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BUCKLING OF RIGID FRAMES

By Jung-On Look,* A. M. ASCE

SYNOPSIS

It is considered that elastic stability is a problem of

great importance in the modern use of steel and high-strength

alloys in engineering structures, especially in tall buildings,

bridges and aircrafts.

This paper presents an analysis of buckling of frames based

on the well-known slope-deflection procedure. The stability of

one-story and multi-story plane frames is studied for the anti-

symmetrical mode of buckling. Other methods for calculating

the buckling load of frames are also discussed. Typical ex-

amples are solved using the direct analytical procedure, and the

results obtained are compared with the results obtained through

the use of the moment-distribution method. It was found that

both solutions give results which are in very good agreement.

It is felt that the slope-deflection method is simpler and

more direct than the moment-distribution method in solving sta-

bility problems.

Graduate Student, Department of Civil Engineering, Kansas
State University, Manhattan, Kansas.



INTRODUCTION

The modern use of steel and hi^i-strength alloys In engin-

eering structures, especially in tall buildings, bridges, ships,

and aircrafts, has made elastic instability a problem of great

importance. Urgent practical requirements have given rise in

recent years to extensive investigations, both theoretical and

experimental, of the conditions governing the stability of such

structural elements as bars, plates,

The first problem of elastic instability, concerning lateral

buckling of compressed members, was solved about 200 years ago by

L. Euler. Under forces of practical interest, the problem of

lateral buckling of columns, originated by Euler, has been exten-

sively investigated theoretically and experimentally, and the

limits within which the theoretical formulas can be applied have

been established. However, lateral buckling of compressed mem-

bers is only a particular case of elastic instability, which is

very important in the field of structural engineering. B. W.

James adapted the moment-distribution procedure to include the

effects of direct loads of the column; the work of James was ex-

tended by Lundquist^ to determine the elastic collapse loads or

the critical loads within the elastic range of plane frameworks.

L. Euler, "Elastic Curves," translated and annotated by
V. A. Oldfather, C. A. Ellis, and D. M. Brown. 1933.

2B. Vi. James, "Principal Effects of Axial Loads on Moment
Distribution Analysis of Rigid Structures," N.A.C.A . Tech . Note

ilmi 1935.
•*E. E. Lundquist, "Stability of Structure Members Under

Axial Load," N.A.C.A . Tech . Note 617 . 1937.



In what is probably the best existing treatise on critical loads

of elastic structures, Chandler* makes the observation that

Lundquist's work was "....the foundation stone in the concept

of stability, but in regard to the numerical evaluation of

critical loaas left much to be desired. 11

Recently, several authors such as S. Hansbo^ had extended

the moment-distribution method for solving the buckling load of

frames to include the multi-story structures. The energy method

had also been used by some authors to solve the buckling load of

frames, but it has been considered that the result of this method

gives an upper bound of the critical load of the frame which is

too conservative for the purpose of structural design.

This paper presents the slope-deflection method to solve

the buckling load for one-story and multi-story structures. The

fundamental slope-deflection formula relates the bending at one

end of a member, such as a column or a girder, to the end slopes

and relative transverse displacement of these ends. In applying

this formula to problems of transversely loaded frames, the

equation expressing the equilibrium of moments at the joint and

the equilibrium of shear at each story can be obtained. Gener-

ally, it is assumed that the axial strains in the members may be

disregarded, that is, the horizontal or transverse displacements

of all joints in a given frame at a given floor or level will be

*D. B. Chandler, "The Prediction of Critical Loads of Elas-
tic Structures," Ph.D . Thesis . Manchester University . 1955.

*S. Hansbo, "The Critical Load of Rectangular Frames An-
alyzed by Convergence Methods," Transact ion of Chalmers University
of Te<?hnolQKY, Vol. 164-1*1, 195~



the same. Thus, only one relative transverse displacement need

be defined for all the columns of one story. However, plane

frames usually do not exist singly. A building structure normally

consists of a set of such frames which are connected by floors,

roofs, and some bracing systems. Usually, floors and roofs may

provide an additional rigidity against the lurching mode of

buckling*

Plane frames may buckle in either an anti -symmetric mode or

« symmetric mode viiich Involves or does not involve lateral dis-

placement of the frame, respectively.

METHODS CP CALCULATING THE. BUCKLING LOAD

Several methods" of calculating the buckling load of frames

had been worked out. Among these methods, three essentially

different approaches are discussed:

1. The energy method.

2. The moment-distribution method.

3. The direct analytical solution based on slope-

deflection procedure.

The energy method is based on the condition that if a frame

in stable equilibrium is given a small distortion, it will always

strive to return to its original position. If, on the other

hand, it is in unstable equilibrium, the distortion will increase

to infinity. This fact forms the energy buckling criterion.

Buckling will occur when the vo ric done by the external forces

in a virtual displacement equals the change in strain energy.

Loc . cit,



The stability of a framework with rigid joints can be in-

vestigated by using the moment-distribution method. In the use

of this method, a particular set of values of the external loads

is assumed, and the corresponding axial forces in the bars are

determined, assuming that the frame has pin joints. Then an

arbitrary moment is applied to one of the joints of the frame,

and the moments in the frame are distributed in the usual way.

If the moment-distribution computations converge to finite val-

ues for the final end moments, the frame is, in general, stable.

