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Chapter 1
Introduction

Since the years around 1970 mainly two general directions of resear-

ch in the areas of software development can be distinguished. These two

directions are mathematical semantics of programming languages and

rigorous approaches to abstract data types in programming and specifica-

tion languages. Denotational semantics as developed by Scott and Stra-

chey is the most prominent approach of the first direction. Many-sorted

algebras and their specification in terms of equations are the mathema-

tical fundament of the second direction of research. Denotational

semantics and many-sorted algebras form the background of this paper.

The above two general directions of research in computer science,

i.e., mathematical semantics and abstract data type specification, have

influenced each other and can not be separated. In the Scott-Strachey

approach to programming language semantics ([St 77] [Sc 86]), a language

is given a semantics by mapping each its syntactic constructs into a set

of mathematical domains (called Scott domains). The hope is that one

will be able to reason about programming language constructs by using

the properties of these domains. Denotational semantics has been used to

describe various programming languages by giving models based on higher

order functions on Scott domains. Techniques have been developed for

representing features of programming languages in terms of the basic

operations of X-notation: application, abstraction, tupling and tagging.

The denotational semantics approach has led to the so called initial

algebra semantics of programming languages which originates in the work

of algebraic specification of abstract data types by [GTWW 77] . A

fundamental tenet of the initial algebra semantics is that syntactic

constructs reside in initial objects and that semantics is completely

determined by specifying an algebra with the same signature as the



syntactic algebra and by specifying the values of the generators; then

the semantic function is the unique homomorphism from the syntactic

algebra to the semantic one.

In this paper we describe systematically a method for giving alge-

braic denotational specifications of programming language semantics in

0BJ3, a first-order parameterized algebraic specification language. 0BJ3

has an underlying mathematical semantics that is based on the initial

(order-sorted) algebra semantics, and an operational semantics that is

based on order-sorted rewriting rules. Our definitions are denotational

in the sense that meanings are elements of particular abstract data

types, i.e., the initial algebras of the specifications of denotational

semantic domains. The structure of specifications has direct connection

with that of denotational semantics of [Sc 86] . Our specifications of

programming language semantics consist of three kinds of 0BJ3 modules:

the object SYN of syntactic domains that is based on abstract syntax,

the object(s) SEM of semantic domains that are used as meanings in the

definitions, and the object VAL of valuation functions that contains

both objects of SYN and SEM and additional operations that map elements

of SYN to those of SEM. All modules of these three kinds construct a

directed acyclic graph.

The main difference between our specifications and standard denota-

tional semantics is that we use first-order algebraic specification

language 0BJ3 instead of high order \-functions as metalanguages in

definitions. Since 0BJ3 has an underlying fixed semantics that is based

on the initial algebra semantics, we have to use the initial algebras of

specifications as semantic domains, while in denotational semantics

Scott domains (or epos) are used. The major effort of this paper is to

study the specifications of higher order domains in the first-order

algebraic language.

Our definitions have the advantage of being immediately executable.

It is often found that even fairly simple definitions are usually wrong

as first written and need to be debugged in the same way that programs



are. This is especially true for the students who are beginning to learn

denotational semantics. It would be of great help to run test cases when

the definitions are executable. As another advantage, although our

definitions are denotational in nature, we also have the benefits of

using algebraic techniques. Our definitions are highly structured with

increased flexibility and easy verif iability. The modularization and

parameterization mechanisms of 0BJ3 ensure that our specifications of

semantic domains are maximally reusable in definitions of other program-

ming languages.

[GP 81] described a similar method for giving structured algebraic

denotational definitions of programming language semantics. They used

algebraic specification language OBJT, which is based on the error

algebras, and gave a semantic specification for a modest block-struc-

tured language. The basic idea is to use parameterized abstract data

types to construct a directed asyclic graph of modules, such that each

module corresponds to some feature of the language. A "feature" in their

sense is sometimes a syntactic construction, and is sometimes a more

basic language design decision. The major difference with our method is

that our specifications are closer to the structure of standard denota-

tional semantics, and we use a better version of algebraic specification

language: 0BJ3, which is based on the order-sorted algebras. In this

paper, the issues of using first-order algebraic language to specify

denotational semantics are more thoroughly dealt with. We cover such

topics as high order function domain specifications, recursively-defined

domain specifications, and continuation domain specifications that are

not mentioned in [GP 81]

.

Now we outline the structure of this paper. After the introduction

of this chapter, chapter 2 will briefly cover the basic concept of many

sorted algebras and its extension to the order-sorted algebras. The

materials in this chapter are the semantic foundation of 0BJ3, and are

quite independent from the rest of the paper. One with some knowledge of

initial algebra semantics may safely skip this chapter. Chapter 3



introduces language features of 0BJ3. Since 0BJ3 is still under develop-

ment, we only cover those features that have successfully worked in our

specifications. Many seemingly promising specifications but failed to

work in the current version of 0BJ3 are not included in this paper.

Chapters 4 and 5 are the main part of this paper. In chapter 4, after a

brief introduction to the components of denotational semantics, the

structure of our algebraic denotational specification is described. This

chapter emphasizes the specification of syntactic domains from given

abstract syntax. Problems of using algebras as semantic domains and

decurrying transformations are also discussed. In chapter 5 we concen-

trate on the specification of semantic domains, especially higher order

domains. In particular, we describe two methods of giving first order

specifications for the function domains: defunctionalization and lambda-

calculus. Throughout this chapter, we explain in detail specifications

of three programming languages: BL0K1, PLISP, and BL0K2, which are

included in the appendixes. BL0K1 is a strong-typing, block-structured

language that has conditional and repetition commands. A specification

of direct semantics is given for BL0K1. PLISP is a pure LISP-like

language adapted from [Sc 86] . The specification of this language

illustrates the method of specifying recursively defined domains. The

third language BL0K2 is similar to BL0R1. We present a specification of

continuation-based semantics for it.



OBJ3 Semantic Foundations

0BJ3 is a wide spectrum, first order functional programming language

with an underlying formal semantics that is based on initial algebra

semantics in particular order-sorted algebras, and an operational

semantics that is based on order-sorted rewrite rules. This rigorous

semantic basis allows a declarative, specificational style of programm-

ing, eases system design and implementation, and facilitates program

verification.

This chapter covers the initial algebra semantics and equational

deduction. Since order-sorted algebra (OSA) is a generalization of many-

sorted algebra, sections 2.1. and 2.2. introduce the basic concepts of

MSA and equational deduction. Section 2.3. then gives a brief descrip-

tion of this generalization to OSA. For technical details of OSA and

order-sorted deduction, one is referred to [GM 88] and up-coming conse-

cutive papers on the subjects of 0BJ3 semantic foundation.

Initiality was developed in category theory, where it is one of the

most elementary concepts, and first entered computer science in an

algebraic approach to abstract syntax and compositional semantics

[GTWW 77] . The first great success of initial algebra semantics was

Abstract Data Types (ADT), for which it gave the first rigorous seman-

tics [GTW 78].

2.1. Many-Sorted Algebra

A many-sorted algebra (MSA) has several sets, called the carriers of

the algebra, together with an indexed family of operations from Carte-

sian products of those carriers into one of them. The carriers are

indexed by a set S, called the set of sorts. The following accounts of

MSA are based on [GTW 78], [GM 86], [BL 79], [EM 85] and [NR 85]. We

simply present definitions and important theorems, all proofs are



omitted.

2.1.1. Signatures and Algebras

Definition 1: An S-sorted signature (S,2) consists of a set S, called

the set of sorts and an S*xS-indexed family < 2 !w€S*, s€S > of
w s

disjoint sets. oe2 is an operator symbol of arity w and sort s;
w, s

the pair <w,s> is called the rank of a.

The arity of an operator symbol specifies what sorts of data it

expects to see as inputs and in what order; and the sort of an operator

symbol specifies the sort of data it returns. A constant symbol of sort

s has arity the empty string X; i.e. it is a member of 2XX,S

Example: A signature 2 for the natural numbers might have S={nat,bool}

with 2 X . ,={T,F}, 2 N .={0}, 2 ,_={inc}, 2 . ,={odd>,
X,bool X,nat nat,nat nat,bool

2 . 4.={+ }> and 2 =0 otherwise,
nat nat, nat w,s

A signature 2 says nothing about how to interpret the sorts as

actual sets of data elements and the operator symbols as actual opera-

tors. Each such interpretation is called a 2-algebra. Many different

algebras may have the same signature.

Definition 2: A 2-algebra A consists of an S-indexed set <A ! s € S> of

carrier sets, and for each operator symbols a in 2 an actual

operator a(a) :Aw—»-A where AW=A .,x...xA when w=sl...sn (when w=X,
si sn

then Aw is a one point set).

Notice that a is an S^xS-indexed set of interpretation mappings

a : 2 —[Aw—»-A ]w,s w,s L J

for the operator symbols in 2, each a interpreting a in 2 as a
W ) o W y e)

function from Aw to A . It is usual to write o for ct(a) if the algebra
s

in question is clear from context, and it is normally more convenient to

write o. if it isn't.

2.1.2. Homomorphisms and Isomorphisms
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definition 3: If A and B are both 2-algebras, a 2-homomorphism h: A—»-B

is an S-indexed function, i.e. a family of functions <h :A -»-B Js€S>,Sob
that preserves the operations:

(hO) If o€2
x s

, then h
g
(o
A
)=a

B ;

(hi) if oel . and <al, . . . ,an> 6A,x..,x A ,

si. . .sn,s si sn

then h
s
[a
A
(al, . . . ,an)]=o

B
[h
sl

(al), . . . ^^(an)].

The composite of homomorphisms is again a homomorphism; composition

is an associative operation. The identity function, I., on the carriers

of A (so actually the S-indexed family of identity functions) is a

2-homomorphism which is the identity for composition.

Definition 4: A 2-homomorphism f : A—»-B is a 2-isomorphism if and only if

there is another 2-homomorphism g: B—»-A such that f*g=I. and g# f=IR ;

this g is unique if it exists, called inverse of f .

2.1.3. Initial Algebras

Definition 5: A 2-algebra A is initial in a class C of 2-algebras if and

only if for every 2-algebra B in C there exists a unique 2-homomor-

phism h: A—»-B.

One common case is that C is the class of all 2-algebras; another is

that C is the class of all 2-algebras that satisfy some set E of equa-

tions (then C is called the variety of E). In general, the class C is

not mentioned when it is clear from context.

The tremendous usefulness of this definition is embodied in the

following theorem.

Theorem 6: Let A be initial in a class C of 2-algebras. Then an algebra

A' is also initial in C if and only if A is 2-isomorphic to A'; in

fact, there is a unique 2- isomorphism from A to A'.

It is standard practice in algebraic semantics to "identify" isomor-

phic objects, that is, to treat them as identical. Thus we may speak of
"
the initial algebra" in a class of 2-algebras C, for any two initial

algebras are isomorphic, and there is a unique isomorphism from one to



the other. The wonderful thing about initiality is that it characterizes

uniquely up to isomorphism; that is, it provides an abstract characteri-

zation, up to isomorphism. This observation is very important in the

study of abstract data type [GTW 78].

2.1.4. Term Algebras, Initial and Free Algebras

One thing we obviously need is a general existence theorem for

initial algebras; we want to know that these objects exist and something

about what they look like. In this subsection, we will give an term

algebra (or Herbrand universe) construction for an initial 2-algebra T-

by mutual recursion among sets of 2-terms. To be general enough, given a

S-sorted signature 2 we directly start to define the S-indexed family of

2-terms with variables (or generators) from an indexed family of sets,

X = <X
! s € S> . This will give us the carrier of the 2-algebra freely

generated by X.

We assume that the sets X are pairwise disjoint and also disjoint

with 2 . The union X = U X is called set of variables w.r.t. 2.

S€S
S

Given a S-sorted signature 2 and the set of variables X, we have

Definition 7: The S-indexed set of 2-terms T„(X) = <T- (X) j s€S > is

recursively defined (over the set 2 U X U {£.,.!}, here 2 ambiguously

denotes the set of all operator symbols in the S-indexed signa-

ture 2, i.e. U{2 !w€S*, s€S} ) by:
W id

(1) X
s

U 2
X,s = T

2, S
(X > ;

(2) if cre2
1

and tieT- .(X) then o£tl. . .tnJeT- (X).

Now we make T~(X) into a 2-algebra by defining the operations o for

each operator symbols in the signature 2.

Definition 8: (1) For a€2 N , a = a € T_ (X).
X,S T Z,S

(2) For a€2 . and tieT- -(X),
si . . .sn,s z,si

o (tl,. ..,tn) = altl...tnl € T- (X).

8



Then we have the following theorem:

Theorem 9: Let I„: X—»-T-(X) be the S-indexed family of set injections of

of the variables X into the carrier of T-(X). Then <I
X
,T-(X)> is the

algebra freely generated by X in the class of 2-algebras. That is,

for any 2-algebra A and any map h: X—*-A (again, S-indexed family)

there exists a unique 2-homomorphism h*: T^(X)—»-A such that Iyh^h*.

i.e. the following diagram commutes:

*-T
2
(X)

The essential result is as follows:

Theorem 10: T_(0)=T_ is the initial 2-algebra.

2.1.5. Equations

The initial algebra T- is sometimes called the anarchic 2-algebra,

since it obeys no laws at all. It provides only a beginning point

because we want to consider initial (and free) algebras in the class of

algebras which are constrained to satisfy certain "laws" or "axioms" or

"equations" . The carriers of such initial 2-algebras that satisfy

certain equations will consist of equivalence classes of 2-terms. We use

T_(X) as syntax for presenting classes of algebras satisfying certain

properties.

Definition 11: A 2-equation of sort s is a pair e=<tl,t2>, where tl, t2

are in T- (X). An equational system over T-(X) is a set (family) E

of 2-equations.

Definition 12: Given a 2-algebra A, an assignment is a mapping from X to

to A: f :X—A.

9



By the Theorem 9, there is a unique 2-homomorphism from T_(X) to A,

i.e., a unique 2-homomorphism T„(X)—*A extending f; let us denote it f*.

we now have the following two definitions:

Definition 13: A 2-algebra A satisfies the 2-equation e=<tl, t2> if and

only if for every assignment f: X—»-A, f*(tl)=f*(t2). Given an

equational system E, A satisfies E if and only if A satisfies each

equation in E; in that case, A is called a ( 2, E)-algebra.

Definition 14: The pair (2,E) is called an equational presentation; and

the variety of E is the class of all ( 2, E)-algebras.

The following generalization of Theorem 6 says that there always are

initial ( 2, E)-algebras.

Theorem 15: For any signature 2 and equational system E, there is an

initial ( 2, E)-algebra.

2.1.6. Congruences and Quotients

Now we proceed to obtain the initial ( 2, E)-algebra, hereafter

denoted T- „. To do this we must have the following definition.

Definition 16: A 2-congruence , = on a 2-algebra A is a family

<=
I
s€S> of equivalence relations, = on A , with the substitution

s s s

property: for all a€2 . , if ai,bieA and if ai = bi (lli£n)
si. . .sn,s s v

then a.(al, . . .
,an) s o.(bl, . .

. ,bn)

If A is 2-algebra and = is a 2-congruence on A, let A/= be the S-indexed

family of sets equivalence classes, A/= = <A /= j s€S>. Let [a] (or

just [a] ) be the equivalence class of s€A . We now make A/= into a
s

2-algebra by defining the operations crA/= -

(1) if a€2
x g

, then °^B
= l°p^-

(2) if o€2 , and [ai]€(A/=) . then
si. . .sn,s si

o"
A/

,H ( [al] , . . . , [an] ) = [a
A
(al, . . . ,an)] .

Theorem 18: The A/= defined above is a 2-algebra, called the quotient of

10



A by =.

The initial algebra T_
E

is a quotient of T- by a congruence rela-

tion obtained from E. To make this precise, we first define the "congru-

ence relation generated by an (arbitrary) relation" on an algebra.

Theorem 19: Let A be 2-algebra, and let R be a relation on A. Then there

is a least 2-congruence relation on A containing R; it is called the

congruence relation generated by R on A.

The proof (see chapter 3 of [EM 85]) is highly nonconstructive and gives

no hint about how to determine whether some pair <a,a'> is in the

congruence. In the following we give a construction of a congruence from

a 2-algebra A and an equational system E over 2.

Theorem 20: Given a 2-presentation (2,E) and a 2-algebra A, the follow-

ing inductively defined family =p is a congruence on A:

(1) h*(L) ^ h*(R) for all (L,R) € E and h: X—A. where h*

denote the unique homomorphic extension of h.

(2) a^a, for all a € A and s e S.
c. s

(3) if a =« b then b =y a, for all a,b € A and s 6 S.

(4) if a =r, b, b =^ c then a =~ c, for all a,b,c e A and s € S.

(5) h_ has the substitution property (as in definition 16).

Moreover, =^ is the smallest congruence on A which satisfies pro-

perty (1).

We define T-
£
(X) to be T^X)/^, the quotient of the free 2-algebra

by the congruence relation =„ constructed above. Let IY : X—T^, ^(X) be

the canonical map, Iy:x—*[x], taking each x to the congruence class of x

relative to =„.
E

Theorem 21: <I
X , T-

E
(X)> is the algebra freely generated by X in the

class of all ( 2, E)-algebras: for any (2,E)-algebra A and for any set

map h:X—>A, there exists a unique homomorphism h*: T- „(X)—»-A such

11



that the following diagram commutes:

:
x

T^ «<X)•-^E

Similarly to Theorem 10, we have

Theorem 22: T
2 E

= T
2 E^ is the i"^ 1*1 (2,E)-algebra.

2.2. Equational Deduction and Term Rewriting

In this section, we describe a set of rules for equational deduction

that is sound and complete. Soundness means that applying the rules to a

given set of equations always yields equations that are satisfied by any

algebra that satisfies the original equations. And completeness means

that every equation satisfied by all algebras satisfying the given

equations can be deduced using the rules. In 2.2.3 term rewriting with

equations is briefly described.

2.2.1. Rules of Equational Deduction

By 2.1.5, Given a signature, an equation of sort s over 2 is a pair

<tl,t2> where tl and t2 are both 2-terms of sort s. We can also write

<tl,t2> as form tl=t2. An equation tl=t2 is satisfied by a 2-algebra A

iff all the equations of the form (VX) tl=t2 are satisfied by A, where X

includes all variables occurring in tl and t2. The following are the

rules of equational deduction, given an equational presentation (2,E):

(1) Reflexivity. Each equation (VX)t=t is derivable.

(2) Symmetry. If (VX)tl=t2 is derivable, then so is (VX)t2=tl.

(3) Transitivity. If the equations (VX)tl=t2, (VX)t2=t3 are

derivable, then so is (VX)tl=t3.

(4) Substitutivity. If (VX)tl=t2 is derivable, then for any map

h:X—

T

2
(Y), (VZ)h*(tl)=(VZ)h*(t2) is derivable, where

12



Z=XUY, h* is the unique homomorphism : T
2
(X)-VT

2
(Y)

.

(5) Abstraction. If (VX)tl=t2 is derivable, if y is a variable of

sort s and y is not in X, then (VXU{y})tl=t2 is deriable.

(6) Concretion. If (VX)tl=t2 is derivable, if x€X does not appear

in either tl or t2, and T- is not empty, then

(VX-{x})tl=t2 is also derivable.

2.2.2. Soundness and Completeness Theorems

This section gives the basic soundness and completeness theorems for

the rules of equational deduction given in 2.2.1. The proofs can be

found in [EM 85].

Theorem 23: Soundness. Given a set E of 2-equations, if an equation is

deducible from E using rules the (l)-(6), then it is satisfied by

every ( 2, E)-algebra.

Theorem 24: Completeness. Given a set E of 2-equations, then every

equation satisfied by all the ( 2, E)-algebras is derivable from E

using rules (1) to (6) in 2.2.1.

Soundness and completeness of a set of deduction rules together imply

that, for the class of (2,E)-algebras, the model theoretic notion of an

equation being satisfied by an (2,E)-algebra coincides with the proof

theoretic notion of the equation being derivable from the given equa-

tions by the rules of equational deduction.

2.2.3. Term Rewriting

Term rewriting with equations is well-known from elementary algebra

where arithmetic expression are simplified according to certain rules.

These rules, if applied to an expression, yield another expression which

is equivalent. It is shown ([EM 85]) that proving with equational deduc-

tion rules and term rewriting with equations are equally powerful

techniques for deriving equations.

