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Abstract

Emerging precision agriculture technologies allow farms to make input decisions with

greater information on crop conditions. This greater information occurs by providing im-

proved predictions of crop yields using remote sensing and crop simulation models and

by allowing farms to apply inputs within the growing season when some crop conditions

are already realized. We use a stylized model with uncertainty in yield and price to ex-

amine how greater information on crop conditions (i.e., a forecast) affects input use for

insured and uninsured farms. We show that moral hazard decreases—farms apply more

inputs—as the forecast accuracy improves when the forecast indicates good yields, and

vice versa when the forecast indicates bad yields. In the long run, moral hazard decreases

in response to an improvement in forecast accuracy. Even though moral hazard decreases

in the long run, indemnity payments are likely to increase in the long run—driven by the

increase in moral hazard when the forecast indicates bad crop conditions. We use the

results of our model to discuss the potential impact of different technologies and types of

inputs on the federal crop insurance program and the environment.
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Subsidized crop insurance is widely considered the cornerstone of today’s U.S. farm policy

to support farm income. At the same time, new technologies are emerging that process

massive amounts of data to provide farmers with improved information on crop conditions

throughout the growing season. In this paper, we develop a model to understand how im-

proved information on crop conditions affects input use decisions for insured and uninsured

farms. We show that farmers with insurance respond differently to the improved informa-

tion with important implications for moral hazard and the environment.

There is a large literature that studies moral hazard in crop insurance (e.g. Chambers

1989; Quiggin, Karagiannis, and Stanton 1993; Horowitz and Lichtenberg 1993; Ra-

maswami 1993; Babcock and Hennessy 1996; Smith and Goodwin 1996; Coble et al.

1997; Weber, Key, and O’Donoghue 2016; Mieno, Walters, and Fulginiti 2018). Yet nearly

all of the previous literature focuses on inputs that are applied prior to planting when little

is known about growing season conditions. Many of the previous studies implicitly assume

that farmers have no information on whether yields in a particular year might be above or

below average, but farmers often have greater information about conditions when making

decisions about inputs within the growing season. For example, pesticides are commonly

applied during the season and it is also possible to apply fertilizer late in the growing sea-

son. The previous literature has paid little attention on the impacts of greater information

during the growing season on moral hazard in crop insurance programs.

New technologies have the potential to improve information on crop conditions. For

example, Winfield United released the new R7 R© Field Forecasting Tool in 2018. Winfield

United claims, “the Field Forecasting Tool lets you run scenarios that tell you what you can

expect if you implement various applications.”1 A farmer can simulate his or her final yield

for different amounts of fertilizer applied, conditional on the crop conditions observed to

the current point in the year. Farmers can use this type of tool to make input decisions based

on crop conditions and prices, but clearly the likelihood of collecting an indemnity payment

1



also affects decisions. Furthermore, these tools could make within-season application of

fertilizer more profitable.

We model input decisions for a farm without any crop insurance and a farm with Rev-

enue Protection. For the tractability of comparative statics, we consider a stylized model

with four possible states: good weather and high price, bad weather and high price, good

weather and low price, and bad weather and low price. The forecast changes the perceived

probability of a bad yield. We use the model to understand how improvements in the fore-

cast accuracy (i.e., improved information on crop conditions) affect input use and we also

conduct numerical simulations to illustrate our results.

Our model shows that improved information on crop conditions increases moral hazard

when the forecast predicts a bad yield shock and decreases moral hazard when the forecast

predicts a good yield shock. Consider a motivating example of how moral hazard increases

when indemnities are expected to trigger. Southwest Ohio experienced poor weather condi-

tions in 2016. A farmer in the region stated “I bet there wasn’t 20% of the normal fungicide

sprayed on corn in our area, because for people who thought they might have a federal in-

surance claim, it was a non-recoverable cost” (Taylor 2016). A similar argument could be

made for the major drought that struck the Corn Belt in 2012. By the middle of the growing

season it was already evident to many farmers that they would receive crop insurance in-

demnities. There was little incentive to apply inputs in the middle of the season for farmers

with crop insurance because yield gains would be offset by reduced indemnity payments.

As new technologies improve crop yield predictions in the middle of the growing season,

there will be greater opportunity to reduce input use in years when farmers collect indem-

nities. However, it is also important to consider the impact on input use of an improved

forecast accuracy when the forecast predicts indemnities will not be triggered.

We find that in the long run, moral hazard actually decreases due to improved informa-

tion on crop conditions. That is, long-run average input use by farmers with insurance will

be closer to input use without insurance as the accuracy of the forecast improves. Never-
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theless, indemnities are likely to increase as the forecast accuracy improves. Intuitively,

indemnities increase even though moral hazard decreases on average because the increase

in moral hazard when the forecast predicts a bad yield shock has a larger impact on in-

demnities than the decrease in moral hazard when the forecast predicts a good yield shock.

Insurance could have a positive or negative effect on the incentive to adopt a technology

that improves the forecast accuracy.

Our paper contributes to the literature on moral hazard in crop insurance. Early empiri-

cal studies such as Chambers (1989), Quiggin, Karagiannis, and Stanton (1993), Horowitz

and Lichtenberg (1993) and Smith and Goodwin (1996) estimate the effect of crop in-

surance on fertilizer or pesticide applications. Both positive and negative effects of crop

insurance on input use have been documented. For example, Horowitz and Lichtenberg

(1993) find increases in fertilizer applications and pesticide expenditures whereas Smith

and Goodwin (1996) estimate a decrease in fertilizer expenditures. Quiggin, Karagiannis,

and Stanton (1993) also find a decrease in chemical application. More recently, Weber,

Key, and O’Donoghue (2016) find little impact of crop insurance adoption on fertilizer and

chemical usage.

Our paper is also relevant to the previous studies on the role of uncertainty in intra-season

input choices and the value of forecasts or information. Antle (1983) models production

when some input decisions are made in later stages of production and are affected by new

information that becomes available. In the context of split nitrogen application, Feiner-

man, Choi, and Johnson (1990) show that risk aversion induces more pre-planting nitro-

gen application if nitrogen and water—the uncertain input—are substitutes. Bontems and

Thomas (2000), Hennessy and Babcock (1998), Chavas, Kristjanson, and Matlon (1991),

and Babcock (1990) study the role of forecasts in agricultural production and the value of

information on uncertain environmental variables.2

Yet, the literature paid relatively little attention to how forecasts of crop conditions affect

input demand for insured farms.3 One important exception is that Carriquiry and Osgood
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(2012) consider the impacts of forecasts due to El Niño events which may provide addi-

tional information prior to planting for index insurance. Another relevant study is Coble

et al. (1997) who compare yields between insured and uninsured farms and find a signifi-

cant difference in poor production years. Their result suggests moral hazard behavior and

that farmers act strategically based on expected crop conditions.

We focus on how moral hazard incentives change for Revenue Protection participants as

forecast accuracy improves. Revenue Protection is one of the most common products in the

U.S. Federal Crop Insurance Program and indemnifies when the realized revenue is below

the revenue guarantee (RMA 2016).4 Few studies examine input use under revenue-based

insurance (e.g., Mishra, Nimon, and El-Osta 2005; Babcock and Hennessy 1996). Babcock

and Hennessy (1996) provide a general framework that describes the input demand of the

farm with yield insurance and the farm with revenue insurance and show that whether

yield or revenue insurance reduces the input demand or not depends on how the input

affects the distributions of yields or revenues. The empirical analysis of Mishra, Nimon,

and El-Osta (2005) finds that farms with revenue insurance apply less fertilizer than farms

without insurance. We also contribute to this literature by investigating how the moral

hazard incentive of Revenue Protection participants differs from that of Yield Protection

participants and how they respond differently to the improved forecast accuracy.