The entire process is then repeated using increased loads on the

structure but maintaining the loads in the same proportion. If

the loads are above the critical value, the moment-distribution

computations will not converge, in general, to finite values of

the end moments in the columns. Thus by successive applications

of this procedure, the critical load is determined.

The direct analytical solution based on slope-deflection

procedure consists of setting up a system of equations, express-

ing the relations between the joint displacements and the joint

rotations which occur due to distortion of the frame. These re-

lations form a set of linear homogeneous equations, usually

called the stability equations. Generally, the unknowns (dis-

placements, rotations and moments) in the stability equations

are equal to sero, if the determinant of the coefficient is dif-

ferent from sero, which means that no distortion of the frame is

taking place, and the frame is in a stable condition. The sta-

bility criterion is obtained from setting the determinant of the

unknowns equal to zero, and this usually yields the value of the



buckling load.

THE FUNDAMENTAL THEORY FOR THE DIRECT ANALYTICAL
PROCEDURE?

Fig. 1. Applied forces and distortion of a column.

J, E. Goldberg, "Buckling of One-Story Frames and Build-
ings," Journal of the Structural division . A.3.C.E . . Vol. 86,
Oct. I960, P. 53.



If a number ab is subjected to an axial compressive load P,

the end b displaces with respect to the other end a, as shown in

Fig. 1. The moments at both ends of the member, by applying the

slope-deflection method, can be found in terms of the angular

and transverse displacements at those ends in the following form:

*ab * *ab jAab 6a / B
fib

ob - (Aab / Bab ) Aab 1 (1)
( Lab )

and

Mba = Kab
j

Aab ©
b / B

flb fl
- (A

flb / Bab ) A^ ) ( 2 )

Lab )

where

K
ab= -|L. »

Lab

E is the appropriate modulus of elasticity;

I denotes the moment of inertia of the cross section of the

member;

L is the length of the member;

6 is the angular displacement at the ends of the member;

A refers to relative transverse displacement of ends.

A and B are constants which depend upon the sign and magni-

tude of the axial load and may be expressed completely as

functions of the ratio of the axial load to the Euler

load of the member. They are given by the following

formulas:

(a) For compressive axial load

A = 3jn pL - pL cos pL
( 3a )

£ \1 - cos pL; - sin pL
pL



B - pi - sin pL (3b)

2 (1 - cos pL) - sin pL
pL

(b) For tensile axial load

A s pL cosh pL - sinh pL ----------- (4a)

2 (1 - cosh pL) /sinh pL
pL

B - slnhpL - pL r———— (4b)

2 (1 - cosh pL) / sinh pL
pL

in which

pl * 7T /i0i (5a)

and

g« J_ = _j? (5b)

where P is an axial load, denoted as positive while the member is

under compression. The value of A and B may be taken from Ta-

ble 1 or Figs. 2 and 3. It can also be found from Table 1 that

A and B will have the values 4 and 2, respectively, when the ax-

ial load is zero, which agrees with the well-known slope-deflection

equations.

The shear equation may be found by taking the moment about

either end of the column, as shown in Fig. 1.

Sab = SL- (*ab / *ba / Pab
A

ab
) (6)

Lab

Substitution of Eqs. (1) and (2) into Eq. (6) yields:

Sab = -*ab < Aab / Bab ) (9a / 9
b - 2 Afe)- P^ &a& (7)

Lab
Lab ^ab



Table i. Slope deflection coefficients A and B for various
values of load ratioO.

G A B e A B

3.9 -73.34 73.56 0.3 3.539 2.109
3.3 -39.05 39.54 0.2 3.730 2.070
3.7 -24.69 25.39
3.6 -17.87 13.79 0.1 3.365 2.033
3.5 -13.73 14.36 4.000 2.000

3.4 -10.91 12.24 4.000 2.000
3.3 - 8.86 10.40 -0.1 4.131 1.968
3.2 - 7.30 9.02 -0.2 4.255 1.933
3.1 - 6.05 7.96 -0.3 4.334 1.910
3.0 - 5.03 7.12 -0.4 4.502 1.883

2.8 - 3.449 5.884 -0.5 4.619 1.357
2.6 - 2.252 5.019 -0.6 4.736 1.334
2.5 - 1.749 4.673 -0.7 4.849 1.811
2.4 - 1.300 4.333 -0.8 4.959 1.739
2.2 - 0.519 3.901 -0.9 5.069 1.769

2.0 0.143 3.521 -1.0 5.175 1.749
1.8 0.717 3.224 -1.2 5.333 1.713
1.6 1.224 2.930 -1.4 5.533 1.681
1.5 1.457 2.873 -1.6 5.777 1.651
1.4 1.673 2.773 -1.8 5.964 1.623

1.2 2.090 2.610 -2.0 6.147 1.593
1.0 2.468 2.468 -2.5 6.580 1.544
0.9 2.645 2.404 -3.0 6.990 1.499
0.8 2.816 2.346 -4.0 7.75 1.43
0.7 2.981 2.291 -5.0 8.42 1.33

0.6 3.140 2.241 -7.0 9.62 1.30
0.5 3.295 2.194 -9.0 10.69 1.26
0.4 3.444 2.150

1
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Because of the various conditions at the column base, the

lower end a, is assumed to be elastically restrained by a rota-

tional spring having a spring rate Qa , then the amount at the

end a, due to this spring will be:

*ab =-Qt ®
a <*)

which can be equated to Eq. (1) to yield 6a or Gb :

-Q. ». *ab
j

Aab*. * Babeb - < Aab / Bab ) -Ajfc) ... (9)

Thus,

6« s L_ - Bab ^ / (Aab / Bab ) ^*kj - -

. A ( Lab >

Aab'K£

Substitution of Eq. (10) into Eqs. (2) and (7) yields:

( 2Mba Kab
}

<
Aab - Bab ) <h> - U«b / Bab )

(10)

(1 - Bab ) A ab

^ab
:.b

and

sab = ±& (Aab / Bab ) (e
b (i

.
]

<4 L.h ) (11)

(

bU ^ ) - (2 - Aab / B<|b
,

^ab
,Sfi.