Given a 2-signature, an equation (VX)tl=t2 such that each variable

occurring in its left-hand side tl also occurs in its right-hand side

t2, can be used as a rewrite rule as follows: A term t can be rewritten

13



to a term t' if t contains s subterm that is a substitution instance of

the left-hand side tl and t' is the result of replacing that subterm by

the corresponding substitution instance of the right-hand side t'. This

is often indicated with the notation t—»-t'.

Rewriting gives a unidirectional version of equational deduction.

Under mild conditions on a set E of 2-equations, every term can be

rewritten to a unique canonical form. This means that the initial

( 2, E)-algebra is computable, since we can decide the word problem by

rewriting and then comparing canonical forms. In this way, rewrite

rules provide an operational semantics for all computable algebras. The

evaluation of an expression is its canonical form after rewriting, and

equality of terms is decided by identity of their canonical forms. This

point of view is the basis for 0BJ3.

[GM 86] shows that if the rewrite rules satisfy two conditions then

the word problem is decidable, and can be decided by rewriting. The

following are the definitions of these two conditions:

Definition 25: Given an equational presentation (2,E), let —»• be the one

step rewriting relation (among 2-terms). Then a term tO is a normal

form relative to — if it cannot be further rewritten. The relation

— is called terminating if there is no infinite sequence of rewrit-

ings: tO—»-tl— . . .tn— . . . .

Notice that if a system is terminating, then every term rewrites to a

(not necessarily unique) normal form after a finite number of rewrit-

ings.

Definition 26: The — is called Church-Rosser if for each term tO and

each pair of rewritings tO —* tl and tO —»• t2 we have that tl and t2

rewrite to a common term t3.

That is, the rewrite rules should satisfy the conditions of terminating

and Church-Rosser.

2.3. Order-sorted Algebras and Rewriting

Order-sorted algebra is a generalization of many-sorted algebra.
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This generalization supports a theory of abstract data types with

multiple inheritance, subsort polymorphism, and an operational semantics

by order-sorted rewrite rules. The essence of order-sorted algebra is a

partial ordering < on a set S of sorts; this subsorts relation imposes

the restriction on an S-sorted algebra A that if s<s' in S then A £ A ,.
s s

The extension of MSA to OSA can be found in [GM 88] . It was shown that

essentially all concepts and theorems of MSA can be generalized to OSA

without complication. The important results of [GM 88] are those in the

order-sorted equational deduction, including a completeness theorem and

an initial algebra construction for conditional equations.
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Chapter 3
Algebraic Specification
Language OBJ3

In this chapter, we introduce the language features of algebraic

specification language 0BJ3. It provides flexible mechanisms of modula-

rization and parameterization to maximize conceptual clarity, modif iab-

lity and reusability. 0BJ3 was first implemented as OBJT in 1977 by

Joseph Tardo based on the error algebras. 0BJ2 was implemented during

1984-85 by Kokichi Futatsugi and Jean-Pierre Jouannaud following a

design based on order-sorted algebra. 0BJ2 reduces order-sorted rewrit-

ing to many-sorted. The current version of 0BJ3, which is used in this

project, was implemented in Kyoto Common Lisp. It uses a simpler, more

efficient operational semantics that does term rewriting directly at the

order-sorted level.

0BJ3 has four kinds of entity at its top level: objects, theories,

views and reductions. Objects and theories are both modules, and can

import other previously defined modules; because of such importation

dependencies, an 0BJ3 program is conceptually a graph of modules, rather

than a sequence. Modules have signatures that introduce new sorts and

new operations among both new and old sorts. An 0BJ3 object gives

executable code for the sorts and operations in its signature. An 0BJ3

theory defines properties that may (or may not) be satisfied by an

object. Both kinds of modules can be parameterized, and a parameterized

module comes with one or more theories to define its interfaces. A view

is a binding of the entities in a theory signature to entities in a

module, and also an assertion that the module satisfies the properties

stated in the theory. Thus, a view both indicates how to apply a parame-

terized module to an actual parameter, and asserts its semantic appro-

priateness. An 0BJ3 reduction evaluates a given expression relative to a
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given object by interpreting equations as rewrite rules.

In the following, we will introduce the structure of 0BJ3 objects,

parameterized modules and module hierarchies.

3.1. Objects

The most basic 0BJ3 unit is the object, which encapsulates execut-

able code. Syntactically, an object begins with the keyword obj and ends

with endo, and has four main parts: (1) a header, containing its name,

parameters, interface requirements; (2) a signature, declaring its new

sorts, subsort relationships, and operations; (3) declaration of import-

ed module list; and (4) a body, containing equations. The keywords obj

. . . endo delimits an object and indicate that initial algebra semantics

is intended for it.

0BJ3 has many built-in objects such as NAT, INT for natural numbers

and integers; QID for identifiers; and BOOL for truth values.

3.1.1. Sorts, subsorts and retracts

Sorts are similar to types in conventional strong typing programming

languages. Sort declaration in 0BJ3 has the following syntax:

sort ( <SortName> )+ .

where ( <SortName> )+ means one or more occurrences of <SortName>, and

<SortName> can be an identifier.

Based on order-sorted algebras, 0BJ3's flexible subsort mechanism

provides operation overloading that enables a simple but powerful

polymorphism, and multiple inheritance in the sense of object-oriented

programming that permits one sort to be a subsort of two (or more)

others, each having various defined operations; then all these opera-

tions are inherited by the subsort. In addition, with the subsort

mechanism, the difficulties for abstract data types, which are based on

many-sorted algebras, with operations that are "partial" (such as tail

for lists and push for bounded stacks) disappear by viewing the opera-

tions as total on the right subsorts (see the example in 3.1.5).

The basic form of a subsort declaration in 0BJ3 is

subsort <SortNamel> < <SortName2>
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meaning that the set of things of <SortNamel> is a subset (not neces-

sarily proper) of the things of <SortName2> . The form

subsorts <SortListl> < <SortList2> < . . . .

can also be used, meaning that each sort in <SortListl> is subsort of

each sort in <SortList2>, and so on; the elements of the various lists

must be separated by blanks. 0BJ3 checks for cycles of subsorts, and

complains if it finds any.

Based on subsorts mechanism, 0BJ3 provides retracts to combine the

flexibility of untyped languages with the benefits of strong typing. In

a strong typed language, certain expressions may fail to typecheck at

compile time, although intuitively they have a meaningful value. For

example, if the factorial function is only defined for natural numbers,

then, strictly speaking, the expression ((-6)/(-2))! is not well-formed,

since the argument of the factorial function is a rational number.

However, since it might actually evaluate to a natural number, 0BJ3

gives such an expression the "benefit of the doubt" at run-time through

retracts to lower the sort of a subexpression to the required subsorts.

In the above expression, the parser inserts the retract

r r> *.vm ±.
: Rat _> Nat

Rat>Nat

to fill the gap, yielding the expression (r
R

. „ , ((-6)/(-2))! . Retracts

disappear only if their arguments have the required sorts.

3.1.2. Operations

0BJ3 lets users define any syntax they like for operations, includ-

ing prefix, infix, or more generally, mixfix, to make it maximally

appropriate for any given problem domain. Obviously, there are many

opportunities for ambiguity in parsing such a syntax. 0BJ3's convention

is that an expression is well-formed if and only if it has exactly one

parse. An integer precedence attribute can be given to eliminate the

ambiguity in the parsing (see 3.1.3 below).

There are two forms for declaring an operation. The first is the

usual functional form of parenthesized prefix with commas. The general
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syntax for such declaration is

op <Op-Id> : <SortList> -> <Sort> .

For example,

op f : SI S2 -> S3 .

indicates f(X,Y) of sort S3 for sort X of sort SI and Y of sort S2.

Commas are required as separators in well-formed expressions using this

syntactic form.

The second case, mixfix form, uses place-holders indicated by an

underbar character. The syntax for mixfix operation declarations is

op <form> : <SortList> -> <Sort> .

where <form> is a non-empty string of characters containing exactly as

many underbars as there are sorts in <SortList> . This form can be used

in prefix, infix and outfix declarations as well. For example

op top_ : Stack -> Nat .

is a prefix declaration, and

op {_} : Int -> Set .

op _+_ : Nat Nat -> Nat .

are outfix, and infix declarations respectively. A mixfix declaration

for conditional is

op if_then_else_f i : Bool Nat Nat -> Nat .

In fact, 0BJ3 provides such a built-in conditional operation for each

sort, so that users do not have to define it themselves.

Sorts, subsort relationship, and operations combined give a signa-

ture of the underlying order-sorted algebra for the object. So between

the : and the -> in an operation declaration comes the arity of the

operation, and after the -> comes its value sort. Constant declarations

have no underbars and have empty arity.

3.1.3. Operator attributes

0BJ3 allows users to specify certain properties of an operation as

attributes at the time of its syntax declaration. These properties

include axioms like associativity, commutativity, and identity that have

both syntactic and semantic consequences, as well as the others that

19



affect order of evaluation (E-strategy), and parsing (precedence). Such

attributes are given in square brackets after the syntax declaration:

op <form> : <SortList> -> <Sort> [ (<attri>)+ ] .

where <attri> can be assoc, coram, id: <op-id> where <op-id> is a cons-

tant operator, memo, prec n where n is an integer, and strat followed by

a sequence of natural numbers.

For example, in

op _or_ : Bool Bool -> Bool [assoc id: false] .

assoc indicates that or is an associative binary infix operation on

boolean values. This means that the parser does not require full paren-

thesization. It also gives the semantic effect of an associativity

axiom. The attribute id: false gives the effects of the identity equa-

tions (B or false = B) and (false or B = B).

The attribute coram has the expected effect.

An integer precedence attribute can be given for parsing; the lower

the integer, the higher binding the operation. For example, the built-in

object INT might have

op _+_ : Int Int -> Int [assoc prec 8] .

op _*_ : Int Int -> Int [assoc prec 5] .

so that the expression A + B * C is parsed as expected A+(B*C).

Given an operation, the attribute memo causes the results of evalu-

ating any term headed by this operation to be saved; thus the work of

reduction is not repeated if that term appears again. 0BJ3 uses hashing

to implement this efficiently.

In general, a large parsed tree of expression will have different

sites where rewrite rules might apply, and the choice of which rules to

try at which sites can strongly affect both efficiency and termination.

Each of 0BJ3's operations can have its own evaluation strategy. An

E-strategy is a sequence of natural numbers given as an operation

attribute to help determine where and in what order to apply rules. For

example, if_then_else_fi has the strategy (1 0), which says evaluate the

first argument until it is reduced, then apply rules at the top (indi-

cated by 0); whereas _+_ (on Ints) might have strategy (1 2 0), which
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says evaluate both arguments before attempting to add them. The keyword

strat is used in the attribute list for user defined E-strategies, as in

op _+_ : Int Int -> Int [assoc id : coram strat (12 0)] .

Default E-strategies are determined by looking at the rules for an

operation to see which arguments have non-variables terms; those are the

arguments that must be evaluated before rules are applied at the top.

3.1.4. Equations

So far we have considered mostly syntax. In addition to the mathema-

tical semantics that is based on order-sorted algebra, 0BJ3 has an

operational semantics based on order-sorted rewriting. The semantics of

an object is determined by its equations. Equations are written declara-

tively and interpreted operationally as rewrite rules, which replace

substitution instances of lefthand sides by the corresponding substitu-

tion instances of righthand sides.

The basic syntax for an equation in 0BJ3 is

eq : <expl> = <exp2> .

where both <expl> and <exp2> are well-formed 0BJ3 expressions. There are

also conditional equations, with syntax

ceq : <expl> = <exp2> if <bexp> .

where <bexp> is an expression of sort Bool. The built-in object BOOL is

implicitly imported into every module.

All the above expressions can use variables that have been previous-

ly declared with the syntax

var <var-name-list> : <sort> .

where the variable names in the var name list are separated by blanks.

For example,

var I J K : Nat .

3.1.5. An example

Finally we conclude section 3.1. with an 0BJ3 specification of

integer list.

obj INT-LIST is sort List NeList .

protecting INT .
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subsorts Int < NeList < List .

op nil : -> List .

op ..^ : List List -> List [assoc id: nil prec 5] .

op mLjm : NeList List -> NeList [assoc prec 5] .

op head_ : NeList -> Int [prec 6] .

op tail_ : NeList -> List [prec 6] .

var N : Int .

var L : List .

eq : head N L = N .

eq : tail N L = L .

endo

The module importation declaration protecting INT will be discussed in

3.3. For now, we just claim that it will import the sort of the built-

in object INT, Int, into the object INT-LIST. The specification intro-

duces a subsort NeList of nonempty lists to make the (traditional

partial) head and tail operations total. The precedence attributes of

the operations help to reduce the use of parentheses, so that head N L

will be parsed as head(N L) as expected.

Given the above specification, we can let 0BJ3 to evaluate expres-

sions for us. For example:

0BJ3> reduce in INT-LIST as :

tail 2 nil 3 nil 4 nil .

reducing term: (tail (2 (nil (3 (4 nil))))
reduction result NeList: (3 4)

The characters in bold San Serif are input by user.

3.2. Parameterized modules

In 0BJ3, there are two kinds of module: objects that encapsulate

executable code, and define abstract data types; and theories that

specify both syntactic structure and semantic properties of modules.

Each kind of module can be parameterized, where actual parameters are

modules too. Interfaces of parameterized modules are defined by theo-

ries, thus include semantic as well as syntactic constraints. For

parameter instantiation, a view binds the formal entities in an inter-

face theory to actual entities in a module, and also asserts satisfac-

tion of the theory by the module. Parameterized modules maximize reusa-

bility by permitting "tuning" to fit a variety of applications.
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3.2.1. Theories and parameterization

A theory defines the interface of a parameterized module, i.e., the

structure and the properties required of an actual parameter for mean-

ingful instantiation. In general, 0BJ3 theories have the same structure

as objects. The difference is that objects are executable, while theo-

ries just define properties. Semantically, a theory has a variety of

models, all the order-sorted algebras that satisfy it, whereas an object

has just one model (up to isomorphism), its initial algebra.

We give some examples here. First, the built-in requirement theory

for an interface that only requires designating a sort from an actual

parameter

:

th TRIV is

sort Elt .

endth

Next, the theory of total ordered sets, which are like partially ordered

sets but for every pair of elements in the set the relation holds in one

way to other. Its models have a binary infix Bool-valued operation <

that is reflexive and transitive.

th TOTORD is

sort Elt .

protecting BOOL .

op _<_ : Elt Elt -> Bool .

var El E2 E3 : Elt .

eq : El < El = false .

eq : (El == E2) or (El < E2) or (E2 < El) = true .

ceq : El < E3 = true if El <= E2 and E2 <= E3 .

endth

A parameterized object mav have one or more requirement theories;

these are given in square brackets after object name. The requirement

theories must have been defined earlier in the program. The following is

a parameterized STACK object using the theory TRIV above.

obj STACK[X :: TRIV] is

sort Stack NeStack .

subsorts Elt < NeStack < Stack .

op empty : -> Stack .

op push : Elt Stack -> NeStack .

op top_ : NeStack -> Elt .
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op pop_ : NeStack -> Stack .

var X : Elt .

var S : Stack .

eq : top push(X.S) = X .

eq : pop push(X.S) = S .

endo

3.2.2. Views and instantiation

A module can satisfy a theory in more than one way, and even if

there is a unique way, it can be arbitrarily difficult to find. A view

provides a notation for describing the particular ways that modules

satisfy theories.

A view v from a theory T to a module M, indicated v: T=>M, consists

of a mapping from the sorts of T to the sorts of M preserving the

subsort relation, and a mapping from the operations of T to the opera-

tions of M preserving arity, value sort, and the attributes assoc, comm,

and id:, such that every equation in T is true of every model of M. The

syntax for view is as follows:

view <ViewName> of <0bjName> as <ThName> is

(sort <Sort> to <Sort> .
)*

(var <VarList> : <Sort> .
)*

(op {<Sort>} : <OpExp> to {<Sort>} : <Term> .
)*

endv

where (...)* means zero or more occurrences, and (...) means optional.

We can define a view from TOTORD to INT as follows:

view VINT of INT as TOTORD is

sort Elt to Int .

var E E' : Elt .

op Bool : E < E' to Bool : _>_ .

endv

which is a view using the > relation in INT.

Instantiating a parameterized object means providing actual objects

satisfying each of its requirement theories. In 0BJ3, the actual objects

are provided through views. For example, if P[X :: TOTORD] is a parame-

terized object, then we can form

obj M is protecting P[VINT] . endo

0BJ3 also provides default views to avoid using explicit view
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definitions whenever possible. We are not going to discuss the issue

here, for details see [G 87]. As a special case, every module has a

default view from TRIV using its primary sort as the target for Elt. So

given STACK[X : : TRIV] defined above, we can directly write instantiated

object STACK[INT], which specifies stack of integers.

3.3. Hierarchy of modules

0BJ3 modules can import other modules in three different ways,

using, protecting and extending. These define three different restric-

tions on preserved properties of imported modules, and thus define three

corresponding partial orders (i.e., hierarchies) among modules. The

using hierarchy is the most general, and embeds the other two.

The syntax for importing modules is

protecting
extending <ModuleList>
using

where <ModuleList> is a list of module expressions, in particular, it

can be a list of module names.

The meaning of these three import modes is related to the initial

algebra semantics of objects, in that an importation of module M' by M

is:

1. protecting iff M adds no new data items of sorts in M', and also

identifies no old data items of sorts in h"

;

2. extending iff M identifies no old data items of sorts in M'; and

3. using if there are no guarantees at all.

"Protecting" is the most restrictive relation, indicating that both the

"no confusion" and "no junk" properties are preserved, and thus the

imported module remains unchanged, hence the code can be shared. It has

the advantage that it guarantees the E-strategies of imported operations

do not need to be recomputed. "Extending" is an easy-to-check sufficient

condition for "no confusion" , requiring that the operations defined in

an imported module do not occur as topmost symbols on the lefthand side

of a new equation. For an extending importation, the E-strategies

associated to the imported operations may have to be recomputed (see
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[G 87]). "Using" is implemented by copying the imported module's text,

without copying the modules that it imports; if desired, these can also

be copied, just by listing them in the using <ModuleList> as well. For

"protecting" and "extending", if a module M imports a module h" that

imports a module h"', then h" ' is also imported into M.

The renaming mechanism in 0BJ3 allows one to rename the sorts and

operations in the imported module by using sort mapping and operation

mapping. For example,

obj INTSTACK is

protecting STACK[INT] * (sort Stack to IntStack) .

endo
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Chapter 4
Algebraic Denotational
Spec ifications Using OBJ3

Since its invention, denotational semantics has become a powerful

tool for the design and development of programming languages. Now more

and more languages are given denotational semantics and studied and

implemented based on their denotational definitions. Its popularity also

gives rise to the necessity for structuring semantic definitions. It has

been realized that even fairly simple definitions are usually wrong as

first written and need to be debugged in the same way that programs are;

this is especially true for the students who are just beginning to learn

denotational semantics. In this and next chapters, we are going to study

the method of using algebraic specification language 0BJ3 to give

denotational definitions for the programming languages. Since 0BJ3

provides modularization and parameterization mechanisms for the semantic

definitions, the resulting definitions are more readable and comprehen-

sible; and since our definitions can actually be executed, the resulting

definitions are more trustworthy.

Our semantic definitions are denotational, in the sense that mean-

ings are always elements of particular abstract data types, i.e. the

initial algebra of 0BJ3 specification of a semantic domain. Our specifi-

cation are also compositional, in the sense that the meaning of each

syntactic phrase is composed from the meaning of its component phrases

by the abstract syntax. The proposed structure of semantic definitions

in 0BJ3 follows closely to that of standard denotational semantics (of

[Sc 86]). Hence we can easily test the correctness of the original

denotational definitions, or write denotational definitions directly in

0BJ3 language.

The major difference between our (algebraic) denotational defini-
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tions and standard denotational semantics is that our specifications of

semantic definitions are first-order in nature. Because 0BJ3 is a first-

order algebraic specification language, we have to specify every syntac-

tic domains, semantic domains and valuation functions as first-order

objects. Denotational semantics use curried operations widely in the

semantics algebras and valuation functions. In our specifications we

have to decurry those operations; 4.2.2 explains this in detail. The

other major difference is that we adopt sets (or predomains) as the

semantic domains. It is necessary because in our 0BJ3 specifications, we

are actually using the initial algebra of domain specification as

semantic domains for the languages.

