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Abstract

An ontology usually serves as the schema of a knowledge graph, which provides a vo-

cabulary describing one or many domains of discourse and a specification of the meaning of

terms in that vocabulary. Different parties would in general adopt different ontologies. And

each ontology may have its own data vocabulary, modeling philosophy, and even language,

which makes the semantic data integration process very challenging.

To facilitate interoperability between different organizations, ontology alignment has

been considered as the silver bullet for many applications. Ontology alignment has been

studied for over a decade, and over that time many alignment systems and methods have

been developed by researchers in order to find simple 1-to-1 equivalence matches between

two ontologies. However, the simple correspondences are not expressive enough to fully

cover the different types of heterogeneities in real-world problems. And very few alignment

systems focus on finding complex correspondences.

There are several reasons for this limitation. First, there are no widely accepted align-

ment benchmarks that contain such complex relationships. Second, tackling complex align-

ment is more challenging than finding simple alignment. It also requires experts from

different domains to work together to manually generate the alignment, which is extremely

time-consuming and inefficient. Third, the traditional evaluation metrics like precision, re-

call, and f-measure, are not fine-grained enough to evaluate the performance of complex

alignment systems. Therefore, it hinders the generation and evaluation of complex ontology

alignment systems.

To tackle this problem and advance the development of ontology matching and alignment,

we seek to address the problem by first developing potential benchmarks that contain the

complex relations from real-world ontologies. We then propose an automated complex



ontology alignment system based on association rule learning to generate not only simple

correspondences but also complex ones. The algorithm can also be used in a semi-automated

fashion to effectively assist users in finding potential complex alignments that they can then

validate or edit. Finally, we evaluate the performance of the proposed algorithm on the

benchmarks and analyze the results in detail and provide insights into the field of complex

ontology alignment.
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Chapter 1

Introduction

1.1 The Semantic Web

The Semantic Web is an extension of the World Wide Web (WWW), which is commonly

known as the Web, through standards set by the World Wide Web Consortium (W3C).1

The goal of the Semantic Web is to make Internet data machine-readable, whereas the

resources on the Web are mostly limited to HyperText Markup Language (HTML) static

pages, which is intended for human readability. To enable the encoding of semantics with

the data, technologies such as Resource Description Framework (RDF)2 and Web Ontology

Language (OWL)3 are used. These technologies are used to formally represent metadata

and knowledge. For example, ontology can describe concepts, relationships between entities,

and categories of things. These embedded semantics offer significant advantages such as

reasoning over data and operating with heterogeneous data sources.

1https://www.w3.org/
2https://www.w3.org/TR/rdf-syntax-grammar/
3https://www.w3.org/TR/owl-features/

1

https://www.w3.org/
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1.2 Knowledge Graph

A knowledge graph is a knowledge base that uses a graph-structured data model or topol-

ogy to integrate data. Knowledge graphs are often used to store interlinked descriptions of

entities, such as objects, events, situations, or abstract concepts with free-form semantics.4

Since the development of the Semantic Web, knowledge graphs are often associated with

Linked Open Data (LOD) projects, focusing on the connections between concepts and en-

tities [1]. There are many knowledge graphs developed and published already. And we can

roughly distinguish two types of knowledge graphs in practice, which are open knowledge

graphs and enterprise knowledge graphs [2]. Open knowledge graphs are published online,

making their content accessible for the public good. The most prominent examples are

DBpedia [3], Freebase [4], Yago [5], and Wikidata [6]. These open knowledge graphs cover

many domains and are either extracted from Wikipedia or built by communities of volun-

teers. On the other hand, enterprise knowledge graphs are typically internal to a company

and applied for commercial use-cases. A variety of companies have announced the creation

of their internal and proprietary knowledge graphs, such as Google [7], and Bing [8] for

search engines, Wolfram Alpha,5 Apple’s Siri,6 and Amazon Alexa [9] for knowledge-engines

and question-answering services, and LinkedIn [10] and Facebook [11] for social networks.

1.3 Knowledge Graph Integration

The real power of knowledge graphs comes when the users transform their own data into

RDF triples and then connect their proprietary knowledge to open global knowledge. For

example, suppose two organizations would like to collaborate by sharing their knowledge

graphs, or they want to enrich their knowledge graph by merging some small knowledge

graphs or common resources like Wikidata. What kind of problems will we experience when

4https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
5https://www.wolframalpha.com/
6https://www.apple.com/siri/

2
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integrating these knowledge graphs to enable the opportunities of interoperability?

Knowledge graph integration can be separated into two levels, which are schema level and

instance level. First, an ontology usually serves as the schema of a knowledge graph, which

provides a vocabulary describing a domain of interest and a specification of the meaning

of terms in that vocabulary. Different parties would in general adopt different ontologies.

Furthermore, each ontology may have its own data vocabulary, modeling philosophy, and

even language, which makes the integration process very challenging.

In terms of instance level, the data integrated into the knowledge graphs are usually

extracted from a variety of sources. Some refinements of the knowledge graphs, like adding

new links and consolidating duplicate entities, are also very important steps to improve the

quality of knowledge graphs.

1.4 Ontology Matching and Alignment

In this dissertation, we focus on the schema level matching as called ontology matching.

Ontology matching has been researched for a long time. It aims to find the alignment

from one ontology to another ontology and then merge the two ontologies into a larger

ontology based on the alignment between them. We define ontology matching as the process

of generating an alignment A between two ontologies: a source ontology O and a target

ontology O′, as in [12]. A is directional, denoted AO→O′ , and is a set of correspondences 〈e, e′,
r, s〉. Each correspondence contains a relation r (e.g., equivalence (≡), subsumption (≤, ≥))

between two members e and e′, and s expresses the strength or confidence (in [0;1]) of this

correspondence. Each member can be a single ontology entity (class, object property, data

property, individual, value) of respectively O and O′ or a more complex construction that

is composed of some entities using constructors or transformation functions. A constructor

is a logic constructor, e.g., union, intersection, inverse or a restriction constructor, e.g.,

cardinality restriction, type restriction, and value restriction. A transformation function is

3



a function that modifies the values of a literal field. It can be an aggregation function, e.g.,

string concatenation, sum of integers, or a conversion function, e.g., metric conversion, etc.

Most of the current state of the art automated ontology alignment systems still focus on

finding 1-to-1 simple alignments. But, Nowadays, more and more data from the real-world

have been populated into the ontologies and published as Linked Open Data (LOD). The

applications that utilizing these ontologies require ontology alignment and data integration.

Due to the complexity of the ontologies, only identifying simple alignment is not enough

to fulfill the growing demand for these applications. Therefore, there is a growing aware-

ness that we desperately need to study complex alignment rules. Earlier works also have

introduced the need for complex alignments [13, 14]. These correspondences may stand for

equivalence as well as other relations, like subsumption or disjointness between ontology

entities. Ontology entities usually denote the named entities of ontologies, such as classes,

properties, or individuals. An alignment consists of a set of correspondences between two on-

tologies. There are generally two types of correspondences, which are simple correspondence

and complex correspondence.

Simple Correspondence. Simple correspondence refers to a basic 1-to-1 simple map-

ping between two ontologies, in which the entities involved may be either classes or proper-

ties. This category not only includes 1-to-1 equivalence relations, but also 1-to-1 subsump-

tion and 1-to-1 disjointness. For example, In Figure 1.1, People in Ontology A is equivalent

to class Human in Ontology B. The property hasName in ontology A is a superProperty of

the property hasFirstName in ontology B.

Complex Correspondence. Complex correspondence refers to more complex pat-

terns, such as 1-to-n equivalence, 1-to-n subsumption, m-to-1 equivalence, m-to-1 subsump-

tion, m-to-n equivalence, m-to-n subsumption, and m-to-n arbitrary relationship. For ex-

ample, In Figure 1.1, a Professor with a hasRank property value of “assistant” in ontology

A is equivalent to the class AssistantProfessor in ontology B. Obviously, complex corre-

spondence can contain many entities from both ontologies.

4



Figure 1.1: An Example of Simple and Complex Correspondences

1.5 Outline

This document is a cumulative dissertation that details the research towards advancing the

automated complex ontology alignment methodology and evaluation. As mentioned in the

above introduction, this is done to facilitate the development of ontology matching and

alignment in the sense of complex alignment in the real-world scenario. This work can be

divided into three research topics that incrementally build towards this ultimate goal. The

dissertation is organized as follows:

Chapter 2 discusses the first research topic: detecting the complex relations from the

heterogeneous ontologies and establishing the benchmarks as the gold standard. There are

no widely accepted and applicable benchmarks that contain complex relations. In addition,

there is also no clear guidance and a comprehensive list of the types of complex alignment in

the ontology matching community. We therefore propose to search for the complex relations

in the real-world datasets since these datasets are developed to solve the practical problem

but not tailored for benchmarking. It is therefore of a rather unique nature and will inform

complex ontology alignment research from a practical and applied perspective, rather than

5



artificial laboratory-like. The primary contributions reference in this section are

• A Complex Alignment Benchmark: Geolink dataset [15]

• GeoLink Dataset: A Complex Alignment Benchmark from Real-world Ontology [16]

• The First Version of the OAEI Complex Alignment Benchmark [17]

• The Enslaved Dataset: A Real-world Complex Ontology Alignment Benchmark using

Wikibase [18]

Chapter 3 discusses the second research topic: creating an automated complex alignment

system to effectively uncover as many complex alignments as possible. In this chapter, it

first introduces the state of the art complex ontology alignment systems, in particular,

their methodology, performance, and limitation. Then, it presents our contributions to

automatically detecting the complex ontology alignments. The contributions are as follows:

• Alignment of surface water ontologies: a comparison of manual and automated ap-

proaches [19]

• A Journey From Simple to Complex Alignment on Real-World Ontologies [20]

• Towards Association Rule-Based Complex Ontology Alignment [21]

Chapter 4 discusses the third research topic: fairly evaluating the performance of complex

alignment systems and providing more useful information than the traditional evaluation

metrics. By far, classical precision and recall are the most widely used evaluation metrics

to assess performance in the majority of existing work on ontology alignment. However,

several complications arise in the use of these metrics when the alignments contain complex

relations due to their all-or-nothing syntactic comparisons of individual mappings, which do

not distinguish between correspondences that are formally incorrect but closely related to the

correct correspondences and those that are completely incorrect. We propose to break the
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evaluation process down into two subtasks, which are entity identification and relationship

identification. This evaluation method has been used in Ontology Alignment Evaluation

Initiative (OAEI) campaigns since 2019. In addition, we also discussed the strengths and

weaknesses of some potential evaluation methods, but the automated evaluation of complex

ontology alignment is still in the exploratory stage. The contributions are listed as follows:

• Ontology Alignment Evaluation Initiative 2018,7 2019,8, 20209

• GeoLink Dataset: A Complex Alignment Benchmark from Real-world Ontology [16]

• The Enslaved Dataset: A Real-world Complex Ontology Alignment Benchmark using

Wikibase [18]

• Towards Association Rule-Based Complex Ontology Alignment [21]

• Towards evaluating complex ontology alignments [22]

Chapter 5 concludes the overall contributions with a discussion of potential future work

in this area.

7http://oaei.ontologymatching.org/2018/results/complex/index.html
8http://oaei.ontologymatching.org/2019/results/complex/index.html
9http://oaei.ontologymatching.org/2020/results/complex/index.html

7
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Chapter 2

Complex Ontology Alignment

Benchmarks Generation

2.1 Overview

Benchmarks come in at least two varieties. On the one hand, there are artificial benchmarks

that provide a kind-of laboratory setting for evaluation. On the other hand, there are

benchmarks created from data as it is used in realistic use cases or even deployed scenarios.

Both of these types are important, and they cover different aspects of the spectrum and

may have different advantages. Artificial benchmarks can be made to be balanced or to

focus on certain aspects of a problem, and sometimes they can be used to test scalability

issues more easily as different versions of the same benchmark set may be easily producible.

Natural benchmarks, on the other hand, may expose issues arising in practice which may

easily be overlooked by designers of artificial benchmarks, in particular in a young field such

as complex ontology alignment. Natural benchmarks also may come with an independently

verified gold standard baseline.

For this topic, We formulated the following research questions considering these concerns

are addressed in the next section.
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Q1. Can we find the complex relations in real-world datasets?

Q2. How do we establish benchmarks that contain complex relations?

Q3. How do we maintain or improve the benchmarks?

2.2 Contributions

This section connects the individual contributions to the above research questions.

[15] Lu Zhou, Michelle Cheatham, Adila Krisnadhi, and Pascal Hitzler. A complex align-

ment benchmark: Geolink dataset. In Denny Vrandecic, Kalina Bontcheva, Mari Carmen

Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee,

and Elena Simperl, editors, The Semantic Web - ISWC 2018 - 17th International Se-

mantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II,

volume 11137 of Lecture Notes in Computer Science, pages 273–288. Springer, 2018

This contribution first addresses Research Question Q1. We use the datasets collected

from the project called GeoLink [23] and was funded under the U.S. National Science Foun-

dation’s EarthCube initiative. This planned decade-long endeavor is a recognition that

oftentimes the most innovative and useful discoveries come at the intersection of traditional

fields of research. This is particularly true in the geosciences, which often bring together

disparate groups of researchers such as geologists, meteorologists, climatologists, ecologists,

archaeologists, and so on. For its part, GeoLink employs semantic web technologies to

support data representation, sharing, integration, and discovery [24]. In particular, seven

diverse geoscience datasets have been brought together into a single data repository. In this

contribution, Adila Krisnadhi created the two ontologies for the data repository, which are

called GeoLink Base Ontology(GBO) and GeoLink Modular Ontology(GMO). The simple

and complex reference alignment between these two ontologies were established in consulta-

tion with the domain experts and ontology engineers to guarantee high quality. Therefore,

Q1 can be considered as being answered successfully. In order to address Research Question

9



Q2, Lu Zhou collected all the data, including the ontologies and the reference alignment,

and categorized the simple and complex alignment based on their patterns found in this

dataset. Lu Zhou then utilized a format called Expressive and Declarative Ontology Align-

ment Language (EDOAL) that is provided by the Alignment API [25] to express these types

of complex relations. This format can be read and manipulated programmatically using the

Alignment API and is therefore very convenient for ontology alignment researchers. Since

EDOAL can be difficult for humans to parse quickly, the alignments are also expressed in

using a naive rule syntax. The rule presentation is not intended for programmatic manip-

ulation, but rather to make it easier for humans to read and understand the alignments.

Michelle Cheatham and Pascal Hitzler both provided feedback through all the steps.

[16] Lu Zhou, Michelle Cheatham, Adila Krisnadhi, and Pascal Hitzler. Geolink data set:

A complex alignment benchmark from real-world ontology. Data Intell., 2(3):353–378,

2020

This contribution further addresses Research Question Q2 and Q3. It is the extended

version of the previous contribution. In addition to the contributions introduced above,

in order to extend the functionality of the benchmark for instance-based applications or

alignment systems, Lu Zhou sampled 74k instance data collected from the data providers

in a triple format <Subject, Predicate, Object> and populated them into the two ontolo-

gies. With respect to the maintenance of the benchmark, the proposed benchmark has been

incorporated into the Ontology Alignment Evaluation Initiative (OAEI), which is a yearly

event that provides system developers with various tracks that evaluate performance on

different facets of the problem, such as instance matching, large ontology matching, and

interactive matching, among others. Lu Zhou has been actively involved in the OAEI com-

plex alignment track for years. We thus have an intrinsic interest in keeping the benchmark

maintained and usable, which would, for example, mean that we are prepared to transfer

it to a new benchmarking framework if required in the future. At the same time, based

on participants’ feedback, we will modify the reference alignment if necessary to perfect

10



the benchmark by making it more convenient to use. This may involve, e.g., making the

alignment available in additional formats.

[17] Élodie Thiéblin, Michelle Cheatham, Cássia Trojahn dos Santos, Ondrej Zamazal, and

Lu Zhou. The first version of the OAEI complex alignment benchmark. In Marieke

van Erp, Medha Atre, Vanessa López, Kavitha Srinivas, and Carolina Fortuna, editors,

Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas

Tracks co-located with 17th International Semantic Web Conference (ISWC 2018), Mon-

terey, USA, October 8th - to - 12th, 2018, volume 2180 of CEUR Workshop Proceedings.

CEUR-WS.org, 2018

This contribution presents the first version of the OAEI complex track. It is composed of

four benchmarks from different domains. Besides our proposed Geolink benchmark. Elodie

Thiéblin, Cassia Trojahn, and Ondřej Zamazal generated the synthetic conference bench-

mark that contains complex relations. Lu Zhou and Michelle Cheatham also contributed

to this benchmark generation by verifying the reference alignment. In addition, Michelle

Cheatham and Lu Zhou proposed a hydrography benchmark in the surface water domain.

Elodie Thiéblin and Cassia Trojahn also generated a Taxon benchmark from the plant tax-

onomy domain. The complex matching track starts to open a new perspective in the field

of ontology matching.

[18] Lu Zhou, Cogan Shimizu, Pascal Hitzler, Alicia M. Sheill, Seila Gonzalez Estrecha,

Catherine Foley, Duncan Tarr, and Dean Rehberger. The enslaved dataset: A real-world

complex ontology alignment benchmark using wikibase. In 29th ACM International

Conference on Information and Knowledge Management, 2020

This contribution further addresses the Research Questions Q1 - Q3. The previous

benchmarks are established based on two or more domains or proprietary ontologies. To

the best of our knowledge, this contribution is the first time an OWL ontology had been

mapped onto a Wikibase installation. Wikibase is the powerful knowledge base software that

drives Wikidata [26]. Wikidata is an immense, crowdsourced knowledge base with persistent

11



data that is available for public use and consumption. It would be very difficult to have an

ontology of everything, but Wikidata is probably close enough for this purpose. It contains

millions of pieces of knowledge from many different domains in the world. In addition,

Wikidata is crowdsourced and can act as a common resource.1 People can export data to

Wikidata so that it is publicly persistent in an open and transparent manner. Wikidata is

an instance of Wikibase. Any organization can adapt it to their own needs, including setting

up their own Wikibase repositories to host their data under different licenses, so that the

other instances of Wikibase can be linked with the data on Wikidata. Therefore, it is crucial

to be able to find alignments between domain or proprietary ontologies and this common

resource. It is also a fact that some organizations have their own internal and proprietary

knowledge graphs. They can apply their alignments to this public resource as an important

tool to augment or induce new information into their own knowledge graph. And this is one

of the main motivations we developed a complex alignment benchmark using Wikibase. The

benchmark is based on an ongoing project entitled Enslaved: Peoples of the Historical Slave

Trade2 and funded by The Andrew W. Mellon Foundation where the focus is on tracking

the movements and details of peoples in the historical slave trade. It further acts as an

interchange format between several heterogeneous data formats among other projects in the

digital humanities, because it has built a proof of concept for a slave data hub. At the heart

of the project, the Enslaved Hub allows students, researchers, and the general public to

search over numerous databases to reconstruct the lives of individuals who were part of the

historical slave trade. The Enslaved project leverages Linked Open Data (LOD) techniques,

including the use of Wikibase to create an innovative and compelling centralized Hub for

engaging with the historical slave trade data from a variety of sources.

1https://en.wikipedia.org/wiki/Commons
2https://enslaved.org/
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Chapter 3

Automated Complex Ontology

Alignment Systems Generation

3.1 Overview

Ontology alignment has been studied for over a decade. Over that time, many alignment

systems have been developed by researchers in order to find simple 1-to-1 equivalence align-

ments between ontologies. However, finding complex alignments, i.e., alignments that are

not simple class or property equivalences, is a topic largely unexplored but with growing

significance. Currently, establishing a complex alignment requires domain experts to work

together to manually generate the alignment, which is extremely time-consuming and labor-

intensive.

Most work associated with evaluating the performance of ontology alignment systems

has been done in conjunction with the Ontology Alignment Evaluation Initiative (OAEI)1.

These yearly events allow developers to test their alignment systems on various tracks that

evaluate performance on different facets of the problem such as instance matching, large

ontology matching, and interactive matching, among others. The first version of the complex

1http://oaei.ontologymatching.org

13

http://oaei.ontologymatching.org


alignment track [17] opened new perspectives in the field of ontology matching. There are

currently only two automated ontology alignment systems that focus on detecting complex

alignments, which are AgreementMakerLightComplex (AMLC) [27] and Complex Alignment

Need and A-box based Relation Discovery (CANARD) [28]. From the result of OAEI 2018,2

AMLC and CANARD were able to generate correct complex correspondences on the complex

Conference and Taxon benchmarks. However, the correct number of mappings found was

quite limited. AMLC focuses on computing lexical or terminological similarity to decide on

complex alignments, while the CANARD system relies on the instance data. In addition,

the current version of CANARD is limited to finding complex correspondences that involve

only classes. Therefore, we seek to explore the methods to improve the automated alignment

algorithms to overcome the limitations existing in the current systems. In particular, we

came up with some Research Questions listed as follows:

Q4 . What is the performance of the traditional alignment systems on the complex alignment

benchmarks?

Q5 . How do we utilize the traditional alignment systems in the complex alignment task?

Q6 . How can we effectively generate complex alignment in automated or semi-automated

fashion?

3.2 Contributions

[19] Michelle Cheatham, Dalia Varanka, Fatima Arauz, and Lu Zhou. Alignment of surface

water ontologies: a comparison of manual and automated approaches. J. Geogr. Syst.,

22(2):267–289, 2020

In order to address the Research Question Q4, this contribution selected two traditional

automatic alignment systems, which are AgreementMakerLight (AML) [29] and LogMap

2http://oaei.ontologymatching.org/2018/results/complex/index.html
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[30] because of their strong performance in the OAEI over several years. We used these two

automated alignment systems to perform the same alignment tasks on the Hydrography

complex alignment benchmark. AML allows users to select a set of different matchers, e.g.,

string matcher, instance-based matcher, and background knowledge matcher, to run (or does

so automatically based on a profile of the ontologies to be matched) and runs each matcher

individually. The resulting alignments are combined using a greedy selection strategy and

any logical inconsistencies are removed. Matchers available within AML include lexical

and structural algorithms, as well as approaches that leverage background information such

as from WordNet or domain-specific lexicons. On the other hand, LogMap compares two

entities based on their ISUB, a flexible tool that computes a similarity score for any pair of

input strings, and scope (i.e. the degree of overlap of their neighborhoods). Additionally,

LogMap’s approach to ontology alignment heavily involves consideration of whether or not

a relation would conflict with another relation that has a higher confidence value. For

example, the system either filters out or more carefully scrutinizes what it calls “dangerous”

and logically inconsistent relations.

Our results show that existing alignment systems do not perform as well in this domain

as they do on standard ontology alignment benchmarks. In addition, no current systems

were able to find relations other than 1-to-1 equivalences. This is particularly true in the

surface water domain because such ontologies frequently have less syntactic and structural

(due to differing levels of abstraction) similarity than ontologies in other domains that have

been a focus for alignment system developers.

[20] Lu Zhou. A journey from simple to complex alignment on real-world ontologies. In

Sabrina Kirrane and Lalana Kagal, editors, Proceedings of the Doctoral Consortium at

ISWC 2018 co-located with 17th International Semantic Web Conference (ISWC 2018),

Monterey, USA, October 8th - to - 12th, 2018., volume 2181 of CEUR Workshop Pro-

ceedings, pages 93–101. CEUR-WS.org, 2018

[21] Lu Zhou, Michelle Cheatham, and Pascal Hitzler. Towards association rule-based com-
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plex ontology alignment. In Xin Wang, Francesca Alessandra Lisi, Guohui Xiao, and

Elena Botoeva, editors, Semantic Technology - 9th Joint International Conference, JIST

2019, Hangzhou, China, November 25-27, 2019, Proceedings, volume 12032 of Lecture

Notes in Computer Science, pages 287–303. Springer, 2019

These two contributions further addresses the Research Question Q5 and Q6. In cases

where instance data is available for both the source and target ontologies being matched,

extensional alignment approaches could be considered. Extensional alignment systems con-

sider the overlap between instances when aligning entities at the schema level. We proposed

to create an extensional matcher that leverages the FP-Growth frequent itemset mining

algorithm [31] to generate rules that can be stored in lieu of the triples they are based on.

While FP-Growth seeks to find any rules that can be used to find the relevance of entities,

it is possible that some of these rules represent meaningful semantic relations that hold be-

tween entities. Because the FP-Growth algorithm underlying association rules mining can

generate a very large number of rules, some mechanism must be put in place to choose the

more semantically meaningful rules. Our planned approach for this is to choose rules that

involve the entities suggested by traditional alignment systems plus the alignment patterns

to finally form the simple and complex alignment. Figure 3.1 illustrates the overview of our

proposed algorithm.

We first extract all triples <Subject, Predicate, Object> from the source and target

ontologies and keep the triples that contain at least one entity under the source or the

target ontology namespace and also the triples that contain rdf:type information. After the

filtering process, the system generates the transaction database for the FP-growth algorithm

based on all of the remaining triples. Then we replace the object in the triples with its

rdf:type,3 because we focus on generating schema-level (rather than instance-level) mapping

rules between two ontologies, and the type information of the object is more meaningful

3Our evaluation data only has one single type. If there are multiple types of the object, it can also
combine the subject and predicate as additional information to determine the correct type, or keep both
types as two triples.
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Figure 3.1: Overview of The Proposed Alignment Algorithm

than the original URI. We run the FP-growth algorithm on the typed transaction database

and generate a set of association rules. Since we are trying to find the mappings between two

ontologies, we focus on mining the rules whose antecedent only contains entities from the

source ontology and whose consequent only contains entities from the target ontology. The

association rules tell us which source entities are related to which target entities, but they

do not give us information on how those entities are related. In order to determine this,

we analyze the output of the association rule mining step in light of the common alignment

patterns introduced in [32, 15]. These alignment patterns also narrow down a great number

of the association rules plus the suggested top candidates from the traditional alignment

systems and finally generate more accurate alignments.

This algorithm therefore addresses Research Questions Q5 and Q6 by automatically dis-

covering potential complex correspondences that can then be presented to human experts

in order to effectively generate complex alignment between two ontologies with populated

common instance data. We evaluate the performance of our system on two benchmarks

17



from the complex alignment track of the OAEI 2020,4 the GeoLink benchmark, which con-

tains around 74k instances from the real-world dataset and the Enslaved benchmark, which

contains around 32k triples from the historic slave trade data. The evaluation strategies

and results are introduced in the next chapter.

4http://oaei.ontologymatching.org/2020/complex/index.html

18

http://oaei.ontologymatching.org/2020/complex/index.html


Chapter 4

Complex Alignment Systems

Evaluation

4.1 Overview

By far, classical precision and recall are the most widely used evaluation metrics to assess

performance in the majority of existing work on ontology alignment. However, several

complications arise in the use of these metrics when the alignments contain complex relations

due to their all-or-nothing syntactic comparisons of individual mappings, which do not

distinguish between correspondences that are formally incorrect but closely related to the

correct correspondences and those that are completely incorrect. For example, this is a

mapping in the reference alignment of the Geolink benchmark:

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ SponsorRole(y) ∧ performedBy(y, z)
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Moreover, below are two different mappings that were generated by two different hypothet-

ical complex ontology alignment systems. The first mapping is:

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ AgentRole(y) ∧ performedBy(y, z)

and the second one is:

Award(x) ∧ hasSponsor(x, z)→ Program(x) ∧ providesAgentRole(x, y)

∧ DataManagerRole(y) ∧ performedBy(y, z)

The first mapping is formally incorrect compared to the reference alignment, but it is

very closely related to it because SponsorRole is a subclass of AgentRole. Conversely, the

second one is completely incorrect, as it contains the incorrect domain and range restrictions

of providesAgentRole and the relationship between the two sides indicates subsumption

rather than an equivalence relation. While the first system should be penalized for not

producing the correct relation, but considering this result as completely incorrect lacks

important nuance. For instance, this relation could be relatively easily corrected by a user

in a semi-automated alignment system. Moreover, the alignment system developer would

likely benefit from knowing how close the system came to generating the correct output in

this case. Therefore, we seek to answer the following Research Questions:

Q7 . How can we fairly evaluate the performance of complex alignment systems by providing

the system developers with detailed clues to improve the algorithms?

Q8 . How can we work towards completely automated or semi-automated evaluation of the

complex alignment?
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4.2 Contributions

[16] Lu Zhou, Michelle Cheatham, Adila Krisnadhi, and Pascal Hitzler. Geolink data set:

A complex alignment benchmark from real-world ontology. Data Intell., 2(3):353–378,

2020

[18] Lu Zhou, Cogan Shimizu, Pascal Hitzler, Alicia M. Sheill, Seila Gonzalez Estrecha,

Catherine Foley, Duncan Tarr, and Dean Rehberger. The enslaved dataset: A real-world

complex ontology alignment benchmark using wikibase. In 29th ACM International

Conference on Information and Knowledge Management, 2020

[21] Lu Zhou, Michelle Cheatham, and Pascal Hitzler. Towards association rule-based com-

plex ontology alignment. In Xin Wang, Francesca Alessandra Lisi, Guohui Xiao, and

Elena Botoeva, editors, Semantic Technology - 9th Joint International Conference, JIST

2019, Hangzhou, China, November 25-27, 2019, Proceedings, volume 12032 of Lecture

Notes in Computer Science, pages 287–303. Springer, 2019

In order to assess the quality of the complex alignment and address Research Question

Q7, the first three contributions evaluated the complex alignments by looking into two

dimensions. First, we evaluate if the mapping contains the correct entities that should be

involved based on the reference alignment. Another dimension is the relationship between

the entities, like equivalence and subsumption. Based on this, we break the evaluation

procedure down into two subtasks.

Entity Identification: For each entity in the source ontology, the alignment systems

will be asked to list all of the entities that are related in some way in the target ontology.

For example, in this example,

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ SponsorRole(y) ∧ performedBy(y, z),

the expected output from an alignment system is that hasSponsor in the GBO is related
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Table 4.1: Similarity for Relationship Identification
Found Relation Correct Relation Similarity Comment

= = 1 correct relation
⊂ ⊂ 1 correct relation
⊃ ⊃ 1 correct relation
⊂ = 0.8 return less information, but correct
= ⊃ 0.8 return less information, but correct
⊃ = 0.6 return more information, but incorrect
= ⊂ 0.6 return more information, but incorrect
⊂ ⊃ 0.3 incorrect relation
⊃ ⊂ 0.3 incorrect relation

to FundingAward, providesAgentRole, SponsorRole and performedBy in the GMO and

Award in the GBO. Based on the two lists of entities from the reference alignment and the

matcher, precision, recall, and f-measure can be calculated.

Relationship Identification: In terms of the example above, an alignment system

eventually needs to determine that the relationship between two sides is an equivalence.

At this stage, we would like to focus on some relationships that happen frequently in the

datasets, which are equivalence and subsumption. We will further assess other complex

relationships in future work. Table 4.1 shows the different similarities for different situations.

We slightly penalize differently for the situations in finding less information, but all the

information returned is correct, and finding more information, but part of the information

is incorrect. We do not penalize the incorrect relationship by giving a ZERO value because

that would completely neglect the entity identification outputs without considering whether

it is a reasonable result or a completely incorrect one. In order to generate the final results,

we multiply the results from the entity identification by the penalty of the relations.1 The

formulas for computing the final results are as follows:

Relaxed precision = Precision entity × Relation similarity

Relaxed recall = Recall entity × Relation similarity

Relaxed f-measure = F-measure entity × Relation similarity

1To be accurate, it could also have been better aggregated with other aggregation functions rather than
multiplication [33]. But we do not focus on this question in this dissertation.
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[22] Lu Zhou, Élodie Thiéblin, Michelle Cheatham, Daniel Faria, Catia Pesquita, Cássia Tro-

jahn dos Santos, and Ondrej Zamazal. Towards evaluating complex ontology alignments.

Knowl. Eng. Rev., 35:e21, 2020

This contribution further addresses Research Question Q8. It surveys existing ontol-

ogy alignment evaluation metrics and analyzes their strengths and weaknesses with respect

to the evaluation of complex alignments when a reference alignment is available or absent

and analyzes the requirements for effective evaluation of complex ontology alignments and

assesses the degree to which these requirements are met by existing approaches. It also pro-

vides a roadmap for future work on this topic taking into consideration emerging community

initiatives and major challenges that need to be addressed.
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Chapter 5

Conclusion and Future Work

5.1 Summary

Complex ontology alignment has been studied for a long time, but relatively little work

has been done to advance the state of the art. The lack of an available complex ontology

alignment benchmark is a primary reason for the slow speed of the development. In addition,

most current ontology alignment benchmarks have been created by humans for the sole

purpose of evaluating ontology alignment systems, and they may not always represent real-

world cases.

In this dissertation, we have proposed several complex ontology alignment benchmarks

based on real-world knowledge bases. In our benchmarks, the alignments not only cover 1-to-

1 simple correspondences but also contain 1-to-n, m-to-1, and m-to-n complex relationships.

In addition, the alignment has been evaluated by domain experts from different organizations

to ensure high quality. Moreover, instance data has been published into these benchmarks,

which is also important in order to support the use of the benchmarks by extensional

alignment systems. Furthermore, the ontologies and alignments in both rule syntax and

EDOAL format have been published in FigShare with an open-access license for reusability

and can be accessed on the OAEI website as well.
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In addition, we also proposed a complex alignment algorithm based on association rule

mining. Our algorithm takes advantage of instance data to mine frequent patterns, which

show us which entities in one ontology are related to which entities in the other. Then

we apply common simple and complex patterns and the output of traditional alignment

systems to arrange these related entities into the formal alignment. Finally, we proposed

a novel evaluation strategy to fairly evaluate alignment systems on the complex alignment

benchmarks and analyzed the results in detail to provide a better understanding of the

challenges related to complex ontology alignment research.

5.2 Future Work

Some reflections on my experimental findings lead to future work. First, our system relies

on instance data for mining the association rules, while the instance data is not available

for most of synthetic benchmarks. However, this could possibly be resolved with automated

instance data generation in the future to populate the ontologies.

Second, we incorporate some common patterns that have been widely accepted in the

ontology alignment community in our proposed system. This could be another limitation

since the set of mapping patterns in our system is likely not comprehensive. However, our

algorithm is extensible, so more patterns can be easily added in the future as the need arises.

Third, the evaluation methods for the complex alignment are still relatively simple,

because we only include limited situations in different relationships, like equivalence and

subsumption. However, there are many other complicated situations that we would need to

consider. Thus, we plan to work on the improvement of the evaluation methods as well.

All in all, complex ontology alignment has a positive impact on advancing the semantic

data integration significantly, moving forward.
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[22] Lu Zhou, Élodie Thiéblin, Michelle Cheatham, Daniel Faria, Catia Pesquita,
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[33] Marc Ehrig and Jérôme Euzenat. Relaxed precision and recall for ontology match-

ing. In Benjamin Ashpole, Marc Ehrig, Jérôme Euzenat, and Heiner Stuckenschmidt,
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Appendix A

Contributions

In the following pages, all contributions made for this dissertation are listed in order of the

appearance in this document.
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Abstract. Ontology alignment has been studied for over a decade, and
over that time many alignment systems and methods have been devel-
oped by researchers in order to find simple 1-to-1 equivalence matches
between two ontologies. However, very few alignment systems focus on
finding complex correspondences. One reason for this limitation may
be that there are no widely accepted alignment benchmarks that con-
tain such complex relationships. In this paper, we propose a real-world
dataset from the GeoLink project as a potential complex alignment
benchmark. The dataset consists of two ontologies, the GeoLink Base
Ontology (GBO) and the GeoLink Modular Ontology (GMO), as well
as a manually created reference alignment, that were developed in con-
sultation with domain experts from different institutions. The alignment
includes 1:1, 1:n, and m:n equivalence and subsumption correspondences,
and is available in both EDOAL and rules syntax.

1 Introduction

Ontology alignment is an important step in enabling computers to query and
reason across the many linked datasets on the semantic web. This is a difficult
challenge because the ontologies underlying different linked datasets can vary in
terms of subject area coverage, level of abstraction, ontology modeling philos-
ophy, and even language. Due to the importance and difficulty of the ontology
alignment problem, it has been an active area of research for over a decade [12].

Ideally, alignment systems should be able to uncover any entity relationships
across two ontologies that can exist within a single ontology. Such relation-
ships have a wide range of complexity, from basic 1-to-1 equivalence, such as
a Person in one ontology being equivalent to a Human in another ontology, to
arbitrary m-to-n relationships, such as a Professor with a hasRank property
value of “Assistant” in one ontology being a subclass of the union of the Faculty
and TenureTrack classes in another. Unfortunately, though, the majority of the
research activities in the field of ontology alignment remains focused on the sim-
plest end of this scale – finding 1-to-1 equivalence relations between ontologies.

33



2 Zhou, Cheatham, Krisnadhi, Hitzler

Part of the reason for this may be that there are no widely used and accepted
ontology alignment benchmarks that involve complex relations.

This paper seeks to take a step in that direction by proposing a complex
alignment benchmark based on two ontologies which were developed by domain
experts jointly with the reference alignment, and which in fact were developed
for deployment on major ocean science data repository platforms, i.e., without
the actual intention to develop an alignment benchmark. For this reason, the
benchmark, including the reference alignment, can be considered to be (a) ob-
jective, in that it was created for deployment and not for benchmarking, (b)
realistic, in that it captures an application use case developed for deployment,
and (c) a valid ground truth alignment, in that the two ontologies and the ref-
erence alignment were developed together, by domain experts. We argue that it
is therefore of rather unique nature and will inform complex ontology alignment
research from a practical and applied, rather than artificial laboratory-like, per-
spective. The benchmark, coincidently, as this was the requirement of the use
case, has a particular focus on relationships involving properties, which is partic-
ularly interesting because those have been shown to be rather difficult to handle
for current alignment approaches [1].

