# THE FEASIBILITY OF A SOLAR POWERED SORPTION DEHUMIDIFICATION SYSTEM APPLIED TO GRAIN DRYING 

by

KATHY A. RIBLETT
B. S., Kansas State University, 1982

A THESIS

```
submitted in partial fulfillment of the requirements for the degree
MASTER OF SCIENCE
Department of Mechanical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas
```

APPROVED BY:


MAJOR PROFESSOR
$\angle D$
2668
TABLE OF CONTENTS
1984
$R 515$ ..... PAGE
C. 2
C. 2
INTRDDUCTION ..... 1
THE DEHUMIDIFICATIDN PROCESS ..... 3
BACKGRDIND ..... 6
THE LOAD MDDEL ..... 15
REUIEN DF GRAIN DRYING MDDELS ..... 27
THE FIXED BED DRYER MDDEL ..... 27
DESCRIPTION DF THE SYSTEMS STUDIED ..... 41
RESULTS AND DISCUSSION ..... 50
SLPMMARY AND CONCLUSIONS ..... 65
RECOMMENDATIDNS FOR FURTHER STUDY ..... 67
REFERENCES ..... 68
APPENDIX A - DPTIMUM ANGLE CALCULATION ..... 72
APPENDIX B - DeBDER EMC EQUATION ..... 74
APPENDIX C - THGMPSON EMC EQUATION ..... 75
APPENDIX D - SUBBAH EMPIRICAL DRYING EQLATION ..... 76
APPENDIX E - TRDEGER AND HUKILL DRYING EQUATIONS ..... 77
APPENDIX F - COMPITER LISTING DF MAIN PROGRAM ..... 78
APPENDIX G - COMPUTER LISTING DF DRYER SIMULATIDN ..... 93
APPENDIX H - GLDSSARY DF MAIN MARIABLES ..... 113
APPENDIX I - SAMPLE OUTPUT OF DRYER MODEL ..... 118

## LIST OF TABLES

PAGE
3.A - MOISTURE CONTENT DURING HARUEST AND FOR SAFE STORAGE ..... 15
3.B - USUAL RANGE OF AIRFLOWS FOR DRYING SYSTEMS ..... 16
4.A - VALUES OF MOISTURE CONTENT SIMULATEO USINGTROEGER AND SUBBAH EQUATICNS35
4.B - THE EFFECTS OF CHANGES IN THE ENTERING ABSOLUTE
HUMIDITY CN THE FIXBED FORTRAN PROGRAM ..... 3B
LIST OF GRAPHS
PAGE
\#1 - MOISTURE CONTENT US. TIME ..... 36
(SUBBAH US. TROEGER)
\#2 - MOISTURE CONTENT US. TIME ..... 53
(COMPARING DRYING RATES OF THE FIUE SYSTEMS STUDIED)
1.1 - PSYCHROMETRIC CHART SHOWING INCREASEO MOISTURE
CARRYING CAPACITY OF HEATED AIR ..... 4
2.1 - SCHEMATIC DF THE SOLAR POUERED SORPTI ON OEHUMIOIFICATION SYSTEM ..... 7
2.2 - PSYCHROMETRIC PLOT DF THE OEHUMIDIFICATIGN PROCESS ..... 9
3.1 - TYPICAL DRYING CURUE ..... 17
3.2 - SCHEMATIC OF A FIXEO BEO ORYER ..... 20
3.3 - SCHEMATIC OF A CROSSFLOW ORYER ..... 22
3.4 - SCHEMATIC OF A CONCURRENT FLOW DRYER ..... 23
3.5 - SCHEMATIC OF A COUNTER FLOW ORYER ..... 25
4.1 - ELEMENTAL BEO VOLUME ..... 29
4.2 - INDEXING SCHEME OF BEO ..... 32
4.3 - APPROXIMATE VALUES OF AIR FLOW RATE US.
NUMBER OF LAYERS PER FOOT ..... 39
5.1 - FIXED BED DRYER ..... 42
5.2 - FIXEO BEO DRYER WITH AUXILIARY HEATER ..... 43
5.3 - FIXEO BEO ORYER USING SOLAR HEATED ORYING AIR ..... 45
5.4 - FIXED BEO DRYER WITH SDLAR/AUXILIARY HEATED ORYING AIR ..... 46
5.5 - FIXEO BEO ORYER WITH SORPTION OEHUMIOIFIEO ORYING AIR ..... 47
5.6 - FIXED BED DRYER WITH DEHUMIDIFIED/AUXILIARY HEATED DRYING AIR ..... $4 B$
6.1 - AUXILIARY ENERGY COSTS FDR OCTOBER 20, OMAHA, NE ..... 55
6.2 - AUXILIARY ENERGY COSTS FOR DCTOBER 21, CMAHA, NE ..... 56
6.3 - AUXILIARY ENERGY COSTS FOR DCTOBER 22, OMAHA, NE ..... 57
6.4 - AUXILIARY ENERGY COSTS FOR OCTOBER 23, CMMAHA, NE ..... 58
6.5 - TOTAL COST OF AUXILIARY ENERGY FOR THE STUOY ..... 59
6.6 - LIFE CYCLE COSTS ..... 61

## SMMBOLS

c
h
hfg
rh
$t$
x

G

H

M

MR

P

R

S

T

Tabs
$v$
$\rho$
$\theta$
$€$
specific heat (BTU/1b F)
convective heat transfer coefficient (BTW/hr ft**2 F)
heat of vaporization (BTU/lb)
relative humidity, decimal
time, hours
bed-depth coordinate, ft
dry weight flow rate, $1 \mathrm{l} / \mathrm{hr}$ ft**2
humidity ratio, Ib/lb
local or average moisture content, dry basis (decimal)
moisture ratio, dimensionless
pressure, psia
gas constant, ft lb/lb
cross-sectional bed area, ft**2
air temperature, $F$
absolute temperature, $R$
velocity, ft/hr
dry weight density, Ib/ft**3
product temperature, $F$
bed porosity, decimal
as a lower case symbol beside the main variable:
a
e
in

0

P
air
equilibrium
inlet
at time $t=0$
product

## STMBOLS. ...CONT.

5
$t$
$v$
(w)
saturated vapor
at time $t$
vapor
water

## INTRODUCTI ON

During the past five years at Kansas State University, research has been conducted in the Mechanical Engineering Department to model the performance and feasibility of a solar powered sorption dehumidifier. The dehumidifier uses a rotating bed of silica gel. This desiccant removes water from the air stream that is to be dehumidified. Once the desiccant becomes saturated, it is regenerated with the use of solar heated air. As this project progressed, a practical application for the use of the dehumidified air was sought.

The sorption dehumidified air lends itself to a multitude of applications in both industry and agriculture. Dehumidified air has found use in the production of foods, environmental countrol, the chemical and pharmaceutical industries, and the drying of lumber. Recently, the use of solar powered dehundified air to dry grains has become a topic of interest to the agricultural community concerned with the fossil fuel depletion and subsequent rising conventional fuel costs.

Of the agricultural crops requiring drying, corn uses the most energy, is the largest grain crop in terms of total production, and is normally harvested with more excess moisture than any other grain crop (13), It has been estimated that at least as much energy is used in drying an acre of corn as is used for all the other farm operations necessary to grow and harvest that acre, including operations such as soil preparation, planting, cultivation, and harvesting (16).

The present research applied the numerical model of the solar energy powered sorption dehumidifier to the drying of shelled corn. The objectives of this research were:

1. Decide upon a type of grain dryer that would be most applicable in ease of mathematical modeling, management, and maintenance for research purposes.
2. Once a certain type of dryer was selected, seek out the numerical models available for use.
3. Couple the selected dryer model to the existing sorption model, so that the performance of the complete system can be predicted.
4. With the total sorption grain drying model in hand, model (with the use of various subroutines) three systems for comparison purposes:
5. Grain dried with the use of ambient air.
6. Grain dried with solar heated air.
7. Grain dried with the solar sorption dehumidified air.

## THE DEHLMIDIFICATION PROCESS

Solid sorption can be accomplished by absorption of adsorption, depending upon whether there is a chemical change in the desiccant during the process. In the absorption of water vapor on a desiccant, the desiccant undergoes a chemical change to a hydrate state. With the addition of more moisture, absorption will cause the desiccant to dissolve into solution. In adsorption, the desiccant does not react chemically with the condensed water vapor. Sorbent is the term referring to the desiccant, which sorbs moisture from the moist air stream to be dehumidified. The sorbate is the substance sorbed, the water vapor in the air.

In the sorption process a moisture mass transfer takes place due to a water vapor partial pressure gradient between the desiccant and the air. This process will continue until the vapor pressure of the water in the desiccant reaches equilibrium with the partial pressure of the water vapor in the surrounding air. The result of this action is that the moisture content of the air decreases, and the moisture content of the desiccant increases.

Sorption is an exothermic process, resulting from the heat of condensation of the water vapor plus the heat of wetting. This last term, the heat of wetting, occurrs when the liquid water droplets and the desiccant (silica gel) contact one another. It is greatest when the desiccant has just been reactivated and tapers off as the sorbent reaches saturation. The heat of condensation and the heat of wetting together make up the heat of sorption.

Solid sorbents generally are extremely porous "solid foam", with large internal surface areas. Silica gel, the sorbent used in this study, is

FIGURE 1.1
PSYCHROMETRIC CHART

hUHADITIY RATIO

DRY BULB TEMPERATURE
used to take up moisture at roon temperatures from an air stream flowing through it. The process of adsorption by solid desiccants is reversible. Air, when warmed by passing through a solar collector, has an increase in Its moisture carrying capacity. Figure 1.1 depicts the reason for this. At a lower temperature, T1, the maximum anount of moisture that can be "picked up" before the air stream reaches saturation, is symbolized by $\triangle P 1$ on a psychrometric chart. However, if the air stream is sensibly heated to T2, the maximum amount of moisture that can be held by the air stream, is symbolized by $\triangle P 2$. In practice, the maximum $\triangle P_{2}$ will not be reached because some of the energy in the air is last to the heating of the desiccant. This process is shown as a dotted line on Figure 1.1. Because the higher air stream temperature of the regeneration process causes the air to be further fron saturation, equilibrium is sought between the saturated desiccant and the air strean, and water vapor is transferred from the desiccant to the air. Silica gel is especially suited to this application since the temperatures needed to regenerate this desiccant are those attainable by flat plate collectors.

## Background

The solar powered sorption dehumidification system in this study was initially developed by Singer (28). It utilizes a desiccant (silica gel) to dehumidify air through adsorption, with solar energy to regenerate the desiccant. Singer's work had three main objectives:

1. To select an optimum solar dehunidification technique by evaluating the numerous dehumidification types and arrangements with regard to their application to the use of solar energy.
2. Develop a computer model simulating this solar dehumidification process.
3. Construct a test apparatus of this system so an evaluation could be made of the computer model.

A schematic of the continuous solar air dehumidification system choosen by Singer is shown in Figure 2.1. To make the system continuous, the desiccant wheel is rotated, allowing the simultaneous dehumidification of air through one half of the bed and desiccant regeneration in the remaining portion of the bed. The flow of air is directed through the system by way of two isolated flow paths: the process flow streara, in which air will be dehumidified, and the regeneration flow strean which is used to regenerate the desiccant.

Silica gel was selected as the desiccant material to be used in the dehumidifier. The reasons for this were threefold. First, silica gel is readily available comencially, and is accepted by the dehumidification industry. Secondly, there is published material available regarding the physical characteristics and equilibrium data of silica gel and water vapor (10) (19) (20). Finally, there have been investigations into the numerical

SCHEWTIC OF THE SOLAR PONERED SORPTION DEHMHIDIFICATION SYSIEM figure 2.1
modeling of the silica gel dehumidification process utilizing fixed and rotating beds (24) (26).

Figure 2.2 shows a psychrometric plot of the flow streams at each state during the dehumidification process. Air to be dehumidified (ambient air) enters the process flow stream at state 1 and is adiabatically dehumidified to state 2 . The dried air has a higher dry bulb temperature resulting from the heat of sorption being converted to sensible heat in the process airstream. This flow stream then passes through an optional sensible heat exchanger to reduce the final dry bulb temperature to state 3 if desired.

The regeneration flow strean begins with ambient air at state 1 . The air is heated to state 4 by passing it through the sensible heat exchanger, adding the heat extracted from the process flow stream. Because this temperature is too low for desiccant bed regeneration, the flow stream is then directed through the flat plate solar collector. If the temperature is still not sufficient for regeneration, an auxiliary heater energizes to increase the temperature to state 5. As the regeneration air stream passes through the desiccant bed, the bed is regenerated and the air stream is humidified to state 6 where it is released to the atmosphere.

The model adopted by Singer to simulate the rotating desiccant bed was developed by Maclaine-Cross and Banks (23). Their solution involved the transformation of mass and energy conservation equations into two potential kinetic wave equations. These equations were linearized and solved numerically to provide exit air strean temperature and humidity. Nelson (24) applied this model to rotating desiccant wheels and published a computer program to apply this method to a rotating bed of silica gel. Singer modified Nelson's program and also included subroutines to model the performance of the solar collector. This constituted a comprehensive

## 0ILVA MIOIMH


system model of a silica gel air dehunidifier with solar energy powered regeneration.

A physical system was built consisting of a desiccant wheel, sensible heat exchanger, air seals, motor drives, dehumidification housing and ducting, solar collector, blowers, auxiliary heaters, and instrumentation. Singer performed numerous tests to compare the predicted results with the experimental results obtained. The computer program was found to be acceptable in predicting the performance of the experimental solar dehumidifier.

Ananth (2) continued the verification of Singer's work by collecting additional data from the experimental apparatus. He studied the performance of the system over a wide range of parameters, varying air flow rates, temperatures, humidity ratios and peripheral leakage rates for the process and regeneration streams. Performance curves were estabilished over all possible ranges for the variables of interest. Ananth also modified the computer program to accept varying inlet conditions within the time frame of the study.

Following Ananth's work, Atkinson (4) began work on incorporating TMYSOLMET weather data (31) with the dehumidifier model. Since the performance of a solar energy powered system depends on weather conditions, the application of recorded, "averaged" weather data, would allow an hourly estimation of the performance of the dehumidification system. The TMYSOLMET weather tape provides a typical meteorological year for a particular location. The typical year was determined using statistical methods to select a typical month, for each of the twelve calendar months, from a data bank of 23 year's observation. The tape provides weather data for 26 locations within the United States. Variables such as extraterrestrial, beam, diffuse, and engineering corrected radiation are provided. Other
uariables on the tape are dry bulb temperature, dew point temperature, atmospheric pressure, and absolute humidity,

Once the performance of the dehumidification process was modified to accept location weather data, Atkinson began work on an economic feasibility study. The method choosen was the P1, P2 method outlined by Duffie and Beckman (12). This method relates present wor th factors for the life cycle costs, which is merely the present worth of all costs. This method is applied to both the conventional and solar system to provide a foundation for comparision. The reader is encouraged to consult Atkinson's thesis (4) for fur ther details.

Throughout the course of studying the sorption dehumidifier, the investigators Singer, Ananth, and Atkinson modified the computer model many times, for various reasons. It would be appropriate at this time to sunmarize the state of this program and it's subroutines when the present investigator began work. The main program served as the basis for reading the location weather data and the calculation of the economic analysis. There were problems with the reading of the weather data, because an algorithm had not been developed which would allow the crossing of month boundaries in reading the tape. The first day of the year was also unattainable. The main program allowed for the input of the economic parameters and functioned as the mechanism for calling the subroutines. There were five subroutines associated with the dehumidifier model: SYSTEM, COLPER, HUMID, ALFAN, EGU.

SYSTEM

The subroutine SYSTEM read data for the following parameters:

1. The program option, IFLAG, indicated whe ther the temperture of the regeneration air into the dehumidifier was set to a minimum temperature reached by
```
the use of an auxiliary heater (H2), or if the
entering air temperature was to be set to the
outlet temperature of the solar collector (酎).
2. Collector data such as the air volume flow rate (1/s),
optimum slope of the collector (see appendix A),
latitude and longitude were read.
```

3. Dehumidifier data including duct temperature drops, the geometrical properties of the silica bed, the revolutions per second of the desiccant wheel, the minimum regeneration temperature (if using option $H^{2,}$ IFLAG), leakage rates, and heat exchanger efficiency were also provided.

SYSTEM called the subroutines COLPER and HUMID. Output from this subroutine was provided in the form of an echo printing of the dehumidifier operating parameters. An hourly temperature and humidity map of the process side of the dehumidifer, and an hourly temperature and humidity map of the regeneration side was also provided. A total heat balance map of the dehumidifier, heat exchanger, ducting to and from the collector; the collector, the auxiliary heater, and the surplus solar heat available could also be found in this subroutine.

COLPER
The subroutine COLPER modeled the performance of the solar collector. It was originally developed by Singer and based on equations in Duffie and Beckman (12). The subroutine determined the useful heat gain in the collector by calculating the amount of radiation striking the collector. It did this by utilizing ambient conditions, collector orientation, time of day, and time of year. Knowing the incident radiation on the surface of the collector, the subroutine proceeded to obtain the collector efficiency given ambient conditions, inlet collector conditions, and loss
coefficients. Once the efficiency was calculated, the collector useful heat gain and outlet temperature were determined.

The COLPER subroutine also established the amount of heat lost through the ductwork from the collector to the dehumidifier, given estimated temperature drops. If the temperature returning to the dehumidifier was below the required inlet regeneration temperature, the COLPER subroutine found the amount of auxiliary heat required to assure proper regeneration temperature. The amount of heat auailable for storage was also determined. The collector modeled in this section utilized the manufacturer's performance curves for a Solaron Series 3000 collector, but could be modified for other manufactured collectors.