In this chapter we will first briefly introduce some basic concepts

of denotational semantics. The accounts are mainly based on the book

[Sc 86] . Following is the presentation of the basic structure of our

algebraic denotational specifications. We will discuss the specification

of syntactic domains from the abstract syntax. The problem of semantic

domain specification is left for the next chapter, which will also

describe three complete language definitions included in the appendixes.

4.1. An Introduction to Denotational Semantics

In the early 1970 's, Scott and Strachey developed a mathematical

approach to the programming language semantics ( [Sc 86] , [St 77] ) . In

their approach, a language is given semantics by mapping each of its

syntactic constructs into a set of mathematical domains, called domains

of denotation. The success of this approach depends on how nice and

convenient the mathematical properties of these domains are, and whether

these domains are powerful and general enough to be used in giving

semantics to a large class of programming languages. In fact, a number

of existing languages, such as ALGOL60, Pascal, and LISP, have been

given denotational semantics. This approach has also been used to help

design and implement languages such as Ada, CHILL, and Lucid.

The denotational semantics are compositional semantics in the sense

the meaning of a phrase is determined by the meaning of its constituent
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subphrases. Typically, a denotational definition consists of three

parts: abstract syntax of the language, semantic domains (value do-

mains), and valuation functions that map the syntactic categories into

semantic domains. In the following, we introduce some basic concepts

with respect to these three components.

4.1.1. Abstract Syntax

Syntax of programming languages is usually given in BNF form. A

formal description of the syntax involves a precise specification of the

alphabet of allowable symbols and a finite set rules specifying how

symbols may be grouped into expressions, commands, and programs. There

are two kinds of syntax: one to determine the derivation of a phrase,

called concrete syntax, and one to determine the semantics of a phrase,

called abstract syntax. In denotation semantics, we assume that phrases

are represented as a derivation tree after parsing. Hence we are dealing

with abstract syntax, the ambiguity in grammar does not concern us.

Abstract syntax describes structure of the language. Set theory

gives an abstract view of abstract syntax. Each nonterminal in a BNF

definition names the set of those phrases that have the structure

specified by the nonterminal's BNF rule. In denotational semantics, the

Figure 4.1 Abstract Syntax for Language BL0K1

P € Program
K e Block
D e Declaration
C € Command
E € Expression
B € Bool-Expression
I € Identifier
N € Numerals

P : := begin K end
K : := let D in C
D : := Di ; D2 ! Const I N

J
Var I

C : := Ci ; C2 ! I := E ! while B do C
E : := Ei + Ez ! I ! N
B : := Ei eq E2 ! not B

if B then Ci else C2
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term syntax domain is used to stand for a collection of values with

common syntactic structure; and a language's syntax is given by listing

its syntax domains and its BNF rules. Figure 4.1 is an abstract syntax

defining a block-structured language BL0K1, whose semantics is defined

in Appendix A.

4.1.2. Semantic Domains

In denotational semantics, the sets that are used as values spaces

are called semantic domain. Scott's domain theory provides least fixed

point semantics to the recursive specification of domains and functions

among domains ([Sc 86], [St 77]). In technical terms, Scott domains are

complete partially-order-ed sets. A partial order is a transitive,

reflexive, and antisymmetric relation. A partially ordered set S is

called directed if, for any x, y € S, there exists a z e S such that

x E z and y ^ z, i.e., any two elements of S have an upper bound in S. A

partially ordered set D is called a complete partial order (cpo) if it

has a least element, which is called 1, and any directed subset of D has

a least upper bound (lub) in D.

Sets also make good domains (see ch.3 of [Sc 86]). A predomain is a

epos that may lack the least element J_. Hence an ordinary countable set

S may be regarded as a predomain. Since we can define the order of count

as the partial order, and obviously S is directed for given any x,y € S,

if y is counted after x, then y E x. As we shall see, sets work well in

our algebraic denotational specifications of semantics.

Accompanying a domain is a set of operations. A domain plus its

operations constitutes a semantic algebra.

A primitive domain is a set whose elements are atomic. The domain

Nat defined as following is a commonly used primitive domain in denota-

tional definitions.

Domain Nat = N
Operations

zero, ione, two, . : Nat
plus : Nat Nat — Nat
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The operations zero, one, two,... are constants. Each of the members of

Nat is named by a constant. The plus operation is the usual function.

Another widely used primitive domain is truth values Tr.

As expected, there are domain building constructions for creating

new domains from existing ones. Each domain builder carries with it a

set of operation builders for assembling and disassembling elements of

the compound domains. The product (x) construction takes two or more

component domains and builds a domain of tuples from the components. The

construction for unioning two or more domains into one or more domains

into one domain is disjoint union. Given domains A and B, the disjoint

union builds the domain A+B, a collection whose members are the elements

of A and the elements of B, labeled to mark their origins. The last

domain construction is the function space builder (—*). For domains A

and B, the function space builder — creates the domain A—*B, a collec-

tion of functions from domain A to range B. See [Sc 86] for a detailed

description of these compound domains.

4.1.3. Valuation Functions

The valuation function maps a language's abstract syntax structures

to semantic domains. The domain of a valuation function is the set of

derivation trees of a language. The valuation function is defined

structurally. It determines the meaning of a derivation tree by deter-

mining the meanings of its subtrees and combining them into a meaning

for the entire tree. The valuation function is actually a collection of

functions, one for each syntactic domain. A valuation function D for

syntactic domain D is listed as a set of equations, one per option in

the corresponding BNF rule for D.

Figure 4.2 (from [Sc 86]) is the denotational definition of binary

numerals. It gives a good illustration of the structure of denotational

definitions.

4.2. Algebraic Denotational Specifications

The basic structure of our specifications follows closely to the
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Figure 4.2: Denotational Definition of Binary Numerals

Abstract syntax:
B € Binary-numeral
D € Binary-Digit

B : : = BD \ D
D ::=

! 1

Semantic algebras:
I . Natural numbers

Domain Nat - N
Operations
zero, one, two, ... : Sat
plus, times : Nat Nat —* Nat

Valuation functions:
B : Binary-numeral —* Nat

BffBDE = (BUB I times two) plus DdDL
BCD I - DUD

I

D : Binary-Digit — Nat
DttOD = zero
DC1B = one

structure of denotational definitions. Given a denotational definition,

we first specify an object SYN that is a specification of syntactic

domains from the abstract syntax portion of the definition; then we give

specifications for each of the semantic domains used in the definition.

Finally the valuation function is specified as the mapping among the

domains given above within an object called VAL.

In the following, we explain the basic structure of our specifica-

tions. The problem of specifying semantic domains is only briefly

discussed and the detailed accounts postponed to the next chapter.

Sections 4.2.1, 4.2.3, and 4.2.4 present the basic components of the

specification corresponding to those of denotational definition, and

4.2.2 discusses the transformation of decurrying that is used in the

specifications of semantic algebra operations and valuation functions.
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4.2.1. Abstract Syntax and Syntactic Domains

Our approach of writing specifications for syntactic domains from

given abstract syntax coincides with that proposed in [GTWW 77] , which

was introduced as an application of initial algebra semantics to the

semantics of abstract syntax. [GTWW 77] noted that initial algebra

semantics formalized the abstract syntax by characterizing (up to

isomorphism) the algebra of parse trees of a context-free grammar as the

initial algebra over a certain signature corresponding to the grammar.

Here we are only interested in writing correct algebraic specification

(in 0BJ3) from given abstract syntax, i.e. the initial algebra of the

specification that reflects the syntactic domain of the language.

In the following, we illustrate the process of deriving 0BJ3 objects

of syntactic domains from the abstract syntax. [GTWW 77] and [GM 86]

described the general process of constructing a signature 2(G) from the

grammar G.

Let G=<N,T,P> be any context free grammar, where N is a set of

nonterminals, T is a set of terminals, and P 9 N x (N U T)* is a set of

productions. We specify an 0BJ3 object G with sort set N and operations

among N as follows, for each p e P:

(1) if p is of form A : := B, where A, B € N, then

subsorts B < A .

is declared within obj G, meaning the syntactic domain of B is

contained in that of A.

( 2

)

if p is of form A : : = t , where A € N , t € T , then

op t : -> A .

is declared in G, meaning t is a constant of sort A.

(3) if p is of form A : := SO Al SI . . . An Sn, where Si € T* and

Ai € N, then a mix-fixed operator is declared

op S0_S1_. . ._Sn : Al . . . An -> A .

Usually, no equations will be given within object G. In case (3) the

attribute prec (precedence of the operator) may be given to help parse

the expression appropriately.
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We illustrate the procedure with an example. Figure 4.1 is an

abstract syntax for the language BL0K1. Note that identifiers and

numerals are left unspecified. A corresponding 0BJ3 specification of the

syntactic domain is given in Figure 4.3.

In the object SYN-DOM, the built-in object NAT and QID are imported

through "protecting" to stand for the syntactic domains Numerals and

Identifiers. QID provides identifiers with the operations of equality

and lexicographic order built-in, and QID identifiers begin with the

apostrophe symbol, e.q., 'a, 'b, '100, etc. The object introduces sorts

corresponding to all the syntactic domains listed in the grammar other

than Numerals and Identifiers: Prog, Decl, Com, Expr, and Bexpr, fur-

ther, imported sorts Nat and Id are declared as subsorts of Expr since

they are part of the expressions, and Block is declared as subsort of

Com for the similar reason.

Figure 4.3: 0BJ3 Specification of BL0K1 Syntactic Domains

obj SYN-DOM is

sorts Prog Block Decl Com Expr Bexpr .

protecting NAT .

protecting QID .

subsorts Nat < Expr .

subsorts Id < Expr .

subsorts Block < Com .

op begin_end : Block -> Prog [prec 9] .

op _;_ : Decl Decl -> Decl [assoc prec 6] .

op Var_ : Id -> Decl [prec 5] .

op Const__ : Id Nat -> Decl [prec 5] .

op _;_ : Com Com -> Com [assoc prec 6] .

op _:=_ : Id Expr -> Com [prec 5] .

op while_do_ : Bexpr Com -> Com [prec 5] .

op if_then_else_ : Bexpr Com Com -> Com [prec 5] .

op _+_ : Expr Expr -> Expr [prec 3] .

op _eq_ : Expr Expr -> Bexpr [prec 4] .

op not_ : Bexpr -> Bexpr [prec 4] .

endo
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The use of precedence attribute deserves more explanations. As we

can see from the example, 0BJ3's flexible mix-fixed operation declara-

tions give us natural and readable form of specification directly from

the grammar. But due to the ambiguity nature of the grammar appeared in

the denotational definition, we often need to use meta-symbols "(" and

")" in the phrases to help 0BJ3 parse correctly and successfully.

Fortunately 0BJ3's mechanism for assigning precedence to operator

symbols reduce the use of parentheses to a minimum. The principle of

assigning precedence attribute to operator symbols is as follows. For an

operator p of rank Al ... An -> A, for any Ai, if all operator symbols

of sort Ai do not have A in their arities, then the precedence of p

should be lower (hence the larger number assigned) than those of all

these operator symbols. Therefore, Ei eq E2 has lower precedence than

Ei + E2 so that "Ei + E2 eq E3" will be parsed as "(Ei + E2) eq E3" as

expected without the use of parentheses. For the same reason, "_:=_" has

lower precedence than "_+_", and "let_in_end" has lower precedence than

all the operator symbols of sorts Decl and Com.

The attribute assoc is also used in the composition operators "_;_"

of both ranks "Decl Decl -> Decl" and "Com Com -> Com" to reduce the

use of parentheses and enhance the readability. As another principle,

the precedence of composition operator of sort A is usually lower than

those of other operators of the same sort A. For example, "_;_" of sort

Decl has the lower precedence than those of "Var_" and "Const " so that

Var 'x ; Var 'y ; Const 'n 2

will be parsed as

((Var 'x) ; ((Var y) ; (Const 'n 2))).

With the specification shown in Figure 4.4, only "If_then_else_" or

"while_do_" may need parentheses to group the commands of "then" and

"else" or "do" components. For example, the following piece of program

will get parsed successfully

begin
let

Var 'x ; Var 'y ; Const 'n 10
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in

'x := 'n ;

if 'x eq 7 then ( 'y := 1 ; 'x := 'x + 'y)

else if not ( 'x eq 3) then 'y := 2 else 'y :- 3 ;

'y := 'x + 'n

end

4.2.2. Decurrying and Lambda-lifting

In denotational semantics, curried operations are used extensively

to define operations of semantic algebras and valuation functions. A

curried operation f has the functionality A1-+A2—...—»• An —*B that

take arguments one at a time. In our first-order algebraic framework,

however, we have to decurry curried operation f to its original form:

f: (Ai x A2 x...x An) -»• B. Since all domain Ai's are to be specified

by first-order objects in 0BJ3, and in denotational semantics f will

ultimately be used in a nested combination ((...((f Ei)E2>. . . )En), the

converted f is isomorphic to f (See [Sc 86], [Sc 86a]).

The decurrying transformation has a very close relation to a func-

tional language compilation strategy called the lambda-lifting [PJs 87],

which is aimed at transforming a lambda expression into a form in which

the lambda abstractions are particularly easy to instantiate. These

special lambda abstractions are called supercombinators. Following

[PJs 87], a supercombinator, $S, of arity n is a lambda expression of

the form: \xi.\xz. . .A_xh.E where E is not a lambda abstraction (this just

ensures that all the leading lambdas are accounted for by Ai..Ah) such

that

(1) $S has no free variables,

(2) any lambda abstraction in E is a supercombinator,

(3) and n>0, i.e., there may be no lambdas at all.

A supercorab inator definition is of form: $S n ... Ah = E. Thus a super-

combinator based compilation strategy will regard the supercombinator

definitions as a set of rewrite rules. A crucial point is that a super-

combinator reduction only takes place when all the arguments are pre-

sent. If we regard a supercombinator as a curried operation, the super-

combinator definition and its use as rewrite rules act just like a
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corresponding decurried operation.

From now on, we will specify any operations appeared in denotational

definitions in their decurried form without notice.

4.2.3. Sets and Semantic Algebras

As discussed in 4.1.2, countable sets (just called sets hereafter)

can be regarded as predomains, i.e., the Scott domain (epos) that may

lack, the bottom element. We claim that in our first-order algebraic

denotational specifications, sets are appropriate as semantic domain,

since the sequencing and termination questions are answered automatical-

ly by the operational semantics of our algebraic specification. The

other use of bottom element to denote error can be achieved by incor-

porating the single element domain Unit (Ch.3 of [Sc 86]). We shall see

that we can specify a large variety of denotational semantics using

sets.

The most important results of Scott's domain theory ([St 77],

[Sc 86] ) are the least fixed point semantics of recursive functions

among domains, and an inverse limit constructions of reflexive domains.

Since we are in the framework of first-order algebraic specification, we

can conveniently express fixed-point properties by equations, but we

cannot specify least fixed points directly (see [BW 87] for a discussion

of this issue). That means we cannot apply the least fixed point seman-

tics directly in our algebraic specifications. All we can do is to

express the fixed-point properties of the recursively defined functions

by equations, and hope that when regarding these equations as rewriting

rules, it will terminate in reduction. Hence given a recursively defined

function among domains, we can write equations for the function when

restricting to the corresponding predomains or sets. When the reduction

of the function application fails to terminate, we can say it evaluates

to the bottom element 1.

The domain theory also provides a solution to the recursively

defined domains (reflexive domains). For the similar reason we cannot

apply this solution in our first-order algebraic specifications. Section
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5.3 presents our solution to the recursively defined sets based on the

algebraic method.

To be specific, we regard the initial algebras of 0BJ3 specifica-

tions as semantic algebras in the semantic definitions. If elements of

any sort in a algebra constitute a countable set, this algebra can be

seen as a predomain. It is obvious that when limited to sets, compound

domain constructions of disjoint union, product, and function space

preserve sets, i.e., the results of constructions are also sets.

Having dealt with the above issues, we now concentrate on the

problems of writing correct specifications for the semantic domains. A

semantic domain (a set particularly) together with its operations

constitutes a semantic algebra. Although 0BJ3 provides natural way of

writing specifications for semantic algebras, it does impose special

difficulties because of its first-orderness. Most of the semantic

domains used in the denotational semantics are higher order, such as

store, environment, and continuation. Chapter 5 is devoted to the issues

of writing first-order specifications in 0BJ3 for semantic domains. In

this subsection, we only briefly cover the specification of primitive

domains

.

Primitive domains directly correspond to 0BJ3's object. 0BJ3 pro-

vides such built-in obj 's as NAT, INT, BOOL, QID (identifiers), etc. It

is easy to define other primitive semantics algebras in 0BJ3.

For example, in denotational definitions, the domain Unit that

contains only one element is useful for theoretical reasons. It can be

used as an alternative form of error value, which we will see later; it

can also be used whenever an operation needs a dummy argument. Following

is an 0BJ3 specification of domain Unit, the initial algebra of which

contains exactly one element.

obj UNIT is sort Unit .

op {} : -> Unit .

endo

As another example, the primitive domain of computer store locations

is fundamental to the semantics of programming languages. Although the
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members of domain Location axe often treated as numbers, they are

different in notion. Figure 4.4 is an 0BJ3 specification of the domain

Location. Note that the operator L is used to distinguish the Location

from natural numbers. In the specification, the built-in operator s of

NAT is a successor operator.

4.2.4. Valuation Function Specifications

The specifications of semantic mappings, i.e., valuation functions,

are done by importing syntactic domains and semantic domains involved

within an valuation object and specifying the valuation functions as

operations among the sorts of domains imported. Usually, a valuation

function in denotational definitions is in "curried" form, i.e., of the

form

f: S -— Al —...-* An — A

where S is a syntactic domain, each Ai and A are semantic domains. As

discussed in 4.2.2, in our specifications we will decurry the valuation

functions.

In the following, we give a specification (in Figure 4.5) for the

denotational semantics of binary numerals given in Figure 4.3. The next

chapter will explain the specifications of three denotational semantics

in the appendixes.

In Figure 4.5, the object SYN-DOM of syntactical domain is given

according to the method introduced in 4.2.1. The constant operators

Figure 4.4: Computer store location specification

obj LOCATION is sort Location .

protecting NAT .

op first-locn : -> Location .

op next-locn_ : Location -> Location .

op L_ : Nat -> Location .

var N : Nat .

eq : first-locn = L .

eq : next-locn (L N) = L (s N) .

endo
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Figure 4.5: Specification for Binary Numerals

obj SYN-DOM is sort Digit Binary .

subsorts Digit < Binary .

op : -> Digit .

op I : -> Digit .

op mmmm : Binary Digit -> Binary [assoc]
endo

obj VAL is
pr NAT .

pr SYN-DOM .

op B[_] : Binary -> Nat .

op D[_] : Digit -> Nat .

var B : Binary .

var D : Digit .

eq : B[ B D ] = (B[ B ] * 2) + D[ D ]

eq : B[ D ] = D[ D ] .

eq : D[ ] = .

eq : D[ I ] = 1 .

endo

and I of sort Digit stand for the binary digit and 1 respectively.

They are declared so as to distinguish them from the semantic and 1 of

sort Nat. Later in the three semantic definitions in appendixes, we no

longer attempt to make such distinguishes. In the other words, we will

use the built-in objects NAT and QID as both syntactical domains and

semantic ones. The only semantic domain appeared in Figure 4.1 is the

domain of natural numbers. In the object of valuation function, the

object NAT is imported to play the role of semantic domain natural

numbers. In the object VAL, the valuation functions of B and D are

declared as operations of forms

op B[_] : Binary -> Nat .

op D[_] : Digit -> Nat .

which are in mixed forms. As we can see, with such declaration, the

equations for B[_] and D[_] are almost in same form as those in the

original denotational definition.
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Chapter 5
Semantic Algebra Specifications

The semantic algebras play an important role in denotational seman-

tics. In this chapter we will present our methods of specifying various

semantic algebras in the first-order algebraic language 0BJ3. As pointed

out in the last chapter, in our specifications of denotational seman-

tics, we will adopt sets (in many-sorted algebras) instead of epos as

semantic domains. This is appropriate for our framework since the

initial (term) algebras of specifications are intended as semantic

domains. Most of semantic domains appeared in denotational semantics are

high order function domains, 5.1 will introduce two methods of convert-

ing them into first-order domains: defunctionalization and \-calculus.

In section 5.2, we will discuss the methods of specifying compound

domains. Section 5.3 introduces the specification of recursively defined

domains. We will present a solution to the recursive specification of

domains based on algebraic methods. Finally in section 5.4, we will

discuss the specification of a special kind high order domains: continu-

ations.