The main contributions of this paper are therefore the following:

– Presentation of two ontologies to support data representation, sharing, inte-
gration, and discovery for the geoscience research domain.

– Creation of an alignment of these two ontologies that includes 1:1, 1:n, and
m:n correspondences, and given the creation history and usage of the align-
ment, it is fair to say that the alignment constitutes a gold-standard refer-
ence.

– Publication of the benchmark alignment in both rule and EDOAL3 syntax
at a persistent URL4 under a CC-BY license.

In addition, we have analyzed and categorized the mapping rules constitut-
ing the alignment. We found several which had not been classified or discussed
previously, and we will present and discuss our analysis.

This paper is organized as follows. Section 2 discusses the few existing on-
tology alignment benchmarks that involve relationships other than 1-to-1 equiv-
alence. Section 3 gives further background on the GeoLink modeling process,
including why two different but related ontologies were developed. Section 4
discusses the alignment between the two GeoLink ontologies, along with some
descriptive statistics and an analysis of the types of mapping rules constituting
the alignment. Section 5 concludes with a discussion of potential future work in
this area.

3 http://alignapi.gforge.inria.fr/edoal.html
4 http://doi.org/10.6084/m9.figshare.5907172
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2 Related Work

Most work associated with evaluating the performance of ontology alignment
systems has been done in conjunction with the Ontology Alignment Evaluation
Initiative (OAEI)5. These yearly events allow developers to test their alignment
systems on various tracks that evaluate performance on different facets of the
problem such as instance matching, large ontology matching, and interactive
matching, among others. Currently, most of these tracks involve the identification
of 1-to-1 equivalence relationships, such as a Participant being equivalent to an
Attendee. In 2009, the OAEI ran an “oriented” matching track that challenged
systems to find subsumption relationships such as a Book is a subclass of a
Publication. However, this track was abandoned after one year. Some system
developers complained that the quality of the reference alignment was low [2].
This frustrated system developers and hindered participation. A discussion at
the last two Ontology Matching workshops6 made it clear that the community
is interested in complex alignment, but that lack of applicable benchmarks is
hindering progress. Our proposed benchmark seeks to address this concern by
providing a reference alignment as a benchmark, and by addressing the quality
issue of the previous benchmark by the fact that the process leading to the
reference alignment guarantees its high quality.

In addition to using the OAEI benchmark, alignment systems that attempt
to identify subsumption relations have sometimes used their own manually devel-
oped (and sometimes unpublished) reference alignments [5]. Other subsumption
systems have evaluated the precision of their approach by manually validating
relations produced by their system, while foregoing an assessment of recall [13].
Other related work has centered on developing a benchmark for compound align-
ments, which the authors define as mappings between class or property expres-
sions involving more than two ontologies [10]. Their first step in this direc-
tion was to create a set of reference alignments containing relations of the form
< X,Y, Z,R,M >, where X, Y and Z are classes from three different ontologies
and R is a relation between Y and Z that results in a class expression that is
related to X by the relation M. For example, a DisabledVeteran (X) is equivalent
to (M) the intersection (R) of Veteran (Y) and Disabled (Z). This benchmark is
based on cross-products among the OBO Foundry biomedical ontologies, which
have been manually validated by at least two experts.

The work presented herein differs from these approaches by considering a
wider range of relationship types (beyond subsumption and the type of ternary
relation described in [10]), as they naturally arose out of the application from
which the reference alignment was taken.

More related work is currently being undertaken by Thieblin and her col-
leagues, who are creating a complex alignment benchmark using the Conference
track ontologies within the OAEI [14]. This work is partially completed, and at
the time of this writing it covers three of the seven ontologies. In addition, we are

5 http://oaei.ontologymatching.org
6 http://www.ontologymatching.org/
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collaborating with them (under their direction) to complete the dataset and pre-
pare a new task in OAEI to evaluate complex alignment systems. The reference
alignment we describe herein differs from the effort by Thieblin et al. in that
the GeoLink ontologies and alignment constitute real-world datasets designed
for practice and applied by geoscientists, rather than being an artificial artifact
designed solely for alignment benchmarking. Furthermore, data from seven geo-
science repositories have been published according to the GeoLink schema and
they are available online7. This instance data can in the future be used by align-
ment systems that employ extensional matching techniques. In contrast to this,
significant instance data is not readily available for most of the OAEI Conference
Track ontologies.

3 The GeoLink Modeling Process

Benchmarks come in at least two varieties. On the one hand there are artificial
benchmarks which provide a kind-of laboratory setting for evaluation. On the
other hand there are benchmarks created from data as it is used in realistic use
cases or even deployed scenarios. Both of these types are important, and they
cover different aspects of the spectrum, and may have different advantages. Ar-
tificial benchmarks can be made to be balanced, or to focus on certain aspects of
a problem, and sometimes they can be used to test scalability issues more easily
as different versions of the same benchmark set may be easily producible. Natu-
ral benchmarks, on the other hand, may expose issues arising in practice which
may easily be overlooked by designers of artificial benchmarks, in particular in a
young field such as complex ontology alignment. Natural benchmarks also may
come with an independently verified gold standard baseline, as in our case.

The project this benchmark arose from is called GeoLink [15] and was funded
under the U.S. National Science Foundation’s EarthCube initiative. This planned
decade-long endeavor is a recognition that oftentimes the most innovative and
useful discoveries come at the intersection of traditional fields of research. This is
particularly true in the geosciences, which often bring together disparate groups
of researchers such as geologists, meteorologists, climatologists, ecologists, ar-
chaeologists, and so on. For its part, GeoLink employs semantic web technolo-
gies to support data representation, sharing, integration, and discovery [9]. In
particular, seven diverse geoscience datasets have been brought together into a
single data repository.

At the beginning of the project, some providers’ data resided in relational
databases while others’ had been published as RDF triples and exposed via a
SPARQL endpoint. Because each provider had their own schema, the first step in
the GeoLink project was to develop a unified schema according to which all data
providers could publish their data [9]. Creating a unified schema for indepen-
dently developed datasets is sometimes difficult, and the final product often ends
up requiring providers to shoehorn their data into a schema that does not quite

7 http://data.geolink.org
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Fig. 1: Intended usage of the GMO

fit. GeoLink uses an approach that relies on ontology design patterns (ODP) in
an attempt to avoid this issue [4]. An ODP represents a reusable solution to a
recurring modeling problem. An ODP generally encodes a specific abstract no-
tion, such as a process, event, agent, etc. These are frequently the small areas of
semantic overlap that exist between datasets from different subfields of the same
high-level domain. ODPs provide a structured and application-neutral represen-
tation of the key concepts within a domain. Throughout the first year of the
project, geoscientists, data providers and ontologists worked together to identify
and model the important concepts within the geosciences that recurred across
two or more datasets. The result of this were what we call ontology modules,
based on ODPs, and eventually they were stitched together to form the GeoLink
Modular Ontology (GMO) [7].

As shown in Figure 1, the GMO allows data providers to publish only those
aspects of their data modeled by the GMO according to that schema. Any data
the provider has that is not covered by that schema can be published using
the provider’s own schema, since no other providers have similar content. For
example, in the figure, the provider R2R has data related mostly to the cruise
and vessel modules in the lower left of the figure, and so it publishes its related
data using that terminology. R2R also has data not modeled by the GMO and
so it uses its own terminology when publishing that information. This freedom
is intended to make the publishing process easier; however, some problems still
remained.
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Fig. 2: The Agent Role pattern

Some of the patterns contain a rather complicated structure, mostly due
to reification, which was employed to accommodate different perspectives (e.g.,
based on granularity) on the data. For example, many of the data providers
have information about the sponsor of a project, and R2R has a native relation
in their schema called hasSponsor with domain Award and range Organization.
However following best practices, it leads to a more versatile model if being a
sponsor is recognized (and thus modeled) as a role which an agent (in this case
an organization) can assume. Creating a distinct relation for each type of role
on a project (sponsor, chief scientist, research assistant, etc.) is brittle, in the
sense that if new roles will be added later, potentially due to the inclusion of
a new dataset, then the schema will need to be edited by adding new vocabu-
lary for new roles together with (possibly complex) role relationships. Another
issue with using a relation such as hasSponsor is that a more fine-grained data
repository may have additional temporal information related to the sponsor role,
and then it is not clear how to add this temporal information to the hasSponsor
model without punning. Essentially, hasSponsor should better be expressed as
a ternary relation between award, organization, and the type of relation (in this
case, being a sponsor) expressed using an individual which can be reused in all
sponsor relationships. In terms of ODPs, this is realized by reusing the Agent
Role pattern, shown in abstract form in Figure 2. This approach both allows
new roles to be added easily (by subclassing AgentRole) and supports temporal
queries if desired.

Unfortunately, while the data providers recognized the utility of this modeling
approach, they found it cumbersome to map their data to it. Looking at their
own schemas, they found nothing equivalent to AgentRole, and looking at the
GMO, they found no obvious way to model the Sponsor field in their database.
Additionally, reification led to the generation of blank nodes and the need to
create and maintain many URIs. A simpler interface for the data providers was
therefore requested.

To accommodate this, a second ontology, together with a manual alignment
between this ontology and the GMO, was created to bridge the gap via an in-
termediate schema that is “flatter” than the patterns and closer to the data
providers’ own schemas, but still easy to align to the GMO modules because it
has been developed directly out of the GMO. This ontology is referred to as the
GeoLink Base Ontology (GBO). The providers publish their data according to
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the GBO and then SPARQL construct queries which encode the alignment can
be used to map data to the GMO. From the very beginning, it was intended that
the data integration process would be based on manual, and thus high-quality,
mappings between different schemas. As a consequence, ontology alignment sys-
tems were not employed to make these mappings, not even to inform human
decisions. All mappings were established as a collaborative effort between the
data repository providers, the domain experts, and the ontology engineers in-
volved in the modeling and deployment process. Because the GBO was manually
engineered directly from the GMO in order to serve this particular purpose, the
alignment is guaranteed to be precisely the one intended by the developers. I.e.
the alignment is guaranteed to contain all of the relations necessary to solve
this real-world alignment problem and no superfluous relations have been in-
cluded. We argue that this characteristic makes the GeoLink ontologies a good
example of a complex ontology alignment problem that can be used as a bench-
mark for systems that attempt to automate such alignment processes: While it
is not a synthetic benchmark, it reflects complex alignment issues encountered
in practice.

The example below illustrates the use of the GBO and its alignment to the
GMO. In the GBO, there is a relation called hasSponsor with a domain that
includes Award and range Organization. This mirrors many of the providers’
existing schemas. Providers publish triples either according to the GMO schema
(e.g., if they have temporal information), or according to the GBO schema.

x:award1 a view:Award ;

view:hasSponsor x:org1 .

x:org1 a view:Organization .

Then, the GBO-oriented triples are converted into the GMO schema using
this SPARQL construct:

PREFIX view: <http://schema.geolink.org/dev/view#>

CONSTRUCT {

?x a :FundingAward ;

:providesAgentRole _:bn1 .

_:bn1 :isPerformedBy ?y ;

a :SponsorRole .

?y a :Organization .

} WHERE {

?x a view:Award ;

view:hasSponsor ?y .

?y a view:Organization

}

Let us look at this by means of a schema diagram. In Figure 3, the three
nodes and the two solid arrows indicate the graph pattern used to express the
sponsoring organization role in the GMO. The dashed arrow is that is sometimes
called a shortcut [8]. This shortcut (which is not part of the GMO) “flattens”
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Fig. 3: A schema diagram to explain an example alignment

this part of the GMO, and in the GBO, the :SponsorRole node is removed,
but the shortcut is added (and :FundingAward and :Organization have been
replaced by the local view:Award and view:Organization, respectively).

Note that there is no doubt here about the intended alignment between the
corresponding parts of the GBO and the GMO: view:Award and :FundingAward

should be mapped to each other (as equivalent), as should view:Organization

and :Organization. It is also clear that that the relation view:hasSponsor be-
tween an view:Award and an view:Organization should be aligned (as equiva-
lence) to the concatenation of :providesAgentRole and :isPerformedBy, pro-
vided the entity shared by the two relation expressions is of type :SponsorRole,
and the chain starts at a :FundingAward and ends at a :Organization. I.e. a
complex alignment is required to express this very natural relationship between
these two ontology snippets. Below we will give more examples of complex align-
ments arising from our setting, when we discuss the different alignment patterns
we have identified. The example above is a ”Typed Property Chain Equivalence”
in our classification, and below we discuss this example further.

More information about the GMO and the project is available from [6] and
from the project website8.

4 The GeoLink Complex Alignment Benchmark

4.1 Dataset

In order to prepare the GeoLink ontologies for use as a complex alignment bench-
mark, some changes to the namespaces were required. As we introduced in the
previous section, several ODPs and modules were created to represent the fre-
quently recurring concepts in the GeoLink datasets, and these were stitched
together to form the GeoLink Modular Ontology (GMO). During this process,
the namespace of some entities was changed from one that reflected its originat-
ing pattern to the namespace of the GMO, which is http://gmo#. For example,
the class FundingAward was originally in the fundingaward pattern, with the
namespace http://schema.geolink.org/1.0/pattern/fundingaward#. After
merging these modules, the namespace of the class FundingAward became http:

8 http://www.geolink.org/
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Ontology Classes Object Properties Data Properties

GeoLink Base Ontology 40 149 49

GeoLink Modular Ontology 156 124 46

Table 1: The number of classes, object properties, and data properties in both GeoLink
ontologies

//gmo#. This has been applied to all entities except those that are imported from
other ontologies, which retain their original namespace. For example, the names-
pace of the class Instant, which is imported from http://www.w3.org/2006/

time#, remains unchanged. Additionally, the namespace of entities in the Ge-
oLink Base Ontology (GBO) has been changed from http://schema.geolink.

org/1.0/base/main# to http://gbo#.

Table 1 shows the number of classes and properties in both ontologies. Both
ontologies are comparable in size to ontologies currently used by the OAEI,
meaning that they are within the capabilities of most current ontology alignment
systems to handle.

4.2 Simple and Complex Correspondences

In order to understand the correspondences in the benchmark, we give the formal
definition of simple and complex correspondences.

Simple Correspondence. Simple correspondence refers to basic 1-to-1 sim-
ple alignment between two ontologies, including class and property. It not only
includes 1-to-1 equivalence, but also contains 1-to-1 subsumption, and 1-to-1
disjointness.

Complex Correspondence. Complex correspondence refers to more com-
plex patterns, such as 1-to-n equivalence, 1-to-n subsumption, m-to-n equiva-
lence, m-to-n subsumption, and m-to-n arbitrary relationship.

We have identified 12 different kinds of simple and complex correspondence
patterns in the GeoLink complex alignment benchmark. Table 2 presents these
different patterns and the corresponding number and category in the whole
dataset. As the table shows, the alignment consists predominantly of complex
relationships. In the following, we explain these alignment types, from simple
1-to-1 correspondence to complex m-to-n correspondence, with a formal pattern
and example each.

Class Equivalence. The first pattern is just simple 1-to-1 class equivalence.
Classes C1 and C2 are from ontology O1 and ontology O2, respectively.

Formal Pattern: C1(x)↔ C2(x)

Example: Award(x)↔ FundingAward(x)
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Pattern Occurrences Category

Class Equivalence 10 1:1

Class Subsumption 2 1:1

Property Equivalence 7 1:1

Property Equivalence Inverse 5 1:1

Class typecasting Equivalence 4 1:n

Class typecasting Subsumption 1 1:n

Property typecasting Subsumption 5 1:n

Property typecasting Subsumption Inverse 5 1:n

Typed property chain Equivalence 26 m:n

Typed property chain Equivalence Inverse 17 m:n

Typed property chain Subsumption 17 m:n

Typed property chain Subsumption Inverse 12 m:n

Table 2: The alignment pattern types found in the GeoLink complex alignment bench-
mark, along with the number of times each occurs and the type of relation.

Class Subsumption. This pattern is very similar to the first pattern. But,
instead of class equivalence, this pattern describes simple 1-to-1 class subsump-
tion.

Formal Pattern: C1(x)→ C2(x)
Example: GeoFeature(x)→ Place(x)

Property Equivalence. Property alignment is also an important part of on-
tology alignment research [8]. This pattern captures simple 1-to-1 property
equivalence. Property p1 and property p2 are from ontology O1 and ontology
O2, respectively. The property can be either a data property or an object prop-
erty.

Formal Pattern: p1(x, y)↔ p2(x, y)
Example: hasAward(x, y)↔ fundedBy(x, y)

Property Equivalence Inverse. This pattern is similar to the previous one,
just that the domain and range values of a property are switched when it aligns
to a property in another ontology.

Formal Pattern: p1(x, y)↔ p2(y, x)
Example: isAwardOf(x, y)↔ fundedBy(y, x)

Class Typecasting Equivalence. This pattern is more specific than the pre-
vious ones. The idea of typecasting, and why it is important in ontology mod-
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eling, is formally introduced and discussed in [8]. The pattern indicates that
individuals of type C1 in one ontology are cast into a subclass of C2 in the
other ontology. Note that punning is employed here – x is treated as an indi-
vidual on the left hand side of the rule and as a class on the right hand side.
For example, an instance of PlaceType in the GBO might be ‘ocean’. This is
cast into a subclass of Place in the GMO. The reverse is also true: if the GMO
has a subclass of Place called Island, then ‘island’ is an instance of the class
PlaceType in the GBO.

Formal Pattern: C1(x)↔ rdfs:subclassOf(x,C2)
Example: PlaceType(x)↔ rdfs:subclassOf(x,Place)

Class Typecasting Subsumption. This pattern is almost identical to the
one above, except that the rule only holds in one direction. In the example,
a GeoFeatureType (which comes from the General Bathymetric Chart of the
Oceans9 vocabulary) is always a type of Place, but there are types of Places
that are not GeoFeatureType.

Formal Pattern: C1(x)→ rdfs:subclassOf(x,C2)
Example: GeoFeatureType(x)→ rdfs:subclassOf(x,Place)

Property Typecasting Subsumption. This pattern is similar in spirit to
the Class Typecasting patterns mentioned above. However in this case, a prop-
erty is cast into a class assignment statement. In a sense, this alignment drops
information, as y does not occur on the right hand side.

Formal Pattern: p1(x, y)→ rdf:type(x,C2)
Example: hasPlaceType(x, y)→ rdf:type(x,Place)

We note here that some rules that fall under this category are not exact trans-
lations of the underlying SPARQL queries, due to expressibility constraints
in EDOAL (see section 4.3 below). For instance, instead the example above,
which states that the hasPlaceType object property is subsumed by an rdf:type
statement with the range value of Place, we would actually like to state the
following, which reflects the SPARQL query:

Formal Pattern: p1(x, y)↔ rdf:type(x, y) ∧ rdfs:subclassOf(y, C2)
Example: hasPlaceType(x, y)↔ rdf:type(x, y) ∧ rdfs:subclassOf(y,Place)

For instance, we would like a rule that implies that the GBO statement has-
PlaceType(Honolulu,Island) is equivalent to stating that Honolulu is a type of
Island and that Island is a subclass of Place in the GMO. In other words, one
of the individuals occurring as a property filler on the GBO side is cast into a
class on the GMO side. At the same time, the other property filler on the GBO

9 https://www.gebco.net
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side is asserted to be an instance of this class. However, this is not possible
because the statement requires a variable (y), and that is not supported by
the core EDOAL language. The EDOAL specification does mention a pattern
language that might enable this type of statement, but it does not appear to
be fully supported at this time.

Property Typecasting Subsumption Inverse. This pattern is the same as
the one above, except that the property fillers are flipped.

Formal Pattern: p1(x, y)→ rdf:type(y, C2)

Example: isPlaceTypeOf(x, y)→ rdf:type(y,Place)

Again, in some cases we would actually like to state the following, which cannot
be fully expressed in EDOAL, to the best of our knowledge:

Formal Pattern: p1(x, y)→ rdf:type(y, x) ∧ rdfs:subclassOf(x,C2)

Example: isGeoFeatureTypeOf(x, y)→ rdf:type(y, x) ∧ rdfs:subclassOf(x,Place)

Typed Property Chain Equivalence. A property chain is a classical com-
plex pattern that was introduced in [11]. This pattern captures the situation
related to the hasSponsor property discussed in detail in Section 3. The pattern
applies when a property, together with a type restriction on one or both of its
fillers, in one ontology have been used to “flatten” the structure of the other
ontology by short-cutting a property chain in that ontology. The pattern also
ensures that the types of the property fillers involved in the property chain are
typed appropriately in the other ontology. The formal pattern and example are
shown below. The classes Di and property r are from ontology O1, and classes
Ci and properties pi are from ontology O2.

Formal Pattern:

D1(x1) ∧ r(x1, xn+1) ∧D2(xn+1)↔ C1(x1) ∧ p1(x1, x2) ∧ C2(x2)

∧ · · · ∧ pn(xn, xn+1) ∧ Cn+1(xn+1)

Example10:

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ SponsorRole(y) ∧ performedBy(y, z)

Note that in this and all following patterns, any of the Di or Ci may be omitted
(in which case they are essentially >). Also, for the left-to-right direction, we
assume that x2, . . . xn are existentially quantified variables.

10 In contrast to the example discussed in Figure 3, we leave out :Organization and
view:Organization, because it is possible, in principle, that a non-organization
agent (e.g., an individual) may sponsor.
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Typed Property Chain Equivalence Inverse. This pattern is the same as
the one above, except that the property fillers are flipped.

Formal Pattern:

D1(x1) ∧ r(x1, xn+1) ∧D2(xn+1)↔ C1(xn+1) ∧ p1(xn+1, xn) ∧ C2(xn)

∧ · · · ∧ pn(x2, x1) ∧ Cn+1(x1)

Example:

Award(z) ∧ isSponsorOf(x, z)↔ FundingAward(z) ∧ provideAgentRole(z, y)

∧ SponsorRole(y) ∧ performedBy(y, x)

Typed Property Chain Subsumption. This is identical to the Typed Prop-
erty Chain Equivalence pattern except that the relationship only holds in one
direction.

Formal Pattern:

D1(x1) ∧ r(x1, xn+1) ∧D2(xn+1)→ C1(x1) ∧ p1(x1, x2) ∧ C2(x2)

∧ · · · ∧ pn(xn, xn+1) ∧ Cn+1(xn+1)

Example:

Cruise(x) ∧ hasChiefScientist(x, z)→ Cruise(x) ∧ providesAgentRole(x, y)

∧ AgentRole(y) ∧ performedBy(y, z)

Typed Property Chain Subsumption Inverse. This pattern is the same
as the one above, except that the property fillers are flipped.

Formal Pattern:

D1(x1) ∧ r(x1, xn+1) ∧D2(xn+1)→ C1(xn+1) ∧ p1(xn+1, xn) ∧ C2(xn)

∧ · · · ∧ pn(x2, x1) ∧ Cn+1(x1)

Example:

Cruise(z) ∧ isChiefScientistOf(x, z)→ Cruise(z) ∧ providesAgentRole(z, y)

∧ AgentRole(y) ∧ performedBy(y, x)

In [11], four alignment types were identified, some of which are subsumed
by ours. We do not at all claim that our classification above is exhaustive, but
we consider it a refinement of the ones listed in [11]. We conjecture that there
are many more important ones of relevance to other use cases. Mapping out the
space of complex alignment types is, in our understanding, helpful for further
research into complex alignment algorithms.

4.3 Format in EDOAL and Rule syntax

As mentioned previously, SPARQL construct queries are used to convert data
published by the data providers according to the GBO into the schema described
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in the GMO, because the GMO employs modeling practices that enhance exten-
sibility and facilitate reasoning. However, most ontology alignment benchmarks
are not formatted in SPARQL but rather according to the format provided by
the Alignment API [5]. The standard alignment format is not expressive enough
to capture complex relations. However, the Alignment API also provides a for-
mat called Expressive and Declarative Ontology Alignment Language (EDOAL)
that can be used to express these types of relations. This format can be read and
manipulated programmatically using the Alignment API, and is therefore very
convenient for ontology alignment researchers. In addition, EDOAL is already
accepted by the ontology alignment community. It has been used by others when
proposing new alignment benchmarks [10] and [14], and we continue that ap-
proach here. Because EDOAL can be difficult for humans to parse quickly, we
have also expressed the alignments in using a naive rule syntax. The rule pre-
sentation is not intended for programmatic manipulation, but rather to make it
easier for humans to read and understand the alignments. Both versions of the
alignment, along with the GBO and GMO ontologies, can be downloaded from
http://doi.org/10.6084/m9.figshare.5907172 under a CC-BY License. We
have merged the two ontologies according to this reference alignment and used
HermiT [3] to verify that there are no inconsistencies. The GeoLink website11

contains detailed documentation of the dataset and provides users with more in-
sights about the resource, such as all entities, patterns, and relationships between
them in both ontologies.

5 Conclusion

Complex alignment has been discussed for a long time, but relatively little work
has been done to advance the state of the art of complex ontology alignment.
The lack of an available complex alignment benchmark may be a primary reason
for the slow speed of development. In addition, most current alignment bench-
marks have been created by humans for the sole purpose of evaluating alignment
systems, and they may not always represent real-world cases. In this paper, we
have proposed a complex alignment benchmark based on the real-world GeoLink
dataset. The two ontologies and the reference alignment were designed and cre-
ated by ontologists and geoscience domain experts to support data representa-
tion, sharing, integration and discovery. We take advantage of these ontologies
to create a complex alignment benchmark. In our dataset, the alignments not
only cover 1:1 simple correspondences, but also contain 1:n and m:n complex
relations. All correspondences required to convert between the two ontologies (a
key goal of ontology alignment) are guaranteed to be present, because one ontol-
ogy was consciously created from the other, with SPARQL queries to mitigate
each change. In addition, the alignment has been evaluated by domain experts
from different organizations to ensure high quality. Moreover, the ontologies and
alignments in both rule and EDOAL syntax have been published in FigShare
with an open access license for reusability.

11 http://schema.geolink.org/
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As future work in this area, we plan to put forth this alignment problem as a
potential new track within the OAEI. After that, based on participants’ feedback,
we will modify the reference alignment if necessary to perfect the benchmark by
making it more convenient to use. This may involve, for example, making the
alignment available in additional formats. Furthermore, we also plan to create
an automated alignment system to tackle the alignment problem set forth by
this benchmark.
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Abstract

Ontology alignment has been studied for over a decade, and over that time many alignment sys-
tems and methods have been developed by researchers in order to find simple 1-to-1 equivalence
matches between two ontologies. However, very few alignment systems focus on finding com-
plex correspondences. One reason for this limitation may be that there are no widely accepted
alignment benchmarks that contain such complex relationships. In this paper, we propose a real-
world dataset from the GeoLink project as a potential complex ontology alignment benchmark.
The dataset consists of two ontologies, the GeoLink Base Ontology (GBO) and the GeoLink
Modular Ontology (GMO), as well as a manually created reference alignment that was developed
in consultation with domain experts from different institutions. The alignment includes 1:1, 1:n,
and m:n equivalence and subsumption correspondences, and is available in both Expressive and
Declarative Ontology Alignment Language (EDOAL) and rule syntax. The benchmark has been
expanded from its original version to contain real-world instance data from seven geoscience
data providers that has been published according to both ontologies. This allows it to be used
by extensional alignment systems or those that require training data. This benchmark has been
incorporated into the Ontology Alignment Evaluation Initiative (OAEI) complex track to help
researchers test their automated alignment systems and algorithms. This paper also analyzes
the challenges inherent in effectively generating, detecting, and evaluating complex ontology
alignments and provides a road map for future work on this topic.

Keywords: Complex Ontology Alignment, Real-world Ontology, Ontology Population,
Benchmark

1. Introduction

Ontology alignment is an important step in enabling computers to query and reason across
the many linked datasets on the semantic web. This is a difficult challenge because the ontologies
underlying different linked datasets can vary in terms of subject area coverage, level of abstrac-
tion, ontology modeling philosophy, and even language. Due to the importance and difficulty of
the ontology alignment problem, it has been an active area of research for over a decade [1].
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Ideally, alignment systems should be able to uncover any entity relationship across two on-
tologies that can exist within a single ontology. Such relationships have a wide range of com-
plexity, from basic 1-to-1 equivalence, such as a Person in one ontology being equivalent to a
Human in another ontology, to arbitrary m-to-n relationships, such as a Professor with a hasRank
property value of “Assistant” in one ontology being a subclass of the union of the Faculty and
TenureTrack classes in another. Unfortunately, the majority of the research activities in the field
of ontology alignment remains focus on the simplest end of this scale – finding 1-to-1 equiva-
lence relations between ontologies. Part of the reason for this may be that there are no widely
used and accepted ontology alignment benchmarks that involve complex relations.

This paper seeks to take a step in that direction by proposing a complex alignment bench-
mark based on two ontologies which were developed by domain experts jointly with the reference
alignment, and which in fact were developed for deployment on major ocean science data repos-
itory platforms, i.e., without the actual intention to develop an alignment benchmark. For this
reason, the benchmark, including the reference alignment, can be considered to be (a) objective,
in that it was created for deployment and not for benchmarking, (b) realistic, in that it captures
an application use case developed for deployment, and (c) a valid ground truth alignment, in
that the two ontologies and the reference alignment were developed together, by domain experts.
We argue that it is therefore of rather unique nature and will inform complex ontology align-
ment research from a practical and applied perspective, rather than artificial laboratory-like. The
benchmark, coincidentally, as this was the requirement of the use case, has a particular focus
on relationships involving properties, which is particularly interesting because those have been
shown to be rather difficult to handle for current alignment approaches [2]. In addition, we have
analyzed and categorized the mapping rules constituting the alignment. We found several which
had not been classified or discussed previously, which we will present and discuss in our analysis.

The main contributions of this paper are therefore the following:

• Presentation of two ontologies to support data representation, sharing, integration, and
discovery for the geoscience research domain.

• Creation of an alignment between these two ontologies that includes 1:1, 1:n, and m:n
correspondences, and given the creation history and usage of the alignment, it is fair to say
that the alignment constitutes a gold-standard reference.

• Publication of the benchmark alignment in both rule syntax and EDOAL format1 at a
persistent URL2 under a CC-BY license.

• Population of the Abox information supported by data providers to extend the functionality
of the benchmark in instance-based applications.

• Incorporation of the benchmark into the OAEI complex track3 in order to help researchers
to test and improve their complex ontology alignment systems and algorithms.

• Discussion of the challenges related to the generation, detection, and evaluation of the
complex ontology alignment and the potential methods for future work in this area.

1http://alignapi.gforge.inria.fr/edoal.html
2http://doi.org/10.6084/m9.figshare.5907172
3http://oaei.ontologymatching.org/2018/complex/index.html
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This paper is an extended version of the one presented at the International Semantic Web
Conference 2018 [3]. The final three bullet points above represent new material.

The paper is organized as follows. Section 2 discusses the few existing ontology alignment
benchmarks that involve relationships other than 1-to-1 equivalence and methods to detect them.
Section 3 gives further background on the GeoLink modeling process, including why two dif-
ferent but related ontologies were developed. Section 4 discusses the alignment between the
two GeoLink ontologies, along with some descriptive statistics and an analysis of the types of
mapping rules constituting the alignment, and the instance data population process. Section 5
introduces the simplified version of the benchmark used in the OAEI complex track and presents
the evaluation results. Section 6 discusses the challenges that we faced in the research and pro-
vides potential approaches to solve them. Section 7 concludes with a discussion of potential
future work in this area.

2. Related Work

Most work associated with evaluating the performance of ontology alignment systems has
been done in conjunction with the Ontology Alignment Evaluation Initiative (OAEI)4. These
yearly events allow developers to test their alignment systems on various tracks that evaluate per-
formance on different facets of the problem such as instance matching, large ontology matching,
and interactive matching, among others. Currently, most of these tracks involve the identifica-
tion of 1-to-1 equivalence relationships, such as a Participant being equivalent to an Attendee. In
2009, the OAEI ran an “oriented” matching track that challenged systems to find subsumption
relationships such as a Book is a subclass of a Publication. However, this track was abandoned
after one year. Some system developers complained that the quality of the reference alignment
was low [4]. This frustrated system developers and limited participation. Discussions at the last
two Ontology Matching workshops5 made it clear that the community is interested in complex
alignment, but that lack of applicable benchmarks is hindering progress. Our proposed bench-
mark seeks to address this concern by providing a reference alignment as a benchmark, and by
addressing the quality issue of the previous benchmark by the fact that the process leading to the
reference alignment guarantees its high quality.

Related work is currently being undertaken by Thieblin and her colleagues [5], who are cre-
ating a complex alignment benchmark using the Conference track ontologies within the OAEI
[6]. This work is partially completed, and at the time of this writing it covers three of the seven
ontologies. The reference alignment we describe herein differs from the effort by Thieblin et al.
in that the GeoLink ontologies and alignment constitute real-world datasets designed and used
in a practical application by geoscientists, rather than being an artificial artifact designed solely
for alignment benchmarking. Furthermore, data from seven geoscience repositories have been
published according to the GeoLink schema and are available online6. This instance data can
in the future be used by alignment systems that employ extensional matching techniques [7]. In
contrast to this, significant instance data is currently not readily available for most of the OAEI
conference track ontologies. With the increasing requirement of more complex ontology align-
ment and growing interest in generating complex correspondences in real-world datasets [3, 8],

4http://oaei.ontologymatching.org
5http://www.ontologymatching.org/
6http://data.geolink.org
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the first version of the complex alignment track was introduced in OAEI 2018 [9]. Our GeoLink
benchmark is one of the four benchmarks that contain complex correspondences in this track.
The other three complex ontology alignment benchmarks are from different domains: confer-
ence, hydrography, and plant taxonomy. In addition, different evaluation strategies were applied
in evaluating the performance of complex alignment systems on the different benchmarks. More
details of evaluations and results can be accessed on the OAEI 2018 website7.

While alignment systems capable of generating complex alignments are relatively rare, sev-
eral approaches have been proposed in the literature. Ritze applied pattern-based [10] and lin-
guistic analysis approaches [11] to detect the complex correspondences in a dataset. Jiang [12]
accomplished the task of finding a complex alignment by defining knowledge rules and using
a probabilistic framework to integrate a knowledge-based strategy with standard terminology-
based and structure-based strategies.

Alignment systems that attempt to identify subsumption relations have sometimes used their
own manually developed (and sometimes unpublished) reference alignments [13]. Other sub-
sumption systems have evaluated the precision of their approach by manually validating rela-
tions produced by their system, while foregoing an assessment of recall [14]. Other related work
has centered on developing a benchmark for compound alignments, which the authors define as
mappings between class or property expressions involving more than two ontologies [15]. Their
first step in this direction was to create a set of reference alignments containing relations of the
form < X,Y,Z,R,M >, where X, Y and Z are classes from three different ontologies and R is a
relation between Y and Z that results in a class expression that is related to X by the relation M.
For example, a DisabledVeteran (X) is equivalent to (M) the intersection (R) of Veteran (Y) and
Disabled (Z). This benchmark is based on cross-products among the Open Biomedical Ontolo-
gies (OBO) Foundry8, which have been manually validated by at least two experts. The work
presented herein differs from these approaches by considering a wider range of relationship types
(beyond subsumption and the type of ternary relation described in [15]), as they naturally arose
out of the application from which the reference alignment was taken.

3. The GeoLink Modeling Process

Benchmarks come in at least two varieties. On the one hand, there are artificial benchmarks
that provide a kind of laboratory setting for evaluation. On the other hand, there are benchmarks
created from data as it is used in realistic use cases or even deployed scenarios. Both of these
types are important, and they cover different aspects of the spectrum, and may have different
advantages. Artificial benchmarks can be made to be balanced, or to focus on certain aspects
of a problem, and sometimes they can be used to test scalability issues more easily as different
versions of the same benchmark set may be easily producible. Natural benchmarks, on the other
hand, may expose issues arising in practice which may easily be overlooked by designers of
artificial benchmarks, in particular in a young field such as complex ontology alignment. Natural
benchmarks also may come with an independently verified gold standard baseline, as in our case.

The project that this benchmark arose from is called GeoLink [16] and was funded under the
U.S. National Science Foundation’s EarthCube initiative. This planned decade-long endeavor is
a recognition that oftentimes the most innovative and useful discoveries come at the intersection

7http://oaei.ontologymatching.org/2018/complex/index.html
8http://www.obofoundry.org/
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Figure 1: Intended usage of the GMO

of traditional fields of research. This is particularly true in the geosciences, which often bring
together disparate groups of researchers such as geologists, meteorologists, climatologists, ecol-
ogists, archaeologists, and so on. For its part, GeoLink employs semantic web technologies to
support data representation, sharing, integration, and discovery [17]. In particular, seven diverse
geoscience datasets have been brought together into a single data repository.

At the beginning of the project, some providers’ data resided in relational databases while
others’ had been published as RDF triples and exposed via a SPARQL endpoint. Because each
provider had their own schema, the first step in the GeoLink project was to develop a unified
schema according to which all data providers could publish their data [17]. Creating a unified
schema for independently developed datasets is sometimes difficult, and the final product often
ends up requiring providers to shoehorn their data into a schema that does not quite fit. GeoLink
uses an approach that relies on ontology design patterns (ODP) in an attempt to avoid this issue
[18]. An ODP represents a reusable solution to a recurring modeling problem and generally
encodes a specific abstract notion, such as a process, event, agent, etc. These are frequently
the small areas of semantic overlap that exist between datasets from different subfields of the
same high-level domain. ODPs provide a structured and application-neutral representation of
the key concepts within a domain. Throughout the first year of the project, geoscientists, data
providers and ontologists worked together to identify and model the important concepts within
the geosciences that recurred across two or more datasets. The results of this were what we
call ontology modules, based on ODPs, and eventually they were stitched together to form the
GeoLink Modular Ontology (GMO) [19].

