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postbamtbst pbtsiology of pomacecbs fbhts

istkcduution

fruits like other fruits continue to live after they ere

removed from the trees. Thus they carry on different physiological proc-

esses characteristic of living organisms. The physical processes ere

accompanied fay certain chemical changes. Therefore* e knowledge of the

physiology sad chemical change of these fraits after harvest is useful ia

understanding what happens to the fruits in storage, ia the marketing

channels, and in the beads of the consumer.

Many attempts have been made to review the great amount of litera-

ture on postharvest physiology that takes place after various kinds of

fruits are harvested. Pertinent findings have been published ia review

fay Biale (7). Smock (132) has written on the postharvest physiology of

deciduous fruita in storage. Miller (109) has written on the physiology

of citrus fruits in storage, sad Pentser and Helnae (119) on the post-

harvest physiology of fruits sad vegetables, with particular emphasis oa

the role of volatile eaaaatleas ia certaia physiological diseases. Hagness

at el. (98), Hawkins (53), Brooks (12), sad Wright (164) have referred to

carbohydrate transformation in fruits and vegetables. Nitseh (114) wrote

on fruit growth and problems of metabolism, and Ulrica (152) on the poet-

harvest physiology of fruits, with special reference to the conditions of

ripening, the gas exchanges, and the metabolism of postharvest fruits.

Mesh information may also be found relating to the postharvest physiology
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of apples* lemons, and cherries in the books of Svock and Ifeubert (138),

Bartholomew and Sinclair (6), and Marshall (99).

The purpose of this report is to review the literature pertaining

to postharvest physiology of poaaeeous fruits with special reference to

apples and pears.

PJ / .. :.':.?:.
iimm—;.", KBBBH

Several studies have been published iwttcatfcg that ^rrlHfmal

sad climatic conditions during the life of the plant have iaportant ef-

fects on the postharvest behavior of fruits. It has been found that

many physical or chemical agents nay have significant effects on ripen*

ing of the fruit after picking.

1. TsBoerature:

When fruits are picked at the right tine they generally can ripen

at say temperature between two critical lioits. Leonard et ai. '95)

that Bartlett pears stored at 34°F continued ripening but at a

slower rate than at 70°P. Temperature does not affect the develop*

aent of color and firsness at the sane rate. Certain varieties neet

cold treatment before ripening et high teaperatures. Passe Crassaue pears

when held at 32°F for 11 to 15 weeks ripen well at lfc^fc. Ethytene has

the sane effect as cold pretreataent. According to Cbilders (20) fall

end winter varieties of peer attain the highest quality by storing in

toons at 30 to 3l°F and ripening at teaperatures between 60° and 70°P.

Fisher and Porrit (33) reported that Bartlett pears harvested one and
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two WMks beyond the date of commercial harvest ripened satisfactorily with

good quality stored at 31° to 32°F for six weeks. A slight change la tem-

perature affected the maturity to a considerable extent.

According to Childers (20) ripening processes of apples proceed

slowly when the temperature is maintained at 32°F. The ripening rate of

apples is approximately doubled or tripled for every 18°F rise in tempera*

ture. Bailer and lutz (46) reported that the rate of softening of apples

in storage depends upon the temperature at which they are stored. For a

number of varieties the rate of softening at 40°F was found to be slightly

more than double that at 32°F, when stored at S0°F was slightly less than

double then at 40°F, and that at 60°F was nearly double the rate as 50°F.

They concluded that softening was due to the conversion of an (in-

soluble specific uhstaiwe such 9A protopectin, into a soluble fona. They

found that the rate of conversion at different temperatures was proportional

to the rate of softening.

2. Radiations:

Morgan (111) stated that radiations may act as stimulators or

inhibitors of ripening. Loss of texture and some loss of color and flavor

during irradiation are likely to be common in the case of many fruits. Com-

plications are often introduced by the persistence, after irradiation, of

metabolic activity of the product or activity of individual enzymes. Ap-

ples develop a pronounced •irradiation' flavor with a does of 2,000,000 rep.

(roeatgen-equivalent-physical * the energy lost by fast electrons in pro-

ducing, in air, ions of either sign carrying one electro-static unit of

charge). Apples and pears may lose flavor at 2,000,000 and 4,000,000 rep.
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with no obvious loss of texture sad if allowed to stand overnight nay

becoae brow, as though bruised. According to Huber sad co-workers (56)

oxygen is one of the principle factors responsible for radiation initiated

organoleptic changes.

3. Humidity:

Maturity of fruit, especially the evolution of the flavor, is

influenced by the relative humidity and the velocity of sir in the vicin-

ity of the fruit. The development of a good flavor or odor in pears amy

be hindered by saturated airj apples any show blackening of the core under

similar conditions, Ulrich (151). According to Childers (20) apples should

be stored at 85 percent and pears between 80 and 85 percent relative humid-

ity.

4. Ethylene:

Childers (20) statad that ethylene is the most iaportant of the

chemicals used to effect ripening. It acts on the ripening of the various

fruits, it hastens the ripening of precliaacteric pears, except for the

Kieffer variety. Its effects on the ripening of pears are apparent only

if the gas is used a short time after harvest. If the pears have been in

cold storage for several weeks, they show little or no response to it. Its

effects are most pronounced at temperatures of 60°P to 70°F with little or

no effect at cold storage temperatures. Ulrich (151) reported that the

effectiveness of its treatment on ripening at ordinary temperature decreases

when the preliminary cold storage period is increased. Its effects on res-

piration and ripening are limited at low temperatures.

Biale and co-workers (8) suggested that where ripening of fruit is
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unifern without ethylene treatment, ue« of this gas has no advantages.

Native ethylene it a product of the ripening process rather than a casual

of ethylene required to stimulate ripening:

There is a close relationship between ripening and respiration of

fruit. In order for ethylene to stimulate respiration end ripening of

fruit in storage ethylene oust reach a certain minimum concentration or

threshold value which oust he maintained for a certain period of time.