A Stylized Model: Four-state Framework

For simplicity, suppose that crop insurance choices and other planting decisions are treated

as given. Our scope is to model the behavior of farms after the pre-planting production

choices. For farm i with an acre of a single crop planted, the yield for farm i is described

by:
yi = f (xi, ε)

where xi is an input with price Px and ε is a random shock that affects yield (e.g., a weather

shock).
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Our four-state framework assumes that the random crop yield shock, ε , takes only two

values, wg (good yield) and wb (bad yield), and the harvest price, HP, takes only two values,

Ph (high price) and Pl (low price). Thus, the four possible states are: 1) wg and Ph, 2) wg

and Pl , 3) wb and Ph and 4) wb and Pl .

We denote the probability of experiencing the bad crop yield shock, ε = wb, as τw. If

the true state is ε = wg, the conditional probability of having the low price is τp|g. Sim-

ilarly, if the true state is ε = wb, the conditional probability of having the low price is

τp|b. We assume that τp|g ≥ τp|b. That is, the probability of the low price is the same or

larger when there is a good yield shock rather than a bad yield shock. In locations that

have a large amount of global production (e.g., the Corn Belt), crop yield shocks are nega-

tively correlated with prices. In other locations, crop yield shocks and prices may have no

correlation. We have the following joint probability structure (see table 1): 1) wg and Ph

with Prob = (1− τw)(1− τp|g), 2) wg and Pl with Prob = (1− τw)τp|g, 3) wb and Ph with

Prob = τw(1− τp|b) and 4) wb and Pl with Prob = τwτp|b.

With the joint probability structure in table 1, farm i solves the following expected utility

maximization problem:

(1) Maxx EU = (1− τw)(1− τp|g)u(πi1(x)) + (1− τw)τp|gu(πi2(x)) +
τw(1− τp|b)u(πi3(x)) + τwτp|bu(πi4(x))

where u(·) is a von Neumann-Morgenstern utility function, πi j(x) is the profit in state j, and

for the risk-neutral farms u(π) is equal to π . Without any information on crop conditions,

we assume that farms use the long-run expected probability of the bad yield shock, τ̂w, as

their perceived probability of experiencing the bad yield shock, τw.

We consider two types of farms: a non-insured farm (i= n) and a farm insured by revenue

protection (i = rp). For the non-insured farm n, the profit function is represented as:
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(2) πn =



πn1 = Ph f (xn, wg)− Pxxn with Prob(πn1|xn) = (1− τw)(1− τp|g)

πn2 = Pl f (xn, wg)− Pxxn with Prob(πn2|xn) = (1− τw)τp|g

πn3 = Ph f (xn, wb)− Pxxn with Prob(πn3|xn) = τw(1− τp|b)

πn4 = Pl f (xn, wb)− Pxxn with Prob(πn4|xn) = τwτp|b

.

Now consider farm rp which is insured by Revenue Protection with the harvest price

option. The harvest price option means that the revenue guarantee is calculated using the

larger of the projected price (Pp) or the price at harvest (HP) times the guaranteed yield

level (ȳ) for the respective coverage, i.e max{HPȳ, Ppȳ}. With Revenue Protection, we

assume that insurance indemnities are triggered in states 2 to 4. For the insured farm rp,

the profit function is:

(3) πrp =



πrp1 = Ph f (xrp, wg)− Pxxrp with P(πrp1|xrp) = (1− τw)(1− τp|g)

πrp2 = Ppȳ− Pxxrp with P(πrp2|xrp) = (1− τw)τp|g

πrp3 = Phȳ− Pxxrp with P(πrp3|xrp) = τw(1− τp|b)

πrp4 = Ppȳ− Pxxrp with P(πrp4|xrp) = τwτp|b

.

Our stylized model has several assumptions in order to have tractable discussions while

preserving core features of the problem.

Assumption 1. (Production Function) The yield function satisfies f ′ = ∂ f
∂xn

> 0, and f ′′ =

∂ 2 f
∂x2

n
< 0 and the marginal product of the input xi does not depend on the random shock, i.e.

f (x, ε) = f (x)+ ε .

Our production function specification assumes that the input, xi, does not affect the variance

of yield so the input is risk-decreasing only to the extent that it increases the mean yield.

Assumption 1 that, xi, has no impact on the variance of yield allows us to more clearly

isolate the impact of information about crop conditions on input use with insurance and to
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have tractable results. If the input decreases the variance of yield, then insurance creates an

additional incentive to decrease input use, and vice versa.5

The second assumption compares expected utility with good and bad yield shocks.

Assumption 2. (Yield Shocks) Yield shocks satisfy the following condition: for any given

x, both types of farms, (i = n,rp) are always better off in the “good yield” state compared

to the “bad yield” state (i.e., (1− τp|g)u(πi1(x)) + τp|gu(πi2(x)) > (1− τp|b)u(πi3(x)) +

τp|bu(πi4(x)) regardless of risk preferences).

The inequality in assumption 2 simply states that the expected utility with the good yield

shock (states 1 and 2) is greater than the expected utility with the bad yield shock (states 3

and 4). This assumption excludes the possibility that a bad yield shock could increase prices

so much that farms are better off with the bad yield shock. In other words, assumption 2

implicitly places a bound on the degree of negative correlation between the yield shock and

price.

The third assumption compares expected marginal utility with high and low harvest

prices.

Assumption 3. (Harvest Prices and Input Price) The price variables and the conditional

probabilities satisfy the following condition: at optimum, any risk-averse and non-insured

farm would always prefer additional profits in “low harvest price” states compared to addi-

tional profits in the “high harvest price” states (i.e., (1− τw)τp|gu′(πn2)+ τwτp|bu′(πn4)>

(1− τw)(1− τp|g)u′(πn1)+ τw(1− τp|b)u′(πn3)).

The inequality in assumption 3 states that the expected marginal utility in the low price

states (states 2 and 4) is greater than the expected marginal utility in the high price states

(states 1 and 3). Intuitively, this assumption is satisfied by diminishing marginal utility if

expected utility is larger conditional on the high price.

Finally, we make an assumption to ensure that indemnities are triggered in states with

either the bad yield or the low price (states 2, 3, and 4).
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Assumption 4. (Insurance Parameters) We assume that the parameters satisfy the follow-

ing conditions for all xu,rp > xrp > xl,rp where xu,rp, and xl,rp are the upper and the lower

bounds of optimal x∗rp:

(i) Pl f (xrp, wg)< Ppȳ,

(ii) f (xrp, wb)< ȳ < f (xrp, wg),

(iii) for any risk-averse farm, the difference between the utility in state 3 with indemnity

triggered and without indemnity triggered (i.e., u(Phȳ−Pxxrp)− u(Ph f (xrp, wb)−

Pxxrp)) is a decreasing and convex function of xrp.

Part (i) of assumption 4 states that price is sufficiently low in the low price state that the

revenue guarantee is greater than the revenue with the low price and the good yield shock.