^^-Qj14

Aab / J^ Aab / f»j

tsI- f*% ,i2)

For convenience, it is assumed that:

cab = Aab / Bab (13a)
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Aib 8
Aab -_4_ U3b)

£a_
Aab * Kab

c«b = 1 - Bab (13c)

4b = 2 - Aab / Bab (13d)

A«b / Qa

*iib

Substitution of Eqs. (13a) to (13d) into Eqs. (11) and (12),

yields the following relations:

Mba * Kab < Aab eb * c«b <>ab4*b.) IH)
Lab

and

Sab =-KaJi Cab (cab ©
fa

- cjb AfibJ - P
ab^ (15)

^ab Lab ab

For the two different conditions of column bases, namely,

pinned end and built-in end, the corresponding value of Q will

be zero and infinity, respectively. Thus, Eqs. (14) and (15)

become:

(a) for pinned end condition:

Mba = KabM < Aab " *W < 8b -4klfc) (16)
A_,_ Lab

ana

S
«*>

Z ±& £flb.
(Aab - Bab ) <6b - Aafc) - P

ab
A^

( 17 )

Lib *^b »b ab

For this case, Sqs. (13b) to (13d) reduce to:

Aab
s
£•£ (Aab " Bab } < lda ^

*ib
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Cflb s Aab - Bab (l*b)

Aab

cab = 2 - Aab / Bab s cab - - -(18c)

Aab

(b) for built-in end condition:

*ba = *ab (Aab % - Cab Aaj,) (19)
Lab

and

Sab s - K^ C Ob - 2 Aab) - Pab Afib. (20)

^ab Lab ^ab

For this case, Eqs. (13b) to (13d) become:

Aab = Aab (21a)

cab = 1 (21b)

4 : 2 < 2i*>

The above mentioned formulas will be used to evaluate the

buckling load of various frames.

SYMMETRICAL BUCKLING OF FRAMES

The frame buckles in symmetrical mode if lateral displace-

ment is not allowed to occur. The theory is applied to a simple

fixed-end portal frame, as shown in Fig. 4. From symmetry, it

follows that:

Aab »A dc =Abc * °

©b = -ec

The equilibrium condition of joints states that:

2%b = °

Therefore, Mba / Mbc = (22a)
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or

and

Kab Aab eb + 2Kbc 6b " ° (22b)

Aab = " 2Kbc (22c)
ab

To find the critical load for the above problem: A
at> can be

computed from Eq. (22c) and Q will be obtained from either Table 1

or Figs. 2 and 3. The critical load Per. is found from the Equa-

tion

Per. - £>Pe

Fig. 4. One-story single bay rectangular frame.
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ANTI-SYMMETRICAL BUCKLING GF FRAMES

The frame, in general, buckles in anti -symmetrical mode if

lateral displacement is allowed to occur.

Fig. 5. Simple portal frame,

I. In case of portal frame as shown in Fig. 5. Since it is

symmetric, then only two equilibrium equations need be written in

order to find the critical load. They are:

s%,(1) ^b = or 2J,q = °

(2) The fictitious force H must vanish.

For anti-symmetric case, the following relations hold:

©b * ec

A ab =A dc

Abe -
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Thus, from

Z«s» °

Then

«b. / "b. ° (23,)

and

Kab Uab ©b
" cab 4*fc) / 6 Kbc eb » (23b)

Lab

or

8D Kab Cab^ab ( 23c)

Lab ( Kab Aab r oKbc)

Also, the force H must vanish.

Therefore,

-Sab -Sdc . H . (23d)

Since Sab- Sdc, it follows that

-Sab = « =
" {23t)

2

Substitution of fiq. (20) into Kxj. (23e) yields:

K^ Cab <*b * 2 ^lW << pab4^ = 5 » ° U3f)
1~ ^ab Lab 2

For this problem, a trial and error procedure for the solu-

tion of Eq. (23) and the determination of the critical load will

be found to be convenient and relatively rapid. Noting that, for

a frame such as shown in Fig. 5, the critical load must be less

than the Euler load computed with an appropriate modulus, a trial

value is selected for Pab and the coefficients evaluated. Assum-

ingA ab to have unit magnitude, the value of e
fe

iB found from

£q. (23c). Substitution of this value of 8
b and the unit value
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of^ab into the Bq. (23f) yields the value of H that would be

required to hold the frame in the deflected position with the pre-

scribed column loads. The sign of t he computed value of H de-

termines whether the axial loads are greater or less than the

critical loads. If H is positive, the assumed column loads ex-

ceed the critical load, since the force H is now supporting the

frame against further deflection. If H is negative, the assumed

column loads are less than the critical loads, since the direc-

tion of H now implies that the frame has "reserve stiffness."

