
A KNOWLEDGE-BASED FAIR-SHARE SCHEDULER

by

SUSAN M. SAAD

B.S., University of Colorado, 1982

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

^10

c.z CONTENTS

1

.

INTRODUCTION 1

2

.

THE SCHEDULING PROBLEM 5

3

.

EXPERT SYSTEMS o

4. REQUIREMENTS 16

5. DESIGN.

6.

21

CONCLUSION AND EXTENSIONS 4 !

7 . BIBLIOGRAPHY 43

8 . APPENDIX A - C5 RULES 4 5

9
.

APPENDIX B - EXTERNAL SORT FUNCTION 6 8

LIST OF FIGURES

Figure 5-1 . Element Classes 22

Figure 5-2. State Diagram 29

Figure 5-3
. Allocating Slots for a Shop 33

Figure 5-4 . Scheduling Non-Short Selects 36

Figure 5-5. Adding a Product to Gypped List 37

1 . INTRODUCTION

Expert systems are playing a larger role in today's

society — especially in the areas of manufacturing and

scheduling. Although expert systems have existed since

the early 1960 's, only recently have they become

commercially viable and have they begun to migrate from

the universities to industry [Yusko86]. Knowledge-based

systems are being used to diagnose problems with the

manufacturing process, to help engineers convert product

conceptions into designs, and to train operators on the

factory floor. In addition to traditional planning

systems which have existed for years, expert systems are

now being used to create schedules for manufacturing

organizations

.

In today's manufacturing environment, many long-term
planning systems exist; however, decisions about the
sequencing of short-term work is often not supported by
computer systems. These schedules are often created by a

supervisor who uses rules of thumb that were acquired
from years of experience. Often, when creating these
schedules, a supervisor will have to consult with other
supervisors since the derived schedules can affect many
down-line operations and organizations.

- 2 -

Due to more efficient tooling, robotics, and principles

of just-in-time manufacturing, the short-term planning

and scheduling functions must be performed quicker and

more accurately. As setup and throughput times decrease,

the lot sizes to be manufactured are decreasing; this

creates more work units that must be scheduled during a

period. "Just-in-time is having what is needed, when it

is needed" [Lubben88]; therefore, accurate schedules are

becoming more important. Technological advances and

just-in-time concepts require that more work be assigned

correctly to schedules in a short time period.

There are two approaches to a scheduling problem—an
algorithmic approach and a heuristic approach. Each
approach has its advantages and disadvantages. An
algorithmic solution often finds an optimal solution at
the expense of the time to collect large amounts of data
and the time to compute the result. Also, the method to
get to the solution can be difficult to understand. On
the other hand, a heuristic solution uses rules of thumb
which result in good or acceptable solutions; heuristic
solutions usually require less data and computing effort,
and the solution is easier to understand.

- 3

Expert systems use the heuristic solutions to a problem;

conventional computer systems use algorithmic solutions.

Expert systems usually address small tasks performed by

professionals, usually tasks taking from a few minutes to

a couple hours; conventional data processing systems

process large volumes of data in order to automate time-

consuming clerical jobs. An expert system uses an

inferential process; a traditional system uses a

repetitive process [Bryant88].

There are many numerical and non-numerical problems which
are better suited for an algorithmic solution rather than
a heuristic solution and visa versa. It can be difficult
to determine which of these approaches should be used for
a given application. Some scheduling systems are a blend
of both approaches incorporating aspects of conventional
algorithmic techniques and expert systems where
appropriate.

This paper describes an expert system that schedules work
for a warehouse that must serve several shops in a

factory. It discusses scheduling problems in general,
expert systems, and the warehouse's scheduling dilemma.
This paper also describes the expert system tool that was
selected (C5), how C5 operates, and how it was used t o

4 -

solve the warehouse's scheduling problem. Last, this

paper derives some conclusions regarding expert systems

in the scheduling process and provides some

recommendations for further work in this area.

- 5 -

2. THE SCHEDULING PROBLEM

There is a gap in the conventional Material Requirements

Planning (MRP) packages; they carry long-term planning

information and little execution and control information.

Therefore, many decisions about the allocation of

resources and sequence of jobs is made by a foreman or

supervisor [Gilmore87]. The foreman's or supervisor's

job is becoming more difficult and important in today's

rapidly changing manufacturing environment. The need for

timely decisions based on current information is

increasing.

Management science solutions (algorithmic solutions) are
hindered by: "1. deterministic performance times 2.

single project operations 3. splitting activities 4.

unconstrained resources" [Kim88]. First, performance
times for an activity are never certain; more often, the
performance times are variable. Second, much of the past
management science work has assumed that a project is

isolated from other projects; however, projects often
compete for the same resources. Third, the objective of
a schedule should be to meet several goals at once rather
than to focus on a single goal of one activity. Last,
some management science solutions, the critical path

analysis for example, assume unlimited resources are

available—a state not experienced by many supervisors.

Sang o. Kim reached the conclusion that past research in

the scheduling area has lacked generality and

practicality [Kim88].

When multiple entities are involved in a scheduling

process, scheduling can become more difficult and

confusing. This difficulty exists because the various

entities may have conflicting goals (Kim88]. Therefore,

it can be better to approach the problem on a global
level rather than getting tangled in the conflicts that
arise between each entity. Hopefully, a schedule
produced from a global viewpoint will be an acceptable
compromise between the needs of the individual entities.

One of the principles of just-in-time manufacturing is
"to continually seek the path of simplicity" [Lubben88].
This principle can apply to scheduling in a factory also.
A simple way to view a scheduling problem is to think of
the problem as a limited resource allocation problem
[Weist67]. A limited amount of work can be performed in
each schedule period. A simple rule of thumb is: "if an
important piece of work cannot be scheduled during a
schedule period, then give that piece of work highest

- 7 -

priority during the next schedule period when resources

are available." Other heuristics exist which can

simplify the scheduling process.

Stephen F. Smith and Mark S. Fox describe some important
factors that affect factory scheduling decisions. First,
the schedule must meet the scheduling restrictions; these
include the availability of resources and material.
Next, the schedule should comply with the scheduling
preferences. Scheduling preferences are such things as
minimizing work in process, meeting due dates, and
stabilizing shop work loads [Smith85]. Although the
types of scheduling restrictions and scheduling
preferences will vary from case to case, scheduling
decisions should be based on these factors.

- 8 -

3. EXPERT SYSTEMS

Frederick Hayes Roth, Donald A. Waterman, and Douglas B.

Lenat define an expert system as " a computer system that

achieves high levels of performance in task areas that,

for human beings, require years of special education and

training" [Hayes-Roth83] . Knowledge-based expert systems

use human knowledge to solve problems. Expert systems

also employ other functions of an expert such as asking
relevant questions and explaining its reasoning.

However, unlike a human expert, expert systems cannot use
common sense reasoning or handle inconsistent knowledge.

An expert system can provide several advantages for a

manufacturing company. One main advantage is that an
expert system is permanent. An expert's time is often
limited, or an expert may leave the company. By creating
an expert system, one is making the expert's knowledge a
corporate resource [Yusko86]. In addition, the time and
cost to produce a new human expert can be very high.
Some other benefits of expert systems in the
manufacturing arena include that the expertise can be
used in many locations, that the expertise is more
consistent than a human expert, and that the expert
system may fit better in a hostile environment.

9 -

The rule-based system consists of three components

—

working memory, rule memory, and an inference engine.

Working memory contains the data representing the facts

and assertions about the problem [Brownston86] . Rule

memory, also referred to as production memory, contains

the series of rules; each rule consists of a condition

portion or left-hand side (if . .
,) followed by an

action or right-hand side (then . . .). Last, the

inference engine is the control mechanism for the system.

It determines which rules should be fired next based on

the contents of working memory.

There are two types of expert systems — forward chaining
and backward chaining. Forward chaining systems are
driven by data. They use the information on the left-
hand side of rules to derive the right-hand side
[Waterman86]. Backward chaining systems are directed by
a goal or a hypothesis. They start with what they want
to prove and execute the rules relevant to getting to the
goal [Waterman86]

.

The expert system described in this paper attempts to
translate the warehouse and shop supervisor's knowledge
into a computerized expert system. This is done after
extracting the knowledge from the expert through a

10

process called knowledge engineering. This process

involves watching the expert solve the problem on the

Job, d« tormining the data and knowledge needed to solve

the problem, having the expert describe a typical problem

and its solutions, and presenting the expert with a

series of problems to solve while recording the reasoning

behind each step. The process continues with the expert
giving the knowledge engineer a series of problems to

solve with the derived rule set. Lastly, the expert
should verify the set of rules that were created
[Waterman 86]. After this process, one should be close
to capturing the expert's knowledge in a series of rules
and control constructs

.

A task is considered to be a candidate for an expert
system if it has the following characteristics. The
expert system should be cost effective by increasing
revenues or decreasing costs or by boosting the
efficiency of an organization by making expertise more
readily available [Bryant88]. Also, the application
should be of manageable size but should not be a task
that is too easy; the nature of the task should involve
symbol manipulation and should require heuristic
solutions

.

11

Selecting an expert system tool in not an easy task.