As shown in Figure 1, the GMO allows data providers to publish only those aspects of their
data modeled by the GMO according to that schema. Any data that the provider has that is
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Figure 2: The Agent Role pattern

not covered by that schema can be published using the provider’s own schema, since no other
providers have similar content. For example, in Figure 1, the provider R2R has data related
mostly to the cruise and vessel modules in the lower left of the Figure 1, and so it publishes its
related data using that terminology. R2R also has data not modeled by the GMO, and so it uses
its own terminology when publishing that information. This freedom is intended to make the
publishing process easier. However, some problems still remained.

Some of the patterns contain a rather complicated structure, mostly due to reification, which
was employed to accommodate different perspectives (e.g., based on granularity) on the data.
For example, many of the data providers have information about the sponsor of a project, and
R2R has a native relation in their schema called hasSponsor with domain Award and range Orga-
nization. However, following best practices, it leads to a more versatile model if being a sponsor
is recognized (and thus modeled) as a role which an agent (in this case an organization) can
assume. Creating a distinct relation for each type of role on a project (sponsor, chief scientist,
research assistant, etc.) is brittle, in the sense that if new roles will be added later, potentially due
to the inclusion of a new dataset, then the schema will need to be edited by adding new vocabu-
lary for new roles together with (possibly complex) role relationships. Another issue with using
a relation such as hasSponsor is that a more fine-grained data repository may have additional
temporal information related to the sponsor role, and then it is not clear how to add this temporal
information to the hasSponsor model without punning. Essentially, hasSponsor should better be
expressed as a ternary relation between award, organization, and the type of relation (in this case,
being a sponsor) expressed using an individual which can be reused in all sponsor relationships.
In terms of ODPs, this is realized by reusing the Agent Role pattern, shown in abstract form in
Figure 2. This approach both allows new roles to be added easily (by subclassing AgentRole)
and supports temporal queries if desired.

Unfortunately, while the data providers recognized the utility of this modeling approach, they
found it cumbersome to map their data to it. Looking at their own schemas, they found nothing
equivalent to AgentRole, and looking at the GMO, they found no obvious way to model the
Sponsor field in their database. Additionally, reification led to the generation of blank nodes
and the need to create and maintain many URIs. A simpler interface for the data providers was
therefore requested.

To accommodate this, a second ontology, together with a manual alignment between this on-
tology and the GMO, was created to bridge the gap via an intermediate schema that is “flatter”
than the patterns and closer to the data providers’ own schemas, but still easy to align to the
GMO modules because it has been developed directly out of the GMO. This ontology is referred
to as the GeoLink Base Ontology (GBO). The providers publish their data according to the GBO
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and then SPARQL construct queries which encode the alignment can be used to map data to the
GMO. From the very beginning, it was intended that the data integration process would be based
on manual, and thus high-quality, mappings between different schemas. As a consequence, on-
tology alignment systems were not employed to make these mappings, not even to inform human
decisions. All mappings were established as a collaborative effort between the data repository
providers, the domain experts, and the ontology engineers involved in the modeling and deploy-
ment process. Because the GBO was manually engineered directly from the GMO in order to
serve this particular purpose, the alignment is guaranteed to be precisely the one intended by the
developers. I.e. the alignment is guaranteed to contain all of the relations necessary to solve
this real-world alignment problem and no superfluous relations have been included. We argue
that this characteristic makes the GeoLink ontologies a good example of a complex ontology
alignment problem that can be used as a benchmark for systems that attempt to automate such
alignment processes: While it is not a synthetic benchmark, it reflects complex alignment issues
encountered in practice.

The example below illustrates the use of the GBO and its alignment to the GMO. In the GBO,
there is a relation called hasSponsor with a domain that includes Award and range Organization.
This mirrors many of the providers’ existing schemas. Providers publish triples either directly
according to the GMO schema (e.g., if they have temporal information), or according to the GBO
schema.

x:award1 a view:Award ;

view:hasSponsor x:org1 .

x:org1 a view:Organization .

In the latter case, the GBO-oriented triples are converted into the GMO schema using this
SPARQL construct:

PREFIX view: <http://schema.geolink.org/dev/view#>

CONSTRUCT {

?x a :FundingAward ;

:providesAgentRole _:bn1 .

_:bn1 :isPerformedBy ?y ;

a :SponsorRole .

?y a :Organization .

} WHERE {

?x a view:Award ;

view:hasSponsor ?y .

?y a view:Organization

}

Let us look at this by means of a schema diagram. In Figure 3, the three nodes and the two
solid arrows indicate the graph pattern used to express the sponsoring organization role in the
GMO. The dashed arrow is sometimes called a shortcut [20]. This shortcut (which is not part of
the GMO) “flattens” this part of the GMO, and in the GBO, the :SponsorRole node is removed,
but the shortcut is added (and :FundingAward and :Organization have been replaced by the
local view:Award and view:Organization, respectively).

Note that there is no doubt here about the intended alignment between the corresponding parts
of the GBO and the GMO: view:Award and :FundingAward should be mapped to each other
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Figure 3: A schema diagram to explain an example alignment

(as equivalence), as should view:Organization and :Organization. It is also clear that the
relation view:hasSponsor between an view:Award and an view:Organization should be
aligned (as equivalence) to the concatenation of :providesAgentRole and :isPerformedBy,
provided the entity shared by the two relation expressions is of type :SponsorRole, and the
chain starts at a :FundingAward and ends at an :Organization. I.e. a complex alignment is
required to express this very natural relationship between these two ontology snippets. Below we
will give more examples of complex alignments arising from our setting, when we discuss the
different alignment patterns we have identified. The example above is a “Typed Property Chain
Equivalence” in our classification, and below we discuss this example further.

More information about the GMO and the project is available from [21] and from the project
website9.

4. The GeoLink Complex Alignment Benchmark

4.1. Dataset
In order to prepare the GeoLink ontologies for use as a complex alignment benchmark,

some changes to the namespaces were required. As we introduced in the previous section,
several ODPs and modules were created to represent the frequently recurring concepts in the
GeoLink datasets, and these were stitched together to form the GMO. During this process, the
namespace of some entities was changed from one that reflected its originating pattern to the
namespace of the GMO, which is http://gmo#. For example, the class FundingAward was
originally in the fundingaward pattern, with the namespace http://schema.geolink.org/

1.0/pattern/fundingaward#. After merging these modules, the namespace of the class
FundingAward became http://gmo#. This has been applied to all entities except those that
are imported from other ontologies, which retain their original namespace. For example, the
namespace of the class Instant, which is imported from http://www.w3.org/2006/time#, re-
mains unchanged. Additionally, the namespace of entities in the GBO has been changed from
http://schema.geolink.org/1.0/base/main# to http://gbo#.

Table 1 shows the number of classes and properties in both ontologies. Both ontologies are
comparable in size to ontologies currently used by the OAEI, meaning that they are within the
capabilities of most current ontology alignment systems to handle.

9http://www.geolink.org/
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Table 1: The number of classes, object properties, and data properties in both GeoLink ontologies

Ontology Classes Object Properties Data Properties
GeoLink Base Ontology 40 149 49

GeoLink Modular Ontology 156 124 46

Table 2: The alignment pattern types found in the GeoLink complex alignment benchmark, along with the number of
times each occurs and the type of relation.

Pattern Occurrences Category
Class Equivalence 10 1:1
Class Subsumption 2 1:1
Property Equivalence 7 1:1
Property Equivalence Inverse 5 1:1
Class Typecasting Equivalence 4 1:n
Class Typecasting Subsumption 1 1:n
Property Typecasting Subsumption 5 1:n
Property Typecasting Subsumption Inverse 5 1:n
Typed Property Chain Equivalence 26 m:n
Typed Property Chain Equivalence Inverse 17 m:n
Typed Property Chain Subsumption 17 m:n
Typed Property Chain Subsumption Inverse 12 m:n

4.2. Simple and Complex Correspondences

In order to understand the correspondences in the benchmark, we give the formal definition
of simple and complex correspondences.

Simple Correspondence. Simple correspondence refers to a basic 1-to-1 simple mapping
between two ontologies, in which the entities involved may be either classes or properties. This
category not only includes 1-to-1 equivalence relations, but also 1-to-1 subsumption and 1-to-1
disjointness.

Complex Correspondence. Complex correspondence refers to more complex patterns, such
as 1-to-n equivalence, 1-to-n subsumption, m-to-n equivalence, m-to-n subsumption, and m-to-n
arbitrary relationship.

We have identified 12 different kinds of simple and complex correspondence patterns in the
GeoLink complex alignment benchmark. Table 2 presents these different patterns and the corre-
sponding number and category in the whole dataset. As the table shows, the alignment consists
predominantly of complex relationships. In the following, we explain these alignment types,
from simple 1-to-1 correspondence to complex m-to-n correspondence, with a formal pattern
and example for each.

Class Equivalence. The first pattern is just simple 1-to-1 class equivalence. Classes C1 and C2
are from ontology O1 and ontology O2, respectively.
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Formal Pattern: C1(x)↔ C2(x)

Example: Award(x)↔ FundingAward(x)

Class Subsumption. This pattern is very similar to the first pattern. But, instead of class equiv-
alence, this pattern describes simple 1-to-1 class subsumption.

Formal Pattern: C1(x)→ C2(x)

Example: GeoFeature(x)→ Place(x)

Property Equivalence. Property alignment is also an important part of ontology alignment
research [20]. This pattern captures simple 1-to-1 property equivalence. Property p1 and prop-
erty p2 are from ontology O1 and ontology O2, respectively. The property can be either a data
property or an object property.

Formal Pattern: p1(x, y)↔ p2(x, y)

Example: hasAward(x, y)↔ fundedBy(x, y)

Property Equivalence Inverse. This pattern is similar to the previous one, except that the
domain and range values of a property are switched when it aligns to a property in another
ontology.

Formal Pattern: p1(x, y)↔ p2(y, x)

Example: isAwardOf(x, y)↔ fundedBy(y, x)

Class Typecasting Equivalence. This pattern is more specific than the previous ones. The
idea of typecasting, and why it is important in ontology modeling, is formally introduced and
discussed in [20]. The pattern indicates that individuals of type C1 in one ontology are cast into
a subclass of C2 in the other ontology. Note that punning is employed here – x is treated as an
individual on the left-hand side of the rule and as a class on the right-hand side. For example,
an instance of PlaceType in the GBO might be ‘ocean’. This is cast into a subclass of Place
in the GMO. The reverse is also true: if the GMO has a subclass of Place called Island, then
‘island’ is an instance of the class PlaceType in the GBO.

Formal Pattern: C1(x)↔ rdfs:subClassOf(x,C2)

Example: PlaceType(x)↔ rdfs:subClassOf(x,Place)

Class Typecasting Subsumption. This pattern is almost identical to the one above, except that
the rule only holds in one direction. In the example, a GeoFeatureType (which comes from the
General Bathymetric Chart of the Oceans10 vocabulary) is always a type of Place, but there are

10https://www.gebco.net
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types of Places that are not GeoFeatureType.

Formal Pattern: C1(x)→ rdfs:subClassOf(x,C2)

Example: GeoFeatureType(x)→ rdfs:subClassOf(x,Place)

Property Typecasting Subsumption. This pattern is similar in spirit to the Class Typecasting
patterns mentioned above. However, in this case, a property is cast into a class assignment
statement. In a sense, this alignment drops information, as y does not occur on the right-hand
side.

Formal Pattern: p1(x, y)→ rdf:type(x,C2)

Example: hasPlaceType(x, y)→ rdf:type(x,Place)

We note here that some rules that fall under this category are not exact translations of the un-
derlying SPARQL queries, due to expressibility constraints in EDOAL (see Section 4.4 below).
For instance, instead of the example above, which states that the hasPlaceType object property
is subsumed by an rdf:type statement with the range value of Place, we would actually like to
state the following, which reflects the SPARQL query:

Formal Pattern: p1(x, y)↔ rdf:type(x, y) ∧ rdfs:subClassOf(y,C2)

Example: hasPlaceType(x, y)↔ rdf:type(x, y) ∧ rdfs:subClassOf(y,Place)

For instance, we would like a rule that implies that the GBO statement hasPlaceType(Honolulu,Island)
is equivalent to stating that Honolulu is a type of Island and that Island is a subclass of Place in
the GMO. In other words, one of the individuals occurring as a property filler on the GBO side
is cast into a class on the GMO side. At the same time, the other property filler on the GBO side
is asserted to be an instance of this class. However, this is not possible because the statement
requires a variable (y), and that is not supported by the core EDOAL language. The EDOAL
specification does mention a pattern language that might enable this type of statement, but it
does not appear to be fully supported at this time.

Property Typecasting Subsumption Inverse. This pattern is the same as the one above, ex-
cept that the property fillers are flipped.

Formal Pattern: p1(x, y)→ rdf:type(y,C2)

Example: isPlaceTypeOf(x, y)→ rdf:type(y,Place)

Again, in some cases we would actually like to state the following, which cannot be fully ex-
pressed in EDOAL, to the best of our knowledge:

Formal Pattern: p1(x, y)→ rdf:type(y, x) ∧ rdfs:subClassOf(x,C2)
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Example: isGeoFeatureTypeOf(x, y)→ rdf:type(y, x) ∧ rdfs:subClassOf(x,Place)

Typed Property Chain Equivalence. A property chain is a classical complex pattern that
was introduced in [10]. This pattern captures the situation related to the hasSponsor property
discussed in detail in Section 3. The pattern applies when a property, together with a type re-
striction on one or both of its fillers, in one ontology has been used to “flatten” the structure of
the other ontology by short-cutting a property chain in that ontology. The pattern also ensures
that the types of the property fillers involved in the property chain are typed appropriately in the
other ontology. The formal pattern and example are shown below. The classes Di and property
r are from ontology O1, and classes Ci and properties pi are from ontology O2.

Formal Pattern:
D1(x1) ∧ r(x1, xn+1) ∧ D2(xn+1)↔ C1(x1) ∧ p1(x1, x2) ∧C2(x2)

∧ · · · ∧ pn(xn, xn+1) ∧Cn+1(xn+1)

Example11:
Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ SponsorRole(y) ∧ performedBy(y, z)

Note that in this and all following patterns, any of the Di or Ci may be omitted (in which case
they are essentially >). Also, for the left-to-right direction, we assume that x2, . . . xn are exis-
tentially quantified variables.

Typed Property Chain Equivalence Inverse. This pattern is the same as the one above, except
that the property fillers are flipped.

Formal Pattern:
D1(x1) ∧ r(x1, xn+1) ∧ D2(xn+1)↔ C1(xn+1) ∧ p1(xn+1, xn) ∧C2(xn)

∧ · · · ∧ pn(x2, x1) ∧Cn+1(x1)

Example:
Award(z) ∧ isSponsorOf(x, z)↔ FundingAward(z) ∧ provideAgentRole(z, y)

∧ SponsorRole(y) ∧ performedBy(y, x)

Typed Property Chain Subsumption. This is identical to the Typed Property Chain Equiva-
lence pattern except that the relationship only holds in one direction.

Formal Pattern:
D1(x1) ∧ r(x1, xn+1) ∧ D2(xn+1)→ C1(x1) ∧ p1(x1, x2) ∧C2(x2)

∧ · · · ∧ pn(xn, xn+1) ∧Cn+1(xn+1)

11In contrast to the example discussed in Figure 3, we leave out :Organization and view:Organization, because
it is possible, in principle, that a non-organization agent (e.g., an individual) may sponsor.
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Example:
Cruise(x) ∧ hasChiefScientist(x, z)→ Cruise(x) ∧ providesAgentRole(x, y)

∧ AgentRole(y) ∧ performedBy(y, z)

Typed Property Chain Subsumption Inverse. This pattern is the same as the one above, ex-
cept that the property fillers are flipped.

Formal Pattern:
D1(x1) ∧ r(x1, xn+1) ∧ D2(xn+1)→ C1(xn+1) ∧ p1(xn+1, xn) ∧C2(xn)

∧ · · · ∧ pn(x2, x1) ∧Cn+1(x1)

Example:
Cruise(z) ∧ isChiefScientistOf(x, z)→ Cruise(z) ∧ providesAgentRole(z, y)

∧ AgentRole(y) ∧ performedBy(y, x)

In [10], four alignment types were identified, some of which are subsumed by ours. We do
not at all claim that our classification above is exhaustive, but we consider it a refinement of the
ones listed in [10]. We conjecture that there are many additional important types of relevance
to other use cases. Mapping out the space of complex alignment types is, in our understanding,
helpful for further research into complex alignment algorithms.

4.3. Instance Data Population
Instance-based ontology mapping algorithms have been shown to be effective in several prac-

tical use cases [22]. The basic idea of instance-based mapping is to query the instance data of the
two entities or constructs in two ontologies and calculate the overlap of the common instances,
as assessed by some coreference resolution method. In order to extend the functionality of our
benchmark and provide more scalability for researchers to explore algorithms that depend on the
instance data, we have included the same instance data published according to both the GBO and
the GMO in the GeoLink dataset.

4.3.1. Instance Data Information
The GeoLink knowledge base aims at helping users to query and reason over some of the

most prominent geoscience metadata repositories in the United States. These include:

• Rolling Deck to Repository (R2R)12

• Biological and Chemical Oceanography Data Management Office (BCO-DMO)13

• International Ocean Discovery Program (IODP)14

• Marine Biological Laboratory Woods Hole Oceanographic Institution (MBLWHOI) Li-
brary15

12http://www.rvdata.us/
13https://www.bco-dmo.org/
14https://www.iodp.org/
15http://www.mblwhoilibrary.org/
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• System for Earth Sample Registration (SESAR)16

• Data Observation Network for Earth (DataONE)17

• American Geophysical Union (AGU), the National Geochemical Database (NGDB)18

• United States Antarctic Program (USAP)19

Owing to these data providers, the GeoLink knowledge base contains over 48 million triples,
which are formatted according to the GBO schema. As explained in Section 3, the data providers
had difficulty publishing directly to the GMO schema, so the simpler (i.e. “flatter”) GBO schema
was developed and they published their data according to that. In order to enable instance-
based matching systems to utilize our benchmark and evaluate their performance, we have used
SPARQL construct queries based on the reference alignment to expand the GeoLink ABox to
include the GMO as well as the GBO tags.

4.3.2. Population Approach
As mentioned previously, the Geolink knowledge base contains over 48 million triples. In

order to facilitate the convenient storage and distribution of the benchmark, we decided to pare
down the size by only populating part of the instance data into the benchmark for future OAEI
usage. For each reference mapping between the two ontologies, we randomly selected up to
500 instances from the GBO in the SPARQL construct queries. For usage of OAEI benchmark,
currently we only published the instance data that are related to the classes and properties in the
reference alignment. If there is increasing demand of other instance data which are not related
to the reference alignment in the future, we are also willing to provide more instance data which
can be found in the GeoLink Website20.

As an example, referring to the property equivalence correspondence: hasAward(x, y) ↔
fundedBy(x, y). This mapping means that the property hasAward in the GBO and the property
fundedBy should be mapped to each other as equivalence. Therefore, instances that are related
by the hasAward property in the GBO should be also related by the fundedBy in the GMO. The
corresponding SPARQL construct query is:

PREFIX gbo: <http://gbo#>

PREFIX gmo: <http://gmo#>

CONSTRUCT {?x gmo:fundedBy ?y .}

WHERE {?x gbo:hasAward ?y .}

LIMIT 500

This SPARQL construct query looks for the triples that have hasAward as the property in the
dataset and creates a new graph corresponding to the fundedBy relation with the same x and y
values. This example illustrates the usage of the SPARQL construct query.

16http://www.geosamples.org/
17https://www.dataone.org/
18https://minerals.usgs.gov/science/natl-geochemical-db/
19http://www.usap-dc.org/
20http://www.geolink.org/
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x:professor1 gbo:hasAward x:NSF

If this is a triple according to the GBO schema (ignoring the namespace “x” of the individual),
the SPARQL construct query creates another one for the GMO, which is shown below:

x:professor1 gmo:fundedBy x:NSF

Besides this relatively simple mapping, our GeoLink benchmark contains more complex rela-
tions that involve reification, which lead to the generation of blank nodes. For an example we
refer to the typed property chain equivalence correspondence

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)
∧ SponsorRole(y) ∧ performedBy(y, z)

The GBO uses a “flattened” structure for the property hasSponsor. Compared to the corre-
sponding structure in the GMO, it is a shortcut of the property chain that involves the property
providesAgentRole and performedBy. The SPARQL construct query for this mapping is
shown below. It acquires up to 500 instances that satisfy this relation. A blank node, which is of
type SponsorRole, is generated to maintain the property refication.

PREFIX gbo: <http://gbo#>

PREFIX gmo: <http://gmo#>

CONSTRUCT {

?x a gmo:FundingAward ;

gmo:providesAgentRole _:bn1 .

_:bn1 a gmo:SponsorRole ;

gmo:performedBy ?z .

} WHERE {

?x a gbo:Award ;

gbo:hasSponsor ?z .

}

LIMIT 500

We utilize the Jena API [23] to generate the blank node when it is needed by a SPARQL
construct query. Then, we leverage the OWL API to insert the assertions into the ontologies and
finally finish the population process.

4.3.3. Population Result
After finishing up the population of the instance data into the GBO and the GMO, the total

number of individuals in the GBO and GMO are 10897 and 11419, respectively. In addition, the
number of axioms in the two ontologies are 18336 and 56318, respectively. However, among
67 reference mappings between the GBO and the GMO, there are 19 mappings that lack any
applicable instance data currently, because the data providers do not have any more instance
data within their repositories. Therefore, the data providers can not publish the related instance
data into the GeoLink knowledge base at this stage. We introduce and discuss some potential
methods to rectify this in Section 6. In the meantime, the instance data that is currently present
in the knowledge base is sufficient for the detection of most of the complex mappings within the
benchmark by automated ontology alignment systems that depend on instances.
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4.4. Format in Rule syntax and EDOAL format
As mentioned previously, SPARQL construct queries are used to convert data published by

the data providers according to the GBO into the schema described in the GMO, because the
GMO employs modeling practices that enhance extensibility and facilitate reasoning. However,
most ontology alignment benchmarks are not formatted in SPARQL but rather according to the
format provided by the Alignment API [13]. The standard alignment format is not expressive
enough to capture complex relations. However, the Alignment API also provides a format called
EDOAL that can be used to express these types of relations. This format can be read and manip-
ulated programmatically using the Alignment API and is therefore very convenient for ontology
alignment researchers. In addition, EDOAL is already accepted by the ontology alignment com-
munity. It has been used by others when proposing new alignment benchmarks [15] and [6], and
we continue that approach here. Because EDOAL can be difficult for humans to parse quickly,
we have also expressed the alignments in using a naive rule syntax. The rule presentation is
not intended for programmatic manipulation, but rather to make it easier for humans to read
and understand the alignments. Both versions of the alignment, along with the GBO and GMO
ontologies, can be downloaded from http://doi.org/10.6084/m9.figshare.5907172 un-
der a CC-BY License. We applied the HermiT [24] reasoner to the ontologies independently to
check satisfiability, since some EDOAL mappings which are part of our benchmark do not seem
to be expressible in OWL DL. The GeoLink website21 contains detailed documentation of the
dataset and provides users with more insights about the resource, such as all entities, patterns,
and relationships between them in both ontologies.

5. OAEI Evaluation

5.1. Simplified Version of Benchmark
The version of the GeoLink alignment benchmark used for the first version of the complex

alignment track in OAEI 2018 was slightly simplified compared to the one discussed in Section 4.
Some relatively complex relations involving class typecasting have been removed due to a con-
cern that many automated alignment systems would not consider these as potential mappings.
One example is PlaceType(x) ↔ rdfs:subClassOf(x,Place). This mapping expresses that the
set of individuals of the class PlaceType in the GBO is equivalent to a subclass of the class Place
on the GMO side. This is probably a challenge for current automated alignment systems to detect
because it involves entities that are not in either the source or target ontology but are rather a con-
struct of the language (e.g. rdfs:subClassOf. In addition, we also removed correspondences
that involve the inverse relationship, because at the time the reference alignment was created, an
evaluation methodology had not yet been finalized for alignment systems on this task. In partic-
ular, our thinking was that if an alignment system managed to find a mapping for either a relation
or its inverse (e.g. isGeoFeatureTypeOf), but not the other (hasGeoFeatureType), then it
should not be penalized. Even though using semantic precision and recall [25] as the evaluation
metric will probably resolve this issue, GeoLink ontologies fail to be expressed in OWL DL,
which makes us decide to leave these mappings that involve inverse relations out of the bench-
mark for the OAEI 2018. After these two modifications, 67 correspondences including simple
and complex relations remained in the simplified version of the benchmark. Table 3 presents the
remaining patterns and their corresponding number and category in the simplified the version.

21http://schema.geolink.org/

16

64



Table 3: The alignment pattern types found in the GeoLink complex alignment benchmark in OAEI 2018, along with the
number of times each occurs and the type of relation.

Pattern Occurrences Category
Class Equivalence 10 1:1
Class Subsumption 2 1:1
Property Equivalence 7 1:1
Property Typecasting Subsumption 5 1:n
Typed Property Chain Equivalence 26 m:n
Typed Property Chain Subsumption 17 m:n

5.2. Evaluation Results
There are three subtasks related to the evaluation of complex ontology alignment systems in

OAEI 2018:

1. Entity Identification: For each entity in the source ontology, the alignment systems will
be asked to list all of the entities that are related in some way in the target ontology. For
example, referring to the example we used above,

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)
∧ SponsorRole(y) ∧ performedBy(y, z)

the expected output from an alignment system is that the property hasSponsor in the
GBO is related to FundingAward, providesAgentRole, SponsorRole, performedBy
in the GMO and Award in the GBO.

2. Relationship Identification: Given a dictionary containing entities from the source on-
tology paired with all related entities, determine the expression that specifies the nature of
the relation. So, in terms of the example above in this subtask, an alignment system needs
to eventually determine the relationship between two sides is equivalence.

3. Full Complex Alignment Identification; A combination of the two former step to deter-
mine the complex alignment that exist between the source and target ontology.

All three subtasks were evaluated based on standard precision, recall and F-measure. There
were 16 ontology alignment systems that participated in this year’s OAEI. Unfortunately, none
of the alignment systems were capable of producing results for subtasks 2 and 3 on the GeoLink
benchmark. The Table 4 shows the results of the systems that can produce results on subtask 1.
There were seven such systems. The performance of these systems are shown in Table 4. Among
the alignments produced by these systems, all correspondences identified between the GBO and
the GMO were 1-to-1 equivalences. The precision of most of the systems was relatively high,
which means that traditional ontology alignment systems can handle the simple relations in this
real-world ontology alignment task fairly well. But, it is not surprising that the low recall reflects
that current ontology alignment systems are not capable of identifying more complex relations,
a situation that we hope will change in future years.
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Table 4: The Performance of Complex Ontology Alignment Systems in OAEI on Subtask 1

System Precision F-measure Recall
ALOD2Vec 0.78 0.19 0.11

DOME 0.44 0.17 0.11
LogMap 0.85 0.18 0.10

LogMapKG 0.85 0.18 0.10
LogMapLt 0.73 0.19 0.11
POMAP++ 0.90 0.17 0.09

Xmap 0.39 0.15 0.09

6. Discussion

This work creates a complex ontology alignment benchmark in real-world ontologies and
evaluates the performance of traditional ontology alignment systems. It can be a stepping stone
towards deeper understanding and discovery in this area. It is clear that there are still some
challenges in the generation, detection, and evaluation of the complex correspondences between
real-world ontologies. This section outlines the challenges that we faced during our research and
presents some possible methods to solve them.

• Challenge 1: The first challenge is how to identify the complex mappings between on-
tologies, no matter if they are real-world or artificial ontologies, in order to create new
benchmarks. So far the process of generating a consensual complex ontology alignment
is time-intensive and somewhat tedious, because it requires the ontologists to design or
understand the ontologies in the best practice way, and also necessistates that multiple do-
main experts help the ontologists with the verification of the ground truth manually. This
issue could potentially be resolved in the future through creating automated recommenda-
tion systems to select and rank the possible entities and relationships from one ontology to
another one, which will effectively help people in interactive reference alignment genera-
tion. One possible method based on logical RDF compression has been introduced in the
paper [8]. We are currently working on this alignment system. And we hypothesize that it
will be able to help the researchers to pick the possible mappings between two ontologies
effectively.

• Challenge 2: The second challenge is how to generate and populate the instance data for
the entities in the source and target ontologies. In our GeoLink benchmark, even though
there are over 48 million triples provided by the data providers, some entities, like the ob-
ject property “hasContact” in the GMO, still lacks any corresponding individuals because
none of the GeoLink data providers currently use this property. (Note: the GeoLink on-
tologies were also designed for possible future extension. Therefore, some entities will
not be used until the data providers acquire the corresponding dataset in the future.) But
the alignment exists between the two ontologies no matter whether the instance data exists
or not. Therefore, we still decide to keep these alignment in our reference alignment. The
lack of instance data may have a negative impact on the performance of automated complex
ontology alignment systems that require instance data to support their algorithms. Simi-
larly, significant instance data is not readily available for most of the artificial benchmarks
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in OAEI. It is a challenge to supply a large amount of instance data for these benchmarks.
One potential method to solve this issue is to first locate useful real-world datasets online
based on the domain of the benchmark and then populate the most suitable instance data
into the ontologies. For example, it might be possible to incorporate additional geoscience
data repositories into the GeoLink Knowledge base to enrich our instance data. However,
the amount of real-world instance data may be limited due to a lack of datasets relevant to
the domain. In such cases, an artificial population process may be needed to enrich the first
step, because the performance of some instance-based ontology alignment systems relies
on statistical analysis and computational similarity measures that require a large number
of instances [7, 22]. One possible approach might be to use the techniques described in
[26].

• Challenge 3: The third challenge that we experienced in our research was presenting the
complex alignment in EDOAL format and converting between EDOAL and OWL DL.
Referring to the example of property typecasting subsumption correspondence in Sec-
tion 4, we were actually trying to state the following mapping, as expressed in the rule:
hasPlaceType(x, y) ↔ rdf:type(x, y) ∧ rdfs:subClassOf(y,Place). This is currently not
supported by the core EDOAL language, because EDOAL is not good at dealing with
mapping individuals. Instead of calling this as a mapping, we would probably rather say
it as a mapping rule that describes the context of converting datasets from one ontology to
another one. But, it seems that it falls outside of the capability of the current automated
matching algorithms to detect it directly, as it defines a transformation between entities
that are not listed in the ontologies.

A related problem stems from the inexpressibility of some mappings from the reference
alignment in OWL DL. This came up because we originally planned to apply semantic
precision and recall [25] as the evaluation metrics to compute the performance of ontol-
ogy alignment systems on this benchmark, which require a reasoner to test the entailed
axioms and therefore need the alignment present in OWL DL. Unfortunately, only 24 of
67 EDOAL expressions in the GeoLink alignment can be expressed in this language. In
particular, many mappings that involve typed property chains are valid in EDOAL but
not in OWL DL. For example, Award(x) ∧ hasEndDate(x, z) ↔ FundingAward(x) ∧
endsOnDate(x, y)∧time:Instant(y)∧time:inXSDDate(y, z). This means that hasEndDate
in the GBO is equivalent to the concatenation of endsOnDate and inXSDDate with some
additional domain and range restrictions. While this type of concatenation should be un-
problematic in terms of semantics, it involves concatenation of an object property with
a datatype property, which is not allowed in OWL DL. We are not aware of any good
solution to these two issues that we describe here.

• Challenge 4: The last and most difficult challenge is how to correctly and accurately eval-
uate the performance of complex ontology alignment systems. By far, classical precision
and recall are the most widely used evaluation metrics to assess performance in the ma-
jority of existing work on ontology alignment. However, several complications arise in
the use of these metrics when the alignments contain complex relations due to their all-or-
nothing syntactic comparisons of individual mappings, which do not distinguish between
correspondences that are formally incorrect but closely related to the correct correspon-
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dences and those that are completely incorrect. For example, this is a mapping in the
GeoLink reference alignment:

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)
∧ SponsorRole(y) ∧ performedBy(y, z)

And here are two different mappings that were generated by two different hypothetical
complex ontology alignment systems. The first mapping is:

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)
∧ AgentRole(y) ∧ performedBy(y, z)

and the second one is:

Award(x) ∧ hasSponsor(x, z)→ Program(x) ∧ providesAgentRole(x, y)
∧ DataManagerRole(y) ∧ performedBy(y, z)

The first mapping is formally incorrect compared to the reference alignment, but it is very
closely related to it because SponsorRole is a subclass of AgentRole. Conversely, the
second one is completely incorrect, as it contains incorrect domain and range restrictions of
providesAgentRole and the relationship between the two sides indicates a subsumption
rather than an equivalence relation. Some variations of the traditional precision and recall
metrics have been proposed to mitigate the limitations of the basic approach, but these do
not resolve all of the issues. For instance, semantic precision and recall [25] compare cor-
respondences based on their semantic meaning rather than their syntactic representation.
This is done by applying a reasoner to determine when one mapping is logically equivalent
to another. Even though the semantic approaches solve an important problem for evaluat-
ing alignments with complex correspondences, they still have several limitations. One is
that the reasoning takes a significant amount of time, particularly for large ontologies. Fur-
thermore, such reasoning is not possible at all if the merged ontology is not in OWL DL,
like the example introduced in Challenge 3 in our GeoLink benchmark. Therefore, a new
evaluation metric will need to be designed to conquer this challenge. This new evaluation
metric will need to have more detailed and accurate penalties for different kinds of close-
ness of entities and relationship comparisons to avoid the all-or-nothing problem in order
to provide more nuanced results that can assist researchers in improving their algorithms.

7. Conclusion and Future Work

Complex ontology alignment has been discussed for a long time, but relatively little work has
been done to advance the state of the art. The lack of an available complex ontology alignment
benchmark may be a primary reason for the slow speed of the development. In addition, most
current ontology alignment benchmarks have been created by humans for the sole purpose of
evaluating ontology alignment systems, and they may not always represent real-world cases. In
this paper, we have proposed a complex ontology alignment benchmark based on the real-world
GeoLink knowledge base. The two ontologies and the reference alignment were designed and
created by ontologists and geoscience domain experts to support data representation, sharing,
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integration and discovery. We take advantage of these ontologies to create a complex ontology
alignment benchmark. In our benchmark, the alignments not only cover 1:1 simple correspon-
dences, but also contain 1:n and m:n complex relations. All correspondences required to convert
between the two ontologies (a key goal of ontology alignment) are guaranteed to be present,
because one ontology was consciously created from the other, with SPARQL queries to mitigate
each change. In addition, the alignment has been evaluated by domain experts from different
organizations to ensure the high quality. Moreover, instance data has been published according
to both ontologies, which is important in order to support use of the benchmark by extensional
alignment systems. Furthermore, the ontologies and alignments in both rule syntax and EDOAL
format have been published in FigShare with an open access license for reusability and can be
accessed in OAEI 2018 website as well22. The evaluation results of the automated ontology
alignment systems that participated in OAEI 2018 are also presented in this paper.

We discuss four challenges in this paper, which we plan to explore in our future work on
this topic. Besides this, with respect to the maintenance of the benchmark, our intention is to
remain actively involved for years to come in the OAEI complex alignment benchmarking track,
and to also develop corresponding alignment methods. We thus have an intrinsic interest in
keeping the benchmark maintained and usable, which would, e.g., mean that we are prepared to
transfer it to a new benchmarking framework if required in the future. At the same time, based
on participants’ feedback, we will modify the reference alignment if necessary to perfect the
benchmark by making it more convenient to use. This may involve, for example, making the
alignment available in additional formats.

Acknowledgment

We would like to thank all of the members of the GeoLink project team. In addition, we
extend our gratitude to Jerome Euzenat for providing advice regarding the conversion of rules to
EDOAL. Moreover, we would like to express our appreciation to Daniel Faria for helping us to
prepare the dataset for evaluation on the SEALS platform23.

References

[1] P. Shvaiko, J. Euzenat, Ontology matching: State of the art and future challenges, IEEE Trans. Knowl. Data Eng.
25 (2013) 158–176.

[2] M. Cheatham, P. Hitzler, The properties of property alignment, in: Proceedings of the 9th International Workshop
on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014), Riva del
Garda, Trentino, Italy, October 20, 2014., 2014, pp. 13–24. URL: http://ceur-ws.org/Vol-1317/om2014\
_Tpaper2.pdf.

[3] L. Zhou, M. Cheatham, A. Krisnadhi, P. Hitzler, A complex alignment benchmark: Geolink dataset, in: The
Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October 8-12,
2018, Proceedings, Part II, 2018, pp. 273–288. URL: https://doi.org/10.1007/978-3-030-00668-6\_17.
doi:10.1007/978-3-030-00668-6\_17.

[4] J. David, AROMA results for OAEI 2009, in: Proceedings of the 4th International Workshop on Ontology Matching
(OM-2009) collocated with the 8th International Semantic Web Conference (ISWC-2009) Chantilly, USA, October
25, 2009, 2009. URL: http://ceur-ws.org/Vol-551/oaei09\_paper3.pdf.

