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Kirkwood–Buff theory of molecular and protein association, aggregation,
and cellular crowding

Moon Bae Gee and Paul E. Smitha�
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Manhattan, Kansas 66506-0401, USA
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An analysis of the effect of a cosolvent on the association of a solute in solution using the
Kirkwood–Buff theory of solutions is presented. The approach builds on the previous results of
Ben-Naim by extending the range of applicability to include any number of components at finite
concentrations in both closed and semiopen systems. The derived expressions, which are exact,
provide a foundation for the analysis and rationalization of cosolvent effects on molecular and
biomolecular equilibria including protein association, aggregation, and cellular crowding. A slightly
different view of cellular crowding is subsequently obtained. In particular, it is observed that the
addition of large cosolvents still favors the associated form even when traditional excluded volume
effects are absent. © 2009 American Institute of Physics. �doi:10.1063/1.3253299�

I. INTRODUCTION

Protein association, protein unfolding, protein aggrega-
tion, and cellular crowding are known to affect the normal
function of cellular systems.1–7 In many cases, the resulting
small changes in normal protein-protein intra- and intermo-
lecular interactions are thought to lead to a variety of human
diseases.8,9 Consequently, it is important to study these pro-
cesses, at both the thermodynamic and atomic levels, in an
effort to understand and eventually manipulate the behavior
of such systems. One way to affect and help understand pep-
tide and protein association is through the use of additives or
cosolvents.10 A general theory describing these types of ef-
fects which relates their thermodynamic properties to the in-
teractions between species in solution is therefore desired.
This is a major aim of the present work.

The basic thermodynamic effects of additives on chemi-
cal equilibria were outlined some time ago using the con-
cepts of binding and linkage.11–13 Binding polynomials are
then typically used to help illustrate the resulting thermody-
namic relationships. While binding polynomials can be used
to provide an accurate representation of real experimental
data, the physical interpretation of the binding constants re-
quires some care for systems involving only weakly binding
cosolvents.14 This is immediately apparent when attempting
to define corresponding binding sites, occupation numbers,
and equilibrium constants using coordinate data provided by
computer simulations. The transient nature of the interactions
between the cosolvent and biomolecule render such a com-
parison of the experimental and simulation data essentially
impossible. Other thermodynamic approaches have been
outlined,15–21 but it remains difficult to relate these to realis-
tic distributions between the various species in solution.

The most common approach used to understand the ef-
fects of an additive on protein folding, association, and ag-

gregation involved scaled particle theory �SPT�.6,19,22,23

Here, the change in free energy for association, denaturation,
etc., is determined from the change in the free energy for
insertion of the initial and final states into a system of hard
spheres as a function of the additive volume fraction. These
calculations generally suggest that the native and any
associated states are favored on increasing the additive
concentration. These are exactly the trends observed
experimentally,6 and for simulations using simple excluded
volume crowders.3,24 As SPT is dominated by repulsive ex-
cluded volume effects, the above trends are usually inter-
preted in terms of a decrease in the free volume, or increase
in the excluded volume, within the solution. Unfortunately, it
is difficult to extend SPT to include attractive interactions
which undoubtedly occur between proteins in real systems.6

Hence, other models are still required which complement
existing approaches.

The application of the Kirkwood–Buff �KB� theory of
solutions to biological systems recently attracted some
interest.14 KB theory provides a rigorous link between inter-
molecular distributions in solution and the thermodynamic
characteristics of that solution.25,26 In particular, it has been
used to understand the preferential interactions of cosolvents
with proteins and small molecules,27–34 to study changes in
the hydration of solutes,35–38 to investigate a variety of solu-
tion properties,39–41 and for hard sphere models of cellular
crowding.42 Previously, Ben-Naim used KB theory to under-
stand the effects of cosolvents on the association equilibrium
of a solute in solution.43 The current approach is based on the
previous work of Ben-Naim and is similar to the approach of
Hall for studying micelles.44 Here, we extend the Ben-Naim
approach to describe the effects of a cosolvent on the equi-
librium constant for association to include semiopen and not
just closed systems, and for systems with any number of
components all of which can appear at finite concentrations.
To achieve this we adopt a recent approach which avoids the
usual matrices used for closed systems.45 The resulting ex-
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pressions are then used to illustrate some of the differences
between open and closed systems, and between real and ideal
solutions.

II. KIRKWOOD–BUFF THEORY

Kirkwood–Buff theory is an exact theory of solutions.46

The principle quantities of interest are the Kirkwood–Buff
integrals �KBIs� defined by

Gij = Gji = 4��
0

�

�gij
�VT�r� − 1�r2dr , �1�

where gij is the radial distribution function �rdf� between the
center of mass of species i and j. These integrals can be used
to relate thermodynamic properties of a solution to the mo-
lecular distributions in that solution. This is achieved by
starting with the grand canonical ensemble expression,25

RT� � ln �i

�� j
�

T,�k�j

= �ij + Nij , �2�

where R is the gas constant, T is the absolute temperature,
�i=Ni /V is the number density of species i, � is the chemical
potential, and �ij is the Kroenecker delta function. The Nij

=� jGij values describe the change in the number of j par-
ticles on introduction of a central i particle, from the number
of j particles found in an equivalent volume of bulk solution
at the same composition. More details concerning the appli-
cation of KB theory to understand a variety of solution prop-
erties can be found elsewhere.14,26,39