While the presence of ethylene is associated with cllaacteric rise sad

onset of ripening, unless other conditions axe suitable for ripening,

ethylene has little effect. Hansen (47) suggested that the specific re-

action in which ethylene is formed oust first occur in order for fruit to rip-

ent Hansen (48) also stated that the snail quantity of ethylene arising from

epinasty but had no effect upon respiration of fruit. However, a eonecn-

tration of 1:1000 caused immediate respiratory stimulation*

5. Voiatiies:

According to Stock (132) no aspect of postharvest physiology of fruit

is as controversial as that of the role of fruit voiatiies. Different re*

suits have been found by different investigators who worked on this prob-

lem However, Smock found that non-ethylenlc voiatiies say be influential

in ripening apples at storage tenperatures. The vapors of ripe apples as-

pirated over preclimacteric apples made them repire and soften faster. Kidd

and West (84) showed that voiatiies produced by one lot of apples could in-

crease the ripening rate of another lot. Manic and Baker (104) reported
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that inclusion of post-climacteric fruit as fillers stinulat.es the ripen-

ing rate of pre-climacteric apples in the esse room. Snook and Gross (136)

reported that ripe apricot vapors have effects on the ripening of inmature

apricots, pears and apples. However, it was found that the stimulation

in ripening was not proportional to the amount of apricots used. Volatiles

from large quantity of ripe apricots had a less stimulatory effect on the

ripening of these fruits than front smaller quantities at high temperatures.

When activated carbon wee need in the recirculation system, it tended to

remove the depressant effect of e large quantity of apricots. This In-

dicated that a depressing volatile was Involved. Smock (133) in a aspe-

rate study found that relatively few ripe apples had more stimulatory ef-

fect than many at high temperatures.

Ulrich (151) reported chat the presence of ripe fruits under certain

conditions has been found etimulstlng to unripe fruits. However, this has

not been confirmed with apples and pears stored at -1°C. Air purification

o
bed no influence on apples et -0.5 C.

The ripening of preclimacteric fruits in cold storage which can be

stimulated by the volatiles of ripe fruits is a problem which still has to

be solved. Different workers using different conditions of temperature,

and different varieties and species in their experiments have found con-

flicting results. According to Grlersoo-Jackson (38), non-ethylenic

volatiles, in a cold room, may condense on the evaporator coils in consider-

able quantities.

6. Growth substances:

Growth substances are used to stimulate the ripening of harvested
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fruits* Their treatment is only effect under certain conditions, particu-

larly when they are used very early after picking, ae indicated by Ulrica

(152). Mitchell and Marth (110) used 2,4-dtchioroi ilissHirj nc stic acid to

test its effect on the ripening of different varieties of apples after

pinking. They reported that yellow Hswton fruit ripened during the two

weeks period innediately following treatment where untreated apples failed

to ripen in this length of time. Grimes Golden apples ripened within a

period of 6 days, where untreated apples took two weeks at foe* tempera-

rare to reach the seem stage of ripeness. Kane Beauty espies ripened two

to six days earlier than the untreated cose. Cieffer pears took two to

four days less than required for comparable untreated fruits, tfiater

Bartlett pears ripened within a period of eight to ten days following

treatment, while untreated fruits failed to ripen during this period.

Treated fruits of both varieties of pears ripened wore uniformly than the

control.

la studying the influence of < -naphthaieneacetic acid spray on the

maturity and storage physiology of apples and pears, Gerhard end Allmeedinger

(36) found that thie mormon* had no influence em the ementity and degree of

ripeness when these fruits were harvested within their normal range of Ac-

ceptable picking maturity from one to two weeks after application of the

spray, it was further found that when these conditions were ignored, the

rate of ripening wee increased to the extent that loeees from breakdown

became serious.

Snoek end Gross (136) reported the effect of various hormone materi-

als on apples when application was made prior to harvest. Seuthwick (141)
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that 2,4-D and methyl ^-naphthalene acetate were effective In etiw

lating the ripening of peaches end apples* Hansen (SO) reported effects

of 2,4D and accumulated volatiles on ripening of immature and nature Bart-

lett pears.

1 1 1 MM kflll<WhwMi1 i V ill i

Pathway of aas exchange t

Olrich (132) raported that after the fruits have teen harvested

they take in oxygen, water vapor or carbon dioxide and give out carbon

dioxide, ethylene, volatiles and water vapors. The internal atmosphere

surrounding the living cells of the fruits does not have the same composi-

tion as air. Therefore, the gen exchanges between the living cells of the

fruits and the air am, for the acta part, indirect. The circulation nay

take plane through intecellular spaces, the lenticels, the skin, calyx,

and superficial wounds.

Pathways of circulations are not the seas for different varieties

end sonatinas in fruits of the sane variety. There stay be differences fron

one fruit to another. The calyx, sonatinas, becaaes an iancrtant pathway

for the circulation of gases. Kith the presence of a nunber of functional

lenticels, or whan large wounds are present, the permeability of apples

increases with the pressure of the air, and decreases during ripening and

senescence. Only a little part of the water vapor and carbon dioxide

evolves through the lenticels; moat diffuses through the cuticle. Oxygen,

which is less soluble in water and in lipids than carbon dioxide, enters
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through lenticels.

Reeve (124) reported that changes in gas composition accompany other

changes related to structure and texture In stored apples. The gas content

Increases while specific gravity decreases with —allnett and maturity in

apples. Trout, Ball and Sykes (149) reported that the keeping quality of

apples and of certain fruits stay be improved considerably by a suitable

skin coating. The effects of the coating are found to depend greatly on

temperature, thickness and type of coating, and variety and condition of

fruits. Coating increased the resistance of the akin to the gaseous dif-

fusion and thus greatly reduced the internal oxygen concentration, in-

creased the internal carbon dioxide concentration, reduced the respiration

rate and retarded ripening changes by varying degrees, and caused a narked

retardation of normal yellowing of the skin which is mainly controlled by

internal oxygen supply. A marked change la the composition of gas in the

fruit tissues under varying conditions of temperature was reported by

Kagneas (97).

inspiratory i n iwrtlmiH'

Claypeol, Maxie and Esau (22) found that the rate of air flow over

respiring fruits may be a critical factor in carbon dioxide production.

Two phencmen may be involved - the retarding effect of carbon dioxide ac-

cumulation or oxygen depletion, and the stimulatory action of volatlles,

Ulrica (152) reported that carbon dioxide output is not always a good test

of fruit ripening. The rate of ripening of plums iB not increased by high

temperatures in the same proportion as carbon dioxide production, end a

peak of carbon dioxide may be observed prior to ripening in tomatoes.
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The Climacteric:

Biale (7) reported that the respiration of fruit, measured by the

cells' uptake of oxygen, is high during the stage of cell division and

gradually decreases during enlargement and saturation of the cells, after

the cells mature, there comes e sharp rise in respiration rate followed by

a decline. This phase of respiration has been named the "climacteric."

