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Abstract

To help with identifying distributions to effectively model univariate continuous data, the 

R function diagnostic is proposed. The function will aid in determining reasonable candidate 

distributions that the data may have come from. It uses a combination of the Pearson goodness of 

fit statistic, Anderson-Darling statistic, Lin’s concordance correlation between the theoretical 

quantiles and observed quantiles, and the maximum difference between the theoretical quantiles 

and the observed quantiles. The function generates reasonable candidate distributions, QQ plots, 

and histograms with superimposed density curves. When a simulation study was done, the 

function worked adequately; however, it was also found that many of the distributions look very 

similar if the parameters are chosen carefully. The function was then used to attempt to decipher 

which distribution could be used to model weekly grocery expenditures of a family household.
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CHAPTER 1 - Introduction

1.1 The Problem
There exist many probability density functions that may be used to model all kinds of 

univariate data. It is common to not know exactly what probability distribution a particular data 

set is sampled from, or, at least, an appropriate distribution to model the data. The data analyst 

may have some preconceived notion of what he might expect the shape of the data to look like; 

however, many times no assumption about the population distribution is made. This can be 

problematic because many statistical tests require that data follow a particular distribution. If the 

data analyst wants to explore what population distribution may have generated the observed data, 

he would have to examine each candidate probability distribution individually. Given the number 

of practical distributions, this can be tedious and inefficient. There does not exist a program that 

takes univariate sample data and provides, to the data analyst, some candidate distributions that 

can be effectively used to model said data. I propose a function that uses ten commonly used 

probability distributions and would be used as a diagnostic tool in which the data analyst can 

explore a few distributions simultaneously that can model the data in question. The function 

estimates the parameters of each distribution, provides ten histograms of the data with each of 

the probability density functions superimposed upon each of them, provides probability plots for 

each of ten distributions, and computes numerical measures of strength to determine reasonable 

candidate population distributions. 

1.2 Ten Commonly Used Distributions
Below is a summary of ten distributions which the function uses. Obviously, this is not an 

exhaustive list, but the data analyst can use this information to explore other distributions that 

may look similar to one or more of these ten, but not included in this function. The ten 

distributions used are the normal, gamma, exponential, logistic, lognormal, Weibull, Cauchy, 

Laplace, uniform, and Pareto.
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1.2.1 Normal Distribution

Because of the widespread usage and familiarity of the normal distribution, the 

discussion of the normal distribution is minimal. The normal distribution has a location 

parameter, µ, and a scale parameter, σ. The probability density function of the normal 

distribution is as follows:

   (1.1)

for -∞ < µ < ∞ and σ > 0.

The maximum likelihood estimator of µ is the sample mean. The maximum likelihood 

estimator of σ2 is as follows:

                                      
                            . (1.2)

1.2.2 Gamma Distribution

The gamma distribution is a right-skewed distribution with a shape parameter α and a 

scale parameter β. The probability density function of the gamma distribution is as follows:

  (1.3)

for α, β > 0.

The maximum likelihood estimators of α and β are the solutions of the following 

equations:

  (1.4)

where ψ(α) denotes the digamma function.

This distribution has many applications, including modeling ranges for normal 

populations (Johnson, Kotz, Balakrishnan, 1994), meteorological precipitation processes (Kotz 

and Neumann, 1963), and wait times (Krishnamoorthy, 2006). Even though the gamma 
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distribution is right-skewed for all values of the parameters, if α is large enough, the gamma 

distribution can look very similar to the normal distribution or the lognormal distribution.

1.2.3 Exponential Distribution

The exponential distribution is a special case of the gamma distribution, where α = 1. 

From this, the probability density function is as follows:

  (1.5)

for β > 0.

The maximum likelihood estimator of β is simply the sample mean:

 . (1.6)

The classical usage of the exponential distribution is to model wait times of a Poisson 

process.

1.2.4 Logistic Distribution

The logistic distribution is a symmetric distribution with a location parameter µ and a 

scale parameter β. The probability distribution function is as follows:

  (1.7)

for -∞ < µ < ∞ and β > 0.

The maximum likelihood estimators of µ and β are the solutions to the following 

equations:

 

  (1.8)

                                                           
                                                      .
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It is common to compute preliminary estimates of the parameters to aid in the numerical 

solutions, and then use an optimization technique to arrive at the maximum likelihood 

estimators. A preliminary estimate for µ is the sample mean. The preliminary estimate of β is as 

follows:

  (1.9)

where s is the sample standard deviation.

The logistic distribution is often used as a substitute for the normal distribution because 

of its symmetry (Krishnamoorthy, 2006). The main difference in the shape of the normal 

distribution as compared to the logistic distribution is that the logistic has heavier tails. A detailed 

discussion of many applications of the logistic distribution can be found in a book by 

Balakrishnan (1992).

1.2.5 Lognormal Distribution

The lognormal distribution can be directly derived from the normal distribution. If the 

natural logarithm of X is normally distributed, then X is lognormally distributed. The probability 

density function of the lognormal distribution is as follows:

  . (1.10)

The application of the lognormal distribution is widespread and mostly used to model 

positive right-skewed data in which the natural logarithmic transformation is approximately 

normal. The lognormal distribution can look similar to a normal distribution if the values of the 

scale parameter is small and the location parameter is large. The lognormal distribution can also 

look similar to the gamma distribution and is often used as a substitute for the gamma 

distribution (Krishnamoorthy, 2006).

1.2.6 Weibull Distribution

The Weibull distribution is a right-skewed distribution with a shape parameter γ and a 

scale parameter η. The probability density function is as follows:
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  (1.11)

for γ,η > 0. If γ = 1, then this reduces to the probability density function exponential distribution. 

The maximum likelihood estimators are the solutions to the following equations:

 . (1.12)

This distribution has applications in reliability theory (Krishnamoorthy, 2006) and was 

first used to model the breaking strength of materials (Johnson, Kotz, Balakrishnan, 1992). Like 

the gamma distribution, if the scale parameter is large, this distribution looks symmetric and can 

look similar to a normal distribution.

1.2.7 Cauchy Distribution

The Cauchy distribution is a symmetric distribution with extremely heavy tails. It has a 

location parameter θ and a scale parameter σ. The probability density function is as follows:

  (1.13)

for -∞ < θ < ∞ and σ > 0.

The maximum likelihood estimators are the solutions of the following equations:

,

 . (1.14)
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Although the Cauchy distribution is mostly used as a diabolical example, it has been used 

in applications involving ratios of normally distributed random variables (Casella and Berger, 

2002) and in physical sciences (Krishnamoorthy, 2006).

1.2.8 Laplace Distribution

The Laplace distribution is also known as the double exponential distribution. It has a 

location parameter µ and a scale parameter σ. The probability density function is as follows:

  (1.15)

for -∞ < µ < ∞ and σ > 0.

The maximum likelihood estimator of µ is the sample median:

 . (1.16)

The maximum likelihood estimator of σ is as follows:

 . (1.17)

The most striking feature of the Laplace distribution is its peak located at the value of the 

location parameter; the probability density function is nondifferentiable at x=µ. The classic usage 

of the Laplace distribution is modeling differences in two independent exponential distributed 

random variables. It has also been used to model breaking strength data (Krishnamoorthy, 2006).

1.2.9 Uniform Distribution

The uniform distribution has a probability density function as follows:

  (1.18)

for -∞ <      <      < ∞.

The maximum likelihood estimator of    is simply the sample minimum, and the 

maximum likelihood estimator of  is the sample maximum.
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A common usage of the uniform distribution is modeling p-values of statistical tests 

assuming the null hypothesis is true. It is also commonly used as a noninformative prior 

distribution in Bayesian analysis.

1.2.10 Pareto Distribution

The Pareto distribution is a heavy right-skewed distribution with a location parameter α 

and a scale parameter β. The probability density function is as follows:

  (1.19)

for α,β > 0.

The maximum likelihood estimator of α is simply the sample minimum:

 . (1.20)

The maximum likelihood estimator of β is as follows:

 . (1.21)

The Pareto distribution is mostly used to model population size and income because of its 

extremely heavy tail (Krishnamoorthy, 2006).

1.3 Concordance Correlation, Goodness of Fit, Anderson-Darling, and 

Maximum Distance
The measures of strength that I used are (1) the concordance correlation proposed by Lin 

(1989), (2) a goodness of fit measure similar to Fisher’s Goodness of Fit statistic, (3) Anderson-

Darling statistic, and (4) the maximum distance from the theoretical quantiles assuming a 

particular distribution to the observed order statistic.
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1.3.1 Concordance Correlation

Lin (1989) proposed the concordance correlation. This is a measure that was originally 

used to identify reproducibility of measurements taken from newly developed instruments. It not 

only measures the strength of linear relationship, but also measures the variation from a line with 

slope equal to one and intercept equal to zero. If data came from a particular distribution, the 

theoretical quantiles and the observed quantiles should follow an approximately 45 degree angle 

line. The concordance correlation is a measure of this deviation from the 45 degree angle line. 

The theoretical value of the concordance correlation is as follows:

 . (1.22)

The numerator is the expected squared perpendicular deviation from the 45 degree angle line, 

and the denominator is the expected squared perpendicular deviation from the 45 degree angle 

line when X1 and X2 have a covariance of zero.

The estimator for the concordance correlation is computed as follows:

  (1.23)

where

 . (1.24)

Because the concordance correlation measures the deviation from the 45 degree line 

through the origin, the measure is sensitive to shifts in location and scale. Figure 1.1 provides 

four instances of location and scale shifts. A random sample of 200 observations was generated 

from a normal population with mean of 30 and standard deviation of 5. From this sample, the 

mean was estimated to be 30.32 and the standard deviation was estimated to be 4.751. Plot (a) in 

Figure 1.1 is the QQ plot using the mean and standard deviation estimates to generate
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Figure 1.1 Shifts in Location and Scale and Its Effect on QQ Plots
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the theoretical quantiles. The concordance correlation was computed as 0.996. Plot (b) in Figure 

1.1 is the QQ plot using a mean of 40 and the standard deviation of 4.751 to generate the 

theoretical quantiles. When only the location was shifted, the ordered pairs shift parallel to the 45 

degree angle line. The concordance correlation for this instance was only 0.322. Plot (c) in 

Figure 1.1 is the QQ plot using a mean of 30.40 and a standard deviation of 10 to generate 

theoretical quantiles. When only the scale was changed, the ordered pairs rotated at the center. 

