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Abstract 

Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms 

worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation 

of PRRSV makes it difficult for current vaccines to confer protection against newly emerging 

strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a 

potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate 

H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with 

Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 

(parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with 

MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with 

MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated 

by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone.  Pigs 

vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but 

higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV 

alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when 

combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different 

PRRSV strains by modulating both host humoral and cellular immune responses. 
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1. Introduction 
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Pork is one of the most widely consumed meats in the world, accounting for more than a third of 

meat production worldwide.  Infectious diseases remain the biggest threat to the pork industry, 

resulting in billions of dollars in economic losses [1]. One particularly devastating disease known 

to lead to the dramatic decline of swine herds and increased pork prices is porcine reproductive 

and respiratory syndrome (PRRS) [1]. Clinical features of PRRS include massive abortion in 

sows and weight loss, respiratory disease, and mortality in young pigs. PRRS outbreaks continue 

to emerge rapidly and with increased virulence; if left untreated, outbreaks will endanger swine 

industries worldwide. 

PRRS is caused by the PRRS virus (PRRSV). Field isolates often differ significantly in 

the degree of virulence and pathogenicity, presumably due to a high degree of genetic variation 

among strains [2]. PRRSV can be broadly divided into two distinct genotypes, Type 1 (European) 

and Type 2 (North American). Each genotype also contains several subtypes, which are also 

genetically diverse and lead to immunity limited to the initial infecting genotype, with only 

partial or no protection from reinfection by other subtypes [3]. Due to genetic diversity and the 

rapid evolution rate of PRRSV, development of a broadly protective PRRSV vaccine is 

challenging, but vaccination remains the most effective way to control PRRS. Several types of 

commercial vaccines, including killed or modified live vaccines, have been widely used [4]. 

Current killed vaccines are largely ineffective in preventing both PRRSV infection and disease, 

so most farms vaccinate their herds with modified live vaccines to control PRRS outbreaks.  

Modified live vaccines are shown to reduce disease caused by genetically similar strains, but 

they provide very limited or no protection against genetically unrelated field isolates [5]. 

Therefore, broad cross-protection against genetically dissimilar PRRSV strains should be the 

main consideration for the design of improved PRRSV vaccines.   
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Adjuvants including oil-in-water emulsions, polymers, and bacterial antigens have been 

tested in combination with modified live vaccines in an effort to reduce the antigenic load and 

improve vaccine efficacy [6, 7]. Results from these studies suggest that addition of adjuvant to 

MLV PRRSV vaccines can lead to increased protection to PRRSV challenge. Peptide hydrogels 

also might be a promising delivery system for vaccines due to their high water content, polymer 

network and reversible sol-gel (solution to gel) formation. Peptide hydrogels have been well 

studied as drug delivery systems, for tissue engineering applications, and in 3-D cell culture and 

show promising results [8, 9]. We recently developed a novel peptide that can form a flexible 

nanofiber hydrogel (H9e) and functions as a potent adjuvant for killed H1N1 influenza vaccines 

[10]. To further characterize the capabilities of the H9e hydrogel, we evaluated H9e as an 

adjuvant for PRRSV MLV vaccines. Results show that the addition of H9e to MLV enhanced 

protection of pigs to both homologous and heterologous strains of PRRSV. Compared with pigs 

vaccinated with MLV alone, animals vaccinated with MLV+H9e developed earlier and more 

robust PRRSV-specific neutralizing antibodies as well as increased PRRSV-specific Th1 

cytokine IFN-γ and reduced immunosuppressive cytokine IL-10. Together, these results suggest 

that PRRS MLV vaccine formulated with H9e adjuvant may increase vaccine efficacy against 

genetically diverse PRRS viruses. 

 

2. Materials and Methods 

2.1. Cells, virus and adjuvant preparation 

MARC-145 cells were maintained in modified Eagle’s medium (MEM) supplemented with 7% 

fetal bovine serum (FBS) containing penicillin (100U/ml) and streptomycin (100 µg/ml) at 37 °C 

with 5% CO2. For virus infection and titration, MEM supplemented with 2% FBS was used. 
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Ingelvac PRRS® modified live virus vaccine (MLV) was purchased from Boehringer Ingelheim 

Vetmedica Inc (St. Joseph, MO). PRRSV MN184A was a kind gift from Dr. Kay Faaberg 

