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ABSTRACT

Integer programs (IP) are used in companies and organizations across the world to

reach financial and time-related goals most often through optimal resource allocation and

scheduling. Unfortunately, integer programs are computationally difficult to solve and

in some cases the optimal solutions are unknown even with today’s advanced computing

machines.

Lifting is a technique that is often used to decrease the time required to solve an IP

to optimality. Lifting begins with a valid inequality and strengthens it by changing the

coefficients of variables in the inequality. Often times, this technique can result in facet

defining inequalities, which are the theoretically strongest inequalities.

This thesis introduces a new type of lifting called synchronized simultaneous lifting

(SSL). SSL allows for multiple sets of simultaneously lifted variables to be simultaneously

lifted which generates a new class of inequalities that previously would have required

an oracle to be found. Additionally, this thesis describes an algorithm to perform syn-

chronized simultaneous lifting for a binary knapsack inequality called the Synchronized

Simultaneous Lifting Algorithm (SSLA). SSLA is a quadratic time algorithm that will

exactly simultaneously lift two sets of simultaneously lifted variables.

Short computational studies show SSLA can sometimes solve IPs to optimality that

CPLEX, an advanced integer programming solver, alone cannot solve. Specifically, the

SSL cuts allowed a 76 percent improvement over CPLEX alone.
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Chapter 1

Introduction

Integer programs are widely used in industries across the world because of their use-

fulness in a large variety of business applications and their ability to find the optimal

solution to a problem. The traditional application of an integer program (IP) seeks to

maximize profits while not exceeding a company’s constraints (usually resource limita-

tions or demand constraints).

The value of integer programming is best explained through the description of ittyts

applications. One example of an integer program used in industry is in the scheduling

of asset divestitures [7]. Homart Development Company is ranked among the largest

commercial land developers in the United States. At any given time, Homart has over

100 properties under evaluation for divesture. The company used a binary integer pro-

gram to determine the optimal time to divest the properties. It is estimated that this

binary integer programming technique added 40 million dollars in profit to the divesture
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plan. Another example of the application of an integer program in industry is from

the Reynolds Metals Company. This company used a binary integer program to select

automatically dispatched delivery vehicles which saved over 7 million dollars annually

[26].

Integer Programs have similarly been used in a wide variety of applications including

airline scheduling [1, 33], sports scheduling [11, 35], portfolio management [8, 29], genetic

research [10, 13], cancer research [24, 25] and in transporting goods [2, 20, 30, 34].

Of particular interest in this thesis is a special type of integer program called a

knapsack problem. This type of problem is best described by considering a hiker packing

her knapsack for a trip. The hiker has n potential items that she can pack and she assigns

a benefit to each item that may be packed. Each item is also assigned a weight. She

seeks to maximize her total benefit of the items in her knapsack, but is limited by the

total weight she can carry.

The knapsack problem is important in its own right. One of the most common uses

for the knapsack problem is in resource allocation to maximize the benefit obtained when

using limited resources [9]. Another common application is in the scheduling of jobs on

a machine that are precedence constrained [21]. Often times the goal in this application

is to minimize the sum of weighted completion times.

Unfortunately, integer programs are NP-hard in general [19], which means that

finding the optimal solution to an IP requires exponential time, unless P = NP . In

the former case, concessions must be made for the solution to be found more quickly.
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This is not ideal because often, the solution that this yields is suboptimal and must

be evaluated to determine whether it is still implementable and whether it provides a

benefit to the business.

Exhaustive enumeration is the simplest way to solve an IP. However, this technique

is very time consuming and therefore very costly. Additionally, exhaustive enumeration

becomes computationally impossible even for small problems. It is important to note

that if there are n binary variables, exhaustively enumerating all the solutions will lead

to 2n evaluations. Therefore, it is imperative to ensure that exhaustive enumeration is

not used to solve large problems.

Several strategies have been developed to reduce the time and storage required to

exhaustively enumerate all solutions. One type of strategy, called branch and bound [23],

is a branching strategy that eliminates a branch of the solution tree when it becomes

evident that the optimal solution cannot come from that line of solutions. In the worst

case, branch and bound can exhaustively enumerate all of the solutions.

Another technique commonly used to solve IPs involves cutting planes. To implement

this, the integer constraint is relaxed and the problem is solved as if it is a linear program

(in which the optimal solution is called the linear relaxation). Cutting planes are used

to eliminate areas of the linear relaxation, while not eliminating any feasible integer

solutions. The strongest kind of inequalities (or cutting planes) are said to be facet

defining.

One of the most common techniques to create valid and useful cutting planes is
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through a technique called lifting. The basic idea of this technique is to take a valid

inequality and make it stronger by modifying the coefficient of a set of variables. Lifted

inequalities take the following form:
∑

i∈E αixi+
∑

i∈N/E αixi ≤ β. While lifting was first

developed by Gomory [14], it has been a major area of interest in integer programming

and hence has attracted a significant amount of research for the past forty years.

The most basic type of lifting is called sequential lifting and involves lifting one

variable at a time into the inequality. This results in each variable having a different

lifting coefficient [4]. Unfortunately, this type of lifting is sequence dependent meaning

that the order matters when the variables are lifted into the inequality.

Another significant type of lifting is called simultaneous lifting, which was developed

by Zemel in 1978 [40]. Simultaneous lifting lifts multiple variables into an inequality

with one alpha value. One advantage of this type of lifting is that order does not matter

since all variables are lifted at once.

The ultimate goal of lifting is to create stronger inequalities. This thesis is based on

simultaneous lifting and introduces a new type of lifting called synchronized simultaneous

lifting (SSL). SSL can yield a new class of theoretically strong inequalities some of which

are facet defining.
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1.1 Motivation and Research Contributions

There have been many recent advancements in the area of lifting. These advancements

are mainly concentrated in new inequalities that generate better inequalities in a shorter

period of time. In 2005, Hooker and Easton [12] investigated the link between graph

theory and cutting planes in integer programming to derive a new method to simulta-

neously lift in variables to knapsack problems. Then in 2007, Gutierrez [17] developed

a technique that allows the practitioner to simultaneously lift multiple general integer

variables in order to generate a new class of inequalities. However, this method re-

quires solving an integer program. At the same time, Sharma [31] developed a lifting

technique for knapsack problems that did not require solving any integer programs and

generates many inequalities. Unfortunately, Sharma’s technique only works for knapsack

problems. Shortly thereafter, Kubik [22] developed a psuedo-polynomial time algorithm

and a polynomial time algorithm for knapsack problems to lift multiple sets into the

knapsack constraint.

By synthesizing the concepts of these researchers, this thesis presents a new lifting

method called synchronized simultaneous lifting (SSL). SSL allows for the simultaneous

lifting of two sets of simultaneously lifted variables in any bounded integer programs.

Since the algorithm allows for two lifting coefficients for sets of simultaneously lifted

variables, some of the resulting inequalities could not have been created by any previous

lifting methods without the consultation of an oracle (fortune-teller). Additionally, these

inequalities are sometimes facet defining.
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A new algorithm, called the Synchronized Simultaneous Lifting Algorithm (SSLA)

is introduced. SSLA finds new SSL inequalities by solving simple algebraic equations

and produces the lifting coefficients for the sets of simultaneously lifted variables in a

binary knapsack constraint. Additionally, SSLA runs in quadratic time. One of the

main advantages of this algorithm is that neither of the beginning sets needs to be a

cover.

A small computational study has shown that in approximately half of the problems

considered, SSLA enabled CPLEX, an advanced computational software package, to

solve problems that the package otherwise would not have been able to solve due to lack

of sufficient memory. The study was conducted on problems of 50 and 100 variables and

shows that SSLA is helpful in solving integer programs.

In summary, this thesis formally introduces SSL and SSLA to the world.

1.2 Outline

The remainder of this thesis is organized as follows: Chapter two outlines the basic con-

cepts required to understand the advances that this research provides. These concepts

are concentrated in the areas of integer programming and polyhedral theory and include

topics such as convexity, dimension, affine independence, cutting planes, facet defining

inequalities, the knapsack problem, covers, sequential lifting and simultaneous lifting.

The third chapter of this thesis describes the theory behind and the implementation of
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synchronized simultaneous lifting. It outlines the implementation of the SSLA using an

example where SSLA yields facet defining inequalities. Theorems and proofs pertinent

to the SSLA algorithm are also included in this chapter along with a step by step

determination of the running time.

Chapter four of this thesis shows how SSLA is applied in a computational study and

the results of these trials. The results of the trials are interpreted and it is shown that

the SSLA is easy to implement and the resulting inequalities can be useful.