The concordance correlation was 0.773. Finally, Plot (d) in Figure 1.1 is the QQ plot using a 

mean of 40 and a standard deviation of 10 to generate the theoretical quantiles. When both the 

location and the scale were changed, the ordered pairs rotated at the base. The concordance 

correlation was 0.436.
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1.3.2 Goodness of Fit

To identify if data follow a particular distribution or not, a goodness of fit test can be 

used. A common test is the chi-squared goodness of fit test. This test can be used for either 

discrete data or for continuous data. Since the proposed function only considers continuous 

distributions, the goodness of fit statistic used is only applicable to continuous data. Because this 

statistic can only apply to counts, it is necessary to section the data into k bins. This means the 

data are partitioned into separate ranges. Then a count of the observations within each range is 

recorded. This is then compared to the expected count of the same range, given that the data 

follow a specific distribution. The test statistic is then given as follows:

  (1.25)

where Oi is the number of observed frequencies within each bin and Ei is the expected frequency 

in each bin, which is calculated as follows:

  (1.26)

where n is the sample size,            is the estimated cumulative probability calculated at the upper 

limit of the ith bin, and            is the estimated cumulative probability calculated at the lower 

limit of the ith bin. The estimated cumulative distribution function           is in the true form of 

the cumulative distribution function with parameters estimated as discussed earlier.

To do hypothesis testing, this statistic asymptotically follows a χ2 distribution, provided 

that each expected count is greater than five. Because the proposed function does not do any 

hypothesis testing, the expected frequencies may be less than five. However, because the 

function is computing this statistic for all the ten distributions, the only concern is the value of 

the test statistic.

For added efficiency, the number of bins selected is the following quantity, provided by 

the NIST e-Handbook of Statistical Methods (2003), rounded to the nearest whole number: 

. This number is then used to arrive at k quantiles to serve as the upper and lower 

limits of each range such that the probability of observing a value within each range is equal to 

all other individual ranges. In other words, 
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 P[F(Xui)-F(Xli)] = P[F(Xuj)-F(Xlj)] ∀ i ≠ j, i,j = 1,…,k. (1.27)

Because there are (k-1) bins and each bin contains equal probability, the expected 

frequencies for each bin is simply Ei = n/(k-1). The number of observations in each range is then 

computed, and Equation 1.25 is used to calculate the goodness of fit statistic.

1.3.3 Anderson-Darling Statistic

Anderson and Darling (1952) proposed a statistic which tested if data follow a particular 

cumulative distribution function. Hypothesis testing can be done with this statistic; however, the 

statistic itself must be scaled by a factor dependent on what distribution is being tested 

(Stephens, 1974). Because no hypothesis testing is being done by the function, this scaling factor 

is unimportant, which makes this statistic appealing to give added information for determining 

candidate distributions. 

Let X(1), ... , X(n) denote the order statistics from a random sample with cumulative 

distribution function F. The Anderson-Darling statistic is then calculated as follows:

   . (1.28)

Again, the estimated cumulative distribution function           is estimated by using the true form 

of the CDF using parameter estimation. If data follow the hypothesized distribution, the value of 

this statistic should be small.

1.3.4 Maximum Distance

The maximum distance is defined as the maximum difference between an observed value 

and its theoretical value according to a specified distribution. Often, the difference between the 

theoretical values and the observed values is greatest in the tails of the distribution. It is likely 

that two or more distributions may appear appropriate, and the maximum distance measure can 

maybe provide a little more insight into the actual distribution to be used.

1.4 Interval Estimation
It is well known that the maximum likelihood estimators of the parameters of 

distributions are asymptotically normally distributed if certain conditions are met. Because 
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maximum likelihood estimators have random error and because the concordance correlation is 

sensitive to shifts in location and scale, it is appropriate to provide an interval estimate for the 

true values of the parameters of all the distributions. The proposed function calculates an interval 

estimate for all the parameters. For all distributions except the Pareto distribution, uniform 

distribution, and the Laplace distribution, the interval is centered around the maximum likelihood 

estimate with the upper and lower bounds of the interval being one standard error away from the 

maximum likelihood estimate. It then selects nine values of equal spacing within the interval for 

each estimate. To illustrate this, think of a nine by nine grid. The columns represent the nine 

estimates for the first parameter, and the rows represent the nine estimates for the second 

parameter. Each cell of this grid now contains a unique combination of the two parameter 

estimates. The function then selects the combination of parameter estimates that produces the 

largest concordance correlation between the theoretical quantiles and the observed quantiles. The 

exponential distribution only has one parameter, so the grid illustration does not apply. Because 

the interval is two standard errors wide, this is approximately a 68% confidence interval for each 

of the parameters.

There is a function in R called fitdistr. This function obtains the maximum 

likelihood estimates for all the distributions except the uniform and Pareto distributions. It also 

obtains the standard errors based on Fisher’s Information. For the distributions where the 

maximum likelihood estimators are not in closed form, it employs numerical techniques to arrive 

at the estimates by using the function optim. The default method in optim uses the numerical 

technique introduced by Nelder and Mead (1965), but fitdistr uses other numerical 

techniques if the Nelder-Mead technique is not suitable. The function fitdistr was used to 

obtain the maximum likelihood estimates and interval estimates for all the parameters of all the 

distributions except for those of the Pareto distribution, uniform distribution, and the location 

parameter of the Laplace distribution. The following sections discuss how interval estimates 

were obtained for the aforementioned parameters.
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1.4.1 Interval Estimation of the Parameters of the Uniform Distribution

The maximum likelihood estimators of the parameters of the uniform distribution are the 

sample minimum and the sample maximum. The parameter  can never be larger than the 

sample minimum, so the sample minimum is the upper bound of the interval estimate for the 

parameter . Likewise, the sample maximum is the lower bound of the interval estimate for the 

parameter .

To obtain the interval estimate, the variance of the point estimate must be calculated. 

Because the maximum likelihood estimates are the sample minimum and maximum, the 

distribution of the minimum and the maximum can be easily obtained. The distribution for the 

sample minimum is as follows:

 . (1.30)

The distribution for the sample maximum is as follows:

 . (1.31)

The variances of the distributions of the sample minimum and the sample maximum are 

equal:

 . (1.32)

The variance is then estimated by replacing the parameters with the maximum likelihood 

estimates. The interval estimates for the parameters  and  are two standard errors wide, which 

is consistent with the interval estimates of the parameters of the other distributions.

1.4.2 Interval Estimation of the Parameters of the Pareto Distribution

Because all observations from a Pareto distribution must be greater than the location 

parameter α, the maximum likelihood estimator is the sample minimum. It is also the upper 

bound for the interval estimate. The distribution of the sample minimum is as follows:
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 . (1.33)

From this, the variance of the sample minimum is as follows:

  . (1.34)

for βn > 2. The variance is then estimated by substituting the estimates for the parameters with 

the maximum likelihood estimates. The interval estimate for the parameter α is two standard 

errors wide.

Krishnamoorthy (2006) provided a formula for a confidence interval for β:

 . (1.35)

Because the other interval estimates are approximately 68% confidence intervals, I chose 0.32 to 

be my level of significance as can be seen in the above formula.

1.4.3 Interval Estimation of the Paramaters of the Laplace Distribution

The fitdistr function in R can obtain a maximum likelihood estimate and standard 

error of the scale parameter σ. The standard error of the location parameter estimate, however, is 

more difficult to obtain. Because the shape of the distribution is centered at a point of 

nondifferentiability, the Fisher Information matrix estimates the standard error to be zero, so 

Fisher’s Information is inappropriate to calculate the standard errors of the location parameter. 

With an odd sample size, the distribution of the median is somewhat straightforward to obtain. 

With an even sample size, however, the joint distribution of the two middle order statistics must 

be obtained, which is more difficult to derive. Asrabadi (1985) examined the distribution of the 

median for an even sample size, however, when the formula was used in R, negative variance 

estimates were sometimes computed. Also, there were discrepancies in the formulas provided in 

Asrabadi (1985) and Johnson, et. al. (1995). A nonparametric confidence interval was used 
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instead. Let X(1),…,X(n) be the ordered statistics of an observed sample. The approximate 68% 

confidence interval for the median is the interval:

  , (1.36)

such that q is the largest integer such that 

 . (1.37)

Eight equidistant values were obtained from this interval, and the sample median was 

added to this sequence so that nine values can be used as the location parameter estimates.
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CHAPTER 2 - The Function and Simulation Results

2.1 The Function diagnostic

The proposed R function is only suitable for univariate data. Using maximum likelihood 

estimation, the function, which is called diagnostic, estimates the parameters for each of 

the aforementioned distributions. It then calculates interval estimates of each parameter of each 

distribution, selecting a grid of 81 possible combinations of estimates for the two parameters, 

except for the exponential distribution, which only has one parameter. Theoretical quantiles are 

computed for each distribution using each of the 81 (or 9 for the exponential distribution) 

combinations of estimated parameter values. For each combination, the concordance correlation 

is computed using Equation (1.23) with the theoretical quantiles as the first sample and the 

observed ordered data as the second sample. This results in 81 different concordance correlations 

for each distribution. The exponential distribution, only having one parameter, has nine 

concordance correlations. For all ten distributions, the maximum concordance correlation is 

obtained, along with the parameter estimates that yielded this value. This information is then 

stored. Using these parameter estimates, the goodness of fit statistic, Anderson-Darling statistic, 

and the maximum distance measure is calculated for each distribution.

The function then uses all of this information to rank the distributions. If data follow a 

particular distribution, the concordance correlation should be large, and the goodness of fit 

statistic, Anderson-Darling statistic, and the maximum distance should be small. The function 

ranks each distribution according to each measure. The distribution that yielded the highest 

concordance correlation receives a one. The distribution with the next highest receives a two, and 

so on. Then, the distribution with the lowest goodness of fit measure receives a one, and so on. 

A similar process follows for the Anderson-Darling statistic and the maximum distance. The sum 

of these four rankings for each distribution is then calculated. The function then sorts the 

distributions according to the sum of the ranks. The lowest possible sum can be four.
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Figure 2.1 An Example of the Input and Output of diagnostic

> set.seed(6412)

> x=rnorm(100,20,5)

> diagnostic(x)

            Par1       Par2      Con.Corr   Good-Fit A2        Max.dist Sum.Rank

Normal      20.13954   5.185571  0.9927978  12.56    0.4637399 2.104595 10      

Gamma       15.01381   0.7459297 0.9921926  11.6     0.3496805 4.229029 10      

Weibull     4.313711   22.13904  0.9903245  11.84    0.6943246 2.070418 12      

Logistic    20.11907   2.927647  0.9864621  12.32    0.5275203 3.843783 16      

Lognormal   2.974558   0.2503853 0.9865312  10.88    0.6189546 5.546976 16      

Laplace     20.12635   3.721872  0.9707292  20.72    1.278759  5.493993 24      

Uniform     8.260267   31.77221  0.9455263  43       4.398278  3.593482 26      

Cauchy      20.08193   2.729113  0.2271609  32       1.369016  162.0362 31      

Pareto      8.116331   1.207247  0.07401306 177.68   23.49063  621.92   37      

Exponential 0.04717089 NA        0.0508949  188.96   70.27247  80.54955 38      

Warning message:

In dgamma(x, shape, scale, log) : NaNs produced

The function outputs three windows. The output in the R console is a matrix that has the 

names of the distributions as its row names and the statistical measures as the column names. It 

is a ten by seven matrix. The first two columns are the parameter estimates. The third column is 

the concordance correlation. The fourth column is the goodness of fit measure. The fifth column 

is the Anderson-Darling statistic. The sixth column is the maximum distance. Lastly, the seventh 

column is the sum of the ranks. 