22http://oaei.ontologymatching.org/2018/complex/index.html#geolink
23http://oaei.ontologymatching.org/2018/seals.html used in the OAEI

21

69
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[11] D. Ritze, J. Völker, C. Meilicke, O. Sváb-Zamazal, Linguistic analysis for complex ontology matching, in:
Proceedings of the 5th International Workshop on Ontology Matching (OM-2010), Shanghai, China, November 7,
2010, 2010. URL: http://ceur-ws.org/Vol-689/om2010\_Tpaper1.pdf.

[12] S. Jiang, D. Lowd, S. Kafle, D. Dou, Ontology matching with knowledge rules, T. Large-Scale Data- and
Knowledge-Centered Systems 28 (2016) 75–95.

[13] P. Jain, P. Hitzler, A. P. Sheth, K. Verma, P. Z. Yeh, Ontology alignment for linked open data, in: The Semantic Web
- ISWC 2010 - 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010,
Revised Selected Papers, Part I, 2010, pp. 402–417. URL: https://doi.org/10.1007/978-3-642-17746-0\
_26. doi:10.1007/978-3-642-17746-0\_26.

[14] F. M. Suchanek, S. Abiteboul, P. Senellart, PARIS: probabilistic alignment of relations, instances, and schema,
PVLDB 5 (2011) 157–168.

[15] C. Pesquita, M. Cheatham, D. Faria, J. Barros, E. Santos, F. M. Couto, Building reference alignments for compound
matching of multiple ontologies using OBO cross-products, in: Proceedings of the 9th International Workshop
on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014), Riva del
Garda, Trentino, Italy, October 20, 2014., 2014, pp. 172–173. URL: http://ceur-ws.org/Vol-1317/om2014\
_poster2.pdf.

[16] J. You, Geoscientists aim to magnify specialized web searching, 2015.
[17] A. A. Krisnadhi, Y. Hu, K. Janowicz, P. Hitzler, R. A. Arko, S. Carbotte, C. Chandler, M. Cheatham, D. Fils,

T. Finin, P. Ji, M. B. Jones, N. Karima, K. A. Lehnert, A. Mickle, T. Narock, M. O’Brien, L. Raymond, A. Shepherd,
M. Schildhauer, P. Wiebe, The geolink framework for pattern-based linked data integration, in: Proceedings of
the ISWC 2015 Posters & Demonstrations Track co-located with the 14th International Semantic Web Conference
(ISWC-2015), Bethlehem, PA, USA, October 11, 2015., 2015. URL: http://ceur-ws.org/Vol-1486/paper\
_99.pdf.

[18] P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, V. Presutti (Eds.), Ontology Engineering with Ontology Design
Patterns - Foundations and Applications, volume 25 of Studies on the Semantic Web, IOS Press, 2016.

[19] A. Krisnadhi, Y. Hu, K. Janowicz, P. Hitzler, R. A. Arko, S. Carbotte, C. Chandler, M. Cheatham, D. Fils,
T. W. Finin, P. Ji, M. B. Jones, N. Karima, K. A. Lehnert, A. Mickle, T. W. Narock, M. O’Brien, L. Ray-
mond, A. Shepherd, M. Schildhauer, P. Wiebe, The geolink modular oceanography ontology, in: The Seman-
tic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part II, 2015, pp. 301–309. URL: https://doi.org/10.1007/978-3-319-25010-6\_19.
doi:10.1007/978-3-319-25010-6\_19.

[20] A. A. Krisnadhi, P. Hitzler, K. Janowicz, On the capabilities and limitations of OWL regarding typecasting
and ontology design pattern views, in: Ontology Engineering - 12th International Experiences and Directions
Workshop on OWL, OWLED 2015, co-located with ISWC 2015, Bethlehem, PA, USA, October 9-10, 2015,
Revised Selected Papers, 2015, pp. 105–116. URL: https://doi.org/10.1007/978-3-319-33245-1\_11.

22

70



doi:10.1007/978-3-319-33245-1\_11.
[21] A. Krisnadhi, Ontology Pattern-Based Data Integration, Ph.D. thesis, Wright State University, 2015.
[22] A. Isaac, L. van der Meij, S. Schlobach, S. Wang, An empirical study of instance-based ontology matching, in: The

Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +

ASWC 2007, Busan, Korea, November 11-15, 2007., 2007, pp. 253–266. URL: https://doi.org/10.1007/
978-3-540-76298-0\_19. doi:10.1007/978-3-540-76298-0\_19.

[23] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, Jena: implementing the semantic
web recommendations, in: Proceedings of the 13th international conference on World Wide Web - Alternate
Track Papers & Posters, WWW 2004, New York, NY, USA, May 17-20, 2004, 2004, pp. 74–83. URL: https:
//doi.org/10.1145/1013367.1013381. doi:10.1145/1013367.1013381.

[24] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, Hermit: An OWL 2 reasoner, J. Autom. Reasoning 53
(2014) 245–269.

[25] J. Euzenat, Semantic precision and recall for ontology alignment evaluation, in: IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, 2007, pp.
348–353. URL: http://ijcai.org/Proceedings/07/Papers/054.pdf.

[26] B. A. C. Schopman, S. Wang, A. Isaac, S. Schlobach, Instance-based ontology matching by instance enrichment,
J. Data Semantics 1 (2012) 219–236.

23

71



The First Version of the OAEI Complex
Alignment Benchmark

Elodie Thiéblin1, Michelle Cheatham2, Cassia Trojahn1, Ondřej Zamazal3 and
Lu Zhou2

1 IRIT & Université de Toulouse 2 Jean Jaurès, Toulouse, France
2 Wright State University, Dayton, USA

3 University of Economics, Prague, Czech Republic
elodie.thieblin@irit.fr, michelle.cheatham@gmail.com,

cassia.trojahn@irit.fr, ondrej.zamazal@vse.cz, zhou.34@wright.edu

Abstract. We present the first version of the complex benchmark of the
Ontology Alignment Evaluation Initiative campaigns. This benchmark is
composed of four datasets from different domains (conference, hydrology,
geoscience and agronomy) and covers different evaluation strategies.

Keywords: complex ontology alignments, evaluation dataset, OAEI

1 Introduction

Complex correspondences involve transformation functions of literal values or
logical constructors (e.g. ∀x, ekaw:AcceptedPaper(x) ≡ ∃y, cmt:acceptedBy(x,y)),
which make them more expressive than simple correspondences. Complex align-
ments, composed of at least one complex correspondence, are therefore a com-
plement to simple alignments. Different approaches for complex matching have
emerged in the literature [2,4,5,8]. Most of them, however, have been evaluated
on tailored datasets (e.g., targeting a specific correspondence pattern). Most ef-
forts on systematic evaluation, in the context of the OAEI campaigns1, are still
dedicated to simple matchers.

This paper presents the first version of the OAEI complex track, composed of
four datasets (Table 1) from different domains. This domain and correspondence
variety allows for better covering different kinds of heterogeneity between ontolo-
gies. Different evaluation strategies aim at evaluating complex matchers under
different perspectives. The evaluation will be supported by the SEALS platform
and the output alignments must be in EDOAL. The detail of each dataset and
evaluation process can be found on the OAEI’s 2018 complex track webpage2,
and are introduced in the following.

1http://oaei.ontologymatching.org/
2http://oaei.ontologymatching.org/2018/complex/index.html
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Dataset Ontologies (1:1) (1:n) (m:n)
Conference consensus 3 78 79 0
Hydrography 4 113 69 15
GeoLink 2 24 15 72
Taxon 4 6 17 3

Table 1. Number of ontologies and correspondences by kind in each dataset.
(1:1) are simple correspondences, (1:n) and (m:n) are complex correspondences.

2 Conference consensual dataset

This dataset is based on the OntoFarm dataset [9], which is composed of 16 on-
tologies on the conference organisation domain and simple reference alignments
between 7 of them. Here, we consider 3 out of the 7 ontologies from the refer-
ence alignments (cmt, conference and ekaw), resulting in 3 alignment pairs. The
alignments involve both logical constructors (76 correspondences) and transfor-
mations (3 correspondences). Examples are given in the following :
1. ∀ x, ekaw:AcceptedPaper(x) ≡ ∃ y, cmt:acceptedBy(x,y) is a correspondence

with the existential constructor.
2. ∀ x,y, cmt:name(x,y) ≡ ∃ y1, y2, conference:has_the_first_name(x,y1) ∧

conference:has_the_last_name(x,y2) ∧ concatenation(y,y1," ", y2), where
concatenation(a,b1, b2, ...) is a predicate ensuring that its first parameter
a is equal to the string concatenation of the others {b1, b2, ...}. It uses a
transformation function of the literal values.
The alignments have been manually created by three experts in the domain,

following the methodology in [7]. Four experts assessed the generated corre-
spondences to reach a consensus. The systems will be manually evaluated on
their output alignments to produce precision and recall scores. Only the com-
plex equivalence correspondences will be assessed. The systems can use a simple
reference alignment as input. Confidence scores of correspondences will not be
taken into account in the evaluation.

3 Hydrography dataset

The hydrography dataset is composed of 4 source ontologies (Hydro3, hydrOn-
tology_native, hydrOntology_translated and Cree) that each should be aligned
to a single target Surface Water Ontology (swo). The source ontologies vary
in their similarity to the target ontology – Hydro3 is similar in both language
and structure, hydrOntology_native and hydrOntology_translated are similar
in structure but hydrOntology_translated is in Spanish rather than English, and
Cree is very different in terms of both language and structure. The alignments
were created by a geologist and an ontologist, in consultation with a native
Spanish speaker regarding the hydrOntology_translated, and consist of logical
relations such as the one shown below.
1. ∀x, hydrOntology_translated:Aguas_Corrientes(x) ≤ swo:SurfaceFeature(x)
∧ swo:Waterbody(x) ∧ ∃y, swo:hasFlow(x,y) ∧ swo:Flow(y)
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Performance on this dataset will be evaluated on three sub-tasks: 1) identify-
ing the atoms (classes and properties) from the target ontology involved in the
relations (e.g., swo:SurfaceFeature, swo:Waterbody, swo:hasFlow and swo:Flow
from the correspondence above), 2) when given the atoms, identifying the logical
relations that hold between them and 3) the full complex alignment task. Eval-
uation of the first sub-task will use traditional F-measure, while the remaining
two subtasks will be evaluated on semantic F-measure [1].

4 GeoLink dataset

This dataset is from the GeoLink project3, which was funded under the U.S. Na-
tional Science Foundation’s EarthCube initiative. It is composed of 2 populated
ontologies: the GeoLink base ontology (gbo) and the GeoLink modular ontology
(gmo). The GeoLink project is a real-world use case of ontologies. The alignment
between the ontologies was developed in consultation with domain experts from
several Geoscience research institutions. The complex correspondences include
not only class and property subsumption and property chains (described in [5]),
but also some that involve typecasting (c.f. [3]), for example:
1. Property Chain: ∀x,z, gbo:Award(x) ∧ gbo:hasSponsor(x,z) ≡
∃y, gmo:FundingAward(x) ∧ gmo:providesAgentRole(x,y) ∧
gmo:SponsorRole(y) ∧ gmo :performedBy(y,z)

2. Class Typecasting: ∀x, gbo:PlaceType(x) ≡ rdfs:subClassOf(x, gmo:Place)
More information about this dataset can be found in [10] and the benchmark
and alignment can be downloaded here4. The performance of alignment systems
on this dataset will be evaluated in the same way as the hydrography dataset.

5 Taxon dataset

This dataset is composed of 4 populated ontologies whose common scope is plant
taxonomy: AgronomicTaxon (agtx ), Agrovoc (agv and agronto), DBpedia (dbo)
and TaxRef-LD (txr). This dataset extends the one proposed in [6] by adding
the TaxRef-LD ontology. The alignments were manually created with the help
of one expert and involve only logical constructors, as for example:
1. ∀x, agtx:GenusRank(x) ≡ agronto:hasTaxonomicRank(x,agv:c_11125)
2. ∀x, agtx:GenusRank(x) ≡ ∃y, dbo:Species(y) ∧ dbo:genus(y,x) ∧ dbo:Species(x)
The evaluation of this dataset is task-oriented. We will evaluate the generated
correspondences using a SPARQL query rewriting system and manually mea-
sure their ability of answering a set of queries over each dataset. For example, a
competency question could be “Retrieve all the genus taxa”. For Agronomic-
Taxon, as source ontology, the corresponding SPARQL query is SELECT ?x
WHERE {?x a agtx:GenusRank.} and the correspondences output by the sys-
tems with Agrovoc as target ontology, should be able to translate the query
into: SELECT ?x WHERE {?x agronto:hasTaxonomicRank agv:c_11125.}

3https://www.geolink.org/
4http://doi.org/10.6084/m9.figshare.5907172
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6 Conclusions

This paper has presented the first OAEI complex evaluation track, covering
different kinds of complex correspondences, domains and evaluation strategies.
For most datasets, the evaluation is still manually performed, opening directions
on how complex alignments can be automatically generated and evaluated.
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ABSTRACT
Ontology alignment has taken a critical place for helping hetero-
geneous resources to interoperate. It has been studied for over a
decade, and over that time many alignment systems and methods
have been developed by researchers to find simple 1:1 equivalence
matches between two ontologies. However, very few alignment
systems focus on finding complex correspondences. Even if the
complex alignment systems are developed, the performance of find-
ing complex relations still has a lot of room for improvement. One
reason for this limitation may be that there are still few applicable
alignment benchmarks that contain such complex relationships
that can raise researchers’ interests. In this paper, we propose a
real-world dataset from the Enslaved project as a potential complex
alignment benchmark. The benchmark consists of two resources,
the Enslaved Ontology along with a Wikibase repository hold-
ing a large number of instance data from the Enslaved project,
as well as a manually created reference alignment between them.
The alignment was developed in consultation with domain experts
in the digital humanities. The alignment not only includes sim-
ple 1:1 equivalence correspondences, but also more complex m:n
equivalence and subsumption correspondences and are provided
in both Expressive and Declarative Ontology Alignment Language
(EDOAL) format and rule syntax. The Enslaved benchmark has
been incorporated into the Ontology Alignment Evaluation Initia-
tive (OAEI) 2020 and is completely free for public use to assist the
researchers in developing and evaluating their complex alignment
algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
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1 INTRODUCTION
Ontology alignment is an important step in enabling computers
to query and reason across the immense amounts of linked data
on the semantic web. It has been considered a “silver bullet” for
the semantic heterogeneity problem faced by computer systems.
Ontology alignment is a difficult challenge as the ontologies, which
are used as knowledge graph schemas, that underlie different linked
data can vary significantly in terms of subject area coverage, level
of abstraction, ontology modeling philosophy, and language. Due
to the importance and difficulty of the ontology alignment problem,
it has been an active area of research for over a decade [21].

Ideally, alignment systems should be able to uncover any entity
relationships across two ontologies that can exist within a single
ontology. Such relationships have a wide range of complexity, from
basic 1:1 (1-to-1) equivalence, such as a Person in one ontology
being equivalent to a Human in another ontology, to arbitrary m:n
(m-to-n) relationships, such as a Professor with a hasRank property
value of “Assistant” in one ontology being a subclass of the union
of the Faculty and TenureTrack classes in another. Unfortunately,
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the majority of the research activities in the field of ontology align-
ment remain focused on the simplest end of this scale – finding 1:1
equivalence relations between ontologies. Part of the reason for this
may be that there are still few widely used and accepted ontology
alignment benchmarks that involve complex relations. Even though
some benchmarks containing complex relations were proposed in
Ontology Alignment Evaluation Initiative (OAEI) in 2018 [22], the
performance of the alignment systems is still relatively poor when
detecting these complex correspondences between two ontologies
[1].

Wikibase is the powerful knowledge base software that drives
Wikidata [24]. Wikidata is an immense, crowdsourced knowledge
base with persistent data that is available for public use and con-
sumption. It would be very difficult to have an ontology of every-
thing, but Wikidata is probably close enough for this purpose. It
contains millions of pieces of knowledge from many different do-
mains in the world. In addition, Wikidata is crowdsourced and can
act as a “common resource”.1 People can export data to Wikidata
so that it is publicly persistent in an open and transparent manner.
Wikidata is an instance of Wikibase. Any organization can adapt
it to their own needs, including setting up their own Wikibase
repositories to host their data under different licenses, so that the
other instances of Wikibase can be linked with the data on Wiki-
data. Therefore, it is crucial to be able to find alignments between
domain or proprietary ontologies and this common resource. It is
also a fact that some organizations have their own internal and
proprietary knowledge graphs. They can apply their alignments to
this public resource as an important tool to augment or induce new
information into their own knowledge graph.

This paper seeks to take a step in that direction by proposing a
complex alignment benchmark based on two knowledge graphs:
the Enslaved knowledge graph, that was developed by ontology
engineers and domain experts together for the Enslaved project,
and the Wikibase repository storing historical slaved trade data
collected from different provenances. The Enslaved benchmark,
including the reference alignment, can be considered to be objective
as it was created for deployment and not for benchmarking. It is
realistic, since it captures an application use case developed for the
historical slave trade, and it is a valid ground truth alignment, as the
reference alignment was developed together by historian domain
experts and ontology engineers. Therefore, it is rather unique in
nature and will inform complex ontology alignment research from
a practical and applied perspective, rather than an artificial one.
The main contributions of this paper are therefore the following:
• Introduction of two knowledge graphs to support data rep-
resentation, sharing, integration, and discovery for the En-
slaved project;
• Creation of alignment between these two knowledge graphs
that include 1:1 and m:n correspondences. Given the creation
steps and usage of the alignment, it is fair to say that the
alignment will constitute a gold-standard reference;
• Publication of the benchmark alignment in both rule syntax
and EDOAL format2 at a persistent URL3 under a CC-BY 4.0

1https://en.wikipedia.org/wiki/Commons
2http://alignapi.gforge.inria.fr/edoal.html
3https://doi.org/10.6084/m9.figshare.12400976

license, and it is also incorporated into the complex ontology
alignment track in OAEI 2020;4
• Evaluation of the quality and validity of this benchmark by
using a complex alignment system from OAEI and a discus-
sion of the results in detail.

The rest of this paper is organized as follows. Section 2 discusses
the few existing ontology alignment benchmarks that involve rela-
tionships other than 1:1 equivalence. Section 3 gives further back-
ground on the Enslaved project, including its Wikibase repository,
knowledge graph schema, and property reification. Section 4 dis-
cusses the alignment between two resources, along with some
descriptive statistics, an analysis of the types of correspondences
constituting the alignment, and the performance of a complex on-
tology alignment system tested on the Enslaved benchmark to
evaluate the quality of the benchmark. Section 5 concludes with a
discussion of potential future work in this area.

2 RELATEDWORK
Most work associated with evaluating the performance of ontology
alignment systems has been done in conjunction with the Ontol-
ogy Alignment Evaluation Initiative (OAEI).5 These yearly events
allow developers to test their alignment systems on various tracks
that evaluate performance on different facets of the problem such
as instance matching, knowledge graph matching, and interactive
matching, among others. Currently, most of these tracks involve
the identification of 1:1 equivalence relationships, such as Person
being equivalent to Human. A discussion at the last two Ontology
Matching workshops6 made it clear that the community is inter-
ested in complex ontology alignment, but that lack of applicable
benchmarks is hindering progress. In OAEI 2018, the complex on-
tology alignment track was proposed and organized for the first
time [22]. The first version of the complex track is comprised of
four benchmarks containing complex relationships from the con-
ference, hydrography, ocean science, and plant taxonomy domains
respectively. In OAEI 2019, in order to extend the functionality
of the benchmarks and provide more scalability for researchers
to explore algorithms that depend on the instance data, Thieblin
et al. populated the Conference benchmark with some instances
collected from the Extended Semantic Web Conference (ESWC),
along with some synthetic data.7, and Zhou et al. also populated
a large number of real-world instances that are currently used in
the GeoLink Project8 as part of the GeoLink benchmark [28]. In
addition, different evaluation strategies were applied in evaluating
the performance of complex alignment systems on different bench-
marks. More details of evaluations and results can be accessed on
the OAEI website.910

Wikidata is a free and open knowledge base that covers many
interesting topics, with similar coverage to Wikipedia. There are
several ways to access Wikidata; there are built-in tools, external

4http://oaei.ontologymatching.org/2020/complex/index.html#popenslaved
5http://oaei.ontologymatching.org
6http://www.ontologymatching.org/
7https://framagit.org/IRIT_UT2J/conference-dataset-population
8https://www.geolink.org/
9http://oaei.ontologymatching.org/2018/complex/index.html
10http://oaei.ontologymatching.org/2019/complex/index.html
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Figure 1: An Excerpt of the Wikibase Repository for the Enslaved Project

tools, or programming interfaces, such as Wikidata Query11 and
Reasonator12 for searching and examining Wikidata items. There-
fore, it has also been considered as a useful external knowledge
base for many alignment tasks, particularly for instance matching
or entity resolution. For example, Geiß et al. utilized the informa-
tion on locations and places extracted from Wikidata as ground
truth for their entity resolution task [8]. However, the Wikidata
knowledge graph hasn’t been widely used for ontology alignment
tasks due to its young age relative to Wikipedia and DBpedia [16].
The knowledge graphs track in OAEI [12] executes the DBpedia
Extraction Framework on several different Wikis from Fandom,13
which is one of the most popular Wiki Farms and generates sev-
eral knowledge graphs for both the instance matching (i.e., entities
derived from pages about the same real-world entity in different
Wikis) and schema matching (i.e., classes and properties derived
from different constructs in different Wikis).

The Enslaved benchmark we describe herein differs from current
benchmarks in OAEI in some aspects. First, the Enslaved bench-
mark is a good reflection of real-life data since the Enslaved project
comprises over 33 million triples currently from real-world datasets
shared by different researchers and contributors from different insti-
tutions, while the conference benchmark only consists of synthetic
instance data. Second, the Enslaved benchmark utilizes a Wikibase
repository as a central storage repository to represent the knowl-
edge in the historical slave trade domain. Anyone with any level of
expertise can access the content in the same way they access Wiki-
data and make use of the knowledge graph. So, it greatly improves
the availability of the benchmark. Furthermore, it is useful and
important to align the domain ontology to the Wikidata schema,
in order to further enrich other external knowledge graphs. Third,
11https://query.wikidata.org/
12https://tools.wmflabs.org/reasonator/
13https://www.fandom.com/

the two knowledge graph schemas in the Enslaved benchmark are
completely designed and modeled independently, while the two on-
tologies in the GeoLink benchmark were developed together for the
same project, which may not be common occurrences. Therefore,
it further improves the quality and generality of the benchmark
and can be considered as a potential good benchmark for complex
alignment research.

3 BACKGROUND
3.1 The Enslaved Project and Ontology
The Enslaved Ontology was developed as part of an ongoing project
entitled Enslaved: Peoples of theHistorical Slave Trade14 and funded
by The Andrew W. Mellon Foundation where the focus is on track-
ing the movements and details of peoples in the historical slave
trade. It further acts as an interchange format between a number
of heterogeneous data formats among other projects in the digi-
tal humanities, because it has built a proof of concept for a slave
data hub. At the heart of the project, the Enslaved Hub allows stu-
dents, researchers, and the general public to search over numerous
databases to reconstruct the lives of individuals who were part of
the historical slave trade. The Enslaved project leverages Linked
Open Data (LOD) techniques, including the use of Wikibase and a
graph database, to create an innovative and compelling centralized
Hub for engaging with historical slave trade data from a variety
of sources. LOD is a method of exposing, sharing, and connect-
ing data on the semantic web. Data from the different sources is
standardized, aggregated, and formatted in such a way that it is
machine-readable and is predicated on the relationship between
data as developed with the Enslaved Ontology. The central notion
of the Enslaved Ontology models records of historical agents [19].15

14https://enslaved.org/
15Comprehensive documentation can be found in [20]
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The key observation is that the ontology is necessarily a secondary
(or further) source and thus cannot purport to state ontological
truth. As such, it models, instead, the observations that historians
or record keepers have made over time.

The development of the ontology was a collaborative effort and
was carried out using a modular ontology modeling approach based
on ontology design patterns [4, 7, 13]. Such a methodology is de-
signed to ensure high quality and reusability of the ontology, as
well as cater to future expansions, both in terms of scope and in
terms of granularity. This allows the Enslaved Ontology to adapt
as needs evolve and the number of researchers and contributors in-
creases. The modular ontology modeling approach and its rationale
have been described in [15], and it is closely related to the eXtreme
Design approach [3]. The modeling team included domain experts,
data experts, software developers, and ontology engineers.

The primary purpose of the formal axiomatization is to disam-
biguate the model, i.e., we were striving for as complete an axioma-
tization as possible while avoiding ontological over-commitments.
Each axiom was discussed in detail between the ontology engineers
and the historians on the team. The axiomatization is expressed
using the OWL 2 DL profile. The primary goal was not to do formal
reasoning over the ontology, but it was authored in such a way as
to not rule out such goals in the future (e.g. the use of reasoning
for consistency checking) [14].

3.2 The Wikibase Repository and Wikidata
Knowledge Graph Schema

Wikibase is a powerful, flexible, and customizable knowledge base
software. Its primary components are the Wikibase Repository, an
extension for storing and managing data. Wikibase makes collab-
oration easy for humans and machines alike, and its data model
prioritizes language independence and knowledge diversity.

Wikidata is the largest website that is powered by Wikibase. It is
an open knowledge base that was launched in 2012. Similar to all the
other projects of Wikimedia, anyone can freely edit it.16 The main
goal of Wikidata is to act as central storage for the structured data
to provide support for Wikipedia. However, it has grown out of that,
since it provides structured linked data about lots of interesting
topics in the world, and it is licensed under Creative Commons CC-
Zero, which is very close to the public domain and anyone can use it
for any purpose. Wikibase is the software that Wikidata has utilized
for such success. The Enslaved project uses its own installation of
the Wikibase platform to a similar purpose, creating the Enslaved
Hub, as mentioned in the previous section. For brevity, we will use
the acronym, EKG for the Enslaved Wikibase Knowledge Graph
Schema, and EWI for the Enslaved Project’s Wikibase installation.

Figure 1 shows the Enslaved Wikibase page for a Person named
Maria that appears in the Enslaved benchmark. In the center, we
can see the language and label of the entire descriptions of what
it means. The important thing is that Maria could be ambiguous
because multiple person records may have the same name or there
could be other items which are called Maria. To make this item
uniquely identified, an item identifier is used as a Q followed by a
number, such as Q1534 in this case.

16https://www.wikidata.org/wiki/Wikidata:Main_Page

Figure 2: The Example of EnslavedKnowledgeGraph for the
Enslaved Project

The main part of any Enslaved Wikibase page is the statements
section that can be seen in the center of Figure 1. For example,
there is an object property in the EKG called instance of with the
value of Class Person. It can be interpreted that an entity Maria
connects to an entity Person by an edge. The edge is labeled as
instance of. Properties in Wikibase have a P prefix followed by a
number, such as instance of (P1), hasName (P20), and hasSex (P31).
The references are used to point to specific sources that back up the
data provided in a statement. For instance, the statement, “Maria
is an instance of Person” which “is directly based on” Maranhão
Plantation Inventories [11]; the latter statement allows an interested
user to track the provenance of the information contained in the
previous statement. This single example is just a small excerpt of
EKG.

We mapped the OWL classes and properties in the Enslaved
ontology with the items and properties in the Enslaved Wikibase
knowledge graph. To the authors’ knowledge, this is the first time
an OWL ontology had been mapped onto a Wikibase installation.
The Enslaved project team found that Wikibase was especially
useful for organizing the historical slave trade data, as it had built-
in tools that, for example, add qualifiers and references to every
statement about the Enslaved data. Such features helped to connect
time-bound statements to specific events and connect provenance
information to each data point. The EWI stores the instance data,
including all of the controlled vocabularies and multiple examples
of people, events, and places. Through this process the exact manner
in which people are connected to events, events are connected to
places at specific periods of time, and how every piece of data is
attached to provenance information can be examined. The work
mapping the raw data onto the Enslaved ontology via Wikibase
has proven that the fields developed for the Enslaved Hub can in
fact represent diverse datasets.

3.3 Property Reification
Property reification is a classic strategy for adding context to a
property. We mention this here, in particular, as it is frequently
utilized in the Enslaved Ontology and Wikibase repository. Two
such examples can be found in Figures 2 and 3.
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Figure 3: The Example of Wikibase Repository for the En-
slaved Project

In the abstract, property reification is an addition of a node
between two other nodes, in a knowledge graph. For example,
in Figure 2, the property of hasName is reified. That is, there is
not a direct link from the enslaved:Person to the xsd:string. This
is done in order to add further context. Within the confines and
purposes of the Enslaved Ontology, a name is not a constant thing.
Enslaved people frequently went by aliases, different family names,
incorrect spellings in documents, and so on. By reifying the property
of having a name to account for both historical records and the
temporality of a name, we have a more accurate, historical model
of that particular enslaved person.

In any Wikibase repository, reification is also very common.
In order to track provenance in the background, many items are
reified.

4 THE ENSLAVED COMPLEX ONTOLOGY
ALIGNMENT BENCHMARK

In this section, we present the details of the Enslaved benchmark,
including the process of dataset preparation, some descriptive statis-
tics of the benchmark, the types of alignment rules and correspon-
dence patterns with examples, the expression format of reference
alignment, and the evaluation of the quality of the benchmark.

4.1 Dataset
The Enslaved benchmark consists of two knowledge graphs. The
first knowledge graph utilizes the Enslaved ontology generated
by the ontology engineers in consultation with domain experts
from different institutions [19]. The Enslaved ontology serves as
the underlying schema for the Enslaved knowledge graph in order
to enable the historical slave trade data sharing and integration
for different communities. The other one is the Enslaved Wikibase
repository that is currently being built and used onWikibase, which
employs a completely different schema.

The Enslaved knowledge base currently contains over 33 million
triples which are formatted according to the Enslaved Wikibase
repository schema, and the number of triples is still growing as
additional researchers and contributors start sharing their data for
the integration. In order to utilize these two Enslaved knowledge
graphs to establish a complex ontology alignment benchmark and
facilitate the convenient storage and distribution for OAEI, we de-
cided to pare down the size by only populating part of the instance

data into the benchmark. For each reference alignment between
two knowledge graph schemas, we randomly selected up to 500 in-
stances and populated them into both knowledge graphs with their
underlying schema. If there is increasing demand of more instance
data which are not related to reference alignment in the future, we
can provide more data which can be found in the Enslaved Wiki
pages.17

After finishing up the population of the instance data into the
Enslaved knowledge graph and the Enslaved Wikibase knowledge
graph, Table 1 shows the number of classes, properties, axioms, and
instances in both resources respectively. Both of the knowledge
graphs are comparable in size to the benchmarks currently used by
the OAEI, which means that they are within the capabilities that
most current ontology alignment systems to handle.

Table 1: The number of classes, properties, axioms and in-
stances in two knowledge graph schema

Ontology Classes Properties Axioms Instances
Enslaved Knowledge Graph 43 75 67,613 13,763
Enslaved Wikibase Knowledge Graph 20 50 83,512 18,415

4.2 Simple and Complex Correspondences
There are two different types of correspondences, which are simple
correspondence and complex correspondence [27]. Simple corre-
spondence refers to basic 1:1 simple alignment between two on-
tologies, such as 1:1 class equivalence, property equivalence, and
1:1 class subsumption, property subsumption. Complex correspon-
dence usually consists ofmore complex patterns compared to simple
correspondence. It may comprise more than one class or property in
both ontologies, such as 1:n equivalence, m:n equivalence, and m:n
arbitrary relationship. With respect to the correspondence patterns,
Zhou et al. list roughly 12 different types of simple and complex
correspondence patterns [27]. In the Enslaved benchmark, there
are three different types that emerge most frequently in ontology
matching tasks, which are listed in Table 2. In the following, we
explain the alignment types with a formal pattern and example for
each. Some namespaces that are frequently used in the following
examples are listed below.
@prefix ed:<https://lod.enslaved.org/entity/> .
@prefix ep:<https://lod.enslaved.org/prop/> .
@prefix eps:<https://lod.enslaved.org/prop/statement/> .
@prefix epq:<https://lod.enslaved.org/prop/qualifier/> .
@prefix wikibase:<http://wikiba.se/ontology#> .
@prefix enslaved:<https://enslaved.org/ontology/> .

• Class Equivalence. is simple 1:1 class equivalence. Classes
𝐶1 and 𝐶2 are from ontology 𝑂1 and ontology 𝑂2, respec-
tively.

Formal Pattern: 𝐶1 (𝑥) ↔ 𝐶2 (𝑥)
Example: enslaved:Person(𝑥) ↔ ed:Q410(Person) (𝑥)

Note that ed:Q410 has the label of Person in Wikidata.18
In order to better understand the example, we use both the

17https://lod.enslaved.org/wiki/Meta:Main_Page
18https://lod.enslaved.org/wiki/Q410
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Table 2: The alignment pattern types found in the Enslaved
complex alignment benchmark, along with the number of
times each occurs and the type of relation.

Pattern Occurrences Category
Class Equivalence 15 1:1
Typed Property Chain Equivalence 67 m:n
Typed Property Chain Subsumption 16 m:n

unique identifier, which is presented by a Q prefix followed
by a number and the label in the alignment rules. However,
in the real alignment rules, only the identifier is kept. This
also applies to all the following examples.

• Typed Property Chain Equivalence. A property chain is
a classical complex pattern that was introduced by Ritze et
al. [18]. The pattern applies when a property, together with
a type restriction on one or both of its fillers, in one ontology
has been used to “flatten” the structure of the other ontology
by short-cutting a property chain in that ontology. The pat-
tern also ensures that the types of property fillers involved
in the property chain are typed appropriately in the other
ontology. The formal pattern and example are shown below.
The classes 𝐷𝑖 and property 𝑟 are from ontology 𝑂1, and
classes 𝐶𝑖 and properties 𝑝𝑖 are from ontology 𝑂2.

Formal Pattern:

𝐷1 (𝑥1) ∧𝑟 (𝑥1, 𝑥𝑛+1) ∧𝐷2 (𝑥𝑛+1) ↔ 𝐶1 (𝑥1) ∧𝑝1 (𝑥1, 𝑥2) ∧𝐶2 (𝑥2)
∧ · · · ∧ 𝑝𝑛 (𝑥𝑛, 𝑥𝑛+1) ∧𝐶𝑛+1 (𝑥𝑛+1)

Example:

enslaved:Person(𝑥) ∧ enslaved:hasSexRecord(𝑥,𝑦)∧
enslaved:SexRecord(𝑥,𝑦) ∧ enslaved:hasValue(𝑦, 𝑧)∧

enslaved:SexTypes(𝑧) ↔ ed:Q410(Person) (𝑥)∧
ep:P31(hasSex) (𝑥,𝑦) ∧ wikibase:Statement(𝑦)∧

eps:P31(hasSex) (𝑦, 𝑧) ∧ ed:Q291(Sex) (𝑧)
Note that in this and all following patterns, any of the 𝐷𝑖 or
𝐶𝑖 may be omitted (in which case they are essential ⊤). Also,
for the left-to-right direction, we assume that 𝑥2, . . . 𝑥𝑛 are
existentially quantified variables.

• Typed Property Chain Subsumption. This is identical to
the Typed Property Chain Equivalence pattern except that
the relationship only holds in one direction.

Formal Pattern:

𝐷1 (𝑥1)∧𝑟 (𝑥1, 𝑥𝑛+1)∧𝐷2 (𝑥𝑛+1) ← /→ 𝐶1 (𝑥1)∧𝑝1 (𝑥1, 𝑥2)∧𝐶2 (𝑥2)
∧ · · · ∧ 𝑝𝑛 (𝑥𝑛, 𝑥𝑛+1) ∧𝐶𝑛+1 (𝑥𝑛+1)

Example:

enslaved:Person(𝑥) ∧ enslaved:hasNameRecord(𝑥,𝑦)∧
enslaved:NameRecord(𝑥,𝑦) ← ed:Q410(Person) (𝑥)∧

ep:P20(hasName) (𝑥,𝑦) ∧ wikibase:Statement(𝑦)

4.3 Format in EDOAL and Rule Syntax
Most ontology alignment benchmarks are formatted according
to the format provided by the Alignment API [5]. The standard
alignment format is not expressive enough to capture complex rela-
tions. Fortunately, the Alignment API also provides a format called
EDOAL that can be used to express these types of complex relations.
This format can be read and manipulated programmatically using
the Alignment API and is therefore very convenient for ontology
alignment researchers. In addition, EDOAL is already accepted by
the ontology alignment community. It has been used by others
when proposing new alignment benchmarks (e.g. [23, 27]) and we
continue that approach here. Because EDOAL can be difficult for
humans to parse quickly, we have also expressed the alignments
in using a naive rule syntax. The rule presentation is not intended
for programmatic manipulation, but rather to make it easier for
humans to read and understand the alignments. Both versions
of the alignment, along with the ontologies, can be downloaded
from http://doi.org/10.6084/m9.figshare.12400976 under the Cre-
ative Commons CC-BY 4.0 license. We apply HermiT [9] reasoning
to the ontologies independently to check satisfiability, since some
EDOAL mappings which are part of our benchmark do not seem
to be expressible in OWL DL. The Enslaved project website19 and
Enslaved data in Wikibase repository website20 contains more de-
tailed information, and corresponding documentation of the project
which provides users with more insights about the resource, such
as all entities and relationships between them. The complex ontol-
ogy alignment track in OAEI 202021 also introduces the detailed
information of the Enslaved benchmark, including the benchmark
download link and method to evaluate the performance.