Temperature has a marked effect on the course of respiration during the

climacteric stage. In certain fruits, the higher the temperature, the

sharper the rise and higher the peak, low temperatures tend to suppress

or completely obliterate the climacteric.

Biale and his co-workers (8) found the occurrence of the climacteric

rise in carbon dioxide production in several species of fruits. The fruits

with a marked climacteric showed high rates of ethylene production. Mango

is an exception. The ratio of ethylene evolution to carbon dioxide output

ms highest fost the apple, followed by the sepote and pear. In practically

ell cases ethylene was found to accelerate the onset of the climacteric if

applied before the rise.

The information available on the relationship between ethylene pro-

duction and respiration is limited and conflicting. Kelson (113) found

that the sharp rise in ethylene production of apples followed the rise in

carbon dioxide evolution. In the case of bananas an inverse relationship

between ethylene and carbon dioxide evolution has been observed. Hansen

(47) working with pears observed that the maxima in both processes occurred

at the same time.

Hulme (64) followed over a number of seasons the respiration rate of
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at 12°C and 15°C. Ha noted that there is a regular biennial

variation in the level of respiration, and the difference in the tiae

between the onset of the climacteric at 12°C and 15% varies with the date

of picking. He further found that the ratio of rate of respiration to

protein content at the climacteric peak is constant within one variety.

Effects of External Conditions and of Cbamlnals en Respiratory Activity?

Blrich (52) reported that the effect of temperature on respiration

In apples is not the same for the skin and for the pulp* and that it dif-

fers with the seasons. At low temperatures the CGj/Cfe ratio of oranges

increases; thus respiration becomes more dependent on utilisation of organic

acids. It may explain the cause of the poorer taste of fruits stored at low

temperatures. Carbon dioxide production by apples and pears placed in wet

air on in air circulating at a high speed may be higher than that of fruits

placed in opposite conditions.

Claypool et al. (21) found that plum fruits held in oxygen levels

above that in air are accelerated both in ripening and respiration rates.

The rate of acceleration was proportional to the oxygen tension. Caldwell

(17) showed that partial pressures of the order of 500 percent oxygen are

toxic to the tissues of apples and that there is no evidence of an initial

increase in carbon dioxide output over that in one atmosphere 100 percent

oxygen. It was further found that the actual pressure (up to 20 atm) is

not responsible for the disorganisation of the cells but that there is

specific oxygen toxicity. Ulrich (152) reported that the optimum in res-

piratory activity obtained for a certain concentration of oxygen is not the

same for young and old apples or for apples stored at 10°C and 30°C.
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Fidler (30) found that the respiration of apples is depressed is

gas storage at 4°C. A respiration peak was found which is similar to the

peak of the climacteric rise in air, but he believed that it was not the

climacteric. The immediate effect of high concentrations of carbon dioxide

in the gas-storage of apples is to induce a transitory rise in the rate of

respiration. Following this, it depresses respiratory activity below the

level of normal respiration in air.

Ulrich (152) reported that ripening and the cliiaacteric rise can be

prematurely induced at 20°C by giving the fruit ethylene at low concentra-

tion. But it seems that at 3°C the respiration is not sensitive to ethylene.

At 7°C the effect is slight but it becomes marked at 12 C. Griffiths and

Potter (41) found that the continuous addition of ethylene, between 20 and

500 part per million, had little effect upon the respiratory activity of

apples stored at 5°C In a continually renewed gee mixture. Fidler (32)

expressed an opinion that the effect of ethylene on respiration is due to

an uncoupling of phosphorylation, the reason for this uncoupling is unknown.

Oota end Dewey (154) found that postharvest applications of 2,4,5-T

(200 ppra) and ethylene (20-30 ppra) at 70 F are effective In accelerating

the rate of respiration of pre-climacteric Bartlett pears. The effects of

both compounds are greatly reduced when applied to the fruit at 70°F fol-

lowing a 15 day period of cold storage at 35°F. Many authors have found

that the respiration of matured picked lemons can be stimulated by a mix-

ture of ozone and 1-hexene. In the ease of apples the peel is the region

showing the highest respiratory activity, this observation is perhaps cor-

related with the fact that the peel is the tissue where cell divisions
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continue longest.

Volatile Organic Products of Metabolism of Fruits:

tton-ethylenjc Volatiles:

The non-ethylenlc fraction (the odorous volatile substances) Is

believed by many to contain substances which have physiological effects

and can be troublesome in storage chambers. The following methods are

used for the collection of volatiles:

1. Distillation from fruit tissue or juice (158).

2. Absorption on activated carbon from the air of a fruit

store (93).

3. Collection of the products in reagent solutions or cold traps

from air sent over fruits (146),

4. Steam distillation at atmospheric pressure.

For identification of volatiles new methods have been Investigated

including use of ultraviolet and infrared spectra, and chromatography after

preparing suitable derivatives.

Composition of the Volatile Mixture;

Results were obtained from the work done on apples. The following

components have been reported:

1 (a). The chemical composition of the aroma of apples was investi-

gated by Jonathan (76). He found that the principal components, together

with the relative amounts of each class, are alcohols (92 percent): methanol,

ethyl alcohol, propyl alcohol, 2-propanoi, butyl alcohol, isobutyl alcohol,

d-2-methyl-l-butanol, and luxyl alcohol; carbonyl compounds (6 percent):

aeetaldehyde, acetone, eaproaldehyde, and 2-hexanol esters (2 percent): ethyl



14

butyrate and ethyl caproate. Menthanol, ethyl alcohol, 2-propanol, butyl

alcohol* end formic, acetic, propionic, butyric and caproic acids were

identified as components of other esters. These components are present

in the original apple Juice at a total concentration of approximately 50 ppra.

1 (b). White (158), Thompson (146), Heinze et al. (55), and Heigh

(109) reported the following components: Alcohols: menthanol, ethanol,

N-and isopropanoi, N-and lsobutanol, d«2-methyl-l-butsnol, and hexanol;

Esters: esters of methanol, ethanol, 2-propanol, butanol, hexenol, and

formic, acetic, propionic, butyric, caproic, and valeric acids; Aldehydes

and Ketones: aldehyde, 2«hexanol, caproaldehyde acetone, n-butanal,

propanal, ethylmethyl-ketone, isobutanal, with probably isovaleraldehyde

and metbylpropyl ketone in traces and other earbouyi compounds. Some of

these substances are responsible for the odor and flavor of the ripe fruits.