If H vanishes, the assumed column loads are equal to the critical

loads. In the trial-and-error procedure, if H is not zero, its

sign clearly indicates whether the next trial value for the axial

load should be larger or smaller.

II. Portal frame with one fixed-end and one pinned-end col-

umn base, as shown in Fig. 6.

A Pab ^ pcd = pab

rfir?

H

Fig. 6. Simple portal frame.
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Assuming an anti-symmetric mode of buckling, it follows that:

©b - Qc

A«b =A dc s 1

Abc = o

pab = Fcd « P

and

then

*ba / Mbc = (24a)

and

Kab Uab 9b- C,b Ajfc) / Kbc (40,, / 1(H) )
= (24b)

or

^ a yA (24c)

( KabAab^ ° J

Writing the equilibrium of shear in the horizontal direction

yields:

-Sab -Sdc » H (24d)

Putting iiqs. (17) and (20) into Eq. (24d) and simplified:

[

Kab cab * *$& <W Ucd " Bcd )
J
^ -

!
2 **k Cab / *cdCcd

Lab ^cd *cd ' ( **«t> LcdAcd

)

> "= lib

(Acd- Bed)) A
/ 2 Pib A * H , (24e)£k

The critical load of this problem can be obtained by using

the procedure described previously.
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III. Three-story single bay structural frame.

Fig. 7. Three-story single bay frame.

Assuming an anti -symmetric mode of buckling for the frame

shown in Fig. 7, it follows that:

9(j m 0g

©b a Of

ea = ee

Pcd = Pgh = p

Acd - A gh
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Abe =Afg

Aab = Aef

and

(^jMJat d, c, b, h, g r or f = °

It follows that the expression for the rotations at the joints are:

9d = Kcd ccdA cd (25a)

LCd (*cd Acd r 6 Kdh)
.

Acd A cp
e
c = Kcd ccd Lcd / Kcb ccb Lcb (25b)

(K cb ACD / Kcd Acd / 6 Kcg )

Abe £ab Aab
eb = Kbc cbc ""^bc r Kab ^ < Aab " Bab) Lab (25c)

Cab
KbcAbc / 6Kbf / Kba Aab (Aab - Bab )

and the shearing equations are:

Kcd C cd (8d
- 2 A cd ) / Pcd

A^ = H_ s (25d)

Lcd Lcd
Lcd

2

be cbc < ec " 2 ^£) / pbc
^bc = H = ° (25e)K

Lbc
^ Lbc

Jab Cab (8b
- 2 Aj|bJ / Pab A^b S 1 H =0 (Iff)

IS ^ab ^ab 2

The critical load of this problem can be obtained by using

trial-and-error procedure as outlined previously.
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IV. Three- story three-bay building tram*.

Fig. d. Three-story three-bay frame.

Assuming an anti-symmetric mode of buckling for the frame

shown in Fig. 8, it follows that:

8d - ©p

ec = e

8b ©n

©1 = *h

oj = ef
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Acd s A 6h • A ki s A op

Abe » A fg A jk • A no

Aab A «f Aij-Amn
and

Ym • at all joints of the frame.

It follows that the expressions for the rotations et the joints

are:

(4*hd / 6Kh! / Khg Ahg) eh / 2Khd 8d - Khg Chg
A** = -(26a)

(4Kdh / *dc AdC ) °d / 2Kdh eh . Kdc
Cdc^S. s (26b)

Ldc

(KCd Acd / 4KCg / Kcb Acb ) ©c / 2Kcg eg " Kcd CCd 4*1
Lcd

- KcbCcb Afc = o (26c)

Lcb

(4Kgc / *gh Agh / 6Kgk / Kgf Agf ) 9g / 2Kgc 6C - KghCgh
Ag

Arf = (26d)
- igr c

gf 4415Lgf

< Kbc Abc f **bf / Kba Aba> S ^ «bf »f " Kbc cbc &*

- Kba Cba &&* =0 <26#)

Lba

(Kfg Afg / 4Kfb / 6Kfj / Kf. Afe ) 6f / 2KfD 9

-KfgCfg Alg - Kfe Cfe Afe. -o (26f)

Lfg
L?e

and the shearing equations are:
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(ed - 2 Atf) /^ c (eh - 2 Aj&) / pcd
A^

Led tgh gh cd

/ PghAgh = H = (26g)
Lgh 2

Kcd Ccd
Led **ed T^h

Kbc cbc < ec - 2 A^) / Kfg Cff (eg - z Afc) / pbc ^Jfe£

L^ Lbc Lfg Tf§ Lbc

/ Pfg Afg = H - (26h)

Lfg

*ab cab (eb - 2 Aja) / k^ c.f (ef - 2 Aj*) / pab ^ak

/ Pef ^«£ « 1H = (26i)

The critical load of this problem can also be obtained as

stated previously.

INDEPENDENTLY BRACED FRAMES*

As it has been stated before, frames cannot exist singly.

In frames which are braced against sidesway, the bracing system

of these frames nay be considered as external to the frame, and

this bracing system may be in the form of sheathing, wall panels,

or diagonal tie-rod in the plane of the frame. By applying the

slope-deflection theory and assuming that the bracing system is rep-

resented by a linear spring, then the critical load of the frame

can also be found. The same procedure will be used as to solve

the anti-symmetrical buckling of frames, except that the spring

Loc . cit.



force must be added into the shearing equilibrium equation.

24

Spring

77T7

H

Fig. 9. Representation of an independently braced frame.