Throughout this chapter, three complete specifications of denota-

tional definitions contained in Appendixes will be used as illustrations

of our methods. Appendix A contains the direct semantics and its 0BJ3

specification for the block-structure language BL0K1. Appendix C gives a

similar language BL0R2 a continuation semantics and corresponding

specification. A specification of denotational semantics for an applica-

tive language PLISP is also given in Appendix B. Our experiences mainly

came from the efforts in giving 0BJ3 specifications for these three

moderate denotational definitions.

5.1. Function Domain Specifications

To specify function domains in first-order algebraic language 0BJ3,
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we have to convert them to first order domains. In this section, we are

going to introduce two ways in which a function domain D = A —»• B can be

converted to a first order domain. If function domain D has a finite

domain A, we would represent the members of D as tuples called the

closure of D. The process of conversion called defunctionaliza tion

( [Sc 86a], [Sc 86]). Otherwise, D has infinite domain A; we treat

members of D as lambda expressions and define X-calculus over D. We will

show that by using normal order reduction, we can eliminate the needs

for arbitrary renaming of variables in the substitution rules if the

expression started contains no free variables. Thus it is possible to

give complete specifications for the \-calculus in first-order equation-

al specification language 0BJ3.

5.1.1. Defunctionalization

Given a function domain D = A —* B, the abstraction, i.e., a D-

Figure 5.1: Parameterized Object for Defunctionalized Domain

th DOMAIN is

sort DElt .

pr BOOL .

op _eq_ : DElt DElt -> Bool .

endth

th RANGE is

sort RElt .

op ? : -> RElt .

endth

obj FUN [A :: DOMAIN, B : : RANGE] is

sort Fun .

op nullF : -> Fun .

op [_]_ : DElt RElt Fun -> Fun [strat (3 2 1 0)] .

op _ : Fun DElt -> RElt .

var x x' : DElt .

var y : RElt .

var f : Fun .

eq : nullF x' - ? .

eq •' ([xy]f)x' = if x eq x' then y else f x' fi

endo
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valued term, is represented by a list of tuples of form <a,b> where

a € A, b € B. Figure 5.1 gives a parameterized specification of such

defunct ionalized domain.

In the object FUN, a function is represented as a list:

[al,bl]...[an,bn] nullF

where ai is a member of domain A, bi a member of range B. nullF is a

function that maps every member of A to a designated member ? in B; it

is regarded as a start point to construct a function in the object FUN.

Note that the members of sort Fun in the object FUN are complete func-

tions in the sense they automatically map every member of A other than

those explicitly defined in the abstraction to a particular member of

B. The interface theory RANGE reflects the requirement of existence of

such element in any domain that is to be used as a range (codomain) of a

such function. The theory DOMAIN also requires a predicate on the

equivalence of two members of domain A.

Figure 5.2: Semantic Algebra Store

Domain v € Storable-Value - Nat + Uninitialized
where Uninitialized = Unit .

Operations
add : Storable-Value Storable-Value —* Storable-Value

add = \vl.\v2. cases(vl) of
isNat(nl)— ( cases(v2) of

isNat(n2)-*inNat(plus(nl,n2))
QisUninitialized( )—»>inUnintialized( ) end)

QisUninitialized( )—+inUninitialized( ) end

Domain s € Store = Location —* Storable-Value
Operations

newstore : Store
newstore - X2.inUninitialized()

access : Location —* Store — Storable-Value
access - Xl.Xs.sil)

update : Location —* Storable-Value —»• Store —* Store
update - XI. Xv. Xs. [ J+v]s
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The semantic algebra Store (see Figure 5.2) in denotational seman-

tics is often defined as a function from Location to a certain domain

Storable-Value. In figure 5.2, the semantic domain Storable-Value is

defined as a disjoint union of domain of natural numbers and a single

element domain called Uninitialized. The purpose of defining newstore as

a mapping from every location to the element of Uninitialized instead

of zero in Nat is to capture more potential errors in the definition of

language's semantics and errors in programs when using language's

semantic definition to perform verification and correctness proofs. As

the denotation for the operation update, function updating expression

"[-?—*-v],s" stands for the store that acts like s except that it maps the

specific value 1 to v.

Figure 5.3 is an 0BJ3 specification of semantic algebra Store by

instantiating parameterized object FUN to the actual objects LOCATION

and STORABLE-VALUE. The object LOCATION was specified in the last

chapter

.

In the object of STORABLE-VALUE, by importing NAT and declaring sort

Nat as a subsort of Storable-Value, and by declaring a constant opera-

tion "uninitialized" of sort Storable-Value, we actual get a specifica-

tion whose initial algebra contains exactly the disjoint union of Nat

and single element domain Unit. Section 5.2 will discuss in detail the

specification of compound domain. We used an overloaded operator + to

make our specification of the operator add much simpler. Since Nat is a

subsort of Storable-Value, when the arguments of + are all of sort Nat,

the expected operation plus (+) will be performed on them. Having

defined the views of LOCATION and STORABLE-VALUE as satisfied parameters

to the object FUN, the specification of object STORE is almost a direct

translation from the denotation in Figure 5.2. except that the opera-

tions are defined as "decurried" version of those in the original

denotational definition.

Note that the initial algebra of our specification of store is not

isomorphic to the semantic algebra in Figure 5.2, since there are more
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Figure 5.3: Store Specification

obj STORABLE-VALUE is sort Storable-Value .

pr NAT .

subsorts Nat < Storable-Value .

op uninitialized : -> Storable-Value .

op _+_ :

Storable-Value Storable-Value -> Storable-Value [assoc coram]

var N : Storable-Value .

eq : N + uninitialized = uninitialized .

endo

view VLOC of LOCATION as DOMAIN is

sort DElt to Loc .

var L L' : DElt .

op Bool : L eq L' to Bool : L == L' .

endv

view VSTVALUE of STORABLE-VALUE as RANGE is

sort RElt to Storable-Value .

op RElt : ? to Storable-Value : uninitialized .

endv

obj STORE is
pr FUN [VLOC, VSTVALUE]

* (sort Fun to Store, op (nullF) to (newstore)) .

op access : Loc Store -> Storable-Value .

op update : Loc Storable-Value Store -> Store [strat (3 2 1 0)]
var L : Loc .

var V : Storable-Value .

var S : Store .

eq : access L S = S L .

eq : update L V S = [ L V ] S .

endo

than one list of tuples corresponding to one abstraction of store. But

it is easy to show that every store that was representable using the

store operations in Figure 5.2 is representable using the 0BJ3 version

of specification. Furthermore, any reduction using a higher-order store

can be simulated by a reduction that uses the corresponding first-order

store.
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We will use the parameterized object FUN to specify another commonly

used semantic algebra Environment in section 5.2.3.

5.1.2. Lambda Calculus

Quite often we have to define a function domain D:A—»-B that does not

have a finite domain A. In this case, we may use some syntactic form to

record the abstraction of the function and specify certain reduction

rules when a value of B is needed in the function application. In this

way, functions can be treated as "first-order" objects, therefore we can

still use first-order algebraic specification to define such function

domains. Lambda notations are used extensively in denotational seman-

tics. In this subsection we attempt to specify the function domain by

regarding X-expression and its conversion rules as an implementation of

functions. The main advantage of this approach is its direct translation

of lambda expressions into our first-order algebraic specifications,

although it is less efficient than defunctionalization presented above.

In the following, we use lambda expressions with integer as an atomic

domain to illustrate our method. Note that actually we are going to give

a specification for the recusively defined domain E = Int + E —»• E.

Section 5.3 will discuss the specification of recursively-defined domain

in detail.

5.1.2.1. Lambda-expressions

The definition of X-expressions can be expressed by the following

syntax:

<expression> : := <variable>
<integer>
<expression ><expression

>

\<variable> . <expression

>

<expression>+<expression>
(<expression>)

Actually the primitive domain Integer can be any other domain, and the

primitive operation "+" can be any operations on this domain; more than

one operations can appear in the syntax. Here for illustration purposes

we keep everything as simple as possible.
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Following [St 77], we first introduce the notion of free and bound

variables. A variable x is said to be free in an expression E if

(1) E is the variable x, (not if E is y and yox, or E is

integer N); or

(2) E is application XY and x is free in X or Y; or

(3) E is abstraction \y.X, x, y are different and x is free

in X; or

(4) E is X+Y, and x is free in X or Y; or

(5) E is (X), and x is free in X.

Similarly, A variable x is said to be bound in an expression E if

(1) E is application XY, and x is bound in X or Y; or

(2) E is abstraction Xy.X, and x, y are same or x is bound in X; or

(3) E is X+Y, and x is bound in X or Y; or

(4) E is (X), and x is bound in X.

Note that a particular variable can occur bound at one place in an

expression and free at another place. Moreover, a particular occurrence

of a variable can be free in some subexpression, but bound in the

overall expression.

5.1.2.2. Substitutions

Given a function in the form of \-abstraction \x.M, the evaluation

of function application (\jf.M)N resorts to the substitution of the

variable x with N in the abstraction body M. The following substitution

rule ( [St 77] ) spells out in formal syntactic details exactly how to

substitute N for x in M.

Let a- be a variable and M and N expressions. Then [N/jt]M is the

expression h" defined as follows:

(1) If M is a variable,

(a) if M is x, then M'=N;

(b) if M is not x, then M'=M.

(2) If M is an application XY, M'=([N/at]X)([N/*]Y).

(3) If M is X+Y, M'=([N/*]X)+([N/a]Y).

(4) If M is an abstraction \y.X
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(a) if x=y, then h"=M;

(b) if xoy, and x is not free in X or y is not free in N,

then M' = \y. [N/x]X;

(c) if xoy, and x is free in X and y is free in N,

then h" = \z. [N/jr](0/y]X) where z is the variable that does

not occur free in N or X.

The first three cases are straightforward. Case (4)(a) applies on

encountering an abstraction whose bound variable is the same as that

being replaced; the new binding takes precedence and shields the body X

from the effects of the substitution. Case (4)(b) deals with those cases

where there is no possibility of a name clash, either because the body X

contains no free occurrence of the variable x (so no substitution will

in fact be performed) or because the expression N (to be inserted)

contains no free occurrences of y which would be caught by the bound

variable y of the abstraction \y. [N/jf]X. If these conditions are not

satisfied, then in case (4)(c) it is necessary to change the bound

variable y to some other name which does not clash.

5.1.2.3. Conversions Rules

Having formally defined substitution, we can introduce the conver-

sion rules for performing transformations on \-expressions. We write

X cnv Y to indicate that either side may be replaced by the other

whenever one of them occurs as an expression or as a subexpression of a

larger expression. The following are the three conversion rules.

a. If y is not free in M, then Xx.X cnv \y. [y/xYL.

B. (Xx.M)N cnv [N/*]M

f]. If a- is not free in M, then Xx.ftx cnv M.

We are interested in using these rules to evaluate X-expressions,

i.e., we try to eliminate as many abstractions as possible, alpha-

conversion does not help us in this, but the other two rules, when used

in the left-to-right direction, both replace an expression containing an

abstraction with some other expression that is much simpler. For this

reason this kind of conversion is called a reduction and the particular
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expression which is replaced is called a redex. Hence an expression of

the form (Xjr.M)N is called a beta-redex, and \x. (Mj>0 is called an eta-

redex if x is not free in M. When indicating a reduction we often use

the symbol red instead of cnv; A red B asserts that A may be transformed

to B by one or more reduction steps. When an expression contains no more

redexes, it is said to be in normal form. It is not always possible to

reduce an expression to normal form, i.e. the reduction may never termi-

nate. But if, in an effort to reduce an ^-expression, two different

reduction sequences terminate, the Church-Rosser Theorem guarantees that

the results will be the same (see chapter 5 of [St 77]). Thus no two

orders of evaluation can give different normal forms, although some may

fail to terminate.

5.1.2.4. Orders of Reduction

Two orders of reduction are often used in \-calculus. In normal

order evaluation, the leftmost redex is chosen to reduce at each stage.

Thus no expression in the argument position of a beta-redex is evaluated

until the redex has itself been reduced, which might eliminate the

argument from the expression altogether. Moreover, normal order reduc-

tion is guaranteed to terminate with a normal form if any order of

evaluation does. Another order of evaluation is applicative order. In

this order, the operator and operand of an application (ft-redex) are

separately evaluated to normal form before the ^-reduction is performed.

Although applicative order is less powerful than normal order since it

may fail to terminate while normal order can, it is often faster than

normal order when it terminates. This is because applicative order

evaluates operand only once before it is substituted into the body of

the operator, whereas normal order evaluates them as many times as

necessary after the substitution.

In the next subsection, we choose normal order reduction in our 0BJ3

specification. The main reason is that by using normal order reduction,

we can eliminate the need for case (4)(c) of the substitution rule if

the expression started contains no free variables, thus we can give
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first order specification of the substitution rule in 0BJ3. Case (4)(c)

of the substitution rule requires the naming of an arbitrary variable

that would not occur free in an arbitrary expression. In the following

we show that if the expression we start to reduce contains no free

variables and normal order reduction is used, then at any stage of

reduction case (4)(c) will never be applicable.

Now we show that for beta- and eta-reductions, if the redexes

contain no free variables, then (1) the results of one step reduction

contain no free variables either, and (2) for the ^-reductions, the

substitution involves no application of case(4)(c) in the substitution

rule. For a beta-redex (Xat.M)N containing no free variables, by the

definition of occurrences of free variables, N has no free variables and

M may contain free occurrences of the variable x but no other variables.

Then the result of one step 0-reduction [N/a:]M will also contain no free

variables since the only possible occurrences of free variable a- will be

replaced by N which contains no free variables. For an eta-redex Xx.(Hx)

containing no free variables, M contains no other variables than x,

moreover, M cannot contain the variable x since Xx.(Hx) is an eta-redex.

Therefore we prove the assertion (1). For (2), in the substitution

[N/*]M when M=\y.X, since N contains no free variables, y will not occur

free in N. Thus only case (4)(b) in the substitution rule applies.

Since normal order of evaluation always reduces leftmost (or outer-

most) redexs first, from the above accounts, it guarantees that if the

expression we start to reduce contains no free variables, at each stage

of the reduction the result will also contains no free variables.

Therefore, the normal order of evaluation will involves no application

of case (4)(c) in the substitution rule. Note that in denotational

semantics, or even in ^-calculus, it is the usually situation that the

expression at the beginning of the reduction contains no free variables.

Hence our assumption is reasonable in this respect.

The eta-rule does not help us if we are only interested in getting

primitive value whenever we can, and are not concerned about getting
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Figure 5.4: Specification for Lambda Calculus

obj INT-LAMBDA is sort Exp .

protecting INT .

protecting QID .

subsorts Int < Exp .

subsorts Id < Exp .

op _+_ : Exp Exp -> Exp .

op &_._ : Id Exp -> Exp .

op _^, : Exp Exp -> Exp .

op [_y_]_ : Exp Id Exp -> Exp .

op red : Exp -> Exp .

op :LsLambda : Exp -> Bool .

var I I' : Id .

var E E ' E " : Exp .

var N : Int .

eq isLambda(I) = false . el
eq isLambda(N) = false . e2
eq isLambda(& I . E) = true . e3
eq isLambda(E E') = false . e4
eq isLambda(E + E") = false . e5

ceq : red(E E') = red(red(E) E') if not isLambda(E) e6
eq red((& I . E) E') = red([ E' / I ] E) . el
eq red(E + E') = red(E) + red(E') . e8
eq red(N) = N . e9
eq red(& I . E) = (& I . E) . elO

eq [ E / I ] N = N . — ell
eq [E/I]I'=ifI— I' then E else I ' fi . el2
eq [ E" / I ] (E E') = ([ E" / I ] E) ([ E" / I ] E') . el3
eq [ E" / I ] (E + E')

= ([ E" / I ] E) + ([ E" / I ] E') . el4
eq [ E' / I ] (ft I' . E) = if I == I' then (& I' . E)

else (ft I' . ([ E' / I ] E)) fi . el5
endo

simplified function expression. Therefore the eta-rule is normally not

included in studies concerning normal order reduction. In the following

we will ignore eta-rule in our specifications.
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5.1.2.5. Specification

Now we are able to present 0BJ3 specification for the X-calculus. In

Figure 5.4, object INT-LAMBDA specifies the set of all ^-expressions

with integer as an atomic domain, from the syntax given in 5.1.2.1. The

syntactic constructors (_+_), (&_._), and («^) come directly from the

syntax (throughout this paper, & always reads X). The built-in objects

INT and QID are imported for the syntactical categories Int and Id. Note

that in the original syntax, many meaningless expressions may be passed

as syntactical correct, such as (2 3) by application, (Xx. (l+*))+l by

addition, etc. Since conversion rules only work on the semantic correct

expressions, in the specification the reduction of meaningless expres-

sions is left unspecified. In section 5.3, we will explain the specifi-

cation of semantics for an applicative language PLISP in Appendix B,

which is essentially a X-language. We will see that with the help of

semantic domain of environment, these semantically incorrect phrases

could be identified.

In figure 5.4, the auxiliary predicate isLambda_, which is defined

by equations el-e5, asserts whether an expression is a X-abstraction. It

is used in the reduction of application E E' to see if the expression is

a ft-redex. The equations ell-el5 specify the substitution operations

defined in 5.1.2.2 without the case (4)(c). The operation red(E) defined

by e7-el0 reduces E to its normal form using only beta-rules.

Following is a demonstration of 0BJ3 reduction of a X-expression

given in [St 77]. It can show how our specification works. The expres-

sion in original X-notation is

(Xp. (X<?.(Xp.p (p g)) (Xr.pfr)) (p+4)) 2

which was input to 0BJ3 in the specification notation and parsed, and

is reduced as follows. Some spaces between symbols are omitted but are

required in 0BJ3 expression, the expression in bold is the focus of next

step of 0BJ3 rewriting.

red((& 'p.((& 'q.((& 'p.('p ( 'p 'q)))<& 'r.('p + 'r))))('p + 4))) 2)
==> red([2/'p](<& 'q.<<& 'p.('p ( 'p 'q))) (& 'r.('p + 'r)))) ( 'p + 4)))

{ by e7: ^-reduction }
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=> red(([2/'p](& 'q.((& 'p.('p ( 'p 'q))) (& 'r.('p + 'r))»)
([2/'p]('p + 4))

{ by el3: substitution rule (2)
==> red((& q.([2/'p]((& 'p.('p ('p 'q))) (& 'r.('p+ 'r)))»

([2/'p]('p + 4))
{ by el5: substitution rule (4)(b)

==> red((& 'q.([2/'p](& 'p.('p ( 'p 'q))) ([2/'p](& 'r.('p+ 'r)))))
([2/'p]('p + 4))

{ by el3: substitution rule (2)
^> red((& 'q.((& 'p.('p ( 'p 'q))) ([2/'p](& 'r.('p+ 'r)))))

([2/'p]('p + 4))
{ by el5: substitution rule (4)(a)

==> red((& 'q.((& 'p.('p C'p 'q)» (& 'r . [2/'p]( 'p + 'r»»
(C2/'p]('p + 4))

{ by el5: substitution rule (4)(b)
==>* red((& 'q.((& 'p.('p ( 'p 'q))) (& 'r.(2 + 'r)))) 6)

{ by el4, ell, el2
==> red([6/'q]((& 'p.('p ( 'p 'q)» (& 'r.(2+ 'r))))

{ by e7: ^-reduction
==> red(([6/'q](& 'p.('p ( 'p 'q)») ([6/'q](& 'r.(2+ 'r»»

{ by el3: substitution rule (2)
==>* red((& 'p.[6/'q]('p ( 'p 'q))) (& 'r.[6/'q](2 + 'r»)

{ by el5: substitution rule (4)(b)
==>* red((& 'p.('p ('p 6))) (& 'r.[6/'q](2 + 'r)»

{ by el3: substitution rule (2), and el2
==>* red((& 'p. C'p ('p 6))) (& 'r.(2 + 'r))) { by el3, ell, el2
==> red([(& 'r.(2 + 'r))/'p]('p ( 'p 6))) { by e7: S-reduction
=r> red(([(& 'r.(2 + 'r))/'p]'p) ([(& 'r.(2 + 'r))/'p]('p 6)))

{ by el3: substitution rule (2)
==> red((& 'r.(2 + 'r» ([(& 'r.(2 + 'r))/'p]('p 6)))

{ by el2: substitution rule (l)(a)
==> red((& 'r.(2+ *r)) (([(& 'r.(2+'r))/'p] 'p) ([(& 'r.(2+'r))/'p]6)))

{ by el3: substitution rule (2)
==>* red((& 'r.(2 + 'r)) ((& 'r.(2 + 'r)) 6)) { by el2, ell
==> red([((& 'r.(2 + 'r)) 6)/'r](2 + 'r)) { by e7: ^-reduction
==>* red(2 + ((& 'r.(2 + 'r)) 6)) { by el4, ell, el2
--> red(2) + red((& 'r.(2 + 'r)) 6) { by e8
==>* 2 + 8 = 10 { by e9 and e7 etc

The 0BJ3 reduction of the above expression is in Figure 5.5, which

contains 0BJ3 reductions of three X-expressions. The first example shows

that normal order of reduction is more powerful than applicative order

one since normal order of evaluation will evaluate the expression

(Xy.0)((?ur.A- x)(Xx.x jr)) to while applicative order reduction will

never terminate. The third example shows the reduction of a high order

function application.
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Figure 5.5: Example Runs of Lambda Calculus

Welcome to 0BJ3 Version .99

system built: (1988 3 15 15 5 55)
Copyright 1987 by the 0BJ3 Group (KF, JAG, JPJ, JM, TW, CR, HK, AM)
0BJ3> in i lambda

obj INT-LAMBDA

0BJ3> reduce in INT-LAMBDA as :

red((& 'y
. 0) ((& 'x .