There are many types of shells available on the market

ranging from inexpensive, simplistic systems to more

expensive, sophisticated tools. Some tools are very easy

to learn and have very user-friendly interfaces. Others

are harder to learn but have wider choices of inference

strategies and knowledge representations.

"Just as varied problems require different reasoning
processes by human experts, they also require different
constructs of tools" [Fontana88]. There are different
methods of representing knowledge; one application may be
better suited for an object-oriented system whereas
another better equipped for a rule-based representation.
Assuming a rule-based system is selected, there are
different inference mechanisms that can be chosen; some
problems require forward reasoning or forward chaining,
and other problems need backward reasoning or backward
chaining as they work toward their goal. One should also
consider the cost of the system, the rule or size
limitations, speed, interfaces to other software,
portability, documentation, training, company support,'
and most importantly user satisfaction [Gevarter87]

.

12 -

There are specific qualities of an expert system which

are desired for a scheduling application. In William B.

Gevartar'a article "The Nature and Evaluation of

Commercial Expert System Tools", some of the important
attributes of a planning or scheduling expert system are
listed. One attribute is that the tool use forward
reasoning or use an an integrated approach combining both
forward and backward reasoning. Gevarter also
recommended that actions be described in the form of
rules or procedures [Gevarter87]

.

The 0PS5 and C5 systems possess these desired qualities.
Both systems are forward-chaining, forward-reasoning,
rule-based tools.

0PS5 programming language is a popular version of the
rule-based language developed at Carnegie Mellon
University. it was written by Charles Forgy in Lisp in
the i960 's. C5, written by AT&T Bell Laboratories, is
another language which is fully compatible with 0PS5;
however, C5 is written in C language and possesses some
additional features and constructs that do not exist in
0PS5.

13

C5 is well integrated with the UNIX operating system and

provides much flexibility for the programmer developing a

rule-based system on UNIX. The C5 interpreter provides

direct access to UNIX system's functions. "The

programmer can draw on the strengths of the rule-based

methodology that 0PS5 provides and the strengths of the

procedural methodology that C and UNIX systems provide"

[Vesonder88]

.

The C5 inference engine cycles over three states -- 1.)

find matching rules, 2.) select a rule, and 3.) execute
the selected rule [Brownston86] . This control cycle is

referred to as the recognize-act cycle. The method of
selecting a rule when multiple rules match the working
memory depends on the recency of each conditional element
and on the specificity of the left-hand side of the rule.
First, if a rule was previously fired and elements in
working memory for that rule were not changed, then the
rule will not be fired again. Next, the inference engine
orders rules, putting rules referencing the most recently
modified working memory elements at the top of a list.
If one rule does not dominate the list, then the dominant
rules are ordered based on which rules are more specific
(have the most conditions). Last, if a single rule still
does not dominate, then a rule is selected randomly.

- 14

Many production systems spend more than nine tenths of

their runtime performing matches [Forgy87]. C5 uses the

Mmt» algorithm to improve its matching performance. The

Rete algorithm alters the matching process described

above and creates a more efficient process. The match

algorithm exploits two properties of production systems

— 1.) working memory changes very little from run to

run, and 2.) the left-hand sides of rules contain similar

patterns. The algorithm saves information about matches
and partial matches from cycle to cycle and updates the

information with the changes. Also, common patterns are
stored in a Rete network to eliminate duplication of

terms and excess search time [Forgy87]. "The Rete
algorithm is efficient because it does not match all
elements on each cycle, it shares similar tests in
different rules, and it recomputes whether or not
combinations of matches are consistent only when
necessary" [Brownston86] . The efficient Rete match
process is a benefit of using 0PS5 and C5

.

With C5, the control of the system is built in with the
Rete algorithm, and knowledge cannot control the order of
the execution of rules. The resulting freedom from
having to concern oneself with control is considered to
be an advantage of expert systems. However, the design

15 -

of many expert systems requires that rules be pursued in

a particular sequence [Erman84]. These designs are based

on solutions obtained from experts who perform expert

tasks in a particular order. Using C5, there are two ways

to cause rules to fire in a preset sequence. One can

order data or arrange conditions of rules to cause the

inference engine to select rules in the desired sequence,

or one can use control elements to gain some control over

the order in which rules will fire.

16

REQUIREMENTS

In the factory, the warehouse is issued many units of

work, called selects. A select is a group of parts which

are required to build a product type in a shop. A select

is uniquely identified by a select number and is specific

to a product.

The warehouse attempts to have all components that
comprise a select picked, sorted, and prepared in the
warehouse prior to a shop requesting delivery of the
select material. To prepare a select, the warehouse must
pick parts from storage locations and may have to affix
components on reels, program integrated circuits, or
organize parts into kits. Therefore, due to this lead
time, the warehouse tries to keep one step ahead of the
shops

.

Some shops build many selects in a week, and others build
less. Most of the selects are created in the Material
Requirements Planning (MRP) computer run over each
weekend. The MRP programs use various lot-sizing rules
to generate the selects. Therefore, some selects are
issued in small quantities causing several selects for a

product to be created in a week; others come in large

- 17

quantities with just one or two selects being issued per

week for a product. The joint goal of the factory shops

and warehouse is to complete work on all selects by the

end of the week.

In this scheduling problem, there are many diverse

objectives and preferences from different shops in the

plant. These viewpoints often conflict. Most of the

shops would like many of their selects to be top priority

on the warehouse's schedule. Each shop feels that its

needs are most important.

The warehouse supervisor has the tough task of creating a

schedule that will make each of the customer shops

satisfied. In order to understand all the needs of each
shop, the warehouse supervisor requests each shop to

generate a list of their products in priority sequence.
If a product usually has many more selects than other
products, he asks that the product be included in the
list multiple times. The warehouse supervisor uses these
priority lists to devise a method to create a schedule.

The devised scheduling process attempts to satisfy the
goals of the shops and warehouse. First, the process
provides each of the shops with a fair share of the

18

output. Second, while giving each shop its fair share,

the process provides the warehouse with a relatively even

workload for each day of the week. The warehouse

supervisor identifies the selects belonging to a shop by

comparing products on a shop's priority table with the

products on the select. Then, a fair share is determined
by counting the number of unscheduled selects for a shop

and dividing the count by the number of remaining
workdays in the week. This calculation is performed for
each shop. All calculated schedule positions are summed
together scheduling a fairly even number of selects per
day for the warehouse to complete.

The scheduling process schedules one shop's selects at a
time. To distribute the fair share for a shop, the
selects are assigned to the schedule based on the
location of a product in a shop's priority table.
Starting with the top priority product and working down
the table, a select having all parts stored in the
warehouse is scheduled for each product on the list.
Each select that is scheduled is marked to avoid
scheduling the same select multiple times. Since a
select that is missing parts cannot be built by a shop,
the warehouse defers work on selects having component
shortages. if a select cannot be scheduled -

n today , s

19

schedule due to shortages, then the product is remembered

and is given top priority once the shortage clears.

Several passes of the shop's priority table may have to

be completed until all non-short selects have been

scheduled. Short selects are assigned to the schedule

after all non-short select have been scheduled.

When enough selects have been scheduled to exhaust a

shop's fair share for a day, then the supervisor begins

scheduling the next day's work for the shop. Each time a

new day's schedule is started, the supervisor starts the

scheduling process at the top of the priority table. He

also starts at the top of the priority list after

completing the scheduling of non-short selects before

continuing to scheduling short selects.

When all shops' selects have been scheduled, the

supervisor looks for selects having products that were

not assigned to a shop's priority list. These products

and selects are written on a separate list. The list is

later examined with shop supervisors to determine which
shop needs to include the product on their priority
table.

- 20

Once the schedule has been produced, the warehouse

supervisor analyzes it. If he notices that an excessive

amount of work has been scheduled for a specific shop, he

warns the appropriate shop supervisor. He does this in

cases where too little work is scheduled for a shop also.

Last, the warehouse supervisor may change the schedule of

certain selects based on special shop requests or recent

deliveries or outages of material.

After a schedule day has passed, the supervisor proceeds

through the same process scheduling work for the rest of

the week. He uses updated select and priority

information. The supervisor does not schedule selects

that were scheduled for a previous day again. Prior

commitments in previous schedules constrain subsequent
scheduling for the week.

21

5. DESIGN

Seven data structures or element classes were used in the

design and implementation of the C5 fair-share scheduling

system. These include the shop, priority, gypped,

select, slot, stats, and start structures. These element

classes, their attributes, and some sample values are

shown in figure 5-1. The element classes and how they

are used in the scheduling process are described next.