4.4 Evaluation using Complex Alignment
Systems

In order to examine the quality of this benchmark to see if it is
within the capability of current complex ontology alignment sys-
tems to handle in OAEI, we apply the Association Rule-based On-
tology Alignment System (AROA) [25, 26] on this benchmark since
AROA participated in the evaluation of OAEI 2019 and achieved
the best performance in terms of F-measure [2]. Table 3 lists the
relaxed precision, recall, and F-measure [6] with different thresh-
olds of minimum support and minimum confidence in association
rule mining [10, 17]. Minimum support refers to an indication of
how frequently the itemset appears in the dataset, while minimum
confidence refers to an indication of how often the rule has been
found to be true. From Table 3, we can find that the best precision
is 0.94 when the minimum support with a value of 0.03 and the
minimum confidence with a value of 0.5. And it reaches the best
recall of 0.39 when the minimum support value is 0.01, and the
minimum confidence value is 0.5. The best F-measure is 0.51, which
is achieved when the minimum support and minimum confidence
are 0.01 and 1.0 respectively. Overall, the higher the minimum sup-
port and minimum confidence, the higher the precision. The lower
the minimum support and minimum confidence, the higher the
recall. In terms of F-measure, for the same minimum support, the

19http://enslaved.org/
20https://lod.enslaved.org/
21http://oaei.ontologymatching.org/2020/complex/index.html
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Table 3: The Performance of AROA system on Enslaved
Benchmark

MinSupport MinConfidence Relaxed Precision Relaxed Recall Relaxed F-measure
0.01 0.5 0.63 0.39 0.49
0.01 0.6 0.64 0.39 0.49
0.01 0.7 0.65 0.38 0.49
0.01 0.8 0.71 0.38 0.49
0.01 0.9 0.72 0.38 0.50
0.01 1.0 0.80 0.38 0.51
0.02 0.5 0.66 0.38 0.48
0.02 0.6 0.66 0.37 0.48
0.02 0.7 0.67 0.37 0.48
0.02 0.8 0.72 0.36 0.48
0.02 0.9 0.72 0.36 0.48
0.02 1.0 0.82 0.36 0.50
0.03 0.5 0.94 0.27 0.42
0.03 0.6 0.94 0.27 0.42
0.03 0.7 0.94 0.27 0.42
0.03 0.8 0.94 0.27 0.42
0.03 0.9 0.94 0.27 0.42
0.03 1.0 0.94 0.27 0.43
0.04 0.5 0.94 0.26 0.41
0.04 0.6 0.94 0.26 0.41
0.04 0.7 0.94 0.26 0.41
0.04 0.8 0.94 0.26 0.41
0.04 0.9 0.94 0.26 0.41
0.04 1.0 0.94 0.26 0.42
0.05 0.5 0.94 0.26 0.41
0.05 0.6 0.94 0.26 0.41
0.05 0.7 0.94 0.26 0.41
0.05 0.8 0.94 0.26 0.41
0.05 0.9 0.94 0.26 0.41
0.05 1.0 0.94 0.26 0.41

best F-measure is usually achieved when the value of minimum
confidence is 1.0. Figure 4 demonstrates the trend of the perfor-
mance when the minimum confidence is set to 1.0. We can find that
the variation of performance tends to be flat and steady after the
minimum confidence with a value of 0.03. The reason is that the
number of alignment rules generated is getting smaller, which it
is reasonable to explain the higher precision, but with the lower
recall. The results of more alignment systems will be available in
the coming OAEI 2020. In this paper, we have not intended to fo-
cus on the improvement of the alignment algorithm. Instead, we
would only like to prove that the Enslaved benchmark is within the
capability of the current complex ontology alignment systems in
OAEI. And based on the results, it also indicates that there is still
much space for the improvement of the current alignment systems
to detect more complex correspondences and solve the challenge of
the knowledge graph and ontology integration problem. Thereby,
the Enslaved benchmark can be considered as a useful potential
resource to advance the development of the research in the complex
ontology alignment field.

5 CONCLUSION
Complex alignment has been discussed for a long time, but rel-
atively little work has been done to advance the state of the art
of complex ontology alignment. The lack of applicable complex
alignment benchmarks may be a primary reason for the slow speed
of development. In addition, most current alignment benchmarks
have been created by humans for the sole purpose of evaluating
alignment systems, and they may not always represent real-world
cases. In this paper, we have proposed a complex alignment bench-
mark based on the real-world Enslaved project. The two knowledge
graphs and the reference alignment were designed and created
by ontologists and historians to support data representation, shar-
ing, integration, and discovery. Additionally, we take advantage
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Figure 4: The Trend of the Performance When Minimum
Confidence is 1.0

of Wikibase as a tool to represent the data, which is convenient
for users with any level of expertise to use. Detecting alignments
between ontologies and Wikibase knowledge graphs are helpful
to solve many practical problems and enrich knowledge graphs by
aligning common resources in Wikidata. In our benchmark, the
alignments not only cover 1:1 simple correspondences but also
contain m:n complex relations. All correspondences required to
convert between the two ontologies (a key goal of ontology align-
ment) are guaranteed to be present. In addition, the alignment has
been evaluated by domain experts from different organizations,
and we also test the complex alignment systems on the benchmark
to ensure high quality. Moreover, the alignments in both rule and
EDOAL syntax have been published in FigShare and OAEI with an
open-access license for reusability.

As future work in this area, we have put forth this benchmark
into the complex track within the OAEI. We intent to remain ac-
tively involved for years to come in the OAEI complex alignment
benchmarking track and to also develop corresponding alignment
methods. We thus have an intrinsic interest in keeping the bench-
mark maintained and usable, which would, e.g., mean that we
are prepared to transfer it to a new benchmarking framework if
required in the future. At the same time, based on participants’
feedback, we will modify the reference alignment if necessary to
perfect the benchmark by making it more convenient to use. This
may involve, for example, making the alignment available in addi-
tional formats. Furthermore, we also plan to make use of Wikidata
to generate more benchmarks for Multilingual ontology matching,
instance matching, and knowledge graph matching tasks. We plan
to generate and improve an automated alignment system to tackle
the alignment problem set forth by this benchmark.
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1 Introduction

Much of the earth’s surface is covered by water, and so various research organi-
zations around the globe have data related to surface water features stored in
data repositories. Of course, the earth’s water is an inherently interconnected
system, and more powerful analyses of this data could be conducted if these in-
dividual data repositories could be queried or otherwise accessed in a uniform
manner. Two things standing in the way of integrating these data silos are syn-
tactic differences between different datasets and semantic heterogeneity. The
syntactic differences are currently being addressed through the application
of semantic web protocols, such as using HTTP uniform resource identifiers
(URIs) to represent entities, encoding information about those entities in the
Resource Description Framework (RDF), and providing links between related
entities [5]. These technologies are moving towards widespread acceptance, as
evidenced by the growth of the Linked Data Cloud [1]. However, semantic
heterogeneity remains a challenge.

Data within repositories is organized according to some vocabulary, or
schema. In the case of the Semantic Web, these schemas generally take the
form of an ontology. There are many ontologies related to the surface water
domain [11,28]. Four of these: the US Geological Survey’s Surface Water On-
tology, the Hydro3 module from the University of Maine’s HydroGazetteer, the
Cree surface water ontology, and the Spanish National Geographic Institute’s
hydrOntology, are discussed in detail in Section 3. Other ontologies contain
some entities that are related to surface water features but are overall more
general in scope, such as ENVO [6] and SWEET [26].

Engineering ontologies is not a deterministic process – many design deci-
sions must be made, and the designers’ backgrounds and the application they
are targeting will influence their decisions in different ways. The end result is
that even two ontologies that represent the same domain will not be identical.
They may use synonyms for the same concept or the same word for different
concepts, they may be at different levels of abstraction, they may not include
all of the same concepts, and they may not even be in the same language.
As a specific example, the United States Geological Survey (USGS) considers
surface water features from the perspective of the Earth’s terrain and the wa-
ter bodies and flows between them that the geography induces. On the other
hand, the conceptualization of surface water features by the indigenous Cree-
speaking people of Northern Canada is based on their utility for transportation
via canoe and is therefore largely focused on water bodies’ locations relative to
one another. These different viewpoints mean that these two ontologies have
many low-level classes in common (e.g. River, Pond, Swamp), but the class
hierarchies look very different because water bodies are considered “similiar”
for different reasons.

Semantic heterogeneity can sometimes be resolved by aligning the different
ontologies. The goal of ontology alignment is to determine when an entity in
one ontology is semantically related to an entity in another ontology. Ontology
alignment is an important part of realizing the potential of the Semantic Web.
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Alignment of Surface Water Ontologies 3

Alignments between two ontologies can be used to browse a combined data
set according to either ontology’s vocabulary, to federate search queries, to
perform logical reasoning across multiple domains, and other important tasks.
While some of these applications require high-quality alignments that must be
created manually, which often takes weeks even for small ontologies, some uses
can benefit from automated alignment that sacrifice some accuracy in favor
of timely results. Examples include identifying other data repositories that
are related to an existing one and finding linking points for modular ontology
development [17].

The overall goal of this paper is to assess the utility of automated alignment
systems on real-world ontology alignment tasks from the surface water domain.
The paper makes the following contributions:

– A revised version of the USGS Surface Water Ontology (SWO) is presented.
– Manual alignments between three existing surface water ontologies and

the new version of the SWO have been created. These alignments consti-
tute a new benchmark within the annual Ontology Alignment Evaluation
Initiative as of 2018.

– The performance of two state of the art ontology alignment systems on this
benchmark is examined in detail, with a focus on how aspects relevant to
the surface water domain pose unique challenges.

– A modified version of an existing alignment system that performs signifi-
cantly better than the original in this domain is presented.

– Potential avenues to address the alignment challenges raised by surface
water ontologies are discussed.

2 Background and Related Work

An ontology is a way to model the semantics of a domain of study. An on-
tology is typically expressed in a formal language, such as the Web Ontology
Language (OWL). It contains classes to represent types of things in the do-
main of interest, individuals that are specific things, and properties, which are
relationships that hold between two things, or between a thing and a value.
For example, in the ontology on the left in Figure 1, the items in the yellow
squares, including PointOfInterest, Waterbody, and Gulf, are classes. The ar-
row labeled flowsInto represents an object property (i.e. a relation that holds
between two individuals that both belong to a class, in this class River is the
domain of the relation and Gulf is the range) and the arrows labeled has-
Name and hasLengthInKm represent data properties, which hold between an
individual and a literal value.

The information shown in Figure 1 comprises the schema, or T-box, of the
ontologies. In addition, an ontology often contains instance data. For exam-
ple, the following statements indicate that there are instances called Missis-
sippi River and Gulf Of Mexico that are of type River and Gulf, respectively,
that the Mississippi River flowsInto the Gulf of Mexico, and that it hasLeng-
thInKm 3730.
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Fig. 1 Two sample ontologies. Differences in scope and granularity create alignment chal-
lenges.

ont1:Mississippi_River rdf:type ont1:River

ont1:Gulf_Of_Mexico rdf:type ont1:Gulf

ont1:Mississippi_River ont1:flowsInto ont1:Gulf_Of_Mexico

ont1:Mississippi_River ont1:hasLengthInKm 3730

As mentioned previously, the goal of ontology alignment is to determine
when an entity in one ontology is semantically related to an entity in another
ontology. Continuing the example from Figure 1, the ontology on the left has
a class called Gulf that does not exist in the one on the right. However, a Gulf
is defined by Wikipedia and other general knowledge sources as a large inlet
or bay. An alignment could indicate this relationship by stating that Gulf is a
subclass of the union of Inlet and Bay. A comprehensive discussion on ontology
alignment is outside the scope of this paper, but a more detailed explanation
can be found in [14].

An automated alignment algorithm takes as input two ontologies and pro-
duces a set of matches consisting of a URI specifying one entity from each
ontology, a relationship, and an optional confidence value that is generally
in the range of 0 to 1, inclusive. In order to produce this output, automated
alignment systems generally employ one or more similarity metrics that de-
termine the type and strength of relationship between two or more entities.
These similarity metrics typically fall into one of three groups: syntactic, se-
mantic, and structural. Syntactic metrics compare entities from each of the
ontologies to be aligned based on strings associated with the entities. The
strings are generally the entity label, but can also include comments or other
annotations of the entity. Referring to the alignment problem in Figure 1, a
syntactic metric would likely align the classes Waterbody and BodyOfWater,
in addition to the properties, which have syntactically identical labels. Seman-
tic similarity metrics attempt to use the meanings of entity labels rather than
their spellings. External resources such as thesauri, dictionaries, encyclope-
dias, and web search engines are often used to calculate semantic similarity.
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A semantic metric might be able to detect that a Gulf is related to an Inlet
or Bay by looking up the term Gulf in an electronic dictionary. Structural
techniques consider the neighborhoods of two entities when determining their
similarity. For instance, two entities with the same superclass that share some
common instances are considered more similar than entities that do not have
these things in common. Graph matching techniques are often used for this. In
our example, River might be scored as fairly similar to Waterflow because it is
the domain of two properties that have already been matched via a syntactic
metric. An alignment system may use zero or more of each type of similar-
ity metric. The values from multiple approaches may be combined to form a
single measure of similarity, or they may be used in a serial fashion to filter
potential matches down to the most likely candidates. At some point, a final
list of related entities is generated, frequently by including any matches with a
confidence (similarity) value higher than some threshold. Additionally, align-
ment systems may use some form of inconsistency checking and repair after
the matching process in order to ensure a merged ontology produced using the
alignment is logically consistent. More detail about ontology matching systems
can be found in Euzenat and Shvaiko’s book on the subject [14].

Ontology alignment is a well established field. There are dozens of auto-
mated alignment systems (see [14] and [24] for surveys), and an annual on-
tology alignment evaluation initiative (OAEI) for these systems to compare
their performance on benchmark alignment tasks.1 Ideally, alignment systems
should be able to uncover any entity relationships across two ontologies that
can exist within a single ontology. Such relationships have a wide range of
complexity, as shown in Figure 2. Nearly all existing alignment systems fall at
the simplest end of the scale. A few systems, including ASMOV [19], RiMoM
[22], BLOOMS [18] and PARIS [30], attempt to identify subsumption relation-
ships across ontologies. CSR [29] and TaxoMap [16] attempt to find 1-to-many
equivalence and subsumption relationships. In general though, most research
activity in the field of ontology alignment remains focused on finding 1-to-1
equivalence relations. This limitation was mentioned in 2013 [27] and again in
2017 [9] as a challenge for the field. One reason for the lack of systems that
attempt to find more complex matches may be that current benchmarks have
not historically contained any complex relations. This is changing, however –
the surface water alignment task described in this paper has been accepted as
part of a new OAEI complex alignment track as of 2018.2

In this work we analyze the performance of two of the best performing
automated alignment systems from the OAEI on the task of aligning surface
water ontologies. While many ontologies exist to model surface water features
(these are surveyed in Section 3), this is to the best of our knowledge the first
time that the performance of automated alignment systems has been evaluated
on this domain.

1 http://oaei.ontologymatching.org
2 http://oaei.ontologymatching.org/2018/complex/index.html
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Fig. 2 Spectrum of alignment complexity. The x:y notation refers to the number of entities
from the first ontology (x) and the number from the second ontology (y) that are involved
in a particular mapping across the ontologies.

If we look more broadly at aligning geographical ontologies in general, we
find more related work. Much of this involves using semi-automated approaches
to create alignments at the bottom of the complexity spectrum shown in Fig-
ure 2. For example, the Geodint project aligned several ontologies related to
geographic points of interest, including Facebook Places, Foursquare, and DB-
pedia using COMA++, a visually oriented semi-automatic alignment system
[23]. Sunna and Cruz focus on structure-based similarity metrics to align on-
tologies related to wetlands [31]. A paper describing the G-MAP alignment
system mentions the ability to identify complex relations, but it defines com-
plex as relations between properties rather than classes [4]. These relations are
still 1-to-1 and would therefore not be considered complex as defined in this
paper. As we will see in Section 4, most of the relations of interest between
the surface water ontologies used in this study are 1-to-many in nature.

Another common theme in research related to alignment of geospatial on-
tologies is extensional matching [10,12,13,7]. Extensional matchers begin by
trying to determine when two instances represent the same spatial feature. For
example, they may try to determine that Mississippi River in one ontology is
equivalent to Greater Mississippi Rvr in another ontology, often based on the
coordinates associated with each entity. They can then use these instance-level
matches to find schema-level relations, for example by using inductive infer-
encing. The work presented here differs in that it does not assume instance
level data exists in both ontologies being aligned.
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Alignment of Surface Water Ontologies 7

3 Surface Water Ontologies

As mentioned previously, there are many existing ontologies relevant to the
surface water domain. The USGS SWO was chosen as a focal point for this
work because it is the domain ontology with which the authors have the most
familiarity. The other three ontologies discussed in this section were chosen
to create a spectrum of difficulty level regarding the alignment task: Hydro3
is similar to the SWO in terms of both organization and language, the hy-
drOntology has a similar organization but is in a different language, and the
Cree ontology differs greatly from the SWO in terms of both organization and
language. In this work each of these ontologies (Hydro3, hydrOntology and
Cree) will be aligned to the SWO. These nature of these ontology pairs allows
us to evaluate the performance of automated alignment systems on a range of
real-world hydrographic ontology alignment tasks.

3.1 USGS Surface Water Ontology

In 2001, as part of its National Map project, the US Geological Survey (USGS)
began development of the National Hydrography Dataset. The dataset consists
of surveys conducted both in the field and from aerial photographs of surface
water features across the United States and is maintained via edits and addi-
tions submitted by the individual states. The NHD was originally stored in a
relational database, but in 2014 the data was also made available as an RDF
triplestore. As part of this process, the USGS developed the SWO, which was
originally presented in [33]. The SWO was initially designed to closely follow
the underlying relational database. Our goal with this revision was to make it
more broadly applicable to other hydrographic datasets.

Fig. 3 The upper levels of the SWO class and property hierarchy
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The changes made to the ontology in this revision fall into three general
categories. First, the modeling of hydrographic measurements was fleshed out.
The original ontology represents the taking of a hydrographic measurement via
a class called Gaging, which is a subclass of Event. There are also classes to rep-
resent what was measured (e.g. SpatialQuality and its subclasses such as Area
and Length) and the value and unit of the measurement (e.g. SpatialMeasure-
ment). This version retains that basic model, but adds new object properties
such as isMeasurementOfFeature, measuresSpatialQuality, producedMeasure-
ment, and takenAtStage to fully relate a measurement to the SpatialQuality
and HydrographicFeature being measured and to capture the corresponding
provenance information, including the WaterStage of the HydrographicFea-
ture during the measurement (represented as a controlled vocabulary using
the OWLOneOf construct, in order to force consensus on this aspect of the
measurement, which is key to understanding the context of the data). The sec-
ond group of changes involved the creation of an abstract layer in the ontology
(shown in Figure 3), which contains the upper levels of the class and property
hierarchy. This layer is important both because it enables the SWO to apply
in many more applications involving surface water features and because the
more concrete features in the ontology are often defined in terms of this layer.
Finally, specific hydrographic features, such as seas, rivers, dams, and shore-
lines are now defined using axioms that relate a concept to others within the
ontology, often from the abstract layer. These axioms range from relatively
simple, such as that a shore is something that bounds a body of water

SubClassOf(swo:Shore swo:BoundingFeature)

or that a sea or ocean is a perennial waterbody

SubClassOf(swo:SeaOrOcean swo:Waterbody

ObjectHasValue(swo:hasTemporality swo:Perennial))

to more complex, such as that an estuary must adjoin both a sea or ocean and
a shore.

SubClassOf(swo:Estuary OWLIntersectionOf(swo:Waterbody

ObjectSomeValuesFrom(swo:adjoins swo:SeaOrOcean)

ObjectSomeValuesFrom(swo:adjoins swo:Shore))

3.2 Hydro3

An ontology called HydroGazetteer was developed by individuals at the Uni-
versity of Maine in order to support expanded gazetteer functions using topol-
ogy and semantic inference [34]. The Hydro3 module of this ontology, shown
in Figure 4, overlaps significantly with the SWO.
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Fig. 4 The Hydro3 module within the HydroGazetteer ontology

3.3 Cree

The Cree surface water ontology is described in [36]. Cree is a language spoken
by some of the native inhabitants of northern Canada. This region is densely
covered with surface water features, and Cree speakers have a very rich vocab-
ulary to describe them. Many Cree terms do not have a direct translation into
English. The authors of [36] worked with native speakers in order to establish
an ontology of Cree surface water features, along with English descriptions.
The classes in this ontology are shown in Figure 5. The Cree speakers do not
have a hierarchical view of different types of water bodies, so the ontology is
very flat and does not contain any abstract notions.

3.4 hydrOntology

Another non-English hydrography ontology is the hydrOntology, which was
developed by the Spanish National Geographic Institute (IGN) [35]. The hy-
drOntology was originally created to assist Spanish cartographers in coordi-
nating their products, and has since been expanded into a complete hydro-
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Fig. 5 The classes within the Cree ontology. Class groupings (e.g. Still Waterbodies, Con-
nections) have been added for convenience and are not part of the ontology.

graphic domain ontology. The ontology’s design was informed by numerous
feature catalogs, including those of the IGN, the European Water Framework
Directive, and the Alexandria Digital Library, as well as by several geographic
data repositories owned by the IGN. Like the SWO, the hydrOntology can be
thought of as two layers: one describing the relationships among abstract hy-
drographic concepts and the other containing concrete hydrographic features
that are generally defined in terms of their relation to one or more of the ab-
stract concepts. The upper layer is shown in Figure 6. The properties in the
hydrOntology are largely similar to that of the SWO, but they have extensive
domain and range restrictions involving classes in the concrete layer of the
ontology, while the SWO has few of these.

Table 1 presents some basic characteristics of the ontologies described in this
section. In comparison to other ontology alignment benchmarks, the surface
water ontologies presented here have some characteristics that pose different
challenges and possibilities for automated alignment systems. Existing bench-
marks primarily involve ontologies related to either conference organization or
the life sciences (e.g. anatomy, diseases, biodiversity, and ecology).3 In compar-
ison to the ontologies that make up those alignment tasks, the surface water
ontologies presented here vary more in their level of granularity. For example,
the SWO has a single class that represents a lake while the Cree ontology has
classes to represent nine different types of lakes, and these classes do not all

3 http://oaei.ontologymatching.org/2018/
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Fig. 6 The upper levels of the hydrOntology class hierarchy

Table 1 Number of entities within the chosen ontologies

SWO Hydro3 hydrOntology Cree

Classes 85 22 154 83
Object Properties 20 34 47 21
Data Properties 1 0 75 7

share a common ancestor in the class hierarchy. This is likely to cause trouble
for alignment systems that heavily employ structural similarity metrics or on
identifying a fairly large set of anchor mappings based on lexical equivalence of
entity labels. In addition, many concepts within the surface water domain are
defined in terms of other concepts within the domain. For instance, an estuary
can be defined as “a semi-enclosed coastal body of water which has a free con-
nection with the open sea and within which sea water is measurably diluted
with fresh water derived from land drainage”. While this information is often
available in natural language comments, most surface water ontologies other
than the SWO lack formal axioms to express these relations, which makes it
difficult for automated alignment systems to make use of them. Furthermore,
spatial relationships are particularly important within the surface water do-
main. This is true of both classes, such as the Cree class Iihthuwikimaauh,
defined as “mirror image lakes”, and properties, such as parallelTo. Few align-
ment systems are currently able to consider these types of relationships.
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4 Manual Alignments

In order to evaluate the performance of automated systems on ontology align-
ment tasks within the hydrography domain, we must first establish reference
alignments that serve as the gold standards for these tasks. Each reference
alignment was manually created by an ontologist. Semantic correctness was
verified by an earth scientist working for the US Geological Survey, and log-
ical consistency was verified using the HermiT reasoner. In the case of the
hydrOntology, labels and comments were translated from Spanish to English
by a native Spanish speaker so that the other (non-Spanish-speaking) team
members could accomplish their work.

There were some instances in which there appeared to be mistakes in the
surface water ontologies used for this study. For example, in some cases sub-
class axioms within the Cree ontology appear to be missing. For instance,
Aanayapskaach (a rocky point) is not a subclass of Naaskimikaau (a point of
land). Likewise, in Hydro3 there may be a mistake related to property domain
and range restrictions. The property hasHydrographicPart is a subproperty of
hasPart, and the domain of the hasPart property is River and the range is the
union of Rapids and Falls. On the other hand, the hasHydrographicPart rela-
tion has no restrictions on its domain or range. It seems that the domain and
range restrictions should be on hasHydrographicPart rather than on hasPart.
Our view is that in real-world use, ontology alignment systems will often be
presented with arguably imperfect ontologies. Because of this, no changes were
made to the underlying ontologies when developing the reference alignments.
The only exceptions to this were changes necessary to enable the ontologies
to open in Protégé. For example, the hydrOntology had some < characters in
comments that caused parse errors and were therefore removed. In addition,
the hydrOntology had a cardinality restriction involving the parte de prop-
erty on the Aguas de Transición class, while in the Cree ontology the HasPart
property, which has an inverse called PartOf, was involved in a cardinality re-
striction. Cardinality restrictions on these properties push the ontology from
OWL DL into OWL Full and render it undecidable by a reasoner, so they were
removed.

When developing the reference alignments, we attempted to find the sim-
plest relation that holds between classes and properties in the source ontology
(e.g. Hydro3, hydrOntology, and Cree) and those in the target ontology (i.e.
the SWO). For example, relations that involved an atom (i.e. a single class or
property) were given preference over those that involved an expression (e.g.
union, intersection, cardinality or value restrictions, etc.) and equivalence re-
lations were given preference over subsumption and disjointness. This is the
same approach followed by the developers of the reference alignments discussed
in [32].

A typical atom-to-atom relation is:

<EquivalentClasses>

<Class abbreviatedIRI="hydrOnt:Wetlands"/>
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<Class abbreviatedIRI="swo:SwampOrMarsh"/>

</EquivalentClasses>

An example of an expression-to-expression relation is shown below. (Note
that origen del agua translates to origin of the water.)

<SubClassOf>

<DataSomeValuesFrom>

<DataProperty abbreviatedIRI="hydrOnt:origen_del_agua"/>

<Datatype abbreviatedIRI="rdfs:Literal"/>

</DataSomeValuesFrom>

<ObjectSomeValuesFrom>

<ObjectInverseOf>

<ObjectProperty abbreviatedIRI="swo:startsFrom"/>

</ObjectInverseOf>

<Class abbreviatedIRI="owl:Thing"/>

</ObjectSomeValuesFrom>

</SubClassOf>

There are 106 entities in the SWO. The Hydro3-to-SWO alignment in-
volved 24 unique SWO entities, while the Cree-SWO alignment involved 42,
and the hydrOntology-SWO alignment referred to 84 unique SWO entities. Ta-
ble 2 shows the number of relations between classes and properties, organized
by complexity type (i.e. those that involve atomic entities versus expressions).
From this it is evident that the Hydro3-to-SWO alignment is the most straight-
forward – 24 out of 27 relations involve atomic entities from both ontologies.
On the other end of the spectrum, the hydrOntology-to-SWO alignment can
be considered the most complex in terms of number of expressions, because it
is the only case in which a majority of the relations involve expressions rather
than atoms.

Table 2 also shows that there are no equivalent property relationships in
any of the reference alignments. This is because most of the properties in the
source ontologies have domain and range restrictions, whereas the SWO does
not place these restrictions on most of its properties. Because of this, even very
related properties cannot be declared equivalent; instead, most of the source
ontology properties must be represented as subproperties of things in the SWO.
It is possible to represent the domain and range restrictions on the SWO
properties in terms of classes from that ontology, but this would complicate
the relations, and our approach is to identify the simplest correspondences
between the two ontologies.

Table 3 shows how often different OWL constructs appear when a relation
involves an expression. Note that a single relation can involve multiple OWL
constructs. By far the most frequently appearing constructs are intersection
(OWLIntesectionOf) and object value restrictions (OWLSomeValuesFrom and
OWLAllValuesFrom). A typical relation using these constructs is shown below.
(Aquas corrientes translates to running water.)
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Table 2 Complexity of the reference alignments. Alignments are between the indicated
ontology and the SWO.

Hydro3 hydrOntology Cree Total

Class Equivalence atom-atom 6 11 2 19
atom-expr 1 2 1 4
expr-atom 0 0 0 0
expr-expr 0 1 0 1

Class Subsumption atom-atom 6 32 10 48
atom-expr 1 42 14 57
expr-atom 1 8 0 9
expr-expr 0 5 0 5

Class Disjointness atom-atom 0 4 3 7
atom-expr 0 3 0 3
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Property Equivalence atom-atom 0 0 0 0
atom-expr 0 0 0 0
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Property Subsumption atom-atom 12 12 11 35
atom-expr 1 4 0 5
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Property Disjointness atom-atom 0 0 4 4
atom-expr 0 0 0 0
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Total 28 123 45 196

<SubClassOf>

<Class abbreviatedIRI="hydrOnt:Aguas_Corrientes"/>

<ObjectIntersectionOf>

<Class abbreviatedIRI="swo:SurfaceFeature"/>

<Class abbreviatedIRI="swo:Waterbody"/>

<ObjectSomeValuesFrom>

<ObjectProperty abbreviatedIRI="swo:hasFlow"/>

<Class abbreviatedIRI="swo:Flow"/>

</ObjectSomeValuesFrom>

</ObjectIntersectionOf>

</SubClassOf>

As mentioned previously, these ontology matching tasks have been incorpo-
rated into a new complex alignment track within the annual Ontology Align-
ment Evaluation Initiative. Links to download all of the ontologies and the
reference alignments are available from the OAEI website.4

4 http://oaei.ontologymatching.org/2018/complex/index.html#hydrography
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Table 3 OWL constructs in the reference alignments. Alignments are between the indicated
ontology and the SWO.

Hydro3 hydrOntology Cree

Union 3 6 1
Intersection 0 29 15
Complement 0 1 1
Property Inverse 0 10 0
Object Value Restriction 0 62 15
Data Value Restriction 1 9 0
Cardinality Restriction 0 3 9

5 Automated Alignments

In order to evaluate the performance of automated systems in this domain,
we used two automated alignment systems, AgreementMakerLight (AML) [15]
and LogMap [20], to perform the same alignment tasks described in the pre-
vious section. AML allows users to select a set of different matchers to run
(or does so automatically based on a profile of the ontologies to be matched)
and runs each matcher individually. The resulting alignments are combined
using a greedy selection strategy and any logical inconsistencies are removed.
Matchers available within AML include lexical and structural algorithms, as
well as approaches that leverage background information such as from Word-
Net or domain-specific lexicons. On the other hand, LogMap compares two
entities based on their ISUB (i.e. string) similarity and scope (i.e. the degree
of overlap of their neighborhoods). Additionally, LogMap’s approach to on-
tology alignment heavily involves consideration of whether or not a relation
would conflict with another relation that has a higher confidence value. For
example, the system either filters out or more carefully scrutinizes what it calls
“dangerous” and logically inconsistent relations.

AML and LogMap were chosen based on their strong performance in the
OAEI over several years. In addition, we endeavored to explore the perfor-
mance of the systems mentioned in Section 2 that attempt to identify sub-
sumption relations between ontologies (i.e. the class Document subsumes the
class Book). Unfortunately, BLOOMS, CSR and ASMOV could not be located
and the authors could not provide us with those systems. TaxoMap and Ri-
MoM have executable versions available online, but they had errors when run
on the surface water ontologies that could not be fixed without the source code.
PARIS requires instance data from both ontologies, which is not available for
this alignment task.

5.1 1-to-1 Class Equivalence

Because AML and LogMap focus on identifying 1-to-1 class equivalences, we
first analyzed their performance on just this aspect of the surface water ontol-
ogy alignments (i.e. the topmost section of Table 2). The results are shown in
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Table 4 Atom-to-atom class equivalence

AML LogMap

Hydro3 True Positives 5 4
False Positives 1 2
False Negatives 1 2
Precision 0.833 0.667
Recall 0.833 0.667
F-measure 0.833 0.667

hydrOnt (translated) True Positives 3 4
False Positives 6 5
False Negatives 8 7
Precision 0.333 0.444
Recall 0.273 0.364
F-measure 0.300 0.400

hydrOnt (native) True Positives 0 0
False Positives 0 0
False Negatives 11 11
Precision 0 0
Recall 0 0
F-measure 0 0

Cree True Positives 0 0
False Positives 0 0
False Negatives 2 2
Precision 0 0
Recall 0 0
F-measure 0 0

Table 4. Precision reflects the percentage of mappings found by the system that
were correct, while recall is related to the number of correct mappings that the
system found. F-measure is the harmonic mean of precision and recall. AML
was able to identify five of the six 1-to-1 class equivalences between the SWO
and Hydro3 ontologies with one false positive, while LogMap found four with
two false positives. The performance on the version of the hydrOntology that
was translated into English was significantly worse, with AML and LogMap
correctly identifying three and four relations out of 11, respectively. Neither
system was capable of producing any results on the non-English ontologies.

Even though both AML and LogMap were designed to identify 1-to-1 class
equivalences, their performance on these ontologies from the surface water
domain are significantly below what they have achieved on the OAEI bench-
marks. For example, in 2017 AML had an F-measure of 0.76 on ontologies
from the domain of conference organization and 0.94 when matching ontolo-
gies about human and mouse anatomy. The corresponding values for LogMap
were 0.73 and 0.88 [2]. A detailed analysis of the results of AML and LogMap
on finding the 1-to-1 class equivalences among the surface water ontologies
considered here shows these systems’ reliance on lexical similarity among en-
tity labels. For example, all of AML’s correct results on the Hydro3-to-SWO
alignment task involve either exact matches of entity labels (e.g. Levee to
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Levee) or significant lexical similarity (e.g. Falls to Waterfall). This approach
can sometimes lead to incorrect results, such as AML’s treatment of Hydro-
graphic Feature in Hydro3 as equivalent to HydrographicFeature in the SWO,
when the correct mapping is between the union of Hydrographic Feature, Hy-
drographic Structure and Boundary of Hydro3 and the SWO Hydrograph-
icFeature class. A heavy reliance on lexical metrics causes AML and LogMap
to miss some fairly clear mappings, such as Wetlands to SwampOrMarsh in
the Hydro3-to-SWO task, and to fail completely when the ontologies are not
in the same language. This issue has been noted previously, as in [8].

The dependence of automated alignment systems on syntactic similarity
between entity labels is not unique to AML and LogMap: the results from the
complex alignment track of the OAEI show the same pattern. Within that
track were several different data sets, including the one presented here, one
based on the domain of academic conference organization, and one from the
geosciences.5 The conference and geosciences alignments both involve more
syntactically similar entity labels than the surface water ontology alignments.
The average normalized Levenstein distance between related source and target
entity labels in the conference ontologies is .28. For the geosciences it is .24,
while for the surface water ontologies the corresponding value is .16. Unsurpris-
ingly, the participating alignment systems performed better on the conference
and geosciences tasks than on the surface water case, in terms of the number
of systems that could generate meaningful results. For the conference case,
two alignment systems were able to identify complete complex mappings. No
systems were capable of this for the geosciences and surface water tests, so in-
stead, systems were evaluated based on their ability to determine which target
entities were related to a given source entity. The average F-measure for the
surface water ontologies was .10, versus .18 for the geosciences. More detail
about the performance of alignment systems on the 1-to-1 class equivalence
task for these ontologies can be found in [3].

5.2 Identification of related entities

As shown in Table 2, the majority of relations between these surface water
ontologies are not 1-to-1 class equivalences, but rather relations in which an
entity in one ontology is related in some way (equivalence, subsumption, or
disjointness) to an expression involving multiple entities from the other on-
tology. As discussed previously, most current automated alignment systems,
including AML and LogMap, cannot directly identify these types of relations.
However, these systems do contain a set of similarity metrics that is used to
assess the degree of relevance of one entity to another. In this section we ex-
plore the ability of these alignment systems to effectively rank target ontology
entities for each entity in the source ontology.

5 There was also a fourth data set from the plan taxonomy domain, but we could not
include it in our analysis because the reference alignments are not public.
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We evaluate the performance against the reference alignments in terms of
mean reciprocal rank. This is a standard evaluation metric in situations in
which results are ordered according to how well they apply to the current
search or query, such as search results or auto-completion suggestions. In this
case, the “query” is the given entity from the source ontology. As an exam-
ple, consider the relation below, which appears in the alignment between the
hydrOntology and the SWO:

<SubClassOf>

<Class abbreviatedIRI="hydrOnt:Aguas_Corrientes"/>

<ObjectIntersectionOf>

<Class abbreviatedIRI="swo:SurfaceFeature"/>

<Class abbreviatedIRI="swo:Waterbody"/>

<ObjectSomeValuesFrom>

<ObjectProperty abbreviatedIRI="swo:hasFlow"/>

<Class abbreviatedIRI="swo:Flow"/>

</ObjectSomeValuesFrom>

</ObjectIntersectionOf>

</SubClassOf>

Assume an alignment system produced the following ordered set of SWO
entities and similarity values for the hydrOntology entity Aguas Corrientes:

River 0.97

Rapids 0.96

Waterbody 0.94

Flow 0.91

Waterfall 0.89

hasFlow 0.88

...