Part (ii) states that the yield guarantee is greater than the yield with the bad yield shock

and less than the yield with the good yield shock. This implies indemnities are triggered

in either of the states with the bad yield shock, but not with the good yield shock and the

high price. An important point in assumption 4 is that we assume it is never optimal to

apply a large enough amount of inputs to avoid triggering indemnities in states 2, 3, or 4.

In particular, part (iii) relates to the state with the high price and the bad yield shock and

implies that the additional benefits from increased crop revenue by applying greater inputs

in this state are diminishing. Note that part (iii) is satisfied for a risk-neutral farm by the

assumption that f ′′ < 0.

Now, suppose a farmer obtains information on crop conditions. This information may

come through remote sensing, agronomic models that process high-resolution weather and

soils data, or growing-season weather forecasts. The information can be used to make

decisions about the use of inputs applied during the growing season such as pesticides and

irrigation. Fertilizer is also increasingly recommended for application during the growing

season to improve the timing of application. For succinctness, we refer to the information
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on crop conditions as a “forecast,” but the source of this information is not necessarily a

weather forecast. For example, algorithms could create a forecast of crop yield based solely

on information up to the current point in the growing season.

The “forecast,” W , can take two values: 1) bad yield shock (W = 0) and 2) good yield

shock (W = 1). We define the forecast accuracy, θ , as the probability of the forecast being

correct. After the forecast becomes available, the probability of experiencing the bad yield

shock, τw, is the probability of experiencing the bad yield shock conditional on the forecast,

W :
(4) τw(W,θ) = θ(1−W ) + (1− θ)τ̂w,

where the forecast accuracy, θ , ranges from zero to unity.6 Equation (4) states that the

probability of the bad yield shock (τw) is the probability that the forecast is correct (θ )

times an indicator that the bad yield shock is forecasted (i.e., 1−W = 1 if the bad yield

shock is forecasted) plus the probability that the forecast is incorrect (1−θ ) times the long-

run average probability of the bad yield shock (τ̂w). This implies that farms rely less on

the long-run average probability of the bad yield shock as the probability that the forecast

is correct increases. Note that if θ = 0 then the forecast is perfectly uninformative and if

θ = 1 then farms receive a perfect forecast.7

Figure 1 illustrates the timeline of the problem. We model the decision of how much

inputs to apply (denoted as bold in figure 1) based on the information farms obtain on the

likelihood of the bad yield shock and taking the insurance decision as given. We investigate

the incentive to change the level of the input as forecasts become more accurate for two

representative farms: a) a farm without any crop insurance, i.e. i = n, and b) a farm with

revenue protection, i.e. i = rp. We analyze the optimization problems of the two farms

under risk neutrality and risk aversion.8

9



Moral Hazard Incentives

In our stylized model, farms n and rp solve the optimization problem (1). Under risk

neutrality, i.e. u(π) = π , the expected marginal profit of input xn for farm n is:

(5) Eπ
′
n =

(
(1− τw)(1− τp|g) + τw(1− τp|b)

)
Ph f ′ +

(
(1− τw)τp|g + τwτp|b

)
Pl f ′ − Px.

and the optimal x∗n is the xn that makes the expected marginal profit in equation (5) equal to

zero. Similarly, under risk neutrality, the expected marginal profit of input xrp for farm rp

is:
(6) Eπ

′
rp = (1− τw)(1− τp|g)Ph f ′ − Px

and the optimal x∗rp is the xrp that makes the expected marginal profit in equation (6) equal

to zero.

By comparing the two expected marginal profits, (5), and (6), we define the moral hazard

incentive for risk-neutral and insured farms as follows.

Definition 1. For risk-neutral and insured farms, we define the moral hazard incentive as

the change in the marginal profit of input xrp due to indemnity payments. Thus, the moral

hazard incentive of Revenue Protection on the input application of risk-neutral and insured

farms is

(7)
M̄Hrp = Eπ

′
rp − Eπ

′
n

= −
(
τw(1− τp|b)Ph +

(
(1− τw)τp|g + τwτp|b

)
Pl
)

f ′.

The first term represents the decrease in the marginal profit due to the loss of indemnity

payments when the price is high and there is a bad yield shock multiplied by the probability

of this event. The second term represents the loss of indemnity payments when the price is

low multiplied by the probability of either the low price and the good yield shock or the low

price and the bad yield shock. Unambiguously, the moral hazard incentive is negative—

insured farms have an incentive to reduce input use—since increases in the input always

reduce the expected indemnity.

Under risk aversion, the expected marginal utility of farm n is:
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(8)
EU ′n = (1− τw)(1− τp|g)u

′(πn1)(Ph f ′ − Px) + (1− τw)τp|gu′(πn2)(Pl f ′ − Px)+

τw(1− τp|b)u
′(πn3)(Ph f ′ − Px) + τwτp|bu′(πn4)(Pl f ′ − Px).

The optimal input x∗n is the xn that makes the expected marginal utility in equation (8) equal

to zero. Similarly, the expected marginal utility of farm rp is:

(9)
EU ′rp = (1− τw)(1− τp|g)u

′(πrp1)(Ph f ′ − Px)−(
(1− τw)τp|gu′(πrp2) + τw(1− τp|b)u

′(πrp3) + τwτp|bu′(πrp4))
)

Px.

Again, the optimal x∗rp is the xrp that makes the expected marginal utility in equation (9)

equal to zero.

Similar to the discussion under risk neutrality, we have the following definition of the

moral hazard incentive for risk-averse and insured farms:

Definition 2. For risk-averse and insured farms, we define the moral hazard incentive as

the change in the marginal utility of input xrp due to indemnity payments (Ramaswami

1993). Thus, the moral hazard incentive of Revenue Protection on the input application of

risk-averse and insured farms is

(10) M̃Hrp = −
(
τw(1− τp|b)u

′(πrp3)Ph +
(
(1− τw)τp|g + τwτp|b

)
u′(πrp2)Pl

)
f ′.

The moral hazard incentive is derived by rewriting equation (9) as:

(11)

EU ′rp = (1− τw)(1− τp|g)u
′(πrp1)(Ph f ′ − Px) + (1− τw)τp|gu′(πrp2)(Pl f ′ − Px)+

τw(1− τp|b)u
′(πrp3)(Ph f ′ − Px) + τwτp|bu′(πrp4)(Pl f ′ − Px)−(

(1− τw)τp|gu′(πrp2)Pl f ′ +
(
τw(1− τp|b)u

′(πrp3)Ph + τwτp|bu′(πrp4)Pl
)

f ′
)
.

The definition of the moral hazard incentive for risk-averse and insured farms is similar

to that of Ramaswami (1993). For risk-averse farms with Revenue Protection, the moral

hazard incentive is defined as the last term in equation (11).9 Note that the first four terms

of equation (11) are analogous to the terms in equation (8), which is the expected marginal

utility of a non-insured farm, but the values for a given x are different due to the different

marginal utility of payouts between a non-insured farm and insured farm.10
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The moral hazard incentive under risk aversion (equation 10) is the same as in the risk

neutral case (equation 7) except that the high price is weighted by the marginal utility

of state 3 and the low price is weighted by the marginal utility of state 2. Note that the

marginal utility of state 2 is equal to the marginal utility in state 4 with insurance. The

moral hazard incentive becomes more negative as the marginal utility of events that trigger

indemnities are larger. In other words, the moral hazard incentive would be more negative

if the low price or the bad yield shock cause larger losses in profits.

Conditional Responses to Forecast Accuracy

Now, we examine how an improvement in the forecast accuracy affects the optimal input

use and the incentives for moral hazard conditional on each type of forecast announcement.