Finally, the fifth chapter illustrates how this research contributes to the area of IP. It

summarizes the research presented in this thesis and suggests how future research might

build upon the foundation provided in this thesis.
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Chapter 2

Background Information

The following sections in this chapter provide the necessary definitions and concepts

required for the basic understanding of this thesis. The majority of the required un-

derstanding lies within the realm of polyhedral theory. These concepts include linear

relaxations, convexity, polyhedrons, dimension, half-spaces, and affine independence.

These concepts are required to understand the concepts of cutting planes, facet defining

inequalities, and lifting, which are the focus of this research.

In order to understand the advancement of this research, it is first important to

understand the fundamentals of integer programming and polyhedral theory. An integer

program contains a linear objective function that seeks to either minimize or maximize

the outcome of the function subject to a set of linear constraints. Additionally, as the

name suggests, the solution space of the function is limited to integers. Technically, an

integer program is defined as follows:
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ZIP = Maximize cTx

subject to Ax ≤ b

x ∈ Zn
+

where c ∈ Rn represents the objective coefficients, A ∈ Rm×n and b ∈ Rm×1 represent

constraints. The feasible points of an integer program are denoted by P and are defined

as P = {x ∈ Zn
+ : Ax ≤ b}. Here the set of indices of the x variables is denoted as

N = 1, ..., n.

Unfortunately, it is very difficult to find P as finding the optimal element of P is

NP-hard. The standard technique is to relax the integer constraint and use linear

programming many times to find the optimal solution. When the integer constraint is

relaxed, the resulting problem is called the linear relaxation of the integer problem. The

linear relaxation is defined as follows:

ZLR = Maximize cT x

subject to Ax ≤ b

x ∈ Rn
+

It is important to understand that the integer constraint limits the solution to the

problem such that ZIP ≤ ZLP . The set of feasible solutions that results from the linear

relaxation, PLR, is formally represented as PLR = {x ∈ Rn
+ : Ax ≤ b}.

As stated previously, integer programs are extremely difficult to solve because the

traditional simplex method will not solve them to optimality. This causes many costly
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and difficult issues because there are a vast number of types of problems that involve a

great deal of theory. An excellent resource on integer programming is Nemhauser and

Wolsey [27].

2.1 Polyhedral Theory

Critical to the idea of polyhedral theory is the concept of convexity. A set S ⊆ Rn

is a convex set if, and only if, all the points on a straight line connecting any two

points contained in the set are also in the set. This is represented formally as follows:

S is convex if, and only if, x ∈ S where x =
∑n

i=1 λix
i for every finite set of points

{xi : i = 1, ..., n} in S and every λ ∈ Rn
+ with

∑n
i=1 λi = 1. Given a set S ⊆ Rn the

intersection of all of the convex sets that contain the set S is called the convex hull of S

and is denoted by Sch.

The feasible region of one linear inequality is called a half-space. Formally, a half

space is defined as {x ∈ Rn :
∑n

i=1 aixi ≤ b}. An intersection of finitely many half

spaces is called a polyhedron. Clearly, PLR is a polyhedron.

The relationship between polyhedral theory and integer programs can be confusing

because integer programs actually have two important polyhedra. The convex hull of

the integer solution space is one type of polyhedron, P ch. Formally, P ch = conv({x ∈

Zn
+ : Ax ≤ b}). The other polyhedron, PLR, is found by relaxing the integer constraint

of an integer program as previously defined. The goal of integer programming research

with respect to polyhedral theory is to change PLR to P ch by adding cutting planes,
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which is the topic of the next section.

When making the transition from PLR to P ch, dimension is critical. The dimension

of a convex hull is typically expressed by the number of linearly independent vectors

that are contained within that polyhedron. Alternately, one can find the dimension

of a convex hull using affine independence. The points x1, ..., xq in Rn are affinely

independent if, and only if, the unique solution to
∑q

i=1 λix
i = 0 and

∑q
i=0 λi = 0 is

λi = 0 for all i = 1, ..., q. The dimension of a polyhedron is equal to the maximum

number of affinely independent points minus one.

2.2 Cutting Planes

The following section introduces the concepts of valid inequalities, cutting planes, faces,

facet defining inequalities and facets. These concepts are fundamentally important to

this research because they form the foundation on which this research is based.

An inequality
∑n

i=1 αixi ≤ β is valid for an integer program, if every x ∈ P satisfies

the inequality. Valid inequalities are also called cutting planes. One goal of a cutting

plane is to eliminate portions of PLR. Essentially, cutting planes eliminate portions

of the linear relaxation solution space without eliminating any feasible integer points.

Formally, an inequality Σn
j=1αjxj ≤ β is valid for P ch if, and only if, Σn

j=1αjx
′
j ≤ β is

satisfied for every x′ ∈ P .

Cutting planes are especially useful if they contain at least one integer point that
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meets the inequality at equality because it can be said that the cutting plane is a proper

face of P ch. Formally, every valid inequality Σn
j=1αjxj ≤ β defines a face F ⊆ P ch that

takes the form F = {x ∈ P ch : Σn
j=1αjxj = β}. If F 6= ∅, then F supports P ch.

The most useful cutting planes are called facet defining inequalities, or facets. Facets

have a dimension of one less than the dimension of P ch. In other words, a facet of P ch has

dimension one less than the dimension of P ch. Facet defining inequalities are important

in the realm of polyhedral theory research because they are necessary and sufficient in

describing P ch. This means that any other inequality that is applied to PLR will be

redundant to a facet defining inequality in describing P ch. Including all facet defining

cutting planes result in integer extreme points, which eliminates the need for techniques

like branch and bound.

2.3 The Binary Knapsack Problem

This research is applied to a specialized type of integer program, called the binary

knapsack problem. The problem is named for the famed example of packing a knapsack

for a hiking trip. The hiker has n potential items that can either be taken or left behind.

Each item has some sort of benefit, ci, and is assigned a nonnegative weight, ai. The

hiker seeks to maximize the overall benefit of the items packed while staying under the

maximum weight she can carry.

This problem can be solved by modeling it as an integer program. Let xi = 1 if

the hiker chooses to take item i, and xi = 0 if not. The IP formulation of the binary

12



knapsack problem is as follows:

Maximize
∑n

i=1 cixi

subject to
∑n

i=1 aixi ≤ b

x ∈ B forall i = 1, 2, ..., n

This thesis is particularly concerned about the feasible region of a knapsack prob-

lem. Let PKP be used to represent the set of feasible solutions, PKP = {x ∈ Bn :

Σn
j=1ajxj ≤ b} with the the convex hull (and associated polyhedron) represented by

PKP ch.

Example 2.3.1 A hiker considers taking 19 items on a hiking trip. The hiker has

assigned each item with a benefit value and a weight. The benefits and weights are

listed in Table 2.1. The weights are listed in 100 gram units and the hiker can carry

14.5 kg (or 145 100-gram units).

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Benefit 15 35 14 31 11 18 18 21 10 16 13 6 12 10 7 9 15 8 15

Weight 34 34 33 33 32 28 15 15 15 14 14 13 13 13 13 12 12 11 9

Table 2.1: Benefit and Weight of Items

The hiker can either choose to take the item (xj = 1) or not take the item (xj = 0).

The hiker is seeking to maximize the benefit of the sum of the items in her pack while

staying within the amount of weight that she can carry. This problem can be modeled

as follows:

Maximize 15x1 + 35x2 + 14x3 + 31x4 + 11x5 + 18x6 + 18x7 + 21x8 + 10x9 + 16x10
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+13x11 + 6x12 + 12x13 + 10x14 + 7x15 + 9x16 + 15x17 + 8x18 + 15x19

subject to 34x1 +34x2 +33x3 +33x4 +32x5 +28x6 +15x7 +15x8 +15x9 +14x10 +14x11

+13x12 + 13x13 + 13x14 + 13x15 + 12x16 + 12x17 + 11x18 + 9x19 ≤ 145

xj ∈ {0, 1}, j ∈ {1, ..., 19}.

Solving this KP shows that the hiker achieves a maximum benefit of 163 by taking

items 2, 4, 7, 8, 10, 13, 17, and 19. The hiker should carry a total weight of 14.5 kg.

2.4 Covers

Covers are of particular importance in the area of polyhedral theory research with respect

to PKP ch. A cover is a set of variable indices from a binary knapsack constraint such

that setting all xj in the set equal to one is infeasible (or larger than the maximum

allowed by the constraint). Formally, this is represented as follows: C ⊆ N such that

Σj∈Caj > b. A minimal cover is a cover such that when one indice is removed from the

set, the set is no longer a cover. In other words, Σj∈C\{k}aj ≤ b for each k ∈ C .