We calculate the reciprocal rank by summing the inverses of the ranks of
each correct answer and dividing by the number of answers. An entity’s rank
is its place in the ordered list minus the number of entities involved in the
relationship (3 in this case). Continuing with the example, Waterbody has a
rank of 1 because it is among the first three entities. Flow has a rank of 2 and
hasFlow has a rank of 4. The reciprocal rank for this relation is therefore (1/1
+ 1/2 + 1/4) / 3 = 0.58. The mean reciprocal rank is then just the average
of the reciprocal ranks over all relations in the reference alignment. A value
of 1.0 means that the alignment system always ranks the entities involved in
the relation most highly, while a value of 0.0 occurs if the system consistently
ranks the related entities last in its list. This metric was chosen because it
can differentiate between the two system’s performance even when neither
one produces the correct answer, in effect recognizing one as “closer” than the
other based on how high the related target entities are in its list.

In order to use AML and LogMap in this way, a few changes needed to
be made. In particular, we changed AML so that the system would display
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aggregate similarity values for every entity in the target ontology when con-
sidering an entity from the source ontology. This involved commenting out
code that forced an alignment to be 1-to-1.6 When we ran the system, we did
not enable the filtering and repair functionality. As for LogMap, its approach
to ontology alignment more heavily involves consideration of whether or not
a relation would conflict with another relation that has a higher confidence
value. This approach is not conducive to a complete ranking of all possible
relations, so in order to generate such a ranking while keeping the spirit of
the LogMap approach, we modified LogMap so that rather than filtering out
inconsistent or dangerous mappings, it allows them but assesses a penalty on
their confidence value.

The results of this effort are shown in the first two data columns of Ta-
ble 5. The table clearly shows the increasing difficulty level of the alignment
tasks. Additionally, we see that this version of AML outperforms the modified
version of LogMap on this task, which is not surprising given that much of the
underlying principle of that system assumes that the goal is to generate 1-to-1
relations. As with the 1-to-1 results, upon detailed analysis of the results in
this section we again see that lexical similarity explains the vast majority of
the performance. Both AML and LogMap tend to rank syntactically similar
target entities highly, so if these are the ones involved in the complex map-
pings, the mean reciprocal rank benefits. This tendency is more important
than any other factor, such as the number or types of entities involved in the
mapping.

One thing of note is that neither AML nor LogMap make use of comments
encoded within the ontology. This may be because most of the ontologies in-
volved in the OAEI benchmarks do not contain comments. However, except
for Hydro3, all of the ontologies from the surface water domain covered here
make extensive use of comments. The comments in the Cree ontology are par-
ticularly helpful given the challenges of the language. We therefore added a
new matcher to AML that leverages these comments and evaluated its per-
formance in the same way as the other systems. To do this, we modified the
AML Lexicon to store comments in addition to entity labels. We then created
a CommentMatcher class. The match method in this class iterates through
all of the comments in the source ontology and identifies entities in the target
ontology whose names are mentioned in the comment. Relationship strength is
based on the number of words in common between the comment and the entity
name, divided by the number of words in the comment. We have made this
system publicly available on GitHub.7 The results of this approach, shown in
the last column of Table 5, show a large increase in performance when English
comments are available.

6 This code is in the string matcher and the neighborhood matcher within AML
7 https://github.com/mcheatham/aml-comments
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Table 5 Related entity recommendation (assessed by mean reciprocal rank)

AML LogMap AML with comments

Hydro3 0.91 0.69 0.91

hydrOnt (translated) 0.50 0.36 0.79

hydrOnt (native) 0.15 0.10 0.19

Cree 0.05 0.06 0.98

6 Discussion

Results like those described in Section 5 are useful because they highlight the
performance of top performing existing automated alignment systems in the
surface water domain and raise new challenges that can be addressed in the
future. We see that identifying complex relationships between two ontologies is
a very challenging task. This is particularly true in the surface water domain,
because such ontologies frequently have less syntactic and structural (due to
differing levels of abstraction) similarity than ontologies in other domains that
have been a focus for alignment system developers. Here we present some
possible research threads to improve the performance of automated alignment
systems in this domain.

The relative success of the AML with comments system in identifying re-
lated entities is an important first step that could be leveraged in a more com-
plete complex alignment system. Its performance is good enough that it can
already be of some utility in a semi-automated approach to complex ontology
alignment in this domain. For example, we have developed a web application
called WorldView that assists a domain expert (for example, a native Cree
speaker) and an ontologist in building a complex alignment between an on-
tology familiar to the domain expert and an unfamiliar one from the same
domain for which instance data (e.g. coordinates) are available. A screenshot
is shown in Figure 7. The user clicks on a word from the familiar (source)
ontology in the upper left quadrant (Area 1) and an automated alignment
system such as AML with comments ranks entities from the target ontology
in terms of relevance. The user can then click on these ranked entities to be
shown pictures of them in the map view on the right (Area 3). The domain
expert and ontologist can then work together using the axiom authoring tool
in the bottom left (Area 2) to refine the relation until the domain expert is
satisfied that the things highlighted in the map view match his or her defini-
tion of the surface water feature. This tool differs from the systems discussed
in Section 2 in that it requires instance data only for the target rather than
both ontologies. The source code is available on GitHub.8

While including comments in the alignment process significantly improves
performance, further gains will require more advanced techniques. In the sit-
uation discussed in this paper, instance data is available for only one of the

8 https://github.com/mcheatham/worldview
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Fig. 7 The WorldView semi-automated alignment system

ontologies (the SWO). However, in cases where instance data is available for
both the source and target ontologies being matched, extensional alignment
approaches could be considered. Extensional alignment systems consider the
overlap between instances when aligning entities at the schema level. In our
future work on this topic, we plan to create an extensional matcher that lever-
ages logical RDF compression [21]. Logical RDF compression uses the FP-
Growth data mining algorithm to generate rules that can be stored in lieu of
the triples they are based on. While logical RDF compression seeks to find
any rules that can be used to shrink the dataset, it is possible that some of
these rules represent meaningful semantic relations that hold between entities.
Because the FP-Growth algorithm underlying logical RDF compression can
generate a very large number of rules, some mechanism must be put in place
to choose the more semantically meaningful rules rather than the ones that re-
sult in the most compression. Our planned approach for this is to choose rules
that involve the entities suggested by traditional alignment systems. Another
possibility, when coordinates of surface water features is available in both the
source and target ontologies, is to take advantage of the spatial nature of this
domain by extending the semi-automated approach of WorldView to a fully
automated system.

In order to deal with the challenges presented by the varied vocabulary
used to describe surface water features and the interrelated nature of their
definitions, alignment systems would likely benefit from incorporating exter-
nal resources, similar to the way AML leverages upper level life sciences on-
tologies as a source of background knowledge when aligning ontologies from
that domain [15]. Unfortunately, the surface water domain is currently some-
what lacking in these resources. Another approach might be to leverage more
general purposes knowledge sources, such as Wikipedia. Working with unstruc-
tured text in this context is difficult, but relatively recent advances in word
embeddings ([25]) might make such an approach feasible.
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7 Conclusion

This paper explored the nature of the relationships that exist across a set of
ontologies from the surface water domain and examined the performance of
current automated alignment systems in this domain. Characteristics common
to surface water ontologies, such as lack of syntactic similarity of entity labels,
differences in modeling granularity, and the tendency for surface water features
to be defined in terms of other features pose particular challenges for current
systems. Our results show that existing alignment systems do not perform as
well in this domain as they do on standard ontology alignment benchmarks.
In addition, no current systems were able to find relations other than 1-to-
1 equivalences. The reference alignments presented here have therefore been
introduced as part of a new track within the Ontology Alignment Evaluation
Initiative, in an effort to spur researchers to improve performance on this
domain and to develop alignment systems capable of identifying the complex
relationship types present among surface water ontologies. This paper provides
background knowledge and baseline results for system developers interested in
participating in that track. In addition, a discussion of possible next steps to
improve performance in this domain is included in order to provide ideas for
future work on this topic.
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Abstract. Ontology alignment has been an active research topic for
over a decade. Over that time, many developers have focused on cre-
ating alignment systems and methods to find simple 1-to-1 equivalence
matches between two ontologies. However, very few alignment systems
focus on finding complex correspondences. There are several reasons for
this limitation. First, there are no widely accepted alignment benchmarks
that contain such complex relationships. Second, the traditional evalua-
tion metrics like precision, recall, and f-measure are not accurate enough
to evaluate the performance of a complex alignment system. And third,
the approaches most commonly used to find simple equivalences do not
handle the increased computational complexity of finding complex equiv-
alences well. Therefore, it becomes a big challenge for many developers
to create and evaluate the systems. In this paper, in order to advance
the development of ontology matching, we seek to address the problem
by first developing potential complex alignment benchmarks from real-
world ontologies. In addition, we utilize traditional automated alignment
systems to suggest complex correspondences, and finally plan to achieve
our ultimate goal of creating and evaluating our own complex alignment
system based on logical RDF data compression.

1 Problem Statement

Similar to database integration, ontology alignment is an important process in
enabling computers to query and reason across the many linked open datasets on
the semantic web. This is a difficult challenge because the ontologies underlying
different linked datasets can vary in terms of subject area coverage, level of
abstraction, ontology modeling philosophy, and even language.

In order to solve this problem, an ontology alignment system aims to iden-
tify the entity relationships between two and more ontologies. Such relationships
have a wide range of complexity, from basic 1-to-1 equivalence to arbitrary m-
to-n relationships. However, over a decade, the majority of the studies in the
field still focuses on the simplest end of this scale – finding 1-to-1 equivalence
relations between ontologies. Very few ontology alignment systems and methods
are developed to uncover complex relations. The reasons for this limitation may
lie in the following. First, there are no widely used and accepted ontology align-
ment benchmarks that involve complex relations. Without these benchmarks,

108



2 Lu Zhou

even if there were a complex alignment system, it is not only very hard to eval-
uate if this system could correctly detect the complex correspondences, but also
it is a challenge to evaluate whether the system is comprehensive enough to
find all different kinds of complex patterns. Second, the traditional approach of
precision, recall, and f-measure does not seem fine-grained enough to evaluate
complex correspondences. A better version of precision and recall is needed [2].

This work seeks to progress in the direction of fostering the development of
research activities in the field of complex ontology alignment. We firstly show
that real-world ontologies involve many complex relations. And based on these
real-world datasets, we develop high quality complex alignment benchmarks,
including creating complex alignments and categorizing them into complex pat-
terns. In addition, to decrease the complexity of detecting complex relations, we
leverage automated alignment systems to uncover and suggest possible complex
relations. Moreover, we plan to apply logical RDF compression with the results
that are generated by traditional automated alignment systems to create a new
complex alignment system.

2 Relevancy

Ontology alignment seeks to address the conceptual heterogeneities between on-
tologies. Over a decade, the community of this field remains on creating and
improving the algorithms of finding simple alignments. The reason that the re-
searchers do not really dig into the complex alignment for such a long time, is
that the community is still discovering and analyzing how to reach the goal.
Nowadays, the research related to simple alignment has been well studied. It is
actually a good timing to move on to complex ontology alignment, because more
and more good alignment systems and algorithms have been published, and also
more and more data are populated into ontologies and published as linked open
data, the applications that utilize these LODs are required to involve ontology
matching and data integration processes [3]. In addition, due to the complexity
of the alignments between ontologies, only identifying traditional simple 1-to-1
alignment is not enough to fulfill the growing high demand of most of these
applications. Therefore, it is necessary to create complex alignment systems and
methods to uncover complex relations in real-world use cases.

This work focuses on addressing the problem from several different perspec-
tives. We prepared benchmarks that involve complex relations from real-world
ontologies and will try to distribute them as a new track in the Ontology Align-
ment Evaluation Initiative (OAEI), which was started in 2005 with the intent
to allow researchers in the field to compare the performance of their approaches
on a consistent set of benchmarks over time. Since then, it has been more conve-
nient for researchers from different organizations to test their methods. Second,
as we’ve seen, it is a difficult challenge to detect complex relations. This work
seeks to narrow down this issue by leveraging traditional alignment systems to
suggest possible complex candidates. This would be a valuable starting point for
determining the exact relation. Moreover, our ultimate goal in this work is to
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create a complex alignment system that has better performance than traditional
automated alignment systems.

3 Related work

Regarding the creation of complex alignment benchmarks, Thieblin [11] is creat-
ing a complex alignment benchmark using the Conference track ontologies within
the OAEI. This work is partially completed, and at the time of this writing it
covers three of the seven ontologies. In addition, we are collaborating with them
(under their direction) to complete the dataset and prepare a new task in OAEI
to evaluate complex alignment systems.

However, even though there are no widely accepted and used benchmarks
that involve complex relations, some researchers still tried to create alignment
systems and evaluate them using their ow manually developed reference align-
ment. BLOOMS [3] is an alignment system based on Wikipedia to detect the
subsumption relations. Other subsumption systems have evaluated the precision
of their approach by manually validating relations produced by their system,
while foregoing an assessment of recall [9]. There are some more general ap-
proaches based on complex patterns to detect complex correspondences. Ritze
et al [7, 8] proposed several complex correspondences patterns. Such as: Class
by Attribute Value, Class by Attribute Type, Class by Inverse Attribute Type,
Inverse Properties, and Property Chain. In addition, Ritze also utilized linguistic
analysis techniques, like detection of antonymy, active form, etc to help detect
these complex patterns. Other similar work was done by Šváb-Zamazal and
Svátek [10]. It firstly detected N-ary relations in the source ontology. And then,
it matched the detected N-ary relations to an object property in the target
ontology.

Our work differs from the above methods in several aspects. First, we focus
on real-world ontologies, which we found that these datasets are not only used
by academic researchers, but also the industries and governments to develop
applications for the usage of normal human life. There are some interesting
relations that have not yet been mentioned in the current benchmark from OAEI.
In addition, the instance data of these real-world ontologies are ready to be used
as additional information to help improve the performance of alignment process.
In contrast to this, significant instance data is not readily available for most of
the OAEI Conference Track ontologies. Moreover, regarding the creation of a
complex alignment, instead of comparing each entity in the source ontology to
each entity in the target ontology, we apply logical RDF compression to list a
set of available rules, and narrow down them based on the suggestion generated
by traditional alignment systems to finally output the complex relation. More
details are discussed in Section 5.
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4 Research Questions and Hypotheses

The research questions that we plan to address are listed as follows:

1. Do real-world ontology alignments contain complex relations?
2. How well do traditional automated alignment systems work on real-world

matching tasks that contain complex relations?
3. Can we create an automated alignment system that performs better than tra-

ditional alignment systems on finding complex relations that exist between
ontologies?

Our hypotheses associated to the above research questions are the following:

1. Most real-world ontologies contain many complex relations.
2. Traditional automated alignment systems may not be able to identify com-

plex relationships directly, but they may be able to suggest the atomic enti-
ties involved in such relations.

3. A complex alignment system that leverages logical RDF compression can
effectively identify complex relations between ontologies.

5 Approach

Hypothesis 1 Our previous work with the NSF EarthCube Initiative and the
US Geological Survey involved the time consuming task of manually aligning
several real-world ontologies. These alignments have been discussed and evalu-
ated by domain experts and ontology engineers to guarantee that they are of
high quality. We will inventory these alignments, along with any other real-world
alignments we can acquire, to answer the first research question: Do real-world
ontology alignments contain complex relations?

Hypothesis 2 To answer the second research question, “How well do tradi-
tional automated alignment systems perform on real-world matching tasks that
contain complex relations?”, we plan to first evaluate several state of the art
alignment systems on the alignment tasks mentioned above. Since traditional
alignment systems only attempt to identify simple relations between ontologies,
their performance will be limited to the percentage of the alignments that in-
volve these types of relations. However, it is possible that these systems, while
they cannot identify the precise relationship that holds between an entity in the
source ontology and two or more entities in the target ontology, they can at
least identify the entities involved in the relationship. For example, in the rela-
tion below, the class Mischaakusaakihiikin in Cree ontology is equivalent to
the intersection of instances of LakeOrPond and entities that isContainedBy
a SwampOrMarsh in the SWO ontology. While a traditional alignment sys-
tem cannot identify things like intersection or value restrictions, it may be able
to determine that LakeOrPond, isContainedBy, and SwampOrMarsh are re-
lated in some way to Mischaakusaakihiikin. To check this, for each entity es
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in source ontology Os, we will use the automated alignment systems to give a
list of candidates et in the target ontology Ot, ordered by the similarity assigned
to them by the alignment system. We will evaluate the performance against the
benchmark using mean reciprocal rank [6].

EquivalentClasses(cree:Mischaakusaakihiikin

ObjectIntersectionOf(swo:LakeOrPond

ObjectSomeValuesFrom(swo:isContainedBy

swo:SwampOrMarsh)))

Hypothesis 3 As we mentioned, the ultimate goal of this work is to see if
we can create an automated alignment system that effectively identifies com-
plex relationships that exist between two ontologies. Our planned approach is
to create an extensional matcher (i.e. one that relies upon instance data) that
leverages logical RDF compression [5]. Logical RDF compression uses the FP-
Growth data mining algorithm to generate rules that can be stored in lieu of
the triples they are based on. For example, say that a linked dataset contains
triples about university students. There might be many triples of the form <ind1
hasMajor ComputerScience> and many corresponding triples of the form <ind1
isEnrolledIn CollegeOfEngineering> because, according to this dataset, all Com-
puter Science majors are enrolled in the College of Engineering. Logical RDF
compression would replace the second set of triples with a single rule: if x is has-
Major ComputerScience then x isEnrolledIn CollegeOfEngineering, and these
triples could then be generated on-the-fly in response to queries, thereby saving
space in the linked dataset. While logical RDF compression seeks to find any
rules that can be used to shrink the dataset, it is possible that some of these
rules represent meaningful semantic relations that hold between entities. For
example, if hasMajor ComputerScience exists in one ontology and isEnrolledIn
CollegeOfEngineering exists in another ontology, then it may be possible to infer
the relation below.

SubClassOf(ObjectSomeValuesFrom(ont1:hasMajor ont1:ComputerScience)

ObjectSomeValuesFrom(ont2:isEnrolledIn ont2:CollegeOfEngineering))

Because the FP-Growth algorithm underlying logical RDF compression can
generate a very large number of rules, some mechanism must be put in place to
choose the more semantically meaningful rules rather than the ones that result
in the most compression. Our planned approach for this is to choose rules that
involve the entities suggested by traditional alignment systems.

The overall work flow is shown in Figure 1. We first apply the traditional
alignment systems to suggest the candidates as we described above. And then,
we use RDF compression [5] on the source ontology to list a set of compression
rules. Based on the suggested candidates from traditional alignment systems,
we can create a filter to pick up the compression rules, and finally output the
complex relations.
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Fig. 1. The Work Flow of the Proposed Complex Alignment System

6 Preliminary Results

We have some preliminary results in terms of finding complex relations from real-
world ontologies. There are two different datasets that we are currently working
on. One dataset is from GeoLink project1 that was funded under the U.S. Na-
tional Science Foundation’s EarthCube initiative. Another dataset is a set of
ontologies from surface water domain. Based on these two sets of ontologies, we
have developed the alignments in consultation with domain experts from differ-
ent institutions. In GeoLink datasets, the number of classes, object properties,
and data properties in GeoLink base ontology (GBO) and GeoLink modular on-
tology (GMO) are showed in Table 1. We found that the 87 out of 111 relations
in them are complex relations, including not only class subsumption, property
subsumption, property chain equivalence, and property chain subsumption that
were introduced in [7], but also some typecasting relations. The idea of typecast-
ing, and why it is important in ontology modeling, is formally introduced and
discussed in [4]. Moreover, the alignment is also available in both EDOAL and
rules syntax for the purpose of manipulating and reading respectively. The full
dataset has been uploaded to the FigShare2. We also wrote a paper to describe
the creation and submitted to ISWC2018, which is currently under-review.

In hydrography dataset, it consists of four ontologies. (a) The Surface Wa-
ter Ontology (SWO), which was originally presented in [12], was developed by
the US Geological Survey (USGS). (b) The Hydro3 ontology was developed by
individuals at the University of Maine in order to support expanded gazetteer
functions using topology and semantic inference [13]. (c) The HydrOntology is a
non-English ontology, which was developed by the Spanish National Geographic
Institute (IGN) [1]. (d) Cree surface water ontology is in a language, Cree, which

1 https://www.geolink.org/
2 https://doi.org/10.6084/m9.figshare.5907172
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Table 1. The Number of Classes, Object Properties, and Data Properties in Both
GeoLink Ontologies

Ontology Classes Object Properties Data Properties

GBO 40 149 49

GMO 156 124 46

is spoken by some of the native inhabitants of northern Canada. The reason of
choosing these four ontologies is that Hydro3, HydrOntology and Cree have a
large degree of overlap with SWO. Therefore, we utilize these four ontologies
to create a reference alignment manually. Table 2 shows the number of classes,
and object properties, and data properties. And we found that the 84 out of
197 relations in them are complex relations. We are currently writing a paper
about evaluating the performance of traditional automated alignment systems
on this dataset. The traditional automated alignment systems are able to find
the simple relationships. But, they may not be able to identify these complex
relationships directly. We hypothesize that they may be able to suggest some
possible complex relations partially. Moreover, it is able to greatly narrow down
the entities and mitigates the high complexity of computation.

Table 2. The Number of Classes, Object Properties, and Data Properties in Hydrog-
raphy Ontologies

Ontology Classes Object Properties Data Properties

SWO 85 20 1

Hydro3 22 34 0

HydrOntology 154 47 75

Cree 83 21 7

7 Evaluation Plan

In this section, we introduce the evaluation plan for each research question. For
research question 1, as we showed in Section 6, it is considered successful that
we have found many complex alignments in real-world ontologies. In addition,
we are also preparing to incorporate the dataset into OAEI as a new track for
other researchers accessing it. For research question 2, after achieving the list of
entities involved in a complex relation, we will evaluate the performance against
the benchmark using mean reciprocal rank as we discussed in Section 5. For
research question 3, it is a challenge to evaluate the performance of a complex
alignment system. The traditional precision, recall, and f-measure metrics do not
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seem fine-grained enough. For example, there is a relation between Hydro3 and
SWO, if one alignment system identified this:

EquivalentClasses(

ObjectIntersectionOf(

hydro3:Hydrographic_Feature

hydro3:Hydrographic_Structure

hydro3:Boundary)

swo:HydrographicFeature))

and another identified this:

SubClassOf(

ObjectUnionOf(

hydro3:Hydrographic_Feature

hydro3:Island

hydro3:Shore)

swo:HydrographicFeature))

Based on the reference alignment, we need a metric to consider the first sys-
tem “more correct” than the second. We plan to develop a performance metric
that more accurately reflects the performance of a complex alignment system.
Another challenge is that, to the best of our knowledge, there are no existing
complex alignment systems against which to compare our approach. Therefore,
we might consider evaluating the performance based on our manually created
reference alignment.

8 Reflections

It is primarily difficult to identify complex relationships between ontologies be-
cause of computational complexity. A naive approach would need to compare
every entity in the source ontology to every possible combination of entities
in the target ontology, which is not feasible. Instead of doing this, our proposed
approach has a good chance of success because it is based on a logical RDF com-
pression method that has already been shown to be applicable to large datasets,
and we also can further limit the search space by using the output from tradi-
tional alignment systems to narrow the focus. There are some reflections. The
performance of using logical RDF compression in our alignment system is pri-
marily based on the Abox information in the ontology. It is still not clear that
how to apply our alignment algorithm to a more generalized scenario. However,
our approach is feasible, and can be a good starting point to achieve the ultimate
goal in the future.

Acknowledgments I am very grateful to my advisor Dr. Pascal Hitzler and Dr.
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Abstract. Ontology alignment has been studied for over a decade, and
over that time many alignment systems have been developed by re-
searchers in order to find simple 1-to-1 equivalence alignments between
ontologies. However, finding complex alignments, i.e., alignments that
are not simple class or property equivalences, is a topic largely unex-
plored but with growing significance. Currently, establishing a complex
alignment requires domain experts to work together to manually generate
the alignment, which is extremely time-consuming and labor-intensive.
In this paper, we propose an automated method based on association
rule mining to detect not only simple alignments, but also more com-
plex alignments between ontologies. Our algorithm can also be used in
a semi-automated fashion to effectively assist users in finding potential
complex alignments which they can then validate or edit. In addition,
we evaluate the performance of our algorithm on the complex alignment
benchmark of the Ontology Alignment Evaluation Initiative (OAEI).

1 Introduction

Ontology alignment is an important step in enabling computers to query and
reason across the many linked datasets on the semantic web. This is a difficult
challenge because the ontologies underlying different linked datasets can vary in
terms of subject area coverage, level of abstraction, ontology modeling philos-
ophy, and even language. Due to the importance and difficulty of the ontology
alignment problem, it has been an active area of research for over a decade [21].

Ideally, alignment systems should be able to uncover any entity relationship
across two ontologies that can exist within a single ontology. Such relationships
have a wide range of complexity, from simple 1-to-1 equivalence, such as a Person
in one ontology being equivalent to a Human in another ontology, to arbitrary m-
to-n complex relationships, such as a Professor with a hasRank property value
of “Assistant” in one ontology being a subclass of the union of the Faculty
and TenureTrack classes in another. Unfortunately, the majority of the research
activities in the field of ontology alignment remains focused on the simplest
end of this scale – finding 1-to-1 equivalence alignments between ontologies.
Indeed, identifying arbitrarily complex alignment is known to be significantly
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harder than finding 1-to-1 equivalences. In the latter case, a naive approach can
compare every entity from the source ontology against every entity in the target
ontology, which is feasible for small- and medium-sized ontologies. However, a
complex alignment can potentially involve many entities from both ontologies,
so pair-wise comparison is insufficient, and the search space become very large
even for small ontologies. It is indeed very difficult for either a human expert or
an automated system to evaluate all possible combinations [2, 19].

In this paper, we propose a complex alignment algorithm based on asso-
ciation rule mining. Our algorithm automatically discovers potential complex
correspondences which can then be presented to human experts in order to ef-
fectively generate complex alignment between two ontologies with populated
common instance data. We evaluate the performance of our system on one of
the benchmarks from the complex alignment track of the OAEI 2018,3 the Ge-
oLink benchmark, which contains around 74k instances from real-world datasets.
Significant instance data, which is required for the association rule mining ap-
proach, is not available for the remaining benchmarks.4 The main contributions
of this paper are the following:
– The association rule-based algorithm automatically detects not only 1-to-1

equivalences, but also more complex alignment between two ontologies.
– A detailed analysis of the results provides a good understanding of the effi-

cacy of this approach and identifies further directions for advancement.
There is a side contribution when we analyze the results, which is that our
algorithm shows that shared instance data between two ontologies can be a
good resource to improve the performance of ontology alignment.

The rest of the paper is organized as follows. Section 2 discusses related
work in ontology alignment using association rule mining and instance data
and complex ontology alignment, including existing alignment algorithms and
relevant benchmarks. Section 3 gives background on the FP-growth association
rule mining algorithm. Section 4 illustrates the association rule-based alignment
algorithm in detail, along with the alignment patterns used to generate the
alignment between ontologies. The analysis of the performance of the system is
discussed in Section 5. Section 6 concludes with a discussion of potential future
work in this area.

2 Related Work

Association rule mining has already been used for finding 1:1 simple alignments.
AROMA [4] is a hybrid, extensional and asymmetric ontology alignment method
that makes use of association rules and a statistical measure. It relies on the idea
that “An entity A will be more specific than or equivalent to an entity B if the
vocabulary used to describe A and its instances tends to be included in that of B
and its instances.” In addition, association rule mining is also used in discovering
rules in ontological knowledge bases [10] and logical linked data compression [15].

3 http://oaei.ontologymatching.org/2018/complex/index.html
4 It might be available for OAEI 2019.
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There are also some instance-based ontology alignment systems that utilize
Abox information to generate 1:1 simple alignments between ontologies. GLUE
[6] uses joint probability distributions to describe the similarity of concepts in
two ontologies. For example, p(A,B) is the probability that an instance in the
domain belongs to both concept A and concept B. And then, if the instances of
concept A and concept B are in isolation, GLUE uses the instances of A to learn
a classifier for A, and then classifies instances of B according to that classifier,
and vice-versa. FCA MERGE also utilizes common instances between ontologies
[22]. FCA MERGE extracts instances from a given set of domain-specific text
documents by applying nature language processing techniques. Based on the
extracted instances, FCA MERGE applies mathematical techniques to derive a
lattice of concepts as a structural result of FCA MERGE. More instance-based
alignment systems have been discussed in the survey [26].

There are some related studies on creating algorithms to find complex align-
ment between ontologies. Early work on generating complex alignment is [19, 20].
Therein, three complex alignment patterns were described, which are Class by
Attribute Type (CAT), Class by Attribute Value (CAV), and Property Chain
(PC). Based on these patterns, the authors generated complex alignments on
the Conference and Benchmark datasets from the OAEI. [13] identified com-
plex alignments by defining knowledge rules and using a probabilistic frame-
work to integrate a knowledge-based strategy with standard terminology-based
and structure-based strategies. More recent related work is currently being un-
dertaken by Thieblin et al. [24]. They propose a complex alignment approach
that relies on the notion of Competency Question for Alignment (CQA). The
approach translates a CQA into a SPARQL query and extracts a set of instance
data from the source ontology. Then the matching is performed by finding the
lexically similar surroundings between the set of instance data and the instances
in the target ontology. This approach resulted in the CANARD system [23].
However, the current version of the system is limited to finding complex corre-
spondences that only involve classes. More complex correspondences containing
properties are still not taken into account [23]. Another alignment system that
works on the detection of the complex alignment is the complex version of Agree-
mentMakerLight (AMLC) [9]. This system focuses on the complex Conference
benchmark to find alignments that follow the CAT and CAV patterns.

In OAEI 2018, the first version of the complex alignment track [25] opened
new perspectives in the field of ontology matching. It comprised four different
benchmarks containing complex relations. However, the results from the first
year were rather poor. Only 2 out of 15 systems, AMLC and CANARD, were
able to generate any correct complex correspondences on the complex Conference
and Taxon benchmarks, and the correct number of mappings found was quite
limited. The very limited performance of the two systems of course shows avenues
for improvement in the future. More details of evaluations and results can be
accessed on the OAEI 2018 website.5

5 http://oaei.ontologymatching.org/2018/complex/index.html
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Our algorithm differs from the above methods in several aspects. First, [9],
[13], and [19] focus on computing lexical or terminological similarity to decide
on complex alignments, while our system takes advantage of instance data to
generate association rules between ontologies. While the CANARD system also
relies on the instance data, we use it in completely different ways. In addition, the
current version of CANARD is limited to finding complex correspondences that
involve only classes, while our algorithm does not have this limitation. Second,
our evaluation of results is more detailed, in order to provide insight into how
to improve the performance of complex alignment algorithms. Specifically, we
break the evaluation process down into two subtasks: entity identification and
relationship identification. We utilize a variation of traditional evaluation metrics
called relaxed precision, recall, and f-measure [7] to present the final results of
the full complex alignment.

3 Background

In order to help the reader understand how we apply association rule mining
and the FP-growth algorithm on the ontology alignment task, we introduce here
some concepts that we frequently mention in the rest of the paper.

Association Rule Mining. Our alignment system mainly depends on a
data mining algorithm called association rule mining, which is a rule-based ma-
chine learning method for discovering interesting relations between variables in
large databases [17]. Over the years, association rule mining has played an im-
portant role in many data mining tasks, such as market basket analysis, web
usage mining, and bioinformatics. Many algorithms for generating association
rules have been proposed, like Apriori [1] and FP-growth algorithm [11]. In this
paper, we use FP-growth to generate association rules between ontologies, since
the FP-growth algorithm has been proven superior to other algorithms [11] and
will improve the algorithm in terms of run-time.

Transaction Database. Let I = {i1, i2, . . . , in} be a set of distinct at-
tributes called items. Let D = {t1, t2, . . . , tm} be a set of transactions where
each transaction in D has a unique transaction ID and contains a subset of the
items in I. Table 1 shows a list of transactions corresponding to a list of triples.
The data in an ontology can be displayed as a set of triples, each consisting of
subject, predicate, and object. Here, subjects represent the identifiers and the
set of corresponding properties with the objects represent transactions, which
are separated by the symbol “|”. I.e., a transaction is a set T = (s, Z) such that
s is a subject, and each member of Z is a pair (p, o) of a property and an object
such that (s, p, o) is a triple.

FP-growth. The FP stands for frequent pattern. The FP-growth algorithm
is run on the transaction database in order to determine which combinations of
items co-occur frequently. The algorithm first counts the number of occurrences
of all individual items in the database. Next, it builds an FP-tree structure by
inserting these instances. Items in each instance are sorted by descending order
of their frequency in the dataset, so that the tree can be processed quickly. Items
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Table 1. Triples and Corresponding Transactions

s1 p1 o1
s1 p2 o2
s1 p4 o4
s2 p1 o1
s2 p2 o2
s2 p3 o3
s2 p4 o4
s3 p1 o1
s3 p2 o2

TID Itemsets

s1 p1|o1, p2|o2, p4|o4
s2 p1|o1, p2|o2, p3|o3, p4|o4
s3 p1|o1, p2|o2

Table 2. Examples of Association Rules

Antecedent Consequent

p4|o4, p1|o1 p2|o2
p2|o2 p1|o1
p4|o4 p1|o1

in each instance that do not meet the predefined thresholds, such as minimum
support and minimum confidence (see below for these terms), are discarded.
Once all large itemsets have been found, the association rule creation begins.

Association Rule. Every association rule is composed of two sides. The
left-hand-side is called the antecedent, and the right-hand-side is the consequent.
These rules indicate that whenever the antecedent is present, the consequent is
likely to be as well. Table 2 shows some examples of association rules generated
from the transaction database in Table 1.

Support. Support indicates how frequently an itemset appears in the dataset.
The FP-growth algorithm finds the frequent itemsets from the dataset based on
the minimum support threshold. In our alignment system, the minimum support
value is examined and set to 0.001 to guarantee the best performance.

Confidence. Confidence is an indication of how often an association rule has
been found to be true, i.e. how often the presence of the antecedent is associated
with the presence of the consequent. The minimum confidence can be tuned to
find relatively accurate rules. In this paper, we use the minimum confidence of
0.3 as default value. And we tune the value to 1 when we mine the association
rules that may contain complex relations, because our algorithm would focus on
precision-oriented results.

Lift. Lift is the ratio of the observed support to that expected if the an-
tecedent and consequent were independent. If the lift is greater than 1, it means
that the two items are dependent on one another, which indicates that the as-
sociation rule useful. In our approach, lift is used to choose between otherwise
equal options when detecting simple mappings. When the confidence values of
two association rules are the same, the one with higher lift value is selected as
the basis for the mapping.

4 Association Rule-Based Alignment Algorithm

In this section, we introduce the proposed ontology alignment algorithm based
on association rule mining in detail. Figure 1 illustrates the overview of our
proposed algorithm.

121



6 Lu Zhou, Michelle Cheatham, and Pascal Hitzler

Fig. 1. Overview of The Proposed Alignment Algorithm

4.1 Data Preparation

We first extract all triples 〈Subject, Predicate, Object〉 from the source and
target ontologies. Each item in a triple is expressed as a web URI. After collecting
all of the triples, we prepare the data as follows: we only keep the triples that
contain at least one entity under the source or the target ontology namespace
and also the triples that contain rdf:type information, since our algorithm relies
on this information. After this, there are still some triples containing less useful
information for association rule mining, which follow this format: x rdf:type
owl:NamedIndividual. This triple is not very informative except stating the subject
x is an individual. But, it frequently occurs in the dataset and may lead to
noises when applying the FP-growth algorithm, since the frequency of occurrence
impacts the results of FP-growth. So, we filter out such noise from the dataset
as well.

After this filtering process, we generate the transaction database for the FP-
growth algorithm based on all of the remaining triples. The subjects serve as the
transaction IDs, and the predicates with the objects separated by the symbol “|”
are the items for each transaction. Then we replace the object in the triples with
its rdf:type,6 because we focus on generating schema-level (rather than instance-
level) mapping rules between two ontologies, and the type information of the
object is more meaningful than the original URI. If an object in a triple has
rdf:type of a class in the ontology, we replace the URI of the object with its
class. If the object is a data value, the URI of the object is replaced with the
datatype. If the object already is a class in the ontology, it remains unchanged.
Tables 3 and 4 show some examples of the conversion.

4.2 Association Rule and Alignment Generation

We run the FP-growth algorithm on the transaction database and generate a
set of association rules. Since we are trying to find the mappings between two
ontologies, we focus on mining the rules whose antecedent only contains entities

6 Our evaluation data has only single type. If there are multiple types of the object, it
can also combine the subject and predicate as additional information to determine
the correct type, or keep both types as two triples.
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Table 3. Original Transaction Database

TID Itemsets

x1 gbo:hasAward|y1, gmo:fundedBy|y2
x2 gbo:hasFullName|y3, gmo:hasPersonName|y4
x3 rdf:type|gbo:Cruise, rdf:type|gmo:Cruise

Table 4. Typed Transaction Database

TID Itemsets

x1 gbo:hasAward|gbo:Award, gmo:fundedBy|gmo:FundingAward

x2 gbo:hasFullName|xsd:string, gmo:hasPersonName|gmo:PersonName

x3 rdf:type|gbo:Cruise, rdf:type|gmo:Cruise

from the source ontology and whose consequent only contains entities from the
target ontology. The association rules tell us which source entities are related to
which target entities, but they do not give us information on how those entities
are related. In order to determine this, we analyze the output of the association
rule mining step in light of the common alignment patterns introduced in [19,
27]. In the following, we introduce how we leverage these alignment patterns
to filter the association rules and generate the corresponding alignment. The
following examples that we use in this paper are from the GeoLink benchmark
[27]. gbo: is the prefix of the namespace of the GeoLink Base Ontology (GBO),
and gmo: is the prefix of the namespace of the GeoLink Modular Ontology
(GMO). The alignment between the two ontologies contains both simple and
complex correspondences. To deal with the redundancy of generated association
rules, we always keep the simpler rule as the result. For example, there are two
association rules generated by our system. Cruise in the GBO is equivalent to
the domain of fundedBy with it range of FundingAward in the GMO. And Cruise
in the GBO is also equivalent to Cruise in the GMO, which is the domain of
fundedBy. Therefore, the two mapping rules are semantically equivalent. And we
only keep the second rule which is the simpler one as our result.