(National Animal Disease Center, USDA-ARS, Ames, IA). PRRSV strains VR-2332 (ATCC, 

Manassas, VA) and MN184A were prepared and titered in MARC-145 cells and stored in 

aliquots at -80 °C until use. H9e peptide was prepared as previously described with a final 

concentration of 17.5 mg/ml [10]. PRRS MLV vaccine was resuspended in 50 ml vaccine diluent, 

provided by the manufacturer, to yield a 2-fold concentrate of vaccine virus. MLV-alone vaccine 

was then mixed 1:1 with vaccine diluent. A solution of 6 mg H9e with 1.2% porcine serum in 

diluent/MEM medium was added 1:1 with 2x MLV to prepare MLV+H9e vaccine. 

 

2.2. Pigs, vaccination and PRRSV challenge 

Thirty-five female/unvaccinated (3 weeks old) Large White-Duroc crossbred PRRSV-free pigs 

were divided into 7 groups (n = 5) and housed in separate pens within the Large Animal 

Research Center (LARC) at Kansas State University. These piglets were confirmed sera-negative 

for antibodies to PRRSV by ELISA and PRRSV-free in serum by RT-PCR. Pigs were 

immunized intramuscularly on day 0 with placebo, PRRS-MLV (1x106 TCID50/ pig), or PRRS-

MLV+H9e (1x106 TCID50 + 6 mg H9e/ pig). Twenty-eight days post vaccination (DPV), the pigs 

were challenged with either homologous PRRSV VR-2332 (1x106 TCID50) or heterologous 

MN184A (5x105 TCID50). Body weight measurements and blood samples were collected weekly 

(0, 7, 14, 21, 28 DPV and 7, 14 DPC). Pigs were also monitored daily for rectal temperature and 

clinical signs after challenge. All pigs were humanly euthanized 15 days post challenge (DPC). 
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All animal experiments were approved by the Institutional Animal Care and Use Committee at 

Kansas State University. 

 

2.3. Analysis of serum virus titer 

Total RNA was extracted from serum and one-step SyBR Green real-time PCR (Bio-Rad, 

Hercules, CA) was performed to evaluate the PRRSV ORF7 expression level as previously 

described [11]. For quantification, total RNA of a known TCID50 of virus was 10-fold serially 

diluted and were used to generate a standard curve. The virus quantities of unknown samples 

were determined by linear extrapolation of the Ct value plotted against the standard curve. 

 

 

2.4. PRRSV-specific and virus neutralizing antibody titration 

PRRSV-specific ELISA antibody titers were measured using the Herdcheck Porcine 

Reproductive and Respiratory Syndrome X3 Antibody Test (IDEXX Laboratories, Westbrook, 

ME) as described by the manufacturer. Virus neutralizing antibody titer in the serum was 

analyzed as previously described [11]. Briefly, serum samples were heat-inactivated and serial 

dilutions were mixed with PRRSV VR-2332 or MN184A viruses. After incubation, the mixtures 

were transferred to MARC-145 cells and incubated for 72 hours. Cytopathic effect (CPE) was 

used to determine the end-point titers that were calculated as the reciprocal of the highest serum 

dilution to neutralize >90% CPE induced by 200 TCID50 of PRRSV in duplicate wells per 

sample.  

 

2.5. Analysis of cytokine responses 
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Pig sera were collected at 7 DPC to evaluate IL-4, IL-8, IL-10, IFN-γ, and TNF-α cytokine 

secretion profiles by ELISA. Procedures were performed as per the manufacturer’s instructions 

(Invitrogen, Carlsbad, CA). Additionally, at necropsy (15 DPC), 106 tracheobronchial lymph 

node (TBLN) mononuclear cells (MNCs) and lung MNCs were restimulated with 200 TCID50 of 

the respective challenge PRRSV similar to that described in Ferrari et al. [12]. Cell culture 

supernatants were analyzed by ELISA for IL-10 cytokine secretion (Invitrogen). 

 

2.6. Flow cytometry analysis 

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized blood samples by 

Ficoll-Hypaque gradient centrifugation using Histopaque®-1077 (Sigma-Aldrich, St. Louis, MO). 