Thompson end Itaelin (147) found that, in every removal of apples at

intervals from 0°C to 20°C, ester production at 20°C increased to a maxi-

mmn end then decreased; in later removals the increase was much less and

finally negligible. At 0°C ester production increased steadily. A higher

rate of air flow increased it and reducing the oxygen concentration to 6

percent first increased then decreased in comparison with air.

There has been a general agreement that acetaldehyde is the most

abundantly produced carbonyl compound at ordinary temperature. At cold

storage temperature, however, Heinze et al, (55) found mostly acetone,

and in Heigh* s (109) work the main contributor of the volatile matter with

apples was acetone, with smaller amounts of acetaldehyde, n-butanal,

L ethyl methyl ketone and Isobutanal, with isovaleraldehyde and
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nethypropyl ketone in traces.

Olios* et al. (55) reported that the influence of ripeness of fresh

Bartiett pears on flavor and on the quantity of various volatile reducing

substances in the canned product has been investigated. It has been found

that as pears ripen at 68°F (20°C), methyl alcohol, total carbonyl com-

pounds, acetyl laethyl oarbinol, diacetyl and ester content gradually in*

creases. The rate of production of such compounds is especially rapid when

the pressure test of the fresh pears drops belov 2 pounds. The presence of

excess methyl alcohol in overripe Bartiett pears is thought to be caused by

de-esterification of the methyl ester group of the pectin molecule by the

muym pectin esterase.

Ethylene;

It has been found that the couples metabolic processes of fruit dur-

ing growth end after abscission produce stony compounds, Mostly organic both

solid and gaseous. Of these, ethylene has the moat practical significance

end has been the subject of ouch research. Its cbeuical identification

among the volatile products of ripening fruits has been accomplished In

apple, banana, pear, and avocado.

It Is an unsaturated hydrocarbon gas, non-poisnous, with a faint

sweetish odor. Its boiling point is -103.9 C and specific gravity 0.97g

compared to air. It is soluble in water to the extent of 25.6cc per 100

gm of water at C.

There is evidence that presence of this gas in storage atmosphere

tends to accelerate the ripening process in fruit. It is also known that

fruits themselves generate ethylene. Certain metabolic processes may be
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titrated by this gas. Thus, normal reactions such as destruction of

chlorophyll., conversion of starch to sugar, hydrolysis of sucrose to re-

ducing sugars end hydrotya1* of ptotepoetin to soluble pectins way be

stisulated by ethane. Ho changes, however, are produeed by ethylene

traatnaat that would net nonaaily occur during the regular course of

ripening. It has alee been found that its treatments do not effect a

in edible portion of fruits and vegetables.

Identification:

Different aetheds and processes have been developed for identifi-

cation and determination of this gas. Among then ere;

1. Sstisiation cf ethylene by paper sensitizer by red selenium to

aercury vapor (1*4).

2. Tlmeiwl ilc rrtltrr* for deferralnetion of low concentration of

ethylene, involving the production of a complex with mercuric

parehlcrate (162).

3. Perchlosate fixation method plus oxidation with eerie salt (153).

4. An absorption technique using mercuric perehiorate combined

with the use of a Katharomcter.

5. A quantitative aierobiaoiaaticn method (23).

Ethylene i-i-caustica;

The production of ethylene varies between different species end

between the varieti'W of the sane species. Variations of its production

during the ripening period are particularly pronounced and bear relation

to respiration and to storage life. Biale et al. (8) concluded that

ethylene is a product of the ripening process rather than a causaei agent.
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Uta (153) showed that ethylene Is produced by plans under conditions favor-

able to ripening. Gerhardt (35) working on pear sad apples reported that

Bartlett pears produced a maximum of 0.87 mg of ethylene per Kg per day

after 84 days at -1°C; this was more than 14 times the rate of Anjou

variety. The maximum rate from apples during cold storage usually varied

o
from 0.3 to 0.54 mg. Emanation was highest as 18 C.

Many fruits from tropical and temperate climates have bees investi-

gated by Siale et al. (8). Species showing marked climacteric give off

ethylene, with the exception of the mango. The ratio of ethylene evolution

to carbon dioxide output is highest for the apples, followed by the pear

and the peach. Oranges and lemon do not exhibit any climacteric nor do

they produce, ethylene.

The very young fruits (pears, cherries) do not seem to produce

ethylene. At the end of their growth, the quantity evolved is zero for

cherries and 0.7 and 1.8 cc/kg/day for Williams pears, 2 ec/kg/day for

Canada apples and 11 cc/kg/day for Reine apples (152).

Hansen (47) reported that each pear variety has a characteristic

mflxt^yra rate of ethylene production which varies but little in different

lots. Fidler (30) stated that apples of the same variety, but grown in the

different districts may produce ethylene at different rates. In general,

Fidler listed dessert apples such as Cox orange as producing more volatiles

than culinary varieties of the Bramley seedling clan, which incidentally

have longer storage life. Nelson (112) and Hansen et al. (51) found that

varieties of apples with long storage life have less ability to produce

ethylene than short life varieties.



(49) also found that an Inverse correlation exists between

length of maturity period of apples and the amount of ethylene produced

daring ripening. Thus Astrachan and Red June stature early and have a

wsHiw ethylene output of 11 end 9 ml/kgm/24 hrs., respectively, while

Delicious and Newton evolve about 1.7 ml of ethylene for the saae period.

Gane (34) found the total production of ethylene during postharvest

life of an apple to be approximately 1 ml at 20 C. Hansen (47) found a

varietal difference of 1 to 4 ml of ethylene per bu/day, depending on

variety and the length of time in storage.

Relation of Ethylene Production to Respiration;

Biale (7) reported that from the standpoint of storage life of

fruit the dominant metabolic activity is respiration. The rate of res-

piratory activity, as measured by oxygen • carbon dioxide exchange, is an

index to the rate of metabolism and hence the length of life of fruit.

Factors which are associated with the rise in the respiratory activity

appear to be similar to those associated with volatile production. These

two functions follow the same general trends throughout tine storage life

of the fruit; however, the peaks do not always correspond. As fruit

matures and ripens, ethylene production increases to a peak, concomitant

with the respiratory climacteric end then declines as does the respiratory

activity.