Two graphics windows are then outputted. The first graphics window contains ten QQ 

plots for each of the ten distributions. The second graphics window contains ten histograms of 

the data, each with the probability density curve for each distribution superimposed upon the 

histogram, using the parameter estimates generated from the function.

For example, a sample of 100 observations were randomly selected from a normal 

population with a mean of 20 and a standard deviation of 5. The input and the output are shown 

in Figures 2.1, 2.2, and 2.3.
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Figure 2.2 QQ Plots in Graphical Output

The QQ plots in Figure 2.2 yielded some interesting results. It is quite obvious that the 

exponental distribution and the Pareto distribution are poor distributions to model these data. 

However, many distributions appear to follow the 45 degree angle line through the origin. The 

normal plot, the Weibull plot, and the gamma plot look nearly identical. This may seem unusual 

because the Weibull and gamma distributions are skewed. It is noteworthy that even though the 

Weibull and gamma distributions are skewed, the density curves look nearly normal, as can be 

seen in Figure 2.3. Even the skew of the lognormal distribution is not pronounced (Figure 2.3). 

In this particular example, the function ranked the normal distribution and the gamma 

distribution first. The parameter estimates for the normal distribution were close to the true
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Figure 2.3 Histograms with Superimposed Density Curves
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values of the parameters. The gamma distribution provided the lowest goodness of fit statistic 

(Figure 2.1); however, the normal distribution had the highest concordance correlation.

2.2 Simulation Results and Discussion
To examine the effectiveness of the function and the reliability of all four statistical 

measures, a simulation study was done. A thousand different random samples were generated for 

sample sizes of 20 and 50 for each of the following distributions: Normal(25,5); Laplace(17,1); 

Logistic(18,1); Gamma(20,2); Gamma(2,1); and Weibull(4,20). In one simulation, the 
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concordance correlation was the only measure used to identify the candidate distributions. In 

each of the thousand iterations, the distribution that yielded the maximum concordance 

correlation was recorded. Then, the simulation procedure counted the number of times each 

distribution yielded the maximum concordance correlation. The counts are represented by “CC” 

in each subsequent table.

A similar process was also done using the sum of the ranks of only three measures: the 

concordance correlation, goodness of fit, and maximum distance. “Rank.3” represents when the 

function estimated the parameters of each distribution such that the maximum concordance 

correlation was achieved. It then used those parameter estimates to calculate the goodness of fit 

statistic and the maximum distance.

The third type of simulation was procedurally done the same as the process indicated by 

“Rank.3,” except the Anderson-Darling statistic was also included in the rankings. This is 

represented by “Rank.4.” 

When adding the frequencies, the sum of the frequencies for the concordance correlation 

is 1000 because there were no ties. The sum of the frequencies for each distribution yielded by 

the procedures indicated by “Rank.3” and “Rank.4” will likely sum to more than 1000 because 

the ranking procedure may pick more than one “best” distribution. An example of this is shown 

in Figure 2.1 where the normal and the gamma distribution had the same sum of ranks. 

2.2.1 Normal(25,5)

Table 2.1 shows the results of the simulation for the Normal(25,5) case. The numbers in 

each cell represent the counts of the number of times the respective measure selected the 

corresponding distribution. In the case where n = 20, the concordance correlation was able to 

select the normal distribution 97 times whereas the ranking procedure without the Anderson-

Darling statistic selected the normal distribution 179 times. The ranking procedure using all four 

measures selected the normal distribution 186 times. The Weibull distribution was counted the 

most, but as can be seen in Figure 2.3, the Weibull distribution can look very similar to the 

normal distribution. Because this is a small sample size, we can expect the sample data to be 

slightly skewed, even though the data follow a symmetric distribution. Because the Weibull 

distribution always has a right-skew and can also look symmetric, the Weibull can provide a 
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Table 2.1 Simulation Results for Normal(25,5)

n=20 Norm(25,5) n=50 Norm(25,5)

CC Rank.3 Rank.4 CC Rank.3 Rank.4

Normal 97 179 186 Normal 309 370 355

Exponential 0 0 0 Exponential 0 0 0

Gamma 148 182 161 Gamma 168 195 187

Logistic 57 107 92 Logistic 118 139 149

Lognormal 177 188 189 Lognormal 86 90 87

Weibull 297 264 284 Weibull 283 262 267

Cauchy 1 0 1 Cauchy 0 0 0

Laplace 89 85 92 Laplace 25 28 28

Uniform 134 107 57 Uniform 11 10 7

Pareto 0 0 0 Pareto 0 0 0

better fit for the sample data. A similar argument can be made with the gamma distribution and 

the lognormal distribution.

In the case where n=50, the normal distribution was selected with the highest frequency, 

however was only selected 37 percent of the time using the three measures instead of four. When 

the Anderson-Darling was added, the normal distribution actually was counted less.

It is necessary to note that the ranking ranges from 1 to 10. It is likely that two or more 

measures are close together, but the rankings do not account for this. Just because a particular 

distribution yields a higher concordance correlation or a lower goodness of fit statistic does not 

mean that the sample data unequivocally came from that distribution because another distribution 

can yield a similar measure. For example, in Figure 2.1, the minimum goodness of fit measure 

was produced for the gamma distribution at 11.6, but the goodness of fit statistic for the normal 

distribution was very close at 12.56, even if it ranked fifth in the goodness of fit.
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Table 2.2 Simulation Results for Laplace(17,1)

n=20 Laplace(17,1) n=50 Laplace(17,1)

CC Rank.3 Rank.4 CC Rank.3 Rank.4

Normal 57 93 79 Normal 50 72 54

Exponential 0 0 0 Exponential 0 0 0

Gamma 19 89 46 Gamma 13 36 23

Logistic 72 141 125 Logistic 137 242 218

Lognormal 195 214 195 Lognormal 117 124 104

Weibull 256 223 225 Weibull 143 130 107

Cauchy 44 37 37 Cauchy 1 1 1

Laplace 298 298 323 Laplace 539 487 543

Uniform 29 19 10 Uniform 0 0 0

Pareto 30 13 10 Pareto 0 0 0

2.2.2 Laplace(17,1)

Table 2.2 shows the results for the Laplace(17,1) case. For both sample sizes, the Laplace 

distribution was counted with the highest frequency, but the Weibull, logistic, and lognormal 

distributions were also counted with high frequency. This may be expected because the logistic 

distribution has slightly heavy tails, much like the tails of the Laplace distribution. When all four 

measures were used, the Laplace distribution was represented with the highest frequency.  

However, the Laplace distribution was only selected for about half of the samples of size n = 50 

and even less for n = 25.

 When the sample size increases to n = 50, the logistic and the Weibull distributions were 

selected approximately the same number of times using only the concordance correlation. When 

other information was used to arrive at the candidate distribution, the logistic distribution was 

represented more. The ranking procedure performed worse than merely using the concordance 

correlation when the sample size was n = 50, but when the Anderson-Darling statistic was
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Table 2.3 Simulation Results for Logistic(18,1)

n=20 Logis(18,1) n=50 Logis(18,1)

CC Rank.3 Rank.4 CC Rank.3 Rank.4

Normal 112 184 167 Normal 184 217 198

Exponential 0 0 0 Exponential 0 0 0

Gamma 33 109 72 Gamma 53 109 87

Logistic 75 134 120 Logistic 199 247 269

Lognormal 272 250 248 Lognormal 235 217 212

Weibull 263 222 237 Weibull 167 140 141

Cauchy 12 11 11 Cauchy 0 0 0

Laplace 147 142 162 Laplace 159 164 168

Uniform 74 59 38 Uniform 3 4 1

Pareto 12 6 4 Pareto 0 0 0

included, the procedure outperformed all other processes.    

2.2.3 Logistic(18,1)

Table 2.3 shows the results for a Logistic(18,1) distribution. For a small sample, all three

procedures performed poorly in identifying the logistic distribution. Again, the Weibull and 

lognormal were selected with approximately the same frequency. Even when the sample size is 

increased to 50 observations, the logistic distribution was only selected approximately 20 percent 

of the time for the concordance correlation. The ranking procedures, though, identified the 

logistic distribution with more success. Because the logistic distribution has heavier tails than the 

normal distribution, the probability of observing values far away from the mean is higher. This 

could result in a skewed-looking sample, for which distributions like the Weibull and lognormal 

could provide a better fit to the sample data. 

 A random sample of 50 observations was taken from a Logistic(18,1) distribution and the 

proposed function was run. In this case, the function used the ranking procedure with all four
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Figure 2.4 Graphical Output from a Sample Taken from Logistic(18,1) 
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measures to arrive at the candidate distributions. Figure 2.4 provides the histograms with the 

superimposed distributions. The function estimated the parameters of the logistic distribution to 

be 17.97 and 0.96, which are very close to the true values of the parameters. The scale parameter 

of the lognormal distribution is estimated to be quite low at 0.09. When this occurs, the 

distribution looks nearly symmetric (Figure 2.4). In this particular case, the function selected the 

Laplace distribution to be the first candidate distribution and the logistic and lognormal 
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Figure 2.5 Gamma, Weibull, Lognormal, and Normal Distribution Density Curves
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distributions were selected second and third, respectively.

2.2.4 Gamma(20,2)

This particular distribution looks nearly symmetric. Figure 2.5 provides the probability 

density curves of four different distributions. The solid line represents the Gamma(20,2) 

distribution, the dashed line represents the Weibull(5,10) distribution, the dotted line represents 

the Lognormal(2.3,0.22) distribution, and the long-dashed line represents the Normal(9.5,2.2) 

distribution. These four density curves look very similar. A sample drawn from a Gamma(20,2) 

distribution can easily look like it came from a lognormal or Weibull or normal distribution, 

especially for small sample sizes. These three densities also look nearly symmetrical, like the 

normal distribution. 