The major aim of this work is to develop expressions for
cosolvent effects on biomolecular equilibria in both closed
and semiopen ensembles. Traditionally, KB theory starts
from Eq. �2� and uses a series of thermodynamic transforma-
tions to provide expressions for similar derivatives in closed
ensembles.25,46 A general matrix formulation is available for
chemical potential derivatives in closed systems—the most
common system of interest.46 However, we will avoid this
approach as the corresponding expressions are difficult to
manipulate for large numbers of components. Furthermore, it
is also difficult to transform from the closed ensemble results
back to expressions valid for semiopen systems.29

III. CHEMICAL EQUILIBRIA

Let us consider a formal nc component system contain-
ing a primary solvent �1�, a biomolecule �2�, and a series of
cosolvents �3,4 ,¯�. The cosolvents can be small molecules
such as urea, a salt, a proton, or larger molecules such as
different proteins. We will refer to species 2 as a biomol-
ecule, but it can easily refer to any associating species. Fur-
thermore, the biomolecule can exist in two forms, one being
a monomer �M� and the other an aggregate �A� of any shape
formed from n monomers. Any counterion associated with
the biomolecule will be assumed to have no effect on the
equilibrium and to be different from any of the cosolvent if
the latter are salts �no Donnan effect�. Hence, we have the
equilibrium process,

nM → A , �3�

which can be described by an equilibrium constant K. For-
mally, the equilibrium constant involves the activities of the
various species. In the majority of thermodynamic ap-
proaches it is then assumed that the activities of the biomol-
ecule species can be replaced by their concentrations as the
biomolecules usually appear at low concentrations, and con-
centrations are relatively easy to determine experimentally.
Here, we do not assume ideal behavior of any species, but
simply define our equilibrium constant in terms of concen-
trations to match the usual experimental representation of the
data. Consequently, the equilibrium constant can be defined
in several ways using a variety of concentration scales. We
chose

K =
�A

�M
n �4�

in terms of number densities or molarities. Other choices will
be discussed later. The number of each form of the biomol-
ecule present in solution are related by

NM + nNA = N2, dNM + ndNA = dN2, �5�

and,

fM =
NM

N2
, fA =

nNA

N2
, fM + fA = 1, �6�

where f i is the fraction of either A or M at equilibrium. The
material equilibrium condition indicates that

�A = n�M, d�A = nd�M = nd�2, �7�

as long as we remain at equilibrium. From Eq. �4� a general
change in the equilibrium constant can be written as

d ln K = d ln �A − nd ln �M . �8�

We note that all the above expressions can be applied to any
chemical equilibrium that follows Eq. �3� in any thermody-
namically reasonable ensemble. Our main aim is to express
the changes in the number densities of A and M in terms of
the KB integrals and thereby provide a simple physical pic-
ture of the effect of a cosolvent on the equilibrium constant.

IV. GENERAL KIRKWOOD–BUFF THEORY
OF CHEMICAL EQUILIBRIA

Our system corresponds to a pseudo-nc+1 component
system with thermodynamic constraints between two of the
components �M and A�. Before proceeding we note that the
application of KB theory to this type of problem involves
some subtle issues. First, N2 is a true independent thermody-
namic variable. However, NM and NA are not as they are
related through Eq. �5�. Hence, we will avoid taking deriva-
tives with respect to the chemical potentials or concentra-
tions of M and A, although derivatives involving either one
�M or A� can be used in place of the chemical potential or
concentration of 2. The application of KB theory implies that
the KB integrals used here for semiopen or closed systems
correspond to an equivalent system at the same composition
but open to all species �including M and A�. This issue has
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been discussed by Ben-Naim.26 One can apply KB theory to
understand such a system as long as one does not treat M and
A as independent thermodynamic variables.47

The traditional approach to this type of problem starts
with the matrix formulation of KB theory for closed systems.
However, the evaluation of the matrix determinants for a
large number of components where all components are
present at finite concentrations is rather cumbersome. In ad-
dition, transforming back to an open or semi-open system
from the closed system results is also difficult. Hence, we use
a different approach which avoids the direct evaluation of
any matrices for small nc values; thereby greatly simplifying
the problem.45 Let us consider the number density of each
species to be functions of T and all the chemical potentials.
The differential of the number densities at constant T is then
provided by

d ln �i = �
j
� � ln �i

�� j
�

T,�k�j

d� j , �9�

for any i, and where the summation is over all j components.
The partial derivatives can be expressed in terms of KBIs
through Eq. �2� to give

RTd ln �i = �
j

��ij + Nij�d� j �10�

for any constant T ensemble. To our knowledge the above
equation was first derived by Hall,48 but using a different
route. The general Gibbs–Duhem �GD� relation at constant
temperature can be written as

dP = �
j

� jd� j , �11�

where P is the pressure. Equations �10� and �11� can be
applied to any number of components in any ensemble with
T constant.

Hence, for our nc+1 component system of species
1 ,M ,A ,3 ,4 ,¯, one can use Eq. �7� to eliminate d�A from
the relationships provided in Eq. �10� for i=A and M to give

RTd ln �A = �n + nNAA + NAM�d�M + �
j�A,M

nc+1

NAjd� j ,

�12�

RTd ln �M = �1 + NMM + nNMA�d�M + �
j�A,M

nc+1

NMjd� j .

