”, Studies in Automatic
Programming Logic, North-Holland Publishing Company,
Amsterdam, 1877, pp.141-180

Partsch, H. and R. Steinbruggen, "Program Transformation
Systems", ACM Computing Surveys, September, 1983,
Pp.199-236

Hammer, Michael and Gregory Ruth, "Automating the
Software Development Process", Research Directions in
Software Technology (edited by Peter Wegner), The MIT
Press, Cambridge, MA, 1979, pp.767-790

Teichroew, Daniel et al , "Application of the Entity-
Relationship Approach to Information Processing Systems
Modeling”, Entity-Relationship Approach to Systems
Analysis and Design, (edited by Peter P. Chen), North-
Holland Publishing Company, Amsterdam, 1980, pp. 15-38

Solvberg, Arne, "A Contribution to the Definition of
Concepts for Expressing Users' Information Systems
Requests”, Entity-Relationship Approach to Systems
Analysis and Design, (edited by Peter P. Chen), North-
Holland Publishing Company, Amsterdam, 1980, pp. 381-402

Warnier, Jean-Dominique, Logical Constructien of
Programs, H. E. Stenfert Kroese B, V., Leiden Holland,
1974

Warnier, Jean-Dominigque, Logical Construction of Systems
Van Nostrand Reinhold Company, 1981

Orr, Kenneth T 5 "Introducing Structured Systems
Design", Scftware Design Strategies, (edited by Glenn D,
Bergland and Roland D. Gordon), IEEE Computer Society,
1375, pp. 72-82

59

11. Steward, Donald V., "A Tale of Hope for Anyone Lost in
the Software Forest Primeval", Computerworld, 19 March
1984, pp. ID1-ID16

12. Griffiths, Sa N., "Design Methodologies — A

Comparison", Software Design Strategies (edited by Glenn
D. Berglané and Roland D. Gordon), IEEE Computer
Society, 1979%,pp. 189-213

MECHANICAL TRANSLATION OF SOFTWARE REQUIREMENTS SPECIFICATIONS:
FROM ENTITY-RELATIONSHIP-ATTRIBUTE TO WARNIER-ORR

by

DONALD E. WOLFE

. B.S., The Ohio State University, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1954

The Entity-Relationship-Attribute model provides one
possible technique for defining software reqQuirements
specifications. This project was to implement a system that
would mechanically transform an ERA "keyword:text" style
specification into a Warnier-Orr hierarchical specification.
To accomplish this an intermediate process-representation
syntax was defined as the sole mode of communication between
the system's modules. This had the advantage of allowing
piece-wise implementation of the modules the comprise the
project. It will have the future advantage of providing a
convenient interface to facilitate the addition of new
modules and functions to this system. An interactive editor
was also created to allow the viewing and wupdating of the

Warnier-Orr specification.