 Table 2.4 shows the simulation results from the Gamma(20,2) distribution. When the
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Table 2.4 Simulation Results for Gamma(20,2)

n=20 Gamma(20,2) n=50 Gamma(20,2)

CC Rank.3 Rank.4 CC Rank.3 Rank.4

Normal 91 159 164 Normal 209 254 259

Exponential 0 0 0 Exponential 0 0 0

Gamma 161 230 203 Gamma 338 382 357

Logistic 52 75 75 Logistic 42 46 62

Lognormal 379 353 360 Lognormal 335 329 321

Weibull 149 143 161 Weibull 57 69 59

Cauchy 0 0 0 Cauchy 0 0 0

Laplace 46 49 60 Laplace 7 13 19

Uniform 120 98 42 Uniform 12 11 6

Pareto 2 1 1 Pareto 0 0 0

sample size was 20, the lognormal was selected with the highest frequency. The gamma and 

Weibull distributions were selected with approximately the same frequency. Oddly enough, the 

uniform distribution was selected with an unusually high frequency, but when the Anderson-

Darling was included, that frequency was reduced by a fairly large margin.

When the sample size was increased to 50, the gamma distribution and the lognormal 

distribution had nearly the same frequencies, but the normal distribution was selected quite often. 

This might be expected based upon the nearly symmetrical density as can be seen in Figure 2.5. 

For both sample sizes, the inclusion of the Anderson-Darling statistic reduced the number 

of times the gamma distribution was selected. This likely occurred because many of the 

distributions look similar and the four statistical measures were very close together. The ranking 

process uses equally spaced measures, but the statistical measures are not. As can be seen in 

Figure 2.1, about five distributions can have each measures very close together, but when ranked, 

are forced to be equally spaced.
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Table 2.5 Simulation Results for Gamma(2,1)

n=20 Gamma(2,1) n=50 Gamma(2,1)

CC Rank.3 Rank.4 CC Rank.3 Rank.4

Normal 33 56 77 Normal 3 10 10

Exponential 0 0 0 Exponential 0 0 0

Gamma 176 282 275 Gamma 287 370 440

Logistic 3 7 11 Logistic 0 1 4

Lognormal 232 230 203 Lognormal 169 153 127

Weibull 481 452 441 Weibull 539 555 510

Cauchy 0 0 0 Cauchy 0 0 0

Laplace 3 3 12 Laplace 0 0 1

Uniform 72 69 39 Uniform 2 5 2

Pareto 0 0 0 Pareto 0 0 0

2.2.5 Gamma(2,1)

This distribution is heavily right skewed. The gamma, Weibull, and lognormal are all 

right skewed distributions. It is obvious, though, that a symmetric distribution cannot appear 

skewed. The simulation results are consistent with what we might expect when sampling from a 

Gamma(2,1) distribution. Table 2.5 shows the results.

The gamma, Weibull, and lognormal distributions had high frequencies, whereas the 

symmetric distributions and highly skewed distributions were not represented with high 

frequency. The ranking procedures selected the gamma distribution similarly when the sample 

was size n = 20. When the sample size increased to n = 50, the ranking procedure using the four 

measures selected the gamma distribution 70 more times than when only using three measures. 
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Figure 2.6 Gamma, Weibull, and Lognormal Distribution Density Curves II
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The Weibull distribution is counted with high frequency, however if the parameters are 

carefully selected, the Weibull distribution can look nearly identical to the Gamma 

distribution. In Figure 2.6, the Gamma(2,1) density is represented by a solid line, the Weibull

(1.5,2) density is represented by a dashed line, and the Lognormal(0.2,0.5) density is represented 

by a dotted line.

 The lognormal has more mass closer to zero; however, this discrepancy may go 

unnoticed. Also, as can easily be seen, the gamma and Weibull densities are very similar.

2.2.6 Weibull(4,20)

This particular distribution is another case where even though the density is right skewed, 

it looks nearly symmetric. In Figure 2.7 below, the solid line represents a Weibull(4,20) density, 

the dashed line represents a Gamma(15,0.75) density, and the dotted line represents a Normal

(18.5,5) density. As can be seen, all three densities can be mistaken for one another. The 
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Figure 2.7 Weibull, Gamma, and Normal Distribution Density Curves
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simulations results, though, had a high frequency of times the three procedures selected the 

Weibull distribution, as is indicated by Table 2.6. However, the function still only chose the 

correct distribution half of the time.

When the sample size was 20, the Weibull distribution was selected with the highest 

frequency. The normal and gamma were also selected with high frequency. The normal and 

gamma distributions are expected to be fairly high, but the uniform distribution had an 

uncharacteristically high representation. This is probably due to those particular samples having 

numerous observations close to the center of the density with smaller variability. Given a small 

sample size, this can be expected.
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Table 2.6 Simulation Results for Weibull(4,20)

n=20 Weibull(4,20) n=50 Weibull(4,20)

CC Rank.3 Rank.4 CC Rank.3 Rank.4

Normal 110 208 190 Normal 193 278 269

Exponential 0 0 0 Exponential 0 0 0

Gamma 141 144 146 Gamma 102 110 106

Logistic 83 121 111 Logistic 90 100 109

Lognormal 74 86 77 Lognormal 14 24 18

Weibull 357 374 404 Weibull 559 554 556

Cauchy 0 0 0 Cauchy 0 0 0

Laplace 73 66 71 Laplace 12 14 15

Uniform 162 121 64 Uniform 30 23 11

Pareto 0 0 0 Pareto 0 0 0

When the sample size increased to 50, the concordance correlation and the ranking 

procedures performed similarly, except for the ranking procedures also selected the normal 

distribution with a higher frequency. 

The Weibull distribution can take on many shapes which can fit the sample data quite 

well. Even though the population probability density function of the Weibull(4,20) can look very 

similar to other distributions, the estimated density curve could take on a minutely different 

shape such that the density curve fits the sample better. This is why the Weibull distribution was 

represented highly in the other simulations.

2.2.7 Pareto(1,1) and Pareto(0.1,1)

Simulations using the Pareto(1,1) and Pareto(0.1,1) distributions were attempted, but 

were not successful. Because these are heavily skewed distribution, some of the other 

distributions do not provide good fits to the data. In some cases, if this occurs, the fitdistr
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Figure 2.8 Pareto, Exponential, and Lognormal Distribution Density Curves
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function cannot arrive at estimates for the maximum likelihood estimates. Within the fitdistr 

function, the function optim is used, which employs a numerical technique to arrive at 

maximum likelihood estimates. In these numerical techniques, starting values need to be used. In 

some cases, starting values are not supplied, so the function fitdistr automatically selects 

starting values. However, according to the R documentation, these starting values may not be 

suitable, especially if the fitted distribution does not provide a good fit. When this occurs, the 

optimization can fail. In the process of a thousand iterations, the simulation ceased when one 

iteration had the aforementioned situation occur. 

The Pareto distribution is a unique distribution, but the exponential distribution and the 

lognormal distribution can look similar. In Figure 2.8, the solid line represents the Pareto(1,1) 

density, the dashed line represents the Exponential(0.3) density, and the dotted line represents the 

Lognormal(1,0.8) density.

A random sample of 20 observations were generated from a Pareto(1,1) distribution and 

the function diagnostic was run. Figure 2.9, 2.10, and 2.11 provide the output. The function 

was able to select the Pareto distribution with the parameter estimates fairly close to the true 
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Figure 2.9 Output for Pareto(1,1)
            Par1       Par2      Con.Corr  Good-Fit A2        Max.dist Sum.Rank

Pareto      1.082578   1.224387  0.976729  1        0.1854383 4.031491 5       

Lognormal   1.025260   0.8835974 0.907857  7.6      2.137349  4.786667 12      

Weibull     0.8770383  3.826469  0.9159424 16       2.277675  3.752983 13      

Gamma       0.9638904  0.2486523 0.8774057 14.2     2.241942  6.012214 17      

Cauchy      1.883112   0.6620879 0.6314331 7        0.9897855 10.24469 20      

Normal      3.55726    4.85301   0.7173243 23.2     3.852603  7.471438 27      

Logistic    3.068217   2.083478  0.7025962 22.6     3.258298  9.839254 27      

Exponential 0.2496856  NA        0.2968301 17.8     29.10004  5.766325 30      

Laplace     2.042172   2.61159   0.6725209 31       2.48352   10.67463 31      

Uniform     -0.6475988 20.54042  0.373725  50.8     15.23495  12.82789 38      

 

Figure 2.10 QQ Plot in Graphical Output for Pareto(1,1)
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Figure 2.11 Histograms in Graphical Output for Pareto(1,1) 
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values of the parameters (Figure 2.9). From the QQ plots (Figure 2.10), it is quite obvious that 

the Pareto distribution displays the straightest line.
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CHAPTER 3 - A Real Data Example, Limitations, and Conclusion

3.1 Weekly Grocery Expenditure of Richards Household
I have records of all the purchases and deposits in our bank account since May 2007. 

Every week we go grocery shopping, so those transactions have been recorded for a total of 147 

grocery shopping trips. The function diagnostic was used to arrive at a candidate distribution 

to help model this particular data set. These data might have some dependence because it is time 

series data; however, looking at the time series graph (Figure 3.1), an autocorrelation function 

plot (Figure 3.2), and a partial autocorrelation plot (Figure 3.3), an argument can be made that 

these time series data are coming from a stationary process. A histogram of the data (Figure 3.4) 

indicates a slight right skew.

The mean weekly grocery expenditure was $135.20 with a standard deviation of $27.06. 

The range of the expenditures was from $81.97 to $217.51. The function diagnostic 

generated output that can be seen in Figures 3.5, 3.6, and 3.7. The lowest possible value of the 

sum of the ranks is four, and that is what value the gamma distribution produced. The QQ plot 

for the gamma looks very straight (Figure 3.6) and the density curve seems to fit the histogram 

quite adequately (Figure 3.7).

