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Abstract

Humanitarian and public health logistics systems are often characterized by decentral-

ized decision makers in the form of response agencies who establish supply chains and the

beneficiaries who access them. While classical models assume there is a single decision

maker with a global objective and authority, decentralized systems consist of multiple deci-

sion makers, each with accomplishing his own objective and scope of control. The literature

demonstrates that decentralized systems often perform poorly when compared to their hy-

pothetical centralized counterparts. However, there exist few models in the literature to

quantify the impact of decentralization and mechanisms for its mitigation are deficient.

This research advances knowledge of decentralized systems through new game theory

and optimization models, solution methodologies and theoretical characterizations of sys-

tem performance. First, the author presents a literature review that synthesizes research

regarding the facets of humanitarian operations that can benefit from the application of

game theory. The author finds that models of decentralized behavior lack realism, neglect-

ing sources of uncertainty, dynamism and personal preferences that influence individuals’

decisions. These findings motivate the remaining components of the thesis.

Next, the author focuses on decentralization on the part of response agencies who open

service facilities. Decentralization can adversely impact patient access and equity, both

critical factors in humanitarian contexts. A dynamic, robust facility location model is

introduced to enable a comparison between a given decentralized response and a hypothetical

coordinated response using identical resources. The value of the model is demonstrated

through a computational study of the response to a recent cholera epidemic.



Finally, the author introduces game theory models that represent the decisions of bene-

ficiaries seeking relief. The models account for distance, congestion, and the relative impor-

tance an individual places on the two. The author constructs an algorithm that computes

a decentralized solution in polynomial time. The author quantifies decentralized system

performance in comparison to centralized control, bounding the cost of decentralized de-

cision making for the least and most costly outcomes. The author identifies coordination

mechanisms encourage centrally optimal decisions within decentralized systems.
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Chapter 1

Introduction

Logisticians in both the commercial and humanitarian sectors design systems to enable

the efficient and timely delivery of goods and services. While optimization has long been a

fundamental component of commercial supply chain management, the application of opera-

tions research to improve the performance of humanitarian supply chains is an emerging and

highly active field. This thesis defines humanitarian supply chains as systems that deliver

goods and services in response to natural or man-made disasters as well as ongoing public

health challenges. Like commercial supply chain systems, common problems in humanitar-

ian supply chains involve inventory management, design of transportation networks, supply

and demand forecasts, fleet management, and facility location. However, logisticians in

the humanitarian sector face additional complexities and challenges that are imposed by a

disaster. Damaged transportation and communication infrastructure, uncertainty in supply

and demand, and a dynamic, high-stakes environment provide the setting in which crucial

decisions are made. Furthermore, humanitarian environments are characterized by multiple

decision makers, including government, non-governmental, private sector, and individual

actors, each of which acts according to different objectives.

Quantitative decision models that explicitly account for the uncertain, dynamic context

and the impact of multiple decision makers are essential to effective humanitarian logistics
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operations. Yet current literature focusing on decisions made at the agency level do not

incorporate all of the constraints imposed on a decision maker or the fact that receiving

new information may alter previously made plans. Furthermore, literature concerning deci-

sions made by beneficiaries do not consider personal preferences that drive an individual’s

decision making process. This thesis addresses the knowledge gap through new models and

theoretical proofs that quantify the impact of decentralization from both perspectives, and

identify mechanisms through which decentralized systems may approach centralized opti-

mality. The remainder of this chapter details the motivation for and contributions of this

thesis.

1.1 Research Motivation

The primary motivation for the research described in this thesis is the lack of knowledge

about the impact of decentralized decision making on the effectiveness of humanitarian op-

erations and of quantitative models that account for it. A system is said to be decentralized

when each individual or agency acts according to his own objective, but these decisions

impact the system as a whole. This is in contrast to centralized optimization that assumes

a single decision maker determines how a system behaves based upon a global objective.

Game theory is a mathematical tool for modeling the decisions of multiple strategic

actors. While game theory has proven extremely valuable in modeling interactions within

commercial supply chains, its use within the humanitarian sector is relatively new. To

demonstrate the usefulness of game theory to humanitarian supply chains, the author in-

troduces the first review of literature that integrates game theoretic concepts and models

to humanitarian contexts. The findings of the review motivate the remaining components

of this thesis and present alternative avenues for future research.

The first type of decentralized system considered in this research consists of response

agencies who assess needs, establish distribution channels, and locate facilities. Decentral-
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ization is prevalent in humanitarian logistics systems because sharing information and coor-

dinating operational strategies require valuable time and resources. Moreover, coordination

is hindered due to incompatible agency mandates, different languages, and non-standard

units of measurement. This lack of coordination among humanitarian logisticians is hy-

pothesized to degrade service accessibility [1, 2, 3], but its impact is not well understood

due to a lack of methods for its quantification. Moreover, the methods that exist do not

integrate significant realities such as parameter uncertainty and dynamism, which influence

the decision making process.

The second type of decentralized system analyzed consists of the individuals who decide

when and where to receive service. These individuals are called beneficiaries. Decentraliza-

tion arises because beneficiaries do not coordinate their decisions, acting independently to

optimize their own experiences rather than a system-wide objective. These decisions may

result in over-congested facilities and unnecessarily long journeys to receive help. Models

in the literature often assume beneficiaries may be assigned to facilities, or that they will

simply visit the nearest one. In reality, there is no central authority empowered to direct

beneficiaries, and individuals consider factors other than distance.

The objective of this dissertation is to build models based upon mathematical optimiza-

tion and game theory to quantify the impact of decentralization using metrics of efficiency

and equity. Moreover, this research identifies mitigation strategies that enable outcomes to

approach centralized optimality within the current decentralized environment.

1.2 Research Contributions and Organization of The-

sis

Humanitarian and public health logistics systems are often characterized by decentral-

ized decision makers whose strategies affect the system as a whole. Given the catastrophic

consequences of poor operations, policies that mitigate performance degradation due to

3



decentralization are highly valuable. The author utilizes game theory and mathematical

optimization to model two decentralized systems within humanitarian operations: response

agencies and beneficiaries. The decisions made by these two groups define the spatial dis-

tribution of supply and demand. Effectively matching supply with demand is key to the

success of a response. The author seeks to quantify the impact of decentralization and im-

prove the performance of these systems by constructing algorithms and identifying design

characteristics that allow decentralized systems to behave in a centrally optimal manner.

This research is expected to equip supply chain managers to effectively overcome some of

the challenges attributed to decentralization.

1.2.1 State of Current Literature

First, the author presents a literature review that surveys and synthesizes the state-of-

the-art with regard to the application of game theory to public health and humanitarian

contexts. The review identifies key facets of humanitarian operations that may benefit from

game theoretical modeling. The author finds that game theory is most often applied to

model competition among non-governmental agencies (NGOs), potential avenues for bene-

ficial coordination, negotiations between government authorities, and the decision making

processes of beneficiaries. Specifically, the review makes the following contributions.

• The author discusses competitive models concerning donation management and me-

dia exposure. A key finding of the review is that while most literature agrees that

competition degrades performance, there are very few suggested mitigation strategies.

• The review suggests several improvements that may be observed through greater inter-

agency coordination, but it also identifies significant barriers. The author finds that

there have been few contributions that present theoretic models and empirical results

of inter-agency coordination.

• The author identifies valuable examples of game theory being applied to model negoti-

4



ation processes between government authorities and NGOs. However, further research

is needed to improve relationships, establish appropriate roles, and improve security

and preparedness.

• Models of decentralized beneficiary behavior demonstrate the value of game theoretic

models to predict decisions and bound performance metrics but none incorporate in-

dividual preferences. The final section of the literature review motivates the research

presented in Chapters 3 and 4 of this thesis, focusing on the effects of decentraliza-

tion among both response agencies and beneficiaries alike. While it is understood

that decentralization negatively influences outcomes, the literature lacks models that

quantify this impact and prescriptions for its mitigation.

• As the application of game theory to humanitarian operations is an emerging field, the

review suggests many avenues for future research including new sources of income for

non-profit agencies, models to identify compatible response partners, and suggestions

for technology that enables coordination.

1.2.2 Agency-level Decentralization

In Chapter 3, the author analyzes the effect of decentralization on the part of agencies

when locating facilities for last-mile service delivery. The objective of the research described

in Chapter 3 is to quantify the difference between an actual decentralized response and a

hypothetical centralized one. A novel methodology is introduced to model the decisions of

a centralized planner, relocating the facilities of a given decentralized response to optimize

metrics of efficiency and equity. The centralized model incorporates parameter uncertainty

within a dynamic framework to add realism.

The thesis also describes an application of the methodology using data from the cholera

epidemic that emerged in Haiti in 2010. The computational results demonstrate that sub-

stantially better service may have been provided if location decisions had been coordinated,
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underscoring the need for strategies that mitigate decentralization.

The research described in Chapter 3 makes the following contributions.

• The author introduces a centralized benchmark that applies the enhanced two-step

floating catchment area method within a dynamic, robust facility location model that

computes facility locations to optimize potential spatial accessibility, which is imper-

ative to a high quality of service in humanitarian settings.

• A novel methodology is presented to address spatial fluctuations in demand and min-

imize disparities in access from one region to another.

• A computational study is performed using data obtained from the Pan American

Health Organization, the US Centers for Disease Control and Prevention, and Haiti’s

Ministry of Public Health and Population regarding a cholera epidemic in Haiti in

2010. Results illustrate the need for coordination among agencies as the centralized

solution vastly outperforms the actual decentralized response.

• Sensitivity analysis provides insight regarding which parameters have the greatest

impact on efficiency, equity, and robustness.

1.2.3 Beneficiary-level Decentralization

In Chapter 4, the author applies game theory to model systems of beneficiaries decid-

ing where to seek treatment from a set of open service facilities. The author introduces

two classes of network congestion games: the player-specific congestion weights problem

(PSCWP) and the player-facility-specific congestion weights problem (PFSCWP). In both

games, each player chooses a facility to optimize the utility he derives from distance traveled

and congestion experienced. The differences between the two problems are the factors the

individual considers in measuring the relative utility of distance and congestion.

Integral to the analysis is the concept of pure Nash equilibrium (NE), which is an outcome

of a game in which no player can improve his utility by choosing a different facility. While
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equilibrium solutions represent decentralized outcomes that result from individual decisions,

a metric of system performance from a global perspective is also required. To address

this need, a centralized planner’s problem is represented using an optimization model that

assigns each beneficiary to one facility while minimizing the total congestion and distance.

The centralized planner does not consider the weight an individual places on congestion,

but instead focuses on what is best for the whole system.

The impact of decentralization is measured by comparing the centralized objective func-

tion value of equilibria to a centrally optimal solution. The price of stability (PS) is the

ratio of the centralized costs of the least expensive equilibrium and the centralized opti-

mum. Conversely, the price of anarchy (PA) is the ratio of the centralized costs of the most

expensive equilibrium to centralized optimum. The author proves bounds on each of these

metrics for both the PSCWP and the PFSCWP.

Finally, the author identifies coordination mechanisms that align what is best for the in-

dividual with what is best for the system, encouraging decentralized behavior to approach a

centralized optimum. Specifically, the research finds modifications to player utility functions

under which a centralized optimum is also an equilibrium.

The specific contributions of Chapter 4 are as follows.

• The author defines two new classes of games denoted PSCWP and PFSCWP, to

model beneficiaries choosing the facility at which to receive service. Both classes

consider individual objectives based on key factors such as distance and congestion,

incorporating the relative emphasis an individual places on the two.

• A polynomial-time algorithm is constructed to compute equilibrium solutions for the

PSCWP, allowing efficient predictions of beneficiary behavior.

• The author provides new theoretical bounds on the prices of anarchy and stability for

the PSCWP and the PFSCWP. Specifically, the author shows that both measures may

be arbitrarily high, but depend on the greatest and least weight placed on congestion
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over the set of players.

• This research identifies coordination mechanisms that encourage decentralized deci-

sions to reflect what is best for the whole system. The author demonstrates that when

each player places exactly twice as much weight on congestion as he does on distance,

a central optimum is also an equilibrium. Moreover, solutions are characterized for

which there exists congestion weights that, when applied to player utility functions,

make the centralized optimum an equilibrium.

• The author shows that any solution to the PFSCWP, including the centralized op-

timum, may be transformed into an equilibrium whether congestion weights are re-

stricted to non-negative or non-positive values.

• An efficient methodology consisting of two optimization models is introduced to find

coordination mechanisms in practice. The first model computes an assignment of

beneficiaries to facilities that minimizes the total distance traveled and congestion.

The second model identifies congestion weights under which the centralized optimum

is also an equilibrium.

• The methodology is demonstrated through a computational study that utilizes data

from the cholera epidemic in Haiti, specifically focusing on the area surrounding the

capital city of Port-au-Prince.

1.3 Summary

The combined contributions of this thesis further the understanding of decentralized

systems, particularly those found in humanitarian operations. In addition to filling impor-

tant theoretical gaps in the literature, the thesis demonstrates practical applications for the

methods and concepts presented. In Chapter 5, the author identifies avenues for future

research.
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Chapter 2

Game Theory Applications in

Humanitarian Operations: A Review

This component of the thesis surveys the current applications of game theory to hu-

manitarian contexts and identifies an important gap, motivating the primary contributions

of this thesis. Specifically, the author finds that while game theoretic models of agency

and beneficiary behavior exist, the understanding of how the resulting decentralization im-

pacts a response is still lacking. This chapter was published in the Journal of Humanitarian

Logistics and Supply Chain Management [4].

2.1 Introduction

Scholarly literature well documents the complexities faced by humanitarian logisticians

[5, 6, 7, 8]. Like their commercial sector counterparts, humanitarian supply chains are de-

signed to deliver the correct quantity of goods to the right place at the right time. However,

humanitarian supply chains encounter additional challenges, including damaged transporta-

tion and communication infrastructure in unstable or even hostile environments [9]. This

makes obtaining accurate information difficult in circumstances that require quick, decisive

9



action [10]. The resulting uncertainties and propensity for disruption greatly complicate

decision making processes. Another obstacle to successful disaster response is the decen-

tralized nature of humanitarian operations. Multiple agencies are engaged in humanitarian

response, and each makes decisions about supply chain functions according to its own objec-

tives and available information. Urgency, in addition to incompatible languages, information

technology tools, and data standards, inhibits agency collaboration [10]. Decentralization

is a great challenge in disaster response because independent decisions of non-governmental

organizations (NGOs), governments and military entities, and beneficiaries impact relief

outcomes for the whole system.

Game theory is a powerful tool for modeling the interactions of independent decision

makers, including the stakeholders in humanitarian supply chain systems. A branch of

mathematics long used in economics and political science to model human interaction, game

theory has also been applied to commercial supply chains to maximize value [11], optimize

cooperative efforts [12], and form marketing strategy [13], all of which are also relevant in

humanitarian operations. Game theory models decentralized decision makers as players in

a game, each of whom makes decisions according to the game’s structure and his own goal.

The game’s outcome represents the results of interactions between decision makers.

Although applications of game theory to commercial supply chain settings are increasing,

its use as a tool to analyze and improve humanitarian supply chains is limited to date. This

component of the thesis surveys existing literature that illustrates ways in which game theory

has been and can be utilized within humanitarian relief operations. As this is an emerging

field, we draw broadly from literature in operations research, humanitarian logistics, and

political and management sciences. The contributions of this chapter are two-fold. We first

document the facets of humanitarian operations to which game theory has been applied in a

comprehensive summary of relevant literature. Secondly, we identify opportunities for future

research in the field. We begin with a brief overview of game theory. In chapter 2.3 and

chapter 2.4, wer present literature on competition and cooperation, respectively, between
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NGOs. Next, chapter 2.5 discusses game theoretic models that integrate the decisions of

government authorities, while chapter 2.6 describes models of beneficiary decision making.

In chapter 4.7, we synthesize our findings and suggest avenues for future research.

2.2 Game Theory Primer

A game theory model, or simply a ‘game’, consists of several elements. The first is

a set of players, each with a set of strategies from which to choose. Each player also

maintains a goal, often expressed mathematically as a utility function to optimize. The

combination of strategies chosen by all players determines the outcome of the game and the

consequences, or payoff, to each player according to his utility function. In a game theory

model of humanitarian operations, players represent stakeholders or decision makers, such

as NGOs, government agencies, donors, or beneficiaries. Examples of payoffs in this context

include minimized costs, efficient delivery of services, accurate demand estimation, number

of beneficiaries reached, funds raised, and the level of public awareness created.

Game theory models are classified along several dimensions. In simultaneous (or static)

games, all players make a decision at the same time, while extensive (also sequential or

dynamic) games involve a sequence of decisions where some players observe the actions of

others before deciding upon their own. A game is symmetric if the same set of strategies is

available to each player and each player’s payoff depends only on the combination of strate-

gies played, not on the identities of those playing them. Otherwise, a game is asymmetric.

Games of perfect information are those in which each player knows the actions available

to other players, their payoff functions, and any decisions that have already been made. If

players are not perfectly informed about these characteristics, the game is one of imperfect

information. Games may be classified according to payoffs, where zero-sum games are those

in which anything gained by one player or set of players is lost by another so that the net

payoff to all the players is zero. Non-zero-sum games allow general payoff amounts. Fi-
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nally, games may be non-cooperative or cooperative. In non-cooperative games, each player

chooses actions independently to optimize her own payoffs. Cooperative game models rep-

resent the actions of groups of players in which cooperation may yield strategic alliances

and improved payoffs. The reader is referred to [14] and Gibbons [15] for comprehensive

treatment of different classes of games.

Integral to an understanding of game theory is the concept of Nash equilibrium [16],

which is an outcome from which no player can improve his payoff by unilaterally altering

his strategy. In other words, no player has incentive to deviate from his strategy even upon

observing the strategies of his opponents. Nash equilibria do not necessarily imply optimal

payoffs for any player. Instead, they represent the product of decisions made in a player’s

self-interest and the assumption that other players will do likewise.

2.3 Competition between Relief Agencies

Non-profit activity has risen sharply over the past century; for instance, the number

of registered US non-profit organizations rose from 12,000 in 1940 [17] to more than 1.5

million in 2012 [18]. In this setting, competition may emerge between NGOs for media

exposure and funds. This section describes game theory models of inter-agency competition.

Figure 1 summarizes the topics addressed by each of the papers we survey. While all of the

publications identify sources of competition and most discuss negative outcomes that can

result, only two sources give specific advice to mitigate these outcomes.

2.3.1 Media Exposure

Media presence can cause competition between NGOs as it provides an opportunity

to publicize a group and its cause. Research shows that donors are more likely to give to

charities they have seen first-hand [19] or to those perceived to be productive [17]. Therefore,

media coverage attracts support [20] and encourages competition among agencies for service
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Table 2.1: Literature on competition.
Author Publication Sources of Effects of Mitigating

Competition Competition Effects of
Competition

Castaneda et al. (2008) The Journal of Law, X X X
Economics and
Organization

Feigenbaum (1987) The Journal of X X
Industrial Economics

Frumkin and Kim (2001) Public Administration X X
Review

McCardle et al. (2009) Decision Analysis X

Privett and Erhun (2011) Manufacturing and X X X
Service Operations

Management

Tatham and Kovács (2010) International Journal of X X
Production Economics

Wardell (2009) Ph.D. Dissertation - X X
Georgia Institute

of Technology

Zhuang et al. (2011a) Annals of X
Operations Research

Totals 8 6 2

areas with a media presence [9]. The media can also be used to “signal” current donors

that their money is being well spent in hopes of soliciting future donations [21]. This

trend has attracted criticism from researchers who argue too much emphasis on media

exposure degrades the quality of service. Wardell (2009) introduces a symmetric game
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theory model to demonstrate the impact of agencies’ desire to signal donors while choosing

aid distribution site locations. Each agency’s strategy is based upon an objective function

combining beneficiary impact and signaling potential. The result of the game is the over-

saturation of relief areas in which media coverage is high to the detriment of service in

other areas. Wardell asserts that over-saturation wastes resources that would better serve

beneficiaries in a different location.

2.3.2 Methods of Raising Money

In between disasters, NGOs are responsible for supporting themselves financially through

donations and grants. In fact, nearly 300 billion dollars are given to charity within the United

States each year and nine out of ten people report giving to a charitable organization [22].

NGOs of similar geographic location and/or sector compete with each other for this money

because they share the same donor pool. Increasing competition encourages more of an

agency’s money to be diverted from charitable goals to fundraising efforts [23]. Fundraising

carries upfront costs and relies on public empathy for a cause, which fluctuates over time

[17]. This section discusses two game-based fundraising strategies utilized by NGOs to raise

money. The first system involves the intentional public disclosure of information concerning

an NGO’s performance and impact. The second type of system rewards donors for their

gifts in hopes of capitalizing upon a donor’s desire for public acknowledgment.

Information Disclosure

One fundraising tool available to NGOs is the public disclosure of information. The

information released by an NGO regarding donations, spending, active projects, and per-

ceived impact is intended to demonstrate its efficiency and effectiveness in comparison to

others, resulting in a strategically advantageous public perception. Supply chain decisions

directly impact information on money spent and beneficiaries reached, and thus form an
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important part of the data that agencies have available to disclose. Important questions are

how much and what kind of information should be shared. Many donors want to see where

money is being spent to understand the relative impact of their donations [24], but donors

may become confused or frustrated by too much information [22]. There is also the danger

of disclosing details about efficient operations to competitors who will replicate them [17].

An objective of the NGO is to maximize donations, but the literature describes several

different objectives for donors. These include a desire to feel good about themselves, dubbed

the “warm glow” effect [25], or to demonstrate their wealth to others [26]. Zhuang et al. [22]

posit that people also give because they empathize with a problem and want their donation

to maximize service to beneficiaries. They construct an extensive game model between a

group of donors and a group of charities to analyze the relationship between information dis-

closure and charitable donations. The model assumes that donors desire some quantifiable

combination of personal publicity and charitable impact from their donation while the char-

itable organization desires the maximum amount of gifts possible. Experimentation with

this game shows a positive correlation between charitable giving and relevant information

disclosure. The question of what type of information to disclose is studied by Frumkin and

Kim [17], who analyze charity donations over a ten-year period. Interestingly, the results

indicate that charities reporting high financial efficiency did not receive significantly more

donations than those who did not. The authors suggest that invoking empathy and demon-

strating ability to have an impact may be more beneficial than disclosing information about

leanness.

Fundraising Structures

An organization’s fundraising structure can also impact its success in competing for do-

nations. One structure is tiered giving, in which organizations assign donations to different

tiers corresponding to their amount and donors may receive a tier-specific reward. Mc-
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Cardle et al. [27] argue that this type of system is superior to non-tiered systems using a

single-donor model. The players are a charity, which chooses tier levels, and a donor, who

chooses a gift amount based upon an objective function that includes warm glow and public

acknowledgement. They find that a donor will never decrease his donation when a tiered

system is implemented, and that if the next highest tier is sufficiently close, a donor will

increase his donation to that tier. The authors construct a tool for charities to identify tier

levels that maximize one-time donations given the estimated wealth distribution of their

target market.

Various contract structures for non-profit fundraising have also been modeled using game

theory. Castaneda et al. [24] argue for contracting with donors to stabilize an organization’s

income. They model competition for donations as a three-stage dynamic game between char-

itable organizations and potential donors. An equilibrium analysis of this model concludes

that as charities increase the proportion of expenses paid with donor contracts, less money

is put toward promotion and administration expenses, leaving more for charitable goals.

Privett and Erhun [28] propose contracts that permit donors to audit a non-profit’s use of

their funds. If tangible benchmarks specified in the donation contract are not achieved, the

charity may be charged a penalty that reverts to the donor. The authors apply the principal-

agent framework to this scenario. Principal-agent games are extensive games of imperfect

information in which the first player (the principal) offers terms to encourage one or more

agents to act in the principal’s best interest. (See Ross [29] for an early introduction and

Zenios [30] for an overview of supply chain applications.) In this application, the donor is

the principal and the charitable organizations are the agents; each player seeks to maximize

his respective utility function. Results indicate that donors and non-profits that report

good administrative and operational efficiency would welcome an auditing framework. The

authors suggest that auditing would increase efficiency because managers would try to avoid

the penalty for poor performance. In contrast, researchers have identified instances where

contracts may degrade the quality of service in a disaster response [31]. Such is the case
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when an immediate need presents itself but the only available resources have been contracted

for other purposes.

2.4 Cooperation between and within Relief Agencies

Though competition exists between NGOs, the altruistic nature of humanitarian relief

attracts personnel with common goals who are willing to work together [32]. The commercial

supply chain literature suggests numerous advantages of cooperation between agents (see

Arshinder et al. [33] and Cachon and Netessine [34] for reviews), many of which also

have parallels in the humanitarian context. As shown in Figure 2, the literature contains

numerous articles that describe motivations for inter-agency and intra-agency cooperation,

the most obvious of which is the positive effect it may have on beneficiaries [35]. Partnering

NGOs may identify service gaps by comparing their respective locations, resources, and

limitations. Furthermore, partnering agencies are able to focus on core competencies [36, 37],

capitalize on economies of scale in purchasing and transportation [38], and utilize shared

warehouse space for pre-positioned goods [37]. Cooperating NGOs may also reduce costs by

consolidating administration, standardizing measurements, and adopting common policies

[37].

This section discusses NGO cooperation from a game theoretic perspective. Though

agency cooperation is especially beneficial in the humanitarian sector, its mathematical

study is relatively new. Here we describe models that emphasize specific opportunities for

cooperative efforts and then discuss obstacles to cooperation in practice. In total, we survey

20 articles concerning cooperation; the topics addressed by each article are summarized

in Figure 2. While most articles propose reasons for and/or barriers to cooperation, it is

encouraging to note that 77 percent of those that discuss obstacles also suggest methods to

improve cooperation.
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Table 2.2: Literature on cooperation.
Author Publication Motivations Barriers Methods for

Improvement

Bagchi et al. International Journal X X X
(2011) of Production Economics

Balcik et al. International Journal X X X
(2010) of Production

Economics

Coles and Zhuang Journal of X X X
(2011) Homeland Security

and Emergency
Management

Coles and Zhuang Working paper X X
(2013)

Coles et al. (2012) Socio-Economic X
Planning Sciences

Cruijssen et al. Transportation Research X X X
(2007) Part E: Logistics and

Transportation Review

Ergun et al. Production and X X
(2013) Operations Management

Hasija (2012) Proc. of 23rd Annual X X X
POMS Conference

Heier Stamm et al. Working paper X X
(2013)
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Author Publication Motivations Barriers Methods for
Improvement

McLachlin and Journal of X X X
Larson (2011) Humanitarian Logistics

and Supply Chain
Management

Moore and Proc. of 2012 X X
Heier Stamm (2012) Industrial and Systems

Engineering Research
Conference

Natsios (1995) Third World Quarterly X

Overstreet et al. Journal of X
(2011) Humanitarian Logistics

and Supply Chain
Management

Proaño et al. (2012) Omega X X X

Schulz and International Journal of X X X
Blecken (2010) Physical Distribution and

Logistics Management

Stewart et al. International Journal of X X
(2009) Physical Distribution and

Logistics Management

Tatham and International Journal X X X
Kovács (2010) of Production Economics

Thevenaz and International Journal X
Resodihardjo (2010) of Production Economics
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Author Publication Motivations Barriers Methods for
Improvement

Trestrail et al. International Journal of X X
(2009) Physical Distribution and

Logistics Management

Zhuang et al. Proc. of 2011 X X
(2011b) NSF Engineering Research

and Innovation Conference

Totals 16 13 16

2.4.1 Opportunities for Cooperation

For humanitarian logisticians, cooperative models identify methods for partnering agen-

cies to achieve greater impact than what is possible when operating independently. Prior

research also investigates conditions under which inter-agency cooperation would be wel-

comed by supply chain players and introduces intra-agency cooperative practices to improve

operations.

Procuring supplies and transportation services often involves interactions between mul-

tiple humanitarian supply chain parties [39, 40]. For example, the US Department of Agri-

culture (USDA) utilizes a bidding process in which domestic suppliers of international food

aid and ocean carriers submit separate bids for their services. Upon receiving both sets of

bids, USDA uses a linear program to select the lowest cost supplier-carrier pairings to trans-

port procured food. The current system is argued to motivate bids that are much higher

than actual costs, decreasing the amount of food aid that USDA is able to purchase [39].

Trestrail et al. [41] recommend the adoption of a uniform price auction, an approach shown

to keep winning bids closer to actual costs. If USDA implements the new system, Bagchi et

al. suggest that synergetic suppliers and carriers form partnerships with each other a priori,

leading to lower joint bids that reflect the benefits of cooperation. Savings from lower bids
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could increase the amount of food aid that USDA can send to beneficiaries.

Another example of the potential for increased impact through cooperation is docu-

mented by Moore and Heier Stamm [2], who quantify the impact of the absence of co-

ordinated facility location decisions on cholera treatment accessibility in Haiti. Optimal

treatment facility locations are identified using an integer programming model that max-

imizes access. The results indicate that coordinated facility location decisions may have

led to significant improvements in treatment accessibility in comparison to actual decisions

made by NGOs acting independently. To close this gap, the authors propose future work in

a cooperative game framework to identify mechanisms that lead to independent decisions

that optimize access to beneficiaries.

Research by Ergun et al. [42] and Proaño et al.[43] emphasizes conditions under which

multi-agency cooperation is beneficial and acceptable to the organizations involved. Moti-

vated by a successful partnership between the United Parcel Service (UPS) and The Salva-

tion Army in Haiti that led to improved operations in a camp for internally displaced persons,

Ergun et al. [42] introduce a cooperative game theory model to analyze technology-enabled

coordination among agencies. The players are camp management agencies, each of which

must decide whether to adopt an electronic registration system and collaborate with other

camps. Since adoption requires a significant investment, agencies’ choices depend on how

the costs are allocated among them. The authors identify conditions under which there

exists a cost allocation mechanism that incentivizes all agencies to collaborate. Proaño et

al. [43] study beneficiary access to vaccines as a game between vaccine manufacturers and

purchasing countries. The model produces vaccine prices that maximize manufacturer prof-

its while meeting vaccine demand. To combat unfair outcomes, the researchers suggest that

a third player, such as the World Health Organization, the Pan American Health Organi-

zation, or the United Nations Children’s Fund, use the model to negotiate fair prices with

vaccine producers. In this instance, vaccine manufacturers may experience lower net profit,

but if they share the objective to maximize vaccination coverage, cooperation may produce
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beneficial solutions for all.

Within a single agency, separate divisions and country offices may have different in-

centives and objectives, making supply chain coordination across the agency difficult. One

approach is to adopt a centralized system, in which a single decision maker or group controls

supply chain operations. Such systems have the advantage of standardized practices and

can consider what is best for the whole system. Unfortunately, some have performed slug-

gishly in disaster response. For instance, the International Federation of Red Cross and Red

Crescent Societies (IFRC) formerly utilized a centralized supply chain based out of their

headquarters in Geneva, Switzerland. When Hurricane Mitch struck Honduras in 1998,

IFRC initiated relief operations no less than two weeks following the disaster, long after

other agencies had established themselves. The delay was blamed on an inefficient aid re-

quest process in which information had to navigate several channels to reach the centralized

decision maker [44].

In contrast to the centralized approach, decentralized systems rely upon multiple decision

makers, each controlling smaller amounts of resources within a subsystem. Decentralized

systems benefit from strategies better suited to local conditions since decision makers are

closer to affected populations [3]. IFRC, for example, restructured its supply chain in 2005

and adopted a decentralized system that split global operations into three Regional Logistics

Units, each with its own headquarters and prepositioned goods. The perceived advantages

of the new system included faster response time, better communication of needs, and lo-

cal expertise. The new supply chain was tested after the 2006 earthquake in Yogykarta,

Indonesia. The response was much faster and economical than past efforts. In general,

coordination problems can become significant when local decision makers lack global infor-

mation or visibility regarding the effect of their decisions on the system as a whole. This

may result in duplicated work and misallocation of resources [3]. Regardless of the level

of decentralization, coordination of efforts is essential within an agency’s supply chain to

maximize performance.
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2.4.2 Barriers to Cooperation

Given the potential benefits, what is stopping improved cooperation between NGOs?

The initial barriers often result directly from the nature of disaster relief. The urgency

of many response environments hinders an agency’s ability to coordinate with others as it

requires valuable time and human resources [9]. Damage to communication and transporta-

tion infrastructure compounds the problem by inhibiting coordination when partnerships

do form [10].

As a response stabilizes, agencies have difficulty finding partners with compatible objec-

tives, practices, and resources [38]. NGOs often utilize distinct systems for managing their

resources and handling data [9, 45], which results in software incompatibility [8] and varying

units of measurement [9]. Zhuang et al. [46] and Coles et al. [47] explore the partnerships

that emerged in response to the 2010 Haiti earthquake. Interestingly, data indicate that

the most effective partnerships were based on new contacts rather than previously existing

relationships with local agencies. In this response, NGOs actively compared alternatives

when selecting local partners with compatible objectives [48]. This research underscores the

importance of NGOs seeking optimal partnerships and enduring the necessary relationship-

building required. Game theory can be used to identify a beneficial partnership, as in Coles

and Zhuang [47], who construct an extensive game that models behavior between two agen-

cies deciding to collaborate or not. The model integrates a probability that any two agencies

will be compatible, every partnership is assumed to require an initial investment, and suc-

cessful partnerships yield a greater benefit than cost. The authors propose extending the

model to n players, enabling compatible partnership formation on a larger scale.

Issues of trust and power also present barriers to cooperation. The competitive nature of

humanitarian relief can hinder trust formation between NGOs [37, 45, 49]. Upon a conscious

decision to combine efforts, agencies may suffer hierarchal power disputes [9, 50]. Small

agencies may fear losing their sovereign identity upon partnering with a large agency that

may receive the bulk of visibility and credit, as well as being pushed out of the partnership
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once their resources are no longer necessary [38].

2.5 Humanitarian Relief and Governmental Authori-

ties

Government and military entities participate in and impact many humanitarian oper-

ations. Two of the most frequent humanitarian contexts in which governmental and non-

governmental organizations interact are in cases of population displacement across borders

and in settings where both NGO and military groups operate. Game theory provides tools to

model the interactions between governmental and non-governmental decision makers, who

may have conflicting objectives. Games are also used to model government investments in

disaster defense.

2.5.1 Interactions between Governmental and Non-governmental

Organizations

Natural and manmade disasters often force refugees to seek shelter across proximal bor-

ders. Governmental authorities retain the power to open and close borders to refugees and

relief agencies alike. Prospective host governments often request support from the United

Nations High Commissioner for Refugees (UNHCR), the North Atlantic Treaty Organization

(NATO), and other countries to assist arriving refugees. Games are useful in investigating

motives, explaining decisions, and predicting outcomes of these interactions. Generally play-

ers include a country of asylum, a country of repatriation, and a group of refugees or their

representative (NATO or UNHCR).

Researchers have chosen the Theory of Moves (TOM) to model many such circum-

stances. Originally defined by Brams [51] and revised by Wilson [52], TOM is an extensive

game framework with perfect information in which players sequentially make changes in
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strategy until all players decide to pass, at which point the game is at equilibrium. This

process mirrors lengthy political negotiations in which agents make offers and counter-offers.

TOM has been utilized to model the situations faced by Rwandan, Indochinese, and Al-

banian refugees, in particular. The primary contribution of the Rwandan model [53] is its

examination of sympathetic versus non-sympathetic countries of asylum, where the level of

sympathy is reflected in a country’s utility function and depends on economic and cultural

compatibility. The results of the paper indicate that varying levels of sympathy may alter

a government’s decision to help or not. The same author uses TOM to model the plight of

Indochinese refugees immediately following the Vietnam War [54]. The players in the game

include Thailand and the US; Thailand’s actions are to permit or deny asylum, while those

of the US are to permit or deny resettlement. In actual negotiations, Thailand threatened

to refuse asylum unless the US offered resettlement. Zeager’s analysis demonstrates the

impact of one player’s power to end the game at a mutually disadvantageous outcome and

the ways that TOM can provide insight about this threat power.

Comparing actual outcomes with those predicted by game theory models points to ways

in which modeling approaches can be improved for future applications. Williams and Zeager

[55] model the 1998 crossing of ethnic Albanian refugees from Kosovo into Macedonia as

a game between Macedonia and NATO. Macedonia’s available actions are to open or close

its borders, while NATO decides whether to commit only financial assistance or to provide

asylum assistance as well. The equilibrium solution, in which NATO provides only financial

assistance and Macedonia keeps its borders closed, is the worst possible outcome. The

actual outcome, in which NATO also provided asylum assistance and Macedonia opened its

borders, differed from the one predicted by the model due to the influence of third parties not

explicitly represented in the game, including UNHCR, journalists, and the US Department

of State.

NGOs frequently interact with militaries of both host country and foreign governments.

Countries may commit military resources to ensure security or execute humanitarian supply
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chain functions. NGOs and military units sometimes participate in the same missions, wear

the same clothing, and drive the same vehicles, making humanitarian personnel indistin-

guishable from soldiers [56]. Furthermore, some NGOs actively utilize military resources

because military groups are known for being organized, well trained, and able to command

extensive supply networks. In some cases, coordinated operations between NGOs and mil-

itary forces may reach more people. Host governments, for instance, are often the first

responders to disasters within their borders [57]. Military forces add a level of complex-

ity to humanitarian environments because, while a partnering NGO may achieve greater

effectiveness by utilizing military resources, the partnership may negatively impact public

perception of the NGO’s neutrality. IFRC realized this during humanitarian operations in

Pakistan after an earthquake in 2005. Despite having access to over 100 military helicopters

to transport aid, IFRC chose to hire their own aircraft at greater expense to avoid conflict

with their principles of humanity, independence, and neutrality, especially in the politi-

cally tense region [57]. In such circumstances, decision models offer the ability to evaluate

tradeoffs between conflicting objectives such as cost and neutrality.

2.5.2 Government Investment in Disaster Defense

Nations have a vested interest in preparing for and mitigating the impact of disasters.

Much research has applied game theory to questions of defense against disasters caused by

acts of terrorism; these models fall into a class called attacker-defender games (see Brown et.

al. [58], for an introduction). One paper in this stream of literature simultaneously considers

investments in defense against terrorism and natural disasters. Zhuang and Bier [59] model

a defender preparing for an unknown attack that may originate either from terrorists who

have knowledge of the system or from a natural disaster of random force and location. The

defender chooses the proportion of his budget to invest in protection from these two types

of events. An equilibrium solution is the budget allocation that makes both attacker and

defender indifferent to the type, location, and strength of an attack.
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While the model was designed for use in protecting a set of targets, it could be extended

for humanitarian supply chain managers who wish to adapt a defensive perspective. Dis-

ruptions to humanitarian supply chains carry a much higher penalty than their commercial

counterparts because lives may literally hang in the balance [60]. Game theory can be ap-

plied to guide decisions about investments in security and stability and allow supply chain

managers to prepare for natural and man-made disruptions.

2.6 Models of Individual Beneficiaries

Most models in the literature capture decisions by governmental or non-governmental

organizations. Beneficiaries also act according to individual objectives and available infor-

mation, and their choices impact humanitarian supply chain operations and public health

campaign outcomes. For instance, beneficiaries commonly must choose which facility to

visit for services or relief supplies. Classic models of facility location and resource allocation

rely upon the assumption that consumers are either assigned to a facility or that they will

visit the closest one [61, 62]. In reality, centralized assignment is often not possible, and

beneficiaries may consider factors besides distance. Game theory models that explicitly

capture beneficiary decisions demonstrate the impact that decentralization can have on sys-

tem outcomes [1, 63]. If supply chain managers begin integrating results from decentralized

models, they may more accurately predict beneficiary decisions, improving aid utilization

and beneficiary access.

Individuals’ choices about health, such as whether or not to be vaccinated against an

infectious disease, can also impact their community at large. Vaccination confers a direct

benefit to those vaccinated, but as more people receive vaccinations, those who remain

unvaccinated indirectly benefit from the lower probability of being infected. Shim et al.

[64] model a community of individuals, each deciding whether to vaccinate himself against

influenza or not. The outcomes emphasize the dramatic difference in vaccination levels that
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emerge when decision makers are completely self-interested and when levels of altruism are

introduced to an individual’s objective function. This research demonstrates the potential

for models to help identify opportunities to influence individual utility functions in a way

that improves human outcomes.

2.7 Summary of Findings and Directions for Future

Research

This component of the thesis summarizes literature that applies game theory to hu-

manitarian operations. The interactions of independent decision makers within this sector

provide an ideal setting for the application of game theory to optimize strategy and improve

operations. The primary finding is that while there have been promising steps toward an

integration of game theoretic concepts, the humanitarian relief community has access to

only a few practical tools. The enormous consequences of supply chain performance in the

humanitarian sector further strengthen the argument for its mathematical study. Because

there has not been a literature review of game theory’s application to humanitarian supply

chains, this work serves as a reference of current literature while discussing directions for

future research.

2.7.1 Summary

To identify gaps in existing research, we categorize each article according to the facet(s)

of humanitarian response to which it corresponds, as summarized in Figure 3. If the contri-

bution describes a game theory model, we denote that in the “Game Model” column. Since

decentralization in humanitarian environments makes game theory a particularly important

tool, we also denote papers that explicitly discuss decentralization. The “Supply Chain

Operations” category includes 40 percent of the papers; these papers deal with the physical
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distribution of aid. Papers indicated in the “Planning and Strategy” column constitute 37.1

percent of those surveyed. These address topics that affect an NGO in the preparedness

phase of disaster response, including methods for improving efficiency and security as well

as identifying potential political actions. Lastly, the category labeled “Administration and

Donations” refers to the 28.6 percent of papers we survey that provide insight for supply

chain managers about administrative functions and soliciting donations.

Of the 35 articles listed in Figure 3, 18 include an explicitly modeled game. This supports

the claim that, while there are opportunities for game theory to be applied to humanitarian

logistics, few existing studies have done so. This becomes even clearer when one considers

that 40 percent of all the papers we survey focus on supply chain operations that can

benefit from game theoretic analysis, yet only 16.6 percent of the papers that include game

theory models address this aspect. Planning and strategy papers constitute 44.4 percent of

those with models, while sources emphasizing administration and donations contribute 33.3

percent. Decentralization is the focus of 16.6 percent of those papers that include games.

Among the major game theory model categories, extensive form games are well-represented

in the current literature. These are used to represent interactions between charities and

donors, the formation of partnerships between NGOs, bidding by suppliers and carriers,

negotiation processes, and attacker-defender scenarios.

2.7.2 Research Opportunities

We see important opportunities for increased use of game theory models in humanitarian

operations in general and, in particular, for studies applying cooperative and imperfect

information games. In addition to these broad observations, we describe a number of specific

opportunities for game theory models to provide insight to humanitarian operations.

Disasters often damage communication networks, making reliable information difficult

to obtain. However, a successful response relies upon accurate information about demand,

supply, and available transportation routes. Generally, NGOs do not allocate substantial
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Table 2.3: Summary of literature.
Author Publication Game Centralized Operations Planning Donations

Model vs. and
Decentralized Strategy

Andreoni (1990) The Economic X
Journal

Bagchi et al. International X X
(2011) Journal of

Production
Economics

Balcik et al. Journal of X
(2008) Intelligent

Transportation
Systems

Balcik et al. International X X
(2010) Journal of

Production
Economics

Besiou (2012) Proc. of 23rd X X
Annual POMS

Conference

Brams (1994) American X X
Scientist

Castaneda et al. The Journal X X
(2008) of Law,

Economics &
Organization
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Author Publication Game Centralized Operations Planning Donations
Model vs. and

Decentralized Strategy

Coles and Journal of X
Zhuang (2011) Homeland

Security and
Emergency

Management

Coles and Working paper X X
Zhuang (2013)

Coles et al. Socio-Economic X
(2012) Planning

Sciences

Ergun et al. Production and X X
(2013) Operations

Management

Feigenbaum (1987) The Journal of X
Industrial
Economics

Frumkin and Kim Public X
(2001) Administration

Review

Gatignon et al. International X X
(2010) Journal of

Production
Economics

Glazer and The American X X
Konrad (1996) Economic

Review
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Author Publication Game Centralized Operations Planning Donations
Model vs. and

Decentralized Strategy

Hasija (2012) Proc. of 23rd X X
Annual POMS

Conference

Heier Stamm Ph.D. Dissertation X X X
(2010) Georgia Institute

of Technology

Heier Stamm Working paper X X
et al. (2013)

McCardle Decision Analysis X X
et al. (2009)

McLachlin and Journal of X
Larson (2011) Humanitarian

Logistics and
Supply Chain
Management

Moore and Proc. of 2012 X X X
Heier Stamm Industrial and

(2012) Systems
Engineering

Research
Conference

Natsios (1995) Third World X
Quarterly
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Author Publication Game Centralized Operations Planning Donations
Model vs. and

Decentralized Strategy

Overstreet et al. Journal of X
(2011) Humanitarian

Logistics and
Supply Chain
Management

Privett and Manufacturing X X
Erhun (2011) and Service

Operations
Management

Proaño et al. Omega X X
(2012)

Stewart et al. International X
(2009) Journal of

Physical
Distribution and

Logistics
Management

Tatham International X
and Kovács Journal of

(2010) Production
Economics

Thevenaz and International X X
Resodihardjo Journal of

(2010) Production
Economics

Wardell (2009) Ph.D. Dissertation X X
Georgia Institute

of Technology
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Author Publication Game Centralized Operations Planning Donations
Model vs. and

Decentralized Strategy

Williams and Conflict X X
Zeager (2004) Management and

Peace Science

Zeager (1998) International X X
Studies

Quarterly

Zeager (2002) Rationality X X
and Society

Zhuang Operations X X
and Bier(2007) Research

Zhuang et al. Annals of X X
(2011a) Operations

Research

Zhuang et al. Proc. of 2011 X X
(2011b) NSF Engineering

Research and
Innovation
Conference

Totals 18 7 14 12 10
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time or resources to share information [9]. Because reliable information is so valuable,

there exist strategic advantages to those who control its flow and incentives for agencies

to compete for exposure to information flow [10]. Information is also a critical element in

cooperative efforts. One potentially useful modeling framework is built on the notion of

network centrality, where an agency’s centrality score quantifies how integral an agency is

to information flow. Scores are calculated using a network model; nodes represent agencies

and edges between pairs of nodes are weighted to represent the amount of information flow-

ing between them. Network centrality has been used to model inter-agency communication

during the responses to the 2000 Mozambique floods [65] and to the September 11th, 2001,

terrorist attacks [66]. The former paper finds a positive association between agency central-

ity scores and beneficiaries reached, which is attributed to the level of information access.

Future research could quantify the strategic advantage of information access, benefits and

costs of sharing information among agencies, and mechanisms to allocate benefits and costs.

Future research could advance the community’s understanding of desirable and undesir-

able effects of media exposure. Is there empirical data to suggest that relief operations have

been negatively affected in the past? If so, are there mechanisms that eliminate detrimental

competition while conserving the benefits of media exposure? Are there policies that may

ensure equitable access for beneficiaries in the presence of the media? How is the notion

of media exposure changing with the rapidly increasing availability of smart phones and

crowdsourcing of news?

While there is work concerning mechanisms for maximizing donations, there has been

little research conducted on other ways that charities can obtain revenue. Some non-profits

have begun auctioning goods and services. In fact, Bidding for Good (www.biddingforgood.com)

has raised over 160 million dollars for 6,200 non-profit organizations through online auc-

tions. Similar websites include Charity Buzz (www.charitybuzz.com) and Ready Set Auction

(www.readysetauction.com). These sites provide powerful tools for NGOs to raise money

with minimal upfront investment. However, there has been little analysis done to optimize
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their use. How does altruism affect bidding? What type of auction structure serves the

NGO best? What types of goods maximize the profit margin?

Considering the enormous rise in the number of non-profits, charities who want to survive

must find a niche. Game theory offers tools to identify untapped markets in the presence of

competition. Given an initial set of non-profits and their donors’ behavior, how can a new

organization find donors to build a cash flow? The Stackelberg model, a classic extensive

game in which a new entrant to the market can observe a competitor before deciding upon

his own strategy, may be modified to provide insight for this situation.

There exist numerous opportunities for research to guide cooperative relationships among

NGOs, between NGOs and government or private entities, and within agencies. The lit-

erature points to the consequences of poor coordination, including duplicated work and

under-served beneficiaries. While qualitative guidance is offered, for example, to encour-

age standardization and synergetic partnerships, quantitative models to inform and support

cooperation are lacking. Future cooperative models may help NGOs find complementary

partners, quantify the costs and benefits of a partnership, and determine a fair allocation

of resources to optimize mutual goals. Balcik et al. [9] suggest the formation of supplier-

buyer alliances to improve aid procurement through bulk-buying and shared shipping costs.

Stewart et al. [67] suggest that non-profits partner with private businesses to improve a com-

munity’s resiliency to disasters. Research efforts could also lead to approaches that combine

facets of centralization in some areas and decentralization in others. Game theory offers

a powerful framework for understanding and improving cooperation in the humanitarian

context, where each link in a supply chain has a unique perspective and expertise.

Each humanitarian response occurs within a particular political context, meaning that

the motivations and actions of political actors shape the response environment. This is true

whether the entity in question is a host country government, foreign government, military

authority, or militant group. When a government or military organization engages in relief

operations, they bring a host of resources and skills. On the other hand, political realities

36



also mean that the safety of humanitarian personnel is a major concern in some regions.

For instance, 90 aid workers were murdered in Afghanistan alone between 2003 and 2006

[56]. Games provide a tool to model ways that objectives and actions of political entities

may impact humanitarian supply chain operations. Future research could lead to models

that enable humanitarian logisticians to identify potential threats and vulnerabilities and

develop strategies to increase supply chain security.

Much work remains in the creation of models that integrate decentralized beneficiaries’

decisions. Future models may incorporate parameters besides distance and facility conges-

tion, such as human behavior and social networks. For instance, more accurate demand

estimates for public health emergencies may be generated via disease transmission models

that use game theory to account for human decisions, such as that described in [68]. Fur-

thermore, integrating beneficiary decision models with agency models in a comprehensive

framework could significantly advance our understanding and management of humanitarian

supply chain systems.

2.8 Relation to Thesis Objectives

Chapter 2 motivates the work presented in Chapters 3 and 4. A significant gap ex-

ists in the literature regarding the understanding of the role that decentralization plays

in determining outcomes within humanitarian operations. It has been hypothesized that

decentralized decision making may result in degraded supply chain efficiency and service

to beneficiaries. However, there are very few contributions that attempt to quantify this

degradation or suggest techniques for its mitigation. In the next chapter, the author focuses

on decentralized systems of response agencies as they locate facilities to provide last-mile

aid and medical treatment.
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Chapter 3

Dynamic, Robust Location Models to

Quantify the Impact of

Decentralization on Service

Accessibility

The author now consider humanitarian and public health operations in which service

accessibility and equity can be negatively impacted when decisions about service location

and capacity are made in a decentralized way. However, many humanitarian efforts lack a

centralized authority who can coordinate the decisions across agencies. In this component

of the thesis, the author introduces a framework for quantifying the impact of decentraliza-

tion. A scenario-based robust optimization model is introduced that explicitly accounts for

the uncertain, dynamic nature of humanitarian operations. The author demonstrates the

approach using data from a large-scale public health response effort.
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3.1 Introduction

Service accessibility is critically important to the effectiveness of many public health

and humanitarian operations, and equitable access is often a goal in its own right. This

research is motivated by response efforts to public health and humanitarian emergencies in

which individuals choose a facility to visit for treatment or aid. When beneficiaries must

travel to service sites, accessibility is directly impacted by the facilities’ spatial distribution,

their capacity, and the spatial distribution of demand. Thus, given anticipated demand

for services and limited resources, facility location and capacity decisions are paramount to

achieving access and equity.

Location decisions for public health and humanitarian response operations are often

made under conditions that are dynamic, uncertain, and decentralized. Circumstances

change rapidly, and accurate data about supply and demand are difficult to obtain. Fur-

thermore, a lack of coordination among independent agencies regarding facility location

decisions can lead to disparities in service accessibility across geographic space. Yet coordi-

nation between agencies is frequently limited due to time and resource constraints. In this

decision making environment, multiple organizations act to deliver services, but the collec-

tive effort may be less efficient or equitable than what could be achieved with coordination.

This work makes two contributions. First, the author describes a centralized benchmark

model that determines facility locations and capacities to optimize service accessibility and

ensure equity. The scenario-based robust optimization model explicitly accounts for the

uncertainty of operations, and it is embedded in a rolling horizon framework to capture the

dynamics over time. Second, the method’s usefulness is demonstrate in chapter 4 using data

from an actual large-scale public health response, namely, the international effort to stem

the cholera epidemic in Haiti. The author finds that the robust solution produced by the

method provides improved treatment accessibility without requiring more resources.
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3.2 Background

The contributions of this research are situated in the context of literature describing facil-

ity location models with one or more of the following components: measurements of access,

efficient and equitable allocations, dynamic decision making, and parameter uncertainty.

Facility location is a well-studied discipline with applications in supply chain management

[69, 70, 71] and humanitarian response [72, 73, 74, 75, 76]. A comprehensive review of

diverse objectives and applications for facility location problems can be found in [77].

Service accessibility is an important, multi-dimensional performance indicator in the

public health sector. Potential access, or the opportunity to receive service, is distinguished

from realized access, which measures whether or not an individual actually receives service

[78]. Spatial accessibility measures the impact of geographic factors on access while aspatial

access depends on characteristics including income, gender, and age [79, 80].

This research focuses on potential spatial accessibility to public health services and hu-

manitarian aid. Measures of potential spatial accessibility in the literature include dimen-

sions of proximity [70, 74], availability [81], or a combination [78, 82, 83, 84, 85]. Proximity

refers to the cost of accessing a facility, which can be measured in terms of distance or

transportation expense. Availability refers to the capacity for facilities to provide service.

Availability has been measured by supply-to-demand ratios [82, 86], the time required to

receive service [87, 88], or the congestion an individual experiences [89].

The optimization models presented in this research incorporate a measure of potential

spatial accessibility based on the floating catchment area method. The method draws a circle

around each population to identify service capacities within a reachable distance. Access

is calculated based upon the supply and demand that lie within each circle. The floating

catchment area method measures access as a function of both proximity and availability.

Variations of the floating catchment area method have been applied with great success

to measure accessibility of employment [90, 91], health care [82, 86, 92, 93, 94, 95, 96]

and public transit services [97]. A significant benefit of this approach is that it does not
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assign beneficiaries to facilities, nor does it simply assume they will visit the nearest one.

Instead, the technique measures access to a region through a weighted capacity-to-demand

ratio. The enhanced two-step floating catchment area method (E2SFCA) [82, 86] adds

catchments around each facility to capture interaction from nearby facilities and includes a

distance decay function to reflect beneficiaries’ decreasing ability to travel within catchments

as distance increases.

In addition to the importance of accessibility, public health and humanitarian decision

makers are often concerned with finding solutions that use resources efficiently. An effi-

cient solution is one that accomplishes as much as possible with limited resources, often

represented by an output-to-input ratio [84, 98, 99]. Measurements of efficiency include

minimizing the average distance traveled per person, or maximizing the amount of aid that

can be distributed per dollar spent. These measurements do not consider inconsistencies

in service from one individual or region to another, but rather examine the performance

cumulatively.

Equity refers to the absence of disparities in service between groups of people [100].

Equity is often a goal in its own right, especially in public health and humanitarian applica-

tions, even when it may conflict with efficiency. Equity is a social construct, the definition

of which varies [81, 84, 85, 100, 101, 102] depending on the application and what is consid-

ered “fair” or “socially just”. Marsh and Schilling [103] summarize twenty different equity

measurements. This research examines equity in terms of the variability of access across

geographical regions, seeking solutions in which everyone can receive service.

In many public health and humanitarian settings, decisions are made in dynamic en-

vironments where information is subject to change. To integrate this reality, the model

uses a rolling horizon to compute and periodically update decisions. The rolling horizon is

a valuable modeling technique for dynamic systems that incorporate new information re-

vealed over time [104, 105, 106]. For example, in the first period t0 of each planning horizon,

the decision maker uses updated data to form a “plan”, which is a schedule for initializing,
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Figure 3.1: A sample planning horizon.

continuing, and terminating operations over the planning horizon. The planning horizon is

defined as the set of time periods from t0 through t0 + τ for horizon length τ . In the next

period, the process is repeated so that a new plan is formed for each of T total periods.

Figure 3.1 illustrates this concept.

Parameter uncertainty is common when locating facilities in both the commercial [107,

108] and humanitarian [76, 88, 109] sectors. The literature in this area can be categorized

along three primary dimensions: the characterization of uncertainty, whether or not prob-

ability distributions are used, and whether the system is assumed to be static or dynamic.

The uncertainty of a parameter may be represented by a set of scenarios [76, 110, 111] or

may belong to a range of continuous values [69, 112, 113]. Stochastic models use probabil-

ity distributions to describe the uncertain data [114, 115]. Models that do not make use

of probability information are called robust and are implemented in cases where historical

or forecasted data are unavailable. Robust models generate solutions intended to perform

well upon any realization of the uncertainty [107]. Dynamic models allow for changes to

uncertain parameters as new information is revealed over time, while static models do not

[88, 112].

The majority of public health and humanitarian operations are carried out in highly

decentralized environments. Coordination among agencies including government and non-

governmental organizations (NGOs), private sector companies, and individuals may be lim-

ited due to urgency, damaged infrastructure, incompatible objectives, different languages,

and varying units of measurement [9]. Duplication, inefficiency, and missed opportunities
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can result in poorer outcomes than what could have been achieved with coordination and

collaboration [1, 2].

The author addresses an important gap in the operations research literature with respect

to public health and humanitarian operations. To fill the gap, this research introduces a

framework to quantify the impact of decentralized facility location decisions on potential

spatial accessibility and on equity. In doing so, the author explicitly addresses the need for

robustness under uncertainty and dynamic decision capabilities.

3.3 Problem Specification and Methods

In this section, the author describes the motivating context for this research and intro-

duces a methodology that explicitly addresses the challenges of decentralization, uncertainty,

and dynamism inherent in this context.

3.3.1 Motivating Context

This research is motivated by public health and humanitarian response efforts in which

multiple organizations make decisions about where, when, and at what capacity to open

service facilities. While each agency aims to have the greatest impact with its own resources,

these decentralized decisions may cause geographic disparities in service accessibility. This

in turn may negatively impact beneficiary outcomes.

The aim of this work is to quantify the impact of decentralization by constructing a

centralized benchmark. The benchmark, a facility location model representing the deci-

sion making process of a hypothetical centralized planner, maximizes beneficiary access as

measured with the E2SFCA method using scenario-based robust optimization.
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Figure 3.2: Three catchment zones capturing demand around facility j, where population
location i = 1 is in catchment zone 1, i = 2 and i = 4 are in catchment zone 2, and i = 3
is in zone 3.

3.3.2 Access Metric

Consider a set of population locations N =∈ {1, 2, ..., n} indexed by i, where the demand

of location i at time t is given by Dt
i . A set of facilities F t is available to provide service

during time period t. Facilities are denoted by j and distinguished by type, where the type

K = {1, 2, ..., |K|} determines the facility capacity.

Access for population i is measured using the E2SFCA method, which draws a catch-

ment around each population and each facility. A catchment is the maximum distance an

individual is able to travel to receive treatment and is divided into catchment zones z ∈ Z.

If population i is within zone z of facility j, the binary parameter Iizj equals 1, otherwise

it is 0. By symmetry, if population i is within zone z of facility j, then facility j is within

zone z of population i. Figure 3.2 illustrates the concept of catchment zones for one facility,

four population locations, and three catchment zones.

Uncertainty is represented by a set of scenarios. These scenarios represent the possible

realizations of two uncertain parameters. The first is the capacity of a facility, which is

given by Ct
jks for facility j of type k at time t under scenario s ∈ S. The second parameter

is a beneficiary’s ability to travel within the surrounding catchment. The parameter wsz is

the ability-to-travel weight for catchment zone z in scenario s. In the public health and

humanitarian sectors, facility capacities and beneficiaries’ ability to travel are difficult to
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predict, yet remain critical factors in determining the performance of a response. Therefore,

it is important to seek robust solutions that perform well no matter what realization is

observed.

The first step of the E2SFCA is to compute a weighted capacity-to-demand ratio for

each facility j. This ratio includes the capacity parameter Ct
jks in the numerator while

the denominator captures the demand within the catchment zones surrounding facility j,

weighting each by wsz to represent beneficiaries that could feasibly travel to j. Mathemat-

ically, the capacity-to-demand ratio Rt
jks for facility j of type k at time t in scenario s is

given by the following equation:

Rt
jks =

Ct
jks∑

i∈N

∑
z∈Z

IizjDt
iw

s
z

.

In the second step of the E2SFCA, access for each population location i is calculated by

summing the capacity-to-demand ratios of the facilities lying within the catchment zones

surrounding i. If a facility j lies within catchment zone z of population i, its capacity-to-

demand ratio is also weighted by wsz. Mathematically, the access of population i calculated

during the planning horizon that begins in t0 for a period t ∈ {t0, t0 + 1, ..., t0 + τ} under

scenario s is

At0,tis =
∑
j∈F t

∑
k∈K

∑
z∈Z

Rt
jksIizjw

s
zx

t
jks,

where xtjks is a decision variable that equals 1 if facility j is open as type k in period t in

the centralized strategy for scenario s, 0 otherwise.
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3.3.3 Model Formulation

The method consists of two sub-problems, called phases, that are solved repeatedly in a

rolling horizon framework. In the first period t0 of a given planning horizon that includes

periods t0, ..., t0 + τ , the phase 1 integer programming model generates a set of facility

location decisions X t
s for each scenario s ∈ S and time period t ∈ {t0, ..., t0 + τ}. Each

scenario-optimized solution is an input to the phase 2 integer programming model that

generates a robust set of facility location decisions X t
RO for the same planning horizon.

Based on the robust solution, the decisions for t0 are executed and those for each t in

the periods t0 + 1 through t0 + τ are stored as plans for the future. The entire process

is repeated in the next period, taking into account prior plans and new information that

becomes available.

The objective in phase 1 focuses solely on efficiency, seeking solutions that ensure popu-

lations with the greatest need receive the greatest attention, while simultaneously avoiding

the over-allocation of resources where they will go unused. The objective function in phase 1

accomplishes this by maximizing the cumulative demand-weighted access over the planning

horizon. The cumulative demand-weighted access is calculated by the sum over populations

of each population location’s access score multiplied by its demand. In this way, access for

a section with 100 units of demand is given 100 times more emphasis than a population

location with one unit of demand.

Phase 2 computes the robust solution based upon an objective function that balances

components of efficiency and equity. The first component minimizes the maximum regret

ζt in demand-weighted access over all scenarios. Maximum regret ζt for time period t is

measured as the largest cumulative difference in demand-weighted access between a solution

in X t
s and X t

RO for all scenarios s ∈ S. To address equity, the second component of the

robust objective function maximizes the number of populations that receive sufficient access

in every scenario. Access is deemed sufficient if it is greater than or equal to a threshold φ,

which is a pre-determined capacity-to-demand ratio (weighted by the ability to travel) that
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allows an average beneficiary to receive adequate service. The binary decision variable vti

equals 1 if population i has sufficient access in period t no matter what scenario is realized,

0 otherwise.

The centralized decision maker faces several restrictions, which are treated identically

in phases one and two. First, the number of facilities opened of type k must be less than

or equal to U t
k, the number of facilities of type k that were available in the decentralized

response at time t. Furthermore, the cumulative bed capacity of the facilities opened must

be less than or equal to Bt, the total bed capacity available in period t of the decentralized

response.

Upon receiving new information regarding candidate locations, capacity, and demand in

each planning period t0, the centralized decision maker may wish to modify the plan that

was formed in t0 − 1. However, the resources and communication required to execute a

completely new plan are impractical. For this reason, the centralized benchmark limits the

number of adjustments between plans from one period to the next by a percentage δ of the

number of facilities available.

Opening and closing facilities requires substantial effort. Therefore, a facility should only

be opened if it can remain operational for a significant amount of time. The centralized

benchmark addresses this consideration by setting a minimum facility life threshold m. If

the decision is made to open a facility, it must remain open for at least m consecutive

periods.

The parameters and decision variables used in the phase 1 and phase 2 models are sum-

marized below.
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Parameters

Dt
i = demand of population i in period t

Ct
jks = bed capacity of facility j if it is type k for period t

under scenario s

Ct
jk = bed capacity of facility j if it is type k in period t of decentralized response

Bt = total bed capacity in period t of decentralized response

Rt
jks = weighted bed capacity-to-demand ratio for facility j in period t

under scenario s

Iizj = 1 if facility j is within zone z of population i, 0 if not

U t
k = number of facilities of type k in decentralized response period t

M t = total facilities in decentralized response in period t,
∑
k∈K

U t
k

P t
js = 1 if facility j is expected to be open in period t in last period’s plan

under scenario s, 0 if not

P t
j,RO = 1 if facility j is expected to be open in period t in last period’s plan

in the robust solution

H t
jks = 1 if facility j was open as type k in period t under scenario s, 0 if not

H t
jk,RO = 1 if facility j was open as type k in period t in the robust solution, 0 if not

htjks = 1 if facility j has been opened as type k before t under scenario s, 0 if not

htjk,RO = 1 if facility j has been opened as type k before t in the robust solution, 0 if not

γt = phase 2 objective function weight on equity in period t

m = minimum allowable facility life (periods)

δ = plan flexibility percentage
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f tj = max{0, t− (τ + t0) + (m− 1)}, relaxation for facilities to be open beyond τ

t0 = current time period, start of planning horizon

φ = sufficient access threshold

τ = length of planning horizon

T = last time period for facility decisions
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Decision Variables

At0,tis = accessibility measure of population i at time t0 for period t

under scenario s

Atis,RO = accessibility measure in the robust solution of population i in period t

under scenario s

ζt = maximum regret for period t in the robust solution

vti = 1 if population i has sufficient access over all scenarios in period t

in the robust solution, 0 if not

xtjks = 1 if facility j is type k and is open in period t under scenario s, 0 if not

xtjk,RO = 1 if facility j is open in period t in the robust solution, 0 if not

y+tjs = 1 if facility j is closed when planned to be open in period t

under scenario s, 0 if not

y+tj,RO = 1 if facility j is closed when planned to be open in period t

in the robust solution, 0 if not

y−tjs = 1 if facility j is open when planned to be closed in period t

under scenario s, 0 if not

y−tj,RO = 1 if facility j is open when planned to be closed in period t

in the robust solution, 0 if not

ztjks = 1 if t is the period in which facility j was first opened as type k

under scenario s, 0 if not

ztjk,RO = 1 if t is the period in which facility j was first opened as type k

in the robust solution, 0 if not
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Phase 1

Maximize

t0+τ∑
t=t0

∑
i∈N

Dt
iA

t0,t
is (3.1)

subject to∑
k∈K

∑
j∈F t

∑
z∈Z

Rt
jsIizjw

s
zx

t
jks = At0,tis ∀i ∈ N, t ∈ {t0, ..., t0 + τ} (3.2)

∑
j∈F t

xtjks ≤ U t
k ∀k ∈ K, t ∈ {t0, ..., t0 + τ} (3.3)

∑
k∈K

∑
j∈F t

Ct
jksx

t
jks ≤ Bt ∀t ∈ {t0, ..., t0 + τ} (3.4)

∑
k∈K

xtjks ≤ 1 ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.5)

P t
js −

∑
k∈K

xtjks ≤ y+tjs ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.6)

∑
k∈K

xtjks − P t
js ≤ y−tjs ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.7)

y+tjs + y−tjs ≤ 1 ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.8)∑
j∈F t

(y+tjs + y−tjs ) ≤ δM t ∀t ∈ {t0, ..., t0 + τ} (3.9)

xtjks − xt−1jks ≤ ztjks ∀j ∈ F t, k ∈ K, t ∈ {t0 + 1, ..., t0 + τ} (3.10)

xt0jks −H
t0−1
jks ≤ zt0jks ∀j ∈ F

t0 , k ∈ K (3.11)

t0+τ∑
t=t0

ztjks + ht0jks ≤ 1 ∀j ∈ F t, k ∈ K (3.12)

t0−1∑
l=0

H l
jks +

t0+τ∑
t=t0

(xtjks + ztjksf
t) ≥ m(

t0+τ∑
t=t0

ztjks + ht0jks) ∀j ∈ F t, k ∈ K (3.13)

xtjks, z
t
jks ∈ {0, 1} ∀j ∈ F t, k ∈ K, t ∈ {t0, ..., t0 + τ} (3.14)

y+tjs , y
−t
js ∈ {0, 1} ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.15)
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Phase 2

Minimize

t0+τ∑
t=t0

(
ζt − γt

∑
i∈N

vti

)
(3.16)

subject to∑
k∈K

∑
j∈F t

∑
z∈Z

Rt
jksIizjw

s
zx

t
jk,RO = Atis,RO ∀i ∈ N, s ∈ S, t ∈ {t0, ..., t0 + τ} (3.17)

∑
i∈N

Dt
i(A

t0,t
is − Atis,RO) ≤ ζt ∀s ∈ S, t ∈ {t0, ..., t0 + τ} (3.18)

φvti ≤ Atis,RO ∀i ∈ N, s ∈ S, t ∈ {t0, ..., t0 + τ} (3.19)∑
j∈F t

xtjk,RO ≤ U t
k ∀k ∈ K, t ∈ {t0, ..., t0 + τ} (3.20)

∑
k∈K

∑
j∈F t

Ct
jkx

t
jk,RO ≤ Bt ∀t ∈ {t0, ..., t0 + τ} (3.21)

∑
k∈K

xtjk,RO ≤ 1 ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.22)

P t
js −

∑
k∈K

xtjk,RO ≤ y+tjp,RO ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.23)

∑
k∈K

xtjk,RO − P t
j,RO ≤ y−tj,RO ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.24)

y+tj,RO + y−tj,RO ≤ 1 ∀j ∈ F t, t ∈ {t0, ..., t0 + τ} (3.25)∑
j∈F t

(y+tj,RO + y−tj,RO) ≤ δM t ∀t ∈ {t0, ..., t0 + τ} (3.26)

xtjk,RO − xt−1jk,RO ≤ ztjk,RO∀j ∈ F t, k ∈ K, t ∈ {t0 + 1, ..., t0 + τ} (3.27)

xt0jk,RO −H
t0−1
jk,RO ≤ zt0jk,RO ∀j ∈ F t0 , k ∈ K (3.28)

t0+τ∑
t=t0

ztjk,RO + ht0jk,RO ≤ 1 ∀j ∈ F t, k ∈ K (3.29)

t0−1∑
l=0

H l
jk,RO +

t0+τ∑
t=t0

(xtjk,RO + ztjk,ROf
t
j ) ≥ m(

t0+τ∑
t=t0

ztjk,RO + htjk,RO) ∀j ∈ F t, k ∈ K (3.30)
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xtjk,RO, z
t
jk,RO ∈ {0, 1} ∀j ∈ F t, k ∈ K, t ∈ {t0, ..., t0 + τ} (3.31)

y+tj,RO, y
−t
j,RO ∈ {0, 1} ∀j ∈ F

t, t ∈ {t0, ..., t0 + τ} (3.32)

The objective function in phase 1 maximizes the cumulative demand-weighted access

over the planning horizon. Constraint set (2) defines the projected access At0,ti,s of popu-

lation i in scenario s in time period t0 for planning period t. For each facility type k,

constraint set (3) prevents the total number of opened facilities from exceeding the number

opened in a decentralized response. Constraint set (4) ensures that the total bed capacity

of the centralized solution is no more than the bed capacity of the decentralized response.

Constraint set (5) enforces the requirement that at most one type of facility may be open

at a location in a given time period.

Constraint sets (6) through (9) relate the facility location decisions in the current plan-

ning horizon to the plans made in previous periods. Based on these relationships, constraint

set (9) prevents decisions made in this period from deviating from prior plans by δ percent

of the total facilities available. Constraints (10) through (13) ensure that a facility of type k

may only be opened once in each potential location and that if it is opened, it must remain

opened for at least m consecutive periods. Upon implementation, constraint set (11) is only

applied when the planning period t0 > 1 (once a plan has been established). Constraint

sets (14) and (15) present the binary decision variables.

Each time the model generates a plan, the values of P t
js, H

t
jks, and htjks are updated

outside the model for all j ∈ F t, k ∈ K, s ∈ S and t ∈ {t0, ..., t0 + τ}. The value f tj is also

calculated outside the model and is used to satisfy constraint set (13) when a facility must

stay open beyond the planning horizon to satisfy the constraint on m consecutive periods.

(Please see the appendix for an example illustrating the use of this parameter.)

The objective function in phase 2 has two components. First, the objective function

minimizes the maximum regret ζt over all scenario realizations. Second, the objective func-

tion maximizes the number of regions who receive access that is greater than or equal to
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a sufficiency threshold for every scenario. Constraint set (17) measures access Atis,RO for

population i in the robust solution at time t under each scenario s. Maximum regret is de-

fined in constraint set (18). For each scenario, the maximum regret is no less than the sum

over population locations of the demand-weighted difference in access between the scenario-

optimized solutions and the robust solution. Constraint set (19) allows the decision variable

vti to equal 1 only when sufficient access is given to population i at time t in the robust

solution under every scenario. Constraint sets (20) and (21) ensure that the robust solution

will not utilize more resources than were available in the decentralized response. Constraint

set (22) limits a facility to one type. Constraint sets (23) through (30) govern the dynamic

framework identically to constraints (6) through (13) in phase 1. The final two constraint

sets establish the binary decision variables as they did in phase 1.

3.4 Computational Study

This section describes the results of a computational study using data from the response

to a cholera outbreak in Haiti. Applying the methods presented in chapter 3.3, the author

compares treatment accessibility in the actual decentralized response with a hypothetical,

centrally-coordinated effort.

3.4.1 Context for Study

On January 12th, 2010, an earthquake rocked the small Caribbean country of Haiti.

The earthquake is estimated to have caused 200,000 deaths and displaced 2.3 million people

[116]. In the aftermath, cholera was introduced and, due to poor sanitation and damaged

infrastructure, quickly spread throughout the country. Cholera is an intestinal infection

caused by the bacterium, Vibrio cholerae. It can lead to diarrhea and vomiting to the

point of extreme dehydration. Victims are treated with hydration salts or intravenous fluid

replacement, but severe cases can cause death in just a few hours [117]. In response to the
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outbreak, more than 110 NGOs opened hundreds of facilities to treat infected persons [118].

No single agency coordinated location decisions, leaving each organization responsible for

positioning its own facilities.

The first cases of cholera were reported in October 2010 and by December, 3,990 people

had perished. As of October 2013, there had been over 645,000 reported cases, causing

more than 8,000 deaths [119]. The study focuses on the time frame between November 2010

and May 2011, during which 261,093 patients were treated in cholera treatment centers

(CTCs) and smaller cholera treatment units (CTUs) [120]. A CTC contains between 30

and 500 beds and is staffed by trained physicians who are able to treat mild to severe cases.

CTUs contain 20 to 30 beds operated by two or three nurses who are able to treat mild

and moderate cases only [121]. In this study it is assumed that both types of facilities may

operate 24 hours per day.

Haiti is divided into 570 geographically-defined sections, where a section is the fourth

level of government following department, arrondissement, and commune. Demand esti-

mates were obtained from the Ministry of Public Health and Population [122], the Haitian

Institute of Statistics and Information [123], and the Centers for Disease Control and Pre-

vention [120]. Data regarding facility locations and their capacities were obtained from the

Pan American Health Organization (PAHO) [121]. Facility capacity is measured by the

number of physical beds that can be simultaneously occupied at a given time.

During the response, resources were most abundant in the first two months, which en-

abled the largest number of facilities to be opened during this time. January brought a

decline in resources that continued for the remainder of the study period. Figure 3.3 illus-

trates the number of CTCs and CTUs that were open in each month of the decentralized

response. While the number of cholera cases actually decreased from November through

January, it rose in February, peaked in March, and remained high in April. Figure 3.4

illustrates the number of patients seeking treatment and the total bed capacity that was

available during each month.
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Figure 3.3: CTCs and CTUs available in decentralized response, Nov. 2010–May 2011.

Figure 3.4: Total demand and bed capacity for each month, Nov. 2010–May 2011.
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This study approximates the location of each population by the geographic centroid of

its corresponding section, where boundaries are obtained from [121]. The distance between

each population and each potential facility location is measured in kilometers (km). A 15km

catchment around each population is divided into three concentric catchment zones with

5km, 10km, and 15km radii, respectively. A 15km catchment is chosen because cholera can

be deadly if not treated within a few hours, and 5km is the average distance traveled in one

hour of walking [121]. It is expected that the majority of beneficiaries will travel to facilities

on foot because few people in Haiti own cars and the transportation infrastructure is weak

[124].

Potential facility locations for the robust solution are created in two ways. First, the

facilities that were opened during the actual decentralized response may be opened at their

recorded locations. The second set of potential facility locations were created by constructing

a 15km x 15km grid across Haiti where facilities may be opened at intersections of grid lines.

Figure 3.5 plots each of these potential facilities. If a facility from the decentralized response

is opened in the robust solution, its type and bed capacity are taken from the PAHO data. If

the location belongs to the 15km grid, it can be either type and its bed capacity corresponds

to the average bed capacity for the respective types, 80 beds for a CTC and 30 beds for

a CTU. The grid creates an additional 126 locations, which corresponds to 252 potential

facilities since each location may be opened as a CTC or CTU. In total, there are 700

potential facility locations that may be opened.

3.4.2 Study Design

The author first computes dynamic, robust facility locations in Haiti using base case pa-

rameter values. Scenarios for the study capture uncertainty in facility capacity and benefi-

ciary ability to travel. The author compares efficiency, equity, and robustness measurements

between the decentralized response and the robust solution. Finally, sensitivity analysis is

conducted to understand how robust decision making responds to changes in the parame-
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Figure 3.5: Section boundaries and potential facility locations.

ters that control plan flexibility, minimum facility life, and the emphasis placed on providing

sufficient access to all sections.

The parameter values for the base case are as follows. The study uses a planning horizon

length of τ = 3 to balance forward-looking strategy with over-reliance on less accurate long-

term forecasts. To promote plan stability, a limit is placed on the number of changes between

the previous period’s plan and the current plan to at most 35 percent of the total facilities

available (parameter δ). The minimum facility life, m, is three consecutive months. Lastly,

the phase 2 objective function coefficient balances sufficient access with maximum regret

through the parameter γ, which is set at 20. The access threshold, φ, is 0.02. (See the

appendix for an example that illustrates the meaning of this access value more concretely.)

The uncertainty set for the robust optimization is constructed using low, medium, and

high levels for both capacity and ability to travel, resulting in a total of nine scenarios. Let

Ĉt
jk be the capacity that was reported in the decentralized response for facility j of type
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k at time t. For low-capacity scenarios, Ct
jks = b0.7Ĉt

jkc; for medium-capacity scenarios,

Ct
jks = Ĉt

jk; and for high-capacity scenarios, Ct
jks = b1.3Ĉt

jkc.

Ability-to-travel values correspond to the exponential decay function wsz = e
−(z−1)
βs for

catchment zone z ∈ Z similar to [96]. Low, medium, and high ability-to-travel realizations

are generated using βs values of 0.7, 1, and 1.4, respectively. The resulting ability-to-travel

weights (ws1, w
s
2, w

s
3) for the three catchment zones are (1 0.239 0.057) for scenarios in

which ability to travel is low, (1 0.368 0.135) when ability to travel is medium, and

(1 0.489 0.239) when ability to travel is high. For the remainder of the chapter, the

author refers to the scenario with low ability to travel and low facility capacities as the most

unfavorable scenario realization.

Using these parameters, the methodology described in chapter 3.3 is implemented using

ILOG OPL on a DELLXPS, running a 3.4 GHZ core i-7 processor with 8 GB of RAM.

CPLEX reports ticks as a measure of computational effort that is more accurate than

computation time. Optimizing all of the scenarios for the entire study period in phase 1

requires approximately 7,809 ticks (7 minutes) to complete. Generating the robust solutions

for all time periods in phase 2 requires approximately 89,456.5 ticks (9 minutes, 30 seconds).

3.4.3 The Decentralized Response and the Robust Solution

This section presents efficiency, equity, and robustness results for the computational

study. The decentralized response is defined as the set of facility locations and corresponding

capacities that were available during the actual response in Haiti. The author refers to the

solution generated using the methods described in chapter 3.3 as the robust solution.

3.4.3.1 Location Decisions

Figures 3.6 and 3.7 display facility locations and access values for each month between

November 2010 and May 2011. Dots denote open facility locations while shading corresponds

to section-level access in the most unfavorable scenario realization, where darker shades
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signify higher access. The left map is from the decentralized response while the middle

displays the robust solution. The map on the right illustrates demand patterns where

darker shades correspond to higher demand.

Facility location decisions between the robust solution and the decentralized response

were very different. In total, 58 percent of the facilities opened in the robust solution come

from the 15km x 15km grid. The most utilized type of facility is a CTU from the grid (45

percent) even though they comprise only 18 percent of the facilities available. CTCs from

the grid represent 13 percent of the opened locations. The decentralized CTU locations are

used for 34 percent of facility locations. Lastly, decentralized CTC locations represent only

7 percent of the opened locations.

Facilities in the decentralized response are most prevalent around densely populated

areas but leave numerous rural areas under-served. Access in the decentralized response is

greatest around Port-au-Prince, the capital and most populous city of Haiti. The robust

solution also clusters facilities in densely populated areas. However, the robust solution

emphasizes sufficient access to rural areas, spreading facilities across all sections. Aside

from Port-au-Prince, the areas that receive the greatest access are in the north, especially

in the beginning of the response.

One way to quantify differences between solutions is to count the number of deviations

in facility location decisions. A deviation is counted if a facility that was open during time

period t in one response is closed during t in the other. Conversely, a deviation is also

counted if a facility that was closed during t in one response is open in the other. Figure

3.8 illustrates the number of deviations between the decentralized response and the robust

solution as well as the number of facilities opened in each month of the robust solution.

The number of deviations is highest in the beginning, reaching over 400 in December and

decreasing later in the response. This pattern closely follows the number of facilities that

were utilized in each month, which is intuitive as the number of deviations that may occur

is directly tied to the number of facilities available.
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(a) November

(b) December

(c) January

(d) February

Figure 3.6: Maps displaying access in the decentralized response (left), access in the robust
solution (center) and demand (right) for November through February; dots indicate open
facilities. Access and demand legends are the same those shown in Figure 3.7.
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(a) March

(b) April

(c) May

Figure 3.7: Maps displaying access in the decentralized response (left), access in the robust
solution (center) and demand (right) for March through May; dots indicate open facilities.
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Figure 3.8: Number of facility location deviations between the decentralized response and
the robust solution by month, and total number of facilities opened in the robust solution.

3.4.3.2 Average Access

The method produces an access score for each of the 570 sections in Haiti for every time

period and scenario. Corresponding demand-weighted access is calculated by multiplying

this score by the section’s demand. Aggregating these section-level measurements allows us

to assess average access nationwide. Average access per section is calculated by summing

the section-level demand-weighted access scores and dividing by the number of sections. In

the decentralized response, average demand-weighted access is best between November and

January in every scenario, reaching peak values in December. Access is lowest in April,

which corresponds to the lowest number of available beds and the month with the second

highest demand. Similar to the decentralized response, access in the robust solution is

best from November through January in every scenario but decreases in the later months.

In every scenario, the robust solution delivers higher demand-weighted access than the

decentralized response in January through May. Interestingly, average demand-weighted

access in the robust solution is actually worse than in the decentralized response in November

and December. This results from the requirement that facilities remain open for at least

three consecutive periods and the sudden capacity shortage in January. Thus, the decisions
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made in November are constrained by the limited resources that are available in January.

To determine the robustness of the decentralized response and the computed solution, the

author examines how average demand-weighted access varies from one scenario to another.

As desired, the robust solution provides similar average demand-weighted access across

ability-to-travel scenarios. This value changes between capacity scenarios proportionally

to the change in capacity due to how access is calculated. Multiplying the capacity of a

facility j by a constant causes a proportional increase in the value Rt
jks. Since access is the

sum of capacity-to-demand ratios and the capacity of each facility is multiplied by the same

constant, the access to each section is modified by the same scaling factor.

The percent improvement in access is calculated by dividing the difference in average

demand-weighted access between the robust and decentralized solutions by the average

demand-weighted access in the decentralized response. Using this metric, the robust solution

outperforms the decentralized response from January through May in all scenarios. Figure

3.9 illustrates the percent improvement of the robust solution over the decentralized response

in the most unfavorable scenario realization.

Figure 3.9: Percent improvement in average demand-weighted access of the robust solution
over the decentralized response in the most unfavorable scenario realization.

The histogram in Figure 3.10 illustrates the distribution of average access over time for

both the decentralized response and the robust solution in the most unfavorable scenario
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realization. The X-axis label corresponds to the upper endpoint of access scores for each

bin, and the height of the column corresponds to the number of sections with access scores

in that bin. There are 64 sections whose average access in the decentralized response is

insufficient, or less than 0.02; 17 of these receive no access at all. In both solutions, access

for most sections lies between 0.1 and 0.3. However, access in the robust solution skews

slightly farther to the right than in the decentralized response.

Figure 3.10: Histogram of access scores in the decentralized response and the robust solution
in the most unfavorable scenario, where the x-axis label corresponds to the upper endpoint
of access scores for each bin, and the height of the column corresponds to the number of
sections with access scores in that bin.

3.4.3.3 Sufficient Access

Based on the preceding observations, the robust solution outperforms the decentralized

response in terms of efficiency. Equity is also an important component of the robust method-

ology and is approached through the sufficiency requirement for every section. Sufficiency

is highly influenced by both capacity and ability-to-travel scenarios in addition to monthly

capacity and demand fluctuations. Decreasing ability to travel has the greatest impact in

rural areas when optimizing demand-weighted access. It also affects equity in the low ca-

pacity scenario. This should be expected because if facilities have low capacities, people
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may have to travel further to find a facility that is capable of providing service. The ability

to travel has less of an impact in the middle and high capacity scenarios.

In the decentralized response, the number of sections with insufficient access varies sig-

nificantly from month to month and across scenarios. Access sufficiency is best in December

and January but worsens in March and April. Table 3.1 gives the number of sections with

insufficient access in the decentralized response. No matter what scenario or month, there

are always at least 37 sections with insufficient access. In March, under the most unfavorable

scenario realization, there are 141 sections that receive insufficient access, comprising 24.7

percent of all sections. Several sections receive no access at all during certain periods in the

decentralized response, at which time there were no proximal facilities. This means that an

individual in one of these sections had to travel more than 15km for treatment, which may

have been infeasible for many. Figure 3.11 displays sections who received insufficient access

during some period in light shading and sections who received zero access at some point in

dark shading. The sections that are not shaded received sufficient access in all periods.

Table 3.1: Number of sections that received insufficient access in the decentralized response
for each month under each scenario.

Capacity Low Medium High

Ability to Travel Low Medium High Low Medium High Low Medium High

Nov. 92 69 53 72 51 50 65 50 46
Dec. 76 49 44 54 42 40 49 38 37
Jan. 78 57 46 65 46 43 54 43 42

Month Feb. 88 67 61 70 58 51 65 51 48
Mar. 141 121 107 121 102 89 107 89 82
Apr. 128 110 95 113 92 81 99 81 76
May 89 70 66 76 62 57 67 58 55

The robust solution provides sufficient access to many sections that did not receive it

in the decentralized response and provides non-zero access to all sections in all scenarios.

In the most unfavorable scenario realization, only one section receives insufficient access
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(a) (b)

Figure 3.11: Access sufficiency in the decentralized response (a) and robust solution (b);
dark shading indicates sections with zero access and light shading those with insufficient
access in at least one period of the most unfavorable scenario realization. The three sections
that received insufficient access at some point in the robust solution are circled.

in February, three in March, and two in April. The same section receives insufficient ac-

cess from February through April when capacity and ability-to-travel values are low and

in March when capacity is medium but ability to travel is low. In fact, it is impossible to

provide sufficient access to that section in the most unfavorable scenario. In all scenarios,

the number of sections who experience insufficient access reaches a maximum in March.

In the decentralized response, the number of sections with insufficient access is 141 in the

most unfavorable scenario realization. Under the same conditions, only three sections re-

ceive insufficient access in the robust solution. The dramatic decrease is due to the equity

component of the objective function in phase 2, which provides access to sections with lower

demand. This is one of the most significant findings of this study as it demonstrates that

sufficient access was attainable for almost everyone if facilities had been located differently.

Figure 3.11 plots the three sections that receive insufficient access at some point in the

robust solution.

In summary, there are significant differences between the performance of the decentral-
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ized response and the robust solution. The robust solution assigns more facilities to rural

areas and responds to shifts in demand. Even in the most unfavorable scenario realization of

the robust solution, 99.5 percent of Haiti’s 570 sections receive sufficient access throughout

the entire response. When compared with 75.3 percent in the decentralized response, the

results highlight significant opportunity.

3.4.4 Sensitivity Analysis

The robust model explicitly accounts for uncertainty in capacity and ability to travel,

but it is useful to understand the sensitivity of the results to other parameter values. Here

a sensitivity analysis is presented regarding the parameters that control plan flexibility,

minimum facility life, and the emphasis placed on sufficiency, observing changes in facility

location decisions and performance indicators. Table 3.2 illustrates parameter values that

are tested.

Table 3.2: Parameter values for the base case and sensitivity analysis.

Parameter Base case Sensitivity analysis

δ, plan flexibility 0.35 0.25, 0.45

m, minimum facility life 3 1, 2, 4

γ, emphasis placed on equity 20 0, 50

3.4.4.1 Plan Flexibility

The model restricts a plan to be modified by no more than a percentage δ of the total

facilities available in period t. The base case of this study assumes δ = 0.35. The author now

compares the base case with solutions obtained with δ = 0.25 and δ = 0.45 to explore the

importance of plan flexibility. Figure 3.12 plots the number of facility location deviations

in comparison to the base case over time. The number of deviations is small in the first

three months of the response but increases sharply in February and remains high for the
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rest of the response. It appears that the months in which the most plan modifications were

desirable occur toward the end of the response when demand was high and resources were

constrained.

Figure 3.12: Facility location deviations from the base case (δ = 0.35) for experimental
values of plan flexibility.

Plan flexibility does not impact average demand-weighted access in this study. Each

experimental value of δ resulted in similar average demand-weighted access across scenarios

for each time period. Plan flexibility does influence equity of access, however. As would

be expected, equitable access is most difficult to achieve in months with high demand and

low resources, such as March. It makes sense, then, to see a spike in the number of sections

with insufficient access in March. Figure 3.13 illustrates the gradual improvement in access

sufficiency as plan flexibility increases.

3.4.4.2 Minimum Facility Life

The minimum facility life, m, is the smallest number of consecutive time periods that an

operational facility must remain open in the robust solution. In the base case, if a facility

is opened, it must remain open for three consecutive months. Experimenting with robust

solutions generated with m values of 1, 2, and 4 yielded significant results.
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Figure 3.13: The number of sections with insufficient access for experimental values of
plan flexibility.

Figure 3.14 illustrates that deviations in facility location decisions made in the base

case are substantial and remain fairly consistent throughout the response when m is 1 or

2. When m is 4, however, the robust solution is initially very similarly to the base case,

but the number of deviation increases sharply in February and remains high through May.

Altering values of m significantly impacts facility location decisions, because the constraints

that control minimum facility life are highly interactive with those that govern the number

of open facilities.

The impact of facility life on demand-weighted access is summarized in Figure 3.15.

In general, low values of m correspond to high average demand-weighted access scores.

When m = 1, facilities may be located and relocated with great precision as demand shifts

geographically. When m is 1 or 2, the robust solution gives greater demand-weighted access

than the decentralized solution in every month and in every scenario. All of the experimental

values provide better demand-weighted access in January through May. When m = 4, a

substantial degradation in performance is observed in months with low resources as the

robust solution barely outperforms the decentralized response. At the same time, the robust

solutions with m = 1 and m = 2 result in over 25 percent greater average demand-weighted

access than the decentralized response.
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Figure 3.14: Facility location deviations from the base case (m = 3) for experimental values
of minimum facility life.

Figure 3.15: Average demand-weighted access for experimental values of minimum facility
life over time.

Minimum facility life also influences equity, but on a much smaller scale. Since the base

case only provided insufficient access to three sections in the most unfavorable scenario

realization, the relative impact of changes in m is very small. In all cases, March remains

the month in which the most sections receive insufficient access. When m is 1 or 2, only

one section is ever in this category. As Figure 3.16 illustrates, when m = 4 at most six

sections ever receive insufficient access in the most unfavorable scenario realization of the

robust solution. When compared with 141 sections that received insufficient access under
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Figure 3.16: The number of sections with insufficient access for experimental values of
minimum facility life.

the same conditions in the decentralized response, the difference is staggering.

3.4.4.3 Emphasis on Equity

The author finds that the value of γ, which controls the emphasis placed on sufficiency in

the phase 2 objective function, impacts location decisions and equity but has little effect on

average demand-weighted access. The base case results (γ = 20) are compared with those

obtained when γ = 0 and γ = 50, respectively. The former does not consider sufficiency at

all, while the latter places significantly more importance on this attribute.

Facility location decisions deviate from those in the base case for both γ = 0 and γ = 50,

as illustrated in Figure 3.17, especially in the last four months of the study period. The

differences are most pronounced for γ = 0, indicating that when no emphasis is placed on

sufficiency, facility location decisions are very distinct in months with limited resources.

Changing the value of γ has very little impact on average demand-weighted access. For

instance, in the base case when γ = 20, the average-demand weighted access is 11.44 in

April. This value improves to 11.46 when γ = 0 but decreases to 11.34 when γ = 50.

However, a far greater impact is observed in access equity. When no emphasis is placed
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Figure 3.17: Facility location deviations from the base case (γ = 20) for experimental
values of equity emphasis.

Figure 3.18: The number of sections with insufficient access for experimental values of
equity emphasis. The values for γ = 20 (base case) and γ = 50 are identical, overlapping in
the graph.

on sufficiency, the robust solution results in a greater number of sections with insufficient

access than the decentralized response in April and May. Otherwise, robust solutions for

all γ values outperform the decentralized response in equity for every month. Figure 3.18

illustrates the number of sections with insufficient access in the most unfavorable scenario

realization for each tested value of γ. The author concludes that emphasis on equity is

necessary if individuals in rural areas are to receive reasonable access to treatment.
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3.4.5 Discussion of Results

This computational study leads to several interesting findings. First and foremost, the

robust solution provides better demand-weighted access while simultaneously providing more

sections with sufficient access than the decentralized response. The decentralized response

focused primarily on densely populated areas, leaving some rural areas under-served. The

robust solution takes advantage of grid locations to provide adequate service to rural areas

while maintaining clusters of facilities where demand is high.

The ability to travel does not affect average demand-weighted access for the data set

and parameter values that were used. However, increases in demand-weighted access are

proportional to increases in capacity. Both uncertain parameters affect equity as the number

of sections that receive sufficient access varies significantly across scenarios.

Through sensitivity analysis, it is observed that plan flexibility does not impact demand-

weighted access. However, as a disease spreads, deviations from previous plans will be

required to provide adequate access to everyone.

Changing the minimum facility life has a great impact on demand-weighted access. The

base case provides worse demand-weighted access than the decentralized response in Novem-

ber and December. Yet when m is 1 or 2, the robust solution outperforms the decentralized

response in every month and in every scenario by taking full advantage of resources available

in the early months of the response.

Finally, this study illustrates that an emphasis on equity is vital if people in rural areas

are to be given sufficient access. When the centralized benchmark did not consider equity,

the resulting solution gave sufficient access to fewer sections than the decentralized response.

Thus, optimizing only metrics of efficiency such as demand-weighted access are inadequate,

and may result in inequities in potential spatial accessibility across regions.
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3.5 Conclusion and Future Research

The author presents a methodology to quantify the impact of decentralization and im-

prove accessibility in the public health and humanitarian sectors. This approach provides

advances over existing models by explicitly incorporating the inherent uncertainty and dy-

namism that are prevalent in this sector. It produces solutions that are robust and that

ensure equitable access under a range of potential scenario realizations. The method also

facilitates a comparison between a hypothetical strategy of complete inter-agency coordi-

nation and an actual decentralized response. Such evidence can strengthen the case for

coordination and highlight the need for resources to facilitate coordinated decision making,

given the additional effort and cost that are required. It may be necessary to provide incen-

tives such as public recognition to agencies that agree to locate their facilities is areas that

otherwise may be ignored.

The results of the computational study using data from the Haiti cholera response clearly

identify potential for improvement through more coordinated facility location decisions. The

decentralized response in Haiti provided much-needed care for cholera patients. However,

this analysis suggests that several sections in Haiti experienced limited access to treatment

resources, which may have led to poorer outcomes. The robust solution outperformed the

decentralized response in both efficiency and equity, while using the same resources.

This research provides a foundation for future research, both in terms of the model-

ing and in terms of addressing barriers to practical implementation. Exploring alternative

objective functions or introducing additional scenarios in the robust optimization could pro-

vide additional insights into the tradeoffs inherent between efficiency and equity. Research

is also needed to explore the types of coordination mechanisms or decision support tools

that would make it possible to achieve coordination in practice.
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3.6 Connection to the Thesis

This chapter presents models that enable the quantification of performance degradation

attributed to decentralization. When the models are applied to an actual response, a sub-

stantial gap is observed between the service provided in reality and that which might have

been provided through coordinative efforts. The author turns to systems of beneficiaries

in Chapter 4 and applies game theory to predict behavior, prove bounds on the cost of

outcomes, and present mechanisms that encourage individuals to act in a centrally optimal

manner.
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Chapter 4

Equilibria, Performance Bounds, and

Coordination Mechanisms in

Decentralized Systems of Beneficiaries

Now that the impact of decentralization has been analyzed for systems of response

agencies, the author turns to systems of beneficiaries seeking treatment.

4.1 Introduction

Beneficiaries often make independent decisions about where to receive service, which

ultimately determine the spatial distribution of demand. As there often does not exist

a central authority empowered to direct beneficiaries to facilities, the decentralization of

beneficiaries can lead to poor outcomes. Centralized models that do not consider decisions

made at the individual level cannot foresee this inefficiency. This research models beneficiary

decisions using a congestion game that incorporates realistic individual preferences through

novel player utility functions.

The author focuses on two factors that are important to the decision making process:
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the distance that must be traveled and the congestion experienced at a facility. The analysis

is framed within a congestion game, which consists of a set of players and a set of facilities.

Each player simultaneously chooses a facility to optimize the utility he receives from his

choice, where utility is a function of distance to the facility and congestion, or the total

number of players that choose that facility.

Two types of player utility functions are described in this thesis. Both include distance,

congestion, and a multiplier applied to congestion to model the relative importance of the

two components. This multiplier is called a congestion weight. In the first type of utility

function, the congestion weight is a player and facility-specific constant, allowing each player

to emphasize congestion differently at each facility. In a public health context, beneficiaries

may prefer service at one facility over another due to familiarity with an area, perceived

quality, or a preferred service provider. For the second type of utility function, the congestion

weight is a player-specific constant. This utility function applies individual feelings about

congestion identically to all facilities. This type of utility function is appropriate if service

is perceived to be the same at every facility.

Integral to the analysis of congestion games is the concept of Nash equilibrium [16]. A

Nash equilibrium (NE) is an outcome of a game in which no player can improve his payoff

by unilaterally altering his choice of strategy. In other words, no player would deviate from

his decision upon observing the other players’ choices. As equilibria represent the outcomes

of self-interested decisions, they most closely reflect what will be observed in reality. Thus,

the ability to identify equilibria in advance may be extremely valuable to demand forecasts

and resource allocation.

It is important to understand the impact that individual preferences have on the per-

formance of decentralized systems. To address this, the author proves bounds on the cost

of outcomes in terms of the least and most costly equilibrium solutions from a global per-

spective. It is shown that individual preferences may result in extremely costly outcomes.

Thus, the author introduces coordination mechanisms that modify player utility functions
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to drive self-interested decisions toward what is best for the system as a whole. Mathe-

matically, this is accomplished by identifying the appropriate congestion weights that make

a centralized optimum also an equilibrium. In practice, if agencies can alter beneficiaries’

utility functions through incentives such transportation assistance, or by sharing informa-

tion concerning congestion via posted signs or updates on social media, they may not only

forecast the spatial distribution of demand, but also shape it toward what will optimize

system performance.

In chapter 4.2, a review of literature on congestion games is presented and an important

gap is identified. The classes of congestion games utilized in this work are defined mathemat-

ically in chapter 4.3. In chapter 4.4, the author focuses on the congestion game where each

player weighs congestion independently for each facility. Additional results are presented

in chapter 4.5 for the special case in which each player applies a player-specific conges-

tion weight to all facilities identically. In chapter 4.6, an optimization model is introduced

to identify coordination mechanisms in practice. The value of the model is demonstrated

through a computational study using data obtained from a recent cholera epidemic. Finally,

a discussion of the implications of results is presented in chapter 4.7 along with conclusions.

4.2 Background

This research begins by examining the literature concerning congestion game models.

Contributions focus primarily on the existence of and complexity of computing Nash equi-

librium solutions, comparing the quality of an equilibrium to a centralized optimum, and

methods for closing the gap between decentralized and centralized behavior. This research

makes theoretical contributions on all three fronts with specific application to humanitarian

operations.

A congestion game consists of a set of players and a set of resources (facilities). Each

player chooses facilities to minimize his utility function, where the utility derived is non-
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decreasing in the total number of players that choose a certain facility.

Classes of congestion games differ from one another on many dimensions. In general con-

gestion games, players may utilize multiple facilities [125, 126, 127], but singleton congestion

games require that a player chooses exactly one facility [128]. There also exists a distinction

between weighted and unweighted congestion games. In weighted congestion games, each

player may introduce a different workload to the system [129, 130]. In unweighted conges-

tion games, each player simply has a workload equal to one unit. Some congestion games

are splittable, meaning that a player may divide his workload among different facilities con-

tinuously [131]. In the unsplittable case, the workload must all be assigned to the same

facility.

Atomic games model situations where the decision of each player has a non-negligible

impact on the overall performance of a system, where in non-atomic games, the effect of

a player’s strategy is negligible, and only the cumulative effect of players’ decisions has a

measurable impact on a system [132]. A congestion game may also be classified as either

symmetric or asymmetric. In a symmetric game, all players have the same set of strategies

from which to choose [133]. If the strategies available to each player may differ [134], the

game is said to be asymmetric.

Congestion games are also classified according to the form of players’ utility functions.

Some games incorporate a common, or facility-specific, utility that is applied identically to

every player who chooses a certain facility [133]. For games with player-specific utilities,

the utility derived from the selection of a certain facility is independent for each player and

facility combination [135].

In this work, the author analyzes two classes of unweighted, singleton, atomic congestion

games with player-specific utility functions. In the first, each player may place a different

weight on congestion at each facility. To differentiate the two, the author denotes the

utility functions in the first case as player-facility-specific. In the second game, each player

weighs congestion independently from one another but applies the weight identically to
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every facility.

The complexity of computing NE for congestion games has received much attention

from the research community. A useful technique involves an exact potential function. A

function is an exact potential function if, given two solutions that differ only in the action

of a single player, the change in the function is equal to the change in that player’s utility.

Exact potential functions are important because a local minimum of a potential function

corresponds to an equilibrium [133]. The existence of a potential function also indicates

that a game possesses the finite improvement property (FIP) [136], which implies that given

any solution, any sequence of player moves in which the moving player’s utility improves

leads to an equilibrium in a finite number of steps [1, 137].

Milchtaich shows that an equilibrium solution can be computed in polynomial time when

player-specific utility functions are monotonic in congestion [135], a class that does not admit

an exact potential function in general. Both classes of congestion games presented in this

work are monotonic in congestion and therefore, computing an equilibrium can be done in

polynomial time. However, an alternative proof for one class is presented in chapter 4.5.

The price of stability (PS) and price of anarchy (PA) are measures of a decentralized

system with respect to that same system under centralized control [138]. The PS is the ratio

of the centralized objective function value of the least costly equilibrium to the centralized

objective function value of the centralized optimum. It is a measure of the best possible

outcome in a decentralized setting. Conversely, the PA is the ratio of the centralized ob-

jective function value of the most costly equilibrium to the centralized objective function

value of a centralized optimum, measuring the cost of the worst possible outcome. If these

measures for a certain instance are large, it means that self-interested decisions may result

in poor system performance.

Coordination mechanisms refer to methods for improving equilibrium solutions [139].

Through the application of a coordination mechanism, individuals choose a strategy that

aligns with what is best for the overall system. Applying the concept of coordination
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mechanisms to congestion games, contributions to the literature identify modifications to

players’ utility functions so that an individual is incentivized to make the same decision

that a centralized planner would make for him [1]. For the game considered in this research,

such mechanisms seek to alter the weight a player places on congestion.

The results relevant to this work are illustrated in Figure 4.1. There are three classes

of utility functions in the literature, which the author denotes as A, B, and C. Class A

is the most specific utility function, Class B is more general, and Class C is the most

general. Figure 4.1 displays results with each type of utility function and categorizes games

as weighted or unweighted, and general or singleton.

Class A is a common cost function where all players weigh congestion at a certain facility

identically but that the weight may be different for each facility [134, 140]. For the weighted,

general form, a NE always exists with two players if utility functions are monotonic [140]. For

three or more players, a NE always exists if utility functions are either affine, or exponential

[140]. Unweighted congestion games always possess the FIP and computing an equilibrium

is PLS-complete [134], signifying that all other PLS-complete problems can be reduced

from it. A problem is in PLS (polynomial-time local search) if the following can be done in

polynomial time: an initial solution can be generated, its objective value can be determined,

it can be verified whether the solution is a local optimum, and if not, a neighbor with a

better objective value can be identified [141]. A neighbor is defined as a closely related

instance, often differing in the strategy of a single player. The price of anarchy when utility

functions are of class A is at most 2.5 [142], even when the game is asymmetric [130].

Class B is a more general form of Class A, adding a player-facility-specific constant to the

common cost function. In Class A, this constant is set to zero. In symmetric, unweighted

congestion games with utility functions of Class C, computing an equilibrium for can be done

in polynomial time[1, 143], but for the asymmetric case it is PLS-complete [143, 127, 134]

in general. However, for certain structures in this class, computing an equilibrium solution

can be done in polynomial time [1].
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Bounds on the price of anarchy for games with utility functions of Class B are demon-

strated in terms of the greatest and least congestion weights [1]. It is also shown that the

price of stability for this game is no worse than when a player does not weigh congestion at

all [1]. Lastly, the problem of finding congestion weights that make the centralized optimum

also an equilibrium is framed as an optimization model [1].

Class C is the most general utility structure, replacing the common cost function in Class

B with a player-facility-specific cost function and possibly adding a player-facility-specific

constant. This utility function allows that each player to weigh congestion differently at

each facility. Utility functions of Class C reflect the idea that an individual may apply

personal preferences for one facility over another. Research has been conducted for this

class when utility functions are monotonic in congestion [135], or specifically a multiple of

congestion [131]. The weighted, general form does not possess the FIP [131] except in the

singleton case [135], and when there are only two facilities [137]. The unweighted form

possesses the FIP when utility functions are multiples of congestion [131]. For congestion

games where players’ utilities may be arbitrary values, it is NP -complete to determine

whether a game possesses a NE [125], signifying that there does not exist a polynomial time

algorithm to compute an equilibrium unless P = NP . Finally, Ackerman [125] constructs

a polynomial-time algorithm to compute an equilibrium solution for matroid games.

There exists a major gap in knowledge regarding performance bounds and coordination

mechanisms when utility functions are of Class C as can be observed in the corresponding

sections of Figure 4.1. In this work, the author introduces two classes of unweighted, single-

ton congestion games that apply utility functions of class C, making several contributions.

First, new bounds on the prices of anarchy and stability are demonstrated for both classes

of games. Next, the author investigates coordination mechanisms, characterizing instances

for which there exist congestion weights that, when applied, encourage centrally optimal

behavior. The author also verifies a previous result by presenting an alternate proof on the

complexity of finding an equilibrium solution. Finally, the author constructs and implements
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PLS-Complete [134]
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[127,134]
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[1,127,134]
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coefficient [1]
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for any solution [1]
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FIP in general [135]
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structure possesses 

FIP [130]
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in general [135,137]

C: Every  game has a NE [133] 
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C: Polynomial-time 
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games [125]
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C: NP-Complete to 
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[129]
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congestion [1] but not in 

general [135]

Figure 4.1: Categorization of results concerning congestion games.
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an optimization model that computes congestion weights that make a central optimum also

an equilibrium at minimal cost.

4.3 Model and Definitions

The author models beneficiaries’ facility choices as a symmetric network congestion game

with unweighted, unsplittable flow. Players’ utilities are linear functions of the distance

to a facility and the number of other players at the facility. The relative importance of

these two components is represented by a multiplier applied to the congestion term of the

utility function. In the general case, this weight may depend on both the player and the

facility, giving rise to what is called the Player-Facility-Specific Congestion Weights Problem

(PFSCWP). The author also considers the special case in which the weight depends only

on the player, the Player-Specific Congestion Weights Problem (PSCWP).

Formally, the PFSCWP is defined on a directed graph G = (N ∪ F ∪ t, A). N =

{1, 2, ..., n} is a set of players, F = {1, 2, ...,m} is a set of facilities, and t is a dummy sink

node. There exists an arc between each player i and each facility j with a cost equal to the

distance dij. There also exists an arc between each facility j and the sink node with a cost

equal to the number of players who choose facility j, denoted xj.

The action of each player i is represented as a path from his node to the sink node t,

passing through a facility node j, illustrated in Figure 4.2(a). Each player receives utility

from his choice of path in terms of the costs on the arcs of his chosen path. Because

each player may weigh congestion independently for each facility, a congestion weight αij is

defined for each player i and facility j combination. Thus, the utility of player i at chosen

facility j is calculated by uij(xj) = αijxj+dij. The PSCWP is a special case of the PFSCWP

where αi replaces αij for all facilities j.

A solution X consists of each player choosing exactly one facility. For some results, a

solution X is denoted by X = (j1, j2, ..., jn), where ji is the facility chosen by player i.
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A solution is a Nash equilibrium if no player is able to decrease his utility by choosing a

different facility upon observing the selections of the other players. This is represented using

a set of inequalities for each player.

Definition 1 Let j be the facility at which player i is served in solution X in an instance

of the PFSCWP. The equilibrium condition for player i is αijxj + dij ≤ αik(xk + 1) + dik,

for all k 6= j ∈ F .

A NE solution is one in which the equilibrium condition holds for all players. It is important

to note that Nash equilibrium solutions do not necessarily imply optimal payoffs for any

player. Instead, they represent the outcome of decisions made in a player’s self-interest and

the assumption that other players will do likewise.

Outcomes of decentralized decisions are contrasted with a centralized planner who assigns

players to facilities to minimize cumulative congestion experienced and distance traveled in

the entire system. The centralized planner’s problem is illustrated in Figure 4.2(b). The

only difference between the centralized and individuals problems is the cost on the sink arcs.

The centralized planner’s problem is defined mathematically by the following optimization

model.

Minimize Z(X) =
m∑
j=1

( n∑
i=1

xij

)2
+

n∑
i=1

dijxij

subject to

m∑
j=1

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, j ∈ F

The decision variable xij equals one if player i is assigned to facility j. The first term in

Z(X) is squared to represent the fact that each player experiences the congestion put upon
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Figure 4.2: The Player-Facility-Specific Congestion Weights Problem (a) and the central-
ized planner’s problem (b).

him by the other players at his facility. The only set of constraints ensures that each player

is assigned to exactly one facility. The centralized planner’s problem is a convex cost flow

problem and can be solved in polynomial time.

4.4 Analysis of the PFSCWP

In many applications, an individual may place a different emphasis on congestion at

different facilities. This utility function is appropriate when an individual may prefer service

from a particular provider or in a certain area. In these cases, while the distance remains

unaffected, the relative importance of distance and congestion may depend on the chosen

facility. The author now analyzes the PFSCWP in which the utility of a player i at chosen

facility j is given by uij(xj) = αijxj + dij, where αij is the congestion weight for player i at

facility j. In this section, the author proves bounds on the prices of anarchy and stability and

shows that there exist congestion weights that make any solution an equilibrium, including

the centralized optimum.
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4.4.1 Bounds on Performance

In this section, the author introduces bounds on the price anarchy and the price of

stability for the PFSCWP with varying restrictions on input parameters. It is shown that

individual preferences can result in very poor outcomes from a centralized perspective.

The author also demonstrates that the most costly solution from the centralized planner’s

perspective can also be a Nash equilibrium. These findings are summarized in Table 4.1.

4.4.1.1 Bounds on Price of Anarchy

The author now focuses on the cost of the most expensive equilibrium, deriving bounds

when αij ≥ 0, when αij ≥ 1, and when dij = 0 for all i ∈ N and j ∈ F .

In the following theorem, the author shows that when αij ≥ 0 for all i ∈ N , the price of

anarchy is a function of the largest and smallest congestion weights. The proof follows the

technique of [1] and is a foundation for other results in this section.

Theorem 1 When αij ≥ 0 and dij ≥ 0 for all i ∈ N and j ∈ F , the price of anarchy for the

PFSCWP satisfies αmax−nαmin +n ≤ PA, where αmin and αmax are the least and greatest

congestion weights over the set of players and facilities.

Proof. Consider an instance G of the PFSCWP with n players and n + 1 facilities. Let

dij = 0 for all i ∈ N and j ∈ {1, 2, ..., n}; let di,n+1 = αmax − nαmin for all i ∈ N . Let

αij = αmax for all i ∈ N and j ∈ {1, 2, ..., n}; let αi,n+1 = αmin for all i ∈ N .

The most costly solution is the one in which all players are assigned to facility n + 1,

obtaining a total cost equal to n2 + n(αmax − nαmin). The utility of each player in this

solution is nαmin+αmax−nαmin = αmax. This is an equilibrium because if a player switches

to another facility, his utility will remain αmax.

A centralized optimum assigns exactly one player to each of facilities j ∈ {1, 2, ..., n},

obtaining a total cost equal to n. The price of anarchy for this instance is equal to
(
n2 +

n(αmax − nαmin)
)
/n = αmax − nαmin + n. Therefore, the price of anarchy for the class of
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Table 4.1: Performance bounds for the PFSCWP.

Criteria PA Lower Bound PA Upper Bound

αij ≥ 0, dij ≥ 0 αmax − nαmin + n (Theorem 1)
n players, n+ 1 facilities

αij ≥ 0, dij ≥ 0 m+ 1−
(

2(m− 1)/n
)

n players, m facilities when dmax ≥ 2( n
m−1 − 1) (Theorem 2)

αij ≥ 0, dij = 0 Ω(m) (Theorem 3) O(m) (Theorem 3)
n players, m facilities

αij > 0, dij ≥ 0 bαmax
αmin
c (Corollary 1) 2.5(αmax+1)2

αmin
(Corollary 3)

n players, m facilities

αij ≥ 1, dij ≥ 0 αmax + 1 (Corollary 4) 2.5αmax (Corollary 4)
n players, m facilities

αij ≥ 1, dij ≥ 0 Ω(n+ C) (Theorem 4) O(n+ C) (Theorem 4)
n players, n+ 1 facilities
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games where αij ≥ 0 for all i ∈ N is at least as much.

Theorem 1 demonstrates that if one player places a large weight on a congestion while

another player places a small weight, then the system outcome may be very costly. In

practice, the system cost of an equilibrium may be lessened if beneficiaries place similar

weights on congestion.

Corollary 1 When αij > 0 and dij ≥ 0 for all i ∈ N and j ∈ F , the price of anarchy for

the PFSCWP satisfies bαmax/αminc ≤ PA, where αmin and αmax are the least and greatest

congestion weights over the set of players, respectively.

Proof. Consider an instance G of the PFSCWP with n = bαmax/αminc players on the same

network defined in Theorem 1. The price of anarchy for the instance is n + αmax − nαmin.

The component αmax − nαmin = αmax − bαmax/αmincαmin ≥ 0. Therefore, PA ≥ n =

bαmax/αminc .

Applying a proof technique similar to that in Theorem 1, a lower bound is identified for

instances with n players and m facilities.

Theorem 2 When αij ≥ 0 and dij ≥ 0 for all i ∈ N and j ∈ F , the price of anarchy for

the PFSCWP satisfies m+ 1−
(

2(m− 1)/n
)
≤ PA.

Proof. Consider an instance G of the PFSCWP with n players i ∈ {1, 2, ..., n} and m

facilities j ∈ {1, 2, ...,m}. Let dij = 0 for all i ∈ N and j ∈ {1, 2, ...,m − 1} and dim =

2(n/(m− 1)− 1) for all i ∈ N . Lastly, let αij = 1 for all i ∈ N and j ∈ {1, ...,m− 1} and

αim = n+ 2n/(m− 1) for all i ∈ N .

The solution with the highest possible cost is an equilibrium, assigning all players to

facility m and incurring a total cost equal to n2 +
∑

i∈N dim. The centralized optimum

divides players evenly among facilities 1, 2, ...,m − 1, incurring a total cost equal to (m −

1)
(
n/(m− 1)2

)
= n2/(m− 1).
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Thus, PA =
n2 +

∑
i∈N dim

n2

m−1

=
n2 + n

(
2( n

m−1 − 1)
)

n2

m−1

After simplification, this leads to PA = m + 1 −
(

2(m − 1)/n
)

. Since an instance exists

where m + 1 −
(

2(m − 1)/n
)

= PA, the price of anarchy for the entire class must be at

least as much.

This proof illustrates the relationship between the number of players and the number of

facilities as it relates to the price of anarchy. In practice, if the number of beneficiaries is the

same or greater than the number of facilities, equilibrium solutions may be extremely costly

from a system view. However, the price of anarchy decreases with a decrease in beneficiaries.

The author now quantifies the price of anarchy for congestion games in which dij = 0

for all players i and facilities j.

Theorem 3 When αij ≥ 0 for all i ∈ N and dij = 0 for all i ∈ N and j ∈ F , the price of

anarchy for the PFSCWP with n players and m facilities is θ(m).

Proof. The solution that achieves the greatest total cost for this class of games assigns all

players to the same facility j, incurring a cost equal to n2. The solution with the lowest

possible cost for this class of games is obtained by evenly distributing players among the m

facilities, incurring a total cost equal to m(n/m)2 = n2/m. The ratio of the most expensive

and least expensive solutions is clearly an upper bound on the PA for this class of problems.

Thus PA ≤ n2/(n2/m) = m. Therefore, PA ∈ O(m).

Consider an instance G of the PFSCWP with n players and m facilities where dij = 0

for all i ∈ N and j ∈ F . Let αij = 1 for all i ∈ N and j ∈ {1, ...,m − 1} and αim = 1/n

for all i ∈ N . In this instance, the solution that assigns all players to facility m is an
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equilibrium, achieving the highest possible cost from a centralized perspective (n2). The

central optimum distributes all players evenly among the m facilities achieving the lowest

possible cost (n2/m). The price of anarchy for this instance is n2/(n2/m) = m. Since there

exists an instance where the price of anarchy is m, this value provides a lower bound on the

price of anarchy for this class of problems. Thus, PA ∈ Ω(m).

Combining the two results, the price of anarchy when dij = 0 for all i ∈ N and j ∈ F is

θ(m).

If distance is not a factor in the decision making process for either the centralized planner

or the beneficiaries, the price of anarchy increases with the number of facilities.

The author now demonstrates that when αij ≥ 1 and dij ≥ 0 for all i ∈ N and j ∈

F , a similar technique may be applied so that the most expensive solution possible is an

equilibrium and the least expensive solution possible is the centralized optimum.

Theorem 4 When αij ≥ 1 and dij ≥ 0 for all i ∈ N and j ∈ F , the price of anarchy for

the PFSCWP with n players and m facilities is θ(n+ C) for some constant C.

Proof. The solution with the greatest possible total cost achieves maximal values in both

the congestion and distance components of the centralized planner’s objective function. The

greatest possible value for the congestion component is n2 which occurs when all players

are assigned to the same facility. The greatest possible value of the distance component is

achieved when each player i is assigned to his furthest facility di,max. Thus, the greatest

possible value of the centralized planner’s objective function is n2 +
∑
i∈N

di,max.

The solution with the lowest possible total cost minimizes both components of the cen-

tralized planner’s objective function. The smallest possible value in the congestion compo-

nent is n, which is achieved when each player is assigned to his own facility. The smallest

possible value in distance component is zero. Thus, the lowest possible value to the central-

ized planner’s objective function is n.

The ratio of the most expensive and least expensive solutions is clearly an upper bound on
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the PA for this class of problems. Thus, PA ≤ (n2+
∑
i∈N

di,max)/n. Therefore, PA ∈ O(n+C)

where C is the sum of the distances di,max divided by n.

Consider an instance G to the PFSCWP with n players denoted i1, i2, ..., in and n + 1

facilities denoted j1, j2, ..., jn+1 as illustrated in Figure 4.3. Let dikjl = 0 for all ik ∈ N

and jl ∈ {j1, j2, ..., jn. Let dik,jn+1 = dmax > 0 for all ik ∈ N . Let αikjl = n + dmax for all

ik ∈ N, jl ∈ {j1, j2, ..., jn} and αik,jn+1 = 1 for all ik ∈ N . The centralized planner assigns

each player ik to facility jk, obtaining Z(X∗) = n.

The solution X with the highest system cost assigns every player to facility n+1 and is an

equilibrium. The utility of each player is n+dmax. If a player would choose another facility,

his utility would remain n+dmax. The centralized objective value Z(X) = n2 +ndmax. This

is the greatest possible congestion cost, and because all players are assigned to the facility

that is farthest away from them, the distance cost is also maximized. Therefore, X is the

most costly solution and an equilibrium.

Since there exists an instance where the price of anarchy is
(
n2+n(dmax)

)
/n = n+dmax,

this value provides a lower bound for this class of games. Therefore, the price of anarchy

∈ Ω(n+ C).

Combining the two components of this proof, the price of anarchy ∈ θ(n+ C).

Theorem 4 demonstrates that given certain congestion weights, players might prefer to

travel the maximum distance and experience the maximum amount of congestion because

they prefer one facility much more than the others. This proof once again underscores the

importance of coordination mechanisms to help players make better decisions from a system

perspective.

Theorems 1 through 4 present performance bounds on classes of the PFSCWP when

αij ≥ 0, αij > 0, αij ≥ 1 and dij = 0 for all i ∈ N and j ∈ F . The author shows that

bounds on the price of anarchy can be presented in terms of players’ congestion weights or

the numbers of players and facilities. In general, the price of anarchy grows with the range

between the least and greatest congestion weights, and also with the numbers of players and
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Figure 4.3: Illustration of the network constructed in Theorem 4.
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facilities. Theorem 3 is special case of Theorem 2, demonstrating the additional complexity

that arises when dij > 0.

4.4.1.2 Bounds on Price of Stability

Having seen that the worst equilibrium can be costly, it is also important to quantify the

performance of the best equilibrium for this class of games. The author now demonstrates

that in the PFSCWP, the price of stability may be arbitrarily high. Furthermore, for a

certain network structure, the price of anarchy is bounded by a multiple of the price of

stability.

Theorem 5 Given M ∈ R such that M > 1, there exists an instance G of the PFSCWP

where PS = M and PA = 7M/6.

Proof. Consider an instance G of the PFSCWP with three players denoted i1, i2, i3 and

three facilities denoted j1, j2, j3. Let di1j1 = di2j2 = di3j3 = 0, di1j2 = di2j3 = di3j1 = M − 1,

di1j3 = di2j1 = di3j2 = 7M/6 − 1. Let αikjk = 3M/2 for k = 1, 2, 3;, αi1j2 = αi2j3 = αi3j1 =

M/4; and αi1j3 = αi2j1 = αi3j2 = M/3. The instance is illustrated in Figure 4.4.

The centralized optimum X∗ assigns each player ik to facility jk obtaining the objective

value Z(X∗) = 3. In X∗, the utility of each player is 3M/2. This is not a Nash equilibrium

because each player can decrease his utility by switching as follows: player i1 to facility j2,

i2 to facility j3, and i3 to facility j1.

The solution X1 = (2, 3, 1) is the least costly equilibrium with Z(X1) = 3M . In X1, the

utility of each player is M/4 + (M − 1) = 5M/4− 1. The solution X2 = (3, 1, 2) is the only

other equilibrium with Z(X2) = 7M/2. In X2, the utility of each player is 3M/2− 1.

In this instance PS = Z(X1)/Z(X∗) = 3M/3 = M and PA = Z(X3)/Z(X∗) =

(7M/2)/3 = 7M/6.

As Theorem 5 demonstrates, the cost of even the best possible equilibrium may be very

expensive from the centralized planner’s perspective. While this proof does not necessarily
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Figure 4.4: Illustration of the network described in Theorem 5.

imply a consistent relationship between the price of stability and the price of anarchy for

the general case, the instance constructed in Theorem 5 illustrates that for some structures,

the price of anarchy is bounded by a multiple of the price of stability.

In practice, an arbitrarily large price of stability signifies that self-interested decisions

may be extremely costly, even in the best-case scenario. This result motivates the next

section, in which the author identifies modifications to player utility functions so that indi-

viduals may choose what is best for the system.

4.4.2 Coordination Mechanisms

In this section, the author explores coordination mechanisms for the PFSCWP. It is

shown that any solution, including the centralized optimum, may be made an equilibrium

with the correct assignment of congestion weights. In practice, if beneficiaries’ utility func-

tions can be altered, these systems may behave in a centrally optimal manner. This would

ease congestion on certain facilities and preclude unnecessary travel. Player-facility-specific
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congestion weights might be altered by distributing information to individuals regarding

facility congestion levels, or by offering incentives to choose one facility over another such

as transportation assistance. The first result in this section demonstrates that any solu-

tion, including a centralized optimum, to an instance of the PFSCWP can be made into an

equilibrium by applying appropriate congestion weights.

Theorem 6 Given an instance G of the PFSCWP with solution X, there exist values αij ≥ 0

for all i ∈ N and j ∈ F for which X is a Nash equilibrium.

Proof. Consider an instance G of the PFSCWP and an arbitrary solution X in which player

i chooses facility j. Let xk be the number of players assigned to facility k for all k ∈ F .

Given any initial value for αij, the following assignment of αik for all k 6= j ∈ F will satisfy

the equilibrium condition for player i in X.

For each facility k 6= j, there are two cases:

i.) If αijxj + dij ≤ dik, assign αik = αij. The equilibrium condition for player i is satisfied

since αijxj + dij ≤ αij(xk + 1) + dik since αij ≥ 0 and xk ≥ 0.

ii.) If αijxj + dij > dik, assign αik = (αijxj + dij − dik)/(xk + 1).

To show that this satisfies the equilibrium condition, perform the following alge-

braic transformation:

1. Begin with the trivial inequality, αijxj + dij ≤ αijxj + dij.

2. Add dik − dik to the right side, giving αijxj + dij ≤ αijxj + dij + dik − dik.

3. Multiply the right side by (xk + 1)/(xk + 1) resulting in

αijxj + dij ≤ (xk+1)
(xk+1)

(αijxj + dij − dik + dik).

4. Rearrange terms to obtain

αijxj + dij ≤
(
αijxj+dij−dik

xk+1

)
(xk + 1) + dik.
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The last inequality is the equilibrium condition for player i with the proposed

value of αik.

Assigning congestion weights in this way ensures that the equilibrium condition is satisfied

for player i at his chosen facility j and all other facilities k. Applying this technique for all

players will induce equilibrium on X.

Theorem 6 demonstrates that there exist congestion weights for any solution X that make

it an equilibrium. If X is a centralized optimum, these congestion weights coordinate the

decentralized system so that individual decision makers have no incentive to deviate from

the system-optimal solution.

4.5 Analysis of the PSCWP

This section introduces the PSCWP, a special case of the PFSCWP where the utility

of player i at chosen facility j is given by uij(xj) = αixj + dij. Now, αi is a player-specific

congestion weight, signifying that each player places an individual weight on congestion but

applies it identically at every facility. This type of utility function is practical when indi-

viduals feel that the quality of service is similar at all facilities and do not prefer one service

provider over another. For this problem class, the author first provides a network-based

algorithm for computing an equilibrium in polynomial time. Next, the author shows that

there exist instances for which the prices of stability and anarchy may be arbitrarily expen-

sive. However, the price of anarchy is bounded in terms of the least and greatest congestion

weights over the set of players. Finally, the author explores coordination mechanisms, iden-

tifying equilibrium-obtaining αi values for a given centralized optimum.

4.5.1 Complexity of Computing an Equilibrium Solution

It has been shown that an equilibrium exists for every instance of the PSCWP and that

computing an equilibrium can be done in polynomial time [135]. This section presents an
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alternative algorithm based on the network structure. First, the network congestion game

is transformed to a related minimum cost flow problem. The solution to the flow problem

is a minimizer of an exact potential function, which corresponds to an equilibrium.

Theorem 7 An equilibrium solution to an instance of the PSCWP can be computed in

polynomial time using a transformation to a related minimum cost flow problem.

Proof. For ease of exposition, it is assumed that αi > 0 for all i ∈ N . This assumption

will be relaxed later. Recall that the equilibrium condition for player i at chosen facility

j is αixj + dij ≤ αi(xk + 1) + dik for all i ∈ N where k 6= j. Dividing both sides of the

equilibrium condition for i by αi yields xj + dij/αi ≤ (xk + 1) + dik/αi. Thus, computing

an equilibrium with uij(xj) = αixj + dij is equivalent to computing an equilibrium with

uij(xj) = xj + dij/αi.

Modeling decentralized players with individual preferences begins with the centralized

planner’s network that is displayed in Figure 4.2(b) where each player allocates one unit of

flow and the sink node t has n units of demand. Consider the following network transfor-

mation. Let the cost of the arc between player i and facility j be wij = dij/αi. For each arc

(j, t), create n copies, each with capacity 1. The cost of the kth copy is k for k ∈ {1, 2, ..., n}

as illustrated in Figure 4.5. This transformation requires O(mn) effort.

It is now shown that an assignment of players to facilities is feasible if and only if it

corresponds to a feasible flow in the transformed network. Consider a feasible assignment of

players to facilities. This assignment is represented on the transformed network by allocating

one unit of flow from each player to the assigned facility on a path to the sink node. The

aggregate flow satisfies flow balance and capacity constraints.

Now, consider a feasible integer flow in the transformed network. Feasibility implies that

one unit is supplied from each player and that n total units reach the sink node without

violating arc capacities. An assignment of players to facilities is created by identifying the

arcs (i, j) that have a flow of one. In this way, each player is assigned to exactly one facility,

and the flow corresponds to a feasible assignment of players to facilities.
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The next step of the proof is to map the minimum cost flow in the transformed network

to a Nash equilibrium for the original problem. This is done with a potential function. Let

xsij be the binary variable that indicates whether player i chooses facility j in solution s and

xsj be the congestion of facility j. The potential function that establishes the result is

φ(s) =
n∑
i=1

m∑
j=1

dij
αi
xsij +

m∑
j=1

xsj∑
y=1

y.

To show that this is an exact potential function, suppose player i switches from facility

j in solution s to some facility k, creating solution s′. The change in i’s utility equals the

change in the potential function value as shown below.

φ(s)− φ(s′) =
( n∑
i=1

m∑
j=1

dij
αi
xsij +

m∑
j=1

xsj∑
y=1

y
)
−
( n∑
i=1

m∑
j=1

dij
αi
xs
′

ij +
m∑
j=1

xs
′
j∑

y=1

y
)

= (
dij
αi

+ xsj)− (
dik
αi

+ xs
′

k )

= uij(x
s
j)− uik(xs

′

k ).
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Thus, this is an exact potential function and solving the minimum cost flow problem on

the transformed network minimizes φ(s). Potential function local minima correspond to

Nash equilibrium solutions [133]. An optimal solution to the minimum cost flow problem is

a global minimizer of the potential function and thus an equilibrium. The network trans-

formation requires polynomial time and the minimum cost flow problem is polynomially-

solvable. Therefore, computing a Nash equilibrium solution can be done in polynomial time

using the transformation described.

Consider now the case when αi = 0 for some player i. In this instance, player i places no

weight on congestion and chooses a facility based only on distance. Thus, any equilibrium

solution will require player i to be assigned to his closest facility. In order to create an

equilibrium solution using the algorithm described above, the flow along the path involving

all such players i and their closest facility must be set equal to one. The resulting flow

problem for remaining players is then solved as described above.

Theorem 7 demonstrates an efficient method for computing an equilibrium for the

PSCWP.

Corollary 2 Infinite best-reply paths cannot occur in the PSCWP.

Proof. The existence of a potential function implies that a game possesses the finite im-

provement property, which means that improving player-facility exchanges will lead to an

equilibrium [136].

As equilibria are the result of self-interested decisions, they represent probable outcomes.

In practice, the ability to predict beneficiary decisions could support more accurate demand

forecasts at each facility.

4.5.2 Bounds on Performance

In this section, the author analyzes outcomes of the PSCWP in terms of the centralized

planner’s objective function. Specifically, bounds on the price of anarchy are derived in
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terms of the greatest and least congestion weights over the set of players. Finally, the

author shows that the price of stability may be arbitrarily expensive.

4.5.2.1 Bounds on Price of Anarchy

The proofs in this section cannot apply the techniques used for the PFSCWP where an

equilibrium solution involves all beneficiaries choosing the same distant facility. Instead, the

proofs utilize algebraic manipulation and a previously established inequality. The results in

this section are illustrated in Table 4.2.

Table 4.2: Performance bounds for the PSCWP.

Criteria PA Lower Bound PA Upper Bound

αi > 0, dij ≥ 0 αmax+αmin
2

+ 1 (Theorem 8) 2.5(αmax+1)2

αmin
(Theorem 8)

αi ≥ 1, dij ≥ 0 αmax + 1 (Theorem 9) 2.5αmax (Theorem 9)

The author begins by deriving lower and upper bounds on the price of anarchy when

αi > 0 for all players i.

Theorem 8 When αi > 0 for all i ∈ N and dij ≥ 0 for all i ∈ N and j ∈ F , the price

of anarchy for the PSCWP satisfies (αmax + αmin)/2 + 1 ≤ PA ≤ 2.5(αmax + 1)2/αmin,

where αmin and αmax are the least and greatest congestion weights over the set of players,

respectively.

Proof. The proof consists of two parts. First, an instance of the PSCWP is defined for which

PA = (αmax +αmin)/2 + 1 to prove the lower bound. Next, an algebraic manipulation that

applies the inequality found in [144] proves the upper bound.

To prove the lower bound, consider an instance with two players and two facilities. Let

d12 = αmax, d21 = αmin, and d11 = d22 = 0. In addition, let α1 = αmax and α2 = αmin.
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The solution X = (2, 1) is the most expensive equilibrium with Z(X) = 2+αmax+αmin.

In this solution, the utility of player 1 is 2αmax and the utility of player 2 is 2αmin. If either

player switched facilities, his utility would remain the same.

The solution X∗ = (1, 2) is the centralized optimum. The total cost is Z(X∗) = 2. Thus,

the price of anarchy for this instance is PA = (2 + αmax + αmin)/2 = (αmax + αmin)/2 + 1.

The PA for the class of games must be at least the PA of this instance.

To establish the upper bound, let X be an equilibrium solution and X∗ be a centralized

optimum to an instance of the PSCWP. Let I(j) be the set of players at facility j in X and

I∗(j) be the set of players at facility j in X∗, where |I(j)| = xj and |I∗(j)| = x∗j , respectively.

The proof will apply an inequality from [144], specifically

∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij ≤ 2.5
(∑
j∈F

x∗2j +
∑
j∈F

∑
i∈I∗(j)

dij

)
. (4.1)

Since X is an equilibrium, it satisfies the equilibrium condition for each player. Thus,

αixji+diji ≤ αi(xj∗i +1)+dij∗i , where ji is the facility that player i chooses in the equilibrium

solution and j∗i is the facility where i is assigned in the centralized optimum. Aggregating

the equilibrium conditions over the set of players gives

∑
i∈N

(αixji + diji) ≤
∑
i∈N

(αi(xj∗i + 1) + dij∗i ).

Regrouping by facilities yields

∑
j∈F

∑
i∈I(j)

(αixj + dij) ≤
∑
j∈F

∑
i∈I∗(j)

(αi(xj + 1) + dij),

and separating distance and congestion components gives

∑
j∈F

∑
i∈I(j)

αixj +
∑
j∈F

∑
i∈I(j)

dij ≤
∑
j∈F

∑
i∈I∗(j)

αi(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij. (4.2)

103



Focusing on the left side of (4.2), since αmin is the lowest congestion weight over the set

of players and |I(j)| = xj,

αmin
∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij ≤
∑
j∈F

∑
i∈I(j)

αixj +
∑
j∈F

∑
i∈I(j)

dij. (4.3)

Turning attention to the right side of (4.2), since αmax is the greatest congestion weight

over the set of players and |I∗(j)| = x∗j ,

∑
j∈F

∑
i∈I∗(j)

αi(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij ≤ αmax
∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij. (4.4)

Since αmax + 1 > 1,

αmax
∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij ≤ (αmax + 1)
(∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij

)
. (4.5)

With respect to the left of (4.3), since αmax + 1 > αmin and αmin/(αmax + 1) ≤ 1,

αmin
αmax + 1

(∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij

)
≤ αmin

∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij. (4.6)

Combining (4.4), (4.5), and (4.6) gives

αmin
αmax + 1

(∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij

)
≤ (αmax + 1)

(∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij

)
. (4.7)

The expression in parentheses on the farthest right of (4.7) is equivalent to the expression

on the left of (4.1). Thus,

αmin
αmax + 1

(∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij

)
≤ 2.5(αmax + 1)

(∑
j∈F

x∗2j +
∑
j∈F

∑
i∈I∗(j)

dij

)
,
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which implies that

∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij ≤
2.5(αmax + 1)2

αmin

(∑
j∈F

x∗2j +
∑
j∈F

∑
i∈I∗(j)

dij

)
.

Therefore, PA ≤ 2.5(αmax + 1)2/αmin.

Theorem 8 demonstrates that when αmax is large compared to αmin, the price of anarchy

may be high. In practice, poor outcomes may result when some beneficiaries place a low

weight on congestion while others place one that is high. In fact, as this ratio grows, so does

the bound on the cost of the worst outcome.

Corollary 3 When αi > 0 for all i ∈ N and dij ≥ 0 for all i ∈ N and j ∈ F , the price of

anarchy for the PSCWP satisfies PA ≤ 2.5(αmax + 1)2/αmin, where αmin and αmax are the

least and greatest congestion weights over the set of players and facilities, respectively.

Proof. The proof of the upper bound follows identically to that in Theorem 8 where αmin

is the least αij and αmax is the greatest αij value over the set of players and facilities,

respectively.

The author now investigates a more restricted congestion game that requires αi ≥ 1 for

all i ∈ N . This models the situation in which congestion is at least as important to the

beneficiaries as it is to the centralized planner. In this case, tighter lower and upper bounds

on the price of anarchy are found, both of which are functions of αmax.

Theorem 9 When αi ≥ 1 for all i ∈ N and dij ≥ 0 for all i ∈ N and j ∈ F , the price

of anarchy for the PSCWP satisfies αmax + 1 ≤ PA ≤ 2.5αmax, where αmax is the greatest

congestion weight over the set of players.

Proof. The lower bound is proven similarly to [1] by providing a network structure that

achieves the bound at equality. Consider an instance of the PSCWP with n players denoted

i1, i2, ..., in and m facilities denoted j1, j2, ..., jm. Let αik = αmax for all ik ∈ N . Let dikjl = 0
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for all ik ∈ N and jl ∈ F such that k = l; let dikjl = αmax for all ik ∈ N and jl ∈ F such

that k 6= l.

The centralized optimum X∗ assigns each player ik to facility jk, obtaining a total cost

equal to n. In X∗, the utility of each player is αmax. This is an equilibrium because if a

player switched to another facility, his utility would increase to 3αmax.

Equilibrium solutions also exist where each player ik chooses a facility jl where k 6= l,

and each facility is chosen by exactly one player. In these solutions, the utility of each

player is 2αmax. If a player ik switched to facility jk, his utility would remain 2αmax. If

the player switched to another facility jl 6= jk, his utility would increase to 3αmax. The

total cost for each of these equilibria is n + nαmax. These equilibria and the centralized

optimum are the only equilibria for this game because no equilibrium will involve two or

more players at a single facility. Therefore, the price of anarchy for this instance equals

(nαmax + n)/n = αmax + 1, which implies the price of anarchy for the entire class of games

must be at least as much.

To establish the upper bound, consider an instance of the PSCWP. Let ji be the facility

that player i chooses in the equilibrium solution and j∗i be the facility to which i is assigned

in the centralized optimum. Let diji be the distance from player i to facility ji and αi be the

weight that player i places on congestion at all facilities. Let X be an equilibrium solution

and X∗ be the centralized optimum. Let I(j) be the set of players at facility j in X and

I∗(j) be the set of players at facility j in X∗,where |I(j)| = xj and |I∗(j)| = x∗j , respectively.

This proof will again apply the inequality from [144].

Since X is an equilibrium, it satisfies the equilibrium condition for each player i. Thus,

αixji +diji ≤ αi(xj∗i +1)+dij∗i . Dividing both sides of the equilibrium condition by αi yields

xji + diji/αi+ ≤ (xj∗i + 1) + dij∗i /αi. Aggregating this expression over all players gives

∑
i∈N

(
xji +

diji
αi

)
≤
∑
i∈N

(
xj∗i + 1 +

dij∗i
αi

)
. (4.8)
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Regrouping by facilities yields

∑
j∈F

∑
i∈I(j)

(
xj +

dij
αi

)
≤
∑
j∈F

∑
i∈I∗(j)

(
xj + 1 +

dij∗

αi

)
(4.9)

and simplifying gives

∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij
αi
≤
∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij
αi
. (4.10)

With respect to the left side of (4.10), since αmax ≥ 1,

1

αmax

(∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij

)
≤
∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij
αi
. (4.11)

Turning attention to the expression on the right of (4.10), and again applying the fact

that αi ≥ 1 for all players i,

∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij
αi
≤
∑
j∈F

x∗j(xj + 1) +
∑
j∈F

∑
i∈I∗(j)

dij. (4.12)

The expression on the right of (4.12) is equal to that on the left of (4.1). Combining

relationships (4.1), (4.11), and (4.12) gives

1

αmax

(∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij

)
≤ 2.5

(∑
j∈F

x∗2j +
∑
j∈F

∑
i∈I∗(j)

dij

)

and therefore,

∑
j∈F

x2j +
∑
j∈F

∑
i∈I(j)

dij ≤ 2.5αmax

(∑
j∈F

x∗2j +
∑
j∈F

∑
i∈I∗(j)

dij

)
.

The expression on the left is the total cost of the equilibrium while the expression in

parentheses on the right is the total cost of the centralized optimum. Therefore, the total
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cost of the equilibrium solution is no more than 2.5αmax times the total cost of the centralized

optimum and the price of anarchy is at most 2.5αmax.

It follows that when αi = 1 for all i ∈ N , the price of anarchy satisfies 2 ≤ PA ≤ 2.5,

a finding verified in [1]. In practice, since the bound in Theorem 9 increases as αmax

increases, decentralized systems with at least one individual who places a very high weight

on congestion can be very costly.

Corollary 4 When αi ≥ 1 for all i ∈ N and dij ≥ 0 for all i ∈ N and j ∈ F , the price of

anarchy satisfies αmax + 1 ≤ PA ≤ 2.5αmax, where αmax is the greatest congestion weight

over the set of players.

Proof. The proofs of both the lower and upper bounds follow identically to that in Theorem

8 where αmin is the lowest αij and αmax is the greatest αij value over the set of players and

facilities, respectively.

In summary, this section shows that the price of anarchy is bounded above and below

by a function of αmin and αmax both when αi > 0 and in the more restrictive case when

αi ≥ 1 for all players i.

4.5.2.2 Bounds on Price of Stability

Having demonstrated that the worst-case equilibrium can be costly, the author now

investigates bounds on the price of stability for the PSCWP. The first result demonstrates

that even the best possible equilibrium can be arbitrarily expensive.

Theorem 10 Given M ∈ R such that M > 1, there exists an instance G of the PSCWP

where PS = M .

Proof. Consider an instance G of the PSCWP with two players denoted 1 and 2 and three

facilities denoted 0, 1, and 2. For anyM ∈ R such thatM > 1, let α1 = 4M−1, α2 = 5M+1,

and distances be those illustrated in Figure 4.6. Table 4.3 presents all possible outcomes
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Table 4.3: Outcomes of the instance described in Theorem 10.
Player 2

Facility 0 1 2

0 (8M-2, 10M+2 (4M-1, 4M-1) (4M-1, 10M+1)
Z(X∗) = 4 Z=6M+2 Z(X2) = 5M + 2

Player 1 1 (8M-3, 5M+1) (12M-4, 16M+2) (8M-3, 10M+1)
Z(X1) = 4M Z=10M+2 Z=9M

2 (10M-1, 5M+1) (10M-1, 11M+1) (12M-2, 15M+1)
Z=6M+2 Z=12M+2 Z=11M+4

1

2

1

0

2

4M-2

0

0

5M

α1= 4M-1

α2= 5M+1

6M

6M

Figure 4.6: Illustration of network described in Theorem 10.

of the instance, where the row player is player 1 and the column player is player 2. Player

utilities are presented in the form of (u1j, u2k), where j and k are the facility choices of

players 1 and 2, respectively. The centralized cost Z is also shown.

The centralized optimum X∗ assigns both players to facility 0, obtaining the objective

value Z(X∗) = 4. The solutions X1 = (1, 0) and X2 = (0, 2) are the only equilibria with

Z(X1) = 4M and Z(X2) = 5M + 2.

Since Z(X1) < Z(X2), PS = Z1/Z∗ = 4M/4 = M .

Theorem 10 demonstrates through a small instance of the PSCWP that even the best

decentralized decisions can be expensive for the overall system. This motivates the search
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for mechanisms to coordinate decentralized systems.

4.5.3 Coordination Mechanisms and Effects of Player-Facility Ex-

changes

This section focuses on the relationship between a player’s utility function and the cen-

tralized planner’s objective function. Instances of the PSCWP are characterized for which

there exist αi values that make the centralized optimum an equilibrium. Finally, the author

investigates the impact of an individual altering his choice of facility on the centralized ob-

jective, identifying circumstances when such moves increase or decrease the performance of

the overall system.

In the context of the PSCWP in particular, the weight that a player places on congestion

(and implicitly on distance traveled) may be altered using incentives. For instance, if trans-

portation assistance is offered, an individual’s weight on congestion may decrease because

distance is no longer an obstacle. In this way, individuals may be more satisfied by choosing

an under-utilized, distant facility instead of a congested facility nearby, easing the burden

on the system.

Theorem 11 Given any instance G of the PSCWP and a centralized optimum X∗, the

congestion weight αi = 2 for all i ∈ N will make X∗ a Nash equilibrium.

Proof. The desired result is obtained by examining the effect of an arbitrary player switching

facilities on the centralized planner’s objective function. Suppose player i is assigned to

facility j in a centralized optimum X∗. Let I∗(j) be the set of players assigned to facility

j in X∗. The centralized planner’s objective function is given below with terms relevant to

player i isolated:

Z(X∗) =
∑
l 6=j∈F

x2l +
∑
l∈F

∑
p 6=i∈I∗(l)

dpl + x2j + dij.
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Let X
′

be the solution obtained when player i switches from facility j to facility k. Then,

Z(X ′) =
∑

l 6=j,k∈F

x2l +
∑
l∈F

∑
p6=i∈I∗(l)

dpl + (xj − 1)2 + (xk + 1)2 + dik

From the optimality of X∗, Z(X∗) ≤ Z(X ′), which implies

∑
l 6=j,k∈F

x2l +
∑
l∈F

∑
p 6=i∈I∗(l)

dpl+x
2
j+x

2
k+dij ≤

∑
l 6=j,k∈F

x2r+
∑
l∈F

∑
p 6=i∈I∗(l)

dpl+(xj−1)2+(xk+1)2+dik.

By subtraction, x2j + x2k + dij ≤ (xj − 1)2 + (xk + 1)2 + dik, which simplifies to 2xj + dij ≤

2(xk + 1) + dik.

The final inequality is the equilibrium condition for player i when αi = 2, indicating that i

will prefer the centralized optimal assignment to facility j over alternative facility k when

his congestion weight is 2. Since player i and facility k were chosen arbitrarily, αi = 2 for

all i ∈ N will ensure X∗ is an equilibrium.

Theorem 11 demonstrates that for a given centralized optimum, there exists at least

one congestion weight value that will induce equilibrium. Specifically, if all players place

exactly twice as much weight on congestion as they do on distance, decentralized players

will have no incentive to deviate from the centralized optimum. In the next theorem, the

author characterizes other equilibrium obtaining αi values.

Theorem 12 Let G be an instance of the PSCWP and X∗ be a central optimum where

player i is assigned to facility j. Let α
′′
i = max

m∈F :xj<xm and dim<dij
{(dim − dij)/(xj − xm −

1)} for all facilities m that are more congested but closer to player i than j and α′i =

min
l∈F :xl+1<xj and dij<dil

{(dil − dij)/(xj − xl − 1)} for all facilities l that are less congested but

further from player i than j. Any αi such that α′′i ≤ αi ≤ α′i will satisfy player i’s equilibrium

condition in X∗. A set of such congestion weights for all i ∈ N will make X∗ a Nash

equilibrium.
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Proof. Consider an instance G of the PSCWP and let X∗ be a centralized optimum in

which player i chooses some facility j. Since X∗ is a centralized optimum, there does not

exist a facility that is both less congested and closer to i than j. However, there may exist

facilities l or m where facility l is less congested but further than j and facility m that

is more congested but closer than j. Mathematically, it may be that xl < xj < xm and

dim < dij < dil.

First, consider any facility m such that xj < xm, and dim < dij. Player i’s equilibrium

condition with respect to j and m is αixj + dij ≤ αi(xm + 1) + dim. Player i is indifferent

between facilities j and m when αi = αm
′′

i = (dim − dij)/(xj − xm − 1). Furthermore, his

equilibrium condition is satisfied with respect to these two facilities for every αi ≥ αm
′′

i .

Second, consider any facility l such that xl + 1 < xj and dij < dil. Player i’s equilibrium

condition with respect to facilities j and l is αixj + dij ≤ αi(xl + 1) + dil. Player i is

indifferent between facilities j and l when αi = αl
′′
i = (dil− dij)/(xj − xl− 1). Furthermore,

his equilibrium condition is satisfied with respect to these two facilities for every αi ≥ αl
′
i .

Third, consider any facility l such that xl = xj + 1 and dij < dil. Note that any value of

αi will satisfy player i’s equilibrium condition with respect to facilities j and l.

Finally, let α′′i = max
m∈F :xj<xmanddim<dij

{αm′′i } and α′i = min
l∈F :xl+1<xjanddij<dil

{αl′′i }. Then any

αi such that α′′i ≤ αi ≤ α′i will satisfy the equilibrium condition for player i with respect to all

facilities. The application of such αi values for all players will make X∗ an equilibrium.

To serve as an example of the concept demonstrated in Theorem 12, consider a problem

with 15 players and 3 facilities. Suppose player i is assigned to facility j in the centralized

optimum X∗, with xj = 5 and dij = 4. Consider facilities l and m where xl = 3, dil = 8,

xm = 7, and dim = 1. For this solution to satisfy the equilibrium condition for player i, it

must be that 5αi + 4 ≤ (3 + 1)αi + 8 and 5αi + 4 ≤ (7 + 1)αi + 1. These two inequalities

are both satisfied when 1 ≤ αi ≤ 4. Thus, any value of αi in this range will ensure that

player i’s equilibrium condition is satisfied in solution X∗. Note that the result of Theorem

11 implies the value two will always be in this range.
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This result demonstrates there may exist a range of αi values below and above 2 that

transform a centralized optimum into an equilibrium for player i. However, there do exist

non-optimal solutions for which there is no αi value that induces equilibrium. Consider an

instance where a player is choosing between a very far, very congested facility and a nearby,

empty one. There is no non-negative congestion weight that would make the player prefer

the distant facility over the one nearby. This result is in contrast to chapter 4.4 regarding

the PFSCWP and to the findings in [1], which considers facility-specific congestion weights

and finds that any solution can be made into an equilibrium.

The author now identifies conditions under which a player’s self-interested move may

increase or decrease the centralized planner’s objective. It is valuable to identify these

moves so that the corresponding players might be incentivized to make choices that improve

the system as a whole.

Theorem 13 Let G be an instance of the PSCWP with solutions X and X
′
, where the only

difference between the two is that player i chooses facility j in X and chooses facility k in

X
′
. Player i’s utility is lower in X

′
. Then, Z(X

′
) < Z(X) if one of the following conditions

holds: (1) −2 + dij − dik > 0, (2) −2 + 2xj − 2xk > 0, or (3) if xk < xj and dik < dij.

Proof. Given G, X, and X
′

as in the theorem statement, let I(j) be the set of players

assigned to facility j, and let xj and xk be the number of players at facilities j and k,

respectively in X.

Then Z(X) =
∑

l 6=j,k∈F

x2l +
∑
l∈F

∑
p6=i∈I(l)

dpl + (xj)
2 + (xk)

2 + dij

and Z(X
′
) =

∑
l 6=j,k∈F

x2l +
∑
l∈F

∑
p6=i∈I(l)

dpl + (xj − 1)2 + (xk + 1)2 + dik.

113



The difference in the centralized planner’s objective function is given by

Z(X)− Z(X
′
) = x2j + x2k + dij − (xj − 1)2 − (xk + 1)2 − dik

= 2xj − 2xk − 2 + dij − dik

= 2(xj − xk − 1) + dij − dik.

Since player i’s utility is lower in X
′
, αi(xk + 1) + dik < αixj + dij. There are three possible

cases:

1. αixk < αixj, which implies xk < xj

2. dik < dij

3. Both xk < xj and dik < dij

Case 1: αixk < αixj → xk < xj

Using substitution, Z(X)−Z(X ′) = 2(xj −xk− 1) + dij − dik > 2(xj −xj − 1) + dij − dik =

−2 + dij − dik. Thus, if −2 + dij − dik > 0, the self-interested move improves the centralized

planner’s objective value.

Case 2: dik < dij

Using substitution, Z(X)−Z(X ′) = 2(xj −xk− 1) + dij − dik > 2(xj −xk− 1) + dij − dij =

−2 + 2xj − 2xk. Thus, if −2 + 2xj − 2xk > 0, the self-interested move improves the central

planner’s objective value.

Case 3: Both xk < xj and dik < dij

This case must improve the centralized planner’s objective because the player’s move de-

creases both components of the objective function.

Theorem 13 illustrates the underlying balance between the congestion and distance com-

ponents of a player’s utility. If a player places a very low weight on congestion, he may move
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to a more crowded facility to travel a shorter distance. If the facility to which he moves is

too congested, the shortened distance is overwhelmed by the congestion increase for the cen-

tralized planner. Conversely, if congestion is emphasized too greatly, a player may be willing

to travel very far to receive service at a less congested facility. Both can be detrimental from

a centralized perspective.

The next theorem identifies conditions under which a self-interested move increases the

centralized planner’s objective function value.

Theorem 14 Let G be an instance of the PSCWP with solutions X and X
′
, where the only

difference is that player i chooses facility j in X and chooses facility k in X
′
. Player i’s

utility is lower in X
′
. Then Z(X) < Z(X

′
) if (dij−dik−2)/2 < xk−xj < (dij−dik−αi)/αi.

Proof. Given G, X, and X
′

as in the theorem statement, let xj and xk be the congestion

at facilities j and k, respectively, in X. Since i’s utility is lower in X
′
, αi(xk + 1) + dik <

αixj +dij. Rearranging terms in the equilibrium condition gives xk−xj +1 < (dij−dik)/αi.

For i’s move from j to k to increase the centralized planner’s objective, (xj− 1)2 + (xk +

1)2 + dik > x2j +x2k + dij must hold. The difference in objective function values is equivalent

to −2xj + 1 + 2xk + 1 > dij − dik. Rearranging terms gives xk − xj + 1 > (dij − dik)/2.

The expression xk − xj + 1 appears in both the rearranged equilibrium condition and

in the objective function inequality. Combining these two inequalities, (dij − dik)/2 <

xk − xj + 1 < (dij − dik)/αi. Finally, subtracting 1 from all three parts of the inequality

yields (dij − dik − 2)/2 < xk − xj < (dij − dik − αi)/αi.

It is important to note that the final pair of inequalities in the proof is impossible to

satisfy if αi = 2 because the right and left sides are equal. This shows that when αi = 2,

no move that strictly improves an individual’s utility can strictly increase the centralized

planner’s objective function value.
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4.6 Optimizing Coordination Mechanism Values

Results in the preceding sections demonstrate that coordination mechanisms exist. In

practice, these congestion weights may be obtained through incentives such as transporta-

tion assistance or information dissemination in the form of pamphlets, signs, or social media

notifications. For instance, if transportation were made available to take beneficiaries living

in a densely populated area to under-utilized facilities in rural areas, congestion might be

eased in the dense area and service made more efficient. For another example, if information

regarding congestion and expected wait times were made available, beneficiaries could make

better decisions for themselves and for the system. These incentives may modify benefi-

ciaries’ utilities for certain facilities so that they do not have incentive to deviate from a

proposed centralized optimum.

However, changing individuals’ utility functions through incentives incurs a cost. It is

thus desirable to identify congestion weight values that can coordinate the system while

minimizing relevant costs. In this section, the author introduces an optimization model

to identify coordination mechanism values that optimize a particular cost function. The

approach is demonstrated via a computational study using data from the 2010 cholera

epidemic in Haiti.

4.6.1 Minimum Cost Coordination Mechanisms Model

Given input parameters to the centralized planner’s problem, a centralized optimum X,

and players’ congestion weights αij for all i ∈ N and j ∈ F , the Minimum Cost Coordi-

nation Mechanisms Model (MCCMM) identifies the modifications that must be made to

individuals’ congestion weights to transform X∗ into an equilibrium at the lowest cost. In

this problem, the optimal assignment of individuals to facilities is given by binary param-

eters xij for each i ∈ N and j ∈ F . Let I(j) be the set of players assigned to facility j in

X, and let xj = |I(j)|. The decision variables in the MCCMM are α∗ij, the new congestion
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weight values that induce equilibrium.

The objective function minimizes the cumulative change required, where change is de-

fined as the absolute value of the difference between the initial αij value and α∗ij for all

individuals i and facilities j. The difference between αij and α∗ij represents the level of in-

centive required to obtain equilibrium. As incentives may be costly, it is desirable to obtain

equilibrium using the least incentives possible. Mathematically, the MCCMM is defined by

Minimize
∑
i∈N

∑
j∈F

Gij

subject to

Gij ≥ αij − α∗ij ∀i ∈ N, j ∈ F

Gij ≥ α∗ij − αij ∀i ∈ N, j ∈ F

α∗ijxj + dij ≤ α∗ik(xk + 1) + dik ∀j ∈ F, i ∈ I(j), k 6= j ∈ F

α∗ij ≥ 0 ∀i ∈ N, j ∈ F

The first two sets of constraints ensure that no matter if α∗ij is more or less than αij, the

change is counted as a positive number. This reflects the idea that increasing and decreasing

congestion weights may be equally costly. The third set of constraints is the equilibrium

condition with optimal congestion weights. Finally, the optimal congestion weights must be

non-negative. Note that this is a linear program since the objective function and constraints

are linear functions of the continuous decision variables α∗ij.

4.6.2 Computational Study and Results

The MCCMM is implemented using data from the cholera epidemic in Haiti described in

Chapter 3. The study focuses on the Ouest department including Port-au-Prince, because
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it is the most congested region of the country. First, the centralized planner’s problem is

solved to identify the assignment of demand to open facilities that minimizes system-wide

distance and congestion. Then, the MCCMM is solved to compute congestion weights that

will make the centralized optimum an equilibrium at minimum cost. In the remainder of

this section, the author describes the study design and results.

4.6.2.1 Study Design

Daily reports from [122] were analyzed and the mean daily number of cases in the

department is used to represent the demand of an average day. The average daily demand

in April 2011 was 62 individuals. The mean number of cases is distributed among 113

sections in the Ouest department in proportion to each section’s population. Let Ds be the

number of cases for section s.

Facility locations and capacities are taken from the robust solution prescribed in Chapter

3 of this dissertation, yielding 39 open facilities. Let Cj be the number of beds available at

facility j. Figure 4.7 illustrates the spatial distribution of demand and available facilities

over the study area. Darker shading indicates greater demand, where the greatest demand

center lies in Port-au-Prince. As a result of the high density of demand, there are more

facilities in this area. Conversely, facilities are more spread out in rural areas with lower

demand.

Because cholera is deadly if not treated within a few hours and an average person can

travel 5km per hour on foot [121], the maximum allowable distance between an individual

and his assigned facility is 15km. Therefore, the centralized problem is modified such that

the decision variable xij is only defined if individual i is within 15km of facility j.

Initial congestion weights are set to αij = (10 ∗Ds)/Cj for individual i in section s and

j ∈ F . The choice of αij values stems from the idea that for a given demand, a person

will choose a more distant facility that has a higher capacity over a closer facility if the

number of other people at both facilities is the same. Similarly for a given facility capacity,
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Figure 4.7: Illustration of the average daily demand for each section in the Ouest depart-
ment for April 2011. Dots represent the locations of open facilities within 15km of the Ouest
department.

a person may choose a more distant facility over one nearby if the demand of his section

is high because proximal facilities may be overcrowded. The demand in the numerator is

multiplied by 10 to make distance and congestion weights comparable. (Sensitivity analysis

on the scaling factor yielded little change to overall conclusions.)

The centralized planner’s problem and the MCCMM are implemented using CPLEX

12.5 on a Dell XPS running Windows 7 with a 12-core processor and 64GB of memory. The

centralized optimum was calculated in 1.03 seconds (212.30 ticks) and optimal congestion

weights were computed in 0.09 seconds (32.43 ticks).

4.6.2.2 The Centralized Optimum and Optimal Congestion Weights

Figures 4.8 and 4.9 illustrate the spatial distribution of the average distance traveled

and congestion experienced in the centralized optimum for an individual in each section.

Because of the spatial distribution of facilities, individuals in rural areas travel further than

those in areas with higher demand. The greatest distance an individual must travel in the

centralized optimum is 9.07km, well below the 15km threshold. Congestion is greater in

areas of high demand, but the centralized optimum spreads people somewhat evenly across
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Figure 4.8: The average distance traveled (km) to the assigned facility for each section.

proximal facilities. The greatest congestion an individual experiences is 4 total people at an

assigned facility.

The centralized optimum assigns 54 percent of the individuals to their nearest facil-

ity, demonstrating the potential inefficiency of models that assume all beneficiaries simply

choose the nearest one. The total cost of assigning each person to his nearest facility would

be 543.46, with 157.46km total distance traveled and a congestion cost of 386. By assigning

some individuals to their second or third closest facility, the centralized optimum incurs a

total cost of 334; total distance traveled increases to 176.45km but the congestion cost de-

creases to just 158. On average, an individual travels 0.31km further in the central optimum

than to his nearest facility. In return, an individual experiences an average congestion of

1.6 people (including himself) instead of 2.1 if he had chosen the nearest facility.

The MCCMM decreases or increases initial congestion weights to encourage or discour-

age certain choices. Because the objective function seeks to minimize the cumulative change,

an individual’s congestion weight for his assigned facility will never be increased, and the

congestion weight for unassigned facilities will never be decreased. Instead, the initial con-

gestion weight for an assigned facility may need to be decreased to encourage the individual

to choose that facility. Conversely, an individual’s initial congestion weight for an unassigned

facility may need to be increased so that the individual does not choose the facility.
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Figure 4.9: The average congestion experienced (number of people) at the assigned facility
for each section.

Figure 4.10: The range in optimized congestion weights for each section.

The range in optimal congestion weights and the average percentage change from initial

to optimal is greatest in densely populated areas because this is where individuals had to be

encouraged or discouraged from making certain choices. Figures 4.10 and 4.11 display this

pattern. In practice, coordination mechanisms are likely to be most valuable in areas with

over-congested facilities. The ability to spread people evenly among facilities will improve

resource utilization as well as decrease the time an individual must wait to be served.

To better understand how results differ at the facility level, six facilities are examined in

detail. These include two facilities with high capacities in dense areas (denoted HCD1 and

HCD2), two facilities with low capacities in dense areas (denoted LCD1 and LCD2), one

facility with high capacity in a rural area (HCR), and one facility with a low capacity in a
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Figure 4.11: The average percentage change in congestion weight to obtain equilibrium for
each section.

rural area (LCR).

As Figure 4.12 indicates, no change in congestion weights is needed for facilities HCR and

LCR. The rural location makes these facilities the only viable choice for individuals nearby.

They are also too distant from individuals in densely populated areas to be considered either

by a centralized planner or the beneficiaries themselves.

More interesting observations pertain to changes required for facilities in densely pop-

ulated areas that have different capacities. Congestion weights for both HCD1 and HCD2

had to be increased on average, while congestion weights for LCD1 and LCD2 had to be

decreased. Recall that facility capacity appears in the denominator of beneficiaries’ initial

congestion weights. If an individual is to feel similarly about a facility with high capacity

and a facility with low capacity, the congestion weight for the high capacity facility must

be increased and/or the congestion weight for the low capacity facility must be decreased.

In practice, it may be imperative to encourage individuals to choose facilities with lower

capacities so that facilities with greater capacities are not overwhelmed. Of course, this en-

couragement must not be so strong that low capacity facilities are overwhelmed themselves.

The MCCMM balances these requirements.

Figures 4.13 through 4.18 display average initial congestion weights, optimized congestion

weights, and the difference between them for each facility in the sample. The magnitude of
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Figure 4.12: The average required change in individuals’ congestion weights for selected
facilities of different types; HCD1 and HCD2 are high-capacity facilities in densely populated
areas; LCD1 and LCD2 are two low-capacity facilities in densely populated areas; HCR is a
high-capacity facility in a rural area; LCR is a low-capacity facility in a rural area.

change in congestion weights for LCD2 is largest, greatly encouraging some individuals to

choose this facility. The average change for HCD1 and HCD2 is only positive, discouraging

some individuals from choosing those facilities. The magnitude of change required for both

HCD1 and HCD2 is higher than LCD2.

Changes in congestion weights for HCD1 and HCD2 discourage individuals from 2 and 3

sections, respectively, from choosing those facilities. Changes in congestion weights concern-

ing LCD1 encourage individuals from one section to choose it while discouraging individuals

from another section. Lastly, changes in congestion weights regarding LCD2 encourage in-

dividuals from one section to choose it.

In practice, it may be valuable to identify high capacity facilities that are likely to be

congested ahead of time. Then, individuals for whom these facilities are likely choices but

have a lower capacity facility nearby can be encouraged to choose the lower capacity facility.

This encouragement may come from both disincentives to choose the high capacity facility

or incentives to choose the low capacity facility.

To summarize the findings of the study, the congestion component of the centralized plan-
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(a)

(b)

(c)

Figure 4.13: Initial (a) and optimized (b) congestion weights for HCD1; the average change
in individuals’ congestion weights for this facility (c).
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(a)

(b)

(c)

Figure 4.14: Initial (a) and optimized (b) congestion weights for HCD2; the average
change in individuals’ congestion weights for this facility (c).
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(a)

(b)

(c)

Figure 4.15: Initial (a) and optimized (b) congestion weights for LCD1; the average change
in individuals’ congestion weights for this facility (c).
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(a)

(b)

(c)

Figure 4.16: Initial (a) and optimized (b) congestion weights for LCD2; the average change
in individuals’ congestion weights for this facility (c).
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(a)

(b)

(c)

Figure 4.17: Initial (a) and optimized (b) congestion weights for a high capacity facility in
a rural area; the average change in individuals’ congestion weights for this facility (c).
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(a)

(b)

(c)

Figure 4.18: Initial (a) and optimized (b) congestion weights for low capacity facility in a
rural area; the average change in individuals’ congestion weights for this facility (c).
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ner’s objective function encourages the centralized optimum to spread individuals somewhat

evenly across proximal facilities in densely populated areas. To make this solution an equi-

librium, some individuals need to be encouraged to travel a little bit further to receive a

lower utility than they would at the nearest facility. This encouragement comes in the form

of an increased congestion weight for the nearby facility and possibly a decreased congestion

weight for the assigned facility. Congestion weights concerning facilities with high capacities

rarely need to be lowered, but those regarding facilities with low capacities do. This signifies

that low-capacity facilities sometimes need to be made more attractive so that the optimal

number of people choose them.

Taking into consideration the findings in the previous sections of this chapter, this study

re-emphasizes the importance of coordination mechanisms to improve the performance of

decentralized systems that may otherwise perform very poorly. The author has shown that

these coordination mechanisms exist, but that because incentives come at a cost, imple-

menting them may only be practical if the cost is minimized. The MCCMM accomplishes

exactly this task.

4.7 Conclusion and Future Research

This chapter considers systems of beneficiaries seeking aid from a set of facilities in the

wake of a disaster. In these instances, individuals make decisions based on personal prefer-

ences regarding the facility at which they will be served. Specifically, this research integrates

two key factors: the distance that must be traveled and the congestion experienced. The

author introduces two classes of congestion games denoted the PFSCWP and the PSCWP.

The PFSCWP allows each player to place an independent weight on congestion for each

facility, while the PSCWP requires that a player’s congestion weight be applied identically

to all facilities.

This research contributes many important theoretical results for the PFSCWP. The

130



author greatly extends the current understanding of the prices of anarchy and stability.

Both measures can be arbitrarily high in general, but bounds on the price of anarchy are

proven in terms of both the numbers of players and facilities, as well as the largest and

smallest congestion weights. A substantial contribution is made in the area of coordination

mechanisms as the author shows that there exist equilibrium obtaining congestion weights

for any solution, demonstrating that it is possible for decentralized behavior to align with

any centralized optimum.

Turning to the PSCWP, the author presents an algorithm for computing an equilibrium

in polynomial time using a transformation to a minimum cost flow problem. Equilibrium

solutions may also be arbitrarily expensive for the PSCWP, but these are shown to depend

upon the greatest and least congestion weights. Coordination mechanisms are analyzed and

it is shown that when αi = 2 for all i ∈ N , the centralized optimum is always an equilibrium.

Furthermore, there exists a range of αi values under which the centralized optimum is an

equilibrium. In contrast to the PFSCWP, the existence of such coordination mechanisms

does not extend to all solutions.

A method is designed and implemented in chapter 4.6 to identify congestion weights

that transform a given centralized optimum into an equilibrium at minimum cost. Compu-

tational study results demonstrate that coordination mechanisms in the form of incentives

are required if decentralized systems are to behave in a centrally optimal manner. For the

case considered, these incentives are especially needed in areas with dense populations as

facilities are more likely to experience heavy congestion. In addition, it may be beneficial

to encourage individuals to choose facilities that have lower than average capacity to ease

the burden of highly chosen facilities with high capacities.

The results of this research provide many important insights into how these systems

perform. First, because an equilibrium can be computed efficiently and these solutions rep-

resent probable outcomes, logisticians may plan for decentralization and predict behavior.

This ability to predict the decisions of beneficiaries may prove extremely valuable when
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forecasting demand and allocating resources. It is shown that when the range of conges-

tion weights is large, decentralized systems can perform very poorly. Thus, incentives may

help beneficiaries view congestion at each facility similarly in order to achieve better out-

comes. Lastly, the identification of coordination mechanisms may achieve system-optimal

performance if the proper congestion weights are implemented.

There remain several avenues for future research. The decentralized model could be

extended to integrate additional factors that impact beneficiary behavior. For instance,

some individuals may make decisions based on the decisions of friends and family. These

interdependent utilities could be integrated into the congestion game. Additional factors

may include services offered at only a subset of facilities and name recognition or expertise

of agencies that operate certain facilities. If player utility functions remain monotonic,

these additional factors may be integrated without substantially increasing the complexity

of computing an equilibrium solution.

More research is needed regarding the price of stability. This research shows that there

exist instances where the price of stability is arbitrarily large. However, it would be beneficial

to bound the price of stability in terms of input parameters. This way, logisticians may

identify how well a decentralized system can perform. When combined with the price

of anarchy results presented here, a metric that may be interesting to study is the ratio

R = PA/PS, the upper and lower bounds of which determine the gap between the best

and worst possible system behavior.
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Chapter 5

Conclusion and Future Work

Humanitarian logistics systems operate in complex, dynamic, and uncertain environ-

ments and affect millions of lives. While mathematical optimization has long been an inte-

gral facet of commercial supply chain management, it is a relatively new technique within

the humanitarian sector. This thesis demonstrates the usefulness of such an approach,

focusing on the impact of decentralization within systems of response agencies and bene-

ficiaries alike. The author demonstrates that decentralization may result in inefficient and

inequitable outcomes.

In the first component of this work, existing applications of game theory from the lit-

erature are synthesized. The author discusses models of competition between relief orga-

nizations as they vie for donations and media exposure. The majority of research in the

literature contends that competition between relief agencies negatively affects service to

beneficiaries, but there are relatively few suggestions to mitigate the impact. Greater coor-

dination between relief organizations may improve operational effectiveness but few models

exist to overcome the numerous barriers. Moreover, there do not exist models that quantify

the impact of decentralization in a truly realistic manner, neglecting sources of uncertainty,

dynamism and personal preferences. This finding motivates the primary focus of the thesis.

The second component of this thesis quantifies the impact of decentralization on the part
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of response agencies through a dynamic, robust facility location model. The model acts as

a centralized benchmark that generates facility locations that optimize service accessibility.

The benchmark maintains realism by incorporating multiple sources of uncertainty within

a dynamic framework in which parameter values and location decisions may change over

time. A computational study is performed using data obtained from the cholera 2010-2011

epidemic in Haiti. The results illustrate a stark difference in metrics of efficiency and equity

between what was accomplished and what might have been achieved through coordinated

facility location decisions.

The final component of this research models the decisions of beneficiaries through a

congestion game that integrates individual preferences. The author defines the PFSCWP

and the PSCWP, two new classes of games that model beneficiary behavior when seeking

aid. A polynomial-time algorithm is constructed to compute equilibrium solutions, which

represent likely decisions for the PSCWP. New theoretical bounds on the prices of anarchy

and stability for the PSCWP and the PFSCWP are proven. These bounds represent the

best and worst that decentralized systems can perform relative to a centralized optimum.

Given the potentially catastrophic consequences of poor performance, the author identifies

coordination mechanisms that encourage centrally optimal decisions within a decentralized

environment. A characterization of solutions to the PSCWP that possess equilibrium ob-

taining congestion weights is presented. Furthermore, the author demonstrates that any

solution to the PFSCWP may be transformed into an equilibrium.

Finally, an optimization model is introduced that computes equilibrium obtaining con-

gestion weights while minimizing the cumulative change from an initial set of congestion

weights. The models may be used by practitioners to identify what areas will most require

incentives if beneficiaries are to make decisions that are best for the system. The method

is implemented through a computational study that utilizes data from the cholera epidemic

in Haiti.

There exist numerous opportunities for future research that applies game theory to
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improve humanitarian operations. Given the existing competitive environment and the fact

that most NGOs operate solely upon donations, models that identify the best sources of

income and optimize potential gifts are highly valuable. Additional research may also help

new NGOs find a niche within an already saturated market, improving the opportunity to

receive donations for a specific or under-represented cause.

Substantial improvements should be made in the area of inter-agency coordination. Fu-

ture work may improve inter-agency dynamics by creating models that identify compatible

partnerships, establish appropriate roles and improve effectiveness. New technology may

substantially increase opportunities for collaboration by decreasing the resources that it

requires. Inter-agency information sharing may be improved through models that apply

the concept of network centrality. These models might create mechanisms for efficiently

saturating a network by identifying agencies that are most integral to the network.

Security for the personnel of response agencies is of paramount importance. As more

and more NGOs become targets of violence, it becomes more difficult to recruit agencies

and individuals to serve in these regions. Future research could apply game theory to find

vulnerabilities, identify threats, and predict danger before it occurs.

The analysis performed in Chapter 3 utilizes the E2SFCA to optimize spatial access to

services. Future research may incorporate new sources of uncertainty such as demand or

the ability for NGOs to reach certain areas. The integration of geographical topology and

transportation routing, where available, may enhance the model’s prescriptive function-

ality. Furthermore, region-specific ability-to-travel weights may incorporate demographic

information and transportation availability.

Future work should investigate coordination mechanisms that encourage agencies to

make centrally optimal location decisions within the existing decentralized environment. In

addition to identifying optimal locations, incentives may be required to encourage NGOs

to participate. The literature shows that NGOs often congregate in areas where there is a

high probability of media exposure. Perhaps this trend might be utilized to by positioning
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media in areas that may otherwise be ignored. Models that identify optimal locations for

media outlets might guide decentralized agencies toward decisions that benefit beneficiaries.

These models should incorporate realities such as the cost of moving to certain locations,

and the resources such as water and utilities that will be available. In addition, policies

that ensure public acknowledgment for NGOs who agree to position facilities in a centrally

optimal manner may improve the likelihood of participation.

Regarding models of decentralized beneficiaries, enhancements of the PFSCWP might

add other factors that influence, the decision making process. For example, the choice

of facility for an individual may be influenced by the facility chosen by family members,

friends, and neighbors. If the utility an individual receives is determined by who chooses a

facility rather than how many others choose it, the game belongs to the class of additively

separable hedonic games, for which computing equilibrium solutions is NP -complete [145].

Future research may build heuristics that find near-equilibrium solutions for this game and

identify bounds on the prices of stability and anarchy.

While this work demonstrates that the price of stability may be arbitrarily high for

certain instances, future research may prove bounds on this value in terms of input pa-

rameters. Future work may also identify implementable practices to serve as coordination

mechanisms for systems of beneficiaries. For example, offering transportation assistance to

help distribute beneficiaries evenly and ease the congestion at facilities located in densely

populated areas would be highly valuable. In addition, informing beneficiaries of conges-

tion levels may encourage better decision making for those who are able to travel a greater

distance in order to encounter less congestion.
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[75] H. Jia, F. Ordóñez, and M. Dessouky, “A modeling framework for facility location of

medical services for large-scale emergencies,” IIE Transactions, vol. 39, no. 1, pp. 41–

55, 2007.

[76] J. Salmerón and A. Apte, “Stochastic optimization for natural disaster asset preposi-

tioning,” Production and Operations Management, vol. 19, no. 5, pp. 561–574, 2010.

[77] S. H. Owen and M. S. Daskin, “Strategic facility location: A review,” European Jour-

nal of Operational Research, vol. 111, no. 3, pp. 423–447, 1998.

[78] A. Khan, “An integrated approach to measuring potential spatial access to health care

services,” Socio-Economic Planning Sciences, vol. 26, no. 4, pp. 275–287, 1992.

[79] M. Guagliardo, “Spatial accessibility of primary care: Concepts, methods and chal-

lenges,” International Journal of Health Geographics, vol. 3, no. 3, pp. 3–13, 2004.

[80] W. Luo and F. Wang, “Measures of spatial accessibility to health care in a GIS

environment: Synthesis and a case study in the Chicago region,” Environment and

Planning B: Planning and Design, vol. 30, no. 6, pp. 865–884, 2003.

[81] M. Mandell, “Modelling effectiveness-equity trade-offs in public service delivery sys-

tems,” Management Science, vol. 37, no. 4, pp. 467–482, 1991.

[82] W. Luo and Y. Qi, “An enhanced two-step floating catchment area (E2SFCA) method

for measuring spatial access to primary care physicians,” Health and Place, vol. 15,

no. 4, pp. 1100–1107, 2009.

145



[83] L. McLay and M. Mayorga, “A dispatching model for server-to-customer systems that

balances efficiency and equity,” Manufacturing and Service Operations Management,

vol. 15, no. 2, pp. 205–220, 2013.

[84] E. Savas, “On equity in providing public services,” Management Sciences, vol. 24,

no. 8, pp. 800–808, 1978.

[85] N. Serban, “A space-time varying coefficient model: The equity of service distribu-

tion,” Annals of Applied Statistics, vol. 5, no. 3, 2011.

[86] W. Luo and T. Whippo, “Variable catchment sizes for the two-step floating catchment

area (2SFCA) method,” Health and Place, vol. 18, no. 4, pp. 789–795, 2012.

[87] R. Aboolian, O. Berman, and V. Verter, “Maximal accessibility network design in the

public sector,” Transportation Science: Articles in Advance, pp. 1–12, 2015.

[88] A. Li, L. Nozick, N. Xu, and R. Davidson, “Shelter location and transportation plan-

ning under hurricane conditions,” Transportation Research Part E, vol. 48, no. 4,

pp. 715–729, 2012.

[89] J. L. Heier Stamm, N. Serban, J. Swann, and P. Wortley, “Quantifying and explaining

accessibility with application to the 2009 H1N1 vaccination campaign.” Under review,

2015.

[90] Z. Peng, “The jobs-housing balance and urban commuting,” Urban Studies, vol. 34,

pp. 1215–1235, 1997.

[91] F. Wang, “Modeling commuting patterns in Chicago in a GIS environment: A job

accessibility perspective.,” Professional Geographer, vol. 52, no. 1, pp. 120–133, 2000.

[92] F. Cervigni, Y. Suzuki, T. Ishil, and A. Hata, “Spatial accessibility to pediatric ser-

vices,” Journal of Community Health, vol. 33, no. 6, pp. 444–448, 2008.

146



[93] P. Delamatar, “Spatial accessibility in suboptimally configured healthcare systems:

A modified two-step floating catchment area (M2SFCA) metric,” Health and Place,

vol. 24, pp. 30–43, 2013.

[94] M. McGrail and J. Humphreys, “Measuring spatial accessibility to primary care in ru-

ral areas: Improving the effectiveness of the two-step floating catchment area method,”

Applied Geography, vol. 29, no. 4, pp. 533–541, 2009.

[95] A. Ngui and P. Apparicio, “Optimizing the two-step floating catchment area method

for measuring spatial accessibility to medical clinics in Montreal,” BMC Health Ser-

vices Research, vol. 11, no. 166, 2011.

[96] N. Wan, F. Zhan, B. Zou, and E. Chow, “A relative spatial access assessment approach

for analyzing potential spatial access to colorectal cancer services in Texas,” Applied

Geography, vol. 32, no. 2, pp. 291–299, 2012.

[97] M. Langford, R. Fry, and G. Higgs, “Measuring transit system accessibility using a

modified two-step floating catchment technique,” International Journal of Geograph-

ical Information Science, vol. 26, no. 2, pp. 193–214, 2012.

[98] E. Erkut, “Inequality measures for location problems,” Location Science, vol. 1, no. 3,

pp. 199–217, 1993.

[99] W. Ogryczak, “Inequality measures and equitable locations,” Annals of Operations

Research, vol. 167, no. 1, pp. 61–86, 2009.

[100] P. Braveman and S. Gruskin, “Defining equity in health,” Journal of Epidemiology

and Community Health, vol. 57, no. 4, pp. 254–258, 2003.

[101] A. Culyer and A. Wagstaff, “Equity and equality in health and health care,” Journal

of Health Economics, vol. 2, pp. 431–457, 1993.

147



[102] P. Leclerc, L. McLay, and M. Mayorga, “Modeling equity for allocating public re-

sources,” Community-Based Operations Research (M. P. Johnson, ed.), International

Series in Operations Research and Management Science, vol. 57, pp. 97–118, 2011.

[103] M. Marsh and D. Schilling, “Equity measurement in a facility location analysis: A

review and framework,” European Journal of Operational Research, vol. 74, no. 1,

pp. 1–17, 1994.

[104] Y. Lai, Y. Ouyang, and C. Barkan, “A rolling horizon model to optimize aerody-

namic efficiency of intermodal freight trains with uncertainty,” Transportation Science,

vol. 42, no. 4, pp. 466–477, 2008.

[105] J. Soto, Dynamic and robust capacitated facility location in time varying demand en-

vironments. PhD thesis, Texas A and M University, 2009.
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[129] H. Ackermann, H. Röglin, and B. Vöcking, “Pure Nash equilibria in player-specific

and weighted congestion games,” Internet and Network Economics, Lecture Notes in

Computer Science, vol. 4286, pp. 50–61, 2006.
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Appendix A

Supplementary Material for Chapter

3: Examples

A.1 An example illustrating the functionality of f tj

The rolling horizon model presented in §3.3 uses the parameter f tj when a facility j is

opened in some period t and must remain open beyond the end of the planning horizon

in order to achieve m consecutive periods of operation. The parameter supplements the

number of periods that a facility will remain operational beyond the planning horizon so

as to satisfy constraint sets (13) and (30). The following example demonstrates how f tj

functions in the model.

Example 1. (From [2]) Let t0 = 4, τ = 3, and m = 4. Suppose j has never been open

before t0. Thus,
t0−1∑
l=0

H l
jks = 0 and ht0jks = 0. The parameter f tj is calculated by

f tj = max{0, t− (τ + t0) + (m− 1)} ∀t ∈ t0...t0 + τ.
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Constraint (13) reduces to

0 + (x4j + z4j (0)) + (x5j + z5j (1)) + (x6j + z6j (2)) + (x7j + z7j (3)) ≥ 4(
7∑
t=4

ztj + 0).

Facility j may be opened in any period in the planning horizon, but only once due to

constraint (12). Suppose j is planned to be open in period 6. Constraint (13) is calculated

by 0 + (0 + 0) + (0 + 0) + (1 + 1(2)) + (1 + 0) ≥ 4(1 + 0) which is satisfied.

A.2 Clarification of the sufficient access threshold φ

The parameter φ determines the threshold for what is considered to be sufficient access.

If the sum of the weighted capacity-to-demand ratios within the catchments of a population

i is less than φ, that population is said to have insufficient access. The following example

lends greater clarity to the meaning of a particular φ value.

Example 2. Consider two population locations denoted 1 and 2 with demands D1 =

4000 and D2 = 3500 and restrict these populations to the low ability to travel given by

(1 0.239 0.057). Consider three facility locations denoted 1, 2 and 3, with capacities

C1 = 80, C2 = 30, and C3 = 80 respectively, located within the catchments of the two

populations as in Figure A.1.

Weighted capacity-to-demand ratios for each facility are calculated by

R1 = 80
0.239∗4000+0.057∗3500 = 0.069,

R2 = 30
0.239∗3500+0.057∗4000 = 0.028, and

R3 = 80
0.057∗4000+0.057∗3500 = 0.187.

The resulting access scores for the two populations are

A1 = 0.239(0.069) + 0.057(0.028 + 0.187) = 0.028 and

A2 = 0.239(0.028) + 0.057(0.069 + 0.187) = .021.

These values satisfy the access sufficiency constraint where φ = 0.02.
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Figure A.1: Population and facility locations in Example 2, illustrating sufficient access.

In this example, 7,500 patients visit one of three facilities containing a total of 190 beds.

On average, this allows 1.3 patients to use each bed per day, corresponding to 17.24 hours

per patient per bed. To demonstrate that 17.24 hours per patient per bed satisfies conditions

for sufficient treatment, consider that between 80 and 90 percent of cholera victims require

rehydration alone, which typically requires three to four hours to complete [120].
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4

Despite the fact that this thesis focuses on problem settings in which individuals seek

to minimize congestion, other settings may be characterized by beneficiaries who desire

a facility chosen by many other people. For example, during some humanitarian crises,

beneficiaries may find safety in numbers, desiring a facility or refugee camp in which many

others have found respite. In this case, the congestion game may integrate player utility

functions where greater congestion is desired. Mathematically, this is accomplished by

setting αij ≤ 0 for all players i and facilities j. Computing equilibria in this game can

still be done in polynomial time as utility functions remain monotonic in congestion. The

following theorem demonstrates that for a given solution X, there exist non-positive αij

values for which X is an equilibrium.

Theorem 15 For any instance G of the PFSCWP and solution X, there exist non-positive

congestion weights αij for which X is an equilibrium.

Proof. Consider an instance G of the PFSCWP and a solution X. For each player i, let

di,min and di,max be the distance from i to the nearest and farthest facilities and let xmin

and xmax be the populations of the facilities with the least and greatest number of players,
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respectively. For each player i, let αij =
−di,max
xmin

where j is the facility chosen by player i.

For each of the other facilities k 6= j , let αik =
−di,min
xmax+1

.

The utility of each player at his chosen facility is
−di,max
xmin

xj+dij =
xj
xmin

(−di,max)+dij ≤ 0

since
xj
xmin
≥ 1 and di,max ≥ dij.

The utility of person i upon switching to facility k would be
−di,min
xmax+1

(xk + 1) + dik =

xk+1
xmax+1

(−di,min) + dik ≥ 0 since xk+1
xmax+1

≤ 1 and di,min ≤ dik.

Therefore, αijxj + dij ≤ αik(xik + 1) + dik implying X is a Nash equilibrium.
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