One could have focused on species A instead of M, but the
results will be the same. However, we cannot retain both
d�M and d�A terms for the remainder of the analysis as this
implies they are thermodynamically independent. To gener-
ate a relationship for changes in the equilibrium constant we
use Eq. �8� and the relationships in Eq. �12� to provide

RTd ln K = �nNAA + NAM − nNMM − n2NMA�d�M

+ �
j�A,M

nc+1

�NAj − nNMj�d� j . �13�

However, the above expressions can be simplified further.

A series of relationships between KBIs involving the
biomolecule can be established. These can be written as

Ni2 = NiM + nNiA,

�14�
N2i = fMNMi + fANAi,

for i�A, M, or 2, and

NM2 = 1 + NMM + nNMA,

NA2 = n + nNAA + NAM , �15�

1 + N22 = fM�1 + NMM + nNMA� + fA�n + nNAA + NAM�

= fMNM2 + fANA2.

The above expressions were obtained from the general fluc-
tuation formula in the grand canonical ��VT� ensemble,

�ij + Nij =
	NiNj
 − 	Ni
	Nj


	Ni

, �16�

by suitable substitutions of N2=NM +nNA. We note that the
above relationships do not assume that N2 is constant. They
merely reflect a change in index for the M, A, and 2 species
as illustrated in Fig. 1. Their meaning will be discussed later.
Application of the above relationships to Eqs. �10�–�13� pro-
vides

RTd ln K = �
j

nc

�NAj − nNMj�d� j , �17�

RTd ln �i = �
j

nc

��ij + Nij�d� j , �18�

FIG. 1. The two representations of the same system used in this study. The
system contains a solvent �1, shaded spheres�, a solute �2�, and a cosolvent
�3, open spheres�. In this case the solute can exist in two forms: One being
the monomer �M� and the other being an aggregate �A� of n=6 monomers.
The monomer can adopt different shapes in the associated and free forms.
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RTd ln mi = �
j

nc

��ij + Nij − N1j − �1j�d� j , �19�

dP = �
j

nc

� jd� j , �20�

where d ln mi=d ln �i−d ln �1, and mi is the dimensionless
molality ��i /�1�. The above equations represent the basic ex-
pressions required for this study. The summations over the
formal nc components only involve indices 1, 2, 3, etc., and
not M or A. They can be applied to any constant T ensemble
and are valid for any concentration of solvent, biomolecule,
and cosolvents. We note that Eqs. �18�–�20� could have been
written directly for nc component systems. However,
Eq. �17� is not so obvious.

V. RESULTS

We will apply Eqs. �17�–�20� to a variety of thermody-
namic ensembles to develop expressions for the effect of a
cosolvent on the chemical equilibrium in terms of KB inte-
grals. During the following analysis several combinations of
KBIs appear repeatedly. Hence, in an effort to simplify the
results we will define the following:

Pjk
i = Nij −

� j

�k
Nik = � j�Gij − Gik� = −

� j

�k
Pkj

i , �21�

which should be read as the preference or affinity of j over k
for species i. For example, P31

A quantifies the preference of 3
over 1 for the biomolecule in form A. This notation will only
be used when it applies to specific differences between af-
finities of the various components for the two biomolecule
forms. A simple physical interpretation of the sign associated
with the above expression is that when Pjk

i �0 the local ratio
of j to k molecules around a central i molecule is larger than
the bulk ratio of j to k molecules, and vice versa. We will
also make use of the notation,

Nij
+ = Nij + mj�1 + N11 − Ni1 − Nj1� , �22�

originally introduced by Hall,48 to help simplify many of the
results.

VI. GENERAL EXPRESSIONS FOR ANY NUMBER
OF COMPONENTS IN A CLOSED SYSTEM

Our initial focus will be on fully closed systems at con-
stant pressure. Eliminating d�1 from Eq. �17� using Eq. �20�
and then taking derivatives with respect to one of the cosol-
vent molalities, one obtains the expression

� � ln K

� ln mj
�

T,P,mk�j

= �
i�1

�Pi1
A − nPi1

M��ij , �23�

or alternatively,

RT� � ln K

�� j
�

T,P,mk�j

= � � ln K

� ln aj
�

T,P,mk�j

= � j j
−1�

i�1
�Pi1

A − nPi1
M��ij , �24�

where the sum involves species 2 �not M and A�, aj is the
activity of j, and we defined

�ij =
1

RT
� ��i

� ln mj
�

T,P,mk�j

=
1

RT
� ��i

� ln Nj
�

T,P,Nk�j

. �25�

The molality derivative has been chosen here as there is a
general recursion relationship for these derivatives in any
closed multicomponent solution.45 Reference to the stability
requirements for solutions indicates that �ii�0 and �ij �0.49

Consequently, on increasing the concentration of j the asso-
ciation process is favored when Pi1

A −nPi1
M is positive for i

= j and negative for i� j. A change in concentration scales
can be performed using the following thermodynamic rela-
tionships:

� � ln �i

� ln mi
�

T,P,mj�i

= 1 − 	i � � ln xi

� ln mi
�

T,P,mj�i

= 1 − xi,

�26�

where 
i is the volume fraction and xi the mole fraction. It
should be noticed that these derivatives are positive and so a
change in cosolvent concentration variable does not affect
the sign of the previous effects.

In a closed system the affinity of all species for the M
and A forms contribute to the overall effect. These contribu-
tions are expressed relative to species 1 �usually taken as the
primary solvent�. This is a direct consequence of our choice
to eliminate d�1 from Eq. �17� using the GD equation, and
not due to the use of molality based derivatives. Clearly, one
could eliminate any d�i to obtain a set of equivalent expres-
sions. Finally, one could obtain an expression for a closed
system at constant volume �T, � j�i� from Eqs. �17�–�20�.
However, we have not pursued this further as the resulting
expressions are rather complicated and this ensemble is not
relevant for most biological systems, although it is the en-
semble adopted in SPT.