## HLMID

THE HIMID subroutine analytically modeled the simultaneous heat and mass transfer occuring within the desiccant bed. The model developed by MacLaine-Cross and Banks (23) and computerized by Nelson (24), predicted the performance of rotating, silica gel, desiccant bed. The subroutine provided process and regeneration outlet temperatures and humidity ratios. Please refer to Singer (28) and Ananth (2) for further details. ALFAN

ALFAN was support subroutine for the HMMID subprogram. It supplied the equilibrium properties of the moist silica gel and the air water vapor mixture. Nelson's Thesis (24) provides an indepth explanation of the exact function of this subroutine, please consult it for fur ther detals. EQ

EGV (Equilibrium Gamma Values) was also a support subroutine for the HUMID subprogram. It determined the incremental steps that would be taken in determining the temperature and humidity ratios during the computational procedure. Consult Nelson (24) or Atkinson (4) for clarification of the
purpose of this segment.
All of the subroutines and the main program had to be able to interact with variables of common interest. This was done through the use of large conmon blocks that allowed the transfer of information from one subprogram to another. Examples included within the conmon blocks were: the weather data, the inlet and outlet conditions of the major components of the system, counters, and properties of state, location, and geometry.

This thesis completes the next step in the development of the application of this sorption dehumidifier model. The application is directed toward grain drying.

## LOAD MODEL

The amount of moisture in grain has an effect on its performance for such processes as haruesting, storage, and germinating. If the grain is too "wet" it will provide an environment in which molds and insects will thrive. If the grain is "over-dried", it's ability to germinate can be adversely effected. In practice, grain will not be harvested at moisture contents greater than $35 \%$ and grain drying will not usually continue for moisture contents below $10 \%$ (wet basis) (21).

The grain moisture contents in Table 3 . A are those recommended for the safe storage of grain. The length of time that crops can be stored varies W1 th the moisture content and type of crop. To store crop for 5 years the moisture content should be approximately $2 \%$ below the moisture content that is considered safe for a 1 year 5 torage ( 8 ).

Table 3.A
Moisture Content During Harvest and for Safe Storage, Percent, w.b.

| Cereal | Maximum During Harvest | Optimum at Harvest for Minimum Loss | Usual when Harvested | Required for Safe Storage |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | for 1 yr | for 5 yr |
| Barley | 30 | 18-20 | 10-18 | 13 | 11 |
| Corn | 35 | 28-32 | $14-30$ | 13 | 10-11 |
| Dats | 32 | 15-20 | 10-18 | 14 | 11 |
| Rice | 30 | 25-27 | 16-25 | 12-14 | 10-12 |
| Rye | 25 | 16-20 | 12-18 | 13 | 11 |
| Sorghum | 35 | 30-35 | 10-20 | 12-13 | 10-11 |
| Wheat | 38 | 18-20 | $9-17$ | 13-14 | 11-12 |

From Drying Cereal Grains, Brooker, Bakker-Arkema, and Hall, 1982.
Sources: C. W. Hall (1957); D. W. Hall (1970); Matz (1969); Sinha (1973).
that spoilage will not occur before the grain can be used. Drying a highmoisture grain at an origınal moisture content, (Mo), to a final moisture content, (Mf), can be carried out over a long period of time if a low drying alr temperature is used; less time is required when a higher air temperature is used.

Temperature is not the only parameter that influences the time required to reduce the moisture content of a grain. Air relatıe humidity, aurflow, initial moisture content and final moisture content all dictate the amount of time that will be required to reach the desired condition of the grain. The usual ranges of airflow and temperature are listed in Table 3.B (B).

Table $3 . \mathrm{B}$
Usual Range of Airflows for Drying Systems, CFMBU

```
Aeration
Natural Aır (unheated)
    1/50-1
    2-5
Layer Drying
    2-10
Heated Air (130 - 500 F)
    30-100
```

A typical drying curve is shown in Figure 3.1. The reader will notice the characteristic rapid rate of drying initially, and the slower rate, as the total time of the drying increases (21). As the moisture content gets closer to equilibrim conditions with the air, the drying becomes so slow that is can hardly be detected. This description applies to the drying of grain of any kind that is fully exposed to an atmosphere of constant temperature and humidity. Generally, the rate of drying is faster if the Initial moisture content was higher. High drying temperatures and low air absolute humidity will also result in faster drying rates.

Figure 3.1


At this point, some important concepts in the understanding of grain drying will be defined; Equilibrium Moisture Content (EMC), Moisture Ratio (MR), and the reporting of moisture content on wet or dry basis (w.b. and d.b., repectively).

Equilibrium Moisture Content
The equilibrium moisture content determines the minimum moisture content to which grain can be dried under a given set of drying conditions. It is defined as the moisture content of the material after it has been exposed to a particular enviromment for an infinitely long period of time. EMC depends upon the humidity and temperature conditions of the surroundings as well as the maturity and type of grain (8).

Moisture Ratio
The mossture ratio is a quantity often referred to in grain drying nomenclature. It is defined as:
$M R=(M-M e) /(M o-M e)$
where -
$M R=$ moisture ratio.

```
M = current moisture content of the grain.
Me = desired moisture content of the grain at the end
    of drying.
Mo =molsture of the grain at the start of drying.
```

Moisture Content on a Wet Basis

The moisture content of a grain is used as a measure of maturity and quality. The elevators; or market place, are usually interested in the moisture content on wet basis. This is because the denominator, the wet weight, is the quantity obtained when the truck loaded with the grain is weighed. The definition of a wet basis moisture content is (8):

$$
\begin{aligned}
& \text { Mw wet basis }=\frac{w}{w} d(100) \\
& \text { where: } w=\text { wet weight } d=d r y \text { weight } \\
& M w=\text { noisture content on a wet, percent basis }
\end{aligned}
$$

Moisture Content on a Dry Basis

The moisture content of a grain on a dry basis is used in many engineering calculations. Definition:

$$
\text { Md dry basis }=\operatorname{man}_{d}=d(100)
$$

where: $M d=$ moisture content on dry basis, percentage
For example, if we are told that grain has a moisture content of $25 \%$, we might expect this to mean that 100 lb . of grain contains 25 lb . of wateri this is correct if the moisture content is expressed in per cent wet basis. On the other hand, it is just as reasonable to assume that the $25 \%$ moisture content is expressed on a dry basis: in this case 100 lb. of grain contains 20 16. of water and 80 1b. of dry matter since 20 is $25 \%$ of 80 . Accordingly, when the moisture content is reported as percentage it is necessary to have an understanding as to which basis is used. One is neither more correct nor more logical than the other (21).

In selecting a grain drying mathematical model to be coupled with the
solar sorption dehumidifier model, a dryer system had to first be selected. There are several types of dryer designs that were considered. They basically fell into two broad categories: those that dry grain in batches, and those that dry grain es it flows continuously through the equipment.

Batch Drying

Fixed Bed Drying
This type of system can use a bin with diameter from a few feet, to many feet. It is usually deep (up to 16 feet) and has a perforated floor through which relatively low airflow rate is provided. The inlet air can be amblent or heated. The grain can just "set there" or it can be stirred. Characteristic of fixed bed drying is the phenomenon of "drying zones". Figure 3.2 is a schematic of a fixed bed dryer. As drying air moves upward, there is an exchange of moisture, from grain to alr, in a finite depth or zone of grain. At the start of the drying process the zone is located at the bottom of the dryer. As the drying continues the zone moves upward, and the grain has been dried to E4C when the zone reaches the top of the bed.

There are several different types of batch systems that will not be discussed further because they are too difficult to apply as a mathematical model and they require careful management in use. Brooker, et al., (8) provide a thorough discussion on the subject in the chapter titled "Grain Drying Systems*.


## Continuous Flow Dryers

## Crossflow Dryers

Figure 3.3 is a sketch of typical crossflow dryer, in which grain flows from a wet-grain holding bin at the top, down the columns, and is discharged at the bottom. The upper portions of the colunns are drying sections and the lower portions are cooling sections. A metering device and temperature sensor are used to regulate the flow rate of the grain. The name "Crossflow" comes from the fact that the flow of heated air is perpendicular to the flow of the grain (8).

Concurrent Dryers

In concurrent dryers the air flows in the same direction as the grain. Figure 3.4 is a schematic of such a dryer. There are no large central plenums used in this dryer as are used in the crossflow dryer. The characteristics of a concurrent dryer are a series of small ducts used to introduce the air and to also provide for the escape of the air. Heated air is forced into the upper row of ducts, and cool air is forced into the lower ducts. Both the heated and cool air exhaust through a duct that extends across the dryer. Wet grain is preheated as it moves downward along the ducts carrying heated air with it. After the grain passes the lower edge of the ducts, the air and the grain move in the same direction. The hottest air enters the wettest grain and is quickly cooled. The grain temperature is lower than the alr temperature at this point in the flow, because a high rate of evaporation is taking place. As the grain continues to move downward, its temperature increases and then decreases along with that of the drying air (8).

Counterflow Dryers

In counterflow dryers the alr flows in the opposite direction of the


movement of the grain. This method can be visualized by considering a bin which holds a group of thin layers of grain. The drying air blows upward through the layers. At each time interval, a new layer is placed on the top of the stack and a layer removed from the bottom. See Figure 3.5 for an example counterflow dryer (28) (8).

One of the biggest drawbacks of a continuous flow dryer for research purposes is the extra equipment needed for material handling, and the problems that could arise in the maintenance and management of the necessary moving mechanical parts. Usually, there is associated with the continuous flow systems a considerable amount of expensive handing equipment (augers, metering devices, temperature sensors). In fact, the Capacity of such a system may actually be limited by the capacity of the auger system. Maintenance of all mechanical equipment would also have to be considered.

Another problem that arises when considering the use of a continuous flow system is the higher temperatures needed (200-500F). Since there is less contact time during the process between the drying air and the grain, the higher air temperatures are needed to obtain the same results as in a batch dryer. This results in a inefficent use of the energy in the hot air because a good portion of that energy is used in heating the grain. The application of solar collector to heat the air entering a continuous flow system would present several problems. Costs of collector systems to provide high temperatures are considerably greater than for lower temperature systems. Collection efficiencies are reduced in hightemperature collectors unless expensive measures are taken to limit heat losses (13).

On the other hand, a batch-type, fixed bed dryer has the following advantages:

FIGURE 3.5 - SCHEAATIC OF A COUNTER FLON DRYER

1. The grain can be harvested at any rate desired.
2. Simple management.
3. Minimum grain handling.
4. The energy in the drying air is efficiently used.
5. The grain is not over-dried.
6. The low-temperature air causes a minimum of cracking.
7. The temperatures needed for batch drying are obtainable with flat plate collectors.

Al though a batch dryer may not dry as quickly as a continuous flow dryer, it can provide an excellent basis for comparisons of feasibility and performance when varying the drying air temperature and humidity. Therefore, the dryer choosen for this study was a fixbed bed, batch dryer. Once the dryer type was selected, a mathematical model for the fixed bed dryer was investigated.

Review of Grain Drying Models
Research was done to determine what types of drying models were available for use. Hukill (21) in 1954 proposed a model that expressed analytically the moisture of the grain as a function of bed height and time. More recently, Thompson, et al, (27) developed mathematical grain drying models for concurrent flow, crossflow, and counterflow grain dryers. These models were empirical in nature and apply only to corn drying. Grain drying models based on laws of heat and mass transfer lead to complicated systems of equations that can only be solved with the use of large computers (but can more generally be applied to other biological products), Bloome and Shove (7), and Barre, et al, (6), made a number of assumptions in their analyses to simplify the solution of the the heat and mass transfer drying equations. Their assumptions have been claimed only partially valid by colleagues (8). The most general application of the fundamental laws of heat and mass transfer to drying biological products was made by Bakker-Arkema, et al, (5).

The grain drying model developed by Bakker-Arkema, et al, at Michigan State University was the model choosen in this study. The reasons for this were:

1. The equations of mass and heat transfer are general in nature, and therefore could be applied to other biological products when an appropriate thin-layer equation could be determined.
2. Fully documented computer listings for the modeling of fixed bed, crossflow, concurrent, and counterflow driers are included (5). If the type of dryer was later changed in some fur ther study, the models would be available.
3. The grain drying models could be considered a black box which only required certain input information in order to furnish the desired output.
4. The models developed at MSU are capable of predicting the performance of fixed bed, crossflow, concurrent, and counterflow driers to within $10 \%$ of experimental drying rates and temperatures (25).

The fixed-bed model is based on ideas of Schumann (1929), Van Arsdel (1955), Klapp (1961), and Bakker-Arkema, et al (1967). The highlights of the model as described in Drying Cereal Grains (B) will be detailed in the following pages.

Initially an elemental bed volume is drawn as shown in Figure 4.1. Energy and mass balances are written on a differential volume (Sdx). The four unknowns in this system of equations aret $M$, the average grain kernel moisture content; $H$, the humidity ratio of the air; $T$, the air temperature; and $\theta$, the kernel temperature. Four equations must be derived to solve for the four unknowns.

> The four equations required to solve this model followi
1.) Enthalpy of the Air

Energy out = energy in - energy transferred by convection
$($ Gaca + GacuH $) *(T+(\partial T / \partial x) d x) S d t=(G a c a+$ GacuH $) S T d t-h a S d x(T-\theta) d t$
2.) Enthalpy of the Product
energy transferred $=$ change in internal product energy - energy for evaporation haSdx(T- $\theta) d t=$
$\left(\rho_{p c p}+\rho p(w(1) S d x(\partial \theta / \partial t) d t\right.$
$-[h f g+c \cup(T-\theta)] G a(\partial H / \partial x) d x S d t$

FIGURE 4.1 - ELEMENTAL BED VOLU位

## 3.) Humidity of the Air

moisture transferred $=$ moisture in - moisture out
$\int p S d x(\partial M \partial t) d t=G a S H d t-\operatorname{GaS}(H+(\partial W \partial x) d x) d t$
4.) Moisture Content
$(\partial M / \partial t)=$ an appropriate thin layer equation.

These equations constitute the simulation model for the fixed bed grain dryer. Since an analytical solution to the system of equations is impossible, the differential equations are solved by finite difference techniques.

The initial and boundary conditions of the corn and the drying air must be known in order to solve the equations. The known values must include:

1. The initial temperature and moisture content of the grain.
2. The initial temperature and humidity of the drying air.

The specific boundary conditions for the fixed bed dryer are:

$$
\begin{aligned}
& T(0, t)=T(\text { inlet } \\
& \theta(x, 0)=\theta(\text { initial }) \\
& H(0, t)=H(\text { inlet } \\
& M(x, 0)=M(\text { initial })
\end{aligned}
$$

Where $T=$ temperature of the air, $=$ temperature of the grain, $H=$ humidity ratio of the air, $M=$ noisture content of the grain.

The progran uses the following sequence in solving the differential equations:
1.) input data
2.) initialize arrays
3.) evaluate constants used
4.) solve the differential equations
5.) ouput when appropriate

To solve the model equations, the values of $T, H, \theta$, and $M$ must be specified at each position within the bed before the dryer is started. Bakker-Arkema, et al, found the following method to be the nost stable and reliable:

$$
\begin{aligned}
& T(x, 0)=T(\text { inlet }) \\
& \theta(x, 0)=\theta(\text { initial }) \\
& H(x, 0)=H(\text { inlet }) \\
& M(x, 0)=M(\text { initial })
\end{aligned}
$$

The conditions above are physically incorrect because they assume the first blast of drying air displaces all air within the dryer without heat or mass transfer. The bed is initialized this way strictly for stability. Also covered in this initialization process is the grain temperature next to the air inlet. This temperature is set equal to the average of the inlet air and the initial grain temperature:

$$
\theta(0,0)=(T \text { (inlet })+\theta(\text { initial })) / 2
$$

The third initialization step is to solve for all values of the absolute humidity, moisture content, air temperature, and grain temperature for each position in the bed for the first time through the calculations. Figure 4.2 shows the indexing scheme for the pertinent values in this study.

The portion of the computer program that models the fixed bed dryer is made up of main progran FIXBED and three subroutines; LAYEQ2, READYT, ZEROIN. There are also functions called upon in the calculations such as EMC, and all the functions included in the SYCHART PACKAGE. Common properties such as the heat capacity of air and water, atmospheric pressure, and the bulk density of the grain were made available to all the subroutines and functions through the use of a BLOCKDATA FORTRAN option.


SUBSCR1PTS

$$
\begin{array}{ll}
x, t \quad \text { where } \quad & x=\text { depth in bed } \\
t=\text { time }
\end{array}
$$

FIGURE 4.2 - INDEXING SCHEME

## FIXBED

This is the main program for the numerical modeling of the fixed bed grain dryer, It is within this segment that all the initialization takes place and the actual depth calculations occur. All constants needed are calculated, and all output for the dryer originates here. It also serves as the basis for calling needed subroutines and functions,

Function EMC
EMC is a function subroutine that computes the Equilibrium Moisture Content of corn from a given relative humidity and temperature. The equations used are:

For temperatures less than 235 F the De8oer equation -(see appendix B),
For temperatures greater than 235F the Thompson equation - (see appendix C).

## LAYEQ2

The subroutine LAYEQ2 is the thin layer drying equation that calculates the moisture content of the grain as it varies with time. There are thin layer equations that apply to different grain temperature ranges. The equations used in this study were the Subbah equation (see appendix D) for grain temperatures below $80 F$, and the Troeger equation (see appendix E) for grain temperatures between 80 F and 160 F . The question arose; could the Troeger equation be used as a less accurate, but relatively reliable predictor of moisture contents for temperatures less than 80 F ? The benefits of using one thin layer equation would allow the temperature boundary of $80 F$ to be crossed in a study time frame. This would eliminate the need for complicated checks within the bed to determine which equation to use. If the Troeger equation was found to be unsatisfactory in predicting moisture contents for grain temperatures below 80F, how was the situation to be handled if both equations were required at different positions within the bed? To answer this question, a trial run was made.

Ambient air for Omaha, NE was used as the dryer inlet air for the day of 0ctober 20. The simulation had the air enter a fixed bed dryer of five feet in height and one square foot in cross sectional area. The CFM was set at 120 , and the grain temperature was initially set at 60 F . The initial corn moisture content was $33 \%$ dry basis. There were 15 increments per foot in the calculations. In the first simulation the Troeger equation was used; in the second the Subbah. The results can be found in Table 4.A and Graph \$1. The Troeger equation was found to be unacceptable in predicting molsture content in grain below 80 F . Therefore, if the study crossed the boundary of 80F, different thin layer equations would have to be employed.

