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Abstract  20 

 21 

Objective: We investigated the effect of IL-1β on the development of intestinal epithelial stem 22 

cells. 23 

  24 

Materials and methods: Normal intestinal epithelial cell line IEC-18 cells were cultured in the 25 

presence or absence of 200 pM of IL-1β in serum-free medium (SFM) for various time periods.  26 

The effects of IL-1β on intestinal stem cell self-renewal and IEC-18 cell proliferation were 27 

evaluated by a colony formation assay, MTT assay, and a focus formation assay. The expression 28 

of stemness genes including Bmi-1, Lgr-5, c-myc, Nanog, and β-catenin in IEC-18 cells were 29 

measured by quantitative PCR and western blot analysis.  30 

 31 

Results: IEC-18 cells grew as a monolayer in SFM in the absence of IL-1β. Cellular spheres 32 

were formed when IEC-18 cells were grown in SFM in the presence of IL-1β.  IL-1β induced the 33 

development of large colonies in the soft-agar as well as the formation of foci when IEC-18 cells 34 

were cultured in type-I collagen coated plates.  The expression of Bmi-1, Lgr-5, c-myc, Nanog, 35 

and β-catenin were significantly increased in IEC-18 cells treated with IL-1β. 36 

 37 

Conclusion: Our studies provide direct evidence the IL-1β may play an important role in the self-38 

renewal of intestinal epithelial stem cells and the development of cancer stem cells.   39 

 40 

 41 

Key Words IL-1β, stem cells, intestinal epithelial, IEC-18, cancer, self-renewal 42 
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 43 

 44 

Introduction 45 

 46 

The renewal of intestinal epithelium is a tightly controlled process and essential for 47 

maintaining the integrity of the mucosa, repairing mucosal injury, and replenishing the 48 

specialized cells of the epithelium.  Alterations in epithelial renewal are closely involved in 49 

transformation of the epithelium to benign and malignant tumors.  It has been suggested that 50 

homeostasis of the intestinal epithelium is maintained by an intestinal stem cell (ISC) 51 

compartment that resides at the bottom of the crypt of the small and large intestine [1].   52 

 53 

 The location and behavior of ISCs within the base of intestinal crypt have been characterized 54 

by numerous investigators using various animal models [2, 3].  Current literature support two 55 

different hypothesis of ISCs: one hypothesis suggests that ISCs are located above the Paneth 56 

cells (+4 position), expressing Bmi-1, and normally maintained in a quiescent state through 57 

direct interaction with and signals from the niche [2].  The other hypothesis implies that ISCs are 58 

crypt base columnar (CBC) cells that are located between the Paneth cells, continuously 59 

activated by signals generated from stromal cells at the crypt base, and responsible for most of 60 

the regenerative capacity of the intestine under homeostatic conditions [2].   Although significant 61 

progress has been made in the last few decades in intestinal stem cell research, the identity of 62 

ISCs is still being debated due to the tremendous technical difficulty in isolating and genetically 63 

marking ISCs to definitively demonstrate their stemness.   Thus far, the molecular mechanisms 64 

regulating maintenance of these ISCs and regeneration of intestinal epithelia are not well 65 

understood. 66 
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 67 

 In addition to renewal of intestinal epithelium, intestinal stem cells have also been indicated 68 

as the cells of origin of intestinal cancers [4].  Dysregulation of stem cell proliferation has been 69 

linked to formation and progression of tumors [5]. Recent studies have shown that inflammation 70 

can promote tumorigenesis by inducing hyper-proliferation of gastrointestinal stem cells [6-10].  71 

However, the identities of inflammatory factors responsible for the induction of supernumerary 72 

intestinal stem cells are still unclear.  73 

  74 

 Human patients with inflammatory bowel disease (IBD), including both ulcerative colitis and 75 

Crohn's disease have a two-to-three fold greater lifetime risk of developing colorectal cancer 76 

compared to the general population [11].  IL-1β, a pleiotropic pro-inflammatory cytokine, is 77 

significantly up-regulated in IBD patients [12-14], and blocking IL-1β can result in attenuated 78 

disease [15]. Furthermore, up-regulation of IL-1β has been closely associated with 79 

gastrointestinal tumor initiation and progression [16, 17].  We have previously shown that mice 80 

with a higher level of baseline IL-1β in the intestine are more susceptible to dextran sulfate 81 

sodium (DSS)-induced colitis [18].  Our recent discovery that IL-1β promotes the development 82 

of brain cancer stem cells (CSCs) from differentiated cancer cells [19] prompted us to determine 83 

whether IL-1β can induce the development of intestinal stem cells (ISCs) and CSCs from normal 84 

intestinal epithelial cell cultures.  Here, we report that IL-1β can promote the development of 85 