Given the large sample size, the goodness-of-fit statistic and the Anderson-Darling 

statistic should be valid for hypothesis testing. Larsen and Marx (1986) offer the criteria to do 

hypothesis testing with the goodness-of-fit statistic. The null hypothesis is defined as the data 

came from a specific distribution. The alternative hypothesis is defined as the data did not come 

from a specific distribution. Under the null hypothesis, the goodness-of-fit statistic should follow 

a chi-square distribution with k-1-r degrees of freedom, where k is the number of bins and r is 

the number of parameters that were estimated for that distribution. The number of bins used for 

this sample size was 14. For all distributions, except for the exponential, the degrees of freedom 

are 14 - 1 - 2 = 11. The critical value for a size α = 0.10 test is 17.28. Any test statistic value that 

is greater than this value results in a rejection of the null hypothesis. There are five values that 

are less than this critical value, which means any of those five values would lead to a failure to
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Figure 3.1 Time Series Plot of Weekly Grocery Expenditures

Weekly Grocery Expenditure

Weeks starting May 7, 2007

D
ol

la
rs

 S
pe

nt

0 50 100 150

80
10
0

12
0

14
0

16
0

18
0

20
0

22
0

reject the null hypothesis for each of the respective distributions. One of those distributions is the 

normal distribution. However, looking at the QQ plot in Figure 3.7, the normal distribution 

shows some slight curvature in the tails, but the gamma and lognormal does not. Using the 

Anderson-Darling statistic, the critical value for the normal distribution at level α = 0.10 is 0.632 

(Shorak and Wellner, 1986). The test statistic for the normal is below this at 0.541, but I would 

argue that the gamma distribution provides a better fit.
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Figure 3.2 Autocorrelation Function Plot of Weekly Grocery Expenditure
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Figure 3.3 Partial Autocorrelation Function Plot of Weekly Grocery Expenditure
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Figure 3.4 Histogram of Weekly Grocery Expenditure
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Figure 3.5 Output for Grocery Expenditure from diagnostic
            Par1        Par2      Con.Corr    Good-Fit A2        Max.dist Sum.Rank

Gamma       24.95837    0.1846079 0.9982464   5.285714 0.1637450 8.678275 4       

Lognormal   4.886949    0.1993186 0.9978437   5.47619  0.1811953 9.813802 8       

Normal      135.1967    26.96968  0.9921172   7.761905 0.5406865 19.76268 12      

Logistic    135.1353    14.96427  0.9865118   10.04762 0.8021629 31.83431 17      

Weibull     5.560446    146.3700  0.9796052   13.47619 1.377447  29.28667 19      

Laplace     135.0743    19.81241  0.970573    23.38095 1.922842  45.7682  25      

Uniform     80.15071    217.51    0.8409656   72.71429 15.39577  36.7912  29      

Cauchy      134.3886    14.84865  0.1695811   49.28571 2.174192  1337.111 33      

Pareto      81.4305     2.142798  0.3159581   140.5238 23.80584  937.8416 35      

Exponential 0.007091597 NA        0.007549144 404.9048 93.57806  583.9428 38      

Warning message:

In dweibull(x, shape, scale, log) : NaNs produced
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Figure 3.6 Graphical Output for Grocery Expenditure
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Figure 3.7 Graphical Output for Grocery Expenditure II
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3.2 Limitations of diagnostic

The first limitation of the proposed function is that whatever data are used, the data have 

to be within all the support of the random variable X for all the distributions. For example, it is 

possible to observe negative values for a normal distribution, but not for a Weibull or gamma 

distribution. The data analyst may need to shift the location of the data before using this function 

if he suspects that some distribution can provide a good fit if only the data were shifted. 

However, the argument can be that if data values are outside of the support set for a particular 

distribution, then that distribution should not be used to fit the data.
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Another limitation is that the whole process stops when there is a problem with only one 

of the distributions. One example is that optimization may fail within the fitdistr function. 

A brief discussion of this can be found in Section 2.2.7. Another example is the parameter 

estimation technique provided an estimate of a parameter that is impossible to observe, such as 

what happened in the grocery expenditure data set or calculating a negative estimate of the 

standard deviation of the normal distribution. Because this function should be general, maximum 

likelihood estimation may be troublesome for poorly fit distributions. A way to fix this problem 

would be to not include that particular distribution in the output and give a warning message 

indicating that distribution was omitted. Another way to fix this problem may be to use another 

estimation technique, like method of moments, if maximum likelihood methods fail.

In some instances, a warning message appears that looks similar to the following:

Warning messages:

1: In dgamma(x, shape, scale, log) : NaNs produced

This is a warning message within the function fitdistr. This does not seem too problematic, 

but may have an affect on the validity of the parameter estimates.

The most striking limitation is the number of distributions that are not represented in this 

function. Distributions like the Gumbel, Rayleigh, extreme value, Wald, and others may provide 

better fits to the data, but may not be considered due to their absence from this function. 

3.3 Further Research
One area that could be examined more is the use of additional statistical measures to 

arrive at candidate distributions. Statistics such as the Kolmogorov-Smirnov test could be 

implemented into the function to provide more insight to what distribution data came from. The 

reason this statistic was not used is because of the suspected sensitivity this statistic had near the 

center of the hypothesized distribution than at the tails, as outlined by the NIST e-Handbook of 

Statistical Methods (2003). Appendix C displays four simulations where the function included 

the Kolmogorov-Smirnov statistic in the ranking procedure. The added statistic did not result in a 

higher frequency in which the ranking procedure selected the correct distribution. For now the 

Kolmogorov-Smirnov statistic is omitted; however, this statistic, if used differently, may provide 

some additional information in assessing which distribution the data follow.  
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Another area may be to look at some other way of using all the information instead of 

purely using ranks. More research could be done to arrive at some form of weighted average 

method of ranking each statistic. As was mentioned earlier, the rankings are forced to be equally 

spaced, which could cause less accuracy in determining reasonable distributions.

Better methods of parameter estimation could also be employed. Parameters of some 

distributions have many estimators which work well in some instances, but not in others. Often, 

the maximum likelihood estimators have either bias or inflated variance which other estimators 

may correct.

The function uses a method of parameter estimation based on maximum likelihood 

estimation and using values within an interval to arrive at a large concordance correlation. A 

similar process can be examined that minimizes the goodness of fit and/or the Anderson-Darling 

statistic. It is more likely that ties may occur in the goodness of fit statistic for multiple values of 

parameter estimates because of the binning of the data. The value of the concordance correlation 

and/or the Anderson-Darling statistic could serve as a tiebreaker to decide which set of parameter 

estimates to use. Also, choosing the parameter estimates that minimize the Anderson-Darling 

statistic could be employed.  

The concordance correlation is not widespread, but this could be a way to assess the 

variation within QQ plots. Research can be done to use this for hypothesis testing similar to the 

tests that use the goodness of fit or Anderson-Darling statistic. No hypothesis testing is done with 

the function, but maybe some tests can be generated if the proper criteria are met. 

3.4 Conclusion
It is important to have an idea what distribution data potentially come from because many 

statistical tests are based on that notion. Often the data analyst assumes data follow some 

distribution, but in reality that assumption can be erroneous. The implications of making such an 

error have many effects on the power, or even validity, of the test. There are statistical tests to 

test whether data came from a specific distribution or not, but they get underused because it is 

tedious to do many hypothesis tests and some distributions are more difficult to work with. Many 

tests, even ones testing whether data follows a distribution, are asymptotic tests that require a 

large sample size. Many times the data analyst encounters small sample sizes for which the 
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asymptotic properties of the statistical test are not met. It is possible for two or more distributions 

to look very similar, especially if the sample is not large, so hypothesis testing can also lead to 

conflicting results. Finding a distribution to model sample data can be challenging, but this 

proposed function provides a useful tool to at least determine reasonable distributions to model 

the data. Because of this function’s ease of use, hopefully data analysts will not be so quick to 

make assumptions about the data.

Some distributions are easier to work with than others. If data looks remotely normally 

distributed, the normal distribution is most often used to model the data. There are, indeed, 

distributions that can look very much like the normal distribution. If data is shaped in such a way 

that multiple distributions can effectively model the data, it would be practical to use the 

distribution that is easiest to work with. Caution, however, should be exercised. Small departures 

from the assumptions of the data can lead to problems. Many of the statistical tests operate on 

strict constraints, and if even one of those constraints is violated, the validity of the test must be 

questioned.

It is my hope that data analysts pause and perhaps question the notion that the data set 

they are analyzing did come from a certain distribution. This function provides numerous pieces 

of information to help arrive at candidate distributions.
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Appendix A - The R Code for the Function diagnostic

## Before this function can be used, these packages need to be loaded ##
library(MASS)
library(lattice)
library(VGAM)
diagnostic=function(data){
 data=sort(data)
 x=data
 n=length(data)
 p=ppoints(n)
 b=(n-1)/n
 seq=seq(-1,1,length=9)
 fit.norm=fitdistr(data,'normal')
 a.norm=fit.norm$estimate[1]+seq*fit.norm$sd[1]
 b.norm=fit.norm$estimate[2]+seq*fit.norm$sd[2]
 q.norm0=matrix(NA,nrow=81,ncol=1)
 q.norm0[,1]=rep(a.norm,9)
 q.norm1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.norm1[,i]=rep(b.norm[i],9)}
 q.norm1=matrix(q.norm1,nrow=81,ncol=1)
 q.normf=cbind(q.norm0,q.norm1)
 qq.norm=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.norm[,i]=qnorm(p,q.normf[i,1],q.normf[i,2])}
  rhoc.norm=numeric(81)
 for(i in 1:81){
 rhoc.norm[i]=(2*b*cov(qq.norm[,i],data))/(b*var(qq.norm[,i])+b*var(data)+(mean
(qq.norm[,i])-mean(data))^2)
 }
 rhoc.norm=as.numeric(rhoc.norm)
 rhoc.norm=as.matrix(rhoc.norm)
 rhocm.norm=matrix(c(q.normf,rhoc.norm),nrow=81,ncol=3)
 rhocm.norm=rhocm.norm[rev(order(rhocm.norm[,3])),,drop=FALSE]
 par.norm=list(rhocm.norm[1,1],rhocm.norm[1,2],rhocm.norm[1,3])
 #names(par.norm)=c('mean.norm','stddev.norm','rc.norm')
 par.normd=data.frame(par.norm)
 
 fit.exp=fitdistr(data,'exponential')
 a.exp=fit.exp$estimate[1]+seq*fit.exp$sd[1]
 q.exp0=matrix(a.exp,nrow=9,ncol=1)
 qq.exp=matrix(NA,nrow=n,ncol=9)
 for(i in 1:9){qq.exp[,i]=qexp(p,q.exp0[i,1])}
  rhoc.exp=numeric(9)
 for(i in 1:9){
 rhoc.exp[i]=(2*b*cov(qq.exp[,i],data))/(b*var(qq.exp[,i])+b*var(data)+(mean
(qq.exp[,i])-mean(data))^2)
  }
 rhoc.exp=as.numeric(rhoc.exp)
 rhoc.exp=as.matrix(rhoc.exp)
 rhocm.exp=matrix(c(q.exp0,rhoc.exp),nrow=3,ncol=2)
 rhocm.exp=rhocm.exp[rev(order(rhocm.exp[,2])),,drop=FALSE]
 par.exp=list(rhocm.exp[1,1],rhocm.exp[1,2])
 #names(par.exp)=c('rate.exp','rc.exp')
 par.expd=data.frame(par.exp)
 