For non-insured farms, we have the following proposition.

Proposition 1. Conditional on the bad (good) yield forecast, the optimal input of unin-

sured and risk-neutral farms is increasing (decreasing) as the forecast accuracy becomes

more accurate if τp|g > τp|b. If farms are risk-averse the analogous condition is τp|g >

τp|bu′(πn4)/u′(πn2).

Proof Using the implicit function theorem, we know that the signs of ∂x∗n
∂θ

conditional

on the bad yield forecast (W = 0) or the good yield forecast (W = 1) are equal to those

of ∂Eπ ′n
∂θ
|W=0 and ∂Eπ ′n

∂θ
|W=1 for risk-neutral farms. Thus, the proof is straightforward from

differentiating equation (5) conditional on each yield forecast. Due to the concavity of f ,

the optimal input use increases as the expected price of the output increases and τp|g >

τp|b is a sufficient condition for an improvement in the forecast accuracy to increase the

expected price when the forecast indicates the bad yield shock. Similarly, the signs of
∂EU ′n

∂θ
conditional on the bad yield forecast (W = 0) or the good yield forecast (W = 1)

determine the direction of responses in the optimal input use for the risk-averse farms.

With an additional assumption of τp|g > τp|b
u′(πn4)
u′(πn2)

, ∂EU ′n
∂θ
|W=0 is positive and ∂EU ′n

∂θ
|W=1 is

negative. We provide a detailed proof in the online appendix A.
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With a bad yield forecast, the expected harvest price increases as the forecast becomes

more accurate if τp|g > τp|b. Risk-neutral farms, thus, respond by increasing production

with a bad yield forecast. The forecast accuracy has no impact on input use when τp|g = τp|b

for risk neutral farms. However, for risk-averse farms, the increase in the expected harvest

price has to be large enough to compensate for risk aversion. Thus, if the probability

of the low harvest price conditional on the good yield shock is large enough to satisfy

τp|g > τp|b
u′(πn4)
u′(πn2)

, the optimal input of farm n increases as the forecast accuracy increases

when the forecast indicates a bad yield shock. Note that u′(πn4)
u′(πn2)

> 1 because the profits in

state 4 are smaller than the profits in state 2, so the assumption is stronger than τp|g > τp|b

to the extent that the marginal utilities of the two states differ. This indicates that highly

risk-averse farms with the bad yield forecast would increase their input use as the forecast

accuracy improves only if the probability τp|g is sufficiently larger than τp|b. In other words,

the difference between τp|g and τp|b needs to be greater as the farms become more risk-

averse since u′(πn4)
u′(πn2)

gets larger as farms become more risk averse.11 An improvement in the

forecast accuracy has the opposite effect with a good yield forecast.

Proposition 2. Conditional on the bad (good) yield forecast, the moral hazard incentive

of insured and risk-neutral farms increases (decreases) as the forecast accuracy improves.

The same is true for risk-averse farms.

Proof Again, for risk-neutral farms, the proof is straightforward from differentiat-

ing equation (7) with respect to θ conditional on W . Since Ph > Pl ,
∂M̄Hrp

∂θ
|W=0< 0

(∂M̄Hrp
∂θ
|W=1> 0) so the moral hazard incentive becomes more (less) negative as the

forecast becomes more accurate. For risk-averse farms, we differentiate equation (10) with

respect to θ and also find that ∂M̃Hrp
∂θ
|W=0< 0 and ∂M̃Hrp

∂θ
|W=1> 0. The detailed proof is in

the online appendix A.

If the forecast indicates the bad yield shock and the forecast becomes more accurate, the

moral hazard incentive increases (i.e., the terms M̄Hrp and M̃Hrp become more negative
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for risk-neutral farms). As the forecast of the bad yield shock becomes more informative,

the expected loss in indemnity due to additional input use gets larger. Note that when

the forecast indicates a bad yield shock, the improved forecast accuracy also decreases

the probability of state 2—the state with the good yield and the low harvest price. Since

Ph > Pl , the decrease in the expected indemnity payment from the decreased probability

of state 2 is always smaller than the increase in the expected indemnity payment from the

increased probabilities of states 3 and 4.

Similarly, for the risk-averse farms, the loss in the expected utility from the reduced in-

demnity gets larger as the forecast of the bad yield shock becomes more informative. Un-

like risk-neutral farms, risk-averse farms value the loss in the indemnity due to additional

input use in state 2 more than that of state 3 since πrp3 > πrp2, and thus u′(πrp3)< u′(πrp2)

for a given xrp. Thus, for insured and risk-averse farms, a sufficient condition to have

greater moral hazard incentives as the forecast of a bad yield shock becomes more accu-

rate is (1− τp|b)u′(πrp3)Ph + τp|bu′(πrp4)Pl > τp|gu′(πrp2)Pl . Assumption 2 and u′′(·) < 0

guarantee this condition.

To show our propositions graphically, we provide numerical illustrations of our stylized

conceptual model. Details on the assumed functional forms and parameter values in the

illustrations are provided in the online appendix B. All of our illustrations assume a risk

averse farm. Parameterizing the model to a real-world input for a particular crop is not

likely reasonable because the stylized model assumes only four states of nature. Therefore,

our purpose for the numerical illustrations is to provide a visualization of the propositions

rather than to predict the actual magnitude of the effects we describe in this paper.

Figure 2 illustrates the optimal input schedules of non-insured farms and Revenue Pro-

tection participants as responses to changes in the forecast accuracy.12 The optimal input

schedules are represented as percentages of the optimal input use of non-insured farms

when the forecast is perfectly uninformative (θ = 0). The upper (lower) panel shows the

optimal input schedules when the forecast indicates the bad (good) yield shock.
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Figure 2 shows that the optimal input schedules of non-insured farms and Revenue Pro-

tection participants diverge as the forecast becomes more accurate when the forecast in-

dicates the bad yield shock. As we described in proposition 2, this is due to an increase

in the moral hazard incentive. That is, when the forecast more accurately predicts the bad

yield shock, then farms with Revenue Protection have a larger incentive to reduce input

use. The opposite is observed when the forecast indicates a good yield shock. When the

forecast more accurately predicts the good yield shock, then farms have less incentive to

reduce input use.

Effects of Forecast Accuracy on Long-run Expected Input Use, Expected Indemnity

Payments, and the Value of Forecast Accuracy

In the previous section, we discussed the impact of the forecast accuracy on input use con-

ditional on a particular forecast. Next, we evaluate the impact on long-run input use given

that the forecast sometimes indicates the good yield shock and other times the bad yield

shock. Then we evaluate the impact of an improvement in the forecast accuracy on long-

run expected indemnity payments. Finally, we discuss how the value of improved forecast

accuracy differs with insurance versus no insurance to understand if insurance increases or

decreases the incentive to adopt technologies that improve the forecast accuracy.

We first present a relationship between the long-run expected probability of the bad yield

shock, τ̂w, and the long-run expected probability of the event that the forecast indicates a

bad yield shock, Prob(W = 0). Using Bayes’ theorem and the definition of equation (4),

we know that

(12)

τ̂w = Prob(ε = wb|W = 0) ∗ Prob(W = 0) + Prob(ε = wb|W = 1)Prob(W = 1)

= τw(θ , W = 0)Prob(W = 0) + τw(θ , W = 1)(1− Prob(W = 0))

= (τ̂w + (1− τ̂w)θ)Prob(W = 0) + (τ̂w − τ̂wθ)(1− Prob(W = 0))

= τ̂w − τ̂wθ + θProb(W = 0).
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For the forecast accuracy that is greater than zero, equation (12) is equivalent to

(13) Prob(W = 0) = τ̂w,

which indicates that the long-run expected probability of a forecast that indicates a bad

yield shock, Prob(W = 0), is equal to τ̂w and does not change as the forecast accuracy

changes.