Simple Alignment. Simple alignment is a set of simple correspondences that
refer to basic 1-to-1 simple mappings between two ontologies, in which the enti-
ties involved may be either classes or properties.

1:1 Class Alignment. The first pattern is simple 1-to-1 class relationships. Classes
C1 and C2 are from ontology O1 and ontology O2, respectively. So, we target
the association rules with the following format:

Association Rule format: rdf:type|C1 → rdf:type|C2

Example: rdf:type|gbo:Award→ rdf:type|gmo:FundingAward
Generated Alignment: gbo:Award(x)→ gmo:FundingAward(x)

The left and right hand side of the arrow represent the antecedent and
consequent in the association rules, respectively. In the example, the associa-
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tion rule implies that if an individual x has rdf:type of gbo:Award, then x also
has rdf:type of gmo:FundingAward. This means that gbo:Award is a subclass of
gmo:FundingAward. If there is another association rule containing the reverse in-
formation, which means that gmo:FundingAward is also a subclass of gbo:Award
then we can generate an alignment based on the two association rules stating
that gbo:Award is equivalent to gmo:FundingAward. This method of choosing be-
tween subsumption and equivalence relationships is used for all of the following
types of correspondences as well.

1:1 Property Alignment. This pattern captures simple 1-to-1 property mappings.
The property can be either an object property or a data property.

(1) Object Property Alignment. Since we have the information of the type of
the object in the association rule, we can use the type information to filter the
mapping candidates. When we align two object properties, the range types of
the properties are usually either equivalent to each other or compatible (because
they are in a subclass or superclass relationship). In this paper, our algorithm is
precision-oriented. Therefore, we require the object properties in the two ontolo-
gies to have equivalent (rather than compatible) ranges in order to be considered
equivalent. Range equivalence is determined through the results of the simple
class alignment introduced above. Object Property op1 with its range type t1
and object property op2 with its range type t2 are from ontology O1 and ontol-
ogy O2, respectively. In order to find this alignment, we select the association
rules with the following format:

Association Rule format: op1|t1 → op2|t2
Example: gbo:hasAward|gbo:Award→ gmo:fundedBy|gmo:FundingAward
Generated Alignment: gbo:hasAward(x, y)→ gmo:fundedBy(x, y)

We know from the results of the simple class alignment that gbo:Award is
equivalent to gmo:FundingAward. This association rule says that gbo:hasAward is
subsumed by gmo:fundedBy. If there is another association rule containing the re-
verse relationship, we can generate the mapping that gbo:hasAward is equivalent
to gmo:fundedBy.

(2) Data Property Alignment. Similar to aligning object properties, when
aligning two data properties, the range values of the two properties should be of
a compatible datatype. In this paper, we only investigate equivalent datatypes.
Data Property dp1 with its range value t1 and property dp2 with its range value
t2 are from ontology O1 and ontology O2, respectively.

Association Rule format: dp1|t1 → dp2|t2
Example:

gbo:hasIdentifierValue|xsd:string→ gmo:hasIdentifierValue|xsd:string
Generated Alignment:

gbo:hasIdentifierValue(x, y)→ gmo:hasIdentifierValue(x, y)

(3) Data/Object to Object/Data Property Alignment. It is possible that
two ontologists may model the same property differently – e.g., there is an ex-
ample in the OAEI GeoLink complex alignment benchmark [27]. The entity
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hasIdentifierScheme is modeled as an object property in the GBO with a range
of class IdentifierScheme. But, this entity is modeled as a data property in the
GMO with a range of the string datatype. In this case, we calculate the Lev-
enshtein string similarity between the labels of the two properties and keep the
pairs within a predefined threshold (0.9 is examined to get the best performance).
The association rule should have the following format:

Association Rule format: op1/dp1|t1 → dp2/op2|t2
Example:

gbo:hasIdentifierScheme|gbo:IdentifierScheme→
gmo:hasIdentifierScheme|xsd:string

Generated Alignment:
gbo:hasIdentifierScheme(x, y)→ gmo:hasIdentifierScheme(x, y)

Complex Alignment. Complex alignment is a set of Complex correspondences
that refer to more complex patterns, such as 1-to-n equivalence, 1-to-n subsump-
tion, m-to-n equivalence, m-to-n subsumption, and m-to-n arbitrary relationship.

1:n Class Alignment. This type of pattern was first introduced in [19]. It contains
two different patterns: the Class by Attribute Type pattern (CAT) and the Class
by Attribute Value pattern (CAV). In addition, [27] introduced another pattern
called Class Typecasting.

(4) Class by Attribute Type. This pattern states that a class in the source
ontology is in some relationship to a complex construction in the target ontology.
This complex construction may comprise an object property and its range type.
Class C1 is from ontology O1, and object property op1 and its range type t1 are
from ontology O2.

Association Rule format: rdf:type|C1 → op1|t1
Example: rdf:type|gbo:PortCall→ gmo:atPort|gmo:Place
Generated Alignment: gbo:PortCall(x)→ gmo:atPort(x, y) ∧ gmo:Place(y)

In this example, this association rule implies that if the subject x is an
individual of class gbo:PortCall, then x is subsumed by the domain of gmo:atPort
with the range type of gmo:Place. The equivalence relationship can be generated
by combining another association rule holding the reverse information.

(5) Class by Attribute Value. This pattern is similar to the previous one. It
just replaces the object property with a data property. Class C1 is from ontology
O1, and data property dp1 and its datatype of the range value t1 are from
ontology O2.

Association Rule format: rdf:type|C1 → dp1|t1
Example: rdf:type|gbo:Identifier→ gmo:hasIdentifierScheme|xsd:string
Generated Alignment: gbo:Identifier(x)→ gmo:hasIdentifierScheme(x, y)

(6) Class Typecasting. This pattern indicates that an individual x of type
C1 in one ontology O1 is cast into a subclass of C2 in the other ontology O2.

Association Rule format: rdf:type|C1 → rdfs:subClassOf|C2

Example: gbo:PlaceType→ rdfs:subClassOf|gmo:Place
Generated Alignment: gbo:PlaceType→ rdfs:subClassOf(x, gmo:Place)
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1:n Property Alignment This pattern represents a Property Typecasting rela-
tionship that is defined in [27].

(7) 1:n Property Typecasting. This pattern is similar in spirit to the Class
Typecasting patterns mentioned above. However, in this case, a property from
one ontology is cast into a class assignment statement in the other ontology.

Association Rule format: p1|t1 → rdf:type|C2

Example: gbo:hasPlaceType|gbo:PlaceType→ rdf:type|gmo:Place
Generated Alignment:

gbo:hasPlaceType(x, y) ∧ gbo:PlaceType(y)→ gmo:Place(x)

m:n Complex Alignment. This group contains the most complex correspon-
dences.

(8) m:n Property Chain. This pattern applies, for example, when a property,
together with type restrictions on one or both of its fillers, in one ontology, has
been used to “flatten” the structure of the other ontology by short-cutting a
property chain in that ontology. The pattern also ensures that the types of the
property fillers involved in the property chain are typed appropriately in the
other ontology. The class C1 and property r1 with its range restriction t1 are
from ontology O1, and classes Bi and properties pi with its range restriction di
are from ontology O2.

Association Rule format:
rdf:type|C1, r1|t1 → rdf:type|B1, p1|d1, . . . , rdf:type|Bi, pi|di

Example:
gbo:Award, gbo:hasSponsor|gbo:Organization

→ rdf:type|gmo:FundingAward,
gmo:providesAgentRole|gmo:SponsorRole,
gmo:performedBy|gmo:Organization

Generated Alignment:
gbo:Award(x) ∧ gbo:hasSponsor(x, z) ∧ gbo:Organization(z)

→ rdf:type|gmo:FundingAward(x)∧
gmo:providesAgentRole(x, y) ∧ gmo:SponsorRole(y)∧
gmo:performedBy(y, z) ∧ gmo:Organization(z)

In this example, the association rule implies that in the GBO, the prop-
erty gbo:hasSponsor with the domain type of gbo:Award and the range type of
gbo:Organization has been used to “flatten” the complex structure in the GMO
by short-cutting a property chain. Note that in this pattern, C1 and any of the
Bi may be omitted (in which case they are essentially >).

5 Evaluation

In this section, we show the experimental results of our proposed alignment
algorithm on the OAEI GeoLink benchmark and analyze the results in detail.
The GeoLink benchmark [27] is composed of two ontologies in the geosciences
domain. These two ontologies are both populated with 100% shared instance
data collected from the real-world GeoLink knowledge base [3], in order to help
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the evaluation of alignment algorithms depending on instance data.7 The subset
used for this study contains around 74k triples, which is suitable for applying
association rule mining.

We originally planned to compare the performance of our system against
pattern based system in [19], CANARD, and AMLC. However, the GeoLink
benchmark is a property-oriented dataset which involves many object or data
properties in the complex correspondences. As we discussed in Section 2, CA-
NARD is currently limited to finding complex mappings that only involve classes.
Even though pattern based system in [19] can generate property-based complex
correspondences, like property chains, there are several rules that the system
follows that largely limit its results, and it ends without finding any complex
alignment on the GeoLink ontology pair. AMLC currently only works for the
complex Conference benchmark [2, 9]. Therefore, there are no complex align-
ment systems against which we could compare the performance of our system.
So in this paper we are limited to reporting the performance of our system
against the reference alignment when it comes to the identification of complex
alignment. Performance on the identification of simple alignment is compared
against that of systems that participated in the OAEI 2018.

Because the systems we compare against are only capable of identifying sim-
ple correspondences, we present the results on the simple and complex portions
of the overall alignment separately.8 For simple correspondences, we use the tra-
ditional precision, recall and F-measure metrics, in order to compare against
other simple alignment systems. However, in order to provide more insight into
the underlying nature of the performance on complex correspondences, we take
a slightly different approach. Semantic precision and recall, which compare cor-
respondences based on their semantic meaning rather than their syntactic repre-
sentation [8]. This is done by applying a reasoner to determine when one mapping
is logically equivalent to another. Even though the semantic approaches solve
an important problem for evaluating alignments with complex correspondences,
they still have several limitations. One is that the reasoning takes a significant
amount of time, particularly for large ontologies. Furthermore, such reasoning is
not possible if the merged ontology is not in OWL DL. The GeoLink benchmark
is one example of this case, since there are many correspondences involving an
object property on one side and a data property on another side, which is not
permissible in OWL DL. Instead, we utilize relaxed precision and recall [7]. More
specifically, a correspondence consists of two aspects: the entities involved, and
the relationship between them (e.g. equivalence, subsumption, disjunction). In
order to assess performance on both of these aspects, we evaluate them sepa-
rately. This roughly corresponds to the first and second subtasks described for
some of the test sets within the complex track of the OAEI.9 However, the types

7 https://doi.org/10.6084/m9.figshare.5907172
8 We are aware that this may not be the most general way to evaluate complex align-

ments, but the community does not yet have any guidelines or tangible results which
could be used. And solving the evaluation problem is out of scope of this paper.

9 http://oaei.ontologymatching.org/2018/complex/index.html#hydrography
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Table 5. The Performance Comparison of Matchers on the Simple Alignment

Matcher # of 1:1 Class Equiv. # of 1:1 Class Subsum. # of 1:1 Property Equiv. Precision Recall F-measure

Reference Alignment 10 2 7 - - -

Our Results 10 0 5 0.94 0.79 0.86

CANARD [18] 9 0 3 0.67 0.63 0.64

DOME [12] 9 0 4 0.41 0.68 0.51

LogMap [14] 9 0 1 0.77 0.53 0.63

LogMapKG [14] 9 0 1 0.77 0.53 0.63

LogMapLt [14] 9 0 5 0.63 0.73 0.68

POMAP++ [16] 9 0 0 0.89 0.47 0.62

XMap [5] 9 0 0 0.39 0.47 0.43

of relationships we consider are limited to equivalence and subsumption rather
than the arbitrary OWL constructs considered there.

5.1 Simple Alignment Evaluation

In the GeoLink benchmark, there are 19 simple mappings, including 10 class
equivalences, 2 class subsumptions, and 7 property equivalences. Table 5 shows
the simple mapping comparison between our algorithm and the matchers that
participated in the OAEI 2018. We list the numbers of correctly identified map-
pings for each matcher and calculate the precision, recall, and f-measure. The
confidence value for picking association rules is set to 0.3, since we find it gen-
erates the best performance for simple alignments.

Based on the results, our algorithm outperforms other systems on finding
the simple mappings in this benchmark. We can argue that leveraging the in-
stance data is a contributing factor, since our algorithm takes advantages of the
instance data, while the other alignment systems do not use it. In addition, most
traditional alignment systems focus on accurate detection only of 1:1 class equiv-
alences, which limits their performance on this benchmark. The only 1:1 class
equivalence that other alignment systems do not find, but our algorithm does,
is gbo:Award(x) ↔ gmo:FundingAward(x). This may also own to the populated
instance data. The reason that our algorithm does not achieve 100% precision
is that we mistakenly identify that gbo:PortCall is equivalent to gmo:Fix. The
correct relationship should be subsumption. This relation can be easily refined
by a semi-automated approach in the future.

5.2 Complex Alignment Evaluation

We set the confidence threshold to 1 when running the association rule mining
algorithm in order to generate the results described in this section. This is a
precision-oriented approach. However, these values can be tuned to fulfill various
purposes of alignment systems.

As mentioned previously, in order to assess the quality of a mapping, there
are two dimensions that we can look into. First, we can evaluate if the map-
ping contains the correct entities that should be involved based on the reference
alignment. Another dimension is the relationship between the entities, like equiv-
alence and subsumption. Based on this, we break the evaluation procedure down
into two subtasks.
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Table 6. Similarity for Relationship Identification

Found Relation Correct Relation Similarity Comment

= = 1 correct relation

⊂ ⊂ 1 correct relation

⊃ ⊃ 1 correct relation

⊂ = 0.8 return less information, but correct

= ⊃ 0.8 return less information, but correct

⊃ = 0.6 return more information, but incorrect

= ⊂ 0.6 return more information, but incorrect

⊂ ⊃ 0.3 incorrect relation

⊃ ⊂ 0.3 incorrect relation

(1) Entity Identification: For each entity in the source ontology, the align-
ment systems will be asked to list all of the entities that are related in some way
in the target ontology. For example, referring to the example we used above,

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ SponsorRole(y) ∧ performedBy(y, z),

the expected output from an alignment system is that hasSponsor in the GBO is
related to FundingAward, providesAgentRole, SponsorRole and performedBy

in the GMO and Award in the GBO. Based on the two lists of entities from
the reference alignment and the matcher, precision, recall, and f-measure can be
calculated.

(2) Relationship Identification: In terms of the example above, an align-
ment system needs to eventually determine that the relationship between the
two sides is equivalence. Based on our algorithm, if there is only one association
rule holding the information, we consider the relationship to be subsumption. If
there are two association rules containing the information for both directions,
an equivalence relationship is generated. At this stage, we do not further assess
other complex relationships. Table 6 shows the different similarities for differ-
ent situations. We slightly penalize differently for the situations in finding less
information, but all the information returned is correct, and finding more infor-
mation, but part of the information is incorrect. We do not penalize the incorrect
relationship by giving a ZERO value because that would completely neglect the
entity identification outputs without considering whether it is a reasonable result
or a completely incorrect one. In order to generate the final results, we multiply
the results from the entity identification by the penalty of the relations.10 The
formulas for computing the final results are as follows:

Relaxed precision = Precision entity × Relation similarity

Relaxed recall = Recall entity × Relation similarity

Relaxed f-measure = F-measure entity × Relation similarity

10 To be accurate, it could also have been better aggregated with other aggregation
functions rather than multiplication [7]. But we would not focus on this question in
this paper.
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Table 7. Comparative Performance of Generating Complex Alignment

Matcher 1:n Property subsum. m:n Complex equiv. m:n Complex subsum.

Reference Alignment 5 26 17

Our Algorithm 3 15 7

Relaxed Precision 0.60 0.90 0.53

Relaxed Recall 0.36 0.36 0.16

Relaxed F-measure 0.45 0.51 0.24

Table 7 shows the results of our algorithm. In total there are 48 complex
mappings in the reference alignment. For 1:n property subsumption, our algo-
rithm finds 3 mappings that fall into this category. For example, we find that the
domain of gbo:hasSampleType is equivalent to gmo:PhysicalSample. However, the
correct relationship should be subsumption. So, the final result should be penal-
ized based on Table 6. For m:n complex equivalence, since our default confidence
value for complex alignment is 1, the alignment that we found may miss some
entities that should exist in the alignment. For example, referring to the exam-
ple we use in the entity identification, the expected output from the alignment
system is that the property hasSponsor in the GBO is related to FundingAward,
providesAgentRole, SponsorRole, performedBy in the GMO and Award in the GBO.
However, our algorithm misses one entity which is performedBy in the GMO. Er-
rors such as this may of course be easily corrected by human interaction. For
m:n complex subsumption, our algorithm does not generate the correct relation-
ships for all the mappings we found. However, overall, our association rule-based
algorithm can effectively come up with rather high quality simple and complex
alignment automatically.11

6 Conclusion

Complex ontology alignment has been discussed for a long time, but relatively
little work has been done to advance the state of the art in this field. In this
paper, we proposed a complex ontology alignment algorithm based on association
rule mining. Our algorithm takes advantage of instance data to mine frequent
patterns, which show us which entities in one ontology are related to which
entities in the other. Then we apply common simple and complex patterns to
arrange these related entities into the formal alignment. We evaluated our system
on the complex alignment benchmark from the OAEI and analyzed the results
in detail to provide a better understanding of the challenges related to complex
ontology alignment research.

There are still some limitations of our algorithm. First, our system relies
on instance data for mining the association rules, which is not available for
all ontology pairs. However, this could possibly be resolved with automated

11 All the data and alignment that we use and generate can be accessed via the link
http://tiny.cc/rojy4y. We utilize the Apache Spark frequent pattern mining library
to generate association rules.
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instance data generation to populate common instances into the ontologies or
instance matching techniques. Second, we incorporate some common patterns
that have been widely accepted in the ontology alignment community in this
paper. This could be another limitation, since the set of mapping patterns in our
system is likely not comprehensive. However, our algorithm is extensible, more
patterns can be easily added in the future as the need arises. Third, it is possible
that there are situations that the association rule would fail in term of finding
simple property alignment. For example, if there are two properties livesIn and
bornIn in source and target ontologies respectively, and the association rules
would say if livesIn|Place, then bornIn|Place if they occur frequently. livesIn and
bornIn would be considered as equivalent. In this case, there are many different
methods that could be applied to improve the performance, like using lexical-
based comparison or utilizing external knowledge base to annotate these entities.
Fourth, we are collaborating with other benchmark and system developers to
enable the comparison and prepare our alignment system to participate in the
complex alignment track of the OAEI.
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Abstract

The development of semi-automated and automated ontology alignment techniques is an

important part of realizing the potential of the Semantic Web. Until very recently, most

existing work in this area was focused on finding simple (1:1) equivalence correspondences

between two ontologies. However, many real-world ontology pairs involve correspondences that

contain multiple entities from each ontology. These “complex” alignments pose a challenge for

existing evaluation approaches, which hinders the development of new systems capable of finding

such correspondences. This position paper surveys and analyzes the requirements for effective

evaluation of complex ontology alignments and assesses the degree to which these requirements

are met by existing approaches. It also provides a roadmap for future work on this topic taking into

consideration emerging community initiatives and major challenges that need to be addressed.

1 Introduction

Ontology alignments specify the relations that hold between entities in two or more ontologies.

Identifying these relations is critical for integrating data across the Semantic Web. The

development of automated and semi-automated techniques to establish alignments between

ontologies has been an active area of research since at least 2004; however, the vast majority

of existing alignment systems seek to identify relatively simple (1:1) equivalence and (more

rarely) subsumption relationships. While simple (1:1) relationships are limited in expressiveness

by linking single entities, complex matching approaches are able to generate correspondences

which better express the relationships between entities of different ontologies. Earlier works have

introduced the need for complex alignments (Maedche et al., 2002; Visser et al., 1997).

Recent work has shown that alignments between pairs of real-world ontologies contain many

relations that are more complex than those targeted by current systems. These relations may

involve set operations such as union, intersection, disjunction, cardinality restrictions, and other

constraints. For example, two ontologies representing the domain of conference organization may

have the following relationship between their entities, which states that the class AcceptedPaper

in the source ontology is equivalent to the intersection of the class Paper with entities that

appear in the domain of the acceptedBy property: 〈o1:AcceptedPaper, intersectionOf(o2:Paper,

minCardinality(1, o2:acceptedBy)), ≡, 1.0〉.
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These more complex relationships often make up half or more of the relations within an

alignment, as discussed in Zhou et al. (2018). It is therefore an important research area for

developers of alignment systems to consider. Unfortunately, the topic of complex ontology

alignment has received relatively little attention thus far. Different complex matching approaches

have emerged in the literature (Ritze et al., 2009, 2010; Jiang et al., 2016; Parundekar et al.,

2010, 2012; Walshe et al., 2016), however most efforts on evaluation are still dedicated to the

matching approaches dealing with simple alignments.

We posit that part of the reason for the lack of research on complex alignment systems is a

lack of benchmarks that contain complex relations and a lack of appropriate metrics with which

to evaluate the performance of systems on such benchmarks. The issue of the lack of ontology

alignment benchmarks involving complex relationships is being addressed with the introduction

of a new complex alignment track within the Ontology Alignment Evaluation Initiative1 (OAEI),

as described in (Thiéblin et al., 2018a). This paper begins work on the second issue.

The most common evaluation approach for ontology alignments is to perform an exact match

comparison between the correspondences suggested by an alignment system and those in a

reference alignment and to compute precision and recall based on this. This is a somewhat

unforgiving approach. For example, in the case of the aforementioned conference ontologies, if an

alignment system identified a relation between the ontologies of the form 〈o1:AcceptedPaper,

unionOf(o2:Paper, minCardinality(1, o2:acceptedBy)), ≡, 1.0〉, i.e. with union instead of

intersection, it would be considered a false positive, and the correct relation would be considered a

false negative. While the system should clearly be penalized for not producing the correct relation,

considering this as completely incorrect lacks important nuance. For instance, this relation could

be relatively easily corrected by a user in a semi-automated alignment system. Moreover, the

alignment system developer would likely benefit from knowing how close the system came to

generating the correct output in this case.

The primary goal of this position paper is to survey and analyze the requirements for effective

evaluation of complex ontology alignments, assess the degree to which these requirements are

met by existing approaches, and provide a roadmap for future work on this topic. We begin by

discussing related work in Section 2. Section 3 presents the relevant background information,

including a formal definition of complex alignments and their representation formats. A generic

model of the ontology alignment evaluation process that highlights the choices implicit in

implementing a complete evaluation strategy based on reference alignments is then presented in

Section 4. The paper then surveys existing ontology alignment evaluation metrics and analyzes

their strengths and weaknesses with respect to evaluation of complex alignments when a reference

alignment is available. Section 5 overviews the alternative evaluation measures applicable in the

absence of reference alignments. The paper continues with a discussion of the gaps that exist

between the current state of the art and what is needed for effective evaluation of complex

alignments following with its feasibility analysis in Section 6 and then argues about necessary

future work to fill in those gaps (Section 7).

2 Related Work

Early studies have introduced the need for complex ontology alignments (Visser et al., 1997;

Maedche et al., 2002) and different approaches for generating such alignments have been proposed

in the literature since. These approaches rely on diverse methods such as correspondence patterns

(Ritze et al., 2009, 2010), knowledge-rules (Jiang et al., 2016), statistical methods (Parundekar

et al., 2010, 2012; Walshe et al., 2016), or genetic programming Nunes et al. (2011) and path-

finding algorithms (Qin et al., 2007). While most work on complex ontology matching has been

dedicated to the development of complex matching approaches, automatic support for evaluating

complex approaches has still not been extensively addressed in the literature.

1http://oaei.ontologymatching.org/2018/complex/
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The evaluation of most existing approaches has been done by manually calculating the

precision of the alignments generated by the systems (Ritze et al., 2009, 2010; Parundekar

et al., 2012; Walshe et al., 2016). In order to be able to measure recall, specific datasets have

been constructed. The approach of Parundekar et al. (2012) estimated their recall based on the

recurring pattern between DBpedia and Geonames:∃dbpedia:country.{theCountryInstance} ≡
∃geonames:countryCode.{theCountryCode} where theCountryInstance is a country instance

of DBpedia such as dbpedia:Spain and theCountryCode is a country code such as “ES”. They

estimated the number of occurrences of this pattern between these ontologies and calculated the

recall based on this estimation. In Qin et al. (2007) a set of reference correspondences between two

ontologies was manually created, involving nine reference correspondences from which only two

cannot be expressed with simple correspondences. In Walshe et al. (2016) the authors proposed

an algorithm to create an evaluation data set that is composed of a synthetic ontology containing

50 classes with known Class-by-attribute-value (a correspondence pattern) correspondences with

DBpedia and 50 classes with no known correspondences with DBpedia. Both ontologies are

populated with the same instances.

As described by Thiéblin et al. (2018b), the metrics of accuracy and top−x accuracy have

been also applied in evaluation settings in which the number of correspondences is predefined,

e.g., there is one correspondence for each entity of the target schema/ontology. The accuracy

is then the percentage of predefined questions having a correct answer. A “question” in this

context could be a source entity to be matched and the “answers” the correspondences having

this entity as source member. Some approaches output various answers for each question, e.g.,

a ranked list of correspondences for each source entity. In this case the top-x accuracy is the

percentage of questions whose correct answer is in the top-x answers to the question. For example,

top-3 accuracy is the fraction of source entities for which the correct correspondence is in the

three best correspondences output by the system. Alternatively, the approach in Thiéblin et al.

(2017), to evaluate complex correspondences between agronomic ontologies is based on manually

comparing the results of the reference queries and queries automatically rewritten with the help

of the complex alignments.

More recently, complex evaluation was introduced in the 2018 Ontology Alignment Evaluation

Initiative (Thiéblin et al., 2018a). The track consisted of four datasets from a variety of

domains: conference organization, hydrography, geoscience, and plant taxonomies. Each dataset

was evaluated in a different way. For the conference dataset, precision and recall of the system’s

alignment were manually calculated based on exact match with respect to the reference alignment.

For the plant taxonomy dataset, the evaluation was two-fold. First, the precision of the output

alignment with respect to exact match against the reference was manually assessed. Then, a set

of source queries was rewritten using the output alignment. Each rewritten target query was then

manually classified as correct or incorrect. A source query was considered successfully rewritten

if at least one of the target queries was semantically equivalent to it. Finally, for the hydrography

and geoscience datasets, the evaluation plan was to divide the alignment task into three subtasks

and assess performance on each one separately: 1) given an entity from the source ontology,

identify all related entities in the source and target ontology; 2) given an entity in the source

ontology and the set of related entities, identify the logical relation that holds between them;

3) identify the full complex correspondences. The first subtask was evaluated based on precision

and recall with respect to exact match against the reference alignment and the latter two were

evaluated using semantic precision and recall.

The evaluation plan for the hydrography and geoscience datasets was not really put to the test

in 2018, however, because no alignment systems were capable of finding complex correspondences

across these ontologies. The manual nature of the evaluation for the conference organization

and plant taxonomy datasets was feasible because only two alignment systems, AMLC and

CANARD, were able to generate any complex relations for those datasets; however, there are

obvious limitations to a manual approach, both during system development (system developers
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cannot quickly test modifications to their system to assess whether or not they improve the

performance) and evaluation (the time taken is prohibitive for the OAEI track organizers if many

systems participate). Additionally, manual evaluation might introduce bias or inconsistencies into

the performance assessment.

3 Background

The examples of both simple and complex correspondences provided throughout this paper are

based on the OntoFarm ontologies from the conference domain (Šváb et al., 2005; Zamazal

and Svátek, 2017). Complex examples are based on the complex version of this dataset, which

consists of alignments between all combinations of three of the OntoFarm ontologies, ekaw, cmt

and conference, created by domain experts from three universities who were all familiar with

ontology alignment (Thiéblin et al., 2018a).

3.1 Complex ontology alignment

We define ontology matching as the process of generating an alignment A between two ontologies:

a source ontology O and a target ontology O′, as in (Euzenat and Shvaiko, 2013). A is directional,

denoted AO→O′ , and is a set of correspondences 〈e, e′, r, s〉. Each correspondence contains a

relation r (e.g., equivalence (≡), subsumption (≤, ≥)) between two members e and e′, and s

expresses the strength or confidence (in [0;1]) of this correspondence. Each member can be a

single ontology entity (class, object property, data property, individual, value) of respectively O

and O′ or a more complex construction that is composed of some entities using constructors or

transformation functions.

We consider two types of correspondences depending on the type of their members (Thiéblin

et al., 2018; Zhou et al., 2018).

• a correspondence is simple if both e and e′ are single entities (represented as IRIs):

〈ekaw:Paper, cmt:Paper, ≡, 1〉

• a correspondence is complex if at least one of e or e′ involves a constructor or a

transformation function:

〈ekaw:AcceptedPaper, someV aluesFrom(cmt:hasDecision, cmt:Acceptance), ≡, 1.0〉
〈concatenation(edas:hasFirstName, “ ”, edas:hasLastName), cmt:name, →, 1〉

A simple correspondence is usually noted (1:1), and a complex correspondence can be (1:n) if

its source member is a single entity, (m:1) if its target member is a single entity or (m:n) if neither

of the members are single entities. Note that these cardinalities refer to the number of entities

from the source and target ontologies in a single correspondence, not across all correspondences

within the alignment. For example, a (1:n) correspondence means that one source entity is related

to n target entities via a relationship expressed in a single complex correspondence, not that the

same source entity is mapped in a (1:1) manner to n different target entities.

Because relations between instances are generally (1:1) in nature (e.g. sameAs, differentFrom),

complex correspondences predominantly involve entities from the TBox of the ontologies rather

than the ABox.

3.2 Representation formats

A general understanding of formats used to express complex correspondences between entities is

necessary to comprehend some of the metrics designed to measure the similarity between such

correspondences. This section provides an overview of common approaches.

The 〈e, e′, r, n〉 tuples making up a simple alignment are most often encoded using RDF

in a representation format commonly referred to as the Alignment API format, which was

introduced in Euzenat (2004). This API is used by the OAEI and has wide adoption within the
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ontology alignment research community. Version 4 of the Alignment API, described in David

et al. (2011), also contains a representation format for complex correspondences, known as

the Expressive and Declarative Ontology Alignment Language (EDOAL) (see Euzenat et al.

(2007)). While in the simple alignment format e and e′ are single IRIs, in EDOAL these are

expressions involving classes and properties that can be combined using intersection, union,

disjunction and composition operators and/or restricted using constraints on attributes, such

as domain, range, cardinality or value restrictions. The EDOAL representation for the cor-

respondence 〈cmt:ProgramCommitteeMember, someV aluesFrom(conference:was a member of,

conference:Program committee), ≡, 1.0〉 is shown below.

<map>

<Cell>

<entity1>

<edoal:Class rdf:about="&cmt;ProgramCommitteeMember"/>

</entity1>

<entity2>

<edoal:AttributeDomainRestriction>

<edoal:onAttribute>

<edoal:Relation rdf:about="&conference;was_a_member_of"/>

</edoal:onAttribute>

<edoal:exists>

<edoal:Class rdf:about="&conference;Program_committee"/>

</edoal:exists>

</edoal:AttributeDomainRestriction>

</entity2>

<measure rdf:datatype="&xsd;float">1.</measure>

<relation>Equivalence</relation>

</Cell>

</map>

While its general acceptance and associated toolset make EDOAL a convenient choice

for representing complex relationships between ontologies, there are some limitations to this

approach. For instance, while EDOAL supports a limited set of transformations, this aspect

of the language is somewhat immature. Another issue is that in some cases a concept that is

represented as a class in one ontology is modeled as an instance in another ontology (or, one

may need to restrict a set of possible instance values involved in a relationship based on their

type). This is similar to the OWL concept known as punning, but it is not currently possible in

EDOAL. Finally, some relations may be modelled as object properties in one ontology and data

properties in another. This occurs frequently when one ontology author has used a “strings as

things” approach while the other has instead created instances. EDOAL does not allow one to

specify relationships between object and data properties. Indeed, this is not possible in OWL DL

either, though it is permissible in OWL Full.

EDOAL is the most common representation format for complex alignments, but they can be

represented in a variety of different ways. For example, OWL can be used directly. This has the

benefit of existing tool support for creating, modifying, and reasoning with the alignment, as well

as merging ontologies based on it, but it limits the possible complex correspondences to those

expressible in OWL (or OWL DL if reasoning is desired), which in particular makes it difficult

to encode relationships that involve transformation functions. Another option is to use logical

rules following one of a range of different syntaxes, which has the benefit of being generally easier

for humans to parse from text than either EDOAL or OWL, but there is a lack of tool support

for direct use of alignments expressed in this way. Other possibilities for complex correspondence

representation include using a dedicated vocabulary or representing them as queries. As described
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in (Xiao et al., 2018), in the area of OBDA (Ontology-Based Data Access) the R2RML format,

a W3C standard, has been extended in many different ways, including for this purpose. For a

more complete survey on the representation of ontology alignments, we refer the reader to the

one presented in (Scharffe, 2009).

4 Evaluation with a reference alignment

The evaluation of ontology alignments is often performed with respect to a reference alignment, as

is the case in most of the OAEI tracks. Usually, this evaluation relies on the traditional information

retrieval evaluation metrics of precision and recall, and only contemplates correspondences that

are exactly equal between the evaluated and reference alignments. However, as we will overview

in this section, several alternative approaches to score inexact matches between the evaluated

and reference alignments have been proposed.

4.1 Generic evaluation process

The generic process of evaluating an ontology alignment Aeval using a reference alignment Aref

can be decomposed into four steps, as schematized in Figure 1: anchor selection, correspondence

comparison, scoring, and aggregation. Note that these steps are not independent, and in fact,

much existing work on the topic of ontology alignment evaluation conflates the latter three steps

(Ehrig and Euzenat, 2005; Euzenat, 2007). In practice the correspondence comparison approach

selected and corresponding scoring scheme have ramifications throughout the evaluation process.

Aeval =
{c1, c2, ...}

Aref =
{cr1, cr2, ...}

Anchor
selection

0

Correspondence

comparison 1

Scoring

2

Aggregation

3
final
score

For each ci (or crj)

〈ci, crj〉 rel(ci, crj) scorei

Figure 1 Evaluation process of the alignment Aeval with the reference alignment Aref .

In the anchor selection step, the set of correspondences crj from the reference alignment Aref

that have to be compared with each correspondence ci from the evaluated alignment Aeval (or vice

versa) is computed. This selection depends on the correspondence comparison approach adopted.

In the traditional evaluation where only exactly matching correspondences are to be scored, only

these need be selected in this step. But if related correspondences are also contemplated, then

each evaluated correspondence may have several such correspondences in the reference alignment,

and all of them will need to be compared unless it is evident a priori which is the most similar

(e.g. if there is an equivalent correspondence).

In the correspondence comparison step, for each pair of correspondences 〈ci, crj〉, where

ci = 〈ei, e′i, ri, si〉 and crj = 〈erj , e′rj , rrj , srj〉, a relation rel(ci, crj) between ci and crj is

computed. rel(ci, crj) can be decomposed into the relations between the elements of ci and crj :

rel(ci, crj) =





rel(ei, erj)

rel(e′i, e
′
rj)

rel(ri, rrj)

rel(si, srj)

As we will overview in Section 4.2, relations between entities include syntactic equivalence,

semantic equivalence, and semantic relatedness; the relation between the correspondence relations

includes equivalence and relatedness; and the relation between the confidence scores, when

considered, is typically numerical similarity. In the traditional evaluation, the relation between
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the confidence scores is ignored, and correspondences are considered equivalent if both the entities

and the correspondence relation are syntactically equivalent.

In the scoring step, a scoring function is applied to the relation rel(ci, crj) between ci and

crj . This is usually done by applying the scoring scheme associated with the correspondence

comparison approach to score the relations between each element in the correspondences,

then multiplying these scores. scorei is the result of this scoring function. In the traditional

evaluation, equivalent correspondences are treated as true positives and scored 1, and no other

correspondences are scored.

In the aggregation step, the scores are aggregated over the whole alignment to produce the

final score. In the traditional evaluation, this aggregation means computing precision and recall

by tallying the true positives and dividing by the number of correspondences in the evaluated and

reference alignments, respectively. Correspondences in the evaluated alignment that are not in

the reference alignment are false positives, and those in the latter and not in the former are false

negatives. In cases where inexact correspondence matches are contemplated, then the aggregation

must also include the selection of which correspondence pairs to score, as each evaluated

correspondence may have a non-zero score when compared with several reference correspondences.

Intuitively, it makes sense to select only the most similar reference correspondence for each

evaluated correspondence (which in the trivial case would be an exact match). However, the fact

that multiple evaluated correspondences may have the same reference correspondence as the most

similar makes this selection less straightforward. There is some argument to enforcing that each

correspondence from both the reference and evaluated alignments be considered only once in the

aggregation, but this may not make sense when neither evaluated correspondence is related to

any other reference correspondence.