Flow cytometry analysis was performed to determine different lymphocyte populations based on 

the cell surface marker phenotype: T-helper cells (CD3+CD4+CD8-), cytotoxic T lymphocyte 

(CD3+CD4-CD8+), Th/memory cells (CD3+CD4+CD8+), T-regulatory cells (CD4+FoxP3+CD25+) 

and γδ T cells (CD8+ TcR1N4+). The mouse anti-pig TcR1N4 antibody was purchased from 

VMRD (Pullman, WA), and all other antibodies were purchased from BD Biosciences (San Jose, 

CA). Immuno-stained cells were acquired using a FACS Caliber (BD Biosciences) flow 

cytometer. Frequencies of individual lymphocytes were analyzed by 100,000 events using 

FlowJo software (Tree Star, Inc., Ashland, OR). 

 

2.7. Statistical analysis 

All data were expressed as the mean value of five pigs ± SEM. The differences in the level of 

humoral response, cytokine production and viremia among each group were determined by the 

one-way analysis of variance (ANOVA) followed by post-hoc Tukey’s test using Sigmaplot 11 



8 
 

software (Systat Software Inc., San Jose, CA). Differences were considered statistically 

significant when p<0.05. 

 

3. Results 

3.1. H9e adjuvant enhances cross-protection efficacy of MLV to heterologous PRRSV 

infection in pigs 

Our previous studies showed that H9e hydrogel can be a safe, efficacious adjuvant for the killed 

H1N1 swine influenza vaccines, resulting in significantly higher hemagglutination inhibition 

titers and antibody titers to swine influenza than immunization with antigen alone [10]. Since 

H9e acts as a potent adjuvant for killed subunit vaccines, we hypothesized that H9e hydrogels 

could also work as an adjuvant for a modified live PRRS vaccine. 

H9e solution is a free-flowing solution at ambient temperature, and forms an injectable 

hydrogel at physiological conditions. H9e was easily mixed with MLV and showed no virucidal 

effects on the vaccine virus (data not shown). Pigs were vaccinated with Ingelvac PRRS MLV 

vaccine alone (MLV), Ingelvac PRRS MLV vaccine adjuvanted with hydrogel H9e (MLV+H9e), 

or PBS (mock). Twenty-eight days post vaccination (DPV), pigs were subjected to virus 

challenge with low virulence homologous VR-2332 (1 x 106 TCID50/pig) or moderately virulent 

heterologous MN184A (5 x 105 TCID50/pig) strains of PRRSV. The mean body temperature of 

unvaccinated pigs challenged with VR-2332 or MN184A was 0.3 or 1.0 oC higher than 

vaccinated pigs, respectively, with no difference between vaccinated groups (data not shown). 

Interestingly, pigs vaccinated with MLV gained significantly less weight than unvaccinated and 

MLV+H9e vaccinated pigs at 28 DPV (Fig. 1a, b), suggesting that the un-adjuvanted MLV 

vaccine virus may cause sub-clinical disease in pigs.  
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To determine if vaccinated pigs were protected from homologous or heterologous virus 

challenge, titers of circulating virus were measured 7 days post challenge (DPC). We found that 

the pigs vaccinated with MLV+H9e were able to significantly clear both the VR-2332 and 

MN184A strains circulating in the blood 7 days post challenge (7 DPC). Pigs vaccinated with 

MLV alone were able to significantly clear the homologous VR-2332 virus strain (Fig.1c). The 

pigs vaccinated with MLV alone had reduced viral load in the blood after MN184A challenge; 

however, it was not statistically significant from that in the unvaccinated-challenged group of 

pigs (Fig. 1d). Taken together, these results suggest that the addition of H9e adjuvant to PRRSV 

MLV vaccines can enhance protection against genetically distinct stains of PRRSV.   

 

3.2. Pigs vaccinated with MLV+H9e have increased vaccine virus circulation in the blood 

after vaccination 

H9e rapidly forms a gel once it is formulated with MLV. Therefore, we suspect that the H9e 

nanofiber network may act as a scaffold to prolong vaccine virus entry into the blood or enhance 

its replication within the host to enhance the vaccine’s protective effects. To determine if H9e 

adjuvant affects the viral load of the vaccine strain of PRRSV in vaccinated pigs, we measured 

circulating viral load in the serum of all pigs weekly. Interestingly, pigs vaccinated with 

MLV+H9e started to develop significantly higher levels of circulating virus two weeks after 

vaccination and reached an average maximum of 5.5-fold (9,057±402 TCID50 equivalent/ml ) 

higher virus titers than that in pigs vaccinated with MLV alone (1,638± 625 TCID50 equivalent 