Nelson (113) found that the production trends of ethylene and car-

bon dioxide in apples and bananas are very similar. The ethylene output

increases during the respiratory climacteric, declines rapidly, rises

again briefly, then subsides slowly during senescence. Be also stated
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that the peak of ethylene productioa la Hclntcsh and several other varietlee

o
of apples, lags behind the respiratory peek by about five days at 20 C.

Hansen (47) reported that the ethylene production In pears follows a eons*

what different trend than apples and bananas. The peak in ethylene output

occurs about the sane tine as the respiratory peak, and during the senes-

cent decline no further rise occurs to correspond with the brief res-

piratory rise.

Hansen (48) also made a detailed quantitative study of ethylene

production in relation to respiration of pears at different temperatures

and under different conditions of oxygen tension. Bartlett pears which

ripened immediately after picking showed an increase In respiration and

ethylene production about the sane tioe and the maxima In both processes

occurred at the seas time.

Uthough ripening and the occurrence of a respiratory climacteric

appear to depend upon * supply of ethylene which also increases during

this period, the two processes nay not be directly correlated. Hansen (47)

has given evidence for this In the comparison of carbon dioxide and ethylene

production. Daring the diaeterlc rise there is a auch greater increase in

ethylene than in carbon dioxide production.

Hansen (47) stated that the comparison of the emission curves of

carbon uioxlde end ethylene during ripening together with the fact that

ethylene not evolved under anaerobic conditions lead to the idea of a link

between respiration and ethylene formation. However, respiratory activity

sad ethylene production do not follow the same trend in a range of teopera-

o o o
ture from C to 40 C. At 40 C the carbon dioxide of respiration is at a
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while the ethylene is at minimum. Ob the other hand, Ulrieh (152)

reported that a concentration of ZW insufficient to cause a strong in-

hibition of respiration can stop ethylene production completely. Accord-

ing to Ball (44) , ethylene may act as an autoeatalysfc, wccelerating its

ova production, in respiring fruits.

Total Production of Volatlles:

Fidler (32) reported that the loss of carbon in the form of volatile

organic substances probably never exceeds 1 pesoot of that lost as carbon

dioxide. For apples, which axe the fruits to be considered in aost detail,

the figure is about 0.1 - 0.3 percent. Cooking apples produce about 0.2g

of organic volatile substances/ton/day at 3 C, Dessert apples produce about

3. 5g/ton/day at 0°C. In terms of carbon, ethylene forms 70-80 percsnt of

the total. The remeimdsr is usually referred to as the '•odorous fraction."

The Effect of limmtnm mi amsniretion |g VelaftiU Prod^iani

The effects of temperature changes on fruit aetaboiisra, although

more coaplex, ace similar to those on other chemical processes. Raising

the temperature of fruit increases the respiratory activity, causing a

corresponding increase in 2-C02 exchange and decrease in resplrabie

substrate. Raising the temperature also induces a corresponding increase

in production of volatile materials. According to Southvick (140) Mcintosh

apples produce twelve times more volatile materials at 40°F than at 32°F;

while at 74T> apples ettittmd as such organic vapors in one day as in fiv*

months at 32°F.

Variations in temperature have differflftt effects on respiration and

ethylene production. Hansen (47) investigated the affeet of temperature on
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Inspiration and ethylene production. Between C and 20 C both processes

increased; from 20°C to 40°C carbon dioxide evolution continued to increase

steadily but the rate of ethylene production declined sharply, reaching s

zero value at 40°C. The rate of soluble pectin formation paralled the

ethylene picture. The suggestion was mode that at higher temperatures

oxygen concentration might be limiting ethylene production, since it was

found that the oxygen content of the tissue decreased sharply with in-

creasing temperature.

According to Dots sad Dewey (154) the production o£ volotiles by

pears is affected by ethylene and 2,4,5-T in about the sane way as carbon

dioxide production, but ethylene doss not affect the volatile production

when applied at 2 C«

T||i|i Tr n r -fi |)Hm ffcftt ^ . t._v..~ .^03P.-,sre:

Vith low oxygen supply, ethylene production is greatly repressed

or entirely inhibited, but carbon dioxide production may continue in either

aerobic or anaerobic condition, at least to sooa extent. Not only does

low oxygen tend to inhibit the production of ethylene, but, according to

Kidd and West (88), the ripening effect of ethylene diminishes with re-

duction of oxygen, unit at 0.3 percent or less the ethylene has no effect

on respiration. Thus the principle of "controlled atmosphere storage"

or "gas storage", involving low oxygen and relatively high carbon dioxide

atmospheres, functions to depress ethylene production and delay the

climacteric rise, thus reducing the ripening rate. Storage life of in-

dividuals in any one variety under similar storage conditions may vary,

being influenced by maturity, size end growing conditions. Coincident



with long life is low respiratory activity* small size, prime maturity,

and a small and an extended climacteric*

Mattus (103) reported tnat after cold storage, peers taken frcm a

controlled atmosphere have lover rates or production o£ carbon dioxide,

ethylene and other volatile* than fruits taken from air storage. In the

way Fidler (31) found that the rate ox production of ethylene and

non-ethyienic volatiies from apples at 4 C in air to be higher than in a

gas storage. However, according to Hansen (47), increased oxygen in the

atmosphere surrounding the fruit does not result in increased ethylene

production at high temperatures,

functional Diseases and Volatile Stasnuticcsf

Postharvest functional diseases of fruits are manifestation of dif-

ferent causes:

1. Chilling injury - Soft scald, internal browning, or brown core

of apples, breakdown or browning ox -be flesh of peaches, plums,

avocados, pineapples, skin pitting of citrus fruits; and certain

types of internal breakdown of apples and pears that appear in

overmature fruit or fruit held too long in storage fall into

this group.

2. Lack of oxygen - Brown heart of apple is a well-known disorder

of this type,

3. Volatile emanation - apple scald is a disorder of apples caused

by the accumulation of apple volatiies in the apple skin when

apples are stored at low temperatures. The problem of the pro-

duction of volatiies is very important from a practical point of
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view, as it concerns the origin of scald and the effective-

ness of air purification by activated carbon or by alkaline

permanganate in cold storage.