( 'x 'x)) (& x .
( 'x 'x))))

reducing term: red(((& 'y . 0) ((& x .
( 'x 'x)) (& 'x .

( 'x 'x)))))
reduction result Int:

0BJ3> reduce in INT-LAMBDA as :

red((& 'p
. ((& 'q

. ((& 'p
. ('p('p 'q))) (& 'r .

( 'p + 'r))))

Cp + 4))) 2)

reducing term: red(((& 'p
. ((& 'q . ((& 'p

.
( 'p ( 'p 'q))) (& 'r .

( 'p
+ 'r»» Cp + 4))) 2))
reduction result Int: 10

0BJ3> reduce in INT-LAMBDA as :

red(((& 'f . (& 'x . ('f 'x))) (& 'x .
( 'x + 1))) 2)

reducing term: red((((& 'f . (& 'x .
( 'f 'x))) <& 'x .

( 'x + 1))) 2))
reduction result Int: 3

5.2. Compound Domain Specifications

In the previous section we presented 0BJ3 specifications for func-

tion domain F = A — B. In this section, we cover the specifications for

the domains constructed by disjoint union and product. Such compound

domains are used extensively in the denotational semantics. Together

with function space builder, they constitutes a powerful tool for cons-

tructing semantic domains.

5.2.1. Product

The product construction takes two or more component domains and

builds a domain of tuples from the component domains. We consider the

54



0BJ3 specification of the product domain of Ai, A2, ..., An:

P: Ai x A2 x...x An

Assume that Ai has been specified by the object SPEC-Ai whose primary

sort is Ai, for each of i 6 [l..n]. Then we can specify the product P in

the object SPEC-P as follows:

obj SPEC-P is sort P .

protecting SPEC-Ai .

protecting SPEC-A2 .

protecting SPEC-An .

op <_,_,...,_> : AI A2 ... An -> P
op fst : P -> AI .

op snd : P -> A2 .

op last : P -> An .

var XI : AI .

var X2 : A2 .

var Xn : An .

eq : fst(< XI , X2 , ... , Xn >) = XI .

eq : snd(< XI , X2 , ... , Xn >) = X2 .

eq : last( <X1,X2, ... ,Xn>)=Xn.
endo

where <_,_...,_> is an assembly operation for P, and fst, snd, ..., last

disassembly operations. In fact, 0BJ3 provides built-in parameterized

object TUPLE [X : : TRIV, Y : : TRIV] for the case of the product of two

domains. In the subsection section 5.2.3. we will show an example of

product domain specification.

5.2.2. Disjoint Union

The construction for unioning two or more domains into one domain is

called disjoint union or sum. Given two domains A and B, A+B is a

collection of elements of A and B, with labels to mark their origins if

confusion arises. There are two assembly operations associated with

disjoint union A + B:

in^: A-f A + B, and in£: B — A + B

which take elements of A or B and label their origins. The corresponding
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disassembly operation "cases" combines an operation on A with one on B

to produce an operation on the disjoint union A+B. If d is a value from

A+B and f(x)=ei and g(y)=e2 are the definitions of f :A—£ and g:B—•£,

then:

(cases d of is^(x)—»-eiQis.8(y)—»-ez end)

represents a value in C. The "cases" operation checks the tag of its

argument, removes it, and gives the argument to the proper operation.

The assembly and disassembly operations above can be generalized to sums

of an arbitrary number of domains.

Now we concentrate on the 0BJ3 specifications of disjoint union of

domains Ai, A2,..., An: S = Ai + A2 + ... +An. Again, assume that, for

each i € [l..n], domain Ai has been specified by object SPEC-Ai whose

primary sort is Ai. If all these objects are disjoint in sorts Ai

(i € [l..n]), then we can use 0BJ3's subsorts mechanism to specify S:

obj SPEC-S is sort S .

protecting SPEC-Ai .

protecting SPEC-A2 .

protecting SPEC-An .

subsorts AI < S .

subsorts A2 < S .

subsorts An < S .

op isAl : S -> Bool .

op isA2 : S -> Bool .

op isAn : S -> Bool .

var XI : AI .

var X2 : A2 .

var Xn : An .

eq : isAl(Xl) = true .

eq : isAl(X2) = false .

eq : isAl(Xn) = false .

eq : isAn(Xn) = true .

endo

Since all Ai's are declared as subsorts of sum S, we do not need assem-
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bly operations inAi: Ai -~* S as in denotational definitions. All terms

of sort Ai can safely appear in places where sort S is required. Because

of the "high-orderness" of original disassembly operation "cases", we

define a set of predicates "isAi" to help the specification of disassem-

bly operations. For any semantic equation in denotational definitions of

form:

E = cases a of
isiii(al) — el(al)

Qis^2(a2) — e2(a2)

QisAi(an) —*• en(an) end

we use a set of 0BJ3 conditional equations to specify the semantic

equation

ceq : E' - el '(a) if isAl(a)
ceq : F - e2'(a) if isA2(a)

ceq : E' - en '(a) if isAn(a) .

where E' is a 0BJ3 version of the term E, and ei' is the corresponding

term ei for each i € [l..n]. Note that in the 0BJ3 equations, the term a

is used in places of ai's in the terms of ei's, which is made possible

by the 0BJ3 retracts that lower the sort of a to that of ai in the

parsing. The selection of equation ceq : K - ei'(a) if isAi(a) will

ultimately make the retract r„ ..(a) disappear because of the condition

isAi(a).

Remember that 0BJ3 parser only inserts retracts for the subexpres-

sion, i.e. when the term to be retracted is an argument to some opera-

tor. When the "cases" operation has a portion of form

cases a of ... isi4i(ai)—»-ai . . . end

we need to define an operation to explicitly coerce a from sort S to

sort Ai:

op selecAi : S -> Ai .

var Xi : Ai .

eq : selecAi(Xi) = Xi .

Note that selecAi essentially performs the same function as retract.
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Now, that portion of the "cases" operation can be specified as:

ceq : E' - selecAi(a) if isAi(a) .

Again, the selection of the conditional equation will guarantee that

selecAi(a) will be reduced to a.

In the above, we assume that all SPEC-Ai's are disjoint (or diffe-

rent) with respect to their primary sorts Ai's. In denotational seman-

tics it is usually the case, but not always so. For example, the domain

Poststore used in direct semantics (see the example in next section) is

defined as Store + ErrStore where Errstore = Store. Suppose in the sum

S = Ai + A2 ... +An, Ad and Ak are the same domain A. Assume that

domain A has been specified by object SPEC-A whose primary sort is A.

Then we can modify the object SPEC-S above as follows:

obj SPEC-S is sorts S Aj Ak .

protecting SPEC-A .

subsorts Aj < S .

subsorts Ak < S .

op inAj : A -> Aj .

op inAk : A -> Ak .

var Xa : A .

eq : isAj(inAj(Xa)) = true .

eq : isAk(inAk(Xa)) = true .

endo

In the modified object, two sorts Aj and Ak were introduced with two

tagging operators inAj and inAk to make sort A into these two sorts

respectively.

Having described generally our methods of specifying compound

domains, in next subsection, we present as an example a specification of

direct (denotational) semantics for the block-structured language BL0K1.

5.2.3. A Specification of Direct Semantics

Appendix A contains a complete denotational semantics for BL0K1 and

its 0BJ3 specification. The denotational semantics follows closely in

style and convention to those of [Sc 86] . It is called direct semantics
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because the valuation functions map syntactic domain of command to the

operations on the store domain. The basic structure of specification

has been introduced in chapter 4. Here we only give some explanations

for semantic algebra specifications. The method of specifying syntactic

domain from abstract syntax was introduced in 4.2.1.

Among 11 semantic algebras listed in part I: denotational semantics,

the first 3 were specified by the built-in objects BOOL, NAT, and QID.

The specifications of (4) Storage Locations, (5) Storable values, and

(6) Store were discussed in 4.2.3 and 5.1.1. Semantic algebra (6)

Poststore is defined as the disjoint union of Store and ErrStore where

ErrStore itself is the domain Store. Using the method presented in the

last subsection, we first import object STORE, declaring Store as a

subsort of PostStore. In this way, the operation return: Store—*Poststore

is not necessary in the object POSTSTORE because of the subsort rela-

tion. To avoid any confusion, the operation signalerr: Store—^ErrStore is

used as a tag marking a store as an errstore. In addition, predicates

isStore and isErrSTore are defined in the object POSTSTORE to help the

specification of disassembly operation "cases...". Take semantic mapping

for the command composition as an example. In the denotational

definition, the valuation function for command has the functionality:

C: Command —* Env —* Store —* Poststore

and the command composition is defined by the following equation:

CCCi ; C2D = Xe.Xs. cases (CdCiD e s) of
isStoreis') -* CUC2D e s'

WisErrStoreis') —* inErrStorei
s'

) end

In the object VAL-FUN that specifies the valuation functions, we have

the corresponding decurried operation:

op C[_] : Com Env Store -> PostStore .

and have the following equation concerning command composition:

eq : C[ CI ; C2 ] e s = if isStore(C[ CI ] e s)
then C[ C2 ] e (C[ CI ] e s)

else signalerr(s) fi .

Since Poststore is the sum of only two domains, we used if_then_else_f

i

in the equation above instead of two conditional equations as proposed.

59



Note that although C[_] requires a Store as the third argument, 0BJ3

can still parse the "then" subexpression, which is of sort PostStore,

because of the "retract" mechanism. The condition in the "if" part will

guarantee that the inserted retract will disappear at the time of

reduction.

Now let's look at the specification of the semantic algebra Environ-

ment. Semantic algebra (8) Denotable values again is a disjoint union of

Location, Nat, and error domain Undefined, which denote the values an

identifier can have. The specification of this domain in the object

DENOTABLE-VAL demonstrate the method of specifying sum domain presented

in the this section. The semantic algebra (9) Environment is specified

by instantiating the parameterized object FUN with objects QID and

DENOTABLE-VAL to define the mapping from identifiers to their denotable

values. The sort Env is constructed by the product <_,_> of Idmap and

location which denotes the next available storage location. Using the

operations provided by the parameterized object FUN, the specifications

of the operations emptyenv, updateenv, and accessenv are almost direct

translations from the original denotational definitions. Note that the

operation reserve-locn : Env — {Location x Env) was split into two

operations in the object ENV:

op reserve-locn : Env -> Env .

op get-locn : Env -> Loc .

to simplify the specification. Let's look at the specification of the

following semantic equation in the denotational semantics:

DtfVar ID = Xe. let (i, e' ) - {reserve-locn e)

in ( upda teenv BID inLocationi T ) e' )

The split operations reserve-locn and get-locn in the object ENV make

the above equation appear in the object VAL-FUN as follows:

eq : D[ Var I ] e = updateenv I (get-locn e) (reserve-locn e) .

Finally, note that in the specification, objects NAT and QID were

both used as syntactic domains and their corresponding semantic domains.

5.3. Recursive Domain Specifications

In denotational definitions, recursively defined domains of the form
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D=F(D) are often used in defining semantic domains. Recursively defined

domains are also called reflexive domains. Recall that domains are epos

in the denotational semantics. It is shown ([Sc 86]) that for any

recursive domain specification of the D=F(D), where F is an expression

built with constructors + , —*, x, and lifting 1 such that F(E) is a epos

when E is, there is a domain D» that is isomorphic to F(D«). D» is the

least such cpo that satisfies the specification. The way D» is cons-

tructed is called the inverse limit construction.

Since in our specifications we use predomains (or countable sets) as

semantics domains and our specifications of semantic domains are decla-

rative instead of constructive, we use a set theoretic approach in

writing specifications for the recursively defined domains. Given a

recursive definition Le$(D), we write an object SPEC-D whose primary

sort is D, such that the set of terms of sort D (in the initial term

algebra) T„ _. satisfies equations T~ ~=F(T_, ~).

For example, we can actually view object INT-LAMBDA in 5.1.2.5 as a

specification of recursively defined domain E = Int + E — E in the

sense that the initial term algebra T satisfies the equation:

T
Exp " T

Int
U (T

Exp ~* T
Exp }

where Tp is the set of all terms of sort Exp, and T
T

. is the set of

all terms of sort Int. Obviously, T„ has infinite number of elements.

In our specifications, we regard sets as semantic domains, and

correspondingly, domain constructors (+, x, — ) as set operations. In

case of domain disjoint union A+B, if A and B are syntactically distin-

guishable, then A+B is equal (isomorphic) to A U B; if not, a tag may be

attached to A or B to avoid confusions. 5.2.2 has already discussed this

issue. In the following we assume A and B are different in disjoint

union A+B, hence it has the same effect as A U B. Let D be a recur-

sively defined domain of form

<*> D = 4j + . . . A
n

+ F
1
(D,AU AUi ) . . . + F^D.A^ . . . .A^)
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where A. (l<j<n) and A (l<p<t, l<q<i ) are previously defined domains,

and F, (lSk<t) is an expression consisting of operations +, x and —*,

and the outermost operator is either x or —*. Now we specify D in the

0BJ3 object SPEC-D as follows (again assume the other domains are

specified in corresponding objects):

obj SPEC-D is sort D .

subsorts Al < D .

subsorts An < D .

opFl : D A., ... A,. -> D .

11 In

op Ft : D A. i ... A. . -> D .

tl tit

endo

Here we specify F, (l<k<t) directly as domain D constructors, and it is

possible to define it completely using equations for the most recursive-

ly defined domains encountered in denotational definitions.

Given the above specification, we have the following set equation:

T
D

= T
A,

U •• UTA "'iVl, V )U
1 n 11 In

••• UFt<vT
A "V >

tl tit.

where T
Q , T. , and T. are the sets of terms of sorts D, A, (l<k<n) and

k pq

A (l<p<t, l<q<i ) respectively in the initial term algebra of the
pq p

specification. This equation shows that the object SPEC-D indeed speci-

fied domain D with respect to the recursively defined set equation (*).

Note that if n>0, the set of terms of sort D will not be empty.

We have to admit that our set theoretic approach is limited in

solving recursively defined domains. In the equation (*), if n=0 then

our specification will result in degenerated initial algebra. In the

other words, recursively defined domains such as E = E —* E and

E = N x E, which have solutions in the Scott's domain theory, will not
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have a solution in our specification. This is a problem that our under-

lying algebraic approach can not handle. Fortunately most denotational

definitions do not use such recursively defined domains, nor do our

specifications of three modest denotational semantics. In the following,

we will not try to deal with this issue any further.

In the next subsection, we illustrate our method with a specifica-

tion of denotational semantics for the applicative language PLISP.

5.3.1. Semantic Specification of an Applicative Language

In this subsection, we will give some explanations for the specifi-

cation of PLISP appeared in Appendix B. The part I of the Appendix B,

denotational semantics, is adapted from section 7.2 of [Sc 86], with the

slight modifications of syntax and semantic domains. PLISP is similar

to pure LISP. A program in the language is just an expression. An

expression can be a LET definition; a LAMBDA form representing X-abstra-

ction; a function application; a list expression using CONS, HEAD, TAIL,

or NIL; an identifier; or a numeral. The semantics of this language is

expressed by the semantic domain Denotable-value, which is a recursively

defined domain:

Denotable-Value - Function + List + Nat + Error
Function = Denotable-value —* Denotable-value
List = Nil + Denotable-value x List

where Error - Unit, and Nil = Unit. The semantic mapping E determines

the meaning of an expression with the aid of an environment.

Now let us first look at the specification of recursively defined

semantic domain Denotable-value. In the object DENOT-VAL, we use an-

notations to represent functions. Therefore, similarly to the object

INT-LAMBDA presented in 5.1.2.5, the substitution operation "[_/_]__" and

reduction operator "red" are declared and specified. Note that for

simplicity, we again omitted the eta-rule, which is of no use in getting

an atomic answer value in the reduction of function application. We

specified object VARS as variables in the X-abstractions. A variable,

i.e. the element of sort Vars, has the form "v n" where n is a natural

number. Variables in the body of an X-abstraction can be substituted by

63



any elements of sort Den. Therefore, we declare sort Vars as subsorts of

Den. The predicate isVarterm is declared to assert the variable terms

such as hd (tl x) , f x, etc. The existence of variable terms in expres-

sions causes some problem in the specifications of predicates isList and

isFunc, since the sort of variable terms is dependent on the substitu-

tion of variables. We solve this problem by temporarily assert isList or

isFunc as true for the variable term as desired. The real capture of

error expressions is delayed to the time of substitution (see the

equations for the substitution rules). The list operations hd_, tl_, and

_;_ (representing cons) are defined within the object DENOT-VAL as

usual. And the predicates isFunc, isList, and isErr are defined for the

disassembly operation in the original denotational definitions. Dif-

ferently from the specification in Appendix A, we specify single element

domain Error (and Unit) directly by introducing constant operation Err

(and Nil). It is easy to see that the two methods generate isomorphic

term algebras.

The specification of domain Env is similar to the one in Appendix A,

which was explained in 5.3.2. Since we have to generate variables of

denotable values for the valuation function of syntactical expression

LAMBDA I E, the sort Env in the specification is declared as tuple

Env = (Id -> Den) x Vars

where the second element of tuple is used to indicate to current avail-

able variable of form "v n" . In addition to the operations emptyenv,

accessenv, and updateenv, getvar and gonextvar are specified to fetch

the current available variable from an environment and to obtain an

environment with next available variable from a given environment. We

will show the use of these two operations below.

The specifications of syntactical domain and valuation functions are

also similar to the ones in Appendix A. Here we only look at the speci-

fication for the semantic equation:

EtTLAMBDA I ED = \e. inFunction(\d.EKEl\( upda teenv HID d <?)).

which is specified in the object DENOT-VAL as follows:
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E[ LAMBDA I E ] e
- (& (getvar e) . (E[ E ] (updateenv I (getvar e) (gonextvar e)))) .

To make the specifications more efficient, the applicative order

evaluation is used in the valuation function specification. But our

specification of X-reduction in the object DENOT-VAL still assume that

case (4)(c) of the substitution rule in 5.1.2.2 will not be applicable

in any stage of a reduction. Fortunately the assumption is true in the

specification since variables are generated uniquely, of form (v N). For

example, the expression LAMBDA 'x (LAMBDA 'x 0) has the following

evaluation

:

E[ LAMBDA x (LAMBDA 'x 0) ] emptyenv
==> (& (v 0) . (E[ LAMBDA 'x ] (updateenv 'x (v 0) eo)))

where eo = gonextvar emptyenv = <
j , (v 1) >

==> (& (v 0) . (& (v 1) . 0))

We can see that the variables of denotable values are generated with

increased subscripts. Therefore in a ft-redex (& V . M) N, if N contains

any free variable V, then to be any semantic correct expression's

denotation, (& V . M) N must be a subexpression of

& V ....(& V . M) N ...

that is to say, V would have lower subscript that V, V will never occur

free in N. Hence we proved that case (4)(c) of substitution rule is

still not applicable in our ^-reduction of denotable values.