Using equation (13), we can define the long-run expected optimal input for farm i, Ex∗i ,

as

(14) Ex∗i = τ̂wx∗i |W=0+(1− τ̂w)x∗i |W=1

where x∗i |W=0 (x∗i |W=1) is the optimal input for farm i with the forecast of a bad (good)

yield shock.

By the implicit function theorem, we obtain

(15)
∂Ex∗i
∂θ

= −τ̂w
∂EU ′/∂θ |W=0

∂EU ′/∂xi|W=0
− (1− τ̂w)

∂EU ′/∂θ |W=1

∂EU ′/∂xi|W=1
.

Proposition 3. The long-run expected optimal input of uninsured and risk-averse farms

is non-increasing as the forecast accuracy increases if τp|g is sufficiently large relative to

τp|b, i.e. τp|g > τp|b
u′(πn4)
u′(πn2)

, and if farms have Constant Absolute Risk Aversion (CARA) or

Decreasing Absolute Risk Aversion (DARA) preferences.13

Proof From the proof of proposition 1, we can rewrite equation 15 as
∂Ex∗n
∂θ

= τ̂w(1− τ̂w)

(
∂x∗n
∂τw
|W=0 −

∂x∗n
∂τw
|W=1

)
.

Thus, equation 15 is non-positive if ∂x∗n
∂τw
|W=0≤ ∂x∗n

∂τw
|W=1. With assumptions 2 and 3, CARA

or DARA preferences are sufficient conditions for ∂x∗n
∂τw
|W=0≤ ∂x∗n

∂τw
|W=1. See the detailed

proof in the online appendix A.

The change in the long-run expected optimal input use is a linear combination of the

changes in the marginal expected utilities with respect to the improvement of forecast ac-

curacy in each state of the forecast. The changes in the marginal expected utilities are
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weighted by the long-run probabilities of the forecast of the bad or good yield shocks and

the inverse of the second derivatives of the expected utilities in each state of the forecast.

The second derivatives of the expected utilities are related to the degree of risk aversion

and determine whether x∗n is a concave function with respect to the perceived probability

of the bad yield, τw. For CARA and DARA agents, with assumptions 2 and 3, the absolute

value of the second derivative of the expect utility is larger for the good yield forecast

(W = 1) than that of the bad yield forecast (W = 0). In other words, the marginal expected

utility in the state of the forecast of a good yield shock is valued more because CARA or

DARA agents become less risk-averse with the good yield shock. Thus, the magnitude of

the marginal decrease in the input use with the forecast of a good yield shock is larger than

the magnitude of the marginal increase in input use with the forecast of a bad yield shock.

Next, we evaluate the impact of the forecast accuracy on the long-run moral hazard

incentive. Similar to the expression of the long-run expected optimal input use (equation

15), we can write the long-run expected value of the change in the optimal input use that is

attributed to the moral hazard incentive as

(16)
∂Ex∗rp

∂θ
|M̃H= −τ̂w

∂M̃Hrp/∂θ |W=0

∂EU ′rp/∂xrp|W=0
− (1− τ̂w)

∂MHrp/∂θ |W=1

∂EU ′rp/∂xn|W=1
.

Proposition 4. The long-run expected value of the reduction in the optimal input x∗rp that is

attributed to the moral hazard incentive of insured and risk-averse farms decreases as the

forecast accuracy increases (i.e., there is less reduction in input use) if τp|g is sufficiently

large relative to τp|b (i.e., τp|g > τp|b
u′(πn4)
u′(πn2)

) and if farms have Constant Absolute Risk

Aversion (CARA) or Decreasing Absolute Risk Aversion (DARA) preferences.14

Proof From the proof of proposition 2, we can rewrite equation (16) as
∂Ex∗rp

∂θ
|M̃H= τ̂w(1− τ̂w)

(
∂x∗rp

∂τw
|W=0,M̃H−

∂x∗rp

∂τw
|W=1,M̃H

)
,

where
∂x∗rp
∂τw
|W,M̃H indicates the input change attributed to the moral hazard incentive condi-

tional on the forecast, W . The long-run expected reduction in input use due to the moral

hazard incentive decreases as θ increases if
∂x∗rp
∂τw
|W=0,M̃H≤

∂x∗rp
∂τw
|W=1,M̃H . With assump-
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tions 2 and 4, CARA and DARA preferences are sufficient conditions for
∂x∗rp
∂τw
|W=0,M̃H≤

∂x∗rp
∂τw
|W=1,M̃H . See the detailed proof in the online appendix A.

Similar to proposition 3, the change in the moral hazard incentive in the state of the good

yield forecast is valued more because CARA or DARA agents become less risk-averse with

assumptions 2 and 4. In other words, CARA or DARA agents value more the reduction in

moral hazard incentive with the forecast of a good yield shock compared to the increase in

moral hazard incentive with the forecast of a bad yield shock. Thus, the magnitude of the

marginal decrease in the moral hazard incentive with the forecast of a good yield shock is

larger than the magnitude of the marginal increase in the moral hazard incentive with the

forecast of a bad yield shock.

Figure 3 illustrates propositions 3 and 4. The long-run expected optimal input use is

represented as a percentage of the long-run expected optimal input of a non-insured farm

when the forecast is perfectly uninformative (θ = 0). In this illustration, the long-run

expected input use of uninsured farms changes by little with improvements in the forecast

accuracy, whereas the long-run expected input use of insured farms becomes closer to that

of uninsured farms as the forecast accuracy improves. In other words, there is less reduction

in input use due to the moral hazard incentive as described by proposition 4, leading to an

overall increase in input use under insurance as the forecast accuracy improves.

The long-run expected indemnity is likely to increase as the forecast accuracy improves.

Analytically, the sign of the change in the long-run expected indemnity is ambiguous, but

numerical illustrations and intuition suggest that indemnities nearly always increase with

forecast accuracy.15 Figure 4 illustrates changes in the long-run expected indemnity for

various τ̂w. We observe that the increase in the long-run expected indemnity are larger

when the long-run probability of the bad yield shock is small. Intuitively, indemnities in-

crease as the forecast accuracy increases because the increase in moral hazard when the

forecast indicates a bad yield shock leads to larger indemnities than the decrease in moral
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hazard when the forecast indicates a good yield shock. So even though long-run moral haz-

ard incentives are decreasing, long-run indemnities are increasing as the forecast accuracy

improves.16 The only time that indemnities decrease with improvements in the forecast

accuracy in our numerical illustrations is when the probability of the bad yield shock is

greater than 0.5 (τ̂w > 0.5), which is unlikely to hold in reality.

Finally, we evaluate how the incentive to adopt technologies that improve forecast accu-

racy differ for insured and uninsured farms. Figure 5 illustrates “values of forecast accu-

racy” for various τ̂w. The value of the forecast accuracy is defined as the difference between

the long-run expected certainty equivalent of a given forecast accuracy compared to the sit-

uation of perfectly uninformative forecasts.17 The upper panel represents the value of an

almost perfect forecast (θ = 0.99) and the lower panel represents the values of an imperfect

forecast (θ = 0.5).18 The value of adopting the forecast technology for the uninsured farm

is highest when the long-run probability of the bad yield shock is about 0.5 (i.e., when the

states are most uncertain).