This problea has caused heavy losses in stored apples sod still does

in years vben apples are vary scald susceptible. *3aoerous experiment c ?>ave

been done to try to understand the origin of apple scald and the aesns to

be used to avoid it.

ffofffrfctf developed on cause of apple scald:

As «arly as 1903 Powell and Fulton (123) stated that the disorder is

not physiological in origin and is not caused by bacteria or fungi. The

brown discoloration of the skin of the apple characteristic of the disease

gave it the nrne "scald" for the skin has a brown, cooked appearance. It

vas found that fruit picked too early is particularly susceptible to scald,

that raore scald occurs at 36*¥ than at 32*V end that the teapcrature at

which the fruit is held when removed from storage has a narked effect on

scald deveiopaant. Varieties of apples are found to differ in susceptibility.

Bsntser end Beinze (119) reported that high huraidities favor scald,

because it develops in apples held in saturated atmospheres in closed but

not se&led containers. They also stated that apples in gas storage at

38 F develop less scald at 30 percent hunldity than at 96 to 96 percent.

They concluded that the rate of water loss is one of the factors concerned

in scald and that conditions favoring water lass would aid in reooval sf
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the volatiUs responsible for scald. Brook* and Cooley (13) found that

humidity is not important sad shewed that lack of a«ration is tha essential

o
factor in scald production. As storage temperature is raised from 32 F

scald develops sooner, about a month earlier for each 9°F rise up to 59 F

or 68°F. At 86°F no scald develops bat breakdown of the flesh occurs.

Farther work by Brooks, Cooley and Fisher (14) led them to conclude

that they must be dealing with a volatile or gaseous substance other than

CO produced by the metabolism of the apple as the causual factor for scald.

Since then numerous studies have been made to understand the nature of these

volatiles and the way they produce injury to the apple. Gcrhardt (35) and

Fidler (30) reported that climatic conditions probably also play a role in

the development of scald.

Pentzer and Beinze (119) reported that in cold storage some varieties

of apples produce a substance which ta toxic to the surface cells sad ulti-

mately causes death and oxidative browning of the tissue. This disorder is

called apple scald. They further stated that total volatile output of apples

is not a measure of scald susceptibility. Konsuseeptible varieties may give

off sere volatiles than the susceptible ones; and early picked fruits, most

susceptible to scald, have a lower output of volatile esters than the late

picked fruits. Whatever the toxic substances are, they result in death of

cells, lowered respiration of affscted skin, and enzymatic browning ac-

companied by decrease in phenolic content.

Fidler (30) developed a new theory about the cause of scald. Be stated

that scald is caused by two factors, Y, which is volatile and produced later

in the season; sad X, which is not volatile and produced early in the
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Factor Y, which Is fairly volatile it capable of producing scald only in

combination with factor X.

The question of the cause of scald still remains unsolved. The

works reported on volatile* provide evidences of the complexity of the

problem of identifying the cansual agent or agents of scald smong the

esters, odds, alcohols, aldehydes, and ketones present in apple volatiles.

A considerable aaount of work has been dene on the chewiest nature of ap-

ple volatiles (119),

la a study of volatile products of apples in relation to scald, it

has been found that Granny Smith apples held at 86°P gave off volatile

aldehydes and ketones as well as alcohols and traces of esters, Thompson

and Hueiin (147) found that early picked fruits gave off a smeller amount

of volatile esters than fruits picked later though early picked fruits are

more scald susceptible than late picked fruits. They further reported that

experiments with synthetic esters failed to provide evidence to support a

direct relation between volatile esters sod scald. Fidler (30) reported

that scald is not directly related to the amount of volatiles the fruits

give off, but it does not follow that volatiles or precursors of volatiles

are not in some way involved in the disorder.

Griffiths and rotter (40) suggested that the causative conditions

for scald may be the accumulation of precursors of the odorous volatiles

rather than of the volatiles themselves. Rue et el. (94) undertook interest-

ing Investigations to determine which volatiles might be responsible for ap-

ple scald. Crude ester extracts from activated carbon used in commercial



storage ara shown to be very effective in providing sealdllke injury.

Ethers comprise toe most active fraction of the ether extract. Meigh (107)

KCwcrtcd that volatiles play little or no rele in the development of scald.

Skin, Composition and Scald:

The natural coating of the apple skin has attracted attention be-

cause it is Important in the physiological behavior of the fruit - forming

a barrier to the diffusion of volatiles, water vapor* CQ2, oxygen, nitrogen,

and ether gases. Several studies have been reported by Sentzer and Reinxe

(119) on the composition of the skin of apple fruit.

Other work on the skin of apples in relation to scald has been done

in the U, S. Department of Agriculture laboratories at Wemctchee, Washington,

It has been found that the phenolic content of the skin of apples decreases

with scald developaent. Thus, it indicates that the brown color is formed

by the action of enzyme* on phenolic compounds and in this respect resem-

bles browning c€ peaches and other fruits. Respiration determinations on

incipient - scalded skin and normal skin of apples have been made as parts

of these studies. Volatiles from apple storage rooms do not increase the

respiration of apple skin. Scalded skin has a lower respiration rate than

normal skin. The reduction in respiration is quantitative, Indicating

that a portion of the cells of the skin are no longer functioning and pre-

sumably dead.

Brooks, Cooley, and Fisher (14) suggested that there are four

in the development of apple scald.
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1. The first period:

It starts at picking dates and extends for 6 to 8 weeks in storage.

During this period , scald-producing agents are most active and scald could

be prevented by aeration or use of oiled wraps.

2. The second period:

The next 5 to 8 weeks comprise the second period. Preventive seas*

ores are of little avail and the fruit is doomed to scald if left in storage

long enough. On the othw? haa<5, if the fruit is teraoved from storage before

the end of this period the fruit slight not show scald even upon warsiag.

3. The third period:

The third period Is the rest of the cold storage life. Then the fruit

is potentially scalded* certain cells get practically dead, but the fruit re-

tains green and appears almost noma! if not exposed to warn air.

4. The fourth period:

The fourth period is the life of apples after removal from storage,

when the skin turs brown and completion of the death processes take place.

Bantzer and Heinze (119) reported a work carried on with English

varieties of apples to determine the critical period of scald Indicating

that the second 3-week period of storage is most critical for normally har-

vested fruit and the third and fourth periods of 3 weeks ere also critical

for immature fruit.

>MM1 fclM ?t foe Apple Scald Please:

The apple scald disease is so serious that it is the factor limiting

the storage life of a number of varieties of apples. Several studies have

been done on the control of this disease. Since the classic work of Brooks,
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Cooley, and Fisher (14) paper impregnated with mineral oil has been the

standard method of control. Objections to this method have led to a

ber of other approaches.