5.4. Specifications of Continuation Domains

The semantic domain that models controls, i.e., the evaluation

ordering of a program's constructs, is called a continuation. Continua-

tions were first developed for modeling unrestricted branches ("gotos")

in a general purpose language. In this section we will apply the concept

of continuation to every levels of semantic definition and present a

specification of continuation-based semantics for BL0K2 that is similar

to BL0K1 defined in Appendix A. Again the complete denotational seman-

tics and corresponding 0BJ3 specification are included in the Appendix

C.
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5.4.1. Continuation-based Semantics

In continuation semantics, the meaning of a program construct is a

function that accepts the state (store) existing prior to execution,

plus an additional argument called the continuation, and produces the

final output of the entire program. The continuation that is provided as

an additional argument is a function from the state existing after

program construct execution to the final program output, which gives the

semantics of the "rest of the computation" to be performed if the

current construct terminates normally. Thus a program construct with

normal behavior will produce its output by applying the continuation to

the state (store) following execution. But an abnormal one can produce

the final output in some other manner, possibly by ignoring the continu-

ation.

The language BL0K2 defined in Appendix C is similar to BL0K1 in

Appendix A, but augmented with a FORTRAN-like stop command. The evalua-

tion of a stop in a program causes a branch to the end of the program,

cancelling the evaluation of all remaining commands. The semantic domain

of Command Continuations Ccont is defined as Store — Answer, where

Answer in the definition is product of domain Message and Store. Actual-

ly the domain Answer can be any domain of stores, output buffers,

messages, etc. The valuation function for the command thus has the

functionality:

Command —* Env — Ccont —* Store —* Answer

The additional argument Ccont holds the rest of the program to the

current command being executed. Although the current command never

bothers to examine the rest of the program, i.e., the continuation, it

has the authority to discard the continuation, as command stop does:

CCstopI = Xe.Xc.Xs. terminate stopped s.

The operation terminate simply tuple the message stopped and the store s

to produce an answer. The continuation c was discarded.

In the denotational definition of Appendix C, the notion of continu-

ation was extended to the other levels of semantics. If we regard
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command continuation as control domain of runtime semantics, the other

continuations defined (expression continuations, identifier continua-

tions, and boolean expression continuations) were aimed at capturing the

control facets of compiling time semantics. The mag or concern here is

that the use of an identifier may cause some error when referenced in

the expression, or in the left-hand side of an assignment command. The

domain of expression continuations is defined as:

Econt - Storable-value —* Ccont

meaning that the rest of program is waiting for a value in addition to

the state (store) to produce an answer. Econt is used in the valuation

function for expressions. Similarly, domains of Lcont and Bcont are

defined for the valuation functions of boolean-expressions and left-hand

side identifiers. Now we look at the semantic equations for the assign-

ment command:

CCI :- ED = Xe.\c.L[IID e (JU.EtfED e (\v. updatestore 1 v c))

The valuation function L: Identifier — Env —* Lcont —» Ccont has the

following equation:

LUID = \e.XJ3. cases (accessenv HID e) of
isLocationC 1) —»• 1

WisNat(n) —* terminate id-use-err
WisUndefinedO —* terminate id-undefined

The valuation function for the assignment first forms an identifier

continuation Xi.EftED e (\v. updatestore 1 v c) and then hands it to the

valuation function L, which examines the identifier I; if I was declared

as a variable then it will give the corresponding location io to the

identifier continuation, otherwise L will discard the continuation and

produce a final answer by the operation terminate with appropriate

message. Let us assume that the assignment I := E is semantically

correct, then we have the following evaluation:

CCI := ED eo co
==> LdlD eo (Xi.EUED eo (\v. updatestore 1 v co))
==> (\i.EHED eo (Xv. updatestore 1 v co)) lo
--> EHED eo (Xv. updatestore lo v co)
--> (Xv. updatestore lo v co) vd
"> updatestore Jo vd co
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==> Xs.co (update io vo s)

The operation updatestore takes location, storable value and command

continuation as arguments and produce a command continuation as result.

Compared with the direct semantics in Appendix A, the continuation

semantics tends to use higher order domains in the definition. Ccont,

Econt, Lcont, and Bcont are all higher order domains. In the next

subsection, we discuss the specification of continuation semantics.

5.4.2. Specifications

Since continuations are all higher order domains, we could use X-

expressions and their conversion rules as implementation, just as we did

in the section 5.1.2. But the continuation domains have their own

features. They, as arguments, are just "place holders" in the sense that

they just represent the (nominal) notion of "rest of computation", the

actual evaluation of the "rest of computation" takes place when the

required stores or values or locations are handed to them. For the

domains of Econt, Lcont, and Bcont, which map some value domains to

Ccont, the applications of continuations to the wanted values take place

immediately, before further evaluation of the rest of the computation.

The implications of these observations are two fold: first, complete

specifications of continuations as ^-notations are becoming very compli-

cated since the continuations are not in certain set of reduced forms

and they involve the structure of syntactical domains; secondly, the

partial specifications of continuations are possible because the number

of nesting of X-abstractions for continuations are limited. In the

following we illustrate these with the specification in Appendix C.

In the denotational definition, the \-abstractions of Econt, Lcont,

and Bcont involve the variables of Storable-value, Location, and Tr.

Note that these ^-abstractions are immediately applied the appropriate

values if the corresponding program constructs are evaluated normally,

and that the bodies of the abstractions are not evaluated before appli-

cations. The actual appearances of X-notations in the valuation func-

tions are limited up to 2. For example, in the valuation function for
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E1+E2:

EflEi + E2D = Xe.Xtf.EHEiD e (\v1.EffE2D e (\vz.a add(vx,vz)))

the expression continuation for EQEiD has two occurrences of \-notations

and even if the expression continuation a itself may again contains \-

abstractions with same variables vi and vs, these different occurrences

of variables will not interfere because of the scoping. In addition, a

will not actually applied to add(v\,vz) until EdEiD and then EffE2l) are

successfully evaluated and add(vi,vz) is evaluated to a storable-value.

These observations motivate us to specify continuations in a partial but

complete, with respect to the denotational definition, way.

In the objects TRUTH (Tr), LOCATION (Location), and STVALUE (Storab-

le-value), we divide corresponding sorts into two kinds of subsorts, one

for the real elements of the sorts, one for the variables appeared in

the denotational definitions. For example, in STVALUE, sorts SValuec and

SValuev are declared as subsorts of SValue, where SValuev contains the

variables appearing in the denotational definitions: v, vl, v2. In the

object CONT that specifies continuations, the applications of Econt,

Lcont, and Bcont to the corresponding values are left unspecified. Note

also that the sort of command continuation Ccont is specified indirect-

ly, without using of X-notations. Despite of these, our specification is

still complete with respect to the original denotational definition in

the sense that reduction of a program (P[_J) always results in a value

of sort Answer. This is made possible by introducing auxiliary equations

in the object VAL of valuation functions to help the reductions of

applications of continuations. For example, in VAL, the equation for

valuation function of E1+E2 reads:

eq : E[ El + E2 ] En Ec
= E[ El ] En (& vl . E[ E2 ] En (& v2 . Ec (vl + v2))) .

where En is an 0BJ3 variable of sort Env, and Ec is of sort Ccont. To

help the reduction of right-hand expression, we introduce two equations:

eq : (& vl . E[ E ] En (& v2 . Ec (vl + v2))) V
= E[ E ] En (& v2 . Ec (V + v2)) .

eq : (& v2 . Ec (V + v2)) V = Ec (V + V) .

69



where V, V are 0BJ3 variables of sort SValue (storable values). Actual-

ly, the auxiliary equations define completely the functions of continua-

tions. Take expression continuations for example. If we look at the

original denotational semantics, there are only five forms of abstrac-

tions of the expression continuation:

al( l,c) - \v.updatestore(l,v,c)
where I is a location, c is a command continuation.

a2{d) - Xvi. ... (\v2.a add(vi, vz)) = Xvi. ... a3(a, vi)

a3(a, v ) - \v.a add(v' , v)

where a is an expression continuation.

aA(0) - Xvi. ... (Xv2.£ equals(vi, vz)) - Xvi. ... a5(£, vi)

a5(/3, v ) = \v.J3 equals^ v' , v)

where is a bool-expression continuation.

That is to say, the proper representation of the above five forms of

abstractions will constitute the closure of the expression continuation.

A closure is any data structure that simulates functions. Tuples used in

the transformation of defunctionalization are also closures (for a

description of closures as representation of higher order functions, one

is referred to [R 72] ) . The two 0BJ3 equations presented above actually

specified the applications of expression continuations a2(a) and

a3(<2, v' ) to a value v. In the object VAL, all applications of the above

five forms and other forms of continuations are specified by the auxi-

liary equations.

In order to see how they work, let us reduce an expression for 0BJ3.

In the following, assume e is of sort Env and

e = [ 'x (L 0) ] ([ 'n 10 ] !),

meaning identifier 'x is a variable denoting location 0, identifier 'n

denotes a constant 10; s is of sort Store and s = [ (L 0) 3 ] newstore;

and a is some expression continuation.

E[ 'x + 'n + 2 ] e a s
"> E[ 'x ] e (& vl . E[ 'n + 2 ] e (& v2 . a (vl + v2))) s
==> (& vl . E[ 'n + 2 ] e (& v2 . a (vl + v2))) (access (L 0) s) s
==> (& vl . E[ 'n + 2 ] e (& v2 . a (vl + v2))) 3 s
==> E[ 'n + 2 ] e (& v2 . a (3 + v2)) s
"> E[ 'n ] e (& vl . E[ 2 ] e (& v2 . (& v2 . a (3 + v2)) (vl + v2))) s
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==> (& vl . E[ 2 ] e (& v2 . (& v2 . a (3 + v2)) (vl + v2))) 10 s
==> E[ 2 ] e (& v2 . (& v2 . a (3 + v2)) (10 + v2)) s
==> (& v2 . (& v2 . a (3 + v2)) (10 + v2)) 2 s
==> (& v2 . a (3 + v2)) (10 + 2) s
==> (& v2 . a (3 + v2)) 12 s
==> a (3 + 12) s
==> a 15 s

To ensure that 0BJ3 will reduce a program to an answer as expected,

the assignments of operator precedence and the specifications of evalua-

tion strategies are very critical. Notice that in the objects CONT and

VAL all continuation arguments have the strategy of not being evaluated

(strat (0)) before being passed to an operation. The continuation

arguments act just as place-holders to pass in yet unevaluated portion

of a program.

In this section, we have presented an 0BJ3 specification of conti-

nuation semantics. Because of the features of continuation domains, we

did not give a complete specification of \-reduction for the continua-

tion domains, instead, we give the auxiliary equations in the object VAL

of valuation functions to help the valuation of a program construct com-

plete.
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SummsLary sunci Extensions

We have described a method of giving algebraic denotational specifi-

cations of programming language semantics. Our goal is to follow closest

possible to the structure and notations of standard denotational seman-

tics. Thus we are able to provide a tool to test the correctness of

semantic definitions by executing 0BJ3 specifications.

The major features of our semantic specifications are as follows.

(1) We use the initial algebras of specifications as semantic domains in

definitions. Thus domain constructions are regarded as set construc-

tions. We have presented methods of specifying compound domains in 0BJ3.

(2) In our specifications, curried operations in the original denota-

tional semantics are specified in their decurried forms. (3) Since our

specifications are first order, we have explored various ways of speci-

fying higher order objects. The most efficient way is defunctionaliza-

tion that converts higher order objects into first order ones. The

specification of a function domain as lambda notations is also possible

under certain order of reduction. Since in some cases such as continua-

tion domains, complete specifications of lambda calculus appear very

complicated, we tried partial specifications of lambda calculus and used

auxiliary equations to help the reduction.

We have given specifications for three different styles of semantic

definitions. An obvious extension to this work is include procedures in

the language BL0R1 or BL0K2 and give a specification for either direct

or continuation semantics. There is no great difficulty in doing this.

We can extend the object of denotable values to contain denotations of

procedures such as Store -> PostStore in direct semantics, or

Ccont -> Ccont in continuation semantics. The case of dynamic scoping

can also be specified using appropriate semantic domains.
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One interesting future work would be the 0BJ3 specification of an

implementation from denotational definition for a language. A compiler

may be specified in 0BJ3 from its denotational semantics using the

techniques such as proposed in [Sc 86a] and [W 82]

.

Given our algebraic denotational specifications of programming

language semantics, we may also address the problem of program verifica-

tion in a way different form Floyd-Hoare's pre- and post- verification

conditions. There is some work on the use of 0BJ3 in the induction

proofs. We hope in the future the problem of program verification based

on language's algebraic denotational specification will be studied.

Finally, we found there are two limitations in our algebraic denota-

tional specification of programming languages. First, in our first-order

algebraic specifications, although we can conveniently express fixed-

point properties of recursively defined functions and domains by equa-

tions, we cannot express the minimality property of least-fixed points

in first-order logic. This is a central problem of first-order algebraic

specifications. The another limitation also relates to the first-order-

ness. Since our specifications are first-order, some of specifications

appears complicated and not neat enough. We feel that a higher order

capability in algebraic specification language would make our algebraic

denotational specifications more close to the denotational style and

more useful as a tool for testing the correctness of semantic defini-

tions.
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AE3E^enci±>c A
D±r©o"fc Soman-bios
Specification for- BLOK1

I. Denotational Semantics

Abstract Syntax:

P 6 Program
D € Declaration
K e Block
C € Command
E € Expression
B g Bool-Expr
I € Identifier
N e Numeral

P
D
K
C
E
B

begin K end
Di ; D2 ! Var I ! Const I N

let D in C
Ci ; C2 ! I := E ! while B do C j if B then Ci else Cz ! K
Ei + E2 ! I ! N
Ei eq E2 ! not B

Semantic Algebras:

(1) Truth Values
Domain t € Tr = B
Operations

true, false : Tr
not : Tr — Tr

(2) Natural Numbers
Domain n € Nat = N
Operations

zero, one, two, ... : Nat
plus : Nat Nat —* Nat
equals : Nat Nat —f Tr

(3) Identifiers
Domain i e Id = Identifier
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(4) Storage locations
Domain 1 € Location
Operations

first- loon : Location
next-locn : Location —+ Location

(5) Storable values
Domain v e Storable-Value - Nat + Uninitialized

where Uninitialized - Unit
Operations

equals : Storable-Value Storable-Value —* Tr

add : Storable-Value Storable-Value — Storable-Value
add - Xvl.Xv2. cases(vl) of

isNat(nl) — (cases(v2) of
is/fe£(n2) - in//at(nl plus n2))
WisUninitializedO —* inUnintializedi) end)

WisUninitializedO —• inUninitializedO end

(6) Store
Domain s € Store - Location —+ Storable-Value
Operations

newstore : Store
newstore - \1. inUninitializedO

access : Location —* Store —* Storable-Value
access = Xi. \s. s< i)

update : Location —* Storable-Value —* Store —* Store
update = \l.\v.\s.[l-*-v]s

(7) Poststore
Domain p € Poststore = Store + ErrStore

where ErrStore - Store
Operations

return : Store —* Poststore
return = Xs. inStore( s)

signalerr : Store — Poststore
signalerr : \s. inErrStore( s)

(8) Denotable values
Domain d € Denotable-Value - Location + Nat + Undefined

where Undefined = £//7i£

(9) Environment
Domain e e isbv - (Id —* Denotable-Value) x Location
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Operations
emptyenv : Env
emptyenv - ( ( Xi . in Undefined( ) ) , first-locn)

accessenv : Id — Env —* Denotable-Value
accessenv - Xi.X( map, i) . map{ i )

updateenv : Id — Denotable-Value —* Env —* Env
updateenv : Xi.Xd. X(map, i) . (

[

i+d]map, 1)

reserve-locn : isbv —#• {Location x ihv)
reserve-locn - X(map, 2) .(2, (;z?ap, next-locn(l)))

(10) Expressible values
Domain v € Expressible-Value = Storable-Value + Errvalue

where Errvalue - Unit

(11) Expressible boolean values
Domain b € Bool-Expr-Value - Tr + Errbvalue

where Errbvalue = £//?i£

Valuation Functions:

P: Program —* Poststore
Pflbegin K end]] = KCKI emptyenv newstore

K: Block —* Env —* Store —* Poststore
KUlet D in CD = Xe.CQCD (DUD]] e)

D: Declaration — Env—*- Env
DIIDi ; D2D - \e.DttD2D (DttDiL e)

DdVar ID = Xe.let (1' ,e")-( reserve-locn e)

in ( upda teenv II D inLocationi 1' ) e')

DQConst I ND = updateenv HID in/fet(N(IND)

C: Command —» £hv —* Store —* Poststore
CECi ; C2D = Xe.Xs. cases (CQCiD e s) of

is5tore(s') - CGC2D e s'

D isErrstore( s' ) —* in2TrrS£are( s' ) end

CHI := ED = Xe.Xs. cases (accessenv dlfl e) of

isLocationC 1) —* (cases (EITEI1 e s) of
isStorable-Value{ v) —* (return (update 1 v s))

\\isErrvalue() —* (signalerr s) end)

flisNat(n) —* (signalerr s)
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WisUndefined — (signalerr s) end

CCwhile B do CD = Xe.Xs. cases (BtfBD e s) of
isTrit) - (t-^(CHC ; while B do CD e s)$(return s)

fiisErrbvaluei) —» (signalerr s) end

Cllif B then Ci else C2D = Xe.Xs. cases (BOBD e s) of
isTiit) -+ (fr— (CIICiD e s)D(CQC2D e s))

WisErrbvalue( ) — (signalerr s) end

COKD = KGKD

E: Expression — Env — Store —* Expressible-Value
ECEi + E2D = Xe.Xs. cases (EHEiD e s) of

isStorable-Valueivl) —» (cases (ECE2D e s) of
isStorable-Value(v2) —* inStorable-Valueivl add v2)
WisErrvalue( ) —•> in-ErrvaiueO end)

Dis£!rrvait;e< ) —* in.ErrvaiueO end

E[IID r Xe.Xs. cases (accessenv HID e) of
isLocation(l) —* inStorable-Valuei access 1 s)

WisNat(n) —* inStorable-Value(inNat(n))
isUndefined — inErrvaluei) end

ECND = Xe.Xs. inStorable-Value(inNat(tim))

B: Bool-Expr — Env — Store—* Bool-Expr-Value
BHEi eq E2D = Xe.Xs. cases (EffEiD e s) of

isStorable-Value(vl) —»• (cases (EITE2D e s) of
isStorable-Value(v2) —»• in7!r(vl equals v2)
OisiTrrvaiueO — iniirrbva.ZL7e( ) end)

D is.Er.rvait;e( ) — inErrbvalue( ) end

Bdnot BD = Xe.Xs. cases (BfTBD e s) of
isTiit) - not t

\\isErrbvalue() —* inErrbvalueO end

N: Numeral —* Nat (omitted)
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II. 0BJ3 Specification

FILE: fun. obj

Parameterized object FUN will be used to specify STORE and ENV.

Two theories specify the requirements of interfaces

th DOMAIN is
sort DElt .

pr BOOL .

op _eq_ : DElt DElt -> Bool .

endth

th RANGE is

sort RElt .

pr BOOL .

op ? : -> RElt .

endth

obj FUN [A :: DOMAIN, B :: RANGE] is

sort Fun .

op nullF : -> Fun .

op [«.]_ : DElt RElt Fun -> Fun [strat (3 2 10)] .

op : Fun DElt -> RElt .

var x x' : DElt .

var y : RElt .

var f : Fun .

eq : nullF x' = ? .

eq : ([ x y ] f) x' = if x eq x' then y else f x' fi .

endo

eof

FILE : store . obj

in fun

obj UNIT is sort Unit
op {} : -> Unit .

endo

Specifications of Semantic algebras:
Semantic algebras (l)-(3): Truth Values, Natural Numbers,
and Identifiers can be specified by built- ins: BOOL, NAT, and QID.

(4) Storage locations
obj LOCATION is sort Loc .