ISCs from normal intestinal epithelial cell culture and IL-1β-induced ISC expansion leads to the 86 

loss of cell contact inhibition that is often demonstrated by transformed cells. 87 

 88 

 89 
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Material and methods 90 

 91 

Cell line and culture conditions 92 

 93 

A rat normal intestinal epithelial cell line, IEC-18, was a kind gift from Dr. Sherry Fleming 94 

(Kansas State University, Manhattan, KS, USA).  Cells were cultured in serum-free medium 95 

(SFM) which consisted of neurobasal-A medium supplemented with B27, GlutaMAX-I 96 

supplement, 1% penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA), 50 ng/ml heparin 97 

(Sigma-Aldrich, Saint Louis, MO, USA), 20 ng/ml of EGF, and 20 ng/ml bFGF (R&D systems, 98 

Minneapolis, MN, USA).  To determine the effects of IL-1β on cell growth, 200 pM IL-1β 99 

(R&D Systems) was added every other day to serum-free medium.  100 

 101 

Self-renewal assay and cell proliferation assay 102 

 103 

IEC-18 cells at a clonal density of 1 cell/µl in serum-free medium were seeded at 100 µl/well 104 

in 96-well plates and treated with or without 200 pM IL-1β for seven days. IL-1β was added 105 

every other day. The total number of cells in each well was counted under a microscope after 106 

trypan blue staining. Cell proliferation was measured using the cell proliferation kit I (MTT, 107 

Roche Applied Science, Indianapolis, IN, USA) as described by the manufacturer. 108 

 109 

Soft agar assay – Colony formation assay 110 

  111 
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The soft agar assay was performed in six-well plates containing two layers of Sea Plague 112 

Agar (Invitrogen). The bottom layer consisted of 0.8% agar in 1 ml of SFM.  Single IEC-18 cells 113 

(1x105/well) were placed in the top layer containing 0.4% agar in SFM.  The top layer agar was 114 

covered with 0.5 ml of SFM with or without 200 pM IL-1β.  The top medium was changed every 115 

four days and fresh IL-1β was added to the top medium every other day.  Cells were cultured for 116 

40 days.  Colonies were photographed under a microscope and measured using the ImageJ 117 

program (imagej.nih.gov).  Colonies with diameters larger than 30µm were counted.  118 

 119 

Focus formation assay 120 

 121 

24-well plates were coated with Type I collagen (Angiotech BioMaterials Corp., Palo Alto, 122 

CA, USA).  IEC-18 cells (3x104/well) were cultured in SFM in the presence or absence of 200 123 

pM IL-1β.  Media were changed every four days and fresh IL-1β was added every two days.  124 

After two weeks of culture, cells were stained with Giemsa (Thermo Fisher Scientific, Waltham, 125 

MA, USA) and the number of foci in each well was counted under a microscope. 126 

 127 

RNA extraction and quantitative RT-PCR 128 

 129 

Total RNAs were extracted using TRI reagent (Sigma-Aldrich), followed by digestion with a 130 

DNase kit (Applied Biosystems, Carlsbad, CA, USA) to remove DNA residues. Reverse 131 

transcription was carried out using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) 132 

and quantitative real-time PCR was performed using SsoFast Eva Green Supermix kit (Bio-Rad). 133 

 134 
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Western blot analysis 135 

 136 

IEC-18 cells were cultured in SFM in the absence or presence of IL-1β for seven days. Cells 137 

were then washed with cold PBS, lysed in RIPA buffer [25 mM Tris-HCl (pH 7.6), 150 mM 138 

NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) and pelleted by centrifugation. Protein 139 

concentrations were determined using a NanoDrop instrument (Thermo Fisher Scientific). Cell 140 

lysates (30 µg protein for each sample) were incubated for 5 min at 1000C in 2x loading buffer, 141 

separated by electrophoresis in 10% polyacrylamide gels, and transferred to PVDF membranes 142 