While this generic evaluation workflow is valid for both simple and complex alignments, it is

challenging to apply it to complex alignments due to the fact that complex correspondences

feature expressions of arbitrary complexity with a wide range of constructs, rather than

singular entities. Thus, one cannot simply compare URIs of the mapped entities between two

correspondences and check for identity or a semantic relation between them, as there are

additional layers to contemplate when comparing correspondences. This affects the anchor

selection step as it may not be trivial to determine that two complex correspondences are

related in a manner that is computationally more efficient than the worse-case scenario of

skipping anchor selection and making the full pairwise comparison of all correspondences in the

subsequent step. It also affects the correspondence comparison step, as determining the relation

between complex entities requires comparing all the singular entities they list, as well as the

expressions in which they are listed, likely in recursive fashion, as there is no theoretical limit to

the nesting of expressions within expressions. Furthermore, there are cases where one might want

to consider making a joint evaluation of two or more correspondences against a single reference

correspondence, which complicates both the correspondence comparison and the aggregation step.

For example, consider this reference correspondence from the Conference test set in the complex

alignment track of the OAEI:

〈intersectionOf(ekaw:Paper Author, complementOf(someV aluesFrom(ekaw:reviewerOfPaper,

ekaw:Paper))), intersectionOf(conference:Regular Author, complementOf(conference:Review-

er)), ≡, 1.0 〉
Consider also the following two correspondences produced by an alignment system:

〈ekaw:Paper Author, conference:Regular Author, ≡, 1.0 〉
〈someV aluesFrom(ekaw:reviewerOfPaper, ekaw:Paper), conference:Reviewer, ≡, 1.0 〉

In this scenario, if neither of the system correspondences were in the reference alignment, it is

arguable that both should be scored against the reference correspondence together, as the latter

can be logically derived from them ({A ≡ A’; B ≡ B’} ⇒ A ∩ !B ≡ A’ ∩ !B’).

An additional challenge to the evaluation of complex alignments is that, in practice, there

is a greater variety of correspondence relationships, since most simple ontology alignment
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benchmarks consist entirely of equivalence relations. This aggravates the difficulty in comparing

correspondences, as the relation may factor into how two correspondences are related. Picking up

on our example above, consider the following correspondence produced by a matching system:

〈intersectionOf(ekaw:Paper Author, complementOf(someV aluesFrom(ekaw:reviewerOfPaper,

ekaw:Paper))), conference:Regular Author, ≤, 1.0 〉
This correspondence is logically derived from the reference correspondence, and thus formally

correct (if less specific than desired) whereas it would not be correct if the relation were

equivalence.

Finally, the several layers involved in comparing complex correspondences make it desirable

to use comparison approaches that generate more nuanced similarity scores than the simple

all-or-nothing approach traditionally used in alignment evaluation. This means that there will

likely be more correspondence comparisons involved in evaluating complex alignments, and the

aggregation step will be less straightforward.

4.2 Existing approaches for correspondence comparison

As we detailed in the previous section, the correspondence comparison approach affects the whole

evaluation workflow, as it determines which correspondences are selected as anchors, how they

are compared and how they should be scored, as well as how they can be aggregated. Due to this

central importance, and to the fact that they are the characterizing factor of different forms of

alignment evaluation, this section is devoted to surveying existing approaches for correspondence

comparison and discussing their application to complex alignments. This is not an exhaustive

survey, but rather an attempt to provide insights on the strengths and weaknesses of each type

of approach when used to evaluate complex ontology alignments.

The following example will be used throughout this section. Correspondences in the reference

alignment (R):

1. 〈cmt:Author, conference:Regular Author, ≡, 1.0〉

2. 〈cmt:ProgramCommitteeMember, someV aluesFrom(conference:was a member of, confer-

ence:Program committee), ≡, 1.0〉

3. 〈cmt:User, unionOf(conference:Regular Author, conference:Reviewer), ≥, 1.0〉

4. 〈cmt:AuthorNotReviewer,intersectionOf(conference:Regular Author,

complementOf(conference:Reviewer)), ≡, 1.0〉

Correspondences generated by alignment system 1 (S1):

1. 〈cmt:Author, conference:Regular Author, ≤, 1.0〉

2. 〈cmt:ProgramCommitteeMember, minCardinality(1, conference:was a member of, confer-

ence:Program committee), ≡, 1.0〉

3. 〈cmt:User, conference:Regular Author, ≥, 1.0〉

4. 〈cmt:User, conference:Reviewer, ≥, 1.0〉

5. 〈cmt:AuthorNotReviewer, unionOf(conference:Regular Author, conference:Reviewer), ≡,

1.0〉

Correspondences generated by alignment system 2 (S2):

1. 〈cmt:Author, conference:Contribution 1th-Author, ≡, 1.0〉 (Note that confer-

ence:Contribution 1th-Author is a subclass of conference:Regular Author)
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2. 〈cmt:AuthorNotReviewer,intersectionOf(conference:Conference participant,

complementOf(conference:Committee member)), ≡, 1.0〉

We will use the notation ci =< ei, e
′
i, ri, si > to refer to any correspondence generated by an

alignment system, and crj =< erj , e
′
rj , rrj , srj > to refer to any reference correspondence.

4.2.1 Syntactic
Syntactic approaches to alignment evaluation compare the elements of two correspondences based

on their syntactic description (i.e., the URIs of entities, or the identifiers of correspondence

relations or complex expressions). This includes the traditional evaluation approach of scoring

only exact matches, where a correspondence is scored 1 if both of its entities and its relation are

syntactically equivalent to the reference correspondence (i.e., ei ≡ erj , e
′
i ≡ e′rj , and ri ≡ rrj) and

scored 0 otherwise.

This exact match approach is used to compare correspondences in most existing work on

ontology alignment, including in most OAEI tracks and in the majority of ontology alignment

papers. In fact, if papers do not explicitly state what evaluation approach they are using, it

is assumed to be exact match. Thus, this approach has the advantage of being both simple

and widely used. It is often possible to compare the results of an alignment system to previous

work based on this approach by referring to the original papers rather than re-running the

experiments. Furthermore, available computational tools for handling ontology alignments, such

as the Alignment API, usually contain evaluation facilities based on exact match and do not

require users to write additional code.

However, this approach is unforgiving in that it treats as incorrect correspondences that, while

not listed in the reference alignment, can be logically derived from it (or even equivalent to it),

and thus are formally correct. Furthermore, it does not distinguish between correspondences

that are formally incorrect but closely related to correct correspondences, and those that are

completely incorrect. Referring to the example above, the first correspondence in the reference

alignment is an equality, but the first alignment system identifies the relation between the same

entities as subsumption. This is considered completely incorrect under the exact match approach,

even though it is formally correct (if imprecise) and may be a useful result in some applications

of the alignment, such as query answering. Meanwhile, the second alignment system correctly

identified the equality relationship for cmt:Author, but rather than conference:Regular Author,

it specified conference:Contribution 1th-Author, a subclass of conference:Regular Author, as the

equivalent entity. This is formally incorrect, but the correct correspondence can be inferred

from it, so it is only partially incorrect, as the correspondence holds true for a subset of

cmt:Author. If the alignment system had specified conference:Chair, which has no relation at all

to conference:Regular Author, then the correspondence would be fully incorrect. The case of the

second reference correspondence is even more grave, as the first system identified a correspondence

that is syntactically different but logically equivalent and thus formally correct. Under a syntactic

approach, this correspondence would result in both a false positive and a false negative (as the

syntactically correct correspondence is missing) whereas it should clearly result in a true positive.

Regarding the third correspondence from the reference alignment, the first alignment system

states that cmt:User is related to both conference:Regular Author and conference:Reviewer, yet

this is also treated as incorrect (specifically, as one false negative and two false positives), because

the system specified each relation separately instead of as a union. Finally, both alignment systems

generate relations that are somewhat similar to the fourth one from the reference alignment. The

first system has the correct entities but incorrect expressions while the second has the expressions

correct but incorrect entities. Both of these are treated as completely incorrect.

An alternative to the traditional binary syntactic evaluation is the weighted syntactic

evaluation, where the confidence scores of the alignment to evaluate and those of the reference

alignment are taken into consideration. This is particularly relevant when the reference alignment

is not considered ground truth and has similarity scores other than 1, such as in the approach
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proposed by Cheatham and Hitzler (2014). In this approach, which is also implemented in the

Alignment API, the true positive count is replaced by the sum of the products of confidence

scores si ∗ srj , and the false positive and false negative counts were replaced by the sum of

differences of confidence scores |si − srj | respectively for si < srj and si > srj . This penalizes

an alignment system more if it fails to identify a strong correspondence than a weak one, and

rewards the alignment system if its scoring scheme approximates the confidence scores of the

reference alignment. A similar methodology, albeit relying on a vector representation of the

ontology alignments, was also proposed by (Sagi and Gal, 2018).

4.2.2 Rule-based semantic and reasoning-based semantic

Semantic approaches compare correspondences based on their semantic meaning rather than their

syntactic representation. This is done by looking at the correspondence within the context of the

ontologies and determining whether they are semantically related. If they are “closely” related,

but not equivalent, they are typically scored in (0; 1], depending on the scoring scheme of the

approach.

An example of such an approach is the relaxed precision and recall metric proposed by

(Ehrig and Euzenat, 2005), which defines different similarity functions for the various elements

of a correspondence, depending on whether precision or recall is to be computed. It scores the

similarity between two entities, ei and erj according to:

entity prec similarity =





1 if ei ≤ erj

0.5 if ei > erj

0 otherwise

entity rec similarity =





1 if ei ≥ erj

0.5 if ei < erj

0 otherwise

where > and < stand for direct sub- or super-classes/properties only. The similarity between two

relations is defined only for the case where ri is ≡ (as most matching systems tend to produce

only equivalence correspondences) and depends only on rrj according to:

relation prec similarity =





1 if ≡ or <

0.5 if >

0 otherwise

relation rec similarity =





1 if ≡ or >

0.5 if <

0 otherwise

Finally, the similarity between confidence scores, si and srj , is scored according to:

score similarity = 1− |si − srj |

This approach thus aims to reward correspondences that are semantically close to the correct

correspondence from the perspective of query answering. Namely, in the case of precision, it

does not penalize at all correspondences that are narrower than the correct correspondence (but

implied by it) since these would result in missing but only correct query results (full precision).

Likewise, in the case of recall, it does not penalize correspondences that are broader than the

correct correspondence (and imply it) since these would result in no missing results but some

incorrect ones (full recall).

Another semantic approach also proposed by (Ehrig and Euzenat, 2005) focuses on the

perspective of alignment validation rather than query answering, and seeks to account for the

effort it would take a human reviewer to correct an erroneous correspondence that is semantically

close to the correct one. This approach can be considered a simple edit-distance approach, as it

attributes a cost to each edition necessary for converting an incorrect correspondence to a correct

one. Under this approach, the similarity between entities is given by:
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entity effort similarity =





1 if ei ≡ erj

0.6 if ei < erj

0.4 if ei > erj

0 otherwise

where again, > and < stand for direct sub- or super-classes/properties only. The rationale behind

attributing a different similarity to sub- and super-entities is that typically ontology entities are

expected to have more sub- than super-entities, and thus correcting to a broader entity requires

less effort than correcting to a narrower entity. The similarity between relations is 1 if the relations

are the same and 0.5 if they are different, under the rationale that correcting the relation is fairly

trivial even if the relation predicted by the matching system is completely off.

Another semantic approach is the semantic precision and recall proposed by (Euzenat, 2007).

Under this approach, a reasoner is employed to count the number of correspondences suggested

by the alignment system that are entailed by a merged ontology consisting of the source and

target ontologies and the reference alignment. This count is then divided by the number of

correspondences in the proposed alignment to produce the system’s precision. Analogously, recall

is computed by counting the number of relations in the reference alignment that are entailed by

a merged ontology consisting of the source and target ontologies and the proposed alignment,

then dividing this by the number of correspondences of the reference alignment.

Regardless of their scope and implementation, semantic approaches tend to mitigate some of

the issues we reported for syntactic approaches, since they account for correspondences that are

semantically close to the correct ones. Here we discuss the score produced by each metric for the

example alignments presented at the start of Section 4.2. This information is summarized in Table

1. The first alignment system identified the relation as subsumption rather than equivalence.

This would score 0 under a syntactic approach, but would score respectively 1 and 0.5 in

relaxed precision and recall, 0.5 in effort similarity, and 1 and 0 in semantic precision and recall

(as subsumption is entailed by but does not entail equivalence). Likewise, the correspondence

proposed by the second system, in which the entity from the target ontology was a subclass

of the correct entity, would score 0 under a syntactic approach, but respectively 1 and 0.5

in relaxed precision and recall, and 0.6 in effort similarity. In this case it would also score 0

under semantic precision and recall, as equivalence to a class neither entails nor is entailed by

equivalence to its superclass. The contrary happens in the second reference correspondence in

the example, in which the first system produced a logically equivalent correspondence. In this

case, the system’s correspondence would score 1 under semantic precision and recall, but would

still be scored 0 under relaxed precision and recall as well as effort similarity, as these rule-based

approaches have no provisions for complex alignment expressions and thus cannot detect that

these correspondences are logically equivalent. Similarly, the fifth correspondence of the first

system, which differs from the fourth correspondence of the reference alignment only in that a

union was used instead of an intersection, would score respectively 1 and 0 in semantic precision

and recall (as equivalence to the union entails equivalence to the intersection but not the other

way around) but also be scored 0 under the other approaches, for the same reason as in the

previous case. From the perspective of alignment validation, such a correspondence should be

fairly trivial to correct, and thus should have a non-zero score. In the case of the third reference

correspondence, for which system one predicts two related correspondences (3 and 4), these would

also be scored respectively 1 and 0 under semantic precision and recall (as superclass of the union

entails superclass of each element in the union but not the other way around), but again 0 under

the other approaches, as they have no provision for comparing correspondences other than on a

one-to-one basis.

In summary, the main limitations of rule-based semantic approaches with respect to complex

alignments are that no such approach has been proposed that encompasses the range of
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Issue
Related

Items

Exact

Match

Relaxed

Prec.

Relaxed

Rec.
Effort

Sem.

Prec.

Sem.

Rec.

Mismatched

relation
R1,S11 0 1 0.5 0.5 1 0

Subclass rather

than exact class

match

R1,S21 0 1 0.5 0.6 0 0

Logically

equivalent
R2,S12 0 0 0 0 1 1

Correct but

expressed as multiple

correspondences

R3,

S13, S14
0 0 0 0 1 0

Correct entities;

incorrect construction
R4,S15 0 0 0 0 1 0

Correct construction;

incorrect entities
R4,S22 0 0 0 0 0 0

Table 1 Scores of the surveyed metrics on the sample alignments.

expressions possible in these alignments, and that they do not contemplate joint correspondence

evaluation in the cases where a correspondence is decomposed into several related ones.

Furthermore, proposed approaches are coarse in granularity, and only distinguish between

identical entities, direct sub-/super-entities, and all other cases. They do not account for cases

of other relations, such as indirect sub-/super-entities, even though (Ehrig and Euzenat, 2005)

did suggest that more a granular approach could do so by explicitly taking into the account the

edge-distance between entities in the similarity function.

By contrast, reasoning-based semantic approaches do account for all complex expressions that

can be encoded in OWL, and also handle cases of correspondence decomposition well. However,

they only score correspondences that are logically entailed, ignoring those that are semantically

related but not entailed. Thus, in cases that can be handled by both reasoning-based and rule-

based approaches, reasoning-based approaches are stricter in their assessment of performance

for purposes such as query answering or alignment validation. Furthermore, reasoning-based

approaches are computationally more complex than rule-based approaches, and may not be

applicable in practice to very large ontologies, as reasoning over these is still a computational

challenge. Finally, reasoning is only possible if the merged ontology is in OWL DL, which may

not be the case in complex alignments even if the original ontologies are (for example if a

correspondence is made between an object property and a datatype property).

4.2.3 Instance-based

Instance-based approaches compare two correspondences between ontology classes based on the

overlap between their sets of instances. In (Isaac et al., 2007), instance-based similarity measures

are divided into two primary categories: traditional set similarity metrics and information-

theoretic measures. Set similarity is most often computed based on the Jaccard index, which

is the ratio of instances that belong to both the source and target classes to the number of

instances belonging to either the source or target classes. Information-theory measures reflect

the degree to which knowledge of an instance’s categorization via e of a correspondence provides

knowledge about the appropriateness of the e′ categorization. Examples include point-wise mutual

information, log likelihood ratio, and information gain. More recent work has proposed instance-

based metrics based on locality-sensitive hashing (Duan et al., 2012) an on Cohen’s kappa

coefficient (Kirsten et al., 2007).
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Instance-based correspondence comparisons are powerful in that they directly correspond to

the underlying definition of ontological entities as sets of instances that are related in some way.

However, the applicability of such metrics is limited to the evaluation of class correspondences,

and only in cases in which common instances exist in both ontologies. These common instances

can either be the same individuals (with identical URIs) or individuals with different URIs that

have been declared identical through the use of a co-reference resolution procedure (though this

procedure can of course introduce errors that would negatively impact the alignment evaluation).

Furthermore, even if dual-typed instance data exists, there may be particular valid complex

correspondences for which few or no instances are available, which can compromise the evaluation

(even though some, metrics such as the log likelihood ratio and the modified version of the

Jaccard metric described in (Isaac et al., 2007), handle sparse data better than others). A solution

for handling sparse data is to synthetically generate additional instance data, as described in

(Schopman et al., 2012), but this has the potential of biasing the evaluation and no assurance of

covering particular complex correspondences better.

5 Evaluation without a reference alignment

Constructing reference alignments is a time-consuming task that requires the involvement of

domain experts. In the absence of time, an alternative evaluation strategy can be the manual

validation of sample alignments, as detailed in (Van Hage et al., 2007), although this still requires

significant involvement of domain experts. Alternative approaches consider the generation of

natural language questions to support end-users in the validation task (Abacha and Zweigenbaum,

2014) or validation of correspondences in a semi-automatic way (Serpeloni et al., 2011).

In the absence of both reference alignments and domain experts, there are two families of

approaches to ontology alignment evaluation: one that uses quality metrics to assess the logical

soundness of the alignment (Meilicke and Stuckenschmidt, 2008; Solimando et al., 2017), and

another that focuses on the suitability of the alignment for a specific task or application (Isaac

et al., 2008; Hollink et al., 2008; Solimando et al., 2014). In this section, we discuss how complex

alignments can be evaluated using these strategies.

5.1 Alignment quality metrics

The union of two ontologies through an alignment can lead to logical errors such as unsatisfiable

classes (i.e., classes than can only be interpreted as empty sets) even if both ontologies were

originally logically sound. In such cases, the merged ontology is said to be incoherent, and

by extension, so is the ontology alignment. Since, for many applications, incoherence would

cause problems, there are several approaches to measure ontology incoherence (Qi and Hunter,

2007). Derived from these, (Meilicke and Stuckenschmidt, 2008) proposed two measures to

assess an alignment’s quality based on its logical coherence: one based on counting unsatisfiable

classes; and another, named maximum cardinality measure (degree of incoherence), based on the

minimum number of correspondences that must be removed to obtain a coherent merged ontology.

Additionally, the authors proposed a variant of the latter measure that considers the confidence

scores of the correspondences and measures the minimum loss of total confidence required for

coherence, called the maximum trust measure. Interestingly, they reported that the maximum

cardinality measure can be used to compute a strict upper bound of precision (Meilicke and

Stuckenschmidt, 2008).

Also on the topic of logical soundness, Jiménez-Ruiz et al. (2011) proposed three principles

for ontology alignments: consistency, conservativity, and locality. The consistency principle states

that correspondences should not lead to unsatisfiable classes in the merged ontology. This is a bit

of a misnomer, as the principle pertains to ontology coherence (all classes are realizable) rather

than ontology consistency (there are no contradicting axioms). Compliance with this principle

can thus be assessed by using the metrics described above. The conservativity principle states

that correspondences should not introduce, in the merged ontology, new semantic relationships
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between any two entities that were originally from the same input ontology. Compliance with this

principle can be assessed by counting the number of violation to it, as proposed by Solimando

et al. (2017). Finally, the locality principle states that correspondences tend not to be semantically

isolated in the ontologies, which is to say, two semantically related concepts from one of the input

ontologies are more likely to be aligned to two concepts from the other input ontology that are

themselves semantically related, than to unrelated concepts. This principle is more a guideline

for identifying potential false correspondences than a basis for assessing alignment quality, which

is why no metric to assess its compliance has been proposed.

We must note that coherence and conservativity may sometimes be at odds with alignment

completeness, as ontologies have different modelling views of their domain, which have to be

reconciled when two ontologies are merged, possibly leading to new semantic relations between

entities of one or both of them, as well as to logical conflicts (Pesquita et al., 2013). Thus, it

may very well be that the complete and correct alignment between two ontologies is incoherent

and/or unconservative. Nevertheless, alignment coherence is critical for several applications, such

as ontology merging and query answering, and therefore is commonly used as an evaluation

criterion in the OAEI, in tracks such as Anatomy, Conference, Large Biomedical Ontologies,

Disease and Phenotype, and Ontology Alignment for Query Answering (OA4QA). Evaluation

modalities include binary assessment of coherence, the maximum cardinality measure, and the

number or fraction of unsatisfiable classes. The relevance of alignment conservativity is more

debatable, as it is not strictly required for any application, but it has also been used as an

evaluation criterion in the OAEI Conference and OA4QA tracks. Note also that neither coherence

nor conservativity evaluations are a substitute for an evaluation of alignment completeness and

correctness, and they have always been used in complement of the latter in the OAEI. In the

extreme case, an empty alignment is fully coherent and conservative, but utterly useless.

In complex alignments, assessing coherence is particularly desirable, as the very interest in

making a complex alignment is underpinned by a concern with semantic precision beyond what

simple alignments allow. However, assessing coherence requires reasoning and is computationally

challenging, particularly for large and/or semantically complex ontologies, and even more so if

the alignment itself is large and/or complex. Even more important, assessing coherence requires

that the merged ontology be expressible in OWL DL, which may not be the case in complex

alignments, even if the input ontologies are. Some complex correspondences are not expressible

in OWL at all, while others are expressible in OWL but not OWL DL.

Assessing conservativity of complex alignments makes less sense than doing so for simple

alignments, as complex alignments tend to contribute substantially to the semantics of both input

ontologies by design (e.g. by defining ontology restrictions) and thus it is not at all unexpected

that they lead to conservativity violations. That said, assessing conservativity violations in

complex alignments should be little harder than doing so for simple alignments, assuming the

correspondences can be encoded in OWL DL.

5.2 Task-based evaluation

The quality of an alignment can also be assessed regarding its suitability for a specific task

or application. Considering that ontology alignments are, in practice, constructed for a given

application or with a given task in mind, it would be useful to set up experiments that do

not stop at the delivery of the alignment but carry on to the application or task for which the

alignment was constructed. This is especially true when there is a clear measure of success for the

overall task or application, but even when there is not, it can be useful to share corresponding

aggregate measures associated with a task or application profile.

With respect to application-oriented evaluation, Isaac et al. (2008) proposed ontology

alignment evaluation methods for the specific scenarios of thesaurus merging and data translation.

They defined sets of tasks which need an alignment or part of it, then evaluated the alignment
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on how well it fulfilled these tasks in terms of quality (for each task how good is the answer) and

quantity (how many tasks were fulfilled by the alignment).

Regarding task-oriented evaluation, Euzenat and Shvaiko (2013) argued that different task

profiles can be established to explicitly compare matching systems for certain tasks, such as

ontology evolution or query answering, that have different constraints in terms of coverage and

run time. One such task-oriented evaluation approach was introduced in the OAEI in 2015 at

the OA4QA track2 (Solimando et al., 2014), which focused on the task of query answering. This

track used a synthetically populated version of the Conference dataset and a set of manually

constructed queries over these ABoxes. A given query, such as Q(x):=Author(x) expressed using

the vocabulary of the Cmt ontology, was executed over the merged ontology Cmt ∪ Ekaw ∪
A, where A is an alignment between Cmt and Ekaw. Precision and recall were calculated with

respect to model answer sets, i.e., for each ontology pair and query Q(x), and for each alignment

A computed by each matching system. An alternative approach for evaluating query answering

without using instances was proposed by David et al. (2018), where queries are compared without

instance data, by grounding the evaluation on query containment.

While task-based evaluation is equally valid for both simple and complex alignments, some

tasks tend to have higher expressiveness requirements, and thus to more often involve complex

alignments, such as query answering/rewriting and ontology merging (Thiéblin et al., 2018).

Query answering in particular has already been a subject of focus for complex alignments, with

(Makris et al., 2012) presenting a set of complex correspondences used for query rewriting3 for a

few pairs of ontologies. More recently, complex correspondences have been exploited for the task of

query rewriting for federating agronomic taxonomy knowledge on the LOD cloud (Thiéblin et al.,

2017). This (Taxon) dataset was also used in the Complex track of the OAEI 2018 campaign,

with the aim of assessing the performance of matching systems over large knowledge bases. The

evaluation was performed based on the quality of the generated alignments (in terms of precision)

and on the ability to rewrite SPARQL queries using these alignments. In particular, a manual

analysis of the number of queries satisfyingly rewritten based on the alignments was carried out.

The queries written for the source ontology were rewritten automatically when dealing with (1:1)

or (1:n) correspondences, using the system described by Thiéblin et al. (2016), and manually

when dealing with (m:n) correspondences.

Given the relevance of complex alignments for query answering, and the fact that this task

is one of the main applications of these alignments, evaluation approaches based on this task

would be highly relevant. One of the main challenges in implementing such approaches lies

in establishing a query rewriting scheme that encompasses the expressivity and cardinality

of complex correspondences. In the case of simple alignments, a naive approach for rewriting

SPARQL queries can be to simply replace the IRI of an entity of the initial query by the IRI

of the corresponding entity in the alignment, as described in David et al. (2011). For complex

alignments, such a naive approach is obviously not possible, as the semantics of the alignment

itself has to be taken under consideration. Euzenat et al. (2008) proposed an approach for writing

specific SPARQL construct queries, but most query rewriting systems still rely on simple or (1:n)

complex correspondence and fail in covering highly expressive (m:n) complex correspondences.

6 Discussion

The nature of complex ontology alignments presents unique evaluation challenges that were

not considered when existing evaluation techniques were developed. This section outlines those

challenges and analyzes the areas in which current approaches are lacking.

2http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/index.html
3http://www.music.tuc.gr/projects/sw/sparql-rw/
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6.1 Challenges

Regarding evaluation using reference alignments, challenges exist at each stage of the evaluation

process:

Anchor Selection: Given the less bounded nature of complex matching, it is to be expected

that systems will produce a large number of correspondences.

Challenge 1: Selecting which candidates will be compared to which reference

correspondences in order to avoid the necessity of a full pairwise comparison of all

candidates in the comparison step

Correspondence Comparison: Complex correspondences can consist of entities of arbitrary

complexity and be expressed in a multitude of semantically equivalent or nearly-equivalent

ways.

Challenge 2: Determining the relation between a candidate correspondence and a

reference correspondence, which requires comparing all of the singular entities and the

expressions in which they are listed for both correspondences

Challenge 3: Handling correspondence decomposition, which involves comparing

sets of correspondences to a single correspondence, since the combination of several

correspondences (simple or complex) can be equivalent or related to a single complex

correspondence

Challenge 4: Comparing correspondences whose relation differs (e.g. a subsumption

to an equivalence)

Scoring: Complex correspondences contain more axes than simple correspondences, because

e and e′ are not single entities but rather (potentially nested) combinations of entities,

constructors, and transformation functions. This necessitates more nuanced scoring metrics,

which can be used to determine how close a correspondence is to a reference correspondence.

This allows for measuring the effort required of a human validator or by matching

approaches creators to understand the limitations of their approaches and thus drive

development.

Challenge 5: Accurately reflecting the quality of a correspondence, especially

considering that in complex matching, a correspondence is still useful even if only

partially correct.

Aggregation: Existing aggregation approaches for alignment evaluation with a reference

alignment were designed with simple alignments in mind. They are tightly coupled to

particular correspondence comparison and scoring methods and tend to take an all-or-

nothing, or at best all, half, or nothing, approach.

Challenge 6: Factoring correspondences that are partially correct into the scoring

process

Challenge 7: Considering a set of candidate correspondences in conjunction as related

to a single reference correspondence (and vice-versa)

Challenge 8: Handling the occurrence of multiple correct candidate correspondences

that are implied by a single reference correspondence (as is the case in correspondence

3 from the reference alignment and 3 and 4 from the first alignment system)

Evaluation when no reference alignment is available presents an orthogonal set of challenges.

Task-based evaluations require a well defined task, for which a quality metric is definable. The

quality of the alignment is measured by proxy through the quality of the task results, which

results in a narrow scope for the evaluation. Furthermore, for tasks where the output needs to

be manually evaluated (e.g., query rewriting) the manual effort required presents an additional

challenge.
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Challenge 9: Developing generalizable quality metrics for task-based complex align-

ment evaluation

Challenge 10: Automating the query rewriting process based on a set of complex

correspondences

In addition to being able to handle the aforementioned challenges, evaluation metrics for

complex alignments should also be fully automated and independent of manual input, even if the

alignment is intended to be manually validated post-hoc. This is a crucial feature to further

promote the development of complex matching approaches, by shortening the time between

development cycles. Consequently, techniques for the evaluation of complex alignments need to

be able to handle the computational complexity the challenges pose, both at the correspondence

level and at the alignment level.

6.2 Gap analysis

We now turn our attention to assessing the degree to which existing alignment evaluation

approaches address the challenges above. This analysis begins with approaches focused on cases

in which a reference alignment is available (i.e. those relevant to challenges 1 through 8).

Syntactic approaches are unsuited to address challenges 3 and 4, since they do not employ

reasoning and consider correspondences that are logically equivalent or can be derived as

incorrect. They are also unable to address challenges 5, 6 and 7, given that they do not

consider closely related correspondences. By virtue of their simplicity, they struggle less with

challenges 1, 2 and 8, which are related to the computational complexity of the approach.

Rule-based semantic approaches provide strategies that can partially address chal-

lenges 5 and 6, since they are able to account for closely related correspondences involving

direct super/subclasses. However, they are unable to handle the full gamut of expressions

required by complex matching. Furthermore they do not address the remaining challenges.

Edit-distance metrics, which assess the number of modifications that must be made to a

candidate correspondence in order to arrive at reference correspondence, can be considered

a type of rule-based semantic approach in the context of complex alignment evaluation.

Examples of edit-distance metrics for strings include Levenstein and Smith-Waterman.

These metrics are potentially able to handle challenges 4, 5 and 6, while not specifically

addressing the remaining challenges. However, we are not aware of any existing edit-distance

metrics for any of the common complex alignment representation languages discussed in

Section 3.

Reasoning-based semantic approaches are better suited to answer challenges 2, 3 and

7, since they can cover the semantic complexity of complex expressions, and also handle

correspondence decomposition. However, this is restricted to the cases where the merged

ontologies are in OWL-DL. Furthermore, they are unable to handle challenges 5 and 6

since they only cover correspondences that can be logically derived, they consider closely

related correspondences as incorrect. They also do not offer any specific features to address

challenges 1 and 8.

Instance-based approaches circumvent many of the outlined challenges, by simplifying

correspondence evaluation to a measure of the overlap between sets of instances. However

they are applicable to class correspondences and transformations, but it is not straightfor-

ward to apply them to property correspondences. Furthermore, they require that all classes

in the alignment be populated with instances.

With respect to evaluation approaches that do not require a reference alignment, the existing

work primarily consists of manually intensive evaluation strategies that were uniquely developed
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for particular cases. There is significant room for future work on the challenges relevant to these

metrics (i.e. challenges 9 and 10).

6.3 Feasibility analysis

The task of evaluating complex correspondences is inherently expensive computationally, due to

the syntactical and semantic complexity of these correspondences.

From a syntactic perspective, there is no theoretical limit to the complexity of the expressions

that can be constructed through nesting. This is not a challenge for the use of the traditional

syntactic evaluation metric, which can still be implemented with O(n) time complexity. It is,

however, a substantial challenge for the implementation of more sophisticated and promising

approaches, such as rule-based and particularly edit-distance metrics, which have to cope with a

potentially endless search space of possible combinations of constructions and transformations.

This means that, in all likelihood, such evaluation approaches would have to adopt non-naive

techniques to reduce the search space, and contemplate only the more plausible combinations of

constructions in order to ensure efficiency.

From a semantic perspective, the more expressive complex correspondences go beyond OWL

DL, and thus may not be decidable, while transformations cannot be expressed in OWL at all.

This means that semantic approaches relying on existing OWL reasoners would only be able

to evaluate correspondences with constructions supported by those reasoners, which would limit

their applicability.

By contrast, instance-based approaches are largely unaffected by the complexity of the

correspondences, and could be the most realistic way to address the complex alignment evaluation

problem, by shifting from the comparison of correspondences into the comparison of sets of

instances. One approach for this would be to determine, for each correspondence ci in the

evaluated alignment, the relation between the sets of instances Is and It, belonging to the

source and target members of the correspondence respectively. Each correspondence could then

be classified as equivalent, subsumed, overlapping, or disjoint, given the relation between Is and It,

or empty if Is = It = ∅ (i.e., if both members are either unsatisfiable or non-populated entities).

Having a reference alignment, one would know what are the sets of expected instances to be

compared. Different precision scores could then be computed for each type of correspondence

member relation: the equivalent precision would measure the percentage of correspondences whose

members are exactly populated with the same instances, and likewise, the subsumed, overlapping

and not disjoint precision would measure the percentage of correspondences whose members

subsume one another, overlap, or are not disjoint, respectively.

Such a strategy could rely on expressing complex correspondences as SPARQL queries,

which would cover also transformation functions. As we discussed previously, it is limited in

coverage, since it can be applied to the evaluation of class (expression) correspondences or

transformations, but it is not straightforward to apply to the evaluation of property (expression)

correspondences. Furthermore, it requires the knowledge bases to be consistently populated (i.e.,

complete population of all entities the complex correspondences are supposed to cover). However,

the cost of creating such a knowledge base (e.g. with artificially populated data) is smaller than

the cost of creating reference alignments or applying evaluation strategies such as query rewriting.

7 Conclusions and Future Work

In this paper we have defined complex ontology alignments and shown that the few systems that

have attempted to generate such alignments have been evaluated using methods that are difficult

to generalize and/or labor intensive. A survey of existing evaluation approaches, which were

developed with simple alignments in mind, has shown that they are insufficient in several ways.

In particular, the most common evaluation approach, based on exact syntactic match, lacks the

nuance necessary to distinguish between completely unhelpful correspondence suggestions and
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those that are “almost correct.” Other existing evaluation techniques are not scalable to the

complex case, can only be used under certain conditions (e.g. when dually-annotated instance

data is present or when the alignment is expressible in OWL DL), or have other drawbacks. We

have enumerated what we view as the most pressing gaps between current techniques and what

are needed for complex alignment evaluation. In the remainder of this section, we propose future

work that can potentially bridge these gaps.

Evaluating complex ontology alignments is too broad a challenge to tackle with a single

approach, as there are multiple aspects to take into account, and different tasks will likely merit

different evaluation paradigms. Considering that the two main applications of complex alignments

are ontology/linked-data integration, and query answering/rewriting, it stands to reason to focus

our efforts in developing evaluation approaches with these applications in mind.

With respect to ontology/linked-data integration, it is unlikely that the state of the art in

ontology alignment ever reaches a point where human validation is unnecessary. This is true even

for simple alignments, but particularly so for complex alignments, given the inherent difficulty in

generating them automatically with reasonable precision or recall. Under this premise, we believe

that the most adequate approach to evaluate complex alignments in the context of this application

would be an edit-distance approach that reflected the effort involved in human validation, in

the same spirit as the effort similarity approach we reviewed in Section 4.2.2. Therefore, our

future work will concentrate on developing an analogous edit-distance approach that encompasses

all the requirements and nuances of complex alignment evaluation. Concretely, the approach

must explicitly contemplate all complex expressions in use and define costs for inter-converting

them, and must adequately handle cases of correspondence decomposition, where a reference

correspondence should be compared with two or more system correspondences that cover it

partially (or vice versa). Greater granularity with respect to the edit-costs between semantically

related classes would also be desirable. Last, but not least, the approach should be scalable,

and avoid the need to do all-vs-all correspondence comparisons. Given these constraints, we

believe that a deterministic rule-based edit-distance approach that covers all the key complex

correspondences constructions explicitly, in a way that reflects the effort required to correct

them, would be the best candidate.

With respect to query answering/rewriting, we believe that there are two major hurdles to be

tackled: developing an automated converter for transforming any complex alignment into a query

rewriting scheme; and developing a query generating algorithm that can automatically generate

queries adequate in coverage and scope to the complex alignment to evaluate. The primary focus

of our future work will be the first hurdle, as only by overcoming it can we use query-based

approaches to fully evaluate complex alignments automatically. Overcoming the second hurdle

will be essential to enable the widespread use of query-based evaluation, and will also contribute

to make query-based evaluation efforts more comprehensive and comparable, as otherwise queries

have to be manually defined for each test case.

We will also explore instance-based evaluation approaches, such as the one delineated in the

previous section. This approach can complement or even replace the edit-distance approach in

a linked-data integration scenario, and can be a computationally efficient and labor-friendly

alternative to query answering.
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