For the purpose of illustration, a two-bay single-story frame

as shown in Fig. 9, with the spring at joint b, represents the

additional or external bracing. It is also assumed that the col-

umn bases are fixed. Therefore, the three joint equilibrium equa-

tions will be used as described previously. If ft is the constant

or rate of spring, then K^aD is the spring force which acts in

the direction opposite the deflection^ aD> or it acts in the

positive direction of the fictitious force H. Therefore, this

force, K^aD must be added to the force K in the shearing equilib-

rium equation. Thus, from Fig. 9, the following equations may be

obtained:

-sab - Sdc - Sef s H / KAab (27«)
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or,

jUfe °ab *b / hd Ccd 6C / Kef Cef tf - (aUfc C
flb / 2K^ Ccd

^ab ^cd L«f Lzab LzCd

/ 2Kef Cef - P^ - Pjcd. - P«f / K)A = H « (27b)

ITeT" Lab Lcd W
The procedure for determining the critical load from the

above equation is the same as that outlined in the previous sec-

tion, tfiich is based on the trial-and-error procedure.

Example 1

The Portal Frame Shown in Fig. 10. (The same frame is

shown in Fig. 5).

P Pdc

Fig. 10. Simple portal frame.

Assuming that •
•

£ = 30 x 10
6 psi

I = 20 iri>

6b s ec

Aab A dc = 1

Abc = o

Then,

pe s *3,n"
2

- 955,000 lb.

*ab = it& = 15.22 x 10
6

lb

Lab

- in.

Kbc
=

SS3L 15.22 x 10° lb - in.

Ho
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The trial-and-error procedure is tabulated as follows:

Number;
of :P- P

Trials: T^ :

: 6b ob- : H ob-

(lb!

•
•

•

A

: :

l :

: B :

: 2.931 2.291 *

j
2.399 i 2.3635*

5 2.9051 i 2.3163!

: tained
:from Eq.

C a A/B:(23c)
:

tained
from Eq.

<W>(lb)
:

1st

2nd

3rd

0.7

0.75

0.746

663,500

716,000

712,000

5.272 : 0.00372

5. 2675 : 0.003755
:

5.2214:0.003715

-670

/ 10

Therefore,

Per. = 712,000#

which agrees with S. Hansbo f s "exact" value. From his example,

p. 36 of Reference 5, he obtained

(KL) cr# = 2.7H

where

or

K - /

p cr. a 7.36 (4a)
L2

f> 4 4
Substitution of E « 30 x 10° psi. and I = 20

111
- into the above

equation, yields:

Per. 712,000 #.
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Example 2

The Portal Frame Shown in Fig. 11. (The same frame is shown

in Fig. 6.)

Assuming that:

E= 30 x 106 psi

H
I s 20 in>

Then,

Pe = Z^rn2 = 955,000 lb.

Kab s itEI I 15.22 x 10
6 lb. -in.

Lab

Kbc
= J& = 1 5.22 x 106 lb. -in.

LbcFig. 11. Simple portal
:rariie,

The trial-and-error procedure is tabulated as follows:

Number 1 ^
of I C

trials 1

S

P=gP e

, r—
:

: :

A • B : C s A/B

9v, ob-
tained
from Eq«
(24c)

H ob-
tained
from £q.
(24«)

1st

2nd

3rd

:

0.45

0.447

0.440

430,000 : 3. 3695

427,000 J3.374

420,000 1 3. 3944

2.175

2.1706

2.1676

5.5445

5.5446

5.5620

0.00376

0.003753

0.003755

/ 1«5

/ 130

-^

Therefore,

pcr.
= 420,000 lb.

which is different by 0.942 per cent from 5. Hansbo's "exact"

value for the same frame, p. 42 of Reference 5. He obtained:
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(KL) cr# s 2.10

and for EI « 600 x 106 lb. -in. 2 , the critical load becomes:

Pcr# = 424,000 lb.

Example 3

A Three-story Single Bay Structural Frame aa in Fig. 12.

(The same frame is shown in Fig. 7.)

Assuming that:

*

oS
.

NO

e
«0

, £1
_j

r

d h

n
£1

£1

c g

£1

£1

£1

b f

£1 £1

a EI e

I

H

157.5"

Fig. 12. Three-story single
bay frame.

£ = 30 x 106 pai.

I = 100 in>

Then,

at column cd

P# s 11.93 x 105 lb.

at column be

Pe = 7.65 x 105 ib .

at column ab

P« = 21.3 x 10* lb.

and

.6
Kcd Kgh 19.05 x 10 lb. -in.

Kdh s *cg - Kbf s Kae - 19.05 x 106 lb. -in,

Kba = Kef » 25.04 x 106 lb. -in.

Kbc = Kgf = x5-22 x 106 lb. -in.
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The trial-and-error procedure is tabulated in the following:

No. of trials
=F

bO

U
O

n
o

iH

8

p

u
o
o
JO

H
8

p

e
P s(?Pe (lb)

A

B

1st

C s A / fl

ed from £q.(25a)

H from Eq.(25d)

0.407

0.434 x 10 (

3.4336

2.154

i 5.5876

0.00376

- 6060

2nd

e

(lb)

A

I

C : A / B

; 9 C from Sq.(25b)

; H from Eq. (25e)

©

o

jo
«i :

rH
O
U

S

e
P (lb)

A

B

C s A / B

6b from Eq.(25c)

H from Eq. (25f)

0.325

0.388 x 10 (

: 3.5528

2.11925

5.67205

0.003765

- 7320

0.633

O.484 x 106

3.0876

2.2575

5.3451

0.0048

/ 39

3rd

0.373

0.446 x 10*

3.483

2.1389

: 5.6219

0.00377

- 6620

0.507

0.388 x 10*

3.28415

2.19729

5.48144

0.00499

- 330
rfc

0.583

0.446 x 106

3. 1665

2.2322

5.3987

C. 00479

Since it is
unstable at
column be for:
the assumed
column load,
there is no
need to solve
Per. for this
column.