(Millipore, Bedford, MA, USA). Membranes were blocked with 5% milk in PBS and then 143 

incubated with a primary antibody anti-Bmi-1 clone F6 (1:1000 dilution, Millipore), anti-β-144 

catenin (1:1000, Cell Signaling, Boston, MA, USA), or anti-β-actin (1:1000 dilution, Sigma), 145 

and a secondary antibody HRP-conjugated goat anti-mouse IgG-HRP (1:1000 dilution, Millipore) 146 

or anti-rabbit IgG HRP-linked antibody (1:1000 dilution, Cell Signaling), respectively.  147 

Detection was performed using HyGLO substrate (Denville Scientific, Metuchen, NJ, USA) and 148 

images were taken using the AlphaEaseFC imaging system (Cell Biosciences, Santa Clara, CA, 149 

USA). 150 

 151 

Statistical analysis 152 

 153 

Student’s t test was used to determine statistical significance for all analyzed data. A two-154 

sided p< 0.05 was considered significant.  155 

 156 

 157 
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Results  158 

 159 

IL-1β induces sphere formation and colony formation of IEC-18 cells in serum-free medium 160 

 161 

Consistent with previous reports by others [20, 21], we also found that rat intestinal epithelial 162 

cell line IEC-18 cells exhibit a number of characteristic features of normal intestinal epithelia 163 

cells in culture: strong cell-cell contact or density inhibition of growth, lack of growth in soft 164 

agar, and a low plating efficiency when seeded at a low density.  To determine whether there are 165 

any active stem cells in IEC-18 cells, we cultured these cells in serum-free medium 166 

supplemented with bFGF and EGF (SFM).  Serum-free medium (SFM) is routinely used to 167 

maintain stem cells at an undifferentiated stem cell state, while bFGF and EGF induce 168 

proliferation of normal and neoplastic epithelial stem cells as sphere-like cellular aggregates [22-169 

24].  We found that IEC-18 cells proliferated as a monolayer culture in SFM, suggesting that 170 

normal IEC-18 cells do not have active stem cells.  However, addition of IL-1β to SFM induced 171 

some IEC-18 cells to proliferate as spheres (Fig. 1).  Meanwhile, we compared the proliferation 172 

rates of IEC-18 monolayer cells and IL-1β-induced sphere cells using a MTT assay and trypan-173 

blue staining method.  As shown in Fig.1b & 1c, IL-1β-induced sphere cells grew significantly 174 

(p<0.05) slower than the untreated monolayer cells.  175 

 176 

To verify that IL-1β-induced spheres are not the result of cell aggregation, we performed soft 177 

agar colony formation assays in serum-free conditions.  Under these conditions, cells are 178 

separated by semisolid culture medium to prevent aggregation.  More importantly, this assay can 179 

distinguish between normal differentiated cells and stem cells.  Differentiated cells undergo 180 
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anoikis in the absence of anchorage to a substratum, while stem cells can survive in anchorage-181 

independent conditions and form colonies [24].  To perform the colony formation assay, IEC-18 182 

cells were placed in soft agar in SFM with or without IL-1β and cultured for 40 days.  In the 183 

absence of IL-1β, most IEC-18 cells in the soft agar underwent anoikis and no colonies were 184 

formed.  However, some colonies were generated among the IEC-18 cells treated with IL-1β (Fig. 185 

1d, e). The efficiency of colony forming cells was around 0.03% (Fig. 1f), indicating that IL-1β 186 

stimulates a rare sub-population of IEC-18 cells to self-renew, proliferate, and form colonies. 187 

 188 

In addition, we also evaluated whether IL-1β-induced sphere IEC-18 cells still maintained 189 

self-renewal ability without IL-1β.  IL-1β-induced spheres were dissociated and cultured in 190 

serum-free medium without IL-1β for seven days.  The cytokine-withdrawn cells proliferated as 191 

monolayer cells and exhibited similar morphology as control cells without cytokine treatment 192 