## READYT

This subroutine is a support program for LAYEQ2, it makes preliminary checks and calculations for the thin layer equation and calculates the molsture ratio.

## SYCHART PACKAGE

The SYCHART group of 19 function subprograms and one subroutine are a numerical modeling of the psychronetric chart. Lerew (22) programmed this collection of theoretical and empirical psychrometric equations as a set of interconnected FORTRAN subprograms. Dry-bulb, wet-bulb and dew-point temperature, humidity ratio, relative humidity, vapor pressure, enthalpy and specific volume equations are included in the model. If any two independent properties of moist air are known, it is possible to find the remaining properties.

## 2EROIN

2EROIN is a root finding technique. It is based upon an algorithm which is a mixture of linear interpolation, extrapolation and bisection. ZEROIN will issue a warning when there are no roots or multiple roots between the initial guesses. If this error message appears, it normally

## TAELE 4.A

Values of moisture content SIMULATED USING THE TROEGER AND SUBGAH EQUATIGNS

| input conditions: | product temperature 60 F moisture content $33 \%$ <br> 120 CFM <br> ambient air is the drying air |
| :---: | :---: |
| HOUR | Molsture cantents <br> AT THE SECOND FOOT IN THE BED TROEGER SUBEAH |
| 1 | . 3269 . 3333 |
| 3 | .3269 . 3333 |
| 5 | .3270 . 3333 |
| 7 | .3283 . 3340 |
| 9 | .3305 . 3347 |
| 11 | . 3292 . 3347 |
| 13 | .3254 . 3347 |
| 15 | .3173 . 3347 |
| 17 | .3080 . 3347 |
| 19 | .3019 . 3347 |
| 21 | .3003 . 3347 |
| 23 | .2996 . 3347 |
| 25 | .2985 . 3347 |
| 27 | .2977 . 3347 |
| 29 | .2970 . 3347 |
| 31 | .2958 . 3347 |
| 33 | .2932 . 3347 |
| 35 | .2862 . 3347 |
| 37 | .2755 . 3347 |
| 39 | .2660 . 3347 |
| 41 | .2591 . 3347 |
| 43 | .2545 . 3347 |
| 45 | .2502 . 3347 |
| 47 | .2468 . 3347 |


> indicates instability requiring a larger value for the number of layers calculated per foot.

## MODIFICATIONS TO THE FIXBED PROGRAM

In order to apply this model to the existing solar sorption dehumidifier, the program had to be modified to accept varying inlet conditions of air absolute hunidity and temperature. Problems also arose in the repetition of some variable names used in both the fixed bed program and the existing sorption dehumidifier program. The programs together, had to be interfaced with the use of large common blocks. The grain temperature boundary of $80 F$ could not be reasonably crossed, due to the checks that would have to be made at each node to determine which thin layer equation to use during transition periods.

To allow for variations in the entering air properties, the ENTRY FORTRAN option was used to allow the calculations to begin inside the depth loop after the initialization process had taken place. Each hour, the air exiting from the dehumidifier had a different temperature and humidity. To compensate for this variation, at each hour the botton nodes of the bed were set to the exit conditions of the dehumidifier. (or the anbient air, or collector exit conditions, depending upon the study.) The numerical analysis then continued in the same manner, taking into account the change in the bottom node. These changes eventually were noticed at nodes higher up in the bed as the process continued. The reader will notice when consulting Appendix I, that the relative humidity was not reset to allow for varying inlet conditions. This was because to do so, would require excessive calculation and this quantity was not of primary concern to the writer.

Also considered in the modification of the fixed bed program were the constants involved in the calculations, and how they would be affected by

## Table 4.8

THE EFFECTS OF CHANGES IN THE ENTERING ABSOLUTE HUHIDITY ON THE FIXBED FORTRAN PROGRAH


The change in value of all constants is less than $2 \%$ when the entering absolute humidity varies from 0.0001 to 0.0100 .


FIGURE 4.3 - APPROXIMATE UALUES OF AIR FLOW RATE US. NUMBER OF LAYERS PER FOOT
changes in the entering air properties. There are many terms which do not change in a particular drying problem. The reader should consult Grain Dryer Simulation (5) for further details concerning these constants. They are, briefly, intermediate values that are calculated using constant values such as air flow rate, specific heats, and densities. It was determined that all constants changed in value less than $2 \%$, when the entering absolute humidity uaried from 0.0001 to 0.0100 . Only one constant, cons?, was found to alter noticeably with changes in air temperature. This was because cons? contains a $\Delta T$ term, and consequently varied considerably with changing air temperatures. Consequently, all the constants except cons?, were calculated only once. They were calculated at the air conditions of the first hour of the study, and remained constant throughout. Cons7, hovever, was placed inside the depth loop, and calculated each hour to compensate for changes in entering air temperatures. (see Table 4, B).

The size of the increments for depth and time are extremely critical in the fixed bed program. If too large, the equations will diverge or oscillate from the true solution. If too small, the solution requires excessive, and expensive computer time. Figure 4.3 contains approximate values of air flow rate verses number of layers per foot necessary for stability. If the progran fails with good data, there are two options available to the useri raise the value of the number of layers per foot, or lower the safety factor in the time increment equation.

The fixed bed program will terminate and return control to the main progran when one of two things happen 1.) The specified drying tine has been met. 2.) The average moisture content in the bed falls below the specified value. A sample output of the fixed bed program as well as the modified listing can be found in Appendices I and 6, respectively.

## DESCRIPTION OF SYSTEMS STUDIED

Six different systems were considered in the application of solar powered sorption dehumidified air to dry shelled corn. A brief outline of each system follows in the next few pages. Included in the descriptions are schematics of the processes detailed.

## SYSTEM 1 AND IA

The systems I and IA are made up of a fixed bed dryer, that will dry the commoditiy, shelled corn. A fan is used to blow air into the plenum chamber located at the botton of the dryer. The air passes through a perforated floor, then upward through the grain, removing moisture, and exiting in saturated state at the top of the dryer. The only difference between the two systems is the use of an auxiliary heater in system $1 A$ to preheat the inlet ambient air, to a set value of 100 F . Modeling these two systems will accomplish two things. First, the rate at which the location ambient air will dry the grain can be determined. Secondly, a comparison can be made between the two systems on how much faster the auxiliary heater will dry the same bin of grain, and how much the user would have to pay in the way of auxiliary energy for that faster drying time. The auxiliary heat is supplied in this study by liquefied petroleum gas. The cost of this fossil fuel was set at $\$ 10.00 / 10 \% * 6$ BTU. Figures 5.1 and 5.2 are schemtics of systems 1 and $1 A$, respectively.

The numerical modeling of the systems 1 and $1 A$ required the following information and subroutines to be calculated:

1. The TMY-SOLMET weather data for the particular location studied. (Omaha, Nebraska)
2. The fixed bed dryer simulation. This includes the calculation of air temperature, product temperature, moisture content,

FIGURE 5.1 - FIXED BED DRYER (ATIBIENT DRYING AIR - SYSTEM I)

FIGURE 5.2 - FIXED BED DRYER (HEATED AMBIENT DRYING AIR - SYSTEA IA)
and absolute humidity to be calculation for each position in the bed.
3. In the case of system 1A, the calculation of the auxiliary energy required to maintain the inlet dryer air at 100 F dry bulb temperature.

SYSTEM 2 AND 2A

Systems 2 and 24 are represented in figures 5.3 and 5.4 , respectively. Ambient air enters a flat plate collector and is warmed to a temperature dictated by the ambient conditions and collector variables. The warmed air is then used to dry the shelled corn. Once again, the difference between the two systems is that system $2 A$ uses an auxiliary heater to heat the air to a set minimum inlet temperature of 100 F . There will be times when the collector will warm the air to a temperature which is greater than 100 F . If this situation occurs, the extra energy was not allowed to be used. The inlet air temperature remained constant at 100 F . This allowed the amount of auxiliary energy needed to produce the same drying air as the auxiliary heated ambient air, to be quantified. However, this is definately a variable that needs to be studied, as suggested in in the section RECOMMENDATIONS FOR FURTHER STUDY.

The numerical modeling of these two systems required the use of the following subroutines:

1. The TMY-SOLMET weather data for the particular location studied. (Omaha, NE)
2. The fixed bed dryer simulation.
3. The collector performance subroutine, COLPER.
4. The calculation of the auxiliary energy used by system $2 A$ to maintain the inlet dryer air at 100 F .
5. An economic analysis to determine the life cycle costs of

FIGUKE 5.3-FIXED BED DRYER (SOLAR HEATED DRYING AIR - SYSTEM 2)

FIGURE 5.4-FIXED bed dryer (solar and auxiliary heated dryint air - system 2a)

FIGURE 5.5 - FIXED BED DRYER (SORPTION DEHIMIDIFIED DRYING AIR - SYSTEM 3)

FIGURE S.6-FIXED BED DRYER (SORPTION DEHURIIDIFIED \& HEATED DRYIHG AIR-SYSTEM 3A)
a flat plate collector.
SYSTEM 3 AND 3A

The final set of systems studied employed the solar powered sorption dehumidifier, Figures 5.5 and 5.6 represent the systems 3 and $3 A$, respectively. The difference between the two systems lies only in the use of an auxiliary heater in system 3A to insure the dryer inlet air is at least 100F when entering the dryer. Auxiliary heat was also used in this set of systems to maintain a regeneration temperature of 176 F . In system 3 the value calculated for the use of auxiliary heat is that amount used to regenerate the silica gel only. In the case of system $3 A$, the auxiliary heat costs were broken down into two parts; the regeneration auxiliary heat, and the dryer inlet auxiliary heat. Once again, the inlet air in system $3 A$ was fixed at 100 F , and was not allowed to go above that value. This reduced the number of variables to be considered in the study.

The modeling of systems 3 and $3 A$ used the following subroutines:

1. The TMY-SOLMET weather data for the particular location studied.
2. The fixed bed dryer simulation.
3. The collector performance subroutine.
4. An economic analysis of the life cycle costs of solar powered sorption dehumidifier compared to a conventional dehumidfier.
5. The simulation of a silica gel rotating bed.
6. The calculation of the auxiliary energy costs needed for the regeneration of the desiccant, and to maintain a dryer inlet temperature of 100 F .

## RESULTS AND DISCUSSION

To summarize, the six grain drying systems studied used the following types of drying aif:

1. ambient alr

1A, auxiliary heated ambient air
2. solar heated air

2A. solar and auxiliary heated air
3. sorption dehunidified air

3A. sorption dehumidified and auxiliary heated air

Difficulties arose in the modeling of system 2 , the solar heated drying air. This was due to the fact that the temperature of the grain crossed the temperature boundary of $80 F$ twice within the study. As was discussed in the section REVIEN OF GRAIN DRYING MODELS, different thinlayer equations would have to be used to correctly model the dryer. This would lead to complicated checks at each time increment and at each node within the bed to specify which equation to use. Therefore, system 2, the solar heated air system, could not reasonably be modeled using the present dryer simulation.

The other five systems were modeled and favorable weather conditions were sought in October for Omaha, Nebraska. The TMY-SOLMET tape was read for the month of October for Omaha. The data was reviewed to find a time span of about one week which had an average clearness index. The clearness Index is defined as the ratio of the average radiation on a horizontal surface to the extraterrestrial radiation. The days selected for this study were October the 20 th through the 23 rd. The parameters of the systems were set at the following values:

1. regeneration and process air flow rates 120 CFM/FT**2
2. density of the air stream $0.075 \mathrm{lb} / \mathrm{FT} * * 3$
3. rotating speed of desiccant wheel
d00 sec/rev
4. bed thickness
0.112 FT
5. frontal area
0.6092 FT**2
6. void fraction
0.750
7. pressure drop, process \& regeneration side 4.216 in, water
8. peripheral leakage rates
0.0
9. collector area
60.3532 FT**2
10. slope of collector
10.49 degree
11. latitude
41.37 degree
12. longitude
13. duct temp drop to collector
96.00 degeee
14. duct temp drop to dehumidifier
0.0 F
15. minimum temperature for regeneration
1.8 F
16. heat exchanger efficiency
176.0 F
17. income producing property
18. initial product temperature
80.0 F
19. bed depth
5.0 FT
20. cross-sectional area of bed
1.0 FT**2
21. initial moisture content of grain (d.b.)
$33.0 \%$
22. number of layers per foot
15.0
23. total time of study
96.0 hours
24. final moisture content (d.b.)
$8.0 \%$
25. grain
shelled corn
26. auxiliary energy

LPG
27. cost of auxiliary energy
\$10.00/10**6 BTU
28. market discount rate
$12.0 \%$

| 29. | term of mortgage | 5 years |
| :---: | :---: | :---: |
| 30. | dowparment | 10.0\% |
| 31. | mortgage interest rate | 12.0\% |
| 32. | term of depreciation | 5 years |
| 33. | property tax | \$0.0 |
| 34. | assessed valuation | \$0.0 |
| 35. | resale value | $\$ 0.0$ |
| 36. | miscellaneous costs | 2.0\% |
| 37. | fixed equipment costs - solar | \$1000.00 |
| 38. | fixed equipment costs - conventional | \$2000.00 |
| 39. | cost of auxiliary heater | \$250.00 |
| 40. | cost per collector area | \$300.00 |
| 41. | federal tax credit | 55.0\% |
| 42. | fuel inflation rate | 13.0\% |
| 43. | general inflation rate | 6.0\% |
| 44. | federal tax rate | 30.0\% |
| 45. | state tax rate | 5.0\% |
| 46. | term of economic analysis | 15 years |
| 47. | accelerated cost recovery depreciation |  |

The drying rates of the different systems $c$ an be found in Graph 2 . The ambient air conditions for October, as recorded on the TMY-SOLMET weather tape, will not dry the corn. This will not be true for every October in Oraha, Nebraska. However, for the conditions presented on the tape, the ambient air will not dry the shelled corn. In fact, the moisture content of the grain actually increased slightly because the BAC of the air was greater than the initial moisture content of the corn. The other four systems dried at the rates shown in Graph H2. The reader will notice that the dehumidified/auxillary heated air dried the fastest. The auxiliary

heated ambient air (1A) and the solar/auxiliary heated air ( $2 A$ ) dried at the slowest rates. These two systems dried at the same rates because the air entering the dryer was set at 100F. From this data the savings in auxiliary energy due to the use of the solar collector can be calculated. A conclusion can also be made that the ambient air heated to 100 F can not dry as quickly as ambient air that is dehumidified. Therefore, there is a definite advantage to using dehumidified air over heated air when considering drying rates. The time to dry the four bushels of corn (1) bushel $=1.25 \mathrm{cu} . f t$.$) to 8 \%$ moisture content (d.b.) was much shorter for the dehumidified air. Both of the systems that used dehumidified air, (3) and (3A), dried at about the same rate; The dehumidified and auxiliary heated air (3A), finishing about one hour before the dehumidified only air (3). It should be noted that an initial moisture content of $33 \% \mathrm{~d} . \mathrm{b}$. and a drying air flow rate of 120 CFM is an extreme drying condition. Certainly, when applying this model to predict the performance of real dryers, more realistic parameters should be used.

A summary of the auxiliary energy usage can be found in figures 6.1, $6.2,6.3$, and 6.4. The figures represent the daily costs for october 20 , 21, 22, and 23. Values for the cost per bushel are also presented. On the first day, October 20, the auxiliary energy costs are represented in Figure 6.1. The dehumidified/auxiliary heated drying air required the most auxiliary energy ( $\$ 3.70$ or $\$ 0.93 / \mathrm{bu}$.). The reader will notice that most of that energy was used to regenerate the silica gel. Only a small portion of the energy was used to heat the dryer inlet air. Generally, it can be said that regenerating the desiccant requires a lot of auxiliary energy because the solar collector does not reach a temperature high enough for sufficient regeneration. This is particularly true for the time of year considered, October, which is the usual standard corn harvesting time. Because the

FIGURE 6.1
ALXILIARY ENERGY CDSTS FDR OCTDBER 2D
OMAHA, NEBRASKA


FIGURE 6.2
AUXILIARY ENERGY COSTS FOR OCTOBER 21 OMAHA, NEBRASKA


FIGURE 6.3
AUXILIARY ENERGY COSTS FOR OCTOBER 22 OMAHA, NEBRASKA


DRYING AIR $\Rightarrow$ AMBIENT


FIGURE 6.4
AUXILIARY ENERGY COSTS FOR OCTOBER 23
OMAHA, NEBRASKA


FIGURE 6.5
TOTAL COST OF AUXILIARY ENERGY FOR THE STUDY
OCTOBER $20,21,22,23$
OMAHA, NEERASKA
$16.00 \square$ ENERGY USED TO REGENENATE DESICCANT


ORYING AIR $\rightarrow$ AMBIENT

HEATED DEHLMIDIFIED HEATED
AMBIENT
DE:Ha1BDIFIED

SOLAR HEAT
PLUS
GILX HEAT
regeneration process requires a lot of energy, the dehumidified drying air system required the second highest anount of LPG ( $\$ 3.31$ or ( $\$ 0.83$ bu.). The solar/auxiliary heated drying air required less auxiliary energy (\$1. 16 or $\left.\$ 0.29 / b u_{0}\right)$ than the heated ambient air ( $\$ 1.51$ or $\left.\$ 0.38 / b u.\right)$. This is expected because the solar collector contributes a portion of the energy needed. The ambient drying air did not require an outside energy source, but as was found in Graph \#2, has negligible drying capacity.

In Figure 6.2 the reader will notice that the costs for the dehumidified air systems, (3) and (3A), dropped off dramatically. This is because the four bushels of corn being dried in these two systems reached their desired ending moisture content of $8 \%$ (d.b.) about eight hours into the second day. As a result, auxiliary energy was not required by these two systens, (3) and (3A), for the remaining 16 hours of that day. The solar/auxiliary heated air and the heated ambient air, drying at the same rate, continued to use auxiliary energy. The values uary slightly from the previous day due to different weather conditions as supplied on the TMYSOLMET tape.