Apart from moral hazard, we would expect uninsured farms to value the forecast tech-

nology more since the information provides them with a risk management tool. However,

insured farms are also able to benefit from moral hazard as the forecast accuracy improves,

so it is possible that the benefits from adopting the forecast technology are larger for in-

sured farms. For example, the simulations in figure 5 show that the benefits from adopting

the technology are larger for insured farms than uninsured farms when τ̂w is sufficiently

small and when the forecast has 50% accuracy.19 This occurs because the forecast accu-

racy improvement leads to larger increases in indemnities for lower values of τ̂w (figure 4).

Overall, whether insurance encourages adoption of the forecast technology or not depends

on the degree of risk aversion and the riskiness of the production environment.
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Does Yield Protection Provide Different Incentives for Moral Hazard?

We showed that for Revenue Protection, an improvement in the forecast accuracy decreases

the long-run moral hazard incentive. In this section, we investigate how the moral hazard

incentive differs with Yield Protection.

The indemnity payments for Yield Protection is based on the projected price. For Rev-

enue Protection, the projected price is used only when the harvest price is lower than the

projected price. Thus, the projected price affects the moral hazard behavior differently for

the farms with different types of insurance. In the context of the Supplemental Agricultural

Disaster Assistance program, Smith and Watts (2010) provide a related discussion: they

describe possible greater incentives for moral hazard behavior with Yield Protection when

the harvest price is lower than the projected price.20 We provide a more explicit discussion

on how the projected price and the moral hazard behavior interact and how the impacts of

forecast accuracy improvements depend on the projected price.

Consider farm yp which is insured by Yield Protection with yield guarantee ȳ and pro-

jected price Pp. We assume that with ε = wb, yyp < ȳ for any value of xyp. In other words,

we assume that indemnities are triggered in the event of a bad yield shock for any amount

of input applied. We also assume that with ε = wg, yyp > ȳ for any value of xyp so that

indemnities are not triggered in the event of a good yield shock. The high harvest price Ph

is higher than the projected price, Pp, and the low harvest price Pl is lower than Pp. The

profit function is:
πyp

=



πyp1 = Ph f (xyp, wg)− Pxxyp with P(πyp1|xyp) = (1− τw)(1− τp|g)

πyp2 = Pl f (xyp, wg)− Pxxyp with P(πyp2|xyp) = (1− τw)τp|g

πyp3 = Ph f (xyp, wb) + Pp(ȳ− f (xyp, wb))− Pxxyp with P(πyp3|xyp) = τw(1− τp|b)

πyp4 = Pl f (xyp, wb) + Pp(ȳ− f (xyp, wb))− Pxxyp with P(πyp4|xyp) = τwτp|b

.
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Following similar steps as those in our derivations for Revenue Protection, we define the

moral hazard incentive of Yield Protection for risk-neutral and risk-averse agents as:

(17) M̄Hyp = Eπ
′
yp − Eπ

′
n

= −τwPp f ′

and

(18) M̃Hyp = −
(
τw(1− τp|b)u

′(πyp3) + τwτp|bu′(πyp4)
)

Pp f ′

= −
(
τwu′(πyp3) + τwτp|b(u

′(πyp4)− u′(πyp3))
)

Pp f ′.

Proposition 5. If farms are risk-neutral, Revenue Protection leads to a greater negative

moral hazard incentive (|M̄Hrp|> |M̄Hyp|) when Pp < (1− τp|b)Ph +
(

1−τw
τw

τp|g + τp|b

)
Pl

at a given x. If farms are risk-averse, the condition for Revenue Protection to give a

greater negative moral hazard effect is Pp <
(τw(1−τp|b)u′(πrp3)Ph+((1−τw)τp|g+τwτp|b)u′(πrp2)Pl)

(τwu′(πyp3)+τwτp|b(u′(πyp4)−u′(πyp3)))

at a given x.

The detailed proof is in the online appendix A. Proposition 5 is derived by simply com-

paring equations (7) and (17) and comparing equations (10) and (18). Intuitively, Revenue

Protection tends to have a greater moral hazard effect because it provides indemnities in

three states rather than only the two states in the case of Yield Protection. However, Yield

Protection can have a greater moral hazard effect when the projected price is sufficiently

large because greater production with Yield Protection reduces indemnities valued at the

projected price whereas greater production with Revenue Protection decreases indemnities

valued at the expected price. Yield Protection is also more likely to have a greater moral

hazard effect when the probability of the bad yield shock is relatively large—the states

when Yield Protection provides indemnities.

Figures 6 and 7 illustrate proposition 5. The figures illustrate the optimal input schedule

represented as a share of the optimal inputs of the non-insured farm when the forecast is

perfectly uninformative (θ = 0). The upper panels of figures 6 and 7 represent the optimal

input schedules when the forecast indicates the bad yield shock and the lower panels of
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the figures represent the optimal input schedules when the forecast indicates the good yield

shock.

Figure 6 illustrates how the farms with Yield and Revenue Protection respond differently

to the forecast accuracy improvements when the projected price is relatively low. Consis-

tent with proposition 5, when the projected price is low enough, the moral hazard incentive

of the farms who are insured with Revenue Protection is always greater than that of the

farms with Yield Protection. Figure 7 illustrates the opposite case when the projected price

is sufficiently large.21

Implications of the Model for Precision Agriculture

Next, we discuss the implications of our conceptual model for precision agriculture. We

focus our discussion on aspects of precision agriculture that improve information on crop

conditions within the growing season.22

An important innovation in precision agriculture is to provide improved predictions of

crop yields at a high resolution such that the forecast can be used for field-specific—or

even within field—management decisions. Data from high-resolution remote sensing or

drone imagery combined with advances in machine learning algorithms provide predictions

within the growing season of final crop yields. Another advance is to compute agronomic

simulation models for individual fields using high-resolution data on weather, soils, and

farmer-specified parameters. The crop simulation models can be used to help the farmer

understand the implications of alternative management decisions on final yields. These

advances provide farmers greater information on crop yields when making input use deci-

sions.

Improvements in crop yield predictions affect the use of inputs that are traditionally ap-

plied within the growing season such as fungicides, herbicides, insecticides, and irrigation

water. However, another aspect of precision agriculture is to improve the timeliness of in-

put applications so that more inputs are applied within the growing season instead of before
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the growing season. Fertilizer is a key input in crop production that has traditionally been

applied prior to the growing season or early within the growing season. But there are op-

tions for applying fertilizer within the growing season through high-clearance equipment,

fertigation through center pivot irrigation, or aerial application of granular fertilizer. Ad-

vantages of applying fertilizer within the growing season are that less fertilizer is lost from

the field and the farmer can apply less fertilizer in years when the crop uses less.

In our stylized framework, an increase in the forecast accuracy (i.e., an increase in θ )

is analogous to the adoption of the precision agriculture technologies that improve infor-

mation on crop conditions, such as algorithms to predict final crop yields based on high

resolution data. Treating the insurance decision and the technology adoption decision as

given, we can draw some implications for the precision agriculture technologies and the

moral hazard incentives from crop insurance by revisiting our propositions.