Each cover (whether minimal or not) defines a cover inequality. Cover inequalities

are valid and take the form Σj∈Cxj ≤ |C| − 1. This is true because the sum of all of the

coefficients Σj∈Caj is greater than the maximum amount allowed by the constraint, thus

at least one variable must be set to zero for every feasible solution. Cover inequalities

are useful in the realm of polyhedral theory research because they are easy to find and

are usually a good starting place for lifting. Additionally, they are usually faces which

also impacts their usefulness in lifting.
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Example 2.4.1 Consider again the binary knapsack constraint from Example 2.3.1.

34x1 +34x2 +33x3 +33x4 +32x5 +28x6 +15x7 +15x8 +15x9 +14x10 +14x11 +13x12

+13x13 + 13x14 + 13x15 + 12x16 + 12x17 + 11x18 + 9x19 ≤ 145

In this case, an example of a cover would be C = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18, 19}

because 15 + 15 + 15 + 14 + 14 + 13 + 13 + 13 + 13 + 12 + 12 + 11 + 9 = 169 ≥ 145.

Additionally, a minimal cover would be C = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

because 15 + 15 + 14 + 14 + 13 + 13 + 13 + 13 + 12 + 12 + 11 + 9 = 154 ≥ 145. No-

tice that when any of the variables are removed from C , the set becomes feasible and

is no longer a cover. Therefore, the cover inequality generated by the minimal cover

C = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} would be x8 + x9 + x10 + x11 + x12 + x13 +

x14 + x15 + x16 + x17 + x18 + x19 ≤ 11.

2.5 Lifting

Lifting seeks to create a stronger cutting plane from a starting valid inequality. In

formal terms, suppose Σi∈Eαixi + Σi∈N\Eαixi ≤ β is a valid inequality in P ch where

E ⊂ N . The goal of lifting is to create a valid inequality of P ch that takes the form

Σi∈Eα′
ixi + Σi∈N\Eαixi ≤ β ′.

Lifting was first developed by Gomory [15] and is a technique commonly used to

strengthen inequalities by increasing the dimension of the cutting plane. This is done by

changing the coefficient, α, for the variables in the inequality. There are many different

kinds of lifting that have been developed by many different researchers, [4, 5, 18, 28,
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36, 37, 40]. The various types of lifting are exact or approximate lifting, sequential or

simultaneous lifting, and up lifting or down lifting.

2.5.1 Up vs. Down Lifting

The concept of a restricted space is fundamental to understand lifting. The basic idea

of a restricted space is to examine a polyhedron where a subset of the variables, say E,

are forced to a fixed value, ki for each i ∈ E. Formally, let P ch
E,K = conv{x ∈ P : xi =

ki for all i ∈ E} where ki ∈ Z and K = (k1, k2, ..., k|E|).

Up lifting is the most common lifting technique and assumes K = (0, 0, ..., 0). This

thesis focuses on uplifting, so for simplicity’s sake, P ch
E,K is referred to as P ch

E if K =

(0, 0, ..., 0). Down lifting assumes that all of the ki’s are set to the upper bound of xi for

all i ∈ E. To date, down lifting has only been done sequentially.

2.5.2 Exact vs. Approximate Lifting

Exact lifting provides the strongest inequality possible given a starting valid inequality.

However, this method demands that the strongest α′ possible be used to lift each variable.

This means that if the right hand side of the inequality is decreased, or the α′ coefficients

on the left side are increased, the inequality is no longer valid. Additionally, exact lifting

often requires the solution to an integer program which can become very computationally

intensive. However, some researchers have still developed polynomial time techniques to

find exact lifting coefficients [6, 12, 31].
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The computational intensity required by exact lifting makes the idea of approxi-

mate lifting sound very attractive. While the inequalities generated using approximate

lifting techniques can often be improved, the advantage of approximate lifting is the

time required to generate a valid inequality. Some types of approximate lifting involve

sequential lifting [4] and simultaneous lifting [3, 16, 32, 38].

2.5.3 Sequential vs. Simultaneous Lifting

Two major types of lifting are sequential and simultaneous lifting. The main difference

between these two types of lifting is the size of E. In sequential lifting, |E| = 1 meaning

the variables are lifted one at a time. Simultaneous lifting lifts more than one variable

at a time, so |E| ≥ 2.

Sequential Lifting

Sequential lifting changes the α values of the variables one at a time. This process is

typically done interatively until all of the possible variables are lifted into the inequality.

The sequential up lifting algorithm assumes that Σn
j=2αjxj ≤ β is valid for P ch

{1}, and

seeks to create a valid inequality α1x1 + Σn
j=2αjxj ≤ β for P ch. The methodology to

perform sequential uplifting was developed by Wolsey [36].

The methodology to perform sequential up lifting of binary variables seeks to solve

the following integer program:

z∗ = Maximize Σn
j=2αjxj

17



Subject to Ax ≤ b

x1 = 1

x1 ∈ {0, 1}, x2, ..., xn ∈ Zn

Once the optimal solution is found, α1 = β − z∗. It is important to note that Wolsey

showed that each sequentially lifted variable increases the dimension of the inequality in

P ch
E .

Example 2.5.1 Reconsider the knapsack polytope from Example 2.3.1. Observe that

C = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} is a cover. So the cover inequality is x8 +

x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 ≤ 11. To sequentially up

lift x7, solve the following IP:

z∗ = Maximize x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19

subject to 34x1 + 34x2 + 33x3 + 33x4 + 32x5 + 28x6 + 15x7 + 15x8 + 15x9 + 14x10

+14x11+13x12+13x13+13x14+13x15+12x16+12x17+11x18+9x19 ≤ 145

x7 = 1

xi ∈ {0, 1}, i = 1, ..., 19

The solution z∗ to the above integer program is z∗ = 10. This means that α7 = β−z∗,

or α7 = 11 − 10 = 1. The resulting valid inequality is x7 + x8 + x9 + x10 + x11 + x12 +

x13 + x14 + x15 + x16 + x17 + x18 + x19 ≤ 11.

To lift x6, solve z∗ = Maximize x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 +

x16 + x17 + x18 + x19 subject to 34x1 + 33x2 + ... + 9x19 ≤ 145 and x6 = 1. The solution

z∗ = 9, which means that α6 = β − z∗ = 11 − 9 = 2. The resulting valid inequality is
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2x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 ≤ 11.

Next, solve z∗ = Maximize 2x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 +

x15 + x16 + x17 + x18 + x19 subject to 34x1 + 33x2 + ... + 9x19 ≤ 145 and x5 = 1

results in z∗ = 9. So α5 = β − z∗ = 11 − 9 = 2. The resulting valid inequality is

2x5 + 2x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 ≤ 11.

When the process is repeated, for x4, x3, x2, and x1, the final sequentially lifted

inequality is 2x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 +

x14 + x15 + x16 + x17 + x18 + x19 ≤ 11.

The following points show that this inequality is facet defining:
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 2.1: Affinely Independent Points to show the sequentially lifted inequality is facet
defining

It is important to note that the order in which the variables are sequentially lifted

determines the inequality. In this example, there are 7! different orders that can yield

7! different inequalities. In this case, the same inequality would have resulted from

lifting the variables in a different order, however that is just a coincidence. Most times,

a different lifting order will result in a different inequality, but frequently there are

numerous repeated inequalities.
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Simultaneous Lifting

Simultaneous lifting allows for more than one variable to be lifted into the inequality

at once. This type of lifting finds α values for the entire set that is lifted at one time.

In 1978, Zemel [39] developed the first exact method to simultaneously lift multiple

variables. Unfortunately, this method requires solving exponentially many integer pro-

grams and can only be applied to binary knapsack problems. Zemel’s method generates

many inequalities by finding the extreme point of the polar, but is too computationally

intensive to be efficiently implemented.

Hooker and Easton [12] improved on Zemel’s method by developing a linear time

algorithm to simultaneously lift variables into cover inequalities for a PKP ch. This is

done by defining a set C as a minimal cover. The remaining variables to be lifted are

defined as set E. The basic idea is to use the knapsack structure to determine feasible

points and then to choose an α value that meets the ”most extreme” point at equality.

In 2009, Kubik expanded on this theory by creating a pseudo-polynomial time algo-

rithm that allows multiple simultaneously lifted sets to be sequentially lifted into a valid

inequality for PKP ch. This thesis focuses on a method to simultaneously lift simulta-

neously lifted sets of variables by determining two αs for two sets of lifting coefficients.
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Chapter 3

Synchronized Simultaneous Lifting

This chapter presents the major advancements of this research. The largest advancement

is the introduction of a new type of lifting, called synchronized simultaneous lifting (SSL).