/ml) on 21 DPV (Fig. 2a). By 28 DPV, the MLV virus was eliminated from the blood of pigs in 

all groups. Therefore, our results suggest that H9e may act to stabilize the MLV virus within the 

host and thus to increase the exposure of antigen to the host immune system. 
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3.3. H9e-MLV vaccinated pigs show enhanced PRRSV-specific antibodies and PRRSV 

neutralizing antibodies 

To determine whether increased antigen exposure might lead to enhanced humoral and cellular 

immune responses in vaccinated pigs, we first evaluated antibody responses of pigs vaccinated 

with PRRSV MLV in the presence or absence of H9e. Serum samples were analyzed by 

commercial IDEXX PRRSV-specific antibody ELISA. By 14 DPV, 9 out of 10 pigs vaccinated 

with MLV+H9e were positive for PRRSV-specific antibodies (as defined by manufacturer at S/P 

ratio ≥ 0.4), compared with only 5 out of 10 pigs in MLV alone groups (Fig. 2b and 

Supplemental Figure 1). Therefore, these results suggest that addition of H9e adjuvant results in 

the earlier onset of PRRSV antibodies than MLV alone. By 21 DPV, all vaccinated pigs had 

seroconverted to anti-PRRSV antibody positive.  

PRRSV MLV vaccination is characterized by generation of early non-protective 

antibodies specific to the nucleocapsid protein (as measured by IDEXX ELISA) and delayed 

generation of protective virus neutralizing antibodies. To determine if the H9e-mediated 

prolonged viremia affects the production of neutralizing antibodies as well, the PRRSV 

neutralizing antibody titers (VN titers) were analyzed. On 28 DPV, pigs vaccinated with 

MLV+H9e had similar VN titers to both VR-2332 and MN184A as that in pigs vaccinated with 

MLV-alone (Fig.2c). After homologous VR-2332 viral challenge, pigs vaccinated with 

MLV+H9e had significantly higher VN titer to VR-2332 and comparable VN titer to MN184A 

compared with pigs vaccinated with MLV alone (Fig. 2d).  However, all vaccinated pigs 

developed similar levels of VN titers after heterologous MN184A viral challenge (Fig. 2e).  
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Therefore, our results show that the addition of H9e hydrogel adjuvant can induce early on-set 

and enhanced antibody production over vaccinating pigs with MLV alone. 

 

3.4. Pigs vaccinated with MLV+H9e hydrogel have increased pro-inflammatory cytokines 

and reduced immunosuppressive cytokine secretion profiles 

Because we found that H9e can improve the humoral immune responses of pigs to the PRRS 

MLV vaccine, we next assayed the effects of H9e adjuvant on MLV-elicited cytokine profiles. In 

doing so, sera at 7 DPC were analyzed for the presence of IL-4, IL-8, IL-10, IFN-γ and TNF-α. 

As shown in Fig. 3, the levels of IFN-γ, but not TNF-α, in the sera from MLV+H9e vaccinated 

pigs was significantly higher than that in pigs vaccinated with MLV-alone after challenge 

(Fig3a,b). The levels of IL-4 and IL-8 in sera from pigs vaccinated with MLV+H9e were 

significantly higher than that from pigs vaccinated with MLV-alone when the pigs were 

challenged with VR-2332 PRRSV (Fig. 3c, d). Conversely, the secretion of immunosuppressive 

cytokine IL-10 in sera of MLV+H9e vaccinated pigs was reduced compared with that in the 

MLV-alone vaccinated pigs after challenge with both VR-2332 and MN184A (Fig. 3e). IL-10 

expression levels of lung and TBLN MNCs also were analyzed at necropsy (15 DPC). As shown 

in Fig. 3e, after these cells were re-stimulated with either VR-2332 or MN184A in vitro, reduced 

IL-10 cytokine levels were observed in the supernatant of lung and lymph node MNCs of the 

pigs vaccinated with MLV+H9e. Therefore, our results suggest that addition of H9e to MLV 

vaccine alters cytokine expression profiles. 
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3.5. Pigs vaccinated with MLV+H9e display decreased T-regulatory and increased 