- 22

Figure 5-1. Element Classes

SHOP:

shopnaroeprlorltyflle gypped file upper bound lover bound

|

ahop-4 |iuWpriora
| M/gypa [10 20

PRIORITY:

product number level examine
11 100 yes
22 95 yes

33 90 no

44 85 no

53 80 no

GYPPED:
product number gypped day

11 1

22 1

SELECT:
select product

number number
short

ind

assigned

day

tape

aequenc<
program

ics

lot

ports status
shop
name

1212 11 no 1 no no no Dart shop-a
1313 66 no in* yes yes no inlt init

1414 44 no init no no yes init shop-«

1515 55 no inlt no yes no init shop-a
1616 77 yes hit yes yes no init init

1717 88 no init no yes no init init

1818 22 yes init yes yes yes init shop-a
1919 11 no init no no no init shop-a

2020 22 yes init yes yes yes init shop-a

2121 33 no 1 yes yes no part shop-a

SLOT:

dayotveek unscheduled slots

1 3

2 3

3 3

4 3

5 3

STATS:

look lor record vork last select change select change schedule current

action shortages count today days workday count number schedule file priority

jschedulej n0
|

| 2 [4
[

5~ '5' no jlulfsch
| 90

START:

23 -

Some element classes are initially loaded with data from

external UNIX files whereas others are created during the

scheduling process. The shop, priority, gypped, and

select classes are primarily populated from files. The

attributes in the slot and stats structures are filled

with user responses and calculated results acquired at

runtime. The start data structure is the first element

class to be created but does not. contain any attributes.

The shop element class contains information about each

shop such as the name of the shop. Two of its attributes

are names of external UNIX files containing a shop's

priority and gypped data. These names are used to load

data into the priority and gypped data structures. Two

threshold attributes contain the upper bound and lower

bound values for the number of selects that should be

scheduled per day. These attributes are used to issue a

warning message if the number of selects to be scheduled
on a day for a shop does not lie within these limits.

Since one shop is scheduled at a time, only one instance
of the shop element class is resident in working memory
at a time. After the schedule is completed for a shop,

the shop's data item for this element class is removed
from working memory, and working memory is populated with

24

the next shop's information.

The priority data structure contains data describing the

relative priority of each product built by a shop. The

product number uniquely identifies a product. The

priority level is a numeric value which assigns a

relative priority to each product. Last, the priority

examine attribute is an attribute used for control; it

tells whether a product and its priority has been

analyzed for scheduling possibilities. The priority

examine attribute keeps track of the current scheduling

position in the priority table.

The product number and priority level of each product are

loaded from an external file specific to a shop.

Therefore, one shop's priority list can be found in

working memory at a time. The priority information for a

shop can be voluminous and may not change very often;

thus, each shop's priority information is stored in an

external file.

The gypped data structure contains products for a shop
which could not be scheduled on previous days due to

shortages of components. The gypped product number
describes a product, and the gypped day contains the day

25

a select for a product would have been scheduled if a

non-short select (rather than a short select) could have

been found. The gypped day is used to order the list

such that those products that could not be scheduled

earlier in the week are analyzed first.

. Similar to the priority element class, the gypped element

class is loaded from an external file for a shop

resulting in one shop's gypped list being in working

memory at a time. Instances of the gypped element class

may be added or deleted from working memory during the

schedule process. Instances are removed when non-short

selects fulfill past scheduling priorities and are added

when a select cannot be added to today's schedule due to

shortages. Thus, the changing gypped list is stored in

an external file allowing the output of gypped data from
one day's schedule to be used as input to the following
day's schedule.

The element .class select contains several key attributes.
The select number uniquely identifies the select, and the
product number identifies the product that will be built
from the parts in the select. The shortage indicator
tells whether or not all components for a select are in
stock. The assigned day stores the day the select was

- 26

scheduled; if the select has not been scheduled, it will

contain the value "init". The shop name describes the

shop to which a select is assigned; however, if the

select has not been assigned to a shop, this attribute

will contain the value "init" also.

The select element class also contains attributes which
are not used to schedule. Attributes describing
operations performed in the warehouse, such as tape
sequence, program ics, and kitting, are carried in this
structure. The status attribute describes the amount of
work completed on the select thus far. Although these
attributes are not used in the scheduling process, these
attributes are printed on the final schedule to notify
the warehouse of the operations and the amount of work
remaining to be performed.

The select element class is loaded from an external file.
Unlike the priority and gypped element classes where only
data for a specific shop occupy working memory at a time,
all selects for all shops are read into working memory at
the beginning of the run. This must be done because the
selects must be assigned to a shop. One of the tasks of
this scheduling expert system is to determine which
selects belong to which shops.

27

The slot element class contains the days of the week

remaining to be scheduled and the number of available

scheduling positions or slots open to a shop each day of

the week. It is initially populated by using the select

and priority element classes to calculate the shop's fair

share. This calculation will be discussed later.

Two control values and many other values are stored in

the stats element class. The action attribute designates

the state of the scheduling system-- whether it is

loading data from files into working memory or assigning

selects to the schedule. The look-for-shortage attribute
is another control variable denoting when to schedule
non-short versus short selects. The user is prompted for

values for the today and workdays attributes; they
contain the current day of the week and remaining number
of days to work respectively. The last-workday attribute
holds the calculated value describing the last workday of
the week. The select-count field stores the number of

selects that must be scheduled for a shop for the rest of
the week. The record-count variable is incremented as
records are read from external files and is used for
record-keeping purposes. The priority level that is
currently being analyzed is stored in a current-priority
attribute. The change-select-number and change-schedule

28

attributes are populated after the entire warehouse

schedule has been produced and if the user chooses to

alter assigned dates of selects; they contain the select

number to be rescheduled and a flag denoting if any

schedule changes were made respectively. Last, the

schedule-file attribute contains the UNIX file name to

which the schedule will be written.

The start data structure is used to get the system to

begin. It does not contain any attributes and is

resident in the system for a brief time.

A state diagram describes the main control used in this

scheduling system. Please see figure 5-2. The states
are designated with ovals and the element classes
required in each state are found in rectangles. The
stats element class was omitted from the diagram to avoid
clutter since it is used throughout the process. These
control points and the processing that may occur between
them will be discussed.

29

Figure 5-2. State Diagram

jjorit£_L-_!_J_45!ecL)

schedule

shorts

lol

30 -

First the system is started. The first action creates a

start element class in working memory. A rule checks for

the existence of the start element class, finds it, and

removes the start structure. This rule changes the

action attribute in the stats class to "get schedule

data"

.

Next, the data required for the schedule is loaded from a

file or requested from the user in "get schedule data".

This includes reading in the select data and requesting

an output file name for the schedule, the current day,

and the number of remaining work days from the user.

The select data is ordered in working memory based on the

sequence of data in the external select file. In order

for the scheduler to analyze the non-short selects first,

the external file must be sorted with the non-short

selects at the top of the file. After selects are

identified to a shop, the non-short selects will be the

most recent; the inference engine will analyze them

first.

Still referencing figure 5-2, the control now changes to

the "get shop data" state. After populating the shop

element class with the first instance of a shop, the data

relevant to a shop is loaded into the priority and gypped

31

element classes. The priority data is loaded into

working memory prior to loading the gypped information

causing members of the gypped element class to be more

recent. Therefore, the products in the gypped element

class will be considered for scheduling before products

in the priority element class. Also, the gypped elements

are loaded such that those with earlier gypped days (the

day a product could not be scheduled) are loaded last.

This causes those products that have been "gypped" the

longest to be analyzed for scheduling soonest.

After the shop data has been loaded, the number of

available slots for a shop are allocated. This is the

fourth circle in figure 5-2. The process is refined

further in figure 5-3. First, all unscheduled selects

for the current shop are counted. To determine the

selects belonging to a shop, a rule finds all occurrences

of selects with products having priorities in working

memory. when a shop is counted, the shop identifier is

populated in the shop name attribute of the select

element class, and the select count is incremented.

This number is divided by the remaining number of

workdays in the week. If the division leaves a

remainder, the remainder is distributed over the

beginning days of the week. If the number of slots for a

32 -

day is not within the bounds of the shop's upper and

lower thresholds, then a warning message is printed.

33

Figure 5-3. Allocating Slots for a Shop

PRIORITY: SELECT:

product number level
11 100

22 95

33 90
44 85

55 80

select product

number number
shop
name

1212 11 shop-a

1313 66 init

14M 44 shop-a

1515 55 init

1616 77 M
1717 88 shoo-a

1818 22 shop-a

1919 11 shop-e.

2020 22 shop-e.

71?1 33 init

2222 66 init

2323 99 init

2424 11 shop-e

?R?S 99 init

2626 44 shop-e.

2727 66 init

2828 22 shop-a

2929 33 shop-«

3030 11 shop-e.

3131 77 init

3232 6b' init

STAT:

today workdays

shop-e select count = 12

workdays = 4

1 2 selects / 4 workdays 3 slots I day

i
SLOT:

day of week unscheduled slots

i
[

3

3
~3

4
~3

5 3

34

In order to get C5 to start scheduling with the first day

of the week, the instances of the slot element class are

created starting with the end of the week and finishing

at the beginning of the week. C5's inferencing engine

will start with the most recent working memory element

(the beginning day of the week) and continue until the

least recent slot element is scheduled (the end of the

week)

.

Continuing with figure 5-2, the "schedule non-shorts"

state involves the gypped, priority, select, and slot

element classes. First, gypped products are assigned to

the schedule. In order to schedule a gypped product,

several conditions must exist—the day being scheduled

must be today, today's schedule must have available
slots, and a non-short unscheduled select must be found
with the same product number. If these conditions exist,

then the instance of the gypped element class is removed
from working memory and the assigned date for the select
is changed to today. Also, the number of available slots
is reduced by one. If the conditions cannot be found,

then the gypped product is written out to tomorrow's
gypped file and removed from working memory.