8y the third day, Figure 6.3 , the dehumidified/auxiliary heated system (3A) and the dehumidified systen (3) did not require any further auxiliary energy. Thus, the values for these two systems are shown as 0.0 . Again, the solar/auxiliary heated air and the heated anbient air continue to dry, using about the same amount of energy as was required in the previous days. The slight uariations are due only to changing weather conditions. Figure 6.4 presents the auxiliary energy usage for the final day, October 23. The same results are obtained here as in Figure 6.3.

The total costs of energy for the study can be found in Figure 6.5. The cost of drying per bushel is also shown. Because the dehumidified air systems, (3) and (3A), finished drying shortly after the second day began,

FIGURE 6.6
LIFE CYCLE COSTS

the total amount of auxiliary heat used by the two systems was actually less overall than the conventionally heated ambient drying air. It should be noted that the pressure drops in the fixed bed dryer were not considered in this study. The addition of this factor would produce even more favorable results for the sorption dehumidifier, Looking at Figure 6.5, the ambient drying did not use any auxiliary energy, but did not have the capacity to dry the grain. It is interesting to note that the solar/auxiliary heated drying air used the least anount of auxiliary energy of the four systems that used it. There is a different of about 10 cents per bushel to dry the corn using the dehumidified/heated air versus the dehumidified only air. This differece represents the cost to heat the drying air. The rest, which is about $91 \%$ of the cost, is due to the auxiliary heat needed to regenerate the silica gel. If this number could somehow be lowered, this method of drying grain would become more attractive.

When comparing drying rates and their costs, it is apparent that the fastest drying rate is obtained with the dehumidified/auxiliary heated air. In Graph \#2, the reader will notice that the dehunidified/auxiliary heated and the dehumidifed drying air reach the desired ending moisture content of 8\% d.b. at about the same time. There was infact, only a difference of one hour between the two drying times. The dehumidified air dries at a faster rate and is also less expensive than the conventionally heated ambient air. However, the equipment needed to use a solar powered sorption dehunidifier is expensive. To fairly determine the feasibility of the system will require an economic analysis.

The last phase of this study compared the life cycle costs of the systems. This value is the sum of all the costs associated with the energy delivery system over its lifetime or over a selected period of analysis, in
today's dollars, and takes into account the time value of money. The basic idea of life cycle costs is that anticipated future costs are brought back to present cost (discounted) by calculating how much would have to be invested at a market discount rate to have the funds available when they will be needed. The market discount rate is the rate of return on the best alternative investment. The dryer, fan, and duct work were considered common to all the systems. Therefore, the numbers presented in Figure 6.6 represent the difference between the base unit and the addition of the solar related equipment.

The solar powered sorption dehumidifier with the auxiliary heater had the largest solar life cycle cost (SLCC) of \$2344. The sorption dehumidifier without the auxiliary heater had a SLCC of $\$ 2150$ for the 15 year economic analysis. The solar collector and auxiliary heater had a SLCC of $\$ 558$. The heated ambient air, which required the purchase of an auxiliary heater, had a conventional life cycle cost (CLCC) of $\$ 200.00$. The ambient air system has a $\$ 0.0$ CLCC since the equipment used is that equipment common to all the systems.

Are there any circumstances under which the sorption dehumidifier might be economically feasible? The restriction of running the solar energy powered dehumidifier for the four days of this study makes it very difficult for the investment to be attractive. Even the use of the sorption dehumidifier for the two to four weeks of corn harvest that occur each year would doubtfully produce economically feasible conditions. The need for other on-farm applications is great. Some examples of other uses for the solar energy powered sorption dehumidifier would include:
1.) The continuous regeneration of silica gel beds that could be stored until needed.
2.) If the dehumidifier could be considered by components,
then certainly the solar collector alone, could
find use in supplying warm air for animal shelters.

The solar energy powered sorption dehumidifier computer model is now in a form that can be used to investigate many parameter variations. For instance, how most energy would have to be supplied to ambient air in the form of heat, to get equivalent drying rates between heated and dehumidifed air? The number of studies that could be performed are numerous.

The GRAIN DRYER SIMULATION coupled with the dehumidifier model, the collector model, the economic analysis, and the weather data information require about 30 minutes (depending upon the specifics of the study) of computer time. Of the average 30 minutes required, approximately $50 \%$ of that time was spent in the fixed bed model dryer. This study could not include a more indepth analysis due to the lack of a funding source for the expensive computer time required on the University's large computer.

## SUMHARY AND CONCLUSIGNS

The main objective of this study was to determine a method of simulating grain drying with a solar powered sorption dehumidifier. The type of grain dryer selected was fixed bed, and the model used was the GRAIN DRYER SIMULATION developed at Michigan State University by BakkerArkema, et al. Limitations of this model include;
1.) The product temperature can not cross the temperature boundary of 80 F without resulting added computer time and expense, due to the multitude of checks that would have to be made to be certain the correct equation was being used at each node of the bed.
2.) The dryer simulation requires a lot of time on the the National Advanced Systems/6620 at KSU. For the four day study, the time required on the computer ranged from 15 to 40 minutes, depending on the system modeled. Some of this time was spent in modeling the dehumidifer bed, the collector and reading the weather data. But, over $50 \%$ of the total time was required by the dryer model. While this model is good, it is not practical in its current state. The writer has made a number of suggestions to remedy this problem in RECOMMENDATIONS FOR FURTHER STUDY.
3.) This grain dryer simulation was developed to predict
the drying characteristics of a certain type of dryer when the entering air properties, such as temperature and humidity, remained constant. The changing of the inlet air properites on an hourly basis, and how this effects the validity of the model are unknown. Research will have to be performed to compare experimental results with the simulated results.

Within the context of this study, the solar powered sorption dehumidifier required an additional investment of about $\$ 2144,00$, over conventionals fossil fuel dried grain. If this system is to be considered feasible, other on-farm applications will have to be found in addition to the drying of grain.

## RECOMENDATIONS FOR FURTHER STUDY

1.) Due to the expense of running this program on the National Advanced Systems/ 6620 at KSU , one of two suggestions are made:
a. Decide upon a microcomputer system and transter the program to that system so that the money factor is essentially eliminated. Access to weather data will still be needed and a method will have to be determined to obtain that data - whether by the use of a modem, or putting the data on a floppy disk.
b. Consider a more simplified deep bed drying model that is empirical in nature and can be applied to drying shelled corn. (However, this will limit the application to corn drying unless individual empirical models $c$ an be found for each drying use.)
2.) Once the computer model is in a less expensive form, obtain the equipment and instrumentation needed to validate the numerical mode 1.
3.) Model Concurrent, Crossflow and Counterflow dryers, with the sorption dehumidified air, and validate the models with the necessary equipment and instrumentation.
4.) Develop a design computer model to size the Solar Energy Powered Sorption Dehumidification System.

## REFERENCES

1. Aldis, D. F., Burroughs, R., Hughes, J. W., "Eualuation of Solar Regeneration of Silica Gel and use in Grain Drying ${ }^{2}$, ASAE Paper, winter Meeting, Chicago, IL., December 1B-20, 197 B .
2. Ananth, G., Performance of Solar Regenerated Rotating Beds of Silica Ge1, M.S. Thesis, Kansas State University, 1982.
3. ASHRAE Handbook, 1981 Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, 1981.
4. Atkinson, A. F., Feasibility Study of a Solar Energy Powered Sorption Dehumidification System, M. S. Thesis, Kansas State University, $19 \mathrm{B3}$.
5. Bakker-Arkema, F. W., Lerew, L. E., and De Boer. 1974. Grain Dryer Simulation. Agr. Expt. Sta. Bull. 224, Michigan State Univ., East Lansing, Mich.
6. Barre, H. J., Baughman, G. R., and Hamdy, M. Y. 1971. "Application of the Logarithmic Mode to Cross-Flow Bed Grain Drying", Trans. ASAE 14, 1061-1064.
7. Blocm, P. D., and Shove, G. C. 1971, "Near Equilibrium Simulation of Shelled Corn Drying. Trans. ASAE 14, 709 - 712.
B. Brooker, Bakker-Arkema and Hall, Drying Cereal Grains, Westport, Conn., ANI Publishing, 1982 .
8. Chang, D. 1., Modeling for Dryer Selection and Simulation of Natural Air Drying of Rough Rice, M. S. Thesis, Kansas State University, 1978.
9. Close, D. J., and 8anks, P. J., "Coupled Equilibrium Heat and Single Adsorbate Transfer in Fluld Flow Through a Porous Medium-11, Predictions for a Silica Gel Air Drier Using Characteristic Charts", Chem. Eng. Science, Vol. 27, 1972, pp. 1157-1169.
10. Dauziger, M. T.. et al., "Drying of Field Corn with Silica Gel", Trans. ASAE, Vol. 15, 1972, pp. 1071-1074.
11. Duffie, J. A. and W. A. Beckman, Solar Engineering of Thermal Processes, Wiley \& Sons Publ., 1974.
12. Foster, G. H. and Pear1, R. M., Solar Grain Drying Progress and Potential, Agriculture Information 8ulletin No. 401, Agricultural Research Service, United States Department of Agriculture, 1976.
13. Henderson, S. M. and R. L. Perry, Agricultural Process Engineering, 3rd Ed., AUI Publishing Co., Inc., Westport, Conn., 1976.
14. Holmes, E. S., Energy Management in Grain Drying, Kansas State University Cooperative Extension Service, Manhattan, Kansas, 1981.
15. Holmes, E. S. and R. I. Lipper, Low Temperature Grain Drying, Kansas State University Cooperative Extension Service, Manhattan, Kansas, 1974.
16. Holmes, E. S. and T. Hodges, On-Farm Grain Drying, Kansas State Univ. Cooperative Extension Service, Manhattan, Kansas, 1978.
17. Hougen, O. A., and Marshall, W. R., Jr., "Adsorption from a Fluid Stream Flowing Through a Stationary Granular ged," Chem. Engineering Progress, Vol. 43, No. 4, 1947, pp. 197-208.
18. Hubard, S. S., "Equilibrium Data for Silica Gel and Water Vapor," Industrial and Engineering Chenistry, Vol. 46, Feb., 1954, pp. 356-358.
19. Hukill, W. U., "Drying of Grain", in Storage of Cereal Grains and Their Products, Am. Assoc. Cereal Chem., St. Paul, Minn., 1954.
20. Lerew, L. E., A Fortran Psychrometric Model, M. S. Thesis, Agr. Eng. Dept., Michigan State Univ., East Lansing, Mich., 1972.
21. MacLaine-Cross, I. L., and Banks, P. J., "Coupled Heat and Mass Transfer in Regenerators - Prediction Using an Analogy with Heat Transfer," Journal of Heat and Mass Transfer, Vol. 15, pp. 1225-1242, 1972, pp. 1225-1240.
22. Nelson, J. S., An Investigation of Solar Powered Open Cycle Air Conditioners, M. S. Thesis, University of Wisconsin-Madison, 1976.
23. O'Callaghan, J. R., Menzies, D. J., and Bailey, P. H., "Digital simulation of Agricultural Dryer Performance., J. Agr. Eng. Res. 16, 1971, 223244.
24. Pla Barby, F. E., Solid Desiccant Air Conditioning with Silica Gel Using Solar Energy, Ph.D. Dissertation, University of Texas at Austin, 1978.
25. Rodda, E. D., "Humidity Controlled Drying", Grain Conditioning Conference Proceedings, University of Illinois, 1975.
26. Singer, R. J., The Dehumidification of Air Using Solar Regenerated Rotating Beds of Silica Gel, M.S. Thesis, Kansas State University, 1981.
27. Thompson, T. L., Foster, G. H., and Peart, R. M., "Comparison of Concurrent F1ow, Crossflow and Counterflow Grain-Drying Methods", USDA, ARS Marketing Research Report 841, Washington, D. C., 1969.
28. United States Department of Agriculture, Midwest Plan Service, Low Temperature and Solar Grain Drying Handbook, lowa State University. Anes, Iowa, 1980.
29. United States Department of Commerce, National Oceanic and Atmospheric Administration, SOLMET User's Manual, Vol. 1, National Climatic Center, Asheville, North Carolina, 1977.

## APPENOIX A <br> OPTIMUM ANGLE FOR A FLAT PLATE SOLAR COLLECTOR FACING DUE SOUTH

FOR A FLAT PLATE COLLECTOR SLOPED TO THE SOUTH, THE ANGLE OF INCIOENCE IS THE ANGLE BETWEEN THE BEAM RAOIATION ON THE SURFACE OF THE COLLECTOR, ANO THE NORMAL TO THAT SURFACE.

$$
\theta=A N B L E \text { OF INCIOENCE }
$$

FOR LOCATIONS IN THE NORTHERN HEMISPHERE:


WHERE:

$$
\begin{aligned}
& \theta=\text { ANGLE OF INCIOENCE } \\
& \phi=\text { LATITUOE } \\
& S=\text { DECLINATION } \\
& \beta=\text { SLOPE } \\
& \omega=\text { HOUR ANGLE }
\end{aligned}
$$

DECLINATION
DECLINATION IS THE ANGULAR POSITION OF THE SUN AT SOLAR NOON WITH RESPECT TO THE PLANE OF THE EQLATOR, NORTH POSITIUE, ( $-23.45<S<23.45$ )

$$
\begin{aligned}
& G_{C}=23.45 \mathrm{SIN}\left[360\left[\begin{array}{c}
284 \_ \pm \mathrm{n} \\
365
\end{array}\right]\right]_{\text {THE YEAR }} \quad \\
& n=\text { NUMBER OF THE DAY OF THE }
\end{aligned}
$$

## HOUR ANGLE

THE HOUR ANGLE IS THE ANGULAR OISPLACEMENT OF THE SUN EAST OR WEST OF THE LOCAL MERIOIAN DUE TO ROTATION OF THE EARTH ON ITS AXIS AT 15 OEGREES PER HOUR, MORNING NEGATIVE, AFTERNOON POSITIUE.

## MAXIMIZE INCIDENT RADIATION

TO MAXIMIZE THE INCIDENT RADIATION, MINIMIZE $\theta$ (MAXIMIZE $\cos \theta$ ).

$$
\frac{d \cos \theta}{d(\phi-\beta)}=-\sin (\phi-\beta) \cos 5 \cos \omega+\cos (\phi-\beta) \sin \sigma=0
$$

REARRANGING:

$$
\begin{aligned}
& \operatorname{TAN}(\phi-\beta)=\frac{\operatorname{IAN} S}{\operatorname{COS} \omega} \\
& \beta_{O P T}=\phi-\operatorname{TAN}\left[\frac{\operatorname{IENS}}{\operatorname{COS} \omega}\right]
\end{aligned}
$$

FOR OPTIMUM SLOPE USE THE DECLINATION ANGLE THAT CORRESPONDS TO THE AVERAGE FOR THE MONTH THE STUOY COVERS. (SEE DUFFIE AND BECKMAN, PAGE 12)

TO FINO THE MEAN VALUE FOR COS $W$, AN INTEGRABLE FUNCTION, USE THE DEFINITION:

$$
\bar{F}=\int_{a \underset{(b-a)}{b}}^{b(x) d x}
$$

THEREFORE:

$$
\overline{\cos w}=2 \int_{0}^{\pi / 4} \frac{\cos w d w}{\pi / 4-(-\pi / 4)}=0.900
$$

THIS vALUE FOR THE MEAN VALUE OF COS $\omega$, IS THE AVERAGE FOR EVERYDAY.

THE value that should be entered in the data Input line is: sk

$$
S L=\beta_{\text {opt }}-\text { LATITUDE }
$$

## APPENDIX B

## DeBoer gac equation for shelled corn

The following empirical equations are for the EMC values of shelled corn.

```
Me =(S1*rh**3)/1.02 + < F1/0.17-0.028333*S1)rh
    0.0<rh<0.17
Me =S1(0.34-rh)**3/1.02 + S2(rh-0.17)**3/1.02 + (F2/0.17-0.028333S2)*(rh-0.17)
    + <F1/0.17-0.028333S1)*(0.34-rh) 0.17< rh (0.34
Me =S2(0.51-rh)**3/1.02 + F3/0.17(rh-0.34) + (F2/0.17-0.028333S2)*(0.51-rh)
    0.34 < rh < 0.50
Me= = S3(rh-0.49)**3/1.02 + [F5/0.17-0.028333*S3]*(rh-0.49) + F4/0.17**
Me = S3(0.83-rh)**3/1.02 + S4(rh-0.66)**3/1.02 +[F6/0.17 -0.028333S4]*
    (rh-0.66) + [F5/0.17 - 0.028333S3]*(0.83-rh) 0.66<rh<0.83
Me=S4(1.00-rh)**3/1.02 + F7/0.17(rh-0.83) +[F6/0.17-0.028333S4]*(1.00-rh)
                                    0.83 < rh< 1.00
```

where:
$r h=$ relative humidity, decimal
$F 1=-0.00039227+0.1000$
$F 2=-0.0004353 T+0.1328$
$F 3=-0.0005359 \mathrm{~T}+0.1646$
$F 4=-0.0005375 T+0.1624$
$F 5=-0.00070751+0.2075$
$F 6=-0.0007449 \mathrm{~T}+0.2532$
$F 7=-0.001071 T+0.3931$
$S 1=13.83(-9 F 1+6 F 2-F 3)$
$S 2=13.83(4 F 3-9 F 2+6 F 1)$
$S 3=13.83(4 F 4-9 F 5+6 F 6-F 7)$
$S 4=13.83(4 F 7-9 F 6+6 F 5-F 4)$

## APPENDIX C <br> THOMPSON EQUATION FOR EMC

The Thompson Equation for determining EMC, used in the fixed bed program for temperatures above 235F.
$\mathrm{BMC}=0.01 * \operatorname{SQRT}((-\mathrm{ALOG}(1.0-\mathrm{RH})) /(0.0000382 *(T+50.0)))$

WHERE
EMC = EQUILIBRIUM MOISTURE CONTENT
RH $=$ RELATIUE HLMIDITY, DECIMAL
$T=$ TEAPERATURE OF THE AIR

## APPENDIX D

## THE SUBBAH EMPIRICAL DRYING EQUATION FOR CORN

TEMPERATURE RANGE: $36-70 F$

$$
M R=\operatorname{EXP}[-k(t * * 0.664)]
$$

where

```
k = exp (-x*t**y)
x = [6.0142 + (1.453E-04)(rh)**2]**0.5
        -0 (*[3.353E-04 + (3.0E-08)(rh)**2]**0.5
y=0.1245-2.197E-03(rh) + 2.3E-05(rh)0-5.8E-05*0
```


## APPENDIX E

## SHELLED CORN DRYING EQLATIONS FOR THE TGAPERATURE RANGE 90 - $160 F$ TROEGER AND HUKILL



```
t/60 = p2(Mbar - Me)**q2 - p2(Mx1 - Me)**q2 + tx1
t/60 = p3(Mbar - Me)**q3 - p3(M*2 - Me)**q3 + t*2
Mx1 > Mbar >Me
Mx2 Mbar > Me
```

WHERE

```
Mx1 = 0.40(Min - Me) + Me
M\times2 = 0.12(Min - Me) + Me
tx1=[p1(Mx1 - Me)**q1 - p1(MIn - Me)**q1]/s0
tx2 = [p2(M\times2 - Me)**q2 - p2(Mx1 - Me)**q2]/60 +t\times1
p1 = exp(-2.45 - (6.42*Min**1.25) - 3.15*rh + (9.52*Min*
    rh**.5) + 0.030*0 - 0.12*(la)
p2 = exp[ 2.82 + 7.49(rh +0.01)**0.67-0.01790]
p3 =0.12[(Min - Me)**(q2-q3)]*(p2*q2/q3)
q1 =-3.98 + 2.87Min - [0.019/(rh + 0.015)] + 0.0160
q2 =-exp(0.810-3.11rh)
q3 = -1.0
```


## APPENDIX F <br> COMPUTER LISTING OF THE MAIN PROGRAM USED IN THE MODELING OF THE SOLAR POWERED SORPTION DEHLMIDIFICATION SYSTEM

The main program is listed here due to a number of changes which were made during the writer's study. The changes include:

1. The inclusion of new variables in the common data blocks to allow interfacing with the fixed bed dryer simulation.
2. Coding to allow for the calculation and output of the auxiliary costs used to heat the dryer inlet air, and to regenerate the desiccant. This was performed on a daily basis and a total amount was also calculated for the study.
3. Alterations were made to the algorithm needed to read the TMY-SOLMET Weather Tape. The program now has the capabilities to read across month boundaries and to read the first day of the year.
4. Using the amount of moisture removed during the drying process, the data from the dryer simulation was used to calculate the fraction of the load supplied by the system configuration.
5. Coding to enter the dryer simulation, fixbed, and to enter the depth loop, subfix, during subsequent calculations.