SSL finds a new class of lifted inequalities that could not previously be discovered using

any previous lifting methods. A quadratic algorithm is presented that finds numerous

SSL inequalities in the knapsack polyhedron. Some theoretical properties describe when

SSL inequalities are facet defining.

3.1 Synchronized Simultaneous Lifting

In any of the eight lifting processes mentioned in Chapter 2, the input to the lifting

process is an integer programming polyhedron, a valid inequality and a lifting set. In

contrast, SSL does not require a valid inequality as input. Instead, the input to SSL
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are two sets of mutually exclusive variables to be lifted. Thus, the set of variables

are {xi : i ∈ E} and {xi : i ∈ F} where E, F ⊂ N and E ∩ F = ∅. The resulting

inequalities take the form
∑

i∈E αixi +
∑

i∈F αixi ≤ 1 or
∑

i∈E αixi +
∑

i∈F αixi ≤ 0.

These inequalities are sometimes facet defining.

To find SSL inequalities in a general binary polyhedron, P ch, the following proce-

dure, called Synchronized Simultaneous Lifting Procedure (SSLP), should be followed.

Unfortunately, this procedure requires solving many integer programs. Let E and F be

the input sets of the synchronized simultaneously lifted variables. For p = 0, ..., |E| solve

zp = Maximize Σj∈Fxj

Subject to Ax ≤ b
∑

j∈E xj = p

x ∈ {0, 1}n

and

z′
p = Minimize Σj∈F xj

Subject to Ax ≤ b
∑

j∈E xj = p

x ∈ {0, 1}n.

Find the convex hull of the points given by (p, zp) and (p, z′
p) for p = 0, ..., |E| ignore

any instances of p where the integer program was infeasible. The inequalities that define

this convex hull are the synchronized simultaneously lifted inequalities. For convenience

these inequalities are scaled to a right hand side of one whenever possible.

Theorem 3.1.1. Given a bounded integer program, then the inequalities generated by

SSLP are valid inequalities of P ch.
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Proof: For contradiction, assume that there exists an inequality that is not valid. Thus

there exists a point that is not on the halfspace defined by one of the inequalities.

However, this contradicts the definition of a convex hull and the result follows.

2

Clearly, solving 2|E|+2 IPs is impractical, so an algorithm was developed to simplify

the process. The algorithm, called the Synchronized Simultaneous Lifting Algorithm

(SSLA), can be used on binary knapsack problems to generate many SSL inequalities in

quadratic time.

3.2 The Synchronized Simultaneous Lifting

Algorithm for the Knapsack Polytope

One of the main advancements this research provides is the development of a quadratic

running time algorithm that finds many SSL inequalities that can be facet defining.

SSLA provides a significant advantage because it does not require a valid inequality as

an input. The idea of SSLA is to decrease the running time to find SSL inequalities on

knapsack problems.

The input to SSLA requires a knapsack constraint
∑

i∈N aixi ≤ b and two lifting

sets E, F ⊂ N such that E ∩ F = ∅. Denote E = {e1, ..., e|E|} and F = {f1, ..., f|F |}.

By summing the smallest a coefficients in each set the algorithm solves the first set of

IPs from section 3.1 that have a maximize objective function. Notice that the minimize
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problems are always 0 due to a binary knapsack problem and it is uninteresting. SSLA

finds the convex hull by taking a simple ratio test across the inequalities. This also

ensures that any reported inequalities are valid.

Synchronized Simultaneous Lifting Algorithm (SSLA)

Initialization:

Sort E and F in non ascending order according to their a knapsack coefficients
denoted by ae and af , respectively.

Set mark := 0.

Apply subroutine FeasiblePoints to create the feasE[], feasF [] and Numfeaspoints.

Main Step:

inq := 1

while mark < Numfeaspoints− 1

p∗ = feasE[mark] and q∗ := feasF [mark].

count := mark + 1 and α∗ := ∞.

while count < Numfeaspoints− 1

p = feasE[count] and q = feasF [count]

αE := q−q∗

p∗q−q∗p
and αF := p∗−p

p∗q−q∗p

if αE 6= 0, then

if α∗ ≥ αF

αE
, then
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α∗ := αF

αE
, mark := count, α∗

E := αE and α∗
F := αF

else

α∗ := −1, mark := count, α∗
E := αE and α∗

F := αF .

count := count + 1.

end while

Report α
∗inq
E and α

∗inq
F as coefficients of a valid SSL inequality.

inq := inq + 1.

end while

FeasiblePoints Subroutine

Initialization:

sum := 0, p := 0, q := 0, count := 0

while sum ≤ b

if p ≤ |E| − 1, then sum := sum + ae|E|−p
and p := p + 1.

else sum := sum + af|F |−q
and q := q + 1.

end while

if q = 0, then p := p − 1, sum := sum − ae|E|−p
.

if q = 1, then q := q − 1, sum := sum − af|F |−q
.
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if q ≥ 2, then

feasE[count] := p, feasF [count] := 0 and count := count + 1.

q := q − 1 and sum := sum − af|F |−q
.

Main Step:

while p ≥ 0 and q ≤ |F |

if sum > b, then sum := sum − ae|E|−p+1
and p := p − 1.

else

feasE[count] := p, feasF [count] := q, count := count + 1

sum := sum + af|F |−q
and q := q + 1.

end while

Numfeaspoints := count + 1

Return feasE, feasF and Numfeaspoints.

In order to determine the running time of SSLA, the algorithm will be evaluated

step by step. First consider the initialization steps. To begin, E and F must be sorted

in nonascending order which requires O(|E|log(|E|)) + O(|F |log(|F |)) effort. Next, the

while loop that makes up the majority of the initialization of the FeasiblePoints sub-

routine requires O(|E| + |F |) effort. The remainder of the steps in the initialization of

the FeasiblePoints subroutine require O(1) effort. The while loop that constitutes the

main step of the FeasiblePoints subroutine also requires O(|E|+|F |) since each element

in E and F is only examined a constant number of times. Thus, the initialization step
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requires O(|E|log(|E|)) + O(|F |log(|F |)) effort.

Next, consider the main step of SSLA. The evaluation of αE and αF for each feasE[]

and feasF [] requires examining at most the number of feasible points, |FeasE[]| effort.

This evaluation can take place up to |FeasE[]| times, so the effort required to complete

the main step of SSLA is O(|FeasE[]|2). Since |FeasE[]| is bounded by |E| + |F |, the

running time is determined to be O(max{|E|2, |F |2}), which is O(n2).

When the SSLA is implemented, a set of valid inequalities across PKP ch results.

Formally,

Theorem 3.2.1. Given a PKP instance and let α
∗inq
E and α

∗inq
F be returned from SSLA

for some inq. Then the inequality
∑

i∈E α
∗inq
E xi +

∑
i∈F α

∗inq
F xi ≤ 1 is a valid inequality

for PKP ch.

Proof : Given a PKP instance, observe that FeasiblePoints Subroutine finds the maxi-

mum number of elements in F that can be set to one given that there are p elements in

E set to one for all p = {0, ..., |E|}. Since the steps are identical to [12] algorithm, their

proof it is sufficient and is not difficult for the reader to generate.

For contradiction, assume that
∑

i∈E α
∗inq
E xi+

∑
i∈F α

∗inq
F xi ≤ 1 is not a valid inequal-

ity for some inq. Therefore, there exists an x′ such that
∑

i∈E α
∗inq
E x′

i+
∑

i∈F α
∗inq
F x′

i > 1.

Define p = |{x′
i = 1 : i ∈ E}| and q = |{x′

i = 1 : i ∈ E}|.

Let mark′ and mark′′ be the initial value of mark and the terminating value of

mark, respectively, for the iteration where SSLA returns α
∗inq
E and α

∗inq
F . Define p∗ =

feasE[mark′], q∗ = feasF [mark′], p∗∗ = feasE[mark′′] and q∗∗ = feasF [mark′′].
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Clearly, α
∗inq
E p∗ + α

∗inq
F q∗ = 1 and α

∗inq
E p∗∗ + α

∗inq
F q∗∗ = 1.

The proof now breaks into three cases. Assume p ≥ p∗ + 1. Observe that αE

αF
is the

slope of the line passing through (p∗, q∗) and (p, q) and that
α
∗inq

E

α∗inq
F

is the slope of the line

passing through (p∗, q∗) and (p∗∗, q∗∗). Since (p, q) has α
∗inq
E p + α

∗inq
F q > 1, the slope

of the line passing through at (p, q) must be more extreme than the slope of the line

passing through (p∗∗, q∗∗). Thus,
α
∗inq

E

α∗inq

F

> αE

αF
, which is a contradiction to the algorithm

taking the minimum of all such ratios.