Conventional wisdom is that precision agriculture results in improved environmental

outcomes (Bongiovanni and Lowenberg-Deboer 2004). The usual assumption is that farm-

ers can apply fewer inputs in order to obtain the same yield, so input usage decreases.

Economists recognize that there could be a rebound effect because the increase in effi-

ciency provides an incentive to increase input use (e.g., Gillingham, Rapson, and Wagner

2016). But the impact on the environment may still be positive if more inputs (like nutri-

ents) that are applied to the field are used by the crop rather than being lost due to runoff or

leaching into surface and groundwater (e.g., Nangia et al. 2008).

An insight from our model is that precision agriculture also affects input use through

the moral hazard incentive which can amplify or counteract the conventional positive en-

vironmental benefit of precision agriculture. In the case where the environmental damages

are larger in the state of a bad yield shock, then the moral hazard incentive from precision

agriculture could amplify the positive environmental benefits. This is simply because the

moral hazard incentive increases (decreases) with the forecast of a bad (good) yield shock

as the forecast accuracy, θ , improves as stated in proposition 2.
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However, when the damages are the same in the two states or larger in the good state,

then moral hazard from precision agriculture counteracts the conventional positive envi-

ronmental impacts. As stated in proposition 4, the long-run expected value of the reduction

in the optimal input use x∗rp that is attributed to the moral hazard incentive decreases as the

forecast accuracy improves. This indicates that the farms with crop insurance may apply

more inputs in the long run when they adopt technologies with better forecast accuracy. An

important example is water quality, where nutrient losses are larger in the state with good

yields when rainfall is more abundant (Cisneros et al. 2014). Therefore, we expect the

moral hazard incentive to counteract the nutrient loss reductions from adopting precision

agriculture.

Conventional wisdom also suggests that precision agriculture will reduce yield variabil-

ity. Most of the literature focuses on the potential of site-specific management to reduce

yield variability by applying inputs to locations in the field that need it most and thus avoid-

ing yield losses (Lowenberg-DeBoer and Swinton 1997; Lowenberg-DeBoer 1999). The

same principle applies that precision agriculture could reduce yield variability by provid-

ing farmers with information on nutrient deficiencies or pest infestations within the growing

season and allow farmers to apply the necessary nutrients or pesticide to reduce or avoid

crop yield losses. This reduction in yield variability could eventually be reflected in lower

indemnities and eventually lower crop insurance premiums.

Our model illustrates that behavioral adjustments of insured farmers counteracts the con-

ventional wisdom that precision agriculture reduces yield variability and indemnities. Our

results indicate that for most plausible parameter values, indemnity payments increase as

the forecast accuracy improves (figure 4). The increase in indemnity payments stems from

the fact that moral hazard incentives are larger when the forecast predicts a bad yield shock

and the forecast accuracy improves. The increase in indemnity payments should eventually

get reflected in higher crop insurance premiums.
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Another implication of our model is that it is not clear, a priori, whether the availability

of insurance increases or decreases the incentive to adopt these types of precision agri-

culture technologies (figure 5). On one hand, improved predictions of final crop yields

have greater value to farmers without insurance because the technology allows them to

make more informed decisions to manage risk. On the other hand, farmers with insurance

can use the new technology to extract more benefits from the crop insurance program by

increasing moral hazard in years with bad yield shocks.

Conclusion

We develop a model of input decisions in the middle of the growing season with crop

insurance. The model assumes that there are four states: 1) high price, good weather;

2) low price, good weather; 3) high price, bad weather; and 4) low price, bad weather.

Although the four state framework is a simplification of reality, the framework provides

new insights by allowing us to derive analytical results on the moral hazard incentives of

crop insurance. To have tractable analytic results, the model assumes that the input has

no impact on the variance of yield and is risk-decreasing only to the extent that the input

increases the mean yield. We also assume that the the marginal product of the input does

not depend on the random yield shock.

We show that the moral hazard incentive for farms insured by Revenue Protection de-

crease as the accuracy of the forecast improves when the forecast indicates a good yield

shock, and vice versa when the forecast indicates a bad yield shock. In the long run, we

find that moral hazard incentives decrease with an improvement of the forecast accuracy as

long as the probability of a low price conditional on a good weather shock is sufficiently

large relative to the probability of a low price conditional on a bad weather shock. This is

because farms value more the reduction in the moral hazard incentive with the forecast of a

good yield shock compared to the increase in the moral hazard incentive with the forecast

of a bad yield shock. Despite the reduction in the moral hazard incentive in the long-run,

25



indemnity payments are likely to increase due to the increase in moral hazard incentives

when the forecast indicates a bad yield shock. We also show that whether Yield Protection

offers larger moral hazard incentives or not depends on the level of projected prices.

In contrast to the conventional wisdom that precision agriculture leads to better envi-

ronmental outcomes, our findings suggest that the improved forecast accuracy combined

with crop insurance may worsen long-run environmental outcomes. This occurs when the

marginal environmental damage in the good yield state is greater than or equal to that in

the bad yield state. When assessing the environmental consequence of adopting new tech-

nologies, crop insurance and behavioral adjustment need to be carefully considered. Our

framework also indicates that behavioral adjustments of insured farmers may counteract the

conventional wisdom that precision agriculture reduces yield variability and indemnities.

Our model has several limitations. In order to obtain the tractability of our analytical

discussion, we utilize a static model. Dynamic aspects of the input decision with crop

insurance may affect the results. For example, poor yield performances impact the fu-

ture actual production history (APH) which affects the yield guarantee and the premium.

Insured farms may consider the APH reduction when they make input decisions (Mieno,

Walters, and Fulginiti 2018). We also note that some types of inputs may have different

marginal products across the bad and good yield states. While much of our discussion re-

mains valid even with relaxing this assumption, future research on the impact of improved

forecast accuracy on various types of inputs would have important implications for policy.

Despite its limitations, our conceptual framework generates important discussion and

serves as a basis for future research on how crop insurance, improved information tech-

nologies, and production decisions interact. For example, our analysis on the value of

improved information on crop conditions motivates future research on whether crop in-

surance encourages information technology adoption or not. Also, this article motivates

future research on the production impacts of crop insurance and information technology.

The long-run increase of input use due to an improved forecast accuracy indicates a positive
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production impact of improved information technologies and the long-run increase in in-

demnities may also incentivize an increase in crop acreage.23 Future research investigating

potential production impacts could be important to understand the economic consequences

of improved information technologies when farms are insured by crop insurance.
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Notes

1Obtained from https://www.answertech.com/News/The-Future-of-In-Season-Management-/

361.

2In the context of agricultural labor in India, Rosenzweig and Udry (2014) find that

rainfall forecasts affect stage-specific wages through anticipatory changes in demand and

supply of stage-specific labor.

3Note that there are several studies that explore the role of information in the context of

moral hazard and adverse selection in health and life insurance markets (e.g., Peter, Richter,

and Thistle 2017; Bardey and De Donder 2013; Hoy and Polborn 2000).

4Revenue insurance products were first introduced in 1996 (Glauber 2013). The rev-

enue guarantee is the maximum of the realized harvest price and the projected price—the

projected price is estimated at the beginning of the growing season—times the yield guar-

antee.

5While further research with different input-yield relationships would shed more light

on the topic, we limit our focus on the mean-increasing input case to clearly isolate the

impact of improved forecast accuracy.

6Unlike Babcock (1990), we assume that farms know the long-run expected probabil-

ity of ε = wb and update the probability based on the forecast. The updated probability

depends on the forecast accuracy, θ .