(data not shown).  This result suggests that constant presence of IL-1β in the medium is required 193 

for the activation and maintenance of ISC self-renewal.   194 

 195 

IL-1β induces loss of contact inhibition of IEC-18 cells in SFM 196 

 197 

Contact inhibition is the natural process of arresting cell growth when normal cells contact 198 

nearby cells.  However, malignant cells lose this property and continue to divide, forming a mass 199 

of cells as a tumor.  In culture, normal cells grow in a single layer on the substratum but 200 

malignant cells continue to grow and form excess layers of cells, called foci.  Therefore, we 201 

examined whether IL-1β-induced intestinal stem cells possess properties of cancer cells by doing 202 

focus assays. To determine whether IL-1β can cause IEC-18 cells to grow without contact 203 
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inhibition, plates were coated with collagen to allow cells to grow as adherent cells in SFM with 204 

or without IL-1β (Fig. 2a).   The effects of IL-1β on IEC-18 cell proliferation were evaluated 205 

before cells reached confluency using a MTT assay.  As shown in Fig. 2b, IL-1β treated cells 206 

proliferated significantly (p<0.05) slower than control cells.  When cells reached confluency, 207 

control cells stopped growing and formed a monolayer culture.  However, IL-1β-treated cells 208 

continued to grow and formed excess layers of cells (foci).   209 

 210 

To confirm focus formation, the above cell cultures were stained with Giemsa on day 14.  In 211 

this assay, monolayer cells were in grey while foci were in purple (Fig. 2c), indicating piling of 212 

cells in foci.  The number of purple foci in each well was counted under a microscope.  As 213 

shown in Fig. 2d, foci were formed only when IEC-18 cells were treated with IL-1β.  To further 214 

verify the formation of foci, we also compared the total number of IEC-18 cells in each well 215 

treated with or without IL-1β for 14 days after they reached confluency.  As shown in Fig. 2e, 216 

there were significantly more IEC-18 cells in the wells with IL-1β than that in the wells without 217 

IL-1β. This result is consistent with the microscopic observation that multilayer of cells (focus 218 

formation) present in IL-1β-treated wells. 219 

 220 

IL-1β induces expression of stem cell markers in IEC-18 cells in SFM 221 

 222 

To determine the molecular mechanisms of IL-1β-induced colony and focus formation, we 223 

compared the expression of several stemness genes in IEC-18 cells treated with or without IL-1β 224 

in SFM.  As shown in Fig. 3a,  the expression of stem cell markers Bmi-1, Lgr5, c-myc, β-225 

catenin and Nanog were significantly (p<0.01) increased in IL-1β-treated cells cultured in SFM, 226 
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compared to that in control cells cultured in the same condition.  IL-1β-induced protein 227 

expression of Bmi-1 and β-catenin was further confirmed by western blot analysis (Fig. 3b). 228 

These results suggest that IL-1β induces stemness gene expression, leading to colony and focus 229 

formation in SFM.  230 

 231 

Discussion 232 

 233 

The homeostasis of intestinal epithelium renewal is essential for maintaining the structural 234 

and functional integrity of intestinal mucosa.  Dysregulation of the self-renewal of intestinal 235 

epithelium may lead to the development of gastrointestinal cancers.  Therefore, it is not 236 

surprising that the host has developed a tightly controlled system to maintain efficient interaction 237 

between intestinal stem cells (ISCs), their progenies, and the microenvironment.  Although a 238 

significant amount of literature support the notion that ISCs can be the cells of origin for 239 

intestinal cancers [4] and inflammation may play an important role in ISC-mediated 240 

tumorigenesis [6-10], how ISC renewal and intestinal cancer stem cells are regulated by 241 

inflammatory cytokines remains obscure.  Here, we present data that IL-1β can promote self-242 

renewal and proliferation of intestinal epithelial stem cells and regulate the development of 243 

intestinal cancer stem cells. 244 

 245 

IEC-18 cells are normal small intestinal crypt cells that were established in vitro from the 246 

ileum of outbred germfree Crl:CD(SD)GN rats [20].  Because IEC-18 cells in serum-free 247 

medium demonstrate a monolayer culture and lack of growth in soft agar, we speculate that 248 

normal IEC-18 cells do not contain intestinal stem cells (ISCs) or the ISCs are inactive.  249 
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Interestingly, addition of IL-1β to the cell culture caused monolayer cells to form spheres 250 

expressing up-regulated “stemness” genes including Lgr-5, Bmi-1, cMyc-1, β-catenin, and 251 