- 35

Once all gypped elements have been removed from working

memory, then scheduling based on the priority list

begins. This is illustrated in figure 5-4 with the

changes that occur in italics. Starting with the

priority entry having the highest priority level, a rule

searches for an unscheduled select having the same

product number. If a match is found and the select is

not short, then the select is assigned a schedule date

and a slot is reduced on the day being scheduled. Next,

please see figure 5-5. If a select is found but the

select is short and the day being scheduled is today,

then the product and the current day are added to the

gypped list. If neither of these conditions exist, then

the next entry in the priority table is examined.

- 36

Figure 5-4. Scheduling Non-Short Selects

PRIORITY: SELECT:

product number level
11 100

22 95

33 90

44 85

55 80

select product

number number
shop
name

short

ind

assigned schedule

dele Ind

1212 11 shOD-e. no M»w
1816 22 shop-e. yes no

1414 44 shop-*. no no

1515 55 init no no

SLOT:

day of week unscheduled slots

2 X 2
3 3

4 3

5 3

37

Figure 5-5. Adding a Product to Gypped List

PRIORITY: SELECT:

product number level
11 100

22 95

33 90
44 65
55 80

select product

number number
shop
neme

short

ind

assigned schedule

dele Ind
1212 11 shop-e. no ? Mows
1816 22 shop-e. yes no

1414 44 shop-e. no no

1515 55 inlt no no

SLOT:

day of week unscheduled slots

2 2

3 3

4 3

5 3

GYPPED:

product number day gypped

38 -

As each priority entry is analyzed, the priority examine

attribute is changed from the value "no" to "yes".

During this process, the scheduler must go to the top of

the priority table when a shop's schedule is completed

for a day or when all priorities are examined. This is

done with the "top priority list" state. Here all

priority examine attributes are reset to "no" meaning the

priority can be reexamined.

During the scheduling of non-short selects, the process

must check if all non-shorts selects have been scheduled.

This is done in the "check non-short done" state.

Working memory is searched for any unscheduled, non-short

selects having products in the priority table. If none
can be found, then the next state takes the process to
the top of the priority table and to a new state of

"schedule shorts". The process to schedule short selects
is identical to scheduling non-short selects accept short
selects are solely considered and products are not added
to the gypped list.

When all selects for the product have been scheduled, the
system returns to get data for the next shop. The
completion of a shop's schedule is detected when a slot
instance having unscheduled slots greater than zero

39 -

cannot be found. All instances of the gypped, priority,

and slot element classes are removed from working memory

prior to loading data for the next shop.

If no more shops exist to be scheduled, the system goes

to the "schedule complete" state on the right-hand side

of figure 5-2. Here, selects not assigned to a shop are

identified. These selects are written to the schedule

with a shop name of "no shop" and given an assigned day

of "*". Next, an external C routine is called to sort

and print the schedule to a file. The file is sorted by

assigned date causing all selects scheduled on the same

day to be grouped together.

Next, the "modification" state is entered where the

supervisor can alter scheduled dates for selects. The

user is prompted for the selects to be modified and the

revised assigned days. If invalid selects or days are

entered, the user is prompted again. The user is not

allowed to alter schedules for selects having assigned

days less than today.

If modifications are made, the external C routine is

called again to resort and print the schedule. The final

state "all done" prints a message that the schedule is

- 40

complete. At this point, the conflict set is empty and

processing ceases.

41

CONCLUSION AND EXTENSIONS

Heuristics and expert systems can be used to create a

good schedule. There are experts who perform the

scheduling process well. By mimicing their actions, an

expert system can do the same scheduling job equally

well

.

A combination of instruction-driven and data-driven

techniques can provide a good solution to the scheduling

problem. In the fair-share scheduling system, control

attributes are stored in working memory and used to move

the system from state to state. On the other hand, many

data- sensitive, unordered rules are also incorporated.

These rules do not rely on control attributes. Between
these extremes, the workings of the inference engine can

be exploited to get rules to fire in the desired

sequence. There are cases in the fair-share scheduler

where data is loaded into working memory in a specific

sequence to get rules to fire in a desired order.

The fair share scheduler also uses a traditional sort

routine in the rule-based system. Although the sort
could have been performed with rules, it is more
advantageous to write an external, conventional function.

42 -

"The escape mechanism allows production systems to be

shorter, more efficient, and more comprehensible"

[Browns ton]

.

Further work on the fair-share scheduler is recommended

in two areas. First, a friendly user interface screen

would enhance the system when the user must enter data;

also, rather than dumping the output to a printer or

file, a screen to display the resulting schedule is

desired. Last, the fair-share scheduler regenerates the
schedule each day it is produced; the scheduling process
could be enhanced to apply only changes in select and
priority information to the schedule each day.

43 -

BIBLIOGRAPHY

[Brownston85

]

[Bryant88]

[Forgy87]

[Gevarter87

]

[Gross87]

[Hayes-Roth83]

[Kim88]

[Lubben88]

[Smith85]

Brownston, L., Farell, R., Kant, E., and
Martin, N., Programming Expert Systems
in 0PS5 , Addison-Wesley, Reading,
Massachusettes, 1985.

Bryant, N., Managing Expert Systems,
John Wiley and Sons, New York, 1981T

Forgy, C.L., and Shepard, S.J., "Rete: A
Fast Match Algorithm", AI Expert
January, 1987, pp. 34-40. — —
Gevarter, W. B., "The Nature and
Evaluation of Commercial Expert System
Building Tools",
Computer , May 1987.

Gross, D., '"C as in Commercial",
C^mputerworld, Vol.21, Isuue N47, Nov

2 3, 1987.

andHayes -Roth, F., Waterman, D. A.,
L?25^' D

' B -' B"ilding Expert Systems,
Addison-Wesley, ReadingTlTOI ,

Kim, S.O., "Heuristic Framework for theResource Constrained Multi-Project
Scheduling Problem", Department ofManagement, College of BusinessAdministration, Kansas State University,
i y o o

.

Just-in-TimeLubben, R. t
Manufacturing; ' 'An j^Fi
-u u

t
g
ctur 4il2 Strategy " , McGraw HillBook Company, New York, 1988.

Smith S. F, and Fox, M. S., "Constructingand Maintaining Detailed
Plans, Investigations

Production
into theDevelopment for Knowledge-Based FactoryScheduling Systems", Proceedings from 9thInternational Joint Conference or

Augu^t?
1!^"^ 111961106

'
L° S AngelSS

'
CA <

44 -

[Vesonder88]

[Waterman86

]

[Weist67]

[Yusko86]

Vesonder, G. T., "Rule-Based Programming
in the UNIX (R) System", AT&T Technical
Journal , January/February 19~8~8 , Volume 6 7

. Issue 1

Waterman, D. A. , A Guide to Expert
Systems , Addison-Wesley, Reading,
Massachusettes , 1986.

Weist, J. D. , "A Heuristic Model for
Scheduling Large Projects with Limited
Resources", Management Science , Vol. 13,
No. 6, February 1967.

Yusko, J. A., "Expert Systems: The
Leading Edge", Proceedings of the
National Communications Formum, Rosemont,
Illinois, October 29, 1986.

- A4 5 -

APPENDIX A - C5 RULES

This C-5 program creates a work schedule for a warehouse.
The warehouse must supply selects, sorted groups of
parts, to several shops on the factory floor. The
schedule tries to satisfy all shops wishes and also
create a reasonable schedule for the warehouse. The main
goals of the schedule are as follows:

1. Provide each shop with its fair-share of selects.
2. Provide the warehouse with a level-loaded weekly

schedule.
3. Defer work on selects which have component

shortages until the end of the week.
4. If a select could not be scheduled on a previous

day due to shortages, give the select top
priority when the shortage clears, (referred to
as gypped selects)

5. Try to schedule a shops high priority selects
before its low priority selects.

A file of selects for the week is read into memory
first. ; The user is prompted to enter the name of the
file to hold the schedule and to enter calendar
information.

Then an instance of the shop file is read into workingmemory. This shop element class points to the shop'sgypped file and priority file which are read into memory.Next, the slots for the shop are calculated. Then thegypped, non-short, and short selects are scheduled Thiscontinues until all shops are scheduled.

Last, all shop schedules are merged and sorted fordisplay.
; The schedule for some selects can then bealtered prior to having a final schedule.

; This command allows one to undo rules if desired

(back on)

This
wo I

us command reports the rule and time tags of eachnrking element for each instantiation that is fired.