Th/memory lymphocyte subpopulations 

To verify if the change in cytokine expression patterns was associated with changes in 

lymphocytes population, the frequencies of T-helper cells, cytotoxic T lymphocyte, Th/memory 

cells, T-regulatory cells and γδ T cells in blood, lung, and lymph nodes were evaluated using 

flow cytometry analysis. As shown in Fig. 4, a significant decrease of the T-regulatory (Treg) 

lymphocyte population (Fig. 4a) and increase of the Th/memory lymphocyte population (Fig. 4b) 

was observed in the blood of pigs vaccinated with MLV+H9e than that in pigs vaccinated with 

MLV alone 4 weeks after vaccination.  The decrease of Treg lymphocyte population and 

increase of Th/memory lymphocyte population were also observed 14 DPC in pigs challenged 

with homologous VR-2332 or heterologous MN184A PRRSV in blood, TBLN, and lung MNC 

samples (Fig. 4c, d). Additionally, we examined Th cells, CTL, γδ T cells and NK cell 

population before and after challenge and found no significant changes in any groups (data not 

shown). 

 

4. Discussion 

 

Current commercial vaccines, both killed virus and modified live, are deficient in protecting 

swine herds from the consistently evolving field isolates of PRRSV [13]. One approach to 

improving PRRSV vaccine efficacy is the addition of immunomodulatory adjuvants including 

water-oil emulsions, aluminum, bacterial components, and polymers to killed or live modified 

PRRSV vaccines [14]. Interestingly, a new class of adjuvants, nanoparticles, has been shown to 
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increase the cross-protection efficacy of killed PRRSV vaccines. In a recent study by Dwivedi et 

al, PLGA nanoparticle-entrapped killed PRRSV vaccine induces a cross-protective immune 

response against heterologous PRRSV challenge via enhanced innate and PRRSV-specific 

adaptive responses [15]. However, further studies are needed to reduce the cost and complexity 

of nanoparticle production before nanoparticle-based vaccines can be widely used as commercial 

products. Some more cost-effect commercial water-in-oil emulsion and polymers adjuvants, such 

as MontanideTM ISA 15A and Gel01 ST, have also been utilized in live modified PRRSV 

vaccines [6].  Deville et al. showed that pigs vaccinated with adjuvanted MLV vaccine 

containing 50% of the antigen load had equivalent protection as pigs vaccinated with full dose of 

vaccine without the adjuvant.  

We recently reported that a biodegradable hydrogel could act as an adjuvant for killed 

swine influenza vaccines [10]. These previous results show that when H9e hydrogel was used in 

place of the supplied adjuvant of commercially available FluSure XP (Zoetis Inc), the H9e-

adjuvanted vaccine led to significantly higher HAI titers and equivalent IgG antibody responses 

than the standard formulation of FluSure. Based on these results, we explored the ability of H9e 

hydrogel to act as an adjuvant for PRRS modified live virus vaccine and here we demonstrated 

that H9e hydrogels enhanced the vaccine’s protective effects for both homologous and 

heterologous PRRSV infection.  

H9e hydrogel forms a biodegradable nanofiber network under physiological conditions 

[16].  Peptide-based nanofiber networks have been shown to aid in the controlled release of 

growth factors, therapeutics, and viruses [17-19]. Therefore, we hypothesized that this nanofiber 

network could create pockets that the vaccine virus could occupy and thus act as an antigen 

depot such that PRRS virus is presented slowly to the host immune system. We show here that 
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the H9e had no virucidal effects and was able to facilitate increased PRRS vaccine virus 

presentation to the host, as shown by enhanced vaccine virus circulation in the blood (Fig. 2a). 

These results suggest high vaccine virus titers in the blood induced by MLV+H9e vaccination 

may facilitate the generation of an early and robust PRRSV immune response and provide better 

protection against genetically diverse strains of PRRSV.  

In addition to high circulating vaccine virus, pigs vaccinated with MLV+H9e had earlier 

on-set of PRRS-specific ELISA antibodies and enhanced neutralizing antibody titers to 

homologous virus. Previous reports have shown that PRRSV-specific antibodies can appear as 

soon as one week post-vaccination or challenge, however seroconversion is often observed 

between 14-21 days post exposure [6, 20]. Our results are consistent with these reports and we 

found that addition of H9e adjuvant reduced the time that most pigs became positive for PRRSV-

specific antibodies (Fig.2b and Supplemental Fig.1). 