Air purification with activated coconut shell carbon (137) or alkaline

permangnate (94) has not given consistently good control of scald, Fre-

storage treatment of apples with high concentrations of carbon dioxide

(142) has often given good scald control, but has sometimes produced second-

ary undesirable effects. Oil coatings have been tried by several investi-

gators with variable results (15, 135, 140).

Kidd and Vest (84) reported that intermittent warning of apples

every two weeks for 24 hours at 59°F controls scald and warming every 4

weeks gives marked reduction. This gives further support to the belief

that accumulation of volatile products at cold storage temperature is the

cause of scald. Though it has been presumed that accumulations of volatlles

around the apples have been the *mm of scald* the exact cause is not

known. Fidler (30) has produced evidence to show that volatlles alone

were possibly not the cause. Thompson and Atelin (147) and Meigh (108)

reported that volatlles play little or no role in development of scald.

Smock (134) concluded that dip treatments of 500-2000 ppm dlphenylamina

shows promise in controlling apple scald. Wraps impregnated with a 1250 ppm

solution of diphenylamine controls scald but high concentrations on the

wraps cause injury and off flavor. Dip treatments with Santoquin also gives

promising control of scald but requires higher concentrations than diphen-

ylamine.



29

Other Disorders Caused by ypl^tila Emanations:

Kidd and West (64) concluded that ethylene may cause 1entice 1 spotting

in certain varieties of apples. They were able to produce it by exposing

apples held at 40 F to ethylene in concentrations of 1 part to 500 or to

volatiles given off by ripe apples. Baker and Kaxie (5) were able to

control a spotting of Rooe Beauty apples by use of oiled paper wraps and

by air purification with activated carbon. This furnished the evidence

that it is caused by apple volatiles capable of being removed by oiled

wraps or activated carbon and therefore t the volatile is not ethylene.

Hartman (52) reported that Anjou pears develop a superficial type of scald

more like apple scald than the usual form of pears scald which extends

deeply into the flesh and has a foul odor.

Transpiration is the loss of water from living tissues in the vapor

form. The leaves are the main transpiring organs, but the fruits transpire

also. After fruits are harvested they continue to transpire. After harvest

they have no means of obtaining water so that transpiration losses cannot

be compensated for by gains in water from any source. Hence transpiration

after harvest can only be recorded as a "net loss" to the fruit.

Fruits should reach the consumer while they are still crisp and juicy.

Most of the fruits are 85 percent or more water, and even a comparatively small

1os 8 in total water content means as appreciable reduction in eating quality.

It has been found that storing fruits at relative humidities below 85 percent
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is likely to result la wilting or shriveling of the skin after prolonged

storage. With certain varieties which are not supplied with enough natural

wax, relative humidities higher than 85 percent may be required ( ).

Factors Affecting the Rate of Ig&aapir^tica:

I. Water vapor pressure deficit:

All liquids have a certain vapor pressure. The water gradually

evaporates if the moisture content of the air is not too high. If the air

is not saturated with aoisture, the air will have a lew vapor pressure and

water will evaporate rapidly. This is true because gaoes always move from

a point of high to a point of low concentration. As long as there will be

a difference between the vater vapor concentration of the air and that of

the air at the surface of the water, thero will continue to be evaporation.

The difference in the vap<« pressure of the water surface and that of the

surrounding air is called 'vapor pressure deficit. - Temperature and relative

humidity can affect the movement of water vapor.

The relative humidity may be defined as the percentage of saturation

of the atmosphere with water vapor at any one temperature. Warm air can

hold more water in the vapor form than cold air can. It is possible to

have a relative humidity of 100 percent in both the atmosphere of a storage

room and in the intercellular spaces of the fruit and yet neve ft vapor pres-

sure gradient.

Smock (132) stated that the fundamental reason why fruits transpire

is that there is a difference between the water vapor pressure of the fruit**

internal atmosphere end that of the surrounding atmosphere. The relative

humidity of the internal atmosphere of apples is presumed to be 100 percent
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under noroal circumstances. Hence, If the apples are held In an atmosphere

with a relative humidity of less than 100 percent, water vapor moves out of

the fruit Into the atmosphere.

He also suggested that the relative humidity is not the only at*

moapheric factor that Influences the rate of transpiration of fruits. Trans-

piration may be more rapid in a given lot of apples at 83 percent relative

humidity at 36°F than In a similar humidity at 32°F. This is due to the

temperature factor as it affects vapor pressures, as the temperature is

raised from 32°F to 36°F the vapor pressure of ltttar rises and the difference

or deficit between fruit and atmospheric vapor pressure is increased and

thus increasing the transpiration rate.

Another Interrelation of temperature and vapor pressure is found with

storage of worm fruit in cold storage. Transpiration is relatively rapid

until the fruit temper«t»*re reaches the air temperature. As assumed if

apples at 73 *F are moved into a cold storage room at 32°? with 100 percent

relative humidity, the water vapor pressure of the interval atuosphare of

apples will be 23.8 mm. The witer vapor pressure of the atmosphere of the

cold storage room will be 4.6 tan of mercury only. This deficit will be

about eight times as great as the theoretical deficit occurring in the situ-

ation where apples, with an internal atmosphere of 100 percent relative

humidity* are held in air at 32°F with a relative humidity of 30 percent.

The most striking illustration of this effect of temperature difference,

as it affects vapor pressure deficit, is seen in case of a rapidly transpiring

plant product, lettuce, moved into a storage and sometimes shoving wilting

under these conditions. Apples do not transpire rapidly enough to show
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this wilting, but certainly the effect en transpiration Is measurable. Tits

only apparent practical solution to thl3 problem Is to accomplish rapid

cooling after fruits are placed in storage. It has also bean found that

transpiration of apples Is directly proportional to the water vapor deficit

In any situation. Though most of the studios have been conducted with apples*

the general effects of vapor pressure differences teem to apply to other

fruits, too.

Curtis (27) stated that there is another tea^erature effect on

transpiration that nay affect the locus of transpiration. It has been found

that if one side of an apple is colder than the other in storage, there will

be a distillation of water from the warm side to the cold side, leaving the

warn side withered. This pheaaaaaon way be explained by the fact that on

the warm side of the fruit the vapor preeaure ia greater than on the cold

side and the vapor passes to the low pressure side of the fruit through the

intercellular spaces interlacing from one side of the fruit to the other.

2. Effect of time of harvest!

Smock (132) found that apples and pears picked in a rather immature

condition shrivel faster in storage than fruits picked at the proper time.