Assume p = p∗. Then q ≥ q∗+1, which is a contradiction to either the FeasiblePoints

Subroutine finding the maximum number of elements in F or the algorithm being applied

correctly on the previous iteration (see previous paragraph).

Assume p ≤ p∗−1. Since SSLA takes the minimum ratio of αE and αF , the sequence

α∗1
E

α∗1
F

,
α∗2

E

α∗2
F

, ...,
α∗r

E

α∗r
F

is a monotoically increasing sequence where r is the total number of

inequalities generated as long as this ratio is defined to be ∞ if α∗r
F = 0. Observe that

this ratio can never be negative due to the PKP structure. Since p ≤ p∗−1 and violates

this inequality, (p∗, q∗) would not have been selected to be used as mark, which is a

contradiction to the method the algorithm is applied.

2

Aside from generating a valid inequality, SSLA can also generate facet define in-

equalities. First, for each inequality generated by SSLA, there are at least two points

in (feasE[], feasF []) that meet this inequality at equality. Denote these points as

(p′inq, q′inq) and (p′′inq, q′′inq). Additionally, now denote E = {i1, ..., i|E|} and F =
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{j1, ..., j|F |} where the indices are sorted in such a fashion that aik ≥ ail and ajk
≥ ajl

for

all l > k and k = 1, ..., max {|E|, |F |}. For convenience denote Ep = {Ei|E|−p+1
, Ei|E|−p+2

, ..., Ei|E|
},

in other words Ep contains the indices from E that have the smallest knapsack coeffien-

cients in E. Similarly, define F q = {Fj|F |−q+1
, Fj|F |−q+2

, ..., Fj|F |
}. Finally, let ei denote

the ith identity point (0, 0, 0, ...0, i, 0, ..., 0).

With these defined, then the following theorem provides a condition for these points

to be facet defining.

Theorem 3.2.2. Given a PKP instance, sets E, F ⊂ N such that E∩F = ∅, and values

α
∗inq
E and α

∗inq
F , then the inequality

∑
i∈E α

∗inq
E xi+

∑
i∈F α

∗inq
F xi ≤ 1 is facet defining over

PKP ch
N\(E∪F ) if 1 ≤ p′inq ≤ |E| − 1, 1 ≤ q′′inq ≤ |F | − 1 and the following conditions are

met. The set Ep′inq+1 \ {i|E|} ∪ F q′inq

is not a cover and if p′inq ≤ |E| − 2, then the set

Ep′inq−1 ∪ {i1} ∪ F q′inq

is not a cover. Additionally, The set F q′′inq+1 \ {j|F |} ∪ Ep′′inq

is

not a cover and if q′′inq ≤ |F | − 2, then the set F q′′inq−1 ∪ {j1} ∪ Ep′′inq

is not a cover.

Proof : Since the theorem is only concerned with PKP ch
N\(E∪F ), it suffices to find |E|+|F |

points in PKPN\(E∪F ) that meet
∑

i∈E α
∗inq
E xi +

∑
i∈F α

∗inq
F xi ≤ 1 at equality. Thus,

any variable with an index not in E or F is set to 0 and can be ingnored. Observe that

setting any p′ variables with indices in E and q′ variables with indices in F to one or

any p′′ variables with indices in E and q′′ variables with indices in F to one meet this

inequality at equality.

Assume the conditions are met. Then, the points
∑

i∈Ep′inq+1 ei − ek +
∑

j∈F q′inq ej

for each k ∈ Ep′inq+1 is a feasible point in PKP due to the set Ep′inq+1 \ {i|E|} ∪ F q′inq
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is not a cover and the sorted order of the knapsack. If p′inq ≤ |E| − 2, then the set

Ep′inq−1 ∪{i1}∪F q′inq

is not a cover. Thus, the points sumi∈Ep′inq−1ei + ek +
∑

j∈F q′inq ej

for each k ∈ E \ Ep′inq+1. Clearly these |E| points meet the SSL inequality at equality.

The remaining |F | points are found in a similar method, but this time, the variables

with indices in E are constant and the vertices in F are permuted. Then the points

∑
j∈F q′′inq+1 ej − ek +

∑
i∈Ep′′inq ei for each k ∈ F q′′inq+1 is a feasible point in PKP due

to the sorted order of the knapsack and the set F q′′inq+1 \ {j|F |} ∪ Ep′′inq

is not a cover.

If q′′inq ≤ |F | − 2, then the set F q′′inq−1 ∪ {j1} ∪ Ep′′inq

is not a cover. Thus, the points

∑
j∈F q′′inq−1 ej + ek +

∑
i∈Ep′′inq ei for each k ∈ F \ F q′′inq+1. Clearly these meet the SSL

inequality at equality.

These |E|+|F | points are affinely independent, because (p′, q′) and (p′′, q′′) are affinely

independent. Furthermore, the first set of |E| points are linearly independent and the

second set of |F | points are linearly independent. Thus, these points are affinely inde-

pendent and the result follows.

2

It is now straightforward to derive conditions for SSL inequalities to be facet defining.

Formally,

Theorem 3.2.3. Given a PKP instance, sets E, F ⊂ N such that E∩F = ∅, and values

α
∗inq
E and α

∗inq
F , then the inequality

∑
i∈E α

∗inq
E xi+

∑
i∈F α

∗inq
F xi ≤ 1 is facet defining over

PKP ch if the the conditions of Theorem 3.2.2 are met and if {k} ∪ Ep′inq

∪ F q′inq

or

{k} ∪ Ep′′inq

∪ F q′′inq

is not a cover where ak has the largest a coefficient of indices in
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N \ (E ∪ F ).

Proof : To the previous |E| + |F | points given in Theorem 3.2.2 add on the point

ek + sumi∈Ep′inq ei +
∑

j∈F q′inq ej or ek + sumi∈Ep′′inq ei +
∑

j∈F q′′inq ej depending upon

which set is not a cover for each k ∈ N \ (E ∪ F ). Clearly these points meet the

inequality at equality and are affinely independent and the result follows.

2

Example 3.2.4 illustrates how SSLA can be implemented in a binary knapsack prob-

lem to generate many facet defining inequalities.

Example 3.2.4 Reconsider the knapsack polytope from Example 2.3.1, which is defined

as follows:

34x1 +34x2 + 33x3 + 33x4 +32x5 + 28x6 + 15x7 +15x8 +15x9 + 14x10 + 14x11 + 13x12 +

13x13 + 13x14 + 13x15 + 12x16 + 12x17 + 11x18 + 9x19 ≤ 145

x1, ..., x19 ∈ {0, 1}

For the purpose of this example, arbitrarily set E = {1, 2, 3, 4, 5, 6} and F = {7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19}. As is seen above, the a coefficients have been sorted

for each of the sets. The next step in the initialization for the SSLA requires that

mark = 0. To begin the initialization step for the FeasiblePoints subroutine the

following parameters are set: sum = 0, p = 0, q = 0, and count = 0. By continuing the

initialization of the subroutine, a6 is selected because |E| − 0 = 6 and so sum = 0 + 28,

p = 0 + 1, and q remains at 0. Since sum = 28 < 145, the while loop is entered again.
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Now a5 is selected and sum is updated to 28 + 32 = 60, p is set to 2 and q remains

at 0. Next, a4 is selected and sum = 60 + 33 = 93, p is set to 3 and q remains at 0.

Continuing the process, a3 is selected and sum is updated to 93 + 33 = 126, p is set to

4 and q remains at 0. This process is continued until a6, a5, a4, a3, and a2 are selected

and sum = 160 which is larger than b = 145. Since q = 0, sum = 160 − 34 = 126

and p = 5 − 1 = 4. At this point, the initialization of the FeasiblePoints subroutine is

completed.

The main step of the FeasiblePoints subroutine begins with sum = 126 is less than

b = 145, so feasE[0] = p = 4 and feasF [0] = q = 0. Then count is incremented to

1 and sum is set to 126 + 9 = 135 and q = 1. Proceeding, sum is still less than 145,

so feasE[1] = 4, feasF [1] = 1, count = 2, sum = 146 > 145, and q = 2. On the

next pass, sum = 135 + 11 = 146 is greater than 145, so sum is set to sum − ae|E|−p+1

which leads to sum = 146 − 33 = 113 and p = 3. Next, sum is less than 145, so

feasE[2] = 3, feasF [2] = 2, count = 3, sum = 113, and q = 3. Again sum is less

than 145, so feasE[3] = 3, feasF [3] = 3, count = 4, sum = 125, and q = 4. In

another pass through the while loop, sum = 137 is still less than 145, so feasE[4] = 3,

feasF [4] = 4, count = 5, sum = 150, and q = 5. Clearly, sum = 150 is greater than

145, so sum = 150 − 33 = 117 and p = 2. On the next pass through the while loop,

sum = 117 is less than 145, so feasE[5] = 2, feasF [5] = 5, count = 6, sum = 130, and

q = 6. This process is repeated until p < 0 or q > |F |.