0.182

0.388 x 106

3.7543

2. 0633

5.8176

0.004275

- 8390

•0.209
:

0.446 x 106

3.7173

2.0735

5.7908

0.00426

:- 7950

Thus, Pcr .
= 446,000 lb. agrees with S. Kansbo's result, p. 31 of

Reference 5. He obtained P Cr. 148. 6 x 10" EI. Substitution of

EI 3000 x 106 lb. -in. 2 into PCr. T*1611 *
pcr. = 446,000 lb.
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Example 4

Three-story Three Bay Building Frame as Shown in Fig. 13.

(The same frame is shown in Fig. 8.)

P P P P

c
to
NO

£

^1

hi

I

£1

h

B
c

£1

B
b

£1

£1

1

PI

n
s

£1

£1

f

£1

B

£1

k

£1

—

H

P

n
H

EI

o

B

J

£1

n

SI

168" 240" 168"

Fig. 13. Three- story three bay frame.

then,

Assuming that:

E = 30 x 106 psi

I s 100 in>

e, 6d

ei * eh

"c ~ ®o

ek = eg

Ob s ^n

ej = ef

and all the hori-

zontal joint dis-

placements equal

to unity,

*cd = Khg = K lk « Kpo = 17.86 x 106 lb-in.

Kcb = Kfg « K jk » Kno * 15.62 x 106 lb-in.

Kab = Kef = Kij = xmn = 20 »^3 x 106 lb-in.

Kdh = K cg = Kbf = Klp = Kko = Kjn = 17. «6 x 106 lb-in.

Khl : Kgk = Kfj : 12 '5 x 1q6 lb-in.
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The trial-and-error procedure is tabulated in the following:

to

U
o

x»
o

3
r*

<

8
•p

o

8
•p

r
:

No. of trials

e

e

A

B

C s A ^ B

From Eq. (26a)
and

Eq. (26b)

H from Eq. (2og)

9d

9h

1st

e
P=9Pe

A

B

C « A / B

From Eq. (26c) 6C
and

Eq. (26d) 6
I

H from Eq. (26h)

P

A

B

9r e

C « A / B

From Eq. (26e) 6b
and

Eq. (26f) •f

H from Eq. (26i)

2nd

0.457 0.496

0.48 x 106
\

0,52 x 10

3.3591 l 3.301

2.1751 : 2.1922

5.5342 t 5.4932

0.0039 0.003385

0.00217 0.00217

- 9400 : - 3380

0.598

0.48 x 106

3.143

2.240

5.383

0.004985

0.003502

- 390

0.336

0.48 x 106

3.5368

2.12375

5.66055

0.00577

0.C03696

- 5580

0.648

0.52 x 106

3.O636

2.265

5.3286

0.00505

0.003308

/

0.364

0.52 x 106

3.4962

2.1352

5.6314

0.00577

0.003905

- 5050

Since from the second trial H i 0, therefore, P Cr. 520,000 lb.
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In the above examples the actual loading system consisted

of forces applied at the joints only, and the effect of primary

bending moments was neglectod. This is justified by the results

of E. F. Masur^ who presented a method to solve buckling problem*

including the effect of primary bending moments on the elastic

stability of structure of a portal frame similar to that shown

in Figs. 5 and 6. The loading system is applied on the beam at

a certain distance from the joint. Masur, p. 20 of Reference 9,

states,

....The unbuckled structure is therefore assumed
to be in its virginal state; that is, its members are
straight, and no "primary" bending moments are present.
The replacement of the actual loading system by one that
is (for each member) statically equivalent to it is

usually justified by the assumption that very small
errors are thus introduced.

Therefore, in the elastic range, primary bending moments

affect the stability of structure only very little and can usu-

ally be neglected. The stability of a partially plastic struc-

ture is certain to be intimately related to the presence of

primary bending moments. However, the treatment of this problem

is beyond the scope of this report.

9E. F. Masur, I. C. Chang, and L. H. Donnell, "Stability of
Frames in the Presence of Primary Bending Moments," Proceedings
A.S.C.E ., Vol. 67 No. EM4, August 1961, Part 1.
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CONCLUSIONS

This report treats the stability analysis of rectangular

rigid frames through the use of the direct analytical procedure

based on the slope-deflection method. This procedure is fast

and accurate, particularly with the use of digital computers,

because the buckling problem of frames will be reduced to the

solution of a set of simultaneous equations.

The theory of slope-deflection procedure for solving sta-

bility problems of rectangular frames is simple, provided that

buckling occurs within the elastic range. It is felt that the

slope-deflection procedure is more direct and comprehensive than

the moment-distribution method for solving stability problems.