 fit.gamma=fitdistr(data,'gamma')
 a.gamma=fit.gamma$estimate[1]+seq*fit.gamma$sd[1]
 b.gamma=fit.gamma$estimate[2]+seq*fit.gamma$sd[2]
 q.gamma0=matrix(NA,nrow=81,ncol=1)
 q.gamma0[,1]=rep(a.gamma,9)
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 q.gamma1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.gamma1[,i]=rep(b.gamma[i],9)}
 q.gamma1=matrix(q.gamma1,nrow=81,ncol=1)
 q.gammaf=cbind(q.gamma0,q.gamma1)
 qq.gamma=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.gamma[,i]=qgamma(p,q.gammaf[i,1],q.gammaf[i,2])}
  rhoc.gamma=numeric(81)
 for(i in 1:81){
 rhoc.gamma[i]=(2*b*cov(qq.gamma[,i],data))/(b*var(qq.gamma[,i])+b*var(data)+(mean
(qq.gamma[,i])-mean(data))^2)
 }
 rhoc.gamma=as.numeric(rhoc.gamma)
 rhoc.gamma=as.matrix(rhoc.gamma)
 rhocm.gamma=matrix(c(q.gammaf,rhoc.gamma),nrow=81,ncol=3)
 rhocm.gamma=rhocm.gamma[rev(order(rhocm.gamma[,3])),,drop=FALSE]
 par.gamma=list(rhocm.gamma[1,1],rhocm.gamma[1,2],rhocm.gamma[1,3])
 #names(par.gamma)=c('shape.gamma','rate.gamma','rc.gamma')
 par.gammad=data.frame(par.gamma)
  
 fit.logis=fitdistr(data,'logistic',list(location=mean(data),scale=(sqrt(3)/pi)*sd
(data)))
 a.logis=fit.logis$estimate[1]+seq*fit.logis$sd[1]
 b.logis=fit.logis$estimate[2]+seq*fit.logis$sd[2]
 q.logis0=matrix(NA,nrow=81,ncol=1)
 q.logis0[,1]=rep(a.logis,9)
 q.logis1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.logis1[,i]=rep(b.logis[i],9)}
 q.logis1=matrix(q.logis1,nrow=81,ncol=1)
 q.logisf=cbind(q.logis0,q.logis1)
 qq.logis=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.logis[,i]=qlogis(p,q.logisf[i,1],q.logisf[i,2])}
  rhoc.logis=numeric(81)
 for(i in 1:81){
 rhoc.logis[i]=(2*b*cov(qq.logis[,i],data))/(b*var(qq.logis[,i])+b*var(data)+(mean
(qq.logis[,i])-mean(data))^2)
 }
 rhoc.logis=as.numeric(rhoc.logis)
 rhoc.logis=as.matrix(rhoc.logis)
 rhocm.logis=matrix(c(q.logisf,rhoc.logis),nrow=81,ncol=3)
 rhocm.logis=rhocm.logis[rev(order(rhocm.logis[,3])),,drop=FALSE]
 par.logis=list(rhocm.logis[1,1],rhocm.logis[1,2],rhocm.logis[1,3])
 #names(par.logis)=c('loc.logis','scale.logis','rc.logis')
 par.logisd=data.frame(par.logis)

 fit.lnorm=fitdistr(data,'lognormal')
 a.lnorm=fit.lnorm$estimate[1]+seq*fit.lnorm$sd[1]
 b.lnorm=fit.lnorm$estimate[2]+seq*fit.lnorm$sd[2]
 q.lnorm0=matrix(NA,nrow=81,ncol=1)
 q.lnorm0[,1]=rep(a.lnorm,9)
 q.lnorm1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.lnorm1[,i]=rep(b.lnorm[i],9)}
 q.lnorm1=matrix(q.lnorm1,nrow=81,ncol=1)
 q.lnormf=cbind(q.lnorm0,q.lnorm1)
 qq.lnorm=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.lnorm[,i]=qlnorm(p,q.lnormf[i,1],q.lnormf[i,2])}
  rhoc.lnorm=numeric(81)
 for(i in 1:81){
 rhoc.lnorm[i]=(2*b*cov(qq.lnorm[,i],data))/(b*var(qq.lnorm[,i])+b*var(data)+(mean
(qq.lnorm[,i])-mean(data))^2)
 }
 rhoc.lnorm=as.numeric(rhoc.lnorm)
 rhoc.lnorm=as.matrix(rhoc.lnorm)
 rhocm.lnorm=matrix(c(q.lnormf,rhoc.lnorm),nrow=81,ncol=3)
 rhocm.lnorm=rhocm.lnorm[rev(order(rhocm.lnorm[,3])),,drop=FALSE]
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 par.lnorm=list(rhocm.lnorm[1,1],rhocm.lnorm[1,2],rhocm.lnorm[1,3])
 #names(par.lnorm)=c('meanlog.lnorm','sdlog.lnorm','rc.lnorm')
 par.lnormd=data.frame(par.lnorm)
 
 c=((sqrt(6)/pi)*sd(log(data)))^(-1)
 fit.weibull=fitdistr(data,'weibull',list(shape=c,scale=((1/n)*sum(data^c))^(1/
c)))
 a.weibull=fit.weibull$estimate[1]+seq*fit.weibull$sd[1]
 b.weibull=fit.weibull$estimate[2]+seq*fit.weibull$sd[2]
 q.weibull0=matrix(NA,nrow=81,ncol=1)
 q.weibull0[,1]=rep(a.weibull,9)
 q.weibull1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.weibull1[,i]=rep(b.weibull[i],9)}
 q.weibull1=matrix(q.weibull1,nrow=81,ncol=1)
 q.weibullf=cbind(q.weibull0,q.weibull1)
 qq.weibull=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.weibull[,i]=qweibull(p,q.weibullf[i,1],q.weibullf[i,2])}
  rhoc.weibull=numeric(81)
 for(i in 1:81){
 rhoc.weibull[i]=(2*b*cov(qq.weibull[,i],data))/(b*var(qq.weibull[,i])+b*var(data)
+(mean(qq.weibull[,i])-mean(data))^2)
 }
 rhoc.weibull=as.numeric(rhoc.weibull)
 rhoc.weibull=as.matrix(rhoc.weibull)
 rhocm.weibull=matrix(c(q.weibullf,rhoc.weibull),nrow=81,ncol=3)
 rhocm.weibull=rhocm.weibull[rev(order(rhocm.weibull[,3])),,drop=FALSE]
 par.weibull=list(rhocm.weibull[1,1],rhocm.weibull[1,2],rhocm.weibull[1,3])
 #names(par.weibull)=c('shape.weibull','scale.weibull','rc.weibull')
 par.weibulld=data.frame(par.weibull)
 
 fit.cauchy=fitdistr(data,'cauchy')
 a.cauchy=fit.cauchy$estimate[1]+seq*fit.cauchy$sd[1]
 b.cauchy=fit.cauchy$estimate[2]+seq*fit.cauchy$sd[2]
 q.cauchy0=matrix(NA,nrow=81,ncol=1)
 q.cauchy0[,1]=rep(a.cauchy,9)
 q.cauchy1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.cauchy1[,i]=rep(b.cauchy[i],9)}
 q.cauchy1=matrix(q.cauchy1,nrow=81,ncol=1)
 q.cauchyf=cbind(q.cauchy0,q.cauchy1)
 qq.cauchy=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.cauchy[,i]=qcauchy(p,q.cauchyf[i,1],q.cauchyf[i,2])}
  rhoc.cauchy=numeric(81)
 for(i in 1:81){
 rhoc.cauchy[i]=(2*b*cov(qq.cauchy[,i],data))/(b*var(qq.cauchy[,i])+b*var(data)+
(mean(qq.cauchy[,i])-mean(data))^2)
 }
 rhoc.cauchy=as.numeric(rhoc.cauchy)
 rhoc.cauchy=as.matrix(rhoc.cauchy)
 rhocm.cauchy=matrix(c(q.cauchyf,rhoc.cauchy),nrow=81,ncol=3)
 rhocm.cauchy=rhocm.cauchy[rev(order(rhocm.cauchy[,3])),,drop=FALSE]
 par.cauchy=list(rhocm.cauchy[1,1],rhocm.cauchy[1,2],rhocm.cauchy[1,3])
 #names(par.cauchy)=c('loc.cauchy','scale.cauchy','rc.cauchy')
 par.cauchyd=data.frame(par.cauchy)
 
 like.laplace=function(par.lap,x,n){
  a=par.lap[1]
  b=par.lap[2]
  likelaplace=-n*log(2*b)-(1/b)*sum(abs(x-a))
  return(likelaplace)
  }
  
 o=optim(c(median(data),(1/n)*sum(abs(data-median
(data)))),like.laplace,x=data,n=length(data),control=list(fnscale=-1),hessian=TRUE)
 HI=(-1*o$hessian[2,2])^(-1)
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 se.lap=sqrt(HI)
 loc.lap=o$par[1]
 scale.lap=o$par[2]
 qbl=qbinom(0.32/2,n,0.5)
 a.l=seq(data[qbl-1],data[n-qbl],length=8)
 
 a.laplace=c(a.l,median(data))
 b.laplace=scale.lap+seq*se.lap
 q.laplace0=matrix(NA,nrow=81,ncol=1)
 q.laplace0[,1]=rep(a.laplace,9)
 q.laplace1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.laplace1[,i]=rep(b.laplace[i],9)}
 q.laplace1=matrix(q.laplace1,nrow=81,ncol=1)
 q.laplacef=cbind(q.laplace0,q.laplace1)
 qq.laplace=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.laplace[,i]=qlaplace(p,q.laplacef[i,1],q.laplacef[i,2])}
  rhoc.laplace=numeric(81)
 for(i in 1:81){
 rhoc.laplace[i]=(2*b*cov(qq.laplace[,i],data))/(b*var(qq.laplace[,i])+b*var(data)
+(mean(qq.laplace[,i])-mean(data))^2)
 }
 rhoc.laplace=as.numeric(rhoc.laplace)
 rhoc.laplace=as.matrix(rhoc.laplace)
 rhocm.laplace=matrix(c(q.laplacef,rhoc.laplace),nrow=81,ncol=3)
 rhocm.laplace=rhocm.laplace[rev(order(rhocm.laplace[,3])),,drop=FALSE]
 par.laplace=list(rhocm.laplace[1,1],rhocm.laplace[1,2],rhocm.laplace[1,3])
 #names(par.laplace)=c('loc.laplace','scale.laplace','rc.laplace')
 par.laplaced=data.frame(par.laplace)
 
 a.hat=min(data)
 b.hat=max(data)
 u.var=(n*(b.hat-a.hat)^2)/((n+1)^2*(n+2))
 se.u=sqrt(u.var)
 seq.l=seq(-2,0,length=9)
 seq.up=seq(0,2,length=9)
 a.unif=a.hat+seq.l*se.u
 b.unif=b.hat+seq.up*se.u
 q.unif0=matrix(NA,nrow=81,ncol=1)
 q.unif0[,1]=rep(a.unif,9)
 q.unif1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.unif1[,i]=rep(b.unif[i],9)}
 q.unif1=matrix(q.unif1,nrow=81,ncol=1)
 q.uniff=cbind(q.unif0,q.unif1)
 qq.unif=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.unif[,i]=qunif(p,q.uniff[i,1],q.uniff[i,2])}
  rhoc.unif=numeric(81)
 for(i in 1:81){
 rhoc.unif[i]=(2*b*cov(qq.unif[,i],data))/(b*var(qq.unif[,i])+b*var(data)+(mean
(qq.unif[,i])-mean(data))^2)
 }
 rhoc.unif=as.numeric(rhoc.unif)
 rhoc.unif=as.matrix(rhoc.unif)
 rhocm.unif=matrix(c(q.uniff,rhoc.unif),nrow=81,ncol=3)
 rhocm.unif=rhocm.unif[rev(order(rhocm.unif[,3])),,drop=FALSE]
 par.unif=list(rhocm.unif[1,1],rhocm.unif[1,2],rhocm.unif[1,3])
 #names(par.unif)=c('min.unif','max.unif','rc.unif')
 par.unifd=data.frame(par.unif)
 