Then, Numfeaspoints is set to count + 1. In this case, Numfeaspoints = 12. The
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values listed in Table 3.1 are returned from the FeasiblePoints subroutine.
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count feasE[count] feasF [count]

0 4 0
1 4 1
2 3 2
3 3 3
4 3 4
5 2 5
6 2 6
7 2 7
8 1 8
9 1 9
10 0 10
11 0 11

Table 3.1: Data Reported by FeasiblePoints Subroutine

These are the potential candidates to be extreme points and are used in the main

step of SSLA. A graphical representation of these points is shown in Figure 3.1.
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Figure 3.1: Feasible Integer Points Reported from SSLA

From the previous section it is evident that the next step requires finding the convex

hull of these points. To begin the main step of the SSLA set inq = 1. It follows

that mark = 0 is less than Numfeaspoints − 1 = 11, so p∗ = feasE[0] = 4 and

q∗ = feasF [0] = 0. Next, count is incremented to 1 and α∗ = ∞. Since count = 1

which is less than Numfeaspoints − 1 = 11, p = feasE[1] = 4 and q = feasF [1] = 1.

Using these values, αE is q−q∗

p∗q−q∗p
= 1−0

4∗1−0∗4
= 1

4
and αF is p∗−p

p∗q−q∗p
= 4−4

4∗1−0∗4
= 0. Since

αF

αE
= 0 < α∗, α∗ is reset to 0. Then mark = 1, α∗

E = 1
4
, α∗

F = 0, and count = 2.

Notice that the inequality 1
4

∑
i∈E xi + 0

∑
i∈F xi ≤ 1 meets the points (4, 0) and (4, 1)

at equality.

Since count = 2 is still less than Numfeaspoints − 1, p = feasE[2] = 3, q =
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feasF [2] = 2, αE = 2−0
4∗2−0∗3

= 2
8
, αF = 4−3

4∗2−0∗3
= 1

8
. It follows that αF

αE
= 1

2
which is

more than α∗ = 0, so α∗ = 0 and mark = 1 and count is incremented to 3. Again note

that 2
8

∑
i∈E xi + 1

8

∑
i∈F xi ≤ 1 meets (4, 0) and (3, 2) at equality.

As stated above, count = 3 which is less than Numfeaspoints−1 so p = feasE[3] =

3, q = feasF [3] = 3, αE = 1
4
, αF = 1

12
. It follows that αF

αE
= 1

3
which is more than

α∗ = 0, so α∗ = 0 and mark = 1 and count = 3 + 1 = 4.

It follows that p, q and count continue to be incremented. For each change in count,

αE , αF , and αF

αE
are calculated and αF

αE
is compared to α∗ in an attempt to find the

minimum αF

αE
. This process yields the values listed in Table 3.2.
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p q αE αF
αF

αE
mark

4 1 1

4
0 0 1

3 2 1
4

1
8

1
2

1
3 3 1

4
1
12

1
3

1
3 4 1

4
1
16

1
4

1
2 5 1

4
1
10

2
5

1
2 6 1

4
1
12

1
3

1
2 7 1

4
1
14

2
7

1
1 8 1

4
3
32

3
8

1
1 9 1

4
1
12

1
3

1
0 10 1

4
1
10

2
5

1
0 11 1

4
1
11

4
11

1

Table 3.2: Values for the First SSLA Inequality

As is seen in Table 3.2, the minimum αF

αE
= 0 and comes from p = 4, q = 1. That

means for this iteration, α∗ remains at 0 and mark remains at 1. Thus, α∗1
E and α∗1

F

are reported as 1
4

and 0, respectively. Thus, the first SSL inequality is 1
4

∑
i∈E xi +

0
∑

i∈F xi ≤ 1.
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Figure 3.2: Feasible Points with First Cutting Plane

Figure 3.2 graphically depicts this process. The algorithm determines αE and αF

such that the αF

αE
is the slope of the line between (4, 0) and a particular feasible point

generated by the FeasiblePoints subroutine. For clarity, this figure shows 5 such lines.

Recognize that the algorithm would have evaluated 11 such lines. The most extreme line

occurs at the minimum slope, αF

αE
= 0. This line is indicated in bold and is the reported

inequality.

For the next iteration, since mark = 1 is less than Numfeaspoints − 1 = 11 then

p∗ = feasE[1] = 4 and q∗ = feasF [1] = 1. Additionally, count = 1 + 1 = 2, and

α∗ = ∞. It is apparent that count = 2 is less than Numfeaspoints − 1 = 11, so

αE = 2−1
4∗2−1∗3

= 1
5
, αF = 4−3

4∗2−1∗3
= 1

5
, and αF

αE
= 1. Since αF

αE
< α∗, α∗ = 1, mark = 2,
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α∗
E = 1

5
, α∗

F = 1
5
, and count = 3. Next count = 3 is less than Numfeaspoints − 1, so

αE = 2
9
, αF = 1

9
, and αF

αE
= 1

2
. Since αF

αE
< α∗, α∗ = 1

2
, mark = 3, α∗

E = 2
9
, α∗

F = 1
9
, and

count = 4.

Again, count = 4 is less than Numfeaspoints−1, so αE = 3
13

, αF = 1
13

, and αF

αE
= 1

3
.

Since αF

αE
< α∗, α∗ = 1

3
, mark = 4, α∗

E = 3
13

, α∗
F = 1

13
, and count = 5.

This process is repeated until count ≥ 11. This iteration yields the results listed in

Table 3.3.
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p q αE αF
αE

αF
mark

3 2 1
5

1
5

1 2
3 3 2

9
1
9

1
2

3
3 4 3

13
1
13

1
3

4
2 5 2

9
1
9

1
2

4
2 6 5

22
1
11

2
5

4
2 7 3

13

1

13

1

3
7

1 8 7
31

3
31

3
7

7
1 9 8

35
3
35

3
8

7
0 10 9

40
1
10

4
9

7
0 11 5

22
1
11

2
5

7

Table 3.3: Values for Second SSL Inequality

Notice that there is a tie for the minimum αF

αE
= 1

3
. In this case, the algorithm chooses

the value that is furthest down the list. This means α∗ = 1
3
, mark = 7, and α∗2

E = 3
13

and α∗
F = 1

13
are reported. This line is highlighted in Table 3.3. Thus the second SSL

inequality is 3
13

∑
i∈E xi + 1

13

∑
i∈F xi ≤ 1.
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Figure 3.3: Feasible Points with First and Second Cutting Planes

Similar to Figure 3.2, Figure 3.3 graphically depicts this process. Again, the algo-

rithm determines αE and αF such that the αF

αE
is the slope of the line between (4, 1) and

a particular feasible point generated by the FeasiblePoints subroutine. In this case,

the most extreme line occurs at αF

αE
= 1

3
. Again, this line is indicated in bold and is the

reported inequality.

Notice that if the point (3, 4) had been selected, the same inequality would have

resulted on this iteration. However, on the next iteration (2, 7) would have been selected

and would have generated the same inequality as was generated on this iteration. Hence,

SSLA selects the point that is furthest down the list or furthest from the fixed point

with the minimum αF

αE
ratio.
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The next iteration begins with inq = 3, p∗ = 2, q∗ = 7, count = 8, and α∗ = ∞. The

second while loop is used again to find α∗3
E and α∗3

F . The values listed in Table 3.4 are

the result of the third iteration.

p q αE αF
αE

αF
mark

1 8 1
9

1
9

1 8
1 9 2

11
1
11

1
2

9
0 10 3

20
1
10

2
3

9
0 11 2

11

1

11

1

2
11

Table 3.4: Values for Third SSL Inequality

Again, a there is a tie for the minimum αF

αE
= 1

2
and the algorithm will select α∗ = 1

2
,

mark = 11, α∗3
E = 2

11
, and α∗3

F = 1
11

. Since mark = 11, the while loop is not entered and

the algorithm has concluded. The final inequality is 2
11

∑
i∈E xi +

1
11

∑
i∈F xi ≤ 1. All of

the cutting planes generated by SSLA in this example are shown in Figure 3.4.
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Figure 3.4: Feasible Points with First, Second and Third Cutting Planes

As is shown above, SSLA yields the following valid inequalities. Furthermore, each

of these inequalities is facet defining.