(watch 1)

A4 6 -

At beginning of schedule process, Select will contain
selects for the shops

(llteralize Select
8hop_nama

select number
sl_proHuct_number
tape_sequence

program_ics

kitting

assigned_day

shortage_ind

status
schedule ind

)

element class for selects
populated as schedule with
shop name

select identifier
product identifier
'yes' if tape sequence
involved , otherwise 'no'

'yes' if programming of ics
involved , otherwise 'no'

'yes' if kitting of parts
involved , otherwise 'no'

the day select is scheduled
to be picked

'yes' if select has
shortage) s) ; otherwise 'no'

the work done on a select
flagged 'yes' if scheduled,
'no' if not scheduled

;
Will be refreshed with each new shop that is scheduled,

(literalize Gypped

)

gp_produc t_number

gyp_day

(literalize Priority

pr product_number
prTority_level

priority_examined

element class containing
products that were to be
scheduled on past days but
could not due to shortages.

product identifier of qypped
product *Jtrr

day part was "gypped"

element class for shop's
priorities

product identifier
integer relative priority of
product
flagged 'yes' after priority
reviewed, otherwise 'no
set to 'no' when start too
of table p

The following three elements will be intialized orrepopulated before each shop is scheduled

A4 7

(literalize Slot

day_of week
unscheduled slots

i

(literalize Stats

action
recent
today
work_days
last_workdays
look_for_shortages

curr_priority
select_count

chg_select_number

chg_schedule done

sched file

element class with week's
available work

day of week to be scheduled
number of slots to be
scheduled on day of week

element class for stats on
current schedule

the next state
counts number of records read
the current day of the week
number of work days remaining
last work day of week
'yes' if ready to schedule
short selects

the priority being analyzed
the number of select
remaining to be scheduled

the select number to have a
a schedule day altered

flags if schedule changes
were made and if schedule
must be resorted ,once
resorted it is changed to
value complete

the name of the output
schedule file

(literalize Shop

shop_name
shop_priority_file

shop_gypped_file

shop_lower_bound

shop_upper_bound

element class for shop
information

shop name
filename for shop's priority
file

filename for shop's gypped
file

lower bound of number of
selects/day

upper bound of number of
selects/day

(literalize Start
)

element class to initializ

- A48

Start the production system. Set the action attribute
of Stats to the first state and initialize the record
counter to zero.

(p »tart_schedule
J<evstart> (Start

) }

(remove <evstart>)
(write (crlf) j **SELECT SCHEDULER**

J
(crlf))

(make Stats "action get_schedule_f iles
"recent 0)

Get schedule data
trtrrrrirtirri/i/ffjl

; Open files for schedule production

(p open_schedule_level_files

__ >
{<evstats>(Stats "action get_schedule_f iles

)

}

(write (crlfWcrlf) .'Enter output file name!
i
tor schedule :

|

)

(bind <sched_file> (accept))
; file to contain all shops' schedules
(openfile sched_out <sched file> out)
; file to display schedule? run statistics(openfile run_out /ul/sms/o . run append)
; file to containing all selects for the factory(openfile select_in /ul/sms/d. select in)

taCt°ry

;
tile containing shop information

openfile shop_in /ul/sms/d. shop in)(modify <evstats> "action get_schedule user input
"sched_file <sched_fTle>

_

,„rJfo "chg_select number none)(write run_out | ** SELECT SCHEDULER **

'

j

(crlf) (crlf))

; Ask user for scheduling information

(p get_schedule_run_input
{<evstats>(Stats "action get_schedule_user_input

)

}

(bind <response> wrong)

Lh?fo
fL pr°per resP°nses to questions(while (<response> == wrong)

A49 -

(write (crlf) | l=Mon, 2=Tues , 3=Wed, 4=Thu,

|

| 5=Fri, 6=Sat, 7=Sun|

)

(write (crlf) (crlf) (Enter number for today: |)(bind <vtoday> (accept))
(case <vtoday>

((1234567)
(bind <response> right))

(otherwise
(write (crlf) (invalid response,

j

,'Try again.
|))

)

(bind <response> wrong)
(while (<response> » wrong)

(write (crlf) (crlf)
J
Including today, enter!

i
number of remaining work days:!)

(bind <vworkdays> (accept))
(bind <total_amount>

(compute (<vworkdays> + <vtoday> -111)
(case <total amount> "'

((1234567)
(bind <response> right))

(otherwise
(write (crlf)

| Invalid response,!
!
Try again. j))

)

(modify <evstats> "action read_select_input
"work_days <vworkdays>
"today <vtoday>
"last_workday <total_amount>)

;
Read first record of select input into working memory

(p read_first_select
{<evstats> (Stats "action read_select input

.,
"recent <vreccnt>)}~

l!S$?«
Seiact

(
accePtUne select in end of filen(modrfy <evstats> "action contiHue Sl¥cHnput J

j

recent (compute (<vreccnt> + 1)))

;
Continue reading select input into working memory

(p read_select_input

A50

{<evstats> (Stats "action continue_select_input
"recent <vreccnt>)}

(Select "shop_name {<> end_of_f ile}

)

— >

(make Select (acceptline select in end of file))
(modify <evstats> "recent ~~ ~~

~~

(compute (<vreccnt> + 1)))

; Stop reading select input once end of file is reached

(p read_select_input_done
{<evstats> (Stats "action continue_select input

"recent <vreccnt>)>
{<evselect>(Select "shop_name {= end_of_f ile}

)

}

(write run_out
|
Number of selects :

j

<vreccnt>(crlf
)

)

(remove <evselect>)
(modify <evstats> "action read_shop_f ile

"recent 0)
(closefile select in)

Get shop data

Read file containing shop information. When hit end offile, then done with scheduling process. Initializetemporary variables for shop to be scheduled

(p read_shop_input
{<evstats> (Stats "action read_shop_f ile)}— >

(make Shop (acceptline shop in end of file))(modify <evstats> Stats -loo"k_forJFhortages no
"curr_priority nil

j

"action get_shop_input
)

; Open files specific to a shop

(p open_shop_files

?qhon
t
-=h

>(StatS
?
action get shop input)}(Shop shop_priority_file <v5hop_pri5rity_f ile>

A51

"shop_gypped_f ile <vshop_gypped_f ile>
"shop_name {<vshop_name> <> end_of_f ile}

)

(openfile priority_in <vshop_priority_f ile> in)
(openfile gypped_in <vshop gypped file> in)
(write runout

]

*********"£"******"["
(
Cr if\ (crlf))

(write run_out Priority for
j <vshop_name>

.read from: <vshop_priority file> (crlf))
(write run_out

|
Gypped read from :

j

<vshop_gypped_f ile> (crlf))
(modify <evstats> 'action read_gypped_input

)

;
Read first record of gypped input into working memory

(p read_first_gypped
{<evstats> (Stats 'action read_gypped_input

"recent <vreccnt>)}

(make Gypped
(acceptline gypped_in end of file))

(modify <evstats> "action contiHue~gypped input
"recent (compute (<vreccnt> + 1))J

;
Continue reading gypped input into working memory

(p read_gypped_input
{<evstats> (Stats "action continue_gypped input

"recent <vreccnt>)}
(Gypped gp_product_number {<> end_of_f ile}

)

(make Gypped (acceptline gypped in end of file))(modify <evstats> "recent ~~ - - "
(compute (<vreccnt> + 1)))

;
Stop reading gypped input once end of file is reached

(p read_gypped_input_done
{<evstats> (Stats "action continue_gypPed input

"recent <vreccnt>)}
{<evgypped>(Gypped "gp_product number
,au - v. <

= end of file})}
__ >

(Shop shop_gypped_file <vsh5p_gypped_f ile>)
(write run_out

| Number of gypped parts :
j

A52 -

<vreccnt> (crlf
)

)

(remove <evgypped>

)

(modify <evstats> "action read_new_priority
"recent 0)

(cloaefile gypped_in)
(openfile gypped_out <vshop_gypped_f ile> out)

;
Read first record of priority input into working memory

(p read_f irst_priority
{<evstats> (Stats "action read_new_priority

_ >
"recent <vreccnt>)}

(make Priority
(acceptline priority_in end of file))it (<evstats> "action continue_priority input

"recent (compute (<vreccnt>"+ l)))

;
Continue reading priority input into working memory

(p read_priority_input
{<evstats> (Stats "action continue_priority input
,_ . .. „ "recent <vreccnt>)}

__>
(Priority pr_product_number {<> end_of_file}

)

(make Priority

, m^-t <
accePtline priority in end of file))(modify <evstats> "recent ~ - >>

(compute (<vreccnt> + 1)))

St
S?=^

e?di
!

1
? Pfiority input once end of file is reached

, also initialize the select count to zero
reached

(p read_priority_input_done
{<evstats> (Stats ^"action continue priority input
.„ . .

recent <vreccnt>)>
{<evpnority>(Priority "pr_product number

> {" end_of_7ile}
)

}

(write run_out
|
Number of priority records • '

<vreccnt> (crlf)) '

(remove <evpriority>)

- A53 -

(modify <evstats> "action determine_slots
"recent
"select_count 0)

(closefile priority_in)

Allocate slots
r i i i , i .