Nanog.  The sphere cells proliferate at a slower rate compared with control monolayer IEC-18 252 

cell, and this is consistent with the observation that stem cells grow slower than differentiated 253 

cells [25].  Because only a small portion (0.03%) of IEC-18 cells possess stem cell properties, it 254 

is likely that normal IEC-18 cell cultures contain a rare population of quiescent intestinal stem 255 

cells that can be reactivated by IL-1β.  However, our studies cannot rule out the possibility that 256 

these colonies and spheres are the de novo induction of stem cells from normal progenitor cells 257 

by IL-1β.  Nonetheless, it is reasonable to conclude that IL-1β can support the development of 258 

intestinal epithelial stem cells.   259 

 260 

 Bmi-1, a transcriptional repressor belonging to the polycomb group protein family, is a well-261 

recognized molecular marker for ISCs.  The leucine-rich, repeat-containing G protein-coupled 262 

receptor (Lgr) 5, also called GPR49, is another marker of stem cells in adult intestinal epithelium 263 

[3].  Although the exact function of Lgr-5 is unknown, it represents a different group of stem 264 

cells in the intestine because Lgr-5 is mainly expressed in the crypt base columnar cells which 265 

are located between the Paneth cells, while Bmi-1 is expressed in +4 cells which are located 266 

above the Paneth cells [2].  Thus, these two markers label two different states of ISCs.  Lgr-5-267 

expressing cells are actively proliferating stem cells responsible for the daily maintenance of the 268 

intestine epithelium, while Bmi-1-expressing cells are normally maintained in a quiescent state 269 

[2].  Recent studies on these two stem cell populations indicate that Bmi-1-expressing cells are 270 

up-stream of the rapidly dividing Lgr-5+ cells and replenish the pool of active stem cells under 271 

normal circumstances [26].  Moreover, Bmi-1-expressing cells can also directly give rise to all 272 



13 
 

intestinal cell types without transition to Lgr-5+ cells in Lgr-5-deficient mice, indicating that Lgr-273 

5 expression is dispensable for the homeostasis of intestinal epithelium [26].  However, ablation 274 

of Bmi-1-expressing cells can lead to depletion of whole crypt units [27]. Thus, Bmi-1-275 

expressing cells appear to be more critical than Lgr-5+ cells for crypt maintenance.  Our studies 276 

have shown that the expression of Bmi-1 and Lgr-5 is significantly enhanced in IL-1β –induced 277 

IEC-18 sphere cells.  The finding suggests that there were two subsets of ISCs present in the 278 

original IEC-18 cell line when they were isolated from rat intestinal crypt, and IL-1β promotes 279 

the expansion of both stem cell populations.  Further studies are needed in order to determine 280 

whether Lgr-5+ IEC-18 cells are derived from the Bmi-1-expressing IEC-18 cells.  281 

 282 

 It has been suggested that IL-1β alone can induce inflammation and gastric cancer 283 

through recruitment and activation of myeloid-derived suppressor cells (MDSCs) [16].  MDSCs 284 

serve as a source for IL-6 production and IL-6-induced activation of STAT3 in epithelial cells 285 

can lead to tumor initiation [16, 28, 29].  Different from the previous report, we have shown that 286 

IL-1β could act directly on IEC-18 cells to promote the expression of both Bmi-1 and Lgr-5 and 287 

a functional phenotype of loss of contact inhibition of growth and anchor-independent colony 288 

formation, typical characteristics of cancer cells.  Results from our studies are consistent with the 289 

notion that Bmi-1 and Lgr-5 not only are hall markers of intestinal stem cells, but also are 290 

strongly expressed in gastrointestinal neoplasias [2, 3]. Thus, our data suggest that IL-1β could 291 

directly target epithelial cells to induce ISC-mediated tumorigenesis.   292 

 293 

 Canonical Wnt/β-catenin pathway is a key signaling mechanism for intestinal proliferation, 294 

maintenance of ISCs, and development of colorectal cancer cells.  Wnt signaling regulates β-295 
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catenin’s stability, accumulation in the cytoplasm, and translocation into the nucleus [30].  Both 296 

intestinal stem cell markers Bmi-1 and Lgr-5 have been shown to be the downstream targets of 297 