It has been seen that Golden Delicious apples harvested September 1st, showed

acre wilting than fruits harvested October let. Thus it has been assumed

that early picked fruits transpire faster ia storage than acre mature ones.

However, Piealazek (120) found that late picked fruits may actually transpire

at a faster rate than earlier picked fruits in storage.

cording to Smock (132) the respiration rate of apples and pears

varies with the age of the fruit, but no correlation has beeu found between
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respiration and transpiration. As fruits grow old the rate of transpiration

eventually diminishes after the poatharvest peak has been reached. This is

probably due to differences in the physieil structure of the skin and to

internal factors.

3. Effect of fruit si?,e:

Transpiration is a surface pheacwtnon. Thus a bushel of smll apples

and pears will transpire at a faster rate than a bushel of large apples and

pears. In other words, a bushel of small apples and pears will lose acre

weight in storage than a bushel of large apples svA pears. Mettfaaek (12©)

found that transpiration rate of several varieties of apples in storage is

directly proportional tc the surface area of the fruit. Because of this

strong relationship between fruit surface area and transpiration rate, he

Stiggested that transpiration losses should always be expressed on a surface

area basis rather than on a fruit weight basis as they usually are.

4. Physical itofcure of Fruit Skin!

Smock (132) found that the transpiration from apples and pears is

unlike evaporation from a free surface of rater surface. The shin of the

fruit acts as a natural deterrent to the passage of water out of the

fruit. Just how ouch the skin of the fruits of different varieties and the

skin of fruit of the same variety affect transpiration rate is not entirely

clear.

Cuntaiags and Locbard (24) stated that the thickness of the skin and

of tha cuticle, in particular, markedly affects the rate of transpiration.

It was found that Golden Delicious apples shrivel badly in storage, as it

has a thin cutiaie, and that the skin inhibit3 the transpiration is
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txtesccg>abl«. Smith (129) found that a unit area of free water surface will

evaporate 70 tines more water than a unit area of uninjured fruit of an apple

per unit of time. Marshall (100) reported that when the waxy layer on the

surface of the fruit is removed by brushing or by washing with severe treat-

ments, the rate of withering is greatly increased.

White it is quite true that the nature of the skin or the cuticle in

particular may have some bearing on transpiration rate* Bieaiasek (120)

found no good correlation between cuticle thickness and the rate of tran-

spiration. Smock (132) stated that a rnore likely reason as to why Golden

Delicious apples shrivel badly is the fact that there are numerous breaks

and cracks in the cuticle. The cuticle on this variety is not continuous

as it is on most varieties and the cracks leave the expiderois exposed and

E'ieniazek (120) also reported that other tlSn factors that may affect

transpiration rete are the number and size of lenuicels. He found that

about 70 percent of apple transpiration is cuticular and about 30 percent

enticular. Cumsdngs and Lombard (24) stated that cell wall thickness and

arrangement o£ cells in skin nay also be factors in determining transpiration

differences between various varieties*

5. Effect of Air Movement:

Smock (132) stated that transpiration would be accelerated by air

currents passing over fruit in storage if a vapor pressure gradient exists.

The magnitude of this effect is of commercial interest because some storages

operate with forced air circulation, others only with slow natural convection



Smith (130) reported that accelerated transpiration rates of 30 percent

to 100 percent are found when air currents of varying velocities are used with

apples. Some objections have been raised against this experiment as It Is

difficult to attribute differences In transpiration to velocity rates alone

in studies where humidity values are not specified. However, this objection

has been overcome by moving apples through still air at a known velocity by

means of a turntable.

Pieniazek (120) found that the effect of air nwmsnt or transpiration

is negligible, not exceeding an increase of 5 percent. The effect is very

small when high relative humidities are used. He further stated that for

apples, at least, high velocities of air do not markedly affect transpiration

if the humidity is as high as it should be. The advantages of rapid cooling

with moving air would doubtless outweigh the disadvantages of slightly in-

creased transpiration.

THE METABOLISM OF POSTHARVEST FRUITS

A. Oxidations and Respiration

1. Mechanism of Oxidations:

Oxidation is carried out through the series of reactions known as

the "Krebs" or "Tricarboxylic acid" cycle; based on the evidence tending

to confirm the Embden-Meyerhof-Parnas theory of the course of glycolysis

from sugar to pyruvic acid. Evidence has also been produced indicating the

possibility of an alternative and more direct pathyway in the breakdown of

sugar in respiration, in the course of which pentose and heptose sugars are
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produced, and to which various names have been given - "direct oxidation

pathway," "pentose-phosphate pathway" and "pentose shunt."

Though the last decade has been a period of very considerable activity

in the field of plant respiration, the greatest and most spectacular advances

in the subject have concerned the path of degradation of the substrate into

carbon dioxide and water, and the chemical mechanisms by which this Is

brought about. A respiratory substrate is a substance which is degraded in

a plant with release of energy which is thus laade available for the main-

tenance and growth of the plant. In normal aerobic respiration this de-

gradation is affected by oxidation, and it has long been recognized that

carbohydrates and fats serve as respiratory substrates with the end products

carbon dioxide and water. However, plant acids and, in starved cells

particularly, proteins might be used as respiratory substrates, too. Further-

more, it is to be expected that intermediate products in the breakdown of

carbohydrate or ether material to carbon dioxide and water or other products

should be utilized as respiratory substrate, and it has been found by vari-

ous investigators that various supposed intermediates are utilized in this way*

Fidler (31) working with apples found that the loss of carbohydrate and

acid accounts quantitatively for the production of carbon dioxide and alcohol,

both In air or in nitrogen. The presence or absence of oxygen is without ef-

fect on the rate of loss of acid. And under anaerobic conditions the amount

of carbon dioxide and alcohol is equivalent to the sum of the carbon dioxide

and alcohol which could have resulted from fermentation of the carbohydrate

lost, plus the amount of carbon dioxide which could be produced from complete

oxidation of the acid lost.
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2, Oxidation - Reduction Potential:

Oxidation seduction potentials in fruit extract have been investigated

by several workers. Blake and Shirley (10) worked on different varieties of

apples to evaluate their capacity to reduce the eerie ion and oxidation re-

duction potentials. They suggested that the reducing capacity of the apples

is greatest during growth, intermediate during early storage, and least

during late storage. Three periods of change occur in reducing capacity

throughout growth and storage. Ho direct