7Differentiating (4) with respect to W yields ∂τw/∂W =−θ which indicates that there

is no correlation between τW and W when the forecast is perfectly uninformative (θ =

0), and τW and W are perfectly and negatively correlated (i.e. ∂τw/∂W = −1, when the

forecast is perfectly informative with θ = 1). And differentiating (4) with respect to θ
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yields ∂τw/∂θ = 1−W − τ̂w which becomes 1− τ̂w > 0 if the forecast indicates the bad

yield state (W = 0) and −τ̂w < 0 if the forecast indicates the good yield state (W = 1).

In words, the probability of the bad yield shock increases as the forecast becomes more

accurate if the bad yield shock is forecasted (i.e., ∂τw/∂θ > 0 if W = 0), and vice versa if

the good yield shock is forecasted.

8We consider risk neutrality because analytical results are often cleaner, but we also

extend the results to risk averse farmers.

9The simplification results from the fact that u′(πrp2) = u′(πrp4) because the farmer

receives revenue of Ppȳ in both states.

10This difference is also analogous to the risk reduction effect of Ramaswami (1993).

11Similarly, for the cases that have a large difference between wg and wb, risk-averse

farms increase their input use only if the probability τp|g is sufficiently larger than τp|b.

12The functional forms and the parameters are listed in the online appendix A.

13Similar to Proposition 1 the condition τp|g > τp|b
u′(πn4)
u′(πn2)

indicates that, with CARA or

DARA preferences, highly risk-averse farms or risk-averse farms with large differences

between wg and wb would not increase long-run expected optimal input use if τp|g is suf-

ficiently large relative to τp|b. As farms become more risk-averse or differences between

wg and wb get larger, the difference between τp|g and τp|b needs to be larger to have non-

increasing long-run expected optimal input use.

14A similar interpretation applies to the condition τp|g > τp|b
u′(πn4)
u′(πn2)

as in proposition 3.

15The online appendix provides the analytic expression of ∂EIrp/∂θ .

16Our stylized model does not include the endogenous decision of whether to purchase

insurance. Obviously, increasing indemnities due to greater moral hazard would also in-
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crease the premium rates that farms face and thus, deter insurance participation. One can

also think of this problem in a dynamic optimization framework as in Mieno, Walters, and

Fulginiti (2018) where the degree of moral hazard is smaller for forward-looking farms

than the case of myopic farms. Future research could examine the impact of improved

forecast technologies on the cost of crop insurance programs.

17The value of forecast accuracy can also be represented by using the concept of Arrow-

Fisher-Hanemann-Henry quasi-option value. For the detailed discussions on Arrow-Fisher-

Hanemann-Henry quasi-option value, see Arrow and Fisher (1974); Fisher, Hanemann

et al. (1987); Hanemann (1989); Fisher (2000).

18Note that there is no uncertainty with a perfect forecast (θ = 1).

19Note that the difference depends on the degree of risk aversion.

20The Supplemental Agricultural Disaster Assistance program is a disaster payment pro-

gram that guarantees a certain level of crop revenue when an area or a farm faces a catas-

trophic yield loss.

21Also, note that the direction of the long-run impacts of the improved forecast accuracy

on moral hazard and indemnities are similar for Yield Protection.

22A large emphasis in precision agriculture is to provide site-specific management, but

we do not consider these types of technologies because they do not improve information

on the likelihood of low yields that trigger indemnity payments in a given year, which is

our definition of the forecast accuracy.

23For example, the positive effect of subsidized crop insurance on crop acreage is docu-

mented by several recent studies (e.g., Goodwin, Vandeveer, and Deal 2004; Yu, Smith, and

Sumner 2018; Claassen, Langpap, and Wu 2016; Feng, Hennessy, and Miao 2013; Miao,

Hennessy, and Feng 2016).

30



References

Antle, J.M. 1983. “Sequential Decision Making in Production Models.” American Journal

of Agricultural Economics 65:282–290.

Arrow, K.J., and A.C. Fisher. 1974. “Environmental Preservation, Uncertainty, and Irre-

versibility.” The Quarterly Journal of Economics 88:312–319.

Babcock, B.A. 1990. “The Value of Weather Information in Market Equilibrium.” Ameri-

can Journal of Agricultural Economics 72:63–72.

Babcock, B.A., and D.A. Hennessy. 1996. “Input Demand under Yield and Revenue Insur-

ance.” American Journal of Agricultural Economics 78:416–427.

Bardey, D., and P. De Donder. 2013. “Genetic Testing with Primary Prevention and Moral

Hazard.” Journal of Health Economics 32:768–779.

Bongiovanni, R., and J. Lowenberg-Deboer. 2004. “Precision Agriculture and Sustainabil-

ity.” Precision Agriculture 5:359–387.

Bontems, P., and A. Thomas. 2000. “Information Value and Risk Premium in Agricul-

tural Production: the Case of Split Nitrogen Application for Corn.” American Journal of

Agricultural Economics 82:59–70.

Carriquiry, M.A., and D.E. Osgood. 2012. “Index Insurance, Probabilistic Climate Fore-

casts, and Production.” Journal of Risk and Insurance 79:287–300.

Chambers, R.G. 1989. “Insurability and Moral Hazard in Agricultural Insurance Markets.”

American Journal of Agricultural Economics 71:604–616.

Chavas, J.P., P.M. Kristjanson, and P. Matlon. 1991. “On the Role of Information in De-

cision Making: the Case of Sorghum Yield in Burkina Faso.” Journal of Development

Economics 35:261–280.

Cisneros, J., B.T. Oki, N. Arnell, G. Benito, J. Cogley, P. Döll, T. Jiang, and S. Mwakalila.
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Figure 1. Timeline of the problem
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Figure 2. Numerical illustration of optimal input schedules, x∗i , as responses to fore-
cast accuracy

Note: The results in this figure represent numerical simulations of our stylized conceptual model for a hypo-
thetical input. Functional forms and parameters used in the simulations are described in appendix A.
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Figure 3. Numerical illustration of the impact of forecast accuracy on the long-run
expected optimal input xi

Note: The results in this figure represent numerical simulations of our stylized conceptual model for a hypo-
thetical input. Functional forms and parameters used in the simulations are described in appendix A.
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Figure 4. Numerical illustration of the impact of forecast accuracy on long-run ex-
pected indemnities for various τ̂w

Note: The results in this figure represent numerical simulations of our stylized conceptual model for a hypo-
thetical input. Functional forms and parameters used in the simulations are described in appendix A.
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Figure 5. Values of forecast for various τ̂w

Note: The results in this figure represent numerical simulations of our stylized conceptual model for a hypo-
thetical input. Functional forms and parameters used in the simulations are described in appendix A.
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Figure 6. Optimal Inputs xyp and xrp when the Projected Price is Low

Note: The results in this figure represent numerical simulations of our stylized conceptual model for a hypo-
thetical input. Functional forms and parameters used in the simulations are described in appendix A.
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Figure 7. Optimal Inputs xyp and xrp when the Projected Price is High

Note: The results in this figure represent numerical simulations of our stylized conceptual model for a hypo-
thetical input. Functional forms and parameters used in the simulations are described in appendix A.
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Tables

Table 1. Probability Structure of Four-State Framework

Ph Pl
wg (1− τw)(1− τp|g) (1− τw)τp|g
wb τw(1− τp|b) τwτp|b
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