78



op first-locn : -> Loc .

op next-locn_ : Loc -> Loc .

pr NAT .

op L_ : Nat -> Loc .

var N : Nat .

eq : first-locn = L .

eq : next-locn (LN) = L (sN) .

endo

(5) Storable values
obj STORABLE-VALUE is

sort Storable-Value .

pr NAT .

pr UNIT * (sort Unit to Uninitialized, op ({}) to (uninitialized))
subsorts Nat < Storable-Value .

subsorts Uninitialized < Storable-Value .

op _+_ : Storable-Value Storable-Value -> Storable-Value
[assoc comm]

var N : Storable-Value .

eq : N + uninitialized = uninitialized .

endo

Two views of FUN to be used by STORE
view VLOC of LOCATION as DOMAIN is

sort DElt to Loc .

var L L' : DElt .

op Bool : L eq L' to Bool : L == L' .

endv

view VSTVALUE of STORABLE-VALUE as RANGE is
sort RElt to Storable-Value .

var N N' : RElt .

op RElt : ? to Storable-Value : uninitialized .

endv

(6) Store
obj STORE is

pr FUN [VLOC, VSTVALUE]
* (sort Fun to Store, op (nullF) to (newstore)) .

op access.^. : Loc Store -> Storable-Value .

op update^^_ : Loc Storable-Value Store -> Store [strat (3 2 1 0)]

var L : Loc .

var V : Storable-Value
var S : Store .

eq : access L S = S L .

eq : update L V S = [ L
endo

V ] s .
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— (7) Poststore
obj POSTSTORE is sort PostStore ErrStore
pr STORE .

subsorts Store < PostStore .

subsorts ErrStore < PostStore .

op signalerr : Store -> ErrStore .

op isStore : PostStore -> Bool .

op isErrStore : PostStore -> Bool .

var S : Store .

eq

eq

eq

eq

endo

isStore(S) = true .

isStore(signalerr(S)) = false .

isErrStore(S) = false .

isErrStore(signalerr(S)) = true

(8) Denotable values
obj DENOTABLE-VAL is sort Denot-Val .

pr NAT .

pr LOCATION .

pr UNIT * (sort Unit to Undefined, op ({}) to (undefined))
subsorts Loc < Denot-Val .

subsorts Nat < Denot-Val .

subsorts Undefined < Denot-Val .

op isLoc : Denot-Val -> Bool .

op isNat : Denot-Val -> Bool .

op isUndefined : Denot-Val -> Bool .

op selecNat : Denot-Val -> Nat .

var D Denot-Val .

var L Loc .

var N Nat .

var U Undefined .

eq isLoc(L) = true .

eq isLoc(N) = false .

eq isLoc(U) = false .

eq isNat(N) = true .

eq isNat(L) = false .

eq isNat(U) = false .

eq isUndefined(D) = D == undefined
eq . selecNat(N) = N .

endo

Two views used in ENV
view VID of QID as DOMAIN is

var I I' : DElt .

op Bool : I eq I ' to Bool : I == I

'

endv
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view VDEN of DENOTABLE-VAL as RANGE is

varVV : RElt .

op RElt : ? to Denot-Val : undefined .

endv

(9) Environment
obj ENV is sort Env .

pr FUN [VID, VDEN] * (sort Fun to Idmap, op (nullF) to (!))
op <_,_> : Idmap Loc -> Env .

op emptyenv : -> Env .

op updateeny__ : Id Denot-Val Env -> Env [strat (3 2 1 0)]
op accessenv^. : Id Env -> Denot-Val [strat (2 10) memo] .

op reserve-locn_ : Env -> Env .

op get-locn_ : Env -> Loc .

var L
var I

var D
var M
eq

eq

eq

eq
eq

endo

Loc .

Id .

Denot-Val .

Idmap .

emptyenv = <
| , first-locn > .

updateenv ID<M,L> = <[ID]M,L>
accessenv I<M,L>=MI .

reserve-locn < M , L > = < M , next-locn L >

get-locn < M , L > = L .

— (10) Expressible values: Expressible-Value
obj EVALUE is sort Evalue .

pr STORABLE-VALUE .

pr UNIT * (sort Unit to Errvalue, op ({}) to (errvalue))
subsorts Storable-Value < Evalue .

subsorts Errvalue < Evalue .

op isStorable-Value : Evalue -> Bool .

op isErrvalue : Evalue -> Bool .

var V : Storable-Value .

var E : Evalue .

eq

eq

eq

endo

isStorable-Value(V) = true .

isStorable-Value( errvalue) = false
isErrvalue(E) = E = errvalue .

(11) Expressible boolean values: Bool-Expr-Value
obj BVALUE is sort Bvalue .

pr BOOL .

pr UNIT * (sort Unit to Errvalue, op ({}) to (errbvalue))
subsorts Bool < Bvalue .

subsorts Errvalue < Bvalue .
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op isTr : Bvalue -> Bool .

op isErrvalue : Bvalue -> Bool
var T : Bool .

var B : Bvalue
eq

eq
eq

endo

isTr(T) = true .

isTr(errbvalue) = false .

isErrvalue(B) = B == errbvalue .

Syntactic domain from abstract syntax
obj SYN-DOM is

sorts Prog Decl Com Block Expr Bexpr .

protecting NAT .

protecting QID .

subsorts Nat < Expr .

subsorts Id < Expr .

subsorts Block < Com .

op begin_end : Block -> Prog [prec 9] .

op _;_ : Decl Decl -> Decl [assoc prec 6] .

op Var_ : Id -> Decl [prec 5] .

op Const__ : Id Nat -> Decl [prec 5] .

op let_in_ : Decl Com -> Block [prec 8] .

op _;_ : Com Com -> Com [assoc prec 7] .

op _:=_ : Id Expr -> Com [prec 5] .

op while_do_ : Bexpr Com -> Com [prec 5] .

op if_then_else_ : Bexpr Com Com -> Com [prec 5]

op _+_ : Expr Expr -> Expr [prec 3] .

op _eq_ : Expr Expr -> Bexpr [prec 4] .

op not_ : Bexpr -> Bexpr [prec 4] .

endo

Valuation functions
obj VAL-FUN is

pr POSTSTORE .

pr ENV .

pr EVALUE .

pr BVALUE .

pr SYN-DOM .

op P[_] : Prog -> PostStore .

op K[_] : Block Env Store -> PostStore

82



op D[_]_ : Decl Env -> Env .

op C[_]__
op E[_]__
op B[_]_

Com Env Store -> PostStore [memo]

Expr Env Store -> Evalue [memo] .

Bexpr Env Store -> Bvalue [memo]

var I : Id .

var N : Nat .

var D Dl D2 : Decl .

var R : Block .

var E El E2 : Expr .

var B : Bexpr .

var C CI C2 : Com .

var e : Env .

var s : Store .

eq : P[ begin K end ] = K[ K ] emptyenv newstore

eq : K[ let D in C ] e s = C[ C ] (D[ D ] e) s .

eq

eq

eq

ceq

ceq
ceq

D[ Var I ] e = updateenv I (get-locn e) ( reserve-locn e)
D[ Const I N ] e = updateenv I Ne .

D[ Dl ; D2 ] e = D[ D2 ] (D[ Dl ] e) .

eq : C[ CI ; C2 ] e s = if isStore(C[ CI ] e s)

then C[ C2 ] e (C[ CI ] e s)

else signalerr(s) fi .

eq : C[ I := E ] e s
= if isLoc(accessenv I e) and isStorable-Value(E[ E ] e s)

then update (accessenv Ie)(E[E]es)s
else signalerr(s) fi .

eq : C[ while B do C ] e s

= if isTr(B[ B ] e s)
then if (B[ B ] e s) then C[ C ; while B do C ] e s

else s fi
else signalerr(s) fi .

eq : C[ if B then CI else C2 ] e s
= if isTr(B[ B ] e s)

then if (B[ B ] e s) then C[ CI ] e s

else C[ C2 ] e s fi
else signalerr(s) fi .

eq:C[K]es = K[K]es.

E[ I ] e s - access (accessenv I e) s if isLoc( accessenv I e) .

E[ I ] e s = selecNat( accessenv I e) if isNat(accessenv I e) .

E[ I ] e s - errvalue if isUndef ined( accessenv I e) .
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eq : E[ N ] e s = N .

eq : E[ El + E2 ] e s
= if isStorable-Value(E[ El ] e s)

and isStorable-Value(E[ E2 ] e s)
then (E[ El ] e s) + (E[ E2 ] e s)
else errvalue fi .

eq : B[ El eq E2 ] e s
- if isStorable-Value(E[ El ] e s)

and isStorable-Value(E[ E2 ] e s)
then (E[ El ] e s) = (E[ E2 ] e s)
else errbvalue fi .

eq : B[ not B ] e s = if isTr(B[ B ] e s) then not (B[ B ] e s)
else errbvalue fi .

endo

eof

III. Example Runs

Welcome to 0BJ3 Version .99

system built: (1988 3 15 15 5 55)
Copyright 1987 by the 0BJ3 Group (KF, JAG, JPJ, JM, TW, CK, HK, AM)
0BJ3> in blokl

in fun
Reading in file : "fun"

th DOMAIN

th RANGE

obj FUN
Done reading in file: "fun"

obj UNIT

obj LOCATION

obj STORABLE-VALUE

view VLOC

view VSTVALUE

obj STORE
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obj POSTSTORE

obj DENOTABLE-VAL

view VID

view VDEN

obj ENV

obj EVALUE

obj BVALUE

obj SYN-DOM

obj VAL-FUN
0BJ3> reduce in VAL-FUN as :

PC begin
let

Var ' x ; Var ' y ; Const ' one 1

in

'x := 'one ;

'y := ' x + 'one
end ] .

reducing term: (P[ (begin (let ((Var 'x) ; ((Var 'y)
; (Const 'one 1)))

in (('x := 'one) ;
( 'y := ( 'x + 'one)))) end) ])

reduction result Store: ([ (L 1) 2 ] ([ (L 0) 1 ] newstore))

0BJ3> reduce in VAL-FUN as :

PC begin
let

Var ' sum ; Var '

i

in
'sum := ;

'i := ;

while not ( 'i eq 3)

do ('i := 'i + 1 ; 'sum := 'sum + 'i)

end ] .

reducing term: (P[ (begin (let ((Var 'sum) ; (Var 'i)) in (('sum := 0) ;

(('i := 0) ; (while (not ('i eq 3)) do (('i := ('i + 1)) ; ('sum :=

('sum + '!))))))) end) ])
reduction result Store: ([ (L 0) 6 ] ([ (L 1) 3 ] ([ (L 0) 3 ] ([(LI)
2 ] ([ (L 0) 1 ] ([ (L 1) 1 ] (C (L 1) ] ([ (L 0) ] newstore))))))))
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0BJ3> reduce in VAL-FUN as :

PC begin
let

Var ' x ; Const ' n 1 ; Var '

y

in

'x := 'y + 1 ;

'n := 'x + 1 ;

if ' x eq 1 then 'x := 10 else 'x :=

end ] .

reducing term: (P[ (begin (let ((Var 'x) ; ((Const 'n 1) ; (Var 'y))) in
<('x := ('y + 1)) ; (('n := ( 'x + 1)) ; (if ( 'x eq 1) then ( 'x := 10)
else ('x := 0))))) end) ])
reduction result ErrStore: signalerr(([ (L 0) uninitialized ] newstore))

0BJ3> reduce in VAL-FUN as :

PC begin
let Var ' x ; Var 'y

in 'x := 1 ;

(let Const 'y 10 in 'x := 'y + 'x) ;

'y := 'x

end ] .

reducing term: (P[ (begin (let ((Var 'x) ; (Var 'y)) in (('x := 1) ;

((let (Const 'y 10) in ('x := ('y + 'x))) ;
( 'y := 'x)))) end) ])

reduction result Store: ([ (L 1) 11 ] ([ (L 0) 11 ] (C (L 0) 1 ]

newstore)))
0BJ3>
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Semantic Specification Fo:r* PLISP

I, Denotational Semantics

Abstract Syntax:

E 6 Expression
N € Numeral
I € Identifier

E : : = LET I BE Ei IN E2 ! LAMBDA I E | Ei E2 !

Ei CONS E2 ! HEAD E | TAIL E | NIL | I j N

Semantic Algebras:

(1) Natural Numbers
Domain n e Nat - N

(2) Identifiers
Domain i € Id - Identifier

(3) Denotable values, functions, and lists
Domains d g Denotable-value - Function + List + Nat + Error

where Error - Unit
f € Function - Denotable-value — Denotable-value
1 € List = Nil + NeList

where Nil - Unit, and NeList - Denotable-value x List
Operations

hd : List —* Denotable-value
hd - \1. cases (i) of isNil() —* inErrori)

WisNeList((d,l')) — d end

tl : List —* List
tl - XI. cases (1) of isNil() —* inError()

l\isNeList((d,r)) — 1' end

cons : Denotable-value List — List
cons - \d. XI. inList( ( d, i)

)

(4) Environments
Domain e € Env - Id —* Denotable-value
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Operations
emptyenv : Env
emptyenv - Xi. inErroii)

accessenv : Id —* Env —* Denotable-value
accessenv - Xi.Xe.ei i)

updateenv : Id — Denotable-value —* Env —* Env
upda teenv - Xi . Xd. Xe. [ i+cf\ e

(5) Expressible values
Domain v € Expressible-value - Denotable-value

Valuation Functions:
E : Expression —* Env —#• Expressible-value

EffLET I BE Ei IN E2D = \e.EttE2IK upda teenv HID (EdEiDe?) e)

ECLAMBDA I ED - Xe.inEunction(Xd.E\IEM updateenv III B d <?))

EIIEi E2D = Xe. let v - (EffEiDe) in cases v of
isFunction(f) -+ tXERSzle)
WisList(l) —» inErroii)
WisNat(n) —+ inErroii) \HisErroii) —* inErroii) end

EHEi CONS E2D = Xe. let v - (E(IE2De) in cases v of
isFunction(f) —* inErrorC)
ftisListd) —> inI,ist((E[[EiDe) cons 1)

WisNat(n) —* inErroii) Q isErroii) —* inErroii) end

EHHEAD EL = Xe. let v - (EffEUe) in cases v of
isFunction(f) —* inErroii)
Disiist(i) — hd 1

WisNat(n) —* inErroii) WisErroii) —* inErroii) end

EffTAIL ED = Xe. let v = (EGEDe) in cases v of
isFunction( f) —* inErroii )

UisListU) -+ inList(tl 1)

\HisNat(n) —* inErroii) WisErroii) —* inErroii) end

E[INILD = Xe.inList(Nil)

EfflD = Xe. accessenv HID e

EdND = Xe.NIIND

N: Numeral —+ Nat (omitted)

88



II. 0BJ3 Specification

FILE: plisp.otg

Variables used in the X-abstract ions of denotable values

obj VARS is sort Vars .

pr NAT .

op v_ : Nat -> Vars .

op nextVar : Vars -> Vars .

op same : Vars Vars -> Bool .

var N N ' : Nat .

eq : nextVar (vN)=v(sN) .

eq : same((v N), (v N')) = N == N' .

endo

Domain of denotable values.

obj DENOT-VAL is sort Den .

pr NAT .

pr VARS .

subsorts Nat < Den .

subsorts Vars < Den .

op Err : -> Den .

op Nil : -> Den .

op _;_ : Den Den -> Den [assoc] .

op hd_ : Den -> Den .

op tl_ : Den -> Den .

op &_._ : Vars Den -> Den .

op : Den Den -> Den .

op [_/_]_ : Den Vars Den -> Den [memo] .

op red : Den -> Den .

op isList : Den -> Bool .

op isFunc : Den -> Bool .

op isErr : Den -> Bool .

op isVarterm : Den -> Bool .

var X Y : Vars .

var D D' L F : Den .

var N : Nat .

eq : hd (D ; L) = D .

eq : hd Nil = Err .
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eq : tl (D ; L) = L .

eq : tl Nil = Err .

eq : [ D / X ] N = N .

ceq : [ D / X ] Y = D if same(X, Y) .

ceq : [ D / X ] Y = Y if not same(X, Y) .

- eq : [ D / X ] Y = if same(X, Y) then D else Y fi . DID'T WORK
eq : [ D / X ] (F D')

= if isFunc([ D / X ] F)
then ([ D / X ] F) ([ D / X ] D') else Err fi .

eq : [ D / X ] (& Y . D') = if same(X, Y) then (& Y . D')
else (& Y . ([ D / X ] D')) fi .

eq : [ D / X ] <D' ; L)
= if isList([ D / X ] L)

then <[D/X]D');([D/X]L) else Err fi .

eq : [ D / X ] Nil = Nil .

eq : [ D / X ] (hd L) = if isList([ D / X ] L)

then hd ([ D / X ] L) else Err fi .

eq : [ D / X ] (tl L) = if isList([ D / X ] L)
then tl ([ D / X ] L) else Err fi .

eq : [ D / X ] Err = Err .

red((& X . D) D') = red([ D' / X ] D)
red(X D) = X D .

red(N) = N .

red(Nil) = Nil .

red(D ; L) = D ; L .

red(tl L) = tl L .

red(hd L) - hd L .

red(& X . D) = (& X . red(D)) .

red(Err) = Err .

isList(D ; L) = isList(L) .

isList(Nil) = true .

isList(N) = false .

isList(Err) = false .

isList(& X . D) = false .

eq

eq
eq

eq
eq
eq

eq

eq

eq

eq
eq

eq
eq
eq
ceq : isList(D) - true if isVartenn(D)

eq : isFunc(& X . D) = true .

eq : isFunc(Nil) = false .

eq : isFunc(D ; L) = false .

eq : isFunc(N) = false .

eq : isFunc(Err) = false .

ceq : isFunc(D) = true if isVarterm(D)

eq : isErr(D) = D " Err .
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eq : isVarterm(X) = true .

eq : isVarterm(X D) = true .

eq : isVarterm( hd D) = isVarterm(D) .

eq : isVarterm(tl D) = isVarterm(D) .

endo

in fun Specification of parameterized function domains

view VID of QID as DOMAIN is
var I I' : DElt .

op Bool : I eq I ' to Bool : I = I ' .

endv

view VD of DENOT-VAL as RANGE is

sort RElt to Den .

op RElt : ? to Den : Err .

endv

obj ENV is sort Env .

pr FUN [VID, VD] * (sort Fun to Map, op (nullF) to (!)) .

op <_,_> : Map Vars -> Env .

op emptyenv : -> Env .

op accessenv_ : Id Env -> Den .

op updateenv^ „

_

: Id Den Env -> Env .

op getvar_ : Env -> Vars .

op gonextvar_ : Env -> Env .

var I : Id .

var X : Vars .

var M : Map .

var D : Den .

eq : emptyenv = <
J , (v 0) > .

accessenv I<M,X>=MI .

updateenv I D < H , X > = < ([ I D ] H) , X > .

getvar < M , X > = X .

gonextvar < M , X > = < M , nextVar(X) > .

eq

eq
eq

eq
endo

obj EXPRESSION is sort Expr .

pr NAT .

pr QID .

subsorts Id < Expr .

subsorts Nat < Expr .

op NIL : -> Expr .

op HEAD_ : Expr -> Expr [prec 3] .

op TAIL_ : Expr -> Expr [prec 3] .

op _C0NS_ : Expr Expr -> Expr [assoc prec 4]
op

,
: Expr Expr -> Expr [prec 6] .

op LAMBDA^! : Id Expr -> Expr [prec 5] .
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op LET_BE_IN_ : Id Expr Expr -> Expr [prec 7] .

endo

obj VAL is

pr ENV .

pr EXPRESSION .

op E[_]_ : Expr Env -> Den [strat(2 0) memo] .

var I : Id .

var E El E2 : Expr .

var e : Env .

var N : Nat .

eq : E[ I ] e = accessenv I e .

eq : E[ N ] e = N .

eq : E[ NIL ] e = Nil .

eq : E[ HEAD E ] e
= if isList(E[ E ] e) then hd (E[ E ] e) else Err fi .

eq : E[ TAIL E ] e
= if isList(E[ E ] e) then tl (E[ E ] e) else Err fi .

eq : E[ El CONS E2 ] e
= if isList(E[ E2 ] e) and (not isErr(E[ El ] e))

then (E[ El ] e) ; (E[ E2 ] e) else Err fi .

eq : E[ El E2 ] e
= if isFunc(E[ El ] e) and (not isErr(E[ E2 ] e))

then red((E[ El ] e) (E[ E2 ] e)) else Err fi .

eq : E[ LAMBDA I E ] e
= (& (getvar e) .