In this report the effect of primary bending moment which

occurs from the application of the actual loading system at

points along the member rather than at joints of the member is

not considered. The replacement of the actual loading system by

one that is statically equivalent to it, is usually justified by

the assumption that very small errors are thus introduced; but

this does not effect the application of this method for engin-

eering purposes.

The comparison of the results obtained using slope-deflec-

tion procedure and the results obtained by S. Hansbo, using- the

moment-distribution method for the same problems, shows that the

difference is smaller than 0.942 per cent. This proves that both

solutions give results which are in very good agreement.

All the results presented in this report are obtained through

the use of a slide rule.
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APPENDIX A



Kxample '2. .Mult istory frame.

In (lie three-story single-hay frame according to Fig. IT all

members have constant and equal hending rigidity. El tin*. The
columns are centrally loaded hy the loads /'. Assuming /' 0.2.'! /•.'/

t

as a probable value of the critical loafl
:

the following data are

obtained:

36

Mcml»
I I

TABI.K 3 i

2 1.44
:

1.24
;

.SiiH 1.2I.S .07011 ..1.12

(i 1.44

2.40

1.24
|

.fiSH 1.2 IS .07(10 ,:l.".2

-3 .«.J4
:

.7<>"> 2.14 .1111111 .0403

'
2. 4M .(••:) 1 .705 2.14 .1141111 .111:1(1

-4 1.02 .S7(i .C.14 1.48K .:,::, .IIS

—S 1.02
i .1470

J

.(114 1.48S
|

.57:,
|

.lis

—5 1

1

(i 1

1 .500

£i ZP

.(I!l2n .OKIIIi

.2:1(1

-Xphli

— . II I :i

-.(1 111

—.211!

.21 (1

. :i :. I

— .:(.'. I

tf//m» A7,,u» !.l „,» #//m»j A7/m»

By applying virtual antisyiniue! rieal moments at the joints 2, G,

3, and 7, adjacent to the critical middle story, it will he necccssary
to study only one half of the frame.

The moment distribution is carried through as in Ex. 1. Each
stage of joint balancing (J/

(
) is followed h) a cont'd ion of the shear

in the columns of each story through sidesway (£,).

Table :* c shows that PjEl 0.23;'ms is close to the buckling value.
Another trial with PIE] = 0.2 i/m- will show a rapid divergence! of A'.
Hence P 0.23/?/ t can be accepted as the critical load ]',

r
.

This result can be checked by Gkanjiolm's method. 1

) The frame
parts a, b, and c. Fig. 18, buckle simultaneously if the frame trans-
versals arc split in accordance with Tabic 4.

The frame has a critical load slightly larger than 0.23/i7t which
agrees with the previous result.
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TABLE 3 b. Balancing procalure.

-V 15 1

d
'

i



TABI.K 3 <•. Correction jur xitlp*uiit/.

Member I'll: i r M';l-:i

3*

' S I

*" :i

,<-
-

4

,V (i

8 S

o _ 3

;i 1

i 2

_> 3

:i--4

i

-»

>_
3

3 -4

1-_o

2 -3

3—4

-.ir,;.

—,1117

+ .022

: .lul

•I
.02S

.022

.lli'.l

I .021

— .010

-i .2 17

+ .03*

- .2:i I

l.r,:.

,431

— .2114 .020

- .4 54 . 1(12

- .2.'.4 — .(1ST

—2.2« — .:> 1

- .:,('.(•, — .1*2

— .34 1 — .(I8K

—2.7n — .50

— .7:1* — .100

1.50

3.50

I..1U

. 1:1

- l.:tn

.::<;

.:,i;

I.I i>

— .(14

- . 5 7

- 1.07

+ .7(1

1—2 ! + .003 — .421) — .000 .58

2—3 -.205 —3. 2 11 — .47 + 1.02

3—4 .or,n — .0:17 — .2<>a -;- .71

1—2
! .015 — .51(1 -- .091 + .58

.. 2—3 + .300 —3. 70 — .40 — .SI!)

1

3—4 •f .084 -1.14 — .20 + .70

1—2
2—3
3 I

1—2
2—3
3-4

+ .0211

•: .351

.HIS

+ .042

+ .304

i
-.130

OKI

4 ....

1 3 4

701

1 OS

1
;',

1

.001

.411

.20

.002

.45

.20

.58

.011

.08

TABLE 4.

Frame jmrt [EI),

.25

.111

1.00

1.00
_

. 1 il

.00

lit.. "»l («,)= P„IBI

1.5

0.8

4.5

0.0

5.«

.4

3.7o

5.75

2.25

1

.23

.23

.24

b
:

<•
;

Multiplier: El
!
« 1 1 1 l;,ir
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is:

Yr

TV

1%
^ *

Fig. n

*£I 2V

4 m

Fig. 18

Matrix analysis

Example 3. Portal frame.

The simple portal frame shown in Fig. 1'.), fixed at base, is unstable

at a value {kL)„ « 0.805 a = 2.7 2 1
).

Assuming kL = 2.70 as a probable critical value, Table 5 a U

calculated:

TABLE on.

Member kL
•

I

C Z ! - 7.p\i l'i>

01,23

12

2.70
!

2.02 .702 3.30
1

-.)<2ft

« 4.00 -j .ft 0(1
-

.Multiplier:
1

A7/i,i
j

» » 1



5 EI

4 EI 4 EI

T
1*

^L

Fig. 19
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When the frame is symmetric with respect to loading and bending

rigidity as in this case, the value of p will be equal for the columns

in each particular story. Hence PJZ>P.= 1/Ar .
where N is the

total number of the columns in the story.