VII. CONSTANT T, P, and m2 Ensemble

The most common situation involves a closed system
with nc=3 at constant T and P, where one is interested in the
effect of a single cosolvent �3� on the biomolecular equilib-
rium when the biomolecule �2� and primary solvent �1� con-
centrations are constant. To develop expressions for the ef-
fect of a cosolvent on the equilibrium in this situation, we
eliminate d�1 from Eqs. �17�–�19� using Eq. �20�. Then, not-
ing that m2 is constant we have from Eq. �19� with i=2 that

0 = �1 + N22
+ �d�2 + N23

+ d�3. �27�

This can then be used to eliminate d�2 from Eq. �17� to give
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RT� � ln K

��3
�

T,P,m2

= P31
A − nP31

M −
�P21

A − nP21
M �N23

+

1 + N22
+ . �28�

To relate this to the cosolvent concentration one can elimi-
nate d�1 from Eq. �18� with i=3 using Eq. �20�, and then
combine with Eq. �27� to provide

RT� � ln �3

��3
�

T,P,m2

= 1 + N33 − N13 −
�N32 − m2N31�N23

+

1 + N22
+ .

�29�

Alternatively, if one is interested in the effect of cosolvent
molality one can eliminate d�1 from Eq. �19� using Eq. �20�
with i=3, and then combine with Eq. �27� to generate

RT� � ln m3

��3
�

T,P,m2

= 1 + N33
+ −

N32
+ N23

+

1 + N22
+ , �30�

which can then be combined with Eq. �28� if desired. Equa-
tion �30� is in agreement with previous results.45 We note
that the final terms in Eqs. �28�–�30� all disappear as the
biomolecule concentration tends to zero, a common situa-
tion, and are then consistent with previous published
expressions.27,29,47

In some cases the cosolvent concentration might be con-
stant and the biomolecule concentration may vary. The cor-
rect expressions for this situation can be obtained from Eqs.
�28�–�30� via a simple 2↔3 index change, or by the same
approach that led to Eqs. �28�–�30� but where m3 is constant.
In principle, Eq. �18� can be used to obtain expressions for
d ln xi and thereby chemical potential derivatives with re-
spect to mole fractions. These expressions are rather cumber-
some and, as mole fractions are rarely the concentration scale
of choice for biological systems, we have not pursued this
further here.

VIII. GENERAL EXPRESSIONS FOR ANY NUMBER
OF COMPONENTS IN SEMIOPEN SYSTEMS

If the system corresponds to that of a real cell, or some
approximation to a real cell, then it may be open to one or
more components. Furthermore, the addition of the cosolvent
can occur with volume or pressure held constant. Let us con-
sider a system which contains a set of species at fixed con-
centrations ���, together with a set of species with fixed
chemical potentials ���. Taking derivatives of Eq. �17� with
respect to one of the cosolvent molarities with volume fixed
one obtains the expression

� � ln K

� ln � j
�

T,�k�j,�
= �

i

nc�

�NAi − nNMi��ij� , �31�

where the sum is over the restricted set of components for
which the system is closed �nc��. Alternatively, with pressure
constant one finds

� � ln K

� ln � j
�

T,P,Nk�j,�
= �

i

nc�

�NAi − nNMi��ij� . �32�

The corresponding chemical potential derivatives are defined

�ij� =
1

RT
� ��i

� ln � j
�

T,�k�j,�
=

1

RT
� ��i

� ln Nj
�

T,V,Nk�j,�
,

�33�

�ij� =
1

RT
� ��i

� ln � j
�

T,P,Nk�j,�
.

Expressions for the required derivatives can be obtained after
solving the set of simultaneous equations provided by Eqs.
�18�–�20�. This is illustrated in the following two sections.

IX. CONSTANT T, �1, and �2 Ensemble

A common osmotic system involves a semiopen system
with nc=3 at constant T, V, and �1, where one is interested
in the effect of a single cosolvent �3� on a biomolecular
equilibrium when the biomolecule concentration is constant
and the system is closed to the cosolvent. To develop expres-
sions for the effect of a cosolvent on the equilibrium in this
situation, we note that �2 is constant and hence from Eq. �18�
with i=2 one has

0 = �1 + N22�d�2 + N23d�3. �34�

This can then be used to eliminate d�2 from Eq. �17� to give

RT� � ln K

��3
�

T,�1,�2

= NA3 − nNM3 −
�NA2 − nNM2�N23

1 + N22
.

�35�

To relate this to the cosolvent concentration one can elimi-
nate d�2 from Eq. �18� with i=3, and then use Eq. �34� to
provide

RT� � ln �3

��3
�

T,�1,�2

= 1 + N33 −
N32N23

1 + N22
. �36�

Alternatively, if one is interested in the effect of cosolvent
molality one can eliminate d�2 from Eq. �19� with i=3, and
then use Eq. �34� to generate

RT� � ln m3

��3
�

T,�1,�2

= 1 + N33 − N13 −
�N32 − N12�N23

1 + N22
,

�37�

which can then be combined with Eq. �35� if desired. We
note that the final terms in Eqs. �35�–�37� all disappear as the
biomolecule concentration tends to zero.