 a.hatp=min(data)
 gm=(prod(data))^(1/n)
 b.hatp=1/((1/n)*sum(log(data))-log(a.hatp))
 par.var=a.hatp^2*b.hatp*n*(1/(b.hatp*n-2)-(n*b.hatp)/(b.hatp*n-1)^2)
 se.p=sqrt(par.var)
 b.lowerp=b.hatp*qchisq(.32,2*(n-1))/(2*n)
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 b.upperp=b.hatp*qchisq(1-.32,2*(n-1))/(2*n)
 a.pareto=a.hatp+seq.l*se.p
 b.pareto=seq(b.lowerp,b.upperp,length=9)
 q.pareto0=matrix(NA,nrow=81,ncol=1)
 q.pareto0[,1]=rep(a.pareto,9)
 q.pareto1=matrix(NA,nrow=9,ncol=9)
 for(i in 1:9){q.pareto1[,i]=rep(b.pareto[i],9)}
 q.pareto1=matrix(q.pareto1,nrow=81,ncol=1)
 q.paretof=cbind(q.pareto0,q.pareto1)
 qq.pareto=matrix(NA,nrow=n,ncol=81)
 for(i in 1:81){qq.pareto[,i]=qpareto(p,q.paretof[i,1],q.paretof[i,2])}
  rhoc.pareto=numeric(81)
 for(i in 1:81){
 rhoc.pareto[i]=(2*b*cov(qq.pareto[,i],data))/(b*var(qq.pareto[,i])+b*var(data)+
(mean(qq.pareto[,i])-mean(data))^2)
 }
 rhoc.pareto=as.numeric(rhoc.pareto)
 rhoc.pareto=as.matrix(rhoc.pareto)
 rhocm.pareto=matrix(c(q.paretof,rhoc.pareto),nrow=81,ncol=3)
 rhocm.pareto=rhocm.pareto[rev(order(rhocm.pareto[,3])),,drop=FALSE]
 par.pareto=list(rhocm.pareto[1,1],rhocm.pareto[1,2],rhocm.pareto[1,3])
 #names(par.pareto)=c('loc.pareto','shape.pareto','rc.pareto')
 par.paretod=data.frame(par.pareto)
 
 par.expdm=list(par.expd[1],NA,par.expd[2])
 
 par.expdm=data.frame(par.expdm)
 
 qn=qnorm(p,rhocm.norm[1,1],rhocm.norm[1,2])
 qx=qexp(p,rhocm.exp[1,1])
 qg=qgamma(p,rhocm.gamma[1,1],rhocm.gamma[1,2])
 ql=qlogis(p,rhocm.logis[1,1],rhocm.logis[1,2])
 qlog=qlnorm(p,rhocm.lnorm[1,1],rhocm.lnorm[1,2])
 qw=qweibull(p,rhocm.weibull[1,1],rhocm.weibull[1,2])
 qc=qcauchy(p,rhocm.cauchy[1,1],rhocm.cauchy[1,2])
 qlap=qlaplace(p,rhocm.laplace[1,1],rhocm.laplace[1,2])
 qu=qunif(p,rhocm.unif[1,1],rhocm.unif[1,2])
 qp=qpareto(p,rhocm.pareto[1,1],rhocm.pareto[1,2])
 
 distn=max(abs(qn-data))
 distx=max(abs(qx-data))
 distg=max(abs(qg-data))
 distl=max(abs(ql-data))
 distlog=max(abs(qlog-data))
 distw=max(abs(qw-data))
 distc=max(abs(qc-data))
 distlap=max(abs(qlap-data))
 distu=max(abs(qu-data))
 distp=max(abs(qp-data))
 dist=data.frame(c
(distn,distx,distg,distl,distlog,distw,distc,distlap,distu,distp))
 
 g=round(2*n^(2/5))
 pg=ppoints(g,1)
 ppg=c(pg[1]+0.000000000001,pg[2:(g-1)],pg[g]-0.000000000001)
 E=n/(g-1)
 qng=qnorm(pg,rhocm.norm[1,1],rhocm.norm[1,2])
 qxg=qexp(pg,rhocm.exp[1,1])
 qgg=qgamma(pg,rhocm.gamma[1,1],rhocm.gamma[1,2])
 qlg=qlogis(pg,rhocm.logis[1,1],rhocm.logis[1,2])
 qlogg=qlnorm(pg,rhocm.lnorm[1,1],rhocm.lnorm[1,2])
 qwg=qweibull(pg,rhocm.weibull[1,1],rhocm.weibull[1,2])
 qcg=qcauchy(pg,rhocm.cauchy[1,1],rhocm.cauchy[1,2])
 qlapg=qlaplace(pg,rhocm.laplace[1,1],rhocm.laplace[1,2])
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 qug=qunif(pg,rhocm.unif[1,1],rhocm.unif[1,2])
 qpg=qpareto(ppg,rhocm.pareto[1,1],rhocm.pareto[1,2])
 
 cn=table(cut(data,breaks=qng))
 cx=table(cut(data,breaks=qxg))
 cg=table(cut(data,breaks=qgg))
 cl=table(cut(data,breaks=qlg))
 clog=table(cut(data,breaks=qlogg))
 cw=table(cut(data,breaks=qwg))
 cc=table(cut(data,breaks=qcg))
 clap=table(cut(data,breaks=qlapg))
 cu=table(cut(data,breaks=qug))
 cp=table(cut(data,breaks=qpg))
 
 chin=sum((cn-E)^2/E)
 chix=sum((cx-E)^2/E)
 chig=sum((cg-E)^2/E)
 chil=sum((cl-E)^2/E)
 chilog=sum((clog-E)^2/E)
 chiw=sum((cw-E)^2/E)
 chic=sum((cc-E)^2/E)
 chilap=sum((clap-E)^2/E)
 chiu=sum((cu-E)^2/E)
 chip=sum((cp-E)^2/E)
 chi=data.frame(c(chin,chix,chig,chil,chilog,chiw,chic,chilap,chiu,chip))
 

 
 Sn=vector()
 for(i in 1:n){Sn[i]=((2*i-1)/n)*(log(pnorm(x[i],rhocm.norm[1,1],rhocm.norm[1,2]))
+log(1-pnorm(x[n+1-i],rhocm.norm[1,1],rhocm.norm[1,2])))}
 An=-n-sum(Sn)
 Sx=vector()
 for(i in 1:n){Sx[i]=((2*i-1)/n)*(log(pexp(x[i],rhocm.exp[1,1],rhocm.exp[1,2]))
+log(1-pexp(x[n+1-i],rhocm.exp[1,1],rhocm.exp[1,2])))}
 Ax=-n-sum(Sx)
 Sg=vector()
 for(i in 1:n){Sg[i]=((2*i-1)/n)*(log(pgamma(x[i],rhocm.gamma[1,1],rhocm.gamma
[1,2]))+log(1-pgamma(x[n+1-i],rhocm.gamma[1,1],rhocm.gamma[1,2])))}
 Ag=-n-sum(Sg)
 Sl=vector()
 for(i in 1:n){Sl[i]=((2*i-1)/n)*(log(plogis(x[i],rhocm.logis[1,1],rhocm.logis
[1,2]))+log(1-plogis(x[n+1-i],rhocm.logis[1,1],rhocm.logis[1,2])))}
 Al=-n-sum(Sl)
 Slog=vector()
 for(i in 1:n){Slog[i]=((2*i-1)/n)*(log(plnorm(x[i],rhocm.lnorm[1,1],rhocm.lnorm
[1,2]))+log(1-plnorm(x[n+1-i],rhocm.lnorm[1,1],rhocm.lnorm[1,2])))}
 Alog=-n-sum(Slog)
 Sw=vector()
 for(i in 1:n){Sw[i]=((2*i-1)/n)*(log(pweibull(x[i],rhocm.weibull
[1,1],rhocm.weibull[1,2]))+log(1-pweibull(x[n+1-i],rhocm.weibull[1,1],rhocm.weibull
[1,2])))}
 Aw=-n-sum(Sw)
 Sc=vector()
 for(i in 1:n){Sc[i]=((2*i-1)/n)*(log(pcauchy(x[i],rhocm.cauchy[1,1],rhocm.cauchy
[1,2]))+log(1-pcauchy(x[n+1-i],rhocm.cauchy[1,1],rhocm.cauchy[1,2])))}
 Ac=-n-sum(Sc)
 Slap=vector()
 for(i in 1:n){Slap[i]=((2*i-1)/n)*(log(plaplace(x[i],rhocm.laplace
[1,1],rhocm.laplace[1,2]))+log(1-plaplace(x[n+1-i],rhocm.laplace[1,1],rhocm.laplace
[1,2])))}
 Alap=-n-sum(Slap)
 Su=vector()
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 for(i in 1:n){Su[i]=((2*i-1)/n)*(log(punif(x[i],rhocm.unif
[1,1]-0.00001,rhocm.unif[1,2]+0.00001))+log(1-punif(x[n+1-i],rhocm.unif
[1,1]-0.00001,rhocm.unif[1,2]+0.00001)))}
 Au=-n-sum(Su)
 Sp=vector()
 for(i in 1:n){Sp[i]=((2*i-1)/n)*(log(ppareto(x[i],rhocm.pareto
[1,1]-0.00001,rhocm.pareto[1,2]))+log(1-ppareto(x[n+1-i],rhocm.pareto
[1,1]-0.00001,rhocm.pareto[1,2])))}
 Ap=-n-sum(Sp)
 A2=data.frame(c(An,Ax,Ag,Al,Alog,Aw,Ac,Alap,Au,Ap))
 
 
 rA2=rank(A2)
 rchi=rank(chi)
 rdist=rank(dist)
 r=data.frame(c(par.normd[3],par.expdm[3],par.gammad[3],par.logisd[3],par.lnormd
[3],par.weibulld[3],par.cauchyd[3],par.laplaced[3],par.unifd[3],par.paretod[3]))
 r=-r
 rrho=rank(r)
 