The matrix elements are calculated in Fig. 20 and 21. Due to

the symmetry of loading and bending rigidity, the matrix r will be

symmetric.

Fig. 21 yields

r,, =
0.331

1 — 0.024
0.80

r = - 891

.89

The dominant eigenvalue I of this matrix is equal to the matrix

elements 0.89. Obviously, the frame is stable for kL = 2.70.

1

d£.578=d
21 2

Mor}o 2

d
lQ
=.422

c
01
=.334

d
23
=.422

c
32
=.334

3

k
x
=.624 -c 2 ,=

-.289

+k,.=+.624
Z1

+.335

3

Fig. 20 Fig. 21



Next st buckling value of kh 2.74 is guessed at. Table 5 b is

calculated:

41

MciuImt

01,23

12

Dimension:

TAKI.K .>!>.

kl.

2.7 4 2.8.-

4.HO

l/m

.soc.

..Mill

3..v.>

ZppZp

.898

C.12=-??!=C,21 M
01

=l

d
10
=.419

d
'3=.581=<fo 2

w * ^O*
d
23
=.419 k

x
=.680

c
01
=.338 c

32
=.338

Fig. 22

-c-.--.291
+k2j=+. 680

+ .389

Fig. 23

Fig. 1'2 to i>:{ vield

Tim t's

0.380

1 — 0.GS0
1.21

The matrix

r = r o i.2i"i

[1.21
J

yields /. = ] . 2 1

.

Thus IcL • 2.7-1 is above the critical value. Interpolation between
these two values of the, dominant eigenvalue gives (l:L)

cr
= 2.714. The

value obtained by the matrix method is in agreement with the

»exact» value.



Example ft. Portal frame li.iving one column fixed at base and (he

other hinged.

Finally, the matrix method will lie used to find the critical load

of the portal frame, Fig. 30. As first approximation of the critical

load the mean value may be chosen between the critical load for

the frame fixed at base and for the frame hinged at base. This

give.- us a probable value kL — 2.04.1
)

Now assuming as the first trial kL = 2.io, table 7 is calculated.
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FABLE 7.

Mc'mlicr I kL • ' « .-
:

Zp —ZplZp

(il

2:s

2.10

2.10

3.:iS

1.08

4.00

.043

o

.500

1.800

.81)

.0 104 7

— .00381
.00000

—2.00

— .405

12

Jin 1 ! i.ilier: , Kljm 1 1 JB//m» Eljm*
l

»

The matrix elements are ovulated in Fig. 31 to 33.

Fig. '.i'2 yields

rM = 0.07 9/(1 — 0.978) = 3.60

•Likewise, Fig. 33 yields

Tn == 0.095/(1 — 0.154) = 0.112

Thu. \he matrix

~0
3. go'

0.112

The dominant eigenvalue / of this matrix is

;. = ]/3Tgo • 0.112 = 0.04

Hence KL = 2.10 is below the critical value.

N< a i/alue kL = 2.11 is guessed at. Table S is calculated.
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5EI
"T

4E1 4EI 4.0 m

5.0 m

Fig. 30

c 12=.335

d19=.542•12

d
1Q
=.458

C
01
=.295

(

c 91
=.271

d
2
j=.669

-c
12
=- .335

k
12

= .430

-c.,= - .335
ki9= -440
12

"7105

Fig. 31

Fig. 35

d
23
=.331

M
01

=l

k 1= . 978

-c
21

=- .271

k01 = .350
Z1 7079~

A
Fig. 32

M
02

=1

C 12=.335 c91=.272

dj
2
=.543 d

2 J=.670

k
2
= . 154

d
J0
=.457

c
01=.295_K2

M
02
=1 M01

=1

k
2
= . 157 k 1= 1. 002

A.

d
23
=.330

.272

.356

.084

Fig. 3G



Table 8.
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Member KL : e : c : Z : p : s- p j

- Zp.

£P

01 '2.11; 3.37; 0.645
;

1.671; 0.01036
;
0.00648

;
-2.67

23 |2.H; 1.97; ° -0.792; -0.00388 ;
-0.474

12 : o
;

4.00; 0.500 ____-
~~~~"

Multiplier ;
EI/M; 1

:
i

:
EI/M3 ;

EI/M3
1 1

The matrix elements are evaluated in Figs. 34 to 36.

Fig. 36 yields K
x >1 , which proves that KL - 2.11 is above the

critical value. Inspection shows that KL = 2.10 is closer to

the critical value than is KL - 2.11. Hence, KL = 2.10 can be

accepted as the critical value.
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APPENDIX B

BIBLIOGRAPHY ON BUCKLING OF RIGID FRAMES
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It is considered that elastic stability is a problem of

great importance in the modern use of steel and high-strength

alloys in engineering structures, especially in tall buildings,

bridges and aircrafts.

This paper presents an analysis of buckling of frames based

on the well-known slope-deflection procedure. The stability of

one-story and multi-story plane frames is studied for the anti-

symmetrical mode of buckling. Other methods for calculating

the buckling load of frames are also discussed. Typical ex-

amples are solved using the direct analytical procedure, and the

results obtained are compared with the results obtained through

the use of the moment-distribution method. It was found that

both solutions give results which are in very good agreement.

It is felt that the slope-deflection method is simpler and

more direct than the moment-distribution method in solving sta-

bility problems.