X. CONSTANT T, P, �1, and N2 Ensemble

A second common semiopen ensemble involves a sys-
tem with nc=3 at constant T, P, and �1, where one is inter-
ested in the effect of a single cosolvent �3� on a biomolecular
equilibrium when the number of biomolecules is constant,
and the system is also closed with respect to the cosolvent.
To develop expressions for the effect of a cosolvent on the
equilibrium in this situation we note that P is constant and
hence from Eq. �20� one has

0 = �2d�2 + �3d�3. �38�

This can then be used to eliminate d�2 from Eq. �17� to give
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RT� � ln K

��3
�

T,P,�1,N2

= NA3 − nNM3 −
�3

�2
�NA2 − nNM2� .

�39�

To relate this to the cosolvent concentration one can elimi-
nate d�2 from Eq. �18� with i=3, and then use Eq. �38� to
provide

RT� � ln �3

��3
�

T,P,�1,N2

= 1 + N33 − N23. �40�

Alternatively, if one is interested in the effect of cosolvent
molality one can eliminate d�2 from Eq. �19� with i=3, and
then use Eq. �38� to generate

RT� � ln m3

��3
�

T,P,�1,N2

= 1 + N33 − N13 − N23 + m3N21,

�41�

which can then be combined with Eq. �39� if desired.

XI. SYMMETRIC IDEAL SOLUTIONS

Ideal behavior occurs when the right hand side of Eqs.
�29�, �30�, �36�, and �37�, etc., is unity. Clearly, the corre-
sponding relationships between the KBIs depend on the con-
centration scale and the ensemble. Symmetric ideal �SI� so-
lutions provide a useful reference point for understanding the
properties of real solution mixtures in closed ensembles at
constant temperature and pressure.26 SI solutions are defined
by the fact that the mole fraction scale activity coefficients
are unity for all components over all compositions, i.e.,
d�i=RTd ln xi. In terms of the KBIs this requirement is ful-
filled when �Gij =Gii+Gjj −2Gij =0 for all i , j pairs.26 Re-
cently, we provided a general expression for the KB integrals
in SI solutions of any number of components,50

Gij = RT�T − Vi − Vj + Snc
Snc

= �
k=1

nc

�kVk
2, �42�

where the sum is over all nc components of the mixture, �T is
the isothermal compressibility, and Vi is the molar volume of
pure component i at the same T and P. For our pseudo-nc

+1 component system, one can write

Snc+1 = 	2	V2
 + �
k�M,A

nc+1

�kVk
2,

	V2
 = fMVM + fAVA = V2�fM + nfA� , �43�

	2 = �MVM + �AVA = ��M + n�A�V2 = �2V2.

In developing the above expressions we made the very rea-
sonable assumption that

VA = nVM = nV2. �44�

For instance, estimated differences in volume between native
and denatured proteins are typically small compared to their
total volumes.27,51,52 The value of 	V2
 is the average molar
volume of the biomolecule at that particular composition and
varies between VM =V2 for fM =1 and VA=nV2 for fA=1.

Using Eq. �42� one can develop expressions for the vari-
ous combinations of KB integrals that appeared in the previ-
ous sections. Hence, one finds

Nij − Nkj = � j�Vk − Vi� ,

Nij − mjNi1 = � j�V1 − Vj� , �45�

Nij
+ = mj ,

for any i and j=1,2, etc. For KB integrals involving specific
forms of the biomolecule we have

NAi − nNMi = �n − 1��i�Vi − RT�T − Snc+1� ,

�46�
Pij

A − nPij
M = �n − 1��i�Vi − Vj� ,

for any i and j=1,2, etc., after using Eq. �44�. In both cases
the mean value of the molar volume 	V2
 should be used
when i or j=2.

For SI solutions one finds that �ij =�ij −xj and therefore
insertion of the SI expressions into Eq. �23� and performing
the summation leads to a general result for SI solutions,

� � ln K

� ln mj
�

T,P,mk�j

SI

= �n − 1�� j�Vj − Vm� = �n − 1��	 j − xj� ,

�47�

valid for any number of components. Here, Vm=V / �N1+N2

+¯� is the molar volume, or the average volume per mol-
ecule of the solution, and 
i=�iVi is the volume fraction.
Hence, an increase in the concentration of the biomolecule or
an additive has no affect on the equilibrium in SI solutions
when n=1, while they increase the equilibrium constant for
n�1 when their molar volume is larger than the average
volume of the solution components. This appears to follow
the result expected for a simple excluded volume effect
where the excluded volume is smaller for the aggregate com-
pared to an equivalent number of monomers. However, this
is incorrect as we have not assumed anything concerning the
character �size or shape� of either the M or A species. The
real origin of the result is discussed later. SI solution results
for other concentration scales are given by

� � ln K

� ln � j
�

T,P,mk�j

SI

= �n − 1�� j
Vj − Vm

1 − 	 j
,

�48�

RT� � ln K

�� j
�

T,P,mk�j

SI

= � � ln K

� ln xj
�

T,P,mk�j

SI

= �n − 1�� j
Vj − Vm

1 − xj
,

where we used the previous relationships between the con-
centration derivatives.