(E[ E ] (updateenv I (getvar e) (gonextvar e))))
eq : E[ LET I BE El IN E2 ] e

= if isErr(E[ El ] e) then Err
else E[ E2 ] (updateenv I (E[ El ] e) e) fi .

endo

eof
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III. Example Runs

Welcome to 0BJ3 Version .99

system built: (1988 3 15 15 5 55)
Copyright 1987 by the 0BJ3 Group (KF, JAG, JPJ, JM, TW, CK, HK, AM)
0BJ3> in plisp

obj VARS

obj DENOT-VAL

in fun
Reading in file : "fun"

th DOMAIN

th RANGE

obj FUN
Done reading in file: "fun"

view VID

view VD

obj ENV

obj EXPRESSION

obj VAL

0BJ3> reduce in VAL as :

E[ LAMBDA 'f (LAMBDA 'x ('f (HEAD *x))) ] emptyenv
•

reducing term: (E[ (LAMBDA 'f (LAMBDA 'x ( 'f (HEAD 'x)))) ] emptyenv)
reduction result Den: (& (v 0) . (& (v 1) . ((v 0) (hd (v 1)))))

0BJ3> reduce in VAL as :

E[ (LAMBDA 'f (LAMBDA 'x ('f (HEAD 'x))))
(LAMBDA *x ('x CONS NIL)) ] emptyenv

a

reducing term: (E[ ((LAMBDA 'f (LAMBDA 'x ('f (HEAD 'x)))) (LAMBDA 'x

Cx CONS NIL))) ] emptyenv)
reduction result Den: (& (v 1) . ((hd (v 1)) ; Nil))
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0BJ3> reduce in VAL as :

E[ LET 'snd BE LAMBDA *x (HEAD (TAIL x)) IN

'snd (2 CONS 3 CONS NIL) ] emptyenv

reducing term: (E[ (LET 'snd BE (LAMBDA 'x (HEAD (TAIL 'x))) IN ('snd (2
CONS (3 CONS NIL)))) ] emptyenv)
reduction result Nat: 3

0BJ3> reduce in VAL as :

E[ LET 'f BE IN

LET '1 BE LAMBDA 'z ('f CGNS ' z) IN
LET 'z BE 1 IN 'f ('z CONS NIL) 3 emptyenv

•

reducing term: (E[ (LET 'f BE IN (LET 'f BE (LAMBDA 'z ('f CONS 'z))

IN (LET 'z BE UN ('f ('z CONS NIL))))) ] emptyenv)
reduction result Den: (0 ; (1 ; Nil))

0BJ3> reduce in VAL as :

E[ LET g BE LAMBDA 'f (LAMBDA 'x ('f 'x)) IN

LET 'list BE LAMBDA 'x ('x CONS NIL) IN
(

'
g '1 ist ) 2 3 emptyenv

•

reducing term: (E[ (LET 'g BE (LAMBDA 'f (LAMBDA 'x ('f 'x))) IN (LET
'list BE (LAMBDA 'x ( 'x CONS NIL)) IN (('g 'list) 2))) ] emptyenv)

reduction result Den: (2 ; Nil)

0BJ3> reduce in VAL as :

EC LET 'f BE LAMBDA 'x (HEAD 'x) IN *f 2 ] emptyenv

reducing term: (E[ (LET 'f BE (LAMBDA 'x (HEAD 'x)) IN ( 'f 2)) ]

emptyenv)
reduction result Den: Err

0BJ3> reduce in VAL as :

EC (LAMBDA 'f ('f 2)) NIL ] emptyenv

reducing term: (E[ ((LAMBDA 'f ( 'f 2)) NIL) ] emptyenv)
reduction result Den: Err

0BJ3> reduce in VAL as :

EC LET 'f BE LAMBDA 'x (HEAD 'x) IN 'f 2 ] emptyenv

reducing term: (EC (LET 'f BE (LAMBDA 'x (HEAD 'x)) IN ('f 2)) ]

emptyenv)
reduction result Den: Err
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AF»E>©nci i>c C
Continuation Semantics
Specification for- BLOK2

I. Denotational Semantics

Abstract Syntax:

P 6 Program
K € Block
D € Declaration
C € Command
E e Expression
B e Bool-Expr
I € Identifier
N € Numeral

P
K
D
C
E
B

begin K end
let D in C
Di ; D2
Ci ; C2
Ei + E2

Var I ! Const I N
I := E ! while B do C | if B then Ci else C2 ! stop
I ! N

Ei eq E2 ! not B

Semantics Algebras:

(l)-(3) Truth values, Natural numbers, Identifiers
(same as defined in Appendix A)

(4)-(6) Storage locations, Storable values, Stores
(same as defined in Appendix A)

(7)-(8) Denotable values, Environments
(same as defined in Appendix A)

(9) Messages
Domain m e Message
Operations

normal : Message
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stopped : Message
id-use-err : Message
id-undefined : Message

(10) Answers
Domain a € Answer - Message x Store

(11) Command continuations
Domain c € Ccont - Store —* Answer
Operations

terminate : Message —*• Ccont
terminate = \m.\s.(m,s)

updatestore : Location —* Storable-Value — Ccont —* Ccont
updatestore - XI. \v.\c.Xs.ci update 1 v s")

(12) Expression continuations
Domain a € Econt - Storable-Value —* Ccont

(13) Identifier continuations
Domain £ <£ Lcont - Location —* Ccont

(14) Bool-expression continuations
Domain t € Bcont - Tr —* Ccont

Valuation Functions:

P: Program — Answer
Pftbegin R endD = KURD emptyenv ( terminate normal} newstore

K: Block — Env —* Ccont —»• Ccont
KClet D in CD = Xe.Xc.CHCD (DGDD e) c

D: Declaration —* Env—*- Env
DdDi ; D2D = Xe.DIID2D(DlIDiDe)

DffVar ID = Xe. let (i', e' ) - reserve-locn e'

in ( upda teenv HI D inLoca tion( 1
' ) e ' )

DdConst I ND = updateenv HID intfatCNUNfl)

C: Command — £hv — Ccont —»• Ccont
CaCi ; C2D = Xe.Xc.CIICiD e (CHC2 D e c)

CCI := ED = Xe.Xc.LGID e (Xi.EGED e (Xv. updatestore 1 v c))

CQwhile B do CD = vh
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wh - Xe.Xc.BUBD e (Xt. t -* CGCD e (wh e c) Q c)

CHif B then Ci else C2D
= Xe.Xc.BGBI) e (Xt. t -* ClICiI] e c f] CHC2D e <?)

CQstopD = Xe.Xc . terminate stopped

E: Expression —» isfrv —» Econt — Ccont
EtfEi + E2I = Xe.Xa.EdEiD e (Xvi.E[[E2l e (Xvs.tf aofc/( vi , vs ) )

)

Edll = Xe.Xa. cases (accessenv [II B e) of
isLocation( 1) —* Xs.a( access 1 s)

WisNat(n) —* a n
QisUndefinedO — terminate id-undefined end

EttND = Xe.Xa. a NGND

B: Bool-Expr — Env—*- Bcont —* Ccont
BGEi eq E2D = Xe.Xr.EIEiD e (Xvi.E[[E2D e (Xvz.r (equals vi vs)))

BGnot BI = Xe.Xr.BffBI] e (Xt.r(not £))

L: Identifier —»• Env—*- Lcont —* Ccont
LCTI B = Xe. XJ3. cases (accessenv [[II] e) of

isLocation( i) —* 1

WisNat(n) —* terminate id-use-err
QisUndefined —* terminate id-undefined end

II. 0BJ3 Specification

FILE: blok2.obj

in fun Specification of parameterized function domain

(1) Truth values
obj TRUTH is sort Tr Trv .

subsorts Trv < Tr .

pr BOOL .

subsorts Bool < Tr .

op t : -> Trv .

op not_ : Tr -> Tr .

endo

(4) Storage locations
obj LOCATION is sort Loc Locc Locv
subsorts Locc < Loc .
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subsorts Locv < Loc .

op first- locn : -> Locc .

op next-locn_ : Locc -> Locc .

pr NAT .

op L_ : Nat -> Locc .

op 1 : -> Locv .

var N : Nat .

eq : first- locn = L .

eq : next-locn (LN)=L(sN) .,
endo

(5) Storable /values

obj STVALUE is sorts SValue SValuec SValuev .

subsorts SValuec < SValue .

subsorts SValuev < SValue .

pr NAT .

subsorts Nat < SValuec .

op equals : SValue SValue -> Bool .

op uninitialized : -> SValuec .

op v : -> SValuev .

op vl : -> SValuev .

op v2 : -> SValuev .

op _+_ : SValue SValue -> SValue [assoc comm]

var V : SValue .

eq : V + uninitialized = uninitialized .

var VI V2 : SValuec .

eq : equals(Vl, V2) = VI == V2 .

endo

Two views for STORE
view VLOC of LOCATION as DOMAIN is

sort DElt to Locc .

var LL' : DElt .

op Bool : L eq L' to Bool : L == L' .

endv

view VSTVALUE of STVALUE as RANGE is

sort RElt to SValuec .

var N N' : RElt .

op RElt : ? to SValue : uninitialized .

endv
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(6) Stores
obj STORE is

pr FUN [VLOC, VSTVALUE]
* (sort Fun to Store, op (nullF) to (newstore))

op access,
,

._ : Loc Store -> SValuec .

op update : Loc SValue Store -> Store [strat (3 2 10)] .

vai• L : Locc .

vai V : SValuec n

vai S : Store .

eq : access L S = S L .

eq : update L V S = [ L V ]

endo

(9) Messages
obj MESGS is sort Mesg .

op normal : -> Mesg .

op stopped : -> Mesg .

op id-use-err : -> Mesg .

op id-undefined : -> Mesg .

endo

(10) Answers
obj ANSWER is sort Answer .

pr STORE .

pr MESGS .

op <_,_> : Mesg Store -> Answer .

endo

(11)-(14) Continuations
obj CONT is sort Ccont Bcont Econt Lcont .

pr STORE .

pr ANSWER .

pr TRUTH .

op : Ccont Store -> Answer [strat (2 10) prec 9] .

op terminate. : Mesg -> Ccont [prec 2] .

op updatestore : Ccont Loc SValue -> Ccont [strat (2 3 0)]

op &_._ : SValuev Ccont -> Econt [strat (0) prec 8] .

op : Econt SValue -> Ccont [strat (2 0) prec 7] .

op &_._ : Locv Ccont -> Lcont [strat (0) prec 8] .

op _. : Lcont Loc -> Ccont [strat (2 0) prec 7] .

op &_._ : Trv Ccont -> Bcont [strat (0) prec 8] .

op : Bcont Tr -> Ccont [strat (2 0) prec 7] .
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op _=>_!_ : Tr Ccont Ccont -> Ccont [strat (0) prec 10]

var M : Mesg .

var S : Store .

eq : terminate M S = < M S >

var C : Ccont .

var V : SValuec .

var L : Locc .

eq : (updatestore C L V) S = C (update L V S) .

var B : Bool .

var CI C2 : Ccont .

eq : B => CI
J
C2 = if B then CI else C2 fi .

endo

obj UNIT is sort Unit .

op {} : -> Unit .

endo

(7) Denotable values
obj DEN-VAL is sort Denotval .

pr LOCATION .

pr NAT .

pr UNIT * (sort Unit to Undefined, op ({}) to (undefined))
subsorts Locc < Denotval .

subsorts Nat < Denotval .

subsorts Undefined < Denotval .

op isLoc : Denotval -> Bool .

op isNat : Denotval -> Bool .

op isUndefined : Denotval -> Bool .

op selecNat : Denotval -> Nat .

op selecLoc : Denotval -> Locc .

var D Denotval .

var L Locc .

var N Nat .

var U Undefined .

eq isLoc(L) = true .

eq isLoc(N) = false .

eq isLoc(U) = false .

eq isNat(N) = true .

eq isNat(L) = false .

eq isNat(U) = false .

eq isUndefined(D) = D =

eq selecNat(N) = N .

eq seslecLoc(L) = L .

== undefined
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view VID of QID as DOMAIN is

var I I' : DElt .

op Bool : I eq I ' to Bool : I " I ' .

endv

view VDEN of DEN-VAL as RANGE is

var V V : RElt .

op RElt : ? to Denotval : undefined .

endv

(8) Environment
obj ENV is sort Env .

pr FUN [VID, VDEN] * (sort Fun to Idmap, op (nullF) to (!))
op <_,_> : Idmap Locc -> Env .

op emptyenv : -> Env .

op updateenv.^, : Id Denotval Env -> Env [strat (3 2 1 0)]
op accessenv.^, : Id Env -> Denotval [strat (2 10) memo] .

op reserve-locn_ : Env -> Env .

op get-locn_ : Env -> Locc .

var L : Locc .

var I : Id .

var D : Denotval .

var M : Idmap .

eq : emptyenv = <
J , first-locn > .

updateenv ID<M,L>=<[ID]M,L>.
accessenv I<M,L>=MI .

reserve- locn < M , L > = < M , next-locn L > .

get-locn < M , L > = L .

eq
eq
eq
eq

endo

Syntactical domain of the abstract syntax
obj SYN-DOM is sorts Prog Block Decl Com Expr Bexp
pr QID .

pr NAT .

subsorts Nat < Expr .

subsorts Id < Expr .

op begin_end : Block -> Prog [prec 12] .

op let_in_ : Decl Com -> Block [prec 11] .

op _;_ : Decl Decl -> Decl [assoc prec 10] .

op Const : Id Nat -> Decl [prec 8] .

op Var_ : Id -> Decl [prec 8] .

op _;_ : Com Com -> Com [assoc prec 10] .

op _:-_ : Id Expr -> Com [prec 8] .

op if_then_else_ : Bexp Com Com -> Com [prec 9] ,
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op while_do_ : Bexp Com -> Com [prec 9] .

op stop : -> Com .

op _+_ : Expr Expr -> Expr [assoc prec 4]

op _eq_
op not_

endo

Expr Expr -> Bexp [prec 5]
Bexp -> Bexp [prec 6] .

Valuation function
obj VAL is

pr SYN-DOM .

pr STORE .

pr ENV .

ex CONT .

op P[_] :

op K[_]_
op D[_]_
op C[_]_
op E[_]_
op B[_]_
op L[_]„

Prog -> Answer .

: Block Env Ccont -> Ccont [strat (2 0) prec 7]
Decl Env -> Env [strat (2 0)] .

Com Env Ccont -> Ccont [strat (2 0) prec 7] .

Expr Env Econt -> Ccont [strat (2 0) prec 7]
Bexp Env Bcont -> Ccont [strat (2 0) prec 7]
Id Env Lcont -> Ccont [strat (2 0) prec 8] .

var D Dl D2 : Decl
var R : Block .

CI C2 : Com ,

El E2 : Expr
Bexp .

Id .

Nat .

Env .

var C
var E
var B
var I

var N
var En
var Cc
var Ec
var Be
var Lc
var S

Ccont
Econt
Bcont
Lcont
Store ,

eq : P[ begin K end ] = K[ K ] emptyenv (terminate normal) newstore
eq : K[ let D in C ] En Cc = C[ C ] (D[ D ] En) Cc .

eq : D[ Dl ; D2 ] En = D[ D2 ] (D[ Dl ] En) .

eq : D[ Var I ] En = updateenv I (get-locn En) ( reserve-locn En) .

eq : D[ Const I N ] En = updateenv I N En .

eq : C[ CI ; C2 ] En Cc - C[ CI ] En (C[ C2 ] En Cc) .

eq : C[ I :- E ] En Cc S
- L[ I ] En (& 1 . (E[ E ] En (& v . updatestore Cc 1 v))) S
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eq : C[ if B then CI else C2 ] En Cc
= B[ B ] En (& t . (t => C[ CI ] En Cc | C[ C2 ] En Cc)) .

eq : C[ while B do C ] En Cc
= B[ B ] En

(& t . (t => C[ C ] En (C[ while B do C ] En Cc) | Cc))
eq : C[ stop ] En Cc S = terminate stopped S .

ceq : E[ I ] En Ec
- Ec selecNat(accessenv I En) if isNat(accessenv I En) .

ceq : E[ I ] En Ec S = Ec (access selecLoc(accessenv I En) S) S

if isLoc(accessenv I En) .

ceq : E[ I ] En Ec
= terminate id-undefined if isUndefined(accessenv I En) .

eq : E[ N ] En Ec = Ec N .

eq : E[ El + E2 ] En Ec
= E[ El ] En (& vl . E[ E2 ] En (& v2 . Ec (vl + v2))) .

eq : B[ El eq E2 ] En Be
= E[ El ] En (& vl . E[ E2 ] En (& v2 . (Be equals(vl, v2))))

eq : B[ not B ] En Be = B[ B ] En (& t . Be (not t)) .

ceq : L[ I ] En Lc
= Lc selecLoc(accessenv I En) if isLoc(accessenv I En) .

ceq : L[ I ] En Lc = terminate id-use-err if isNat(accessenv I En) .

ceq : L[ I ] En Lc
= terminate id-undefined if isUndefined(accessenv I En) .

— Auxiary equations for the application of continuations
var V V : SValue .

var T : Tr .

var L : Loc .

var Ccl Cc2 : Ccont .

eq : (& 1 . (E[ E ] En (& v . updatestore Cc 1 v))) L
= E[ E ] En (& v . updatestore Cc L v) .

eq : (& v . updatestore Cc L v) V = updatestore Cc L V .

eq : (& t . (t => Ccl ! Cc2)) T = (T => Ccl
J
Cc2) .

eq : (& vl . E[ E ] En (& v2 . Ec (vl + v2))) V
= E[ E ] En (& v2 . Ec (V + v2)) .

eq : (& v2 . Ec (V + v2)) V = Ec (V + V) .

eq : (& vl . E[ E ] En (& v2 . Be equals(vl, v2))) V
= E[ E ] En (& v2 . Be equals(V, v2)) .

eq : (& v2 . Be equals(V, v2)) V = Be equals(V, V) .

eq : (& t . Be (not t)) T = Be (not T) .

endo
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III. Example Runs

Welcome to 0BJ3 Version .99

system built: (1988 3 15 15 5 55)
Copyright 1987 by the 0BJ3 Group (KF, JAG, JPJ, JM, TW, CK, HK, AM)
0BJ3> in blok2

in fun
Reading in file : "fun"

obj ENV

obj SYN-DOM

obj VAL

0BJ3> reduce in VAL as :

PC begin
let Var 'x ; Canst 'n 1 ; Var 'y

in

'x := 'n ;

while ' x eq 10 do 'y := 'y + 1 ;

'y := ' x + 1

end ] .

reducing term: (P[ (begin (let ((Var 'x) ; ((Const 'n 1) ; (Var 'y))) in
(( 'x := 'n) ; ((while ( 'x eq 10) do ( 'y := ( 'y + 1))) ;

( 'y := < 'x +

1))))) end) ])
reduction result Answer:

(< normal , ([ (L 1) 2 ] ([ (L 0) 1 ] newstore)) >)

0BJ3> reduce in VAL as :

PC begin
let Var 'x ; Canst 'n 10
in

'x := 'n ;

if ' x eq 10 then stop
else (

' x := 'n + 1 ;

while not (
' x eq 20) do 'x := 'x + 1) ;

'x :=

end ] .

reducing term: (P[ (begin (let ((Var 'x) ; (Const 'n 10)) in (('x := 'n)

; ((if ( 'x eq 10) then stop else (('x :- ( 'n + 1)) ; (while (not ('x eq

20)) do ('x := ('x + 1))))) ; Cx := 0)))) end) ])
reduction result Answer: (< stopped , ([ (L 0) 10 ] newstore) >)
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0BJ3> reduce in VAL as :

PC begin
let Var 'x ; Const 'i 10
in

'x := 'i ;

'i := 'x + 1

end D .

reducing term: (P[ (begin (let ((Var 'x) ; (Const 'i 10)) in (('x := 'i)

; ('i := (x + 1)))) end) ])
reduction result Answer: (< id-use-err , ([ (L 0) 10 ] newstore) >)

0BJ3> reduce in VAL as :

PC begin
let Var 'a

in

'a := 'n ;

if 'a eq 10 then stop else 'a := 1

end ] .

reducing term: (P[ (begin (let (Var 'a) in (('a := 'n) ; (if ('a eq 10)

then stop else ('a := 1)))) end) ])
reduction result Answer: (< id-undefined , newstore >)
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ABSTRACT

This paper describes a method for giving algebraic denotational

specifications of programming language semantics. The language used is

0BJ3, a first-order parameterized algebraic specification language. The

structure of specifications follows closely to the standard denotational

semantics. Thus we are able to provide a tool to test the correctness of

semantic definitions by executing 0BJ3 specifications. Although our

specifications are in denotational styles, we have the benefits of

applying algebraic techniques: the definitions are highly structured

with increased flexibility and easy verifiability. The major features of

our semantic specifications are as follows: (1) We use the initial

algebras of specifications as semantic domains. Domain constructions are

regarded as set constructions. Methods of specifying compound domains

are presented. (2) Curried operations in the original denotational

semantics are specified in their decurried forms. (3) Since our specifi-

cations are first order, we have explored various ways of specifying

higher order objects, including defunctionalizations and lambda conver-

sions. The paper illustrates the methods with three complete semantic

definitions: a direct semantics specification for a modest block-struc-

tured language, a continuation-based semantics specification for a

similar block-structured language augmented with "stop", and a semantics

specification for a LISP-like applicative language.