 rn=sum(rchi[1],rdist[1],rrho[1],rA2[1])
 rx=sum(rchi[2],rdist[2],rrho[2],rA2[2])
 rg=sum(rchi[3],rdist[3],rrho[3],rA2[3])
 rl=sum(rchi[4],rdist[4],rrho[4],rA2[4])
 rlog=sum(rchi[5],rdist[5],rrho[5],rA2[5])
 rw=sum(rchi[6],rdist[6],rrho[6],rA2[6])
 rc=sum(rchi[7],rdist[7],rrho[7],rA2[7])
 rlap=sum(rchi[8],rdist[8],rrho[8],rA2[8])
 ru=sum(rchi[9],rdist[9],rrho[9],rA2[9])
 rp=sum(rchi[10],rdist[10],rrho[10],rA2[10])
 
 parmat=matrix(c
(par.normd,chin,An,distn,rn,par.expdm,chix,Ax,distx,rx,par.gammad,chig,Ag,distg,rg,par
.logisd,chil,Al,distl,rl,par.lnormd,chilog,Alog,distlog,rlog,par.weibulld,chiw,Aw,dist
w,rw,par.cauchyd,chic,Ac,distc,rc,par.laplaced,chilap,Alap,distlap,rlap,par.unifd,chiu
,Au,distu,ru,par.paretod,chip,Ap,distp,rp),nrow=10,ncol=7,byrow=TRUE,dimnames=list(c
('Normal','Exponential','Gamma','Logistic','Lognormal','Weibull','Cauchy','Laplace','U
niform','Pareto'),c('Par1','Par2','Con.Corr','Good-Fit','A2','Max.dist','Sum.Rank')))
 
dn=dnorm(x,rhocm.norm[1,1],rhocm.norm[1,2])+0.001
dl=dlogis(x,rhocm.logis[1,1],rhocm.logis[1,2])+0.001
dg=dgamma(x,rhocm.gamma[1,1],rhocm.gamma[1,2])+0.001
dw=dweibull(x,rhocm.weibull[1,1],rhocm.weibull[1,2])+0.001
dlap=dlaplace(x,rhocm.laplace[1,1],rhocm.laplace[1,2])+0.001
dc=dcauchy(x,rhocm.cauchy[1,1],rhocm.cauchy[1,2])+0.001
du=dunif(x,rhocm.unif[1,1],rhocm.unif[1,2])+0.001
dlog=dlnorm(x,rhocm.lnorm[1,1],rhocm.lnorm[1,2])+0.001
dx=dexp(x,rhocm.exp[1,1])+0.001
dp=dpareto(x,rhocm.pareto[1,1],rhocm.pareto[1,2])+0.001

 
his=hist(data,plot=F)
his=max(his$density)+0.001
par(mfrow=c(4,3))
curve(dnorm(x,rhocm.norm[1,1],rhocm.norm[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Normal',ylab='Probability',xlab='Value',ylim=c(0,max(his,dn)))
hist(data,probability=T,add=T)
curve(dlogis(x,rhocm.logis[1,1],rhocm.logis[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Logistic',ylab='Probability',xlab='Value',ylim=c(0,max(his,dl)))
hist(data,probability=T,add=T)
curve(dgamma(x,rhocm.gamma[1,1],rhocm.gamma[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Gamma',ylab='Probability',xlab='Value',ylim=c(0,max(his,dg)))
hist(data,probability=T,add=T)
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curve(dweibull(x,rhocm.weibull[1,1],rhocm.weibull[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Weibull',ylab='Probability',xlab='Value',ylim=c(0,max(his,dw)))
hist(data,probability=T,add=T)
curve(dlaplace(x,rhocm.laplace[1,1],rhocm.laplace[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Laplace',ylab='Probability',xlab='Value',ylim=c(0,max(his,dlap)))
hist(data,probability=T,add=T)
curve(dcauchy(x,rhocm.cauchy[1,1],rhocm.cauchy[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Cauchy',ylab='Probability',xlab='Value',ylim=c(0,max(his,dc)))
hist(data,probability=T,add=T)
curve(dunif(x,rhocm.unif[1,1],rhocm.unif[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Uniform',ylab='Probability',xlab='Value',ylim=c(0,max(his,du)))
hist(data,probability=T,add=T)
curve(dlnorm(x,rhocm.lnorm[1,1],rhocm.lnorm[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Lognormal',ylab='Probability',xlab='Value',ylim=c(0,max(his,dlog)))
hist(data,probability=T,add=T)
curve(dexp(x,rhocm.exp[1,1]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Exponential',ylab='Probability',xlab='Value',ylim=c(0,max(his,dx)))
hist(data,probability=T,add=T)
curve(dpareto(x,rhocm.pareto[1,1],rhocm.pareto[1,2]),from=min(x)-sd(x),to=max(x)+sd
(x),main='Pareto',ylab='Probability',xlab='Value',ylim=c(0,max(his,dp)))
hist(data,probability=T,add=T)

x11()
 #QQ Plots
 
 par(mfrow=c(4,3))
 plot(qn,data,main="Normal",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(ql,data,main="Logistic",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qg,data,main="Gamma",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qw,data,main="Weibull",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qlap,data,main="Laplace",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qc,data,main="Cauchy",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qu,data,main="Uniform",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qlog,data,main="Log-Normal",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qx,data,main="Exponential",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 plot(qp,data,main="Pareto",xlab="Theoretical",ylab="Observed")
 abline(0,1)
 

 
 parmat=parmat[(order(as.numeric(parmat[,7]))),,drop=FALSE] #Sorting the matrix by 
rank.
 
 parmat

 }
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Appendix B - The R Code for the Simulations

For the purpose of simulations, the same code (Appendix A) was used with the following 

exceptions: (1) no graphical output was used, (2) no output was generated, and (3) only the 

distribution with the lowest sum of ranks was recorded. The following is the amended code 

which selects the distribution with the lowest sum of ranks along with an example of a 

simulation.
 
...
parmat=matrix(c
(par.normd,chin,An,distn,rn,par.expdm,chix,Ax,distx,rx,par.gammad,chig,Ag,distg,rg,par
.logisd,chil,Al,distl,rl,par.lnormd,chilog,Alog,distlog,rlog,par.weibulld,chiw,Aw,dist
w,rw,par.cauchyd,chic,Ac,distc,rc,par.laplaced,chilap,Alap,distlap,rlap,par.unifd,chiu
,Au,distu,ru,par.paretod,chip,Ap,distp,rp),nrow=10,ncol=7,byrow=TRUE)
 
 sNorm=ifelse(min(as.numeric(parmat[,7]))==parmat[1,7],1,0)
 sExp=ifelse(min(as.numeric(parmat[,7]))==parmat[2,7],1,0)
 sGamma=ifelse(min(as.numeric(parmat[,7]))==parmat[3,7],1,0)
 sLogis=ifelse(min(as.numeric(parmat[,7]))==parmat[4,7],1,0)
 sLnorm=ifelse(min(as.numeric(parmat[,7]))==parmat[5,7],1,0)
 sWeibull=ifelse(min(as.numeric(parmat[,7]))==parmat[6,7],1,0)
 sCauchy=ifelse(min(as.numeric(parmat[,7]))==parmat[7,7],1,0)
 sLaplace=ifelse(min(as.numeric(parmat[,7]))==parmat[8,7],1,0)
 sUnif=ifelse(min(as.numeric(parmat[,7]))==parmat[9,7],1,0)
 sPareto=ifelse(min(as.numeric(parmat[,7]))==parmat[10,7],1,0)

 ind=data.frame(c
(sNorm,sExp,sGamma,sLogis,sLnorm,sWeibull,sCauchy,sLaplace,sUnif,sPareto))
 
 names(ind)='ind'
 
 ind

 }

srNorm=numeric(1000)
srExp=numeric(1000)
srGamma=numeric(1000)
srLogis=numeric(1000)
srLnorm=numeric(1000)
srWeibull=numeric(1000)
srCauchy=numeric(1000)
srLaplace=numeric(1000)
srUnif=numeric(1000)
srPareto=numeric(1000)
q=matrix(seq(1:20000),nrow=20,ncol=1000)
set.seed(0315)
for(i in 1:1000){
 q[,i]=rnorm(20,25,5)
 srNorm[i]=srankdiagnostic(q[,i])$ind[1]
 srExp[i]=srankdiagnostic(q[,i])$ind[2]
srGamma[i]=srankdiagnostic(q[,i])$ind[3]
srLogis[i]=srankdiagnostic(q[,i])$ind[4]
srLnorm[i]=srankdiagnostic(q[,i])$ind[5]
srWeibull[i]=srankdiagnostic(q[,i])$ind[6]



53

srCauchy[i]=srankdiagnostic(q[,i])$ind[7]
srLaplace[i]=srankdiagnostic(q[,i])$ind[8]
srUnif[i]=srankdiagnostic(q[,i])$ind[9]
srPareto[i]=srankdiagnostic(q[,i])$ind[10]

 }

sum(srNorm)
[1] 186
sum(srExp)
[1] 0
sum(srGamma)
[1] 161
sum(srLogis)
[1] 92
sum(srLnorm)
[1] 189
sum(srWeibull)
[1] 284
sum(srCauchy)
[1] 1
sum(srLaplace)
[1] 92
sum(srUnif)
[1] 57
sum(srPareto)
[1] 0
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Appendix C - The Kolmogorov-Smirnov Statistic and Simulations

 The traditional usage of the Kolmogorov-Smirnov test is to decide if data follow a fully 

specified distribution. Because no hypothesis testing is done in the function diagnostic, this 

statistic can be computed with estimated parameters. The statistic is computed as follows:

  (A.1)

where the cumulative probability function is calculated with estimated parameters, and n is the 

sample size. If data follow a particular distribution, this statistic should be small. 

Table A.1 displays the four simulations when this statistic was included in the ranking 

procedure and when the ranking procedure used only the concordance correlation, goodness-of-

fit, Anderson-Darling, and maximum distance. For the normal distribution and gamma 

distribution, the added Kolmogrov-Smirnov statistic made the ranking procedure perform worse 

than when it was omitted. For the Weibull distribution, the added statistic yielded approximately 

the same results.
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Table A.1 Simulation Results Including Kolmogorov-Smirnov Statistic

n=20 
Norm

(25,5)

n=50 
Norm

(25,5)

n=50 
Gamma

(2,1)

n=50 
Weibull

(4,20)

Rank.4 K-S Rank.4 K-S Rank.4 K-S Rank.4 K-S

Normal 186 169 355 335 10 9 269 255

Exponential 0 0 0 0 0 0 0 0

Gamma 161 160 187 179 440 419 106 98

Logistic 92 83 149 156 4 4 109 110

Lognormal 189 188 87 87 127 124 18 18

Weibull 284 294 267 257 510 495 556 552

Cauchy 1 1 0 0 0 0 0 0

Laplace 92 95 28 29 1 3 15 19

Uniform 57 60 7 6 2 2 11 9

Pareto 0 0 0 0 0 0 0 0