XII. ALTERNATIVE DEFINITIONS OF THE
EQUILIBRIUM CONSTANT

Our choice of an equilibrium constant utilizing number
densities was motivated by the pseudochemical potential
�pcp� approach pioneered by Ben-Naim.46 The pcp ���� is
related to the total chemical potential by the equation

165101-6 M. B. Gee and P. E. Smith J. Chem. Phys. 131, 165101 �2009�

Downloaded 04 Aug 2011 to 129.130.37.167. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



�i = �i
� + RT ln�
i

3�i� , �49�

where 
 is the thermal de Broglie wavelength. The equilib-
rium condition then provides

RTd ln K = − �d�A
� − nd�M

� � . �50�

The pcp approach helps to simplify the resulting expressions
for the same reasons as outlined previously.26 Other defini-
tions of the equilibrium constant are possible, but typically
generate extra terms which complicate the analysis. This can
be seen from the following expressions which relate various
definitions of the equilibrium constant to the one used here.
For instance,

d ln Km = d ln K + �n − 1�d ln �1, Km = � mA

mM
n � , �51a�

d ln Kx = d ln K + �n − 1�d ln �, Kx = � xA

xM
n � , �51b�

d ln Kf = d ln K + �n − 1�d ln �2, Kf = � fA

fM
n � , �51c�

d ln K� = d ln K + �n − 1�d ln �M, K� = � �A

�M
� , �51d�

where � is the total number density. The final terms in Eqs.
�51a�–�51d� represent additional contributions which depend
on the ensemble. They are properties of the solution mixture
itself, and not directly related to the affinity of any of the
species to the different forms of the biomolecule �see later�.
Also, we note that defining an equilibrium constant by K�
=n�A /�M

n does not affect any of the results presented here as
d ln K�=d ln K. The final expression �Eq. �51d�� does not
include the factor of n for the equilibrium constant. Hence,
this does not correctly reflect the stoichiometry of the asso-
ciation reaction. However, it may relate more meaningfully
to the experimental data which are typically indirect mea-
sures of biomolecular concentrations obtained through spec-
troscopic or activity measurements, or for solutions where a
unique value of n might not be known. Clearly, different
results are obtained with different definitions of the equilib-
rium constant, and therefore comparisons with experimental
data should be performed with care.

XIII. APPROXIMATE FREE ENERGY CURVES

KB theory provides expressions for derivatives of the
equilibrium constant �or free energy� for a particular process
in terms of the intermolecular distributions observed in solu-
tion. To obtain changes in the equilibrium constant one has to
then integrate. Unfortunately, the general dependence of the
Nij on composition is unknown. However, one can make
some reasonable approximations and investigate the results.
First, most studies involve the solute �2� at low concentra-
tions. Second, if the Gij are assumed to be relatively constant
then one can obtain approximate free energy curves. There-
fore, for two of the main ternary systems �Eqs. �28� and �29�,
and Eqs. �35� and �36�� one finds

− ���G = ln� K

K0
�

T,P,m2→0
=

P31
A − nP31

M

N33 − N13
ln�1 + N33 − N13� ,

�52�

− ���G� = ln� K

K0
�

T,�1,�2→0
=

NA3 − nNM3

N33
ln�1 + N33� , �53�

which may be compared to the corresponding exact SI result,

− ���GSI = ln� K

K0
�

T,P,m2→0

SI

= − �n − 1�ln�1 + �3�V1 − V3�� ,

�54�

where ��G=�G��3�−�G�0�, �=1 /RT, and K0 is the equi-
librium constant in the absence of cosolvent. A similarity to
denaturation binding models is clearly apparent.53–55 For
small �3 the right hand side reduces to P31

A −nP31
M and NA3

−nNM3 for the closed and open systems, respectively. Hence,
using these approximations the cosolvent effect is predicted
to be linear in cosolvent molarity for low cosolvent
concentrations—a result observed experimentally.56 We note
that the infinitely dilute biomolecule limit applied to Eq. �38�
results in d�3=0 for the T, P, and �1 ensemble.

There are additional relationships relating the various
KBIs which can be related to the properties of solution mix-
tures. For instance, taking derivatives of Eq. �17� with re-
spect to P and keeping T and all Ni constant provides,

�1 − n�RT�T = �
i

nc

�NAi − nNMi�Vi, �55�

where Vi is the partial molar volume �pmv�. The above ex-
pression assumes that NA and NM are reasonably independent
of pressure. Equation �55� can be developed further for the
case of nc=3 and an infinitely dilute biomolecule, by assum-
ing that the left hand side of Eq. �55� is small and may be
neglected. This is true for n=1 and should be reasonable for
n�10 for all but small cosolvent concentrations. In this case
one can relate the preference of 3 over 1 for the biomolecule
to just the affinity of 3 for both forms,

P31
A − nP31

M �
NA3 − nNM3

	1
. �56�

This is a generalization of a previous result.27,57 The relation-
ship exists because, under these approximations, an increase
in the local density of one species around the biomolecule
should be accompanied by some degree of depletion of an-
other species in the same region. Using Eq. �56� in Eq. �52�
and comparing with Eq. �53� one can predict the relative
effects of the addition of a cosolvent in both open and closed
systems. The result is

	1��G � ��G� �57�

for low biomolecule and cosolvent concentrations. This also
assumes that the KBIs are reasonably independent of
the osmotic pressure, i.e., Gij�T ,N , P��Gij�T ,N , P+��.
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Therefore, the cosolvent effect should be larger in magnitude
in a closed system compared to a similar corresponding
semiopen system.