1
4

∑
i∈E xi + 0

∑
i∈F xi ≤ 1

3
13

∑
i∈E xi + 1

13

∑
i∈F xi ≤ 1

2
11

∑
i∈E xi + 1

11

∑
i∈F xi ≤ 1.

To prove that 1
4

∑
i∈E xi + 0

∑
i∈F xi ≤ 1 is facet defining, 19 affinely independent

points that are feasible and meet this inequality at equality must be found. The two

feasible points that generated this inequality are (4, 0) and (4, 1). Using Theorem 3.2.2

we must determine whether or not (p′, q′) = (4, 0) or (p′, q′) = (4, 1). Obviously the
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point (p′′, q′′) is the other point. In this case, p
′
= 4, q

′
= 0, p

′′
= 4, and q

′′
= 1.

As is shown in Figure 3.5, p
′

is permuted in the upper left portion of the matrix

while q
′
is held constant and p

′′
is held constant while q

′′
is permuted in the bottom right

portion of the matrix. Due to the sorted order of the knapsack instance, it is sufficient

to ensure the following sets are not covers to prove the inequality is facet defining:

{1, 4, 5, 6}, {2, 3, 4, 5}, and {3, 4, 5, 6, 7}. Hence, the following affinely independent points

show that
∑

i∈E
1
4
xi ≤ 1 is facet defining.
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 3.5: Affinely Independent Points for
∑

i∈E
1
4
xi +

∑
i∈F 0xi ≤ 1

To prove that
∑

i∈E
3
13

xi +
∑

i∈F
1
13

xi ≤ 1 is facet defining, again 19 affinely inde-

pendant points must be found. To begin, p
′

= 2, q
′

= 7, p
′′

= 4, and q
′′

= 1. As

is shown in Figure 3.6, p
′

is permuted in the upper left portion of the matrix while

q
′

is held constant and p
′′

is held constant while q
′′

is permuted in the bottom right

portion of the matrix. Due to the sorted order of the knapsack instance, it is suffi-

cient to ensure the following sets are not covers to prove the inequality is facet defining:

{1, 6, 13, 14, 15, 16, 17, 18, 19}, {4, 5, 13, 14, 15, 16, 17, 18, 19}, and {3, 4, 5, 6, 7}. Hence,

the following affinely independent points show that
∑

i∈E
3
13

xi +
∑

i∈F
1
13

xi ≤ 1 is facet

defining.
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 3.6: Affinely Independent Points for
∑

i∈E
3
13

xi +
∑

i∈F
1
13

xi ≤ 1

Finally, to prove that
∑

i∈E
2
11

xi +
∑

i∈F
1
11

xi ≤ 1 is facet defining, 19 affinely in-

dependant points are found with p
′

= 2, q
′

= 7, p
′′

= 1, and q
′′

= 9. Notice that

(p
′′
, q

′′
) = (1, 9) is not an extreme point. This shows that the inequality can be proven

to be facet defining without only using the extreme points of the polyhedron. In other

words, the conditions of Theorem 3.2.2 are sufficient but not necessary.

Again, as is shown in Figure 3.7, p
′

is permuted in the upper left portion of the

matrix while q
′

is held constant and p
′′

is held constant while q
′′

is permuted in the

bottom right portion of the matrix. Due to the sorted order of the knapsack in-

stance, it is sufficient to ensure the following sets are not covers to prove the in-

equality is facet defining: {1, 6, 13, 14, 15, 16, 17, 18, 19}, {4, 5, 13, 14, 15, 16, 17, 18, 19},
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{6, 7, 12, 13, 14, 15, 16, 17, 18, 19}, and {6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}. Hence, the

following affinely independent points show that
∑

i∈E
2
11

xi +
∑

i∈F
1
11

xi ≤ 1 is facet

defining.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 3.7: Affinely Independent Points for
∑

i∈E
2
11

xi +
∑

i∈F
1
11

xi ≤ 1

One of the most exciting aspects of this research and this example is the generation of

the inequality 3
13

∑
i∈E xi + 1

13

∑
i∈F xi ≤ 1. This inequality could be found using exact

simultaneous up lifting. However, to successfully create this inequality, the starting

inequality would have had to have been 3
∑

i∈E xi ≤ 13 or
∑

i∈F xi ≤ 13.

Consider starting with the inequality 3
∑

i∈E xi ≤ 13. The dimension of the face

of this inequality is -1 as no feasible point meets this inequality at equality. Thus,
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the natural instinct is to change the right hand side to 12. Dividing by 3 changes the

inequality to an extended cover inequality. Therefore, no one would select the starting

inequality 3
∑

i∈E xi ≤ 13 without divine intervention. Thus, the need to consult an

oracle.

A similar argument holds for
∑

i∈F xi ≤ 13. Again, the dimension of the face is

-1 and decreasing the right hand side to 11 creates another extended cover inequality.

Thus an oracle must be consulted in order to utilize simultaneous lifting to create this

inequality.

Since no one would naturally guess either of these inequalities as a starting inequality

to perform lifting, an oracle must be consulted to begin with 3
∑

i∈E xi ≤ 13 or
∑

i∈F xi ≤

13 valid inequalities as input to a simultaneous lifting algorithm. Consequently, we view

SSL inequalities as capable of generating an entirely new class of cutting planes for the

knapsack polyhedron.
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Chapter 4

Computational Results

As stated previously, the main advancement this research provides is the introduction

of a new class of lifted inequalities, SSL inequalities, and an algorithm to find SSL

inequalities in binary knapsack problems with quadratic running time. The purpose of

this section is to provide computational results to help determine whether or not these

inequalities are useful. The computational results show that SSL inequalities allow

CPLEX, an advanced optimization software, to solve problems that it otherwise would

not have sufficient memory to solve.

This short computational study is conducted on a Pentium IV PC with 2.0 GB of

RAM. Twenty problems of 2 different classes are solved using CPLEX with SSL cuts

and CPLEX alone so the results could be compared.

Many classes of problems were attempted before a reasonable class of randomly gen-

erated problems was obtained. The goal was to find problems that CPLEX was unable
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to solve, thus the randomly generated problems could not be trivial. Unfortunately, ran-

dom problems are often times trivial or nearly impossible to solve which is the reason it

took a significant amount of effort to find reasonable classes of problems. An additional

complication was the number of parameters that could be changed in each problem class.

It is important to note that it is possible for a knapsack problem to have more

than one constraint. This special type of knapsack problem is referred to as a multiple

knapsack problem. The type of multiple knapsack problem (MKP) that was used in this

class of problems is represented as Maximize
∑

i∈N cixi subject to
∑

i∈N ajixi ≤ bj for

j = 1, ..., r and xi ∈ {0, 1} ∀ i ∈ N where r is the number of rows and aji ≥ 0 for all

i ∈ N and j ∈ {1, ..., r}.

The MK instances take the same general form. The constraint coefficients, aji, are

randomly distributed integers between 0 and 1000 that follow a uniform distribution.

The objective coefficients, ci are calculated by summing the column coefficients and

adding on a random integer between 0 and 5. In other words, ci =
∑r

j=1 aji +u where u

is a number taken from a U(0, 5) for all j ∈ N . The right hand side of each constraint

is the sum of all ai, in that constraint divided by one tenth of the number of variables

and rounded down. Formally, bj = b
Pn

i=1 aji
n
10

c.

The first class of problems contains 100 variables and 3 constraints and the results are

found in Table 4. The second class of problems contains 50 variables and 4 constraints

and the results are found in Table 4. These instances were run with CPLEX at it

default setting and also run with CPLEX at its default settings including the inequalities
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generated from SSLA.

Twenty problems of each class were randomly generated and solved using CPELX

alone and CPLEX with the SSL cuts. The results of the trials are recorded in Tables 4

and 4. The first three columns of each table refer to the trials using CPLEX alone. The

data listed in these columns are whether the problem could be solved, the amount of time

it took CPLEX to solve, and the number of nodes generated. The last six columns of

each table refer to the trials that were conducted using CPLEX with the SSL inequalities.

The data listed in these columns are whether the problem could be solved, the amount of

time it took CPLEX with the SSL inequalities to solve, the number of nodes generated,

the size of E, the size of F , and the number of SSL inequalities generated.

It is important to note that if there was not enough memory for the problem to be

solved, the times listed are the times before the maximum amount of memory was used.