In order to gain insight into the immunologic mechanisms employed by the hydrogel 

adjuvant, cytokine expression levels after PRRSV challenge were compared among vaccinated 

groups of pigs. We found that the Th1-related cytokine IFN-γ in the sera of pigs vaccinated with 

MLV+H9e was significantly higher than that of pigs vaccinated with MLV alone after both 

homologous and heterologous challenges (Fig3a, b). IFN-γ is a key cytokine that is associated 

with host cell-mediated immunity (CMI) response, which is secreted by natural killer cells and 

several different T cell subpopulations, and its expression is often decreased by PRRSV infection 

[21, 22]. These studies suggest that decreased IFN-γ expression allows PRRSV to evade the host 

immune response and result in chronic PRRS infections. Interestingly, a recent study using two 

different PRRSV strains reported that systemic enhancement of IFN-γ further activates natural 
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killers and T cell subpopulations creating a positive feedback loop for the rapid clearance of 

PRRSV [23].  

Therefore, the elevated production of IFN-γ observed in the pigs vaccinated with H9e+MLV 

could explain the increased PRRS viral clearance and improved protective immune response we 

observed.  

The expression of inflammatory cytokine IL-8, but not TNF-α, was increased in pigs 

vaccinated with H9e-MLV when pigs were challenged with homologous VR-2332 virus (Fig. 3b 

and d).  In previous studies, low serum IL-8 levels are related to persistent PRRSV infection, and 

elevated IL-8 levels in serum is correlated with the clearance of PRRS virus [24, 25]. Although 

our results also indicated IL-8 may play a role in vaccination-induced clearance of PRRS virus, 

further experimentation is required to fully characterize the ability of H9e adjuvant to modulate 

IL-8 expression levels.  

The Th2-related cytokine IL-4 was increased in the sera of pigs vaccinated with 

MLV+H9e compared with the pigs vaccinated with MLV alone only after homologous VR-2332 

challenge. IL-4 expression has been shown to control macrophage inflammatory activities in the 

pig [26]. While IL-4 expression levels in PRRSV-infected pigs can remain unaltered [27], recent 

studies suggest that natural PRRSV infection can significantly induce the expression of IL-4 [28], 

suggesting that PRRSV-mediated IL-4 induction may be strain dependent. In our hands, the 

increased IL-4 expression after VR-2332 challenge correlated well with enhanced protection of 

pigs vaccinated with MLV+H9e than that of pigs vaccinated with MLV-alone. This indicates IL-

4 may play a positive role in the immune response to PRRSV infection. 

PRRSV infection or vaccination has been shown to induce a strong immunosuppressive 

response characterized by promoting the secretion of IL-10 to antagonize the protective Th1 
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immune response [29, 30]. In our study, we found that the concentrations of IL-10 in the serum 

and tissues of pigs vaccinated with MLV alone were consistently higher than that from pigs 

vaccinated with MLV+H9e (Fig. 3e). IL-10 is mainly produced by a small subpopulation of T 

lymphocytes termed T-regulatory cells [31]. Consistent with IL-10 levels, the frequency of T 

regulatory cells in MLV+H9e vaccinated pigs was dramatically reduced in blood, lung MNCs, 

and TBLNs post infection (Fig. 4c). Therefore, it is likely that the reduced T-regulatory cell 

population and production of IL-10 may contribute to the enhanced Th1 response and efficient 

elimination of PRRSV after challenge in the pigs vaccinated with MLV+H9e. 

CD4+CD8+ T cells, which include T-helper, cytolytic, and memory properties, are a 

major type I IFN-γ cytokine secreting population [32]. In our study, pigs vaccinated with 

MLV+H9e generated significantly higher Th/memory cell populations both before and after 

challenge compared to the unvaccinated and MLV vaccinated pigs. This result is consistent with 

the observation that IFN-γ production is elevated in pigs vaccinated with MLV+H9e. The high 

frequency of functional T memory cells may contribute to rapid recall response for the quick 

elimination of subsequent PRRS virus exposure [33]. The ability of H9e adjuvant to shift MLV 

vaccine from mainly humoral, to a response having both humoral and cell-mediated immune 

responses suggest that CMI may be important for increased vaccine protection potential. Our 

results support the notion that MLV+H9e may act to enhance IFN-γ and reduce IL-10 production 

via increasing Th/memory and decreasing Treg lymphocyte populations, thereby causing a shift 

to a Th1-type immune response to provide a better protection against PRRSV infection. 