XIV. RELATIONSHIP TO THE BEN-NAIM RESULT
FOR CLOSED SYSTEMS

Previously, Ben-Naim studied the effects of cosolvents
on molecular association using KB theory.43 In particular, the
effect of a cosolvent on an equilibrium involving an infi-
nitely dilute solute expressed in terms of the quantity
��NA /�N3�T,P,m2→0 in closed systems. The results presented
here are different from the Ben-Naim expression for several
reasons. First, we used an equilibrium constant in terms of
numbers densities instead of just NA. Second, the cosolvent
concentration has been expressed in terms of molarity or
molality rather than N3. This does not change the general
conclusions obtained from the respective expressions, al-
though it does change the expressions themselves. To illus-
trate further we will transform our result �Eqs. �28� and �30��
into the corresponding Ben-Naim expression. To do this we
note that one can define an equilibrium constant using the
molecule numbers �KN�. This is related to the equilibrium
constant used here by

d ln K = d ln� NA

NM
n � − d ln� V

Vn� = d ln KN + �n − 1�d ln V .

�58�

Taking the appropriate derivative in the required ensemble
one obtains

� � ln K

� ln N3
�

T,P,m2

= � � ln KN

� ln N3
�

T,P,m2

+ �n − 1��3V3. �59�

Finally, the relationship between changes in the equilibrium
constant and changes in NA can be obtained from Eq. �5�
with N2 constant,

d ln KN =
NM + n2NA

NANM
dNA. �60�

Combining these relationships with Eqs. �28� and �30� one
obtains the Ben-Naim result in our notation,

� �NA

�N3
�

T,P,m2→0

=
NANM

N3�NM + n2NA�
P31

A − nP31
M − �n − 1�m3�1 + N11 − N31�

1 + N33
+ ,

�61�

where we used the KB expression for the pmv of 3 in a
binary solution of 1 and 3.46 Clearly, the expression pre-
sented here is simpler and easier to interpret. This is a direct
consequence of investigating the changes in an equilibrium
constant defined using number densities, i.e., the pcp ap-
proach.

XV. DISCUSSION

In the above sections we provided an analysis, using KB
theory, of the effects of increasing biomolecule and cosol-
vent concentrations on molecular association in solution.
KBIs involving species 2, M, and A appear in these expres-
sions, even though they are different representations of the
same species. This was done deliberately. The use of N22 in
the above expressions serves to indicate that this corresponds
to a KBI between all forms of the biomolecule where one
does not distinguish between monomer and aggregate. Alter-
natively, the use of NM3 �or NA3� indicates a correlation be-
tween M and 3 �or A and 3� which is specific for one par-
ticular form of the biomolecule. In addition, the use of NM2

�or NA2� signifies a correlation between the monomer �or
aggregate� form and any other form of the biomolecule, both
monomer and aggregate. Hence, we have nonspecific effects
involving the KBIs for species 2, together with specific ef-
fects involving the KBIs for species M or A.

The resulting expressions for closed systems involve
terms of the form Pi1

A −nPi1
M. These terms quantify the excess

�or depletion� of i over 1 in the vicinity of an aggregate over
the same excess �or depletion� of i in the vicinity of n mono-
mers. Therefore, if a species i displays a higher affinity for
the aggregate than n individual monomers, then Pi1

A −nPi1
M

�0 and an increase in the concentration of i leads to an
increase in equilibrium constant and a shift in the equilib-
rium toward the associated form. The cosolvent urea serves
as a reasonable example. Urea is well known to denature
proteins.56 Hence, when n=1 the preference of urea �over
water� for the denatured state must be larger, on average,
than that for the native state. Assuming this is related to the
corresponding increase in exposed surface area upon
denaturation,58 this suggests that urea should stabilize the
monomer over the aggregate as an aggregate typically pos-
sesses less surface area than n monomers. Hence, urea is a
denaturant of proteins but should help prevent protein aggre-
gation. This behavior has been observed experimentally.59,60

The opposite effects will be observed for classic osmolytes.
Some general trends are observed in the results. From

Eq. �17� it is clear that the effect on the equilibrium does not
involve any KBIs between the biomolecule and any species
that is kept at a constant chemical potential. Any species at
constant N will contribute to changes in the equilibrium as
quantified through the KBIs. Hence, all the species contrib-
ute in closed systems �see Eq. �23��. The main reason for this
is quite simple. When a cosolvent displaces a solvent mol-
ecule in the vicinity of the biomolecule both the addition of
cosolvent and the removal of a solvent �or other� molecule
from the biomolecule affect the Gibbs free energy of the
system. On the other hand, when a cosolvent displaces a
solvent molecule in a system open to the solvent, only the
addition of the cosolvent affects the free energy of the sys-
tem. A change in concentration scale ��→m→�� typically
results in a scaling effect �Eq. �26��, but this does not alter
the sign of the effects contributing to the change in equilib-
rium constant.

The expression provided in Eq. �47� for closed SI solu-
tions indicates that the association equilibrium is increased
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by the addition of additives with a larger molar volume than
the average molecular volume of the solution at that compo-
sition. The same expression can be obtained from Eq. �51b�
noting that d ln Kx=0 for SI solutions �see Eq. �7��. Hence,
we have two contributions to changes in the equilibrium con-
stant for SI solutions. First, on addition of a cosolvent the
volume of the solution increases. This affects the number
densities of M and A, and directly increases the equilibrium
constant when n�1. Second, the addition of another particle
to the system changes the total number of species present
and therefore the mole fraction of each species. This causes
an increase in the monomer form to maintain the equilibrium
condition. Finally, we note that dilution, i.e., the addition of
solvent, will favor dissociation as long as the solvent has a
low molar volume. These effects dominate in the absence of
a particular affinity between any of the pairs of species in
solution. There is no effect on a simple denaturation equilib-
rium in SI solutions.