Wnt/β-catenin signaling [31, 32].  Because IL-1β can significantly enhance the expression of β-298 

catenin, Bmi-1 and Lgr-5  in IEC-18 cells (Fig. 3), it is possible that the effect of IL-1β on ISC 299 

self-renewal and cancer stem cell development is mediated by the Wnt/β-catenin pathway.  This 300 

notion is consistent with the report that IL-1β alone is sufficient to activate Wnt signaling and is 301 

required for increased Wnt signaling in colon cancer cells [33].  However, further studies are 302 

required to determine the molecular mechanism of IL-1β-mediated Wnt/β-catenin signaling in 303 

intestinal stem cells and cancer stem cells. 304 

 305 

 Numerous studies have demonstrated that the development and maintenance of intestinal 306 

stem cells and cancer cells are regulated by inflammation in the intestinal crypt.  Therefore, it is 307 

reasonable to speculate that key inflammatory cytokines such as IL-1β may be involved in the 308 

micro-environmental regulation of stem cells in intestinal homeostasis and cancer.  Under 309 

physiological conditions, it is likely that inflammation-responsive ISCs would become quiescent 310 

again after tissue wound is healed and inflammation is resolved.  However, persistently over-311 

expression of IL-1β in chronic inflammation could induce over-proliferation of ISCs.  Our 312 

studies provide the first evidence that IL-1β can directly act on intestinal epithelial cells to 313 

activate ISC self-renewal, which in turn contributes to inflammation-mediated epithelial repair 314 

and/or tumorigenesis depending on the intensity and duration of intestinal inflammation.  315 

 316 
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 323 

Figure legends 324 

Fig. 1   IL-1β induced sphere and colony formation of IEC-18 cells. a IL-1β induced sphere 325 

formation of IEC-18 cells in SFM. IEC-18 cells (3x104/well) were cultured in 24-well plates 326 

containing SFM in the presence or absence of IL-1β for 7 days.  Scale bar = 400 µm.  b & c IL-327 

1β inhibited proliferation of IEC-18 cells in SFM.  IEC-18 cells (2x104/well) were cultured in 328 

96-well plates containing SFM with or without IL-1β for 7 days.  Cell proliferation was 329 

determined using a MTT assay (b) or cell count under a microscope after cells were dissociated 330 

and stained with Trypan blue (c). Error bars represent SEM. *p < 0.002.  d. IL-1β induced 331 

colony formation of IEC-18 cells in soft agar containing SFM.  IEC-18 cells (1x105/well) were 332 

cultured in 6-well plates containing soft agar in SFM with or without IL-1β for 40 days. Scale 333 

bar = 200 µm.  (e). Number of colonies (>30 µm) that were measured and counted under a 334 

microscope.  (f) Percentages of colony-forming cells calculated using the number of colonies 335 

divided by the number of seeded cells. Error bars represent SEM. *p < 0.001. 336 

 337 

Fig. 2  IL-1β induced focus formation of IEC-18 cells in SFM.  a Representative images of IEC-338 

18 cells cultured in collagen-coated 6-well plates containing SFM with or without IL-1β for 2 339 

days.  Scale bar = 200 µm. b IL-1β inhibited the proliferation of adherent IEC-18 cells in SFM 340 
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before cells reached confluency.  IEC-18 cells (3x103/well) were cultured in collagen-coated 96-341 

well plates containing SFM with or without IL-1β for 8 days. Cell proliferation was determined 342 

using a MTT assay. OD values represent the amount of viable cells at each time point.  *p < 0.02.  343 

c Representative images of Giemsa-stained IEC-18 cells treated with or without IL-1β for 14 344 

days. IEC-18 cells (3 x 104/well) were cultured in collagen-coated 24-well plates containing 345 

SFM with or without IL-1β for 14 days.  Cells were stained with Giemsa. Scale bar = 300 µm. d 346 

The number of foci counted in a microscopic field.  Error bars represent SEM. *p < 0.001.  e IL-347 

1β induced proliferation of IEC-18 cells in SFM after cells reached confluency.  IEC-18 cells 348 

(3x105/well) were cultured in collagen-coated 24-well plates containing SFM with or without IL-349 

1β for 14 days. Then cells were dissociated, stained with Trypan blue and counted under a 350 

microscope. Error bars represent SEM. *p < 0.03. 351 

 352 

Fig. 3 IL-1β induced expression of stem cell markers in IEC-18 cells in SFM.  a Transcriptional 353 

levels of stem cell markers in control and IL-1β-treated IEC-18 cells.  IEC-18 cells (5x105/well) 354 

were cultured in 6-well plates containing SFM with or without IL-1β for seven days.  Differential 355 

mRNA levels of stem cell markers were determined by qRT-PCR.  β-actin was used as an 356 

internal normalization control. Error bars represent SEM. *p < 0.01.  b Immunoblot analysis of 357 

Bmi-1 and β-catenin on cell lysates from control cells and IL-1β-treated cells. β-actin was used 358 

as an internal normalization control. 359 

 360 

 361 
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