; Count the selects that need to be scheduled for
; a shop that have not been previously scheduled. Chanqe
; assigned day to none and populate the shop name after
; count

(p count_shops_selects
{<evstats>(Stats "action determine_slots

"select_count <vselect count>)V
{<evselect> (Select "sl_product number

~

<vsl_pro3uct number>
"assigned_day Tnit)}

(Priority "pr_product_number <vsl product number >

)

(Shop shop_name <vshop_name>

)

~~

(modify <evstats> "select_count
, ... , (compute (<vselect count> + i\\\(modify <evselect> "assigned_day none

"shop_name <vshop_name>

)

; Calculate the number of slots per day
;

If the number of slots per day does not divide evenlyextra slots are added to the beginning of the week
Y '

This rule will fire after all the selects have beencounted in the previous rule

(p calculate_slots_per_day
{<evstats> (Stats "action determine_slots

"today <vtoday>
"select_count <vselect_count>

>
"work_days <vworkdays>

)

}

(bind <vwork_remain> <vworkdays>)
(bind <vwhole_number>

(compute (<vselect count> // <vworkdavs> n

I

(bind <vmod number> - " VWUI™ i'ys>)]]

- A54 -

(compute (<vselect_count> \ <vworkdays >))

)

(while (<vwork_remain> <> 0)
(if (<vwork_remain> > <vmod_number>

)

(bind <new_slots> <vwhole_number>)
else

(bind <new_slots>
(compute (<vwhole_number> + 1)))

(make Slot "day of_week (compute
(<vwork~ remain> + <vtoday> - 1))
"unscKeduled_slots <new slots>)

(bind <vwork_remain> —

(compute (<vwork_remain> - 1)))

(modify <evstats> "action check_lower_threshold)

; Check if slots within lower bound of the number of
; selects/day for a shop

(p check_lower_threshold
{<evstats> (Stats "action check lower threshold);(Shop shop_lower_bound <vshop Tower 5ound>

"shop name <vshop_name>) ~

._>
(Slot "unscKeduled_slots <vunscheduled_slots>)

(if (<vunscheduled_slots> < <vshop lower bound>

)

(write (crlf) <vunscheduled_sTots> ~~

! selects for shop
| <vshop name>

,
are below the threshold of"

j<vshop_lower_bound>

)

(write run_out <vunscheduled_slots>
|

selects for shop
j <vshop name>

,
are below the threshold oT !

<vshop_lower_bound> (crlf))

}

(modify <evstats> "action check_upper_threshold)

;

c
sl?ecil/

s

di^L

l
h
iL

u

P
pper bound of the number ° f

(p check_upper_threshold

telS!**!!*
(St3tS

: action c"eck upper threshold))(Shop shop_upper_bound <vshop upplr 5ound>
' >

shop name <vshop_name>
)~

(Slot "unscHeduled_slots <vunscheduled_slots>

)

A55

(if (<vunscheduled slots> > <vshop upper_bound>

)

(write (crTf) <vunschedule3 slots>
j
selects for shop "j" <vshop_name>

J exceed the threshold of
,

<vshop_upper bound>

)

(write run_out <vunscHeduled_slots>
j

selects for shop
| <vshop name>

!
exceed the threshold of j~
<vshop_upper_bound> (crlf))

(modify <evstats> 'action schedule)

;
The next group of rules affect priority handling

; Find the highest priority that was entered

(p highest_priority
(Priority -priority_level <vpriority level>

"priority_examined no) ~~

- (Priority -priority_level > <vpriority level>priority examined no) ~
{<evstats> (Stats 'action schedule

__> curr_pnority
{ <> <vpriority_level>}

) }

(modify <evstats> -curr_priority <vpriority_level>

]

)

;
Delete priority record if no more selects exist for it

(p remove_priority
(Shop ~shop_name <vshop name>)

5r?of^S
U"-Pri05ity < <vcurr priority> <> nil>)(Priority pr product number <vpr_product number>

/e i i. *
Priority level <vcurr prioritv>>-(Select

:
sl product number <vpriroduct

y
number>—

>

shop_name <vshop_name> "scheduTe_ind no)
(remove-pattern Priority "pr_product_number

j
<vpr_product_nuniber>)

^ame In'or'tagl indicator" ?? £&£ J*"***** the
when marking and » S&ctJ

f^g ,

^&-JSS?!5

- A56 -

; from working memory.

(p mark_priority
(Shop "shop_name <vshop_name>

)

(Stats Acurr_priority <vcurr priority>
"action schedule
"look_for shortages <vlook_for_shortages>

){<evpnority>(Priority "pr_product number
<vpr_pro3uct_number>

"priority_level <vcurr_priority>
"priority_examined no)}

- (Select "sl_product_number <vpr_product number

>

"shop_name <vshop_name> "schedule ind no
"shortage_ind <vlook_for_shortages>

)

(if (<vlook_for_shortages> == yes)
(remove <evpriority>)

else
(modify <evpriority>

"priority_examined yes)

; Top priority list
' ' ' ' ' '

'

•'••'> 1 1 > r ,,,,,,;,; ;;;; ^ •,;;;••;•••••••..... ,

;
if all priorities have been examined, reset the examine

; indicator to no on all priorities
examine

(p reset_priority_examined
{<evstats> (Stats "action schedule)\

._>
-(Priority "priority_examined no)

(modify <evstats> "action reset_examine)

; reset priority examine to no

(p set_examine_no
(Stats "action reset examine)
{<evpriority> (Priority "priority_examined yes)}

}

(modify <evpriority> "priority_examined no)

;
if all priority examines have been set to no, continue

A57 -

; scheduling process

(p all_examine_reset
<<evstats> (Stats "action reset_examine)

>

-(Priority "priority_examined yes)

)

(modify <evstats> "action schedule)

T
hL^

eXt
h
95 VPJ

0f
5
ules are for Product that should havebeen scheduled today or on a previous day but could notdue to component shortages.

^-ou.lu not

If the
tcod^^ n

a
T

b
f
ing scheduled is equal to today andoday s schedule has unscheduled slots and

then
9YPP Part eXlStS Which has a n°n-short select

schedule the select, remove gyp record, reduce slots
(p gypped_product

(Sta
,

tI
d
"todav

r0
<
U^nUmb

~
r ^P-Product number>)(btats today <vtoday> "action schedulel{<evslot> (Slot "unscheduled slots '

{<vunsche3uled slots> > 0}
,^„ ,

"day of week <vto3av>)v{<evselect> (Select "sl-product number
<vgp_product number>

shortage_ind no
~

-select_number <vselect number>
tape_sequence <vtape sequence>
programmes <vprogram ics>
Kitting <vkitting> ~~

"status <vstatus>
,c„ „ . "schedule ind no))

_^
(bhop shop_name <vshop_name>)

(write (crlf)
| Scheduled select! <vselect number>
I

of product
|
<vgp_Product R-umber>

,„».,,._ i
°n day: <vtoday>

)(write run_out
J Scheduled select

j

l °5,^r?
dU

^
t

'<

;
v9P_f>roduct number><vselect number>

- A58

! on day:
|
<vtoday> (crlf))

(write sched_out <vselect number>
<vgp_product_number>
<vtape sequence> <vprogram_ics>
<vkittTng> <vtoday>

] no
|

... <vstatus> <vshop name> (crlf))
(modify <evselect> ~schedule_ind yes

"assigned day <vtoday>

)

(remove-pattern Gypped -gp_product_number
... ,

<vgp product number>)
(modify <evslot> -unscheduled~slots ~

(compute (<vunscheduled_slots> - 1)))
; remove slot element if exhausted
(if (<vunscheduled_slots> == l)

(remove-pattern Slot
. "day_of_week <vtoday>))

if a non-short select cannot be found for a qvppedproduct rewrite the gypped element to thegyppedfile and remove from working memory
yyppea

(p Still_gypped
{<evgypped> (Gypped -gp_product number

<vgp_product number>
,<:<- = <-„ ~ .. ,

'gyP_day <vgyp 3ay>
)

}

(Stats action schedule) "
-(Select -si product number <vgp product number

>

snortage_ind no -

_ >
~schedule_ind no)

(write gyPP|d_out <vgp_product_number> <vgyp_day>
(remove <evgypped>)

)

If scheduling today's work ind

tha"" IHI SS^fS? SqUal t0 CUrrent Pri-ity and

then
S d3y bSing schedule "^s open slots

if select is not short
^schedule select, reduce priority and slots

A59

check if non-short scheduling is complete
if scheduling work for today

add product to gypped list

lp sched_non_Bhort

{<evstats>(Stats "curr_priority <vcurr_priority>
"action schedule
"look_for_shortages no
"today <vtoday>)}

{<evpriority> (Priority
"priority_level <vcurr_priority>
"priority_examined no
"pr_product_number
<vpr product nuraber>)}

{<evselect> (Select "sT_product_number
<vpr_product_number>

~shop_name <vshop_name>
"select_number <vselect_number>

"shortage_ind <vshortage_ind>
"tape_sequence <vtape_sequence>

"program_ics <vprogram ics>
"kitting <vkitting>
"status <vstatus>
"schedule ind no)V

{<evslot>(Slot "unscheduled slots
{<vunsche<3uled_slots> > }

"day_of_week <vday_of_week>)}

(modify <evpriority> "priority examined yes)(if (<vshortage_ind> == no)
'

(write (crlf)
J
Scheduled select!

<vselect_number>
i
of product

|
<vpr_product number>

i°n day:
|
<vday of week~>)(write run_out (Scheduled select!