It is well known that cellular crowding, as described by
the addition of rather large cosolvents, will tend to favor
association.6 The usual explanation for this observation is
that aggregates display less surface area, and therefore less
excluded volume, compared to a collection of their mono-
mers. Excluded volume effects also favor the native state
over the denatured state for the n=1 case. In contrast, the SI
result discussed above indicates that any excluded volume
contributions are balanced by other �favorable� contributions
so that �Gij =0 for all i , j pairs. In a hard sphere fluid model,
as adopted in SPT, the SI condition does not hold and ex-
cluded volume contributions are dominant. These also favor
the associated or native forms. However, we emphasize that
even for ideal �mole fraction scale� solutions the addition of
a large cosolvent favors association when the equilibrium
constant is defined using molarities, and this effect is not
related to any change in excluded volume.

The results predicted by Eq. �54� for closed ternary SI
solutions are illustrated in Fig. 2. A variety of cosolvents are
considered with different molar volumes relative to the pri-
mary solvent. The effects are linear in volume fraction at low
cosolvent concentrations but display deviation from linear
behavior at higher concentrations. All the results scale with
n−1 and are independent of the size or shape of the mono-
mer or aggregate, although Eq. �44� was used during the
derivation. The magnitude of the effects obtained from Eq.
�54� for closed SI solutions is similar to that predicted by
SPT depending on the biomolecule shapes used �see Fig. 3
from Ref. 6, for instance�. Clearly, we have two solution
models that display similar results in qualitative agreement
with experiment. Both are approximations to real solution
conditions of biological interest. The SI approach represents
a thermodynamic model, while SPT presents a physical
model for solutions. It is unclear at present which, if any, is
more reasonable.

The analysis of cosolvent effects on a chemical equilib-
rium using KB theory is exact. The KBIs quantify the local
composition of the solution surrounding the various species
corresponding to a four component system for the case of a
single cosolvent. There is no problem extracting all the re-
quired KBIs from computer simulations as long as one can

define the aggregate in a consistent manner. From a thermo-
dynamic point of view, however, this is formally a three
component system. Consequently, it is difficult to extract the
individual KBIs from an analysis of the thermodynamic data
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FIG. 2. SI results for the effects of a single crowder �3� on the association
equilibrium �nM→A� of an infinitely dilute solute �2� in a primary solvent
�1� in a closed system. The data were obtained using Eq. �54� for different
molar volume ratios �r� of the crowder and solvent such that V3=rV1. The
results are plotted as a function of cosolvent volume fraction �
3=�3V3�,
cosolvent mole fraction �x3�, and cosolvent molality �m3� with water
as the solvent. In this case x3=
3 / �
3+r�1−
3�� and m3=1000
3 /
r�1−
3� /18.015. For reference, the molar volume of pure water is V1

=18 cm3 /mol and so r=1000 would correspond to a 25 kDa protein of
approximately 225 residues. All curves are truncated at a cosolvent volume
fraction of 0.5.
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alone. For instance, a general nc component system has
nc�nc+1� /2 unique Gij integrals. To determine the integrals
from experimental data using the KB inversion approach re-
quires 1 compressibility, nc−1 independent pmvs, and there-
fore nc�nc−1� /2 independent chemical potential derivatives
��ij� as a function of composition. However, for our pseudo-
four component system one can use the relationships in Eqs.
�28�–�30� as long as one knows K and n for a particular
system as a function of composition. Hence, one still has
only six �nc=3� unique KBIs as many of the ten �nc=4�
KBIs are related through Eqs. �14� and �15� and therefore are
not unique.

XVI. CONCLUSIONS

In this study we applied KB theory to investigate the
effects of cosolvents on molecular equilibria in solution. This
is an extension of the previous approach of Ben-Naim to
include any number of components at finite concentrations in
both closed and semiopen systems. No assumption concern-
ing the character, specifically the size and/or shape, of the
molecules has been made. Hence, the results are totally gen-
eral and can be applied to a variety of processes such as
protein denaturation, protein aggregation, and cellular
crowding, where the cosolvent can be either small �H+, urea�
or large �another protein�. In addition, the extension to in-
clude semiopen systems also allows one to consider systems
under typical biological �cellular� conditions. Here, the effect
of a cosolvent appears to be reduced compared to closed
systems.

The results obtained here depend on the definition of the
equilibrium constant. We advocate the use of molarities in
accord with the pcp approach of Ben-Naim. In this case,
even SI solutions, where significant excluded volume effects
are absent, indicate an increase in association on the addition
of a cosolvent crowder. This does not mean that excluded
volume effects are not important in these systems. Merely
that at least some of the typical effects can be explained
without invoking excluded volume. Significant deviations
from SI behavior will be observed when the cosolvent dis-
plays a preference for either form of the biomolecule.

A particular advantage of the KB approach is that one
has exact expressions for the cosolvent effects in terms of
KBIs which are directly related to molecular distributions.
Hence, one can develop a series of models, each providing
different approximations to the real KBIs, and thereby deter-
mine the resulting thermodynamic effects of various ap-
proaches. We are currently using this type of approach to
compare in more detail the KB based results for hard sphere
crowders to those obtained from the traditional SPT ap-
proach.
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