Additionally, all times are reported in seconds and the final row of the table is bolded

and represents the average of each column. The average time reported is computed using

only the instances where both CPLEX alone and CPLEX with the SSL inequalities were

able to solve the problem to optimality.

In this computational study, SSLA is applied to each constraint. Thus, the 100

variable instances have 3 implementations of SSLA and the 50 variable instances have

4 such implementations. The sets E and F partition the set N and the elements of E

are chosen to be the indices with the largest coefficients in the particular constraint.

The set E has between one fifth to one half of the indices and it is selected so that the
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difference between the coefficients with indices in E and the coefficients with indices in

F are as large as possible.
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CPLEX SSLA
Solved T ime Nodes Solved T ime Nodes |E| |F | Ineq

No 538.16 3630000 Yes 2418.45 40400000 38 62 11
No 925.73 5009232 Yes 1303.42 19670000 33 67 12
Yes 2449.88 38980000 Yes 2941.76 47010000 44 56 10
Yes 527.19 10180000 Yes 1916.08 27900000 51 49 13
No 586.11 9260000 Yes 954.77 14750000 32 68 11
Yes 681.59 119400000 Yes 1117.58 13600000 33 67 14
No 649.31 10540000 Yes 3140.13 52030000 51 49 13
No 657.34 10660000 No 2543.72 37300000 48 52 12
No 594.61 9530000 No 1728.7 21970000 50 50 12
Yes 235.55 4650000 Yes 267.56 5080000 38 62 14
No 557.92 8820000 Yes 2260.17 30300000 30 70 14
Yes 1766.91 29160000 Yes 2281.49 26850000 39 61 12
Yes 517.17 7910000 Yes 808.13 8760000 36 68 13
Yes 502.13 7678324 Yes 201.45 2950000 40 60 12
No 612.89 9740000 Yes 1266.80 16949187 41 59 12
No 540.50 8420000 No 1077.50 17000000 31 69 11
Yes 1175.70 18500000 Yes 739.47 9610000 45 55 12
Yes 761.63 12960000 No 1394.06 20610000 31 69 11
Yes 291.20 5500000 Yes 666.81 9360000 49 51 15
Yes 526.89 9060000 No 325.75 430000 37 63 12

11/20 905.26 15083009 15/20 1215.59 15020264 39.85 60.35 12.3

Table 4.1: Data Reported for Randomly Generated Problems with 100 Variables
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CPLEX SSLA
Solved T ime Nodes Solved T ime Nodes |E| |F | Ineq

No 1316.53 20800000 Yes 3140.72 47160000 15 35 17
Yes 874.95 1591000 Yes 1314.13 1530000 13 37 15
Yes 2097.27 36770000 Yes 2586.16 39480000 16 34 15
No 1624.41 26020000 Yes 3751.42 56900000 20 30 17
No 1603.11 25550000 Yes 4046.36 61250000 22 28 15
No 775.78 12230000 No 2423.75 33250000 18 32 15
No 930.56 14870000 No 3225.3 45340000 13 37 15
Yes 1927.05 33580000 Yes 2696.80 34180000 12 38 15
No 918.13 14990000 No 3064.95 41950000 16 34 16
No 994.39 16290000 Yes 5316.27 84220000 26 24 13
No 877.19 14170000 Yes 4840.70 76650000 22 28 16
Yes 1984.73 34530000 Yes 2687.19 38620000 24 26 16
No 887.09 14490000 Yes 4006.8 59850000 11 39 17
No 1008.36 16680000 Yes 4737.63 72820000 12 38 14
No 1078.72 17560000 Yes 5920.39 85880000 17 33 17
Yes 1013.27 16280000 Yes 2595.77 37790000 22 28 17
No 1568.68 13790000 Yes 5845.17 85730000 17 33 14
No 895.99 14440000 No 3550.44 44650000 26 24 20
No 922.38 14640000 No 3224.28 47220000 11 39 12
Yes 3390.11 55140000 Yes 5577.53 88640000 17 33 16

6/20 1881.23 36478231 15/20 2909.6 38217718 17.5 32.5 15.6

Table 4.2: Data Reported for Randomly Generated Problems with 50 Variables

One of the most exciting results is the number of distinct SSL inequalities. For these

problems, there was an average of 12 SSL inequalities for the 100 variable instances

and 15 for the 50 variable instances. Furthermore, these inequalities are not simply

cover inequalities. One inequality that was generated in the above trials is 7
∑

i∈E xi +

∑
i∈F xi ≤ 57 where |E| = 17 and |F | = 33. This was created when 7 elements from E

are taken and 8 elements from F or 6 elements from E and 15 elements from F . Another

such inequality is 2
∑

i∈E xi + 3
∑

i∈F xi ≤ 42 where again |E| = 17 and |F | = 33.

Importantly, SSLA results in very quick preprocessing times. In all trials, the pre-
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processing time was less than 1
1000

of a second and is not reported in the table due to

this short processing time. The fact that an average of 15 cuts can be generated in less

than one thousandth of a second indicates that SSLA can be used as a preprocessing

step for commercial IP solvers.

The most significant result is that SSL cuts allowed CPLEX to solve problems to

optimality that it otherwise would not have been able to solve. Of the 40 instance

CPLEX alone only solved 17 to optimality while CPLEX with SSL cuts solved 30 to

optimality. Thus SSL cuts allowed a 76 percent improvement over CPLEX alone.

A primary reason for these computational advancements is that the SSL cuts are

strong. The number of noninteger points in unfathomed nodes for CPLEX alone is

consistently the number of constraints. In contrast, once SSL cuts are implemented, the

unfathomed nodes frequently had an extra one or two noninteger points. Thus, these

SSL constraints are still active. This important result even occured deep in the tree after

millions of nodes had been fathomed. In other words, many times the SSL inequalities

were very strong inequalities.

Observe that implementing the SSL cuts increased the amount of average time re-

quired to solve the problem to optimality (when both CPLEX and CPLEX with SSL

cuts solved the problems). This result is surprising and may be because the SSL cuts

dramatically increase the number of constraints, 4 to 19 or 3 to 15. Thus, the basis that

is stored is larger for each node and one expects the time to evaluate each node would

increase slightly.

56



Although there are some minor tradeoffs for implementing SSLA, the theoretical and

computational results obtained in this research are very promising because they suggest

this research can be useful in lifting. Even more important than these results themselves

is the future work that this research might lead to. There are many ways this researh

can be adapted to different types of problems to be of use in future lifting research.

Some of these possibilities are listed in Chapter 5.
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Chapter 5

Conclusion

This research has provided a significant advancement to the area of lifting in integer

programming. It has introduced Synchronized Simultaneous Lifting (SSL) as a new

type of lifting. SSL finds classes of valid inequalities that could not be found using any

of the previously discovered lifting methods without the consultation of an oracle. The

main advantages of SSL inequalities are that no starting valid inequality is required,

arbitrary sets may be used to begin and many inequalities are generated using the

method. Additionally, this thesis provided further conditions to ensure the inequalities

are facet defining.

This thesis also introduced a quadratic time algorithm that can be used in binary

knapsack problems to find SSL inequalities. These inequalities can significantly decrease

the amount of memory required to solve computationally difficult, randomly generated

problems. The improvement can be so significant that the inequalities sometimes allow
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CPLEX to solve problems that it otherwise would not have been able to solve.

5.1 Future Research

While the results listed in Chapters 3 and 4 show SSL inequalities can be useful in

binary knapsack problems and can generate facet defining inequalities, much compu-

tational work remains to be done. It would be very helpful to find more classes of

randomly generated problems that easily lend themselves to the implementation of the

SSLA. Additionally, more work could be done in implementing these problems in various

benchmark problems so that the results may be compared.

Nearly as important as the computational results themselves are the branches of

research that can be spun off of these results. Another area of opportunity for research

is to expand this theory into new types of problems. An obvious expansion is problems

with multiple constraints. SSLA works with one knapsack constraint but could likely be

expanded using the same ratio idea that inspired the SSLA.

Another interesting opportunity that would likely yield useful results would be to

expand SSLA to include more than two sets. The SSLA uses αE , αF , and αF

αE
to determine

the inequalities. This could easily be expanded to include an αG and corresponding

ratios.

Additionally, SSL could be expanded to other classes of integer programs. Examples

of these would be nonbinary problems, general mixed integer programs,and multiple
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constraint knapsack problems.

Finally, opportunities exist to implement the SSLA (or another algorithm that finds

SSL inequalities) sequentially to allow for the discovery of even more inequalities. This

would allow more than 2 α values to be included in a SSL inequality.
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