-

p

<vselect number>
, of product T <vpr_product number>

i«~.t+^ u
,on day:

i
<vday of week~> (crlf))(write sched_out <vselect number>~ '

<vpr_pro3uct_number>
<vtape_sequence>
<vprogram_ics>
<vkitting> <vday of week>
<vshortage_ind>
<vstatus>

... <vshop name> (crlf))(modify <evselect> "schedule_ind yes

(modify <evslot> ^sche^^Lt^- *-"66^

else

'

A60

(compute (<vunscheduled slots> - 1)))
go to top of priority Tist if day complete

(if (<vunscheduled_slots> == 1)
(modify <evstats> "action reset examine)
(remove-pattern Slot

_

"day_of_week <vtoday>))

(modify <evstats> "action check short)
(if (<vtoday> == <vday_of_week>

)

(write crlf | Product was gypped]
<vpr_product_number>

)

(write run_out
| Product

|

<vpr_product_number>
I
gypped on

]

<vday_of_week> (crlf))
(write gypped_out

<vpr_product_number>
<vday_of_week> (crlf))

Schedule shorts ""•""""•>•,,,,,
- w ,,,,,,,,,,;;;;;;;;;;;;;;; ; ;

.......
; ;

....
;

Tr
Iho?tIgeI

dUle pr° ject with current priority and

(p sched short

{<evstats>(Stats "curr_priority
<vcurr_priority>

"look_for_shortages yes
"action schedule)

V

{<evprionty>(Priority
~priority_level <vcurr priority>
pnority_examined no

~

"pr_product_number
,.„ . <vpr_product number>

)

>

{<evselect> (Select "sl_prod5ct_number
~ u

<vPr_product_number>
snop_name <vshop_name>

^select_number <vselect number>
shortage_ind yes ~

^tape_sequence <vtape_sequence>
programmes <vprogram ics>
kittxng <vkitting> ~
"status <vstatus>

A61 -

"schedule_ind no)}
{<evslot> (Slot "unscheduled_slots

{<vunscheduled_slots> > 0}
~day_of_week <vday_of_week>)

}

(write (crlf) ,'Scheduled select]
<vselect_number>

! of product
j
<vpr_product number>

i
on day:

|
<vday of week~>)(write run_out

j Scheduled select \~
<vselect_number>

!
of product

j
<vpr_product nuntber>

ion day:
|
<vday of week"> (crlf))(write sched_out <vselect_number>~

<vpr_product_number>
<vtape^sequence> <vprogram ics>
<vkitting> <vday_of_week> lyes

|

, ,., <vstatus> <vshop name> (crlf))(modify <evselect> "schedulejlnd yes
"

,. .., .

"assigned day <vday of week>)

SontlY
<evPf10rity> -priority exkinid yes(modify <evslot> "unscheduled slots
(compute (<vunscheduled slots> - 1)))

; to to top of priority list iT day complete(if (<vunscheduled_slots> ==1) F
(modify <evstats> "action reset examine)(remove-pattern Slot ~day_of_weik

ne
>

<vday_of_week>)

)

; Check non-short done

(p look_for_shorts

(Shop ~shop_name <vshop name>)
{<evstats>(Stats "look_Tor shortages no

,col„f - .
"action cReck short) \- (Select shortage ind no ."shop^ame Uhop name>

> schedule_ind no)

(modify <evstats> "look_for_shortages yes
j

action reset_examine)

A62

(p found_no_shorts

(Shop "shop name <vshop name>)
{<avstata>(Stat8 "lookJFor shortages no
, ,

"action cneck short) }(Select "shortage_ind no "shop name <vshop name>
"schedule ind no)— > — '

(modify <evstats> "action schedule)

"SoLSiif
l
l

f°r fr? zen Part of schedule— the part of
Th=== Y

he
5
e assl 9ned days are less than todayThese selects were scheduled on days gone by

(p write_frozen_sched

!<evseiect>?Se?^t
U

"
t-?Um?

er ^.product number>)(<evselect>(Select select_number<vselect~number>
"sl_product_number ~~

<vpr product_number>
"assigne<3_day <vassigned day>

_
shortage_ind <shortage Tnd>

tape_sequence <vtape_sequence>
programmes <vprogram ics>
kitting <vkitting> ~~

"status <vstatus>
i*+M+m "*- j "schedule ind no)VStats today > <vassigned day>

)

^
(Shop shop_name <vshop_name>)

(Writ6
iSf

1
£2h

l 5
,
J
e
S
t

I <vseXect number>was scheduled on day:
j <vassianed riauD(write run_out [Select

| <Leiect numoer>-
Y

'

i
was scheduled on day: j~~

<yassigned day> <vshop name> Icrlfn(write sched_out <vselect numbir> <

crlf))

<vpr_pro3uct_number>
*vtape sequence> ^program ics><vkitting> <vassigned day>~
<shortage_ind> ~~

(modify <evselect:
V
?s
t

cnedurrindP
yes

ame> (Crlf))

"shop_name <vshop_name>)

Check if scheduling complete for product

A63

(p schedule_complete
{<evstats> (Stats "action schedule)}
- (Slot "unscheduled_slots > 0)
<<ovahop> (Shop "shop_name <vshop_name>

)

}

(write (crlf)
| ***Schedule complete for shop]

<vshop_name>)
(remove-pattern "unscheduled slots 0)
(remove <evshop>)
(modify <evstats> "action read_shop_file)

; Schedule complete '•••"••<>•• > t •., t ,,,,,,,

,

i i i t I i i / , , f , , , , , , , , , , , , , , , ; ; ; ; ; ; ; ; ; ; ; (

. • • , . . .

;
When hit end of file on shop input, then schedulingfor each shop is complete. 8

(p no_more_shops
{<evstats>(Stats "action get shop input)}

__^
(Shop shop_name {<vshop_name> = end_of_f ile}

)

(closefile shop_in)
(modify <evstats> "action scheduling_complete)

• Earning
6" 3 that Were "0t assi 9ned to a shop and write

(p f ind_no_priorities
{<evstats> (Stats "action scheduling complete)

1

{<evselect> (Select "shop_name init
ompLeze >>

"select_number <vselect_number>
" s l_produc t_number

<vsl_product_number>
tape_sequence <vtape_sequence>

"program_ics <vprogram ics>
kitting <vkitting> ~
"shortage_ind <vshortage ind>
"status <vstatus>)} ~

— >

(write (crlf) (Select
| <vselect number>

lwr-ii-a tf.y^A ?p -
Xt was not scHeduled|(crlf))(write sched_out <vselect number> "

<vs l_produc t_number >

A64 -

<vtape sequence> <vprogram ics;
<vkittTng> * <vshortage_in3>
<vstatus> no shop (crlf))

(write run out | Select | <vseTect_number>
|
Has no shop. It was not scheduled!

(crlf))
(modify <evselect> ~shop_name no_shop

"assigned_day *)

; Sort and print ..,.,,,,..,,,,,,,,,

' ' > • 1 1 • > 1 1 1 1 • 1 1 1 1 1 1 t'i ', ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; • y • • • • • • • • •

(p sort_schedule
{<evstats> (Stats 'action scheduling complete

__>
~sched_file <vsched"_f ile>

)

}

(closefile sched_out)
(write (crlf) (crlf) (crlf) (crlf) (crlf) (crlfr(call c5_sched_sort_cmd <vsched file>)

(CrlI)

(modify <evstats> 'action modifications)

'
S
2S iLm?di£i<=ationa to the schedule are required. If

; so obtain the select number to change
4

(p make_modif ications
{<evstats>(Stats "action modifications

„ ~chg_select_number none)}

(bind <response> wrong)
(while (<response> == wrong)

(write (crlf) jWould you like to change !

i the schedule? (yes or no) !)(bind <answer> (accept))
(case <answer>

((y yes)
(write (crlf) jEnter select number!

i
to change:

|

)

(bind <chg_select> (accept))
(modify <evstats>

"chg_select_number
<chg_select>)

(bind <response> riqhtn
((n no) '

'

(modify <evstats> "action all done)(bind <response> riqhtn ~
(otherwise

A6 5

(write (crlf) | Invalid response.
!
Try again!

)

)

)

Get day for the select to be scheduled if the select
number that is to be changed was found with an assignedday greater than or equal to today; The assigned daymust be greater than or equal to today to prevent pastschedules from being altered.

(p modify_assigned_day
{<evstats> (Stats "chg_select number

{<vchg_select_numEer> <> none}
"action modifications
"today <vtoday>
"last workday <vlast workday>)

v

{<evselect> (Select "select number "
<vcEg_select_number>

"assigned_day

>
{<vassigned_day> >= <vtoday>})}

(bind <response> wrong)
(while (<response> == wrong)

(write (crlf)
| Enter revised schedule day: |)(bind <chg_day> (accept)) 1 ''

(if ((<chg_day> >= <vtoday>) && (

<

chg day> <=
<vlast_workday>)

)

(bind <response> right)
(modify <evselect> "assigned day <chg day>

)

(modify <evstats> "chg_select number none
, , . , , r

~ch9 schedule done yes

)

(write (crlf) [Select J
~ * '

<vchg_select number>
i
schedule cRange to day !

<chg day>)
else ~~

(write (crlf)
j Invalid schedule day.

j

I
Please try again!

)

ILt
JS.3SS

t
dy&. t

Sh£! SST i°4
s^t ^f or has

- A66 -

(p invalid_modify_select
{<evstats> (Stats "chg_select_number

{<vchg_select number> <> none}
"today <vto3ay>
"action modifications)}

-(Select "select_number <vchg_select number>
"assigned day

{<vassigne3_day> >= <vtoday>})

(write (crlf) j Invalid select number. Please try
! again.

|

)

(modify <evstats> "chg_select_number none)

; Write and sort the schedule

(p reopen_schedule_file
{<evstats>(Stats "action all done

"chg_scheduIe_done yes
>

"sched_file <vsched_f ile>)

}

(openfile sched_out <vsched file> out)(modify <evstats> "action wr"ite_out
"chg_schedule_done complete)

^fter^oL"^ chan
H
ed

'
wrlte selects back to file

eep t f^T'h
1"6

?' 5
emove from «°rking memory to*eep tracK of which selects were written

(p write_schedule
(Stats "action write out)
{<evselect>(Select "ielect_number<vselect number>

"sl_product_number ~
<vpr product_number>

"assigned_day <vassigned day>
shortage_ind <shortage Tnd>

tape_sequence <vtape_sequence>
"program_ics <vprogram ics>
kitting <vkitting> -
"shop_name <vshop name>

._> "status <vstatus>)}

(write sched_out <vselect number>
<vpr_pro3uc t^number >
<vtape se<juence> <vprogram ics><vkitting> <vassigned day>~~
<shortage_ind> —

- A67

<vstatus> <vshop_name> (crlf))
(remove <evselect>)

; After all selects have been written to file, stop

(p write_complete
{<evstats> (Stats "action write_out

"sched_file <vsched_f ile>
)

}

(closefile sched_out)
(write (crlf) (crlf) (crlf) (crlf) (crlf) (crlf)
(call c5_sched_sort_cmd <vsched_f ile>

)

(modify <evstats> "action all_done)

; close run file and stop processing

(p call_it_quits
(Stats "action all_done)

(write (crlf) [Schedule is complete!)
(write run_out [Schedule is complete (crlf)

)

(closefile run_out)

; Get system started by following make command

(make Start)

B68 -

9. APPENDIX B - EXTERNAL SORT FUNCTION

#include <stdio.h>
include <string.h>
include "/ul/rgb/c5/c5 .

h"

define PRD_LEN 4
define SEL_LEN 6
define DAY_LEN 1
define AFFIRM_LEN 3
define STATS_LEN 5
define SHOP_LEN 7
define MAX_SCHED 1000
define LINE_LEN 256

typedef struct
{

char select [SEL_LEN + 1];
product [PRD_LEN + 1

] ;

seq[AFFIRM_LEN +11;
pic[AFFIRM_LEN + 11;
kit[AFFIRM_LEN +11:
day[DAY_LEN + 1

] ;

shortage[AFFIRM_LEN + 1
status [STATS_LEN + 1];shop[SHOP_LEN + 1]

•

char
char
char
char
char
char
char
char

} SCHED;

ma i n
()

{

/* initialize c5 */
c5_init()

;

c5 i?
a
rmri

C
!?«M

3
2
d r

?
n^ntil no rules match */"_tl_cmd ("(load schedf) (run)")

;

'

/* exit(0) ;*/
}

'

Lt usrfuncs"^
10

" t6llS °S ^^ *W defined funCtions V
{

void c5_sched_sort_cmd(
)

;

c5_define function
("c5_schea_sort_cmd",c5_sched_sort_cmd)

;

B69

/* this is a user defined function that will sort the */
/* scheduled by the schedule day */
void
c5_sched sort cmd(

)

<

char *filename;
FILE *fp;
SCHED schedule[MAX SCHED 1;
SCHED temp;
char cur_line[LINE_LEN

]

;

C5_VALUE c5 parameter
() ;

C5_VALUE value
;

char *c5_string_value(
)

;

int tot_lns;
int i,j ;

int argc ;

int c5_parametercount
() ;

argc = c5_parametercount
() ;

if (argc != 1)

fprintf(stderr, "usage: (call
c5_sched_sort_cmd filename)")
return

;

}

/* Copy name in filename. Find value in slot 1 */
'/! 2 .

the result element using c5 parameter (1) . */
/* Extract the value of slot as a"string with */
'/*

c5_stnng_value.Last, must copy values into */
/* local storage. */ '

strcpyf filename, c5_string_value(c5_parameter(l)
))

;

I* Open file and read in data */
if(

(fp = fopen(filename, "r"
)

) == NULL
)

fprintf (stderr, "ERR0R:c5 sched sort cmdn-Can't open file: %s for read . 07 ~
filename

)

;

return ;

}

else
{

tot Ins = 0;
while
(fgets(cur_line, LINE_LEN, fp) ! = NULL)

sscanf

B70 -

(cur_line, "%s%s%s%s%s%s%s%s%s",
schedule [tot_lns] . select,
schedule [tot_lns]

.
product

,

schedule [tot_lns] .seq,
schedule[tot_lns] .pic,
schedule [tot_lns] .kit,
schedule [tot_lns] .day,
schedule [tot_lns] .shortage,
schedule[tot_lns] .status,
schedule[tot_lns] .shop);
tot lns++;

}

fclosej fp
)

;

/* Compare values in array and sort */
for(i=0; i < tot_lns; i++

)

for(j=i; j < tot Ins; i++)

if(strcmp(schedule[i] .day,
schedule

[j] .day) >
)

temp = schedule [i]

;

schedulef i] = scheduler j
1

;

schedule[j] = temp;

>

/* Write sorted array back to file */

((fp = fopen(filename, "w")) == NULL)

fprintf(stderr, "ERROR:
c5 sched_sort_cmd() : Can't open
tile: %s for write. 0, filename);

}

else
{

exit(1
)

;

fprintf (fp,"%31s%-16s", " "

"SELECT SCHEDULEO)
;

fprintf (stderr, "%31s%-16s" "

"SELECT SCHEDULEO)
fprintf (fp,"%27s%-22s" ," "

"SCHEDULE DAY SEQUENCE!});
fprintf (stderr, "%27s%-22s" ,

"

B71

"SCHEDULE DAY SEQUENCEO);
fprintf (fp,"%s","0)

;

fprintf (stderr, "%s" ,

"0) ;

fprintf (f p, "%4sSELECT%2sPRODUCT%2s
SCHEDULE%2sTAPE%3sPROGRAM%2sKIT%3s
SHORT %2sSELECT%3sSHOP0," "," ",

f f
t^B II^H H^R „j,

fprintf (stderr, "%4sSELECT%2sPRODUCT
%2s SCHEDULE%2sTAPE%3sPROGRAM%2sKIT
%3sSHORT%2sSELECT%3sSHOP0," ",
" « " B " .. „ „

t

„ „
^
„ „

^ „ „ „ ,

fprintf (fp, "%4sNUMBER%2sNUMBER%5sDAY
%3sSEQUENCE%3sIC%4sPARTS%lsSTATUS%2s
STATUSO," »," "," »,« ",•• »

f
« ..

f
»
" "

) ;

fprintf (stderr, "%4sNUMBER%2sNUMBER
%5sDAY%3sSEQUENCE%3sIC%4sPARTS
%lsSTATUS%2sSTATUS0," "," "," •
" "

/
" "

f
" "

,
" "

,
" "

) ;

fprintf (fp,"%s","0)
;

fprintf (stderr, "%s", "0) ;
for(i=0; i < tot Ins; i++)

{

fprintf
(fp,"%5s%4s%6s%2s

%8s%s%6s%3s%6s%3s%4s%3s%4s
%3s%5s%4s%4s%s0," ",
schedule[i] .select,
" ", scheduler i] .product," ",
schedule[i] .day, " ",
schedule[i] .seq," ",
schedulefi] .pic," ",
schedulefi] .kit, " ",
schedule[i] .shortage," ",
schedule[i] .status," "

schedulef i] -shop
)

;

ag
r

o
inH< stderr, "%5s%4s%6s%2s

%8s%s%6s%3s%6s%3s%4s%3s%4s%3s
%5s%4s%4s%s0," ",
schedule[i] .select,
" ", schedulef i] .product," ",
schedule[i] .day," ",
schedule! i] .seq, " "

schedule[i] .pic," ",
schedulefi] .kit," •>,

schedule[i] .shortage," "

schedule! i] .status," ",
schedulefi] .shop);

fclose (fp
)

;

B72

/* End c5_sched_sort_cmd () */

A KNOWLEDGE-BASED FAIR-SHARE SCHEDULER

by

SUSAN M. SAAD

B.S., University of Colorado, 1982

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Today, many long-term planning and scheduling computer

systems support factories. The day-to-day scheduling

tasks are most often performed by a factory foreman or

supervisor. However, recent focus on more efficient

manufacturing processes and just-in-time philosophies

require that efficient, short-term planning and

scheduling systems be developed.

The day-to-day scheduling of work can be arduous. The

scheduling problem becomes more difficult when multiple

entities are competing for resources from the same

supplier. Many traditional management science solutions

employ algorithms that are limited to special scheduling

cases that can make invalid assumptions. A broader,

global view of scheduling problems using heuristics can

also provide solutions . This can be done by embedding

the foreman's or supervisor's expertise in a knowledge

base

.

This paper describes an expert system that creates a

daily schedule for a warehouse which must serve many

customers—many shops in a factory. The rules try to

satisfy the needs of each of the shop and also provide

the warehouse with a doable schedule.