 COMMON/GENL/XAT, THT, RHT,DELTA, CFM, XMO,KAB COMMOH /PRESS/PATM COMMON D $A Y, \operatorname{DBT}(10,24), \operatorname{DP}(10,24), \operatorname{IHR}(10,24\}, \operatorname{HENCR}(10,24),[40, N D, N H$,
 DATA PORTION OF THE PROGRAM

[^0]
## REAL MPIS,NDW,LP, IPPIC,LCCS,LCCC, LPP,LADD, AVFR <br> INTEGEH DOUS, DOPC, CPLAG



X**** ')
501 PORMAT ('0', T49, 'MINIHUM TEMPERATURE $100 \mathrm{P}^{\prime}$ )

 PWFP (FKP, YP, $二 \mathrm{P})=\mathrm{KKP} /(1,+\mathrm{YP})$ x*1

 $X(I, J), \operatorname{OBSR}(I, J), \operatorname{PNCR}(I, J), \operatorname{STDYR}(I, J), \operatorname{MNS}(I, J), \operatorname{SKY}(I, J), \operatorname{VEAT}(I, J)$,
 X SNOW (I, J)
C CALCULATE THE NOUB3R DAY Of THE YEAR, ALLOWING FOR LEAP YEARS
C ILEAP ABD MOTEST ARB NOST TO AID IN THE PROGRAM MECHANISM
IF (ILEAP/4*4.NE. ILBAP) GO TO 913 MOTEST $=$ MO-2
IF (MOTEST) 913,913,930 NDAY=DAY +1
GO TO 914
914 GO TO (901, $902,903,904,905,906,907,908,909,910,911,912)$, MO
901 IDATR $(I)=$ NDAY
GO TO 960
902 IDATR $(I)=$ NDAY +31
GO TO 960
903 IDATE $(I)=$ NDAY +59
GOTO $9 \in 0$
904 IDATE $(I)=$ NDAY +90
$905 \begin{aligned} & \text { GO TO } 9 \in 0 \\ & \operatorname{IDATE}(I)=\text { ND AY }+120\end{aligned}$ Go TO 96 C
$90 \in \operatorname{IDATE}(I)=$ NDAY +151 GO TO 960

907 IDATE $(I)=N D A Y+181$ Go TO 960 GO TO 960
$908 \operatorname{IDATE}(\mathrm{I})=\mathrm{NDAY}+212$
909 IDATE $(I)=$ NDAY +243
GO TO $9 \in 0$
$910 \begin{aligned} & \text { IDATE }(I)=N D A Y+273 \\ & \\ & \text { GO TO } 9 \in 0 \\ & 911 \\ & \text { IDATE }(I)=\text { NDAY }+304\end{aligned}$
909 IDATE $(I)=$ NDAY +243
GO TO $9 \in 0$
$910 \begin{aligned} & \text { IDATE }(I)=N D A Y+273 \\ & \\ & \text { GO TO } 9 \in 0 \\ & 911 \\ & \text { IDATE }(I)=\text { NDAY }+304\end{aligned}$
909 IDATE $(I)=$ NDAY +243
GO TO $9 \in 0$
$910 \begin{aligned} & \text { IDATE }(I)=N D A Y+273 \\ & \\ & \text { GO TO } 9 \in 0 \\ & 911 \\ & \text { IDATE }(I)=\text { NDAY }+304\end{aligned}$ IDATE (I) $=$

GO TO 960
911 IDATE $(I)=$ NDAY +304
912 IDATE $(1)=$ NDAY +334 960 CONTINUE


GO TO 851
$851 \operatorname{COUNT}=\operatorname{COURT}+1.0$
CHANGE UNITS PROM
C CHANGE UNITS PROM KJ TO BTU

C COST OF LP FUEL IS SBT AT $\$ 10.00 / 10 * * 6$ BTD $\mathrm{ACOST}=10.00 * S Q A U Z:(I)$
$A T C O S T=A T \operatorname{COST}+\mathrm{ACOST}$


## GEMT=NATER* 0.45356

CHANGE THE UNITS O? HEAT GAIN TO GJ
GTQU=GTQU/1060000.
GTQAUX=GTQAUX/1000000.
TTAUX $=$ TCOST +ATCOST
PRINT 511, TTAUA THAD THPLATIOM AND TAX BATES
HBEE

 $\mathrm{ZEFO}=0.0$
NMI MS
 NM INS $=$ HZ
GO TU H 3
82 NUINS: NI.:
83 CONTINHE

## IF (NEA-GT. NDPPS) GO TO 34

 NMINPS=NEAGO TVPS adeps
CONTINOE
NDEPPS = NJEPS
SYSTEM
훌
NMJ WRS IS LUUAL TO THE AINIMUM OF NEA AND NDEPS
NDRPPC=NDEPC-1.
DIS $=-2 . /$ NDEPS
DIC $=-2 . / N D R P C$
TBAR $=\mathrm{FTR}+\mathrm{STK}-\mathrm{PTR} * S T R$
SOLAR

WORTH PACTORS FOR THE
目
UUU
STRAIGHT LINE DEPRECIATION IF DOPS=1, DBCI. INIAG BRLANCE IF
DORS=2, SUM OT DIGITS IF DOPS $=3$, ACCELRRATRD COST RECOVER
DOPS=3, ACCELRRATRD COST RECOVERY
$t=S d O d \quad d I$
GO TO ( $801,802,803,804$ ), DOPS
DEPS $=$ CTL AG*TBAR *PWFS/NDEPS
GO TO 800

©
©
$\infty$

## $\mathrm{PWDC}=\mathrm{PHF}(\mathrm{NA}$ TNC，CMIF，DRC） <br> （CAIR．NF．DRC）

 P $W E=$ PiUF $(N Z A, G I, D R C)$ PWEC＝PVPP（NEA，GI，DEC （GI．NE．DRC） （GI．RO．DRC） （DIC．ME．DRC）PWPC＝PUF（NMINPC，ZERO，DRC） （DIC．El．DRC）$P H F C=E W P P(N M I H P C, Z E R O, D A C)$ （DIC－N．．DRC） （DIC．ME．ZERO） P UHC＝PWF（NDEPPC，DIC，ZERO） （DIC．EQ－ZERO）PUHC＝PWFP（NDEPPC，DIC，ZERO）（ZEKO－NE－DRC）PWIC $=P$ YF（NDEPC，ZERO，DRC） （ZERO．EQ．DRC） $\mathrm{PWIC=PGPP} \mathrm{(NDEPC}, \mathrm{ZERO,DRC)}$ （ZPRO．NE．DRC）PWJC＝PMF（NDEPPC，ZERO，DRC） $\mathrm{PWJC}=\mathrm{PWFP}($ NDEPPC，ZERO，DHC $)$ （ZRRO－HE－DRC）
$(Z R I O . B U-D R C)$ $I F$
$I P$
$I F$
$I F$
$I F$
$I F$ рикC $=1 . /(1 .+$ DRC $)$ PWLC＝PWKC $\#$ DWKC

## PONEC $=(1 .-C F I A G * T B A B) * P H A C$

MPIC $=(1 .-\mathrm{DC}) * \mathrm{P}$ HBC $/ \mathrm{PWCC}$


OUTPUT FOR ECONOHIC ANALYSIS PARAMETRES
MULTIPLY 2 Hiz TOLIOHING BY 100 FOR PERCENTAGES
DRSP=DRS* 100 . DRSP=DRS $* 100$.
DRCP=DRC $~ 100$. DSP=DS* 100. SKIRP=SUIR* 100. $C M I R P=C M I K * 100$. SMCP=SMC*100. $C M C P=C M C * 170$.
 FI $P=P I * 100$.
$G I P=G I * 100$.
 DRSP,DRCP NLS, NLC SMIRP, CMIRP NDEPS, NDEPC TAVS, TAVC
VS, VC $\square$ NEA 121, 122, 127), DOPS DCP $=\mathrm{DC} * 100$.
WRI TE $(6,10)$ 01*9) 㤩山I \& VRITE ( $\epsilon, 10$ ㅇ O1'9) $\begin{array}{cc}01^{\circ} & 7) \\ 01^{\circ} & 7)\end{array}$
 WRITE ( $C, 1241$
123
( 4,12




LATENT HEAT OP VAPORIZATION IS 0.00240 GJOULE PRR KILOGEAM
LP=GEM?*0.00240
$\mathrm{LP}=\mathrm{GEM}=\mathrm{LPP}=\mathrm{LP}+\mathrm{LADD}$
$\mathrm{LPP}=\mathrm{LP}+\mathrm{LADD}$
$\mathrm{F}=\mathrm{GTOU} / \mathrm{LPP}$
$F=G T Q 0 / L P P$
$F F=F \neq 100$.
$\mathrm{EP}=1 . /(1,-\mathrm{F})$
Lep IS IN GJoIJLF
LCCS=PTHOS* (CA*TAC+CES) *PT YOC*CEC+POHES*CF*LPP* (1.-F) LCCC=PTWOC* (CEC) + PONEC:*CF* LPP
WEITE $(\epsilon, 15$ 4) LP, LADD, LPP, FF, LCCS, LCCC, EF
LA DD=LADD +0.025
$155)$ PONES, POMPC
156 ) PTYOS, PTMOC
$157)$
152 FORMAT ('-', 753 , 'SOLAR ENERGY', T87, 'CONV ENTYONAL'/T 14 , 'LOAD SUPPLI
XED RY'/T'45, 'FRACII OH OF'/T 15, 'SIIPPLEMFNTAPY', T44, 'LOAO SUPRLIED',
XT113, 'DRYER'/
XT2, 'DEHMMJDIFIER', T 19, 'HEATER', T32, 'TGTAI', T47, 'RY SOLAR', TGO, 'LIF


$, 711,12(2-1)$

,F8.4. T84, ${ }^{\circ} \mathrm{P}-\mathrm{ThC}={ }^{\circ} \mathrm{F}$. 4 .
EVAPORATED IN KILOGRAMS */T6
FVAPORATED IN KILOGRAMS /TE, "LOAD IN GJOU

SOLA, TE, MOISHUR
SOACTION
, F1
XO. 2,T 10
FORMAT Er
列
$\stackrel{c}{6}$
FORH
(
.
츧
$n$
$n$
$n$

## APPENDIX 6 <br> THE FIXED BED DRYER SIMULATION <br> AND SUBROUTINES

SUBROUTI NE FIXBED



 C 200 PORMAT 3 F5 0 2 I 5) D R Y E $K$ M O D E 工, ${ }^{3}$ ) N. , P9. 2, 15x, ${ }^{*} \mathrm{H} 20$ 212 PORMAT $/ / / /, 6 X,{ }^{\prime} T J M E=1, F E-2,25 X$, ENERGY IUPIUT

 $x c=$,

## x)  <br> FORHAT ('0', T8, P9.4.7X, F9.4, 11X, P6. 4, 14X, F6. 4, 14 X, F6. 4, 14X, F6. 4)

 <br> FORHAT ('0', T8, P9.4.7X, F9.4, 11X, P6. 4, 14X, F6. 4, 14 X, F6. 4, 14X, F6. 4)}> FORMAT (' - ' , T7, 'A IR PLON RATE (CFM/FT**2) ', 6X,' (I.B/HR-FT**2)')
> FORNAT ('-'////,T7, 'HEAT CAPACITIRS (ETU/LB-R) ; ', 8X, 'AIR', 17X, 'PRODUC
> XT', 13X, NATER VAFOR', 9X, "四ATER LIQUID')
> $\begin{array}{r}9 Z Z \\ s z z \\ 7 Z Z \\ \varepsilon Z Z\end{array}$

$$
\begin{aligned}
& \text { FROGPAY CONTROLS' }
\end{aligned}
$$


$K A B=0$ $K D A Y=I$
JHR $=1$
INPUT CO
FPUT CONDITI ONS OF DRYER TO BE ERAD IN
READ $(5,200)$ XMO, THIN, DEPTH, IMDPR, MLPF READ $(5,236)$ TT, TBTPPL, YMEND
CFM CURFERTLY MASED UPON 1 PT**2
CFM=AVFR/0.4719
HIN=TODP (KLAY,J4 a)




C COMPUTE INLET RH AND INITIALIZB MLL ARKAY POSTIOAS NECESSARY
RTIN $=\mathrm{F}(\mathrm{TIN})$
RHIN=RHDBHA $\left(\right.$ RT $\left.^{\mathrm{T}} \mathrm{N}, \mathrm{HIN}\right)$
DO $101 \mathrm{IF}=1$, IHD
101 COHTINUP
IP $1=I P+1$
$\mathrm{X} 14(1 \mathrm{~F})=\mathrm{X} 40$
THF(IF) $=$ THI $N$
$T($ IP 1,1$)=T I N$
$\operatorname{RHP}(I P 1)=\mathrm{RHIN}$
T $(1,2)=$ TIN
H $(1,1)=H I N$
$\mathrm{H}(1,2)=\mathrm{HN}$
RHF(1) =RHIN
$\operatorname{THF}(1)=(T H+T H(N) / 2$.

CONVBET AIRFLOW TO LB/HR AND COMPDTE CONVECTIVE HEAT TRANSFEF
COEFFICIENT AND EQUILIBRIUH
RTHI $H=P(T H I N)$
GA=60. + CFM/VSDBHA (RTHIN,HI
IF (GA-500.) $2,1,1$
EFFICIENT AND RQUILIBRIUH
RTHIH=P (THIN)
GA=60.*CFM/VSDBHA (RTHIN,HI
IF (GA-500.) 2,1,1
EFFICIENT AND EQUILIBRIUH
RTHIH=P(THIN)
GA=60. *CFM/VSDBHA (BTHIN,HIN)
IF(GA-500.) 2, 1,1
1 GO TO

GO TO
$\mathrm{HC}=-69$
$3 \times M E=E M C$ (RHI N,TIN)
XME EAC (RHI H,TIK)
PRINT HEADER PAGE OF CONDITIONS AND PROPERTIRS PRINT 210

PRINT 220
PRINT 221
PRINT 222
PRINT 223.TJN,THIN, RHI , HIN, XHO, XME
PRINT 224
PRINT 225
PRINT 225,CPA,GA
PRINT 226
PRINT 227, CAR, CAP, CV, CV
PRINT 228
PRINT 229, HC, PATK, HFG, RHOP, SA
PRINT 230
PRINT 231, DEPTH, DELX, DBTPE
PRINT 229, HC, PATK, HFG, RHOP, SA
PRINT 230
PRINT 231, DEPTH, DELX, DBTPE
PRINT 231, DEPTH, DELX, DBTPR
PRTNT 232, TT, TBTPR
PRINT $233, X M E N D$
PRINT DEPTHS POR WHICH LATBR
PRTNT 232, TT, TBTPR
PRINT $233, X M E N D$
PRINT DEPTHS POR WHICH LATBR
PRINT 211 , (DEEP (IP), IF $=1, J K$ )
COKDUTE CONSTANTS IJSED BY EOUATIONS
PRINT DE
PRINT 211 , (DEEP (IP), IF $=1, J K$ )
COKPUTE CONSTANTS IJSED BY EQUATIONS $\operatorname{CON} 1=2$ - $\mathrm{G} A * \mathrm{CAR}$
$\operatorname{COH} 1=2 . * \mathrm{GA}$ CAR
$\mathrm{CO} 2=2 . * \mathrm{GA}+\mathrm{CV}$
$\operatorname{CON} 3=H C * S A * D E L X$
$\operatorname{CON} 3=H C * S A$ DELX
$\operatorname{COH} 4=\mathrm{H}$ IOP*CAP
$\operatorname{COH}=\mathrm{H} 10 \mathrm{P}+\mathrm{CAF}$
$\operatorname{CON} 5=\mathrm{HAOP}+\mathrm{CH}$
$\operatorname{CON} 6=2-* \operatorname{CON} 3$
BEGIN TIME INOP
COMPUTE

CR TS BY EQUATIONS
$\qquad$

$\mathrm{KD} \AA \mathrm{Y}=1$
$J H R=1$

|  | HIN $=$ HODP (KDAY, JHR) |
| :---: | :---: |
|  | TI $\mathrm{N}=10000$ |
|  | $\operatorname{CON} 7=\mathrm{GA} \mathrm{A}^{*}(\mathrm{CA} \overline{\mathrm{A}}+\mathrm{CV} * \mathrm{aIN}) *$ (TIN-THIN) |
|  | H(1, 1) $=\mathrm{HYN}$ |
|  | $\mathrm{H}(1,2)=\mathrm{HIN}$ |
|  | $T(1,1)=T I N$ |
|  | $T(1,2)=T I N$ |
|  |  |
|  | FTIME=F'TIME + DEL, TA |
|  | SCON $1=\mathrm{G} \mathrm{A}^{*} \mathrm{DELT}$ / / D PLX |
|  | SCON $2=\mathrm{KHOP} / \mathrm{SCON1}$ |
|  | SCON $3=\mathrm{HC} * \mathrm{SA} * \mathrm{DELTA}$ |

$\pm$

$$
\begin{aligned}
& \text { BEGIN DRPTH LOOP } \\
& \text { DO } 102,1 \mathrm{~F}=2 . \mathrm{TMN1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{DO} 102 \quad \mathrm{JF}=2 \text {. IND } 1 \\
J M=J \mathrm{~F}-1
\end{array} \\
& 1 \mathrm{HT}^{2}=(\mathrm{THF}(\mathrm{JH})+\mathrm{T}(\mathrm{~J} i 1,2)) / 2= \\
& X M T=X N(J N)
\end{aligned}
$$

> € $\begin{aligned} & \text { GO TO } 7 \\ & T H T=(T)\end{aligned}$
> $\begin{aligned} & \text { € } \mathrm{THT}=(\mathrm{T}(J M, 2)+2, * T(J M, 1)+\mathrm{T}(J P, 1)) / 4 . \\ & 7 \mathrm{HT}=((\mathrm{H}(J M, 1)+\mathrm{H}(J \mathrm{~J}, 1)) / 2 .+\mathrm{H}(J M, 2)) / 2 .\end{aligned}$
> CALL SURROUTINE CONTAINING II RQUATION CALL I.AYEQ2
> If EQUGTITA
> $\begin{aligned} & \mathrm{H}(J F, 2)=\|(J \#, 2)-S C C N 2 *(X M T-X M(J M)) \\ & H T=(H(J M, 2)+H(J P, 2)) / 2 .\end{aligned}$
T EQUATION
$T(J \vec{F}, 2)=(T(\mathrm{~J}, 2) *(\operatorname{CON} 1+\operatorname{CON} 2 * H T-\operatorname{CON} 3)+T H P(J M) * \operatorname{CON} 6) /(C O N 1+\operatorname{CON} 2 * H T+$ 1CoN3)
TABS $=\mathrm{F}(\mathrm{T}(\mathrm{JF}, 2))$
COMPUTE RII AUD CIECK POR CONDENSATION
RHF (JF) = F HDBHA (TABS, H (JF, 2))
CONDENSATION SIMHLATOR
8 TWBA=WBDBHA (TABS, IH (JF
TWBA= WBDBHA (TABS, $\mathrm{H}(\mathrm{JP}, 2)$, TABS, TABS+20... 01 )
$\mathrm{HS}=\mathrm{H}(\mathrm{JP}, 2)$
T=WETBULR TRMPERATURE, H=WRTBILB HJMIDITY RATIO
$T\left(J P_{2}, 2\right)=T$ HBA -459.69
$H(J F, 2)=$ EADBAH (TWBÃ, RHC)
$\mathrm{RHF}(\mathrm{JF})=\mathrm{RHC}$
$\mathrm{XMT}=\mathrm{XMT}+(\mathrm{IIS}-\mathrm{H}(\mathrm{JP}, 2)) / \mathrm{SCON} 2$
$9 \times M(\mathrm{Jli})=\mathrm{XHT}$
END DEPTH LOOP
102 CONTI 3 UE
C SHIFI AREAYS AHD COMPUTE AVERAGE MOISTURE CONTENT

 IF (PITME+DEIAN-TT) $10,10,12$
IF (XUAVS-XMEND) $12,12,11$
11 IF ( $\left.\mathrm{P}_{1} I P^{\prime} \mathrm{E}-\mathrm{PR}^{\mathrm{T}}\right) 4,13,13$
SET FLAG IY EXTF CONDITION MET
12 IEXIT=1
C MAKE FINAL CALCULATIONS AND PRINT
13 PRT＝PHT＋TBPPR
EN ERGY = COM7*PTIME
ПАTER $=(X M O-X A A V E) * R H O P * D Z P T H$
BTUH20＝』NERGY／雷ATER
PRINT 212 ，FTIME，FNERGY，WATER，XHA VE，BTUH20 PRINT 234，HIU
PRIVT 235，TIN
PRINT 213，（T（IT，2），IT＝1，IND1，INDPR）
PRINT $214, \mathrm{THP}(1),(T H P(I F), I F=I N D P R$ ， PRTNT $215, X_{A}(1)$（ $\left.\mathrm{X} 4(\mathrm{IP}), I \mathrm{~F}=\mathrm{INDPR}, I N D, I N D P R\right)$ PRINT 216，（RHF（IF），IF＝1，INDI，IHDPR）
PRINT 217，（ $H(I F, 2), I F=1$ ，IND1，INDPR） $\mathrm{JHF}=\mathrm{J} \mathrm{H} \mathrm{A}+1.0$

IF（IEXIT－I）4，14，4
14 CONTIN把

COMMON／PRRSS／PATM
DATA SA，CRR，CAP，CV，CW，RHOP，HPG／239．，．242，268，45，1．，38．71，1000．／
DATA PATM／14．30／
END


C CHECK IP PH IS GREATPR THA 50 .
C CHECK IF PH IS GREATER THAM . 50 ...IF IT IS GO TO SECOND PART
234 IF (RH-.50) 300,300,309
C PART1---RH -LE. 50 OWLY
300 F1 $=-.0003922 * \mathrm{~T}+.1000$
$F 2=-.0004353 * \mathrm{~T}+.1328$
$S 1=13.878 *(-9, * P 1+\epsilon, * P 2-P 3)$
$S 2=13.838 *(4 . * P 3-9 . * F 2+6 . * P 1)$
$\mathrm{B}=\mathrm{RH}-.17 \mathrm{C}$ (4.*P3-9.*F2+6.*P1)
$\mathrm{B}=\mathrm{RH}-.17$
FIND INTERVAL
C FIMD INTERVAL IA VHICH RF LIES AND COMPUTZ BQUITIRRIUA MOISTURE

## IF (B) $301,301,302$

$301 \mathrm{EHC}=(\mathrm{S} 1 * \mathrm{RH} * \mathrm{RH} * \mathrm{RH} / 1.02+(\mathrm{F} 1 / .17-\mathrm{S} 1 * .02833) * \mathrm{RH})$
RETURF
$302 \mathrm{IF}(\mathrm{RH}-.34) 303,303,304$
$303 \mathrm{~A}=.34-\mathrm{RH}$
EMC $=(S 1 * \mathrm{~A} * \mathrm{~A} * \mathrm{~A} / 1.02+\mathrm{S} 2 * \mathrm{~B} * \mathrm{~B} * \mathrm{~B} / 1.02+(\mathrm{P} 2 / .17-\mathrm{S} 2 * .02833) * \mathrm{~B}+(\mathrm{F} 1 / .17-\mathrm{S} 1 *$
$1.02833) * \mathrm{~A})$ $304 \begin{aligned} & \text { RETUKA } \\ & \mathrm{A}=.51-\mathrm{RH}\end{aligned}$
$\mathrm{EMC}=\mathrm{S} 2 * \mathrm{~A} * \mathrm{~A} * \mathrm{~A} / 1.02+(\mathrm{F} 3 / .17) *(\mathrm{RH}-.34)+(\mathrm{F} 2 / .17-\mathrm{S} 2 * .028333) * \mathrm{~A}$
кมานฐ
C PART 2--Rii . GT. . 50 ONLY
CORPDTE COUSTAATS
$309 \mathrm{FO}=-.0005373 * T+.1624$
$\mathrm{F} 1=-.00007075 * \mathrm{~T}+.1624$
$\mathrm{~F}=-.0007075$
$\begin{aligned} F 2 & =-.0007449 * T+.2532 \\ & =-.001071 * T+.3931\end{aligned}$
$\mathrm{S} 1=13.8 .38 *(4 . * F 0-9 . * P 1+\epsilon, * P 2-\mathrm{F} 3)$
$\mathrm{S} 2=13.838 *(4 . * P 3-9 . * P 2 * 6 . * P 1-\mathrm{FO})$
$\mathrm{B}=\mathrm{HA}-. \mathrm{E} \in$
$\mathrm{IF}(\mathrm{B}) 305,305,306$
FIND INTERVAL IN WHICH RH LIES AUD CGMPUTE EQUILIDKIUM NUISTURE CORT ENT $305 \mathrm{~A}=\mathrm{RH}-.49$
MC=S1*A*A*A/1.02+(F1/-17-S1*.02833)*A+(F0/.17) *(.66-RH)
BTURN
TF ( $\mathrm{BH}-83) 307,307,308$
$A=.83-\mathrm{HH}$
EMC=S 1*A* 1.028333) *A
$308 \mathrm{~A}=1.0-\mathrm{RH}$
$\mathrm{EMC}=\mathrm{S} 2 \approx \mathrm{~A} * \mathrm{~A} * \mathrm{~A} / 1.02+(\mathrm{F} 3 / .17) *(\mathrm{RH}-.83)+(\mathrm{F} 2 / .17-\mathrm{S} 2 * .028333) * \mathrm{~A}$
RETUHN


C COMPUTE EQHILIARIUG MOISTURE CONTENT
235 RAC=.01*SQRT((-ALOG(1.-RH))/(.0000382*(T+5C.)))
END TORN
1E I.AYBQ2




$0 \quad u$


ABSORTION SIMULATION FIND NEW M AND INCREMEHT COUNTER FIND NEW M AND INCREMEHT COUNTER
6 DI $V=-.625 * P S D B(T H+459.69) * *(.466 * R H) * R H * R H * R H$ SUBROUTIME READYT (TXMO, DELM, XME, IOOPS, XMK)

 DESCRIPTION

C COMPARF ERESANT MUISTURE CONTENT TO INITIAL MOISTIRR CONTENT
C SET TXMO=THE LARGER VALUE

$\mathrm{A}=\mathrm{D}$ 1
$\mathrm{B}=\mathrm{D} 2$
ENTRY RHDBHA (D1, D2)
$\mathrm{A}=\mathrm{PSDB}$ (D1)
$\mathrm{B}=\mathrm{PV} \mathrm{HA}$ (D2)
1 RHPSPV=B/A
ERTURE
END
 FUNCTION PVDBWB (DB,WB)
COKMON/PRESS/PATK
$B=. \in 2194 * H L D S$ (HB) *PATS
$C=.2405 *(A-P A T M) *(B B-D B)$
$P V D B H B=(A * B-C * P A T M) /(B+.15577 * C)$ EETURN
BMD
 PUNCTION PVHA (HA)
PVHA $=\mathrm{HA} * \mathrm{PATK} /(.6219+\mathrm{HA})$
RETUPN
ERD


 FUNCTION PSDB (DB)

FUNCTION HLDB (DB)
$H L D B=1220.884-.05077 *(D B-459.69)$
HLDB $=1075.8965-.56983 *(D B-459.69)$
RETURN
4 HL DB=SQRT (1354673. 214-. 9125275587 *DB*DB)
 FUNCTION VSDAHA (DB, HA)
$V S D B H A=53.35 * D) *(.6219+H A) / 144 \cdot / .6219 /$ PATM EETURN
 FUPCTION ENDBDP (DB, DP)
$T I=.2405$ (DB-459.69) $+\mathrm{HLDB}(\mathrm{DP}) * H A+-448 * H A *(\mathrm{DB}-\mathrm{DP})$
$\mathrm{IP}(\mathrm{DP}-491.69) \quad 1,2,2$
1 ENDBDP=T $1-H A *(143.35+.485 *(491.69-D P))$
$E N D R D P=T 1+H A *(D P-491.69)$
RETVRN
 FUNCTION WDDBHA (DB, HA, G1,G2, EPS) EXTERNAL WBL.
COMMON /SPRCIA/PV,TR, XTRA
$\mathrm{A}=\mathrm{G} 1$
$\mathrm{TB}=\mathrm{DB}$
( $\mathrm{M}, \mathrm{D}, \mathrm{BPS}, \mathrm{HBL})$
CALL ZEROIN
WBDBHA= $(A+B) / 2$.
 FUNCTION WBL(THB) COMMON /PRESS/PATM
COMMON /SPECIA/PV, DB, XTRA
$\mathrm{P} V \mathrm{~B}=\mathrm{P}$ SDB (TWB)
 FUNCTION DPHAS (HA, G1, G2, EPS) COHKON /SPECIA/PV, DB, XTRA EXTERNAL DPL1
CALL ZEROIN (A, B, BPS, DPL 1)
DPHAS $=(A+B) / 2$.
RETURH
 FUNCTION DPL 1 (TDP)
COMMON /SPRCIM/PV, DB, XTRA DPL $1=P \vee-P S D B(T D P)$ RETURN
END
PUNCTION DPDBEN (DB, EN, G1,G2, BPS) COMAON /SPECIA/PV,TB, XTRA

 | EXTERNAL DPLL 2 |
| :--- |
| $\mathrm{~A}=\mathrm{GI}$ |

(TRA $=2405 *(\mathrm{DB}-459.69)-\mathrm{En}$
XTRA

CALL ZEROIN (A, B, RPS,DPL2)
$\operatorname{DPDBEN}=(A+B) / 2$.
 FUNCTION DPL2 (TDP)
COMMON /SPECIA/PV,DB, XTRA
$\mathrm{H} \boldsymbol{A}=\mathrm{HADP}$ (TDP)
$T 2=H A^{*} H L D B(T D P)+-448 * H A *(D B-T D P)$
IF (TDP-491. ©9) 1,2,2
DPL $2=$ XTRA + H2 $2-H A *(143.35 * * 85 *(491.69-T D P))$
RETURN
RETURN
2 DPL2 $=X T R A+T 2+H A *$ (TDP-491.69)
 FUNCTION DBPSS(PS,G1,G2,EPS) COMMON /SPECIA/PV, TB, XTRA BXTERNAL DBL
$\mathrm{A}=\mathbf{G} 1$
$\mathrm{~B}=\mathrm{G} 2$
XTRA=P
CALL 2 EROIN ( $\mathrm{A}, \mathrm{B}, \mathrm{EPS}, \mathrm{DBL}$ )
DBPSS $=(A+B) / 2$.
RETURN
END
 SUBROUTINE ZZRCIN (A, B, EPS, FUNC)
GORMAT (///,5X, "WARNING-- PO ROOTS OR MULTIPIE ROOTS BETVERN INITIAI. PRINT 200,A,B
1 IP (AHS (FC)-ABS $(F B)) 2,3,3$
2 C=B
IF (ABS (C-B) -2. *EPS) $12,12,4$
$\mathrm{FC}=\mathrm{FB}$ $\mathrm{FC}=\mathrm{FB}$
$\mathrm{FB}=\mathrm{PA}$
$\mathrm{FA}=\mathrm{FC}$

$\operatorname{IF}(\operatorname{SiGN}(1, \ldots \mathrm{~PB})-\operatorname{SIGN}(1,, \mathrm{FC})) 1,11,1$



$$
11 \begin{aligned}
& C=A \\
& F C=F A \\
& G O \text { TO } 1 \\
& 12 \begin{array}{l}
A=(C+B) / 2 . \\
F A=F U N C(A) \\
\text { IF (SIGN }(1 ., F A)-B Q . \operatorname{SIGN}(1 ., F B)) \quad B=C \\
\text { RETURN }
\end{array}
\end{aligned}
$$



$$
12
$$

$0 Z$

$$
\begin{aligned}
& 1 / \mathrm{DC} \\
& / / \mathrm{GO} .
\end{aligned}
$$ SYSIN DD＊

$\mathrm{M}^{-0} \cdot \mathrm{~N}^{\mathrm{N}}$
1962034
ㅇ№
ค MO N
000
12


$$
{\underset{\sim}{N}}^{-\infty} \mathrm{O}^{-\infty} \mathrm{N}^{\mathrm{O}}
$$



$$
10
$$

$$
\begin{array}{r}
10 \\
5 \\
2000
\end{array}
$$

がずッいいの
$\mathrm{O}^{r}=$

## APPENDIX H

```
GLOSSARY FDR MAIN VARIABLES USED IN SYSTEMS 1, 1A, 2, 2A, 3, AND 3A
AC = AREA DF COLLECTDR
AF = FRONTAL AREA OF BED
ALONG = CDLLECTDR LDCATIDN LONGITUDE
AMASSP = AIR MASS FLOW RATE, PRDCESS SIDE
AMASSR = AIR MASS FLON RATE, REGENERATION SIDE
AN = INTERNAL SURFACE AREA DF DESSICANT PER UNIT UDLUME
AUFR = AIR UDLUME FLDW RATE IN LITERS PER SECOND
BETA = INTERMEDIATE VALUE USEO TD DETERMINE AMBIENT ABSDLUTE HUMIDITY
BETAF = FRACTIONAL FORM DF BETA
BLEAK = BYPASS LEAKAGE RATE
BTUH2D = ENERGY INPUT PER WATER REMOVED (BTU/LB-H2D)
CA = UNIT CDST UARYING WITH SIZE OF SDLAR ENERGY SYSTEM
CAP = HEAT CAPACITY DF DRY PRDDUCT
CAR = HEAT CAPACITY DF ORY AIR
CRM = AIRFLOW RATE AT INLET AIR TEMPERATURE FT**3/MIN/FT**2
CEC = EQUIPMENT CDST - CONUENTIONAL
CES = EQUIPMENT CDST - SDLAR
CF = CDST DF FUEL IN DDLLARS
CFLAG = PRDGRAMMING FLAG TD DESIGNATE THE OIFFERENCE BETNEEN INCOME
    PRDDUCING AND NON-INCOME PRDOUCING SDLAR SYSTEMS
CLK = CLOCK HOUR UNDER CONSIDERATION
CMC = CONNENTIONAL RATIO DF MISC. CDSTS TD INITIAL INNESTMENT
CMCP = PERCENTAGE FORM DF CMC
GMIR = ANNUAL MDRTGAGE INTEREST RATE - CONNENTICNAL
CMIRP = PERCENTAGE FDRM DF CMIR
COST = DAILY COST OF AUXILIARY HEAT SUPPLIED AT DRYER INLET
CV = HEAT CAPACITY DF WATER VAPDR (BTU/LB-F)
CW = HEAT CAPACITY DF LIQUID WATER (BTU/LB-F)
DAY = DAY UNDER CONSIDERATION
DAYB = BEGINNING DAY OF STUDY
DAYF = CONTROL TD AID IN DBTAINING THE PREUIDUS DAY NUMBER WHEN CRDSSING
    MONTH BDLNDARIES
DBT = DRY BULB TEMPERATURE
DBTPR = DEPTH BETWEEN DESIRED OUTPUT IN X-DIRECTION
DC = OOWNPAYMENT - CONNENTIDNAL
DCP = PERCENTAGE FORM DF OC
DD = DESICCANT CHAR DIMENSIDN
DEEP = DEFTHS AT WHICH DUTPUT DCCURS (FT)
DELT = TIME INCREMENT (HR)
DELX = DEPTH INCREMENT OR WIOTH INCREMENT (FT)
DEND = ENDING DAY OF STUDY
DEPC = DEPRECIATION TAX DEDUCTION - CONUENTIONAL
DEPS = DEPRECIATIIN TAX DEDUCTION - SDLAR
DEPTH = TOTAL BED DEPTH
DIFR = OIFFUSE RADIATION
DIRR = DIRECT RADIATION
DIC = DEPRECIATION INFLATION RATE - USED FDR DECLINING BALANCE - CONNENTIDNAL
DIS = DEPRECIATION INFLATION RATE - USED FDR DECLINING BALANCE - SDLAR
OMCC = DISCOLNTED UALUE DF MISC. COSTS - CDNNENTIONAL (INSURANCE,ETC.)
DMCS = DISCDLNTED UALUE DF MISC. CDSTS - SDLAR
DDPC = FLAG INDICATING WHICH DEPRECIATION SCHEDULE IS UTILIZED-CDNNENTIONAL
```

```
OOPS = FLAG INOICATING UHICH OEPRECIATION SCHEOULE IS UTILIZED-SOLAR
OPT = OEW POINT TEMPERATURE
OQAUX = AUXILIARY HEAT SUPPLIEO AT INLET OF ORYER
ORC = MARKET OISCOUNT RATE - CONUENTIONAL
ORCP = PERCENTAGE FORM OF ORC
ORS = MARKET OISCOUNT RATE - SOLAR
ORSP = PERCENTAGE FORM OF ORS
ORUC = OISCOUNTEO RESALE UALUE - CONNENTICNAL
ORUS = OISCOLNTEO RESALE VALUE - SOLAR
OS = OOLNPAYMENT - SOLAR
OSP = PERCENTAGE FORM OF OS
OTCO = TEMP OROP THROUGH OUCTING, COLLECTOR TO OEHLMIOIFIER
OTOC = TEMP ORDP THROUGH OUCTING, OEHLMIOIFIER TO COLLECTOR
OTQU = DAILY TOTAL HEAT GAINEO IN THE COLLECTOR
OTGAUX = OAILY TOTAL AUX HEAT SUPPLIEO FOR REGENERATION OF OESICCANT
EFF = EFFICIENCY
ENCR = ENGINEERING CORRECTEO RAOIATION
ENERGY = ENERGY INPUT (CUMMULATIVE) (BTU/HR-FT**2)
EXTR = EXTRATERRESTRIAL RAOIATION
F = FRACTION OF HEAT SUPPLIEO BY SOLAR, WITH RESPECT TO THE TOTAL HEAT
        SUPPLIEO (1-F IS THE PERCENT AUXILIARY ANO AOOITIONAL HEAT SUPPLIEO)
FF = PERCENTAGE FORM OF F
FI = FUEL INFLATION RATE
FIP = PERCENTAGE FORM OF FI
FL = LENGTH OF OESICCANT WHEEL IN FLOW OIRECTION
FP = COLLECTOR FACTOR FRUL
FR = COLLECTOR FACTOR FRTA
FRIC = OESICCANT FRICTION FACTOR
FTR = FEOERAL TAX RATE
FTRP = PERCENTAGE FORM OF FTR
GA = ORY AIRFLOW RATE
GEMT = GRANO TOTAL EVAPORATEO MOISTURE
GI = GENERAL INFLATION RATE
GIP = PERCENTAGE FORM OF GI
GTQU = GRANO TOTAL OF SOLAR HEAT GAIN
GTGAUX = GRANO TOTAL OF AUX. HEAT USEO FOR REGENERATION OF OESICCANT
HC = CONNECTIUE HEAT TRANSFER COEFFICIENT (BTU/HR-FT**2-F)
HFG = LATENT HEAT OF WATER IN GRAIN (BTU/LB)
HIN = INLET HUMIOITY RATIO (LB-H20/LB-ORYAIR)
HRB = BEGINNING HOUR OF STUOY
HENO = ENOING HOUR OF STUOY
HMU = AIR TO OESICCANT MASS RATIO IN OESICCANT WHEEL
I = DAY COUNTER
IDATE = NLMBER DAY OF THE YEAR
IFLAG = FLAG TO SIGNAL AUXILIARY HEATER INTO OEHLMIDIFIER
IHR = SOLAR HOUR
ILEAP = PROGRAM AIO TO OETERMINE THE NLMBER DAY OF THE YEAR TAKING
    INTO CONSIOERATION LEAP YEAR
INOPR = NLMBER OF NOOES BETWEEN PRINTS
I2 = CONTROL TO AIO IN SETTING TAPE TO THE ZERO HOUR OF THE OAY DATA
        IS TO bE REAO
J = HDUR COUNTER
KT = HOURLY CLEARNESS INDEX
LADO = AOOITIONAL LOAO UARIED TO OETERMINE OPTIMUPY LIFE CYCLE COST
LCCC = LIFE CYCLE COSTS - CONUENTIONAL
LCCS = LIFE CYCLE COSTS - SOLAR
```

LP $\quad=$ LOAD DRIED BY DEHLMIDIFIER
LPP = LOAD DRIED BY DEHLMIDIFIER AND SUPPLEMENTAL SOURCE
MEND = ENDING MONTH OF STUDY
MHR = TAPE HOUR READ
MINS = MINUTES OF SUNSHINE
MO $=$ MONTH
MOB = BEGINNING MONTH OF STUDY
MOTEST $=$ PROGRAM AID TO DETERMINE THE NLMBER DAY OF THE YEAR
MPIC = DISCOUNTED MORTGAGE PRINCIPAL AND INTEREST - CONUENTI ONAL
MPIS = DISCOLNTED MORTGAGE PRINCIPAL AND INTEREST - SOLAR
ND $\quad=$ NUMBER OF DAYS INCLUDED IN STUDY
NDAY = NLMBER OF DAY IN A GIVEN MONTH
NDEPC = TERM OF DEPRECIATION - CONUENTIONAL
NDEPS $=$ TERM OF DEPRECIATION - SOLAR
NDEPPC $=$ TERY OF DEPRECIATION, USED FOR D. B. AND S. O. D. - CONUENTIONAL
NDEPPS $=$ TERH OF DEPRECIATION, USED FOR D. B. AND S. O. D. - SOLAR
NEA = TERM OF THE ECONOMIC ANALYSIS
NH = NLMBER OF HOURS IN THE STUDY
NLC = TERM OF THE LOAD - CONVENTIONAL
NLPF $=$ NLMBER OF LAYERS PER FOOT
NLS = TERM OF THE LOAN - SOLAR
NMINC = YEARS THE MORTGAGE PAYMENTS CONTRIBUTE TO THE ANALYSIS - CONUENTICNAL EqUAL TO THE MINIMLM OF NLC AND NEA
NMINS = YEARS THE MORTGAGE PAYMENTS CONTRIBUTE TO THE ANALYSIS - SOLAR EqUAL TO THE MINIMLM OF NLS AND NEA
NMINPC = YEARS THE MORTGAGE PAMMENTS CONTRIBUTE TO THE ANALYSIS FOR THE EQUIPMENT - CONUENTICNAL
NMINPS = YEARS THE MORTGAGE PAYMENTS CONTRIBUTE TO THE ANALYSIS FOR THE EQUIPMENT - SOLAR
EQUAL TO THE MINIMUM OF NEA AND NDEPS
OBSR = OBSERUED RADIATION
PATM $=$ ATMOSPHERIC PRESSURE
PDAY = CALENDAR NLMEER OF THE DAY PRECEDING THE REQUESTED BEGINNING DAY OF STUDY
PERB = PERCENTAGE OF BEAM RADIATION BASED ON EXTRATERRESTRIAL RADIATICN
PERD = PERCENTAGE OF DIFFUSE RADIATION BASED ON EXTRATERRESTRIAL RADIATION
PHI $=$ COLLECTOR LOCATION LATITUDE
PLEAKP $=$ PERI PHERY LEAKAGE RATE, PROCESS SIDE
PLEAKR = PERIPHERY LEAKAGE RATE, REGENERATICN SIDE
PONEC $=$ RATIO OF LIFE CYCLE FUEL COSTS TO FIRST YEAR FUEL COSTS - CONUENTIONAL
PONES $=$ RATIO OF LIFE CYCLE FUEL COSTS TO FIRST YEAR FUEL COSTS - SOLAR
PMO = NUMBER OF THE MONTH PRECEDING THE REQUESTED BEGINNING MONTH
PSEA = ATMOSPHERIC PRESSURE AT SEA LEVEL
PSTN = ATMOSPHERIC PRESSURE AT THE STATION
PSTNC $=$ ATMOSPHERIC PRESSURE AT THE STATION CORRECTED
PTCC = DISCOUNTED PROPERTY TAX COSTS - CONNENTIONAL
PTCS = DISCOUNTED PROPERTY TAX COSTS - SOLAR
PTNOC = LIFE CYCLE COSTS OF ADDITIONAL CAPITAL INNESTMENT TO INITIAL INNESTMENT - CONUENTICNAL
PTWOS = LIFE CYCLE COSTS OF ADDITIONAL CAPITAL INNESTMENT TO INITIAL INUESTMENT - SOLAR
PNLC = PRESENT WORTH FACTOR FOR CALCULATING A TERM IN PONE OR PTWO CONVENTIONAL
PWF = PRESENT WORTH FACTOR, SEE PG 386 DUFFIE AND BECKMAN
PWFP = SECOND FORM OF PNF, SEE ABONE
PW_S = PRESENT WORTH FACTOR FOR CALCULATING A TERM IN PONE OR PTWO -

```
            SOLAR
PWN = PARTIAL PRESSURE OF WATER UAPOR
QDEHU = RATE OF HEAT TRANSFERREO IN OEHLHIOIFIER, WATTS
QDUCT = RATE OF HEAT LOST FROM OUCTING, WATTS
QHEXP = RATE OF HEAT TRANSFERREO IN HEAT EXCHANGER, WATTS
QU = RATE OF HEAT GAINEO IN COLLECTOR, WATTS
GAUX = RATE OF HEAT SUPPLIED BY AUXILIARY HEATER INTO OEHUMIOIFIER, WATTS
QSURP = SURPLUS SOLAR HEAT AUAILABLE, WATTS
REFLEC = GROUNO RELECTANCE RATIO
RH = RELATIVE HLMIOITY
RHC = SATURATION RELATIUE HLMI OITY = 0.99999999999
RHIN = INLET RELATIUE HLMIOITY (OECIMAL)
RHOF = AVERAGE OENSITY OF AIR FLOW STREAM
RHOP = ORY BULK OENSITY OF GRAIN (LB/FT**3)
RLEAK = RECIRCULATION LEAK RATE
RPS = REV PER SEC
RUC = RATIO OF RESALE UALUE AT ENO OF PERIOO OF ANALYSIS TO INITIAL
    IMNESTMENT - CON/ENTIONAL
RUS = RATIO OF RESALE UALUE AT END OF PERIOO OF ANALYSIS TO INITIAL
        INUESTMENT - SOLAR
SKY = SKY CONDITIONS, TYPE ANO EXTENT OF CLOUO CONER
SL = SLOPE OF COLLECTOR (OPTIMLM ANGLE-LATITUOE)
SMC = SOLAR RATIO OF MISC. COSTS TO INITIAL INNESTMENT
SMCP = PERCENTAGE FORM OF SMC
SMIR = ANNUAL MORTGAGE INTEREST RATE - SOLAR
SMIRP = PERCENTAGE FORM OF SMIR
SNOWH = INOICATOR OF SNOW COUERAGE
STDYR = STANDARO YEAR RAOIATION
STN = STATION MUMBER
STR = STATE TAX RATE
STRP = PERCENTAGE FORM OF STR
TAC = TOTAL COLLECTOR AREA
TANC = PROPERTY TAX RATE BASED UPON ASSESSED UALUE - CONNENTIONAL
TANS = PROPERTY TAX RATE BASEO UPON ASSESSEO VALUE - SOLAR
TBAR = EFFECTIVE TAX RATE
TBTPR = TIME BETWEEN OUPUTS
TCOST = TOTAL COST OF AUXILIARY HEAT TO ORYER INLET FOR THE STUOY
TCR = TAX CREOIT RATE
TCRP = PERCENTAGE FORM OF TCR
TOIC = OISCOUNTEO UALUE OF INCOME TAX DEOUCTIONS ON THE INTEREST -
    CONUENTIONAL
TOIS = OISCOUNTED UALUE OF INCOME TAX OEOUCTIONS ON THE INTEREST -
                SOLAR
TOQAUXX = DAILY TOTAL HEAT PROUIOED BY ALX HEATER TO ORYER INLET
THIN = INLET OR INITIAL GRAIN TEMPERATURE (F)
TIC = TEMPERATURE INTO COLLECTOR
TIOO = ORY BULB TGMPERATURE INTO THE ORYER
TIOR = TEMPERATURE INTO DEHLMIDIFIER, REGENERATION SIDE
TIDW = WET BULB TEMPERATURE INTO THE ORYER
TIME = TIME (CUNMULATIVE) (HR)
TIN = INLET AIR TEMPERATURE (F)
TMIN = MINIMLM TEMP OF OESICCANT REGENERATION AIR (OPTION #2)
TOC = TEMPERATURE OUT OF COLLECTOR
TOOP = OUTLET TEMPERATURE OF OEHUMIOIFIER, PROCESS SIDE
TOOR = OUTLET TEMPERATURE OF OEHUMIOIFIER, REGENERATION SIOE
TOXP = OUTLET TEMPERATURE OF SENSIBLE HEAT EXCHANGER, PROCESS SIOE
```

```
TOXR = DUTLET TEMPERATURE DF SENSIBLE HEAT EXCHANGER, REGENERATION SIDE
TGAUX = TOTAL AUXILIARY HEAT SUPPLIED, KJJ, TO DEHUMIDIFIER REGENERATION SIDE
TQU = TOTAL HEAT GAIN IN CDLLECTDR, KJ
TQDEHU = HEAT TRANSFERRED IN DEHUMIDIFIER, KJ
TQDUCT = HEAT LDST FROM DUCTING, KJ
TQHEX = HEAT TRANSFERRED IN HEAT EXCHANGER, KJ
TQSURP = TOTAL SURPLUS SDLAR HEAT ANAILABLE, KJ
TRD = INLET TEMPERATURE TD AUXILIARY HEATER, REGENERATION SIDE
TT = TOTAL TIME (IN HDURS) DF STUDY
U = EFFECTIVE CONDUCTANCE BETUEEN DESICCANT AND AIR STREAM
UC = RATID DF ASSESSED VALULTION DF THE SYSTEM IN FIRST YEAR TD THE INITIAL
    INNESTMENT DF THE SYSTEM - CDNUENTIONAL
VDID = VDID FRACTION DF DESICCANT MATERIAL
US = RATIO DF ASSESSED UALUATION DF THE SYSTEM IN FIRST YEAR TD THE INITIAL
        INNESTMENT DF THE SYSTEM - SDLAR
WSMM = AMBIENT HUMDITY RATID
WATER = AMDLNTT DF H20 REMONED (CLMTMULATIUE)
WEAT = WEATHER CDNDITIONS, SNOW, RAIN, ETC.
WDIR = WIND DIRECTIDN
WIDP = INLET HUMIDITY DEHUMIDIFIER, PRDCESS SIDE
WIDR = INLET HUMIDITY DEHLMIDIFIER, REGENERATION SIDE
WDDP = DUTLET HUMIDITY DEHUMIDIFIER, PRDCESS SIDE
WDDR = DUTLET HUMIDITY DEHUMIDIFIER, REGENERATION SIDE
WOXP = DUTLET HLMIDITY HEAT EXCHANGER, PRDCESS SIDE
WOXR = DUTLET HLMIDITY HEAT EXCHANGER, REGENERATIDN SIDE
WNEL = WIND VELOCITY
XE = SENSIBLE HEAT EXCHANGER EFFICIENCY
XMAUE = AUERAGE MOISTURE CONTENT IN X-DIRECTION (DECIMAL,DB)
XME = EQUILIBRILM MDISTURE CONTENT (DECIMAL,DB)
XMEND = FINAL DESIRED MOISTURE CONTENT (DECIMAL, DB)
XMO = INLET DF INITIAL MOISTURE CONTENT (DECIMAL, DB)
YR = YEAR
```


## APPENDIX I

## SAMPLE OUTPUT

OF
DRYER SIMULATION

uscs pucger inamayen eouation fer cumb

EVUIL HCIULLIAALI

mater varce
REL HUNIDECINAS ABS INOHIOFLIAMA I
0
proouct
0.2580
Lat heat evap
1040.6409
ppobran cchirols


Hzoremevto - 0.1V


H20 MIMLVEO - 15.55
1120 MEACVEO $=19.58$

ENIERITG ABSULUIE HUAIDITY: 0.00015
59.239
0.3163
0.03450
0.00919
65.411
65.444
0.2965
0.57514
0.0078 r
74.642
14.613
14.613
0.2669
0.316 .30
0.00590 AIA 1EMP $100.000 \quad 43.457$ 03. 194 $\begin{array}{llll}\text { P日G0 TEAP } & 99.584 & 93.433 & 03.765 \\ \text { NC t0 } & 0.231 & 0.2012 & 0.2376\end{array}$ $\begin{array}{llll}\text { EFL HUW } & 0.0 & 0.04979 & 0.15493\end{array}$ 0.00388 43.457
93.433
0.2012
0.04979
0.00169 AIA 1EMP 100.000 43.457 03. 194 $\begin{array}{lllr}\text { PQgo TERP } 99.584 & 93.433 & 83.165 \\ \text { NC. DE } & 0.231 & 0.2012 & 0.2316\end{array}$ $\begin{array}{llll}\text { Pago TEMP } 99.584 & 93.433 & 03.765 \\ \text { NC. DE } & 0.231 & 0.2012 & 0.2376\end{array}$ $\begin{array}{llll}\text { KCL HUW } & 0.0 & 0.04979 & 0.15403\end{array}$

A85 Hum 0.00015
TINE
AVEPAGE
3,00
$=0.2530$ ENIERING AIA

## TINE $\quad 4.00$ AVEMADE-HC $=0.2301$

CNIERING ABSULUTE MUAIOITY $=0.00012$
EMICRING

|  | 100.000 | 95.593 | 88. 200 | 90. 019 | 11. 300 | 63.696 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| teme | 99.694 | 95.571 | 68.176 | 19.995 | 11.172 | 63.673 |
|  | 0.215 | 0.1796 | 0.2106 | 0.2422 | 0.2714 | 0.2998 |
| 1un | 0.0 | 0.03232 | 0.09955 | 0.21163 | 0.36352 | 0.64120 |
| um | 0.00012 | 0.00117 | 0.00207 | 0.00470 | 0.00650 | 0.00025 |
| IINE = 5.01 AVERAGE HC $=0.2097$ |  |  |  |  |  |  |

THE
AVEHAGE
HC
ENIERING ABSUL UTE IUNIOITY : 0.0000 B

| AIH VEMP | 100.000 | 96-796 | 91.351 | 84. 180 | 76.981 | 69.116 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pmuo itw | 99.713 | 96.175 | 91.338 | 94.158 | 76. 959 | 69.150 |
| nc us | 0.203 | 0.1652 | 0.14ts | 0.2192 | 0.2480 | 0.2174 |
| bet hum | 0.0 | 0.02143 | 0.06450 | 0.14526 | 0.26340 | 0.45240 |
| Abs mom | 0.00008 | 0.00000 | 0.00205 | $0.0036 \%$ | 0.00530 | 9.0070 |

H2O MEMLVEO $=25-e 9$

H20 REFCVEU－27．tI
a20 Rercveo－32．25

74.155
74.132
0.2548
0.31624
0.00580

ENERGY INPUI＝ 17456.64
ENERGY INPOI $=17456.64$
8TV／LOM20－ 584.34

$\begin{array}{ccc}\text { ENIERING AIR IEMPERATUKE IFI } & =100.00 \\ \text { AIM TEMP } 100.000 & 93.102 & 95.137\end{array}$
76.067
70.048 U．2330 0.23457 0.00469


BTuनL0nze－610．76
EHTERING ABSMLUTE MUNIOATY ：O．OUQR1
EMTERING AIR TEMPERATURE IFI－100．00
$55.532 \quad 86.116$ 3
$\stackrel{3}{2}$
$\stackrel{1}{2}$ N゙
N゙
だ U． 19510

9．00．2s

 $\begin{array}{llll}\text { AIR TEAP } 100.000 & 97.663 & \$ 4.6 .90 \\ \text { PROO IEMP } 99.813 & 97.636 & 94.680 \\ \text { HC OB } 0.178 & 0.1413 & 0.1460 \\ \text { REL HUM } 0.0 & 0.01892 & 0.03827 \\ \text { ABS HUM } 0.00021 & 0.00073 & 0.00135\end{array}$
90.695
90.612
0.1651
0.87036
0.09219
0.03327
$\approx$
$\vdots$
$\vdots$ 0.1917
0.1217

Enitring ale temperatuat ifi $=100.00$

| TEMP | 100.000 | 93.122 | 76.923 | 93． 650 | 199．254 | 83．946 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 EmP | 99．084 | 93.718 | 96.911 | 53.899 | 89．239 | E．5．982 |
| ${ }^{8}$ | 0.173 | 0.1371 | 0.1309 | 0.1529 | 0.1757 | 0.2015 |
| нum | 0.0 | 0.00697 | 0.01739 | 0.03193 | 0.97121 | 0.13867 |
| Hum | 0.0 | 0.00028 | 0.00065 | 0.00130 | 0.00230 | 0.003 90 |
| IIme＝10．00 AVEAACE HC $=0.1476$ |  |  |  | EHERCY IHPU1＝24960．6月 0IU／LBH2C＝ 655.26 |  |  |

AvERACE NC 0.0 .1478

1120 KEncVfo－35．50
H20 REMCVEO－37．28
H20 ELPRVIB－26．43
Emingy ImPUT＝2थックข．

EHICRIGG AOSUL UTE IUNIOITY $=0.00112$
EHIERIMG AIR THMPERATURE IFI $=100.00$

| 114 P 100．000 | 97.680 | 95.917 | 94.029 | 91． 192 | 06．17） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TEMP 99．757 | 97．683 | 95． 912 | 94.023 | 91．745 | 00.188 |
| 0.150 | 0.1252 | 0.1279 | 0.1392 | 0.1543 | 0．1761 |
| Hum 0．0 | 0．06152 | 0.05356 | 0.06789 | 0.08123 | 0.12460 |
| InJm 0.00112 | u．colso | 0.00196 | 0.60235 | 0.00201 | 0.00360 |
| TIME $=12.01$ ayerage mi | 1348 |  | Enemgy <br> 01UनB B |  |  |

AYERAGE $m \mathrm{CL}=0.1398$

 98.325 56．935



 0.00218 $\begin{array}{ll}98.535 & 97.204 \\ 98.531 & 98.260 \\ 0.1132 & 0.1162 \\ 0.05117 & 0.05955 \\ 0.00203 & 0.00227\end{array}$
$\begin{array}{llll}\text { aln tenp } 100.000 & 93.535 & 9 \% .204 & 95\end{array}$ Pano 1E4P 99．86） HC OB 0.127 afl mum 0.0 A85 н⿺𠃊 0.00173
T1ME $=15,00$
AVGRAGE NC $=0.1211$

92.072
92.046
$\frac{3}{3}$
94.033
9.088
0.1721
96.465
0.1235
0.05520
0.00205
98.032
0.1206
Pave teap v9． 601
REL Hen 0.0
ass now 0.00134
TIME 13.00
EMIKRING AIR TERFERATORE IC）$=100.00$ 97.119
97.115
0.1126
$0.1095 \quad 0.1126$

$$
\begin{aligned}
& \text { ENERLY IMFUI }=32503.05 \\
& 81 \mathrm{O} / \mathrm{BH} 20-025.30
\end{aligned}
$$

$$
95.919
$$

$$
95.215
$$

$$
0.1253
$$

$$
0.06849
$$

$$
0 . c 0254
$$

0.002650 .00331

$$
\begin{aligned}
& 0.08253 \\
& 0.00288
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMERGY thiput }=3 \text { 3T4s6.50 } \\
& \text { 810/LEM2C - } 911.97
\end{aligned}
$$

91.461
91.454
0.1571
0.10366
0.00331

$$
\begin{aligned}
& 92.344 \\
& 92.330 \\
& 0.1500 \\
& 0.10008 \\
& 0.00329
\end{aligned}
$$

$$
\text { H2O ItPIveo - 39. } 23
$$

$$
\text { H20 REMCVED = } 40.22
$$

H20 rincvio = st.6t 4
5
0
0
95． 5 a7范
0.1211
97.455

78．451
 PROE TKMP 99． 860 NC on 0.171

$$
\begin{aligned}
& 94.297 \\
& 94.292
\end{aligned}
$$

$$
\begin{aligned}
& 07.963 \\
& 0.1656 \\
& 0.11169 \\
& 0.00341
\end{aligned}
$$

$$
\begin{aligned}
& \text { intering }
\end{aligned}
$$

$$
\begin{aligned}
& 870.71 \\
& \begin{array}{l}
\text { T1ME }=14.01 \\
\text { AVERAGE } N C=0.1255
\end{array}
\end{aligned}
$$


1120 hlacyce = 4t.0)
H20 ACHCVEO * 44.es
H2U REmCVCO * 45.19

| EHIEPING absulute imintolity - 0.00013 ENIEMING AIR IENPERATURE iri - INO.UU |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AIR ITAP 100.000 | 98.678 | 97.476 | 96.211 | 94.e06 | 93.222 |
|  | 96.675 | 97.473 | 96.207 | 94.802 | 95.218 |
| HC D8 0.103 | U. 0961 | U.0997 | 0.1064 | U. 1140 | 0.1243 |
| REL HUA 0.0 | 0.00945 | 0.01546 | 0.02241 | 0.03691 | 0.04176 |
| ABS HUM 0.00013 | 0.00031 | 0.00059 | 0.00083 | 0.00149 | U.00141 |
| $\begin{aligned} & \text { IIMF }=20.00 \\ & \text { AVCRAGE MC }=0.1021 \end{aligned}$ |  |  | $\begin{aligned} & \text { EHERGY IHPUT }=49 \text { 471.93 } \\ & \text { B1U/LBH20 = } 1117.55 \end{aligned}$ |  |  |
| ENIERING ABSUL UTE HUAIOITY = 0.00021 ENIERING AIR IGMPERATURE IF: $=100.00$ |  |  |  |  |  |
| AtR 1EAH' 100.000 | 98.310 | 97.709 | 96.543 | 95.246 | 93. 785 |
| PHUU TEAP 99.904 | 90.806 | 97.706 | 96.540 | 95.242 | 93.781 |
| HC D8 0.099 | 0.0939 | 0.0969 | 0.1033 | 0.1112 | 0.1201 |
| REL Hum 0.0 | 0.0106R | 0.01611 | 0.0223H | U.03009 | U. 03915 |
| Aas IHUM 0.0002t | 0. 00063 | 0.00062 | 0.00683 | 0.00 Lud | 0.00136 |
| $\begin{aligned} & \text { ITHK } 21.01 \\ & \text { AVERAGE HC }=0.0 \% 9 \text { a } \end{aligned}$ |  | $\text { ENERGY ITPUT = } 523 \mathrm{azz}=02$$\text { BIU/LAH2C }=1159.23$ |  |  |  |
| EHIERING AOSH UTE HUNIOITY = U.V0029 ENTERING ATM IEMPERATUPE IFI $=100.00$ |  |  |  |  |  |
| AIA TEHP 100.000 | 98.919 | 97.906 | - 36.824 | 95. 629 | 94.216 |
| PRUO TEAP 99.914 | 48.917 | 87.903 | 96.825 | 95.626 | 44.214 |
| HC UH 0.0\% | 0.0915 | 0.0944 | 0.1ues | 0.1017 | U.116.3 |
| REL Hum 0.0 | 0.01192 | 0.01681 | 0.02251 | 0.02553 | 0.03014 |
| ABS HUM 0.00029 | 0.00048 | U.00065 | U.00485 | U. 00201 | U.00:33 |

1120 REACVCU * 55.6 .3
HZO REMCVEO - 46.2C

| EHERIHG ABSULUTE HUMLOLIV $=0.00045$ ENIERING AIR TEMPERAIURE If $1=800.00$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ats 1EPM | 100.000 | $9 \% 640$ | $9 \mathrm{H}$. | 97.148 | 96. C56 | 94.423 |
| PMov tent | P 99.924 | 99.031 | 90.121 | 97.145 | 76. C52 | 94.1619 |
| MC ail | 0.093 | 0.0893 | 0.0922 | 0.0979 | 0.1049 | 0.1120 |
| REL LIUM | 0.0 | 0.01541 | 0.01988 | 0.02504 | 0.03133 | 0.03914 |
| ans mum | 0.00045 | 0.00062 | 0.00018 | 0.00095 | 0.00115 | 0.00130 |
| $\begin{aligned} & \text { T1ME }=23.00 \\ & \text { AVERALE } \text { HL }=0.0946 \end{aligned}$ |  |  |  | ENERGY INPUT - 57336.37 <br> BTU/LB42C = 1240.99 |  |  |
| ENTERING ABSULUTE HUALOI IY = 0.0 ENIERING AIR IEAPERATURE $\|F\|=100.00$ |  |  |  |  |  |  |
| AIR EMP | 100.000 | 98.954 | 97.969 | 96.933 | 95.198 | 24.541 |
| PhOO TEMP | P9.914 | 90. 951 | 97.966 | 96.930 | 95.794 | 94.537 |
| mC ta | 0.090 | 0.0870 | 0.0870 | 0.0953 - | 0.1019 | 0.1093 |
| CEL Hum | 0.0 | 0.00444 | 0.00886 | 0.013960 | 0.02006 | 0.02153 |
| abs hum | 0.0 | 0.00018 | 0.00035 | 0.000530. | 0.00013 | 0.00096 |

TIME $=22.00$
AVEHAGE $\mathrm{MC}=0.0913$
ENEHGY INPUI = 54HB3. 14
oluflemzg =


AVERALE ML $=0.0946$
ENIERING AIR IEAPERATURE IFI =100
$98.954 \quad 97.969$
90. 951 0.00444 0.00011 94.a83 0.1120 0.03914 0.001150 .0013 ENERGY INPUT - 57336.37
95.198 0.1019 0.02006
0.00013



COST OF LP FUEL IS ESTIAATCO AT $\$ 10.00 / 10 * * 6$ 日T0

## ACKNOWLEDGEMENTS

$l$ would like to thank my major advisor, Dr. H. D. Ball, for his help during the course of this research, as well as Dr. Do Sup Chung and Dr. Robert Gorton for serving on my committee. Thanks also goes to the Mechanical Engineering Department and Dr. Paul Miller for financial support during my graduate program. I would also like to thank ASHRAE for the grant I received during the $83-B 4$ year to help defray the cost of my educational expenses.

On a more personal level, I would like to thank my mother, Rosella Riblett, and my father, Dr. Loren Riblett, Sr., for instilling in me at an early age the importance of an education. To my brother, Loren, thanks for the heal thy competition that has helped us both advance. I would like to also thank my sisters, Carol and Laura, for the friendship and the good times. Thanks is also extended to my brother, Carl (Little Joe), for helping me keep life in perspective. Finally, and most importantly, thanks goes to $m y$ husband, Herman Temple, for the laughter, the acceptance, the security, and the love.

## UITA

Kathy A. Riblett<br>Candidate for the degree of<br>MASTER OF SCIENCE

Thesis: The Feasibility of a Solar Powered Sorption Dehumidification System Applied to Grain Drying

Major Field: Mechanical Engineering
8iographical:
Personal Data: Born in Garnett, Kansas, Nowember 3, 1958, the daughter of Loren E., Sr, and Rosella M. Riblett. Married to Herman M. Temple, May 1, 1982.

Educational: Graduated fron Wamego High School, Wamego, Kansas in May 1977. Received a 8achelor of Science degree in Mechanical Engineering fron Kansas State University in December, 1982. Completed the requirements for the Master of Science degree in Mechanical Engineering from Kansas State University in May, 1984.

Professional Experience: Enployed as a cooperative education student with the John Deere Component Works: January 1979 to May 1979, Materials Engineering, August 1979 to January 1980, Quality Engineering, May 1980 to August 1980, Manufacturing Engineering, May 1981 to August 1981, Industrial Engineering. General Physics I Lab Instructor and Coordinator (81-82). Emplored as a graduate research assistant at Kansas State University from January 1983 to May 1983 and from March 1984 to May 1984.

# THE FEASIBILITY OF A SOLAR POWERED SORPTIUN DEHUMIDIFICATION SYSTEM APPLIEO TO GRAIN DRYING 

## by

KATHY A. RIBLETT
B. S., Kansas State University, 1982

## ABSTRACT OF A MASTER'S THESIS

```
submitted in partial fulfillment of the
        requirements for the degree
            MASTER OF SCIENCE
            Department of Mechanical Engineering
        KANSAS STATE LNIVERSITY
            Manhattan, Kansas
```


## ABSTRACT

The feasibility of drying grain using dehumidified air was studied. The dehumidified air was produced by a solar energy powered sorption dehumidifier. A grain drying model was coupled with an existing computer model of the sorption dehumidifier. Drying grain with dehumidified air was compared to drying grain with ambient air, solar heated air, and auxiliary heated air. The air that was dehumidified was found to dry faster than air that had been heated only. The cost per bushel was found to be about $\$ 1.46$ for the conventional system. The dehumidified air costs were $\$ 1.17 / \mathrm{bu}$, and the dehumdified/auxiliary heated air cost $\$ 1.28 /$ bu. The cost per bushel of the solar/auxiliary heated drying air was $\$ 1.11$. A study of the life cycle costs of the solar energy powered sorption dehumdifier showed the costs of such a system to be about $\$ 2000.00$ greater than a conventional drying system that uses liquified petroleum gas. A grain drying system that uses a solar collector to provide part of the energy needed, was found to have a Iife cycle cost of about $\$ 350$ more than the conventional system.


[^0]:    THE FOLLOUING TUO DBCLARATJON STATEMENTS ARE FOR THE BCONONIC
    ANALYSIS