 We have previously shown that flexible polymer adjuvants such Montanide™ Gel01 ST 

also can enhance the protective effects of modified live PRRSV vaccines: however, their 

enhanced protective effects are limited to homologous re-infection [11]. Interestingly, it was 
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demonstrated that the addition of Gel01 adjuvant to MLV vaccine could enhance vaccine-

induced antibody-mediated immunity but did not promote a stronger cellular-mediated immunity. 

Furthermore, Gel01 adjuvanted MLV did not show improved efficacy in reducing heterologous 

challenge-induced viremia as compared with MLV alone. Thus, these results and our previous 

work suggest that the vaccine’s ability to generate a cellular-mediated immune response may be 

essential to mediate its cross-protective efficacy against PRRSV infection. 

 

Conclusion 

This study shows that H9e hydrogel as an adjuvant for MLV can improve vaccination-

induced host protection against RRRSV infection by increased circulation of the vaccine virus in 

the blood, enhanced antibody production, and increased CMI responses. We believe that the 

addition of H9e hydrogel adjuvant to existing vaccines is an exciting method to improve PRRS 

live vaccine efficacy. These results encourage us to explore the ability of H9e to work as a 

universal adjuvant for a broad range of animal vaccines. 
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Figure 1 

 

 

Figure 1. H9e adjuvant enhances protection efficacy of MLV to homologous and 

heterologous PRRSV infection in pigs. Pigs (3-week-old) were vaccinated with MLV or 

MVL+H9e and challenged with the VR-2332 or MN184A strain of PRRSV 28 days post 

vaccination. (A, B) Fold body weight gain during the duration of the experiment was determined. 

(C, D) Viral RNA in the serum (TCID50 equivalent /mL) was measured on 7 days post challenge 

(DPC) by RT-PCR. Viremia data are shown as means ± SEM (n=5). Bracketed groups were 

compared and * denotes p <0.05, ** denotes p <0.01. 

 



21 
 

Figure 2 
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Figure 2. Pigs vaccinated with MLV+H9e have increased vaccine virus circulation and 

produce an earlier on-set of PRRSV-specific antibodies. (A) Viral RNA of MLV vaccine 

virus in the serum (TCID50 equivalent /mL) was determined by RT-PCR weekly after vaccination 

with MLV, or MLV+H9e. Data were shown as mean ± SEM (n=5) ** p <0.01. (B) Serum from 

vaccinated pigs was assayed for PRRSV-specific antibodies with IDEXX HerdCheck ELISA kit. 

The threshold for seroconvertion was set at a sample-to-positive (s/p) ratio of 0.4 according to 

manufacturers’ instructions. (C-E) Serum samples were titrated individually in MARC-145 cells 

for the levels of anti-PRRSV neutralizing antibodies 28 days post vaccination (DPV) or 14 days 

post challenge (DPC) determined as the highest dilution that inhibited CPE. Data are shown as 

mean ± SEM (n= 5). Bracketed groups were compared and ** denotes p <0.01. 
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Figure 3 
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Figure 3. Pigs vaccinated with MLV+H9e have increased PRRSV-specific IFN-γ, IL-4, IL-8 

and reduced IL-10 cytokine secretion.  Cytokine expression profiles in the sera of pigs 7 days 

post challenge (DPC) were examined by quantitative ELISA, (A) IFN-γ (B) TNF-α (C) IL-4 and 

(D) IL-8. (E) IL-10 concentrations in serum samples and supernatants of PBMCs and lung 

MNCs which were collected at necropsy (15 DPC) and restimulated with corresponding PRRSV 

strains.  Bracketed groups were compared and * denotes p <0.05, ** denotes p <0.01, and NS=no 

difference. 
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Figure 4 

 

 

Figure 4. Pigs vaccinated with MLV+H9e have decreased T-regulatory and increased 

Th/memory lymphocyte subpopulations. Whole blood was collected and stained for CD4, 

CD8, FoxP3, and CD25. (A) Shown are the percentages of T-reg cells that were triple-positive 

for CD4/FoxP3/CD25 28 days post vaccination (DPV) and (C) 14 days post challenge (DPC). (B) 

Also shown are the percentages of Th/memory cells that were double-positive for CD4/CD8 on 

28 DPV and (D) on 14 DPC. Data is shown as mean ± SEM (n=5). Bracketed groups were 

compared and * denotes p <0.05, ** denotes p <0.01, and NS=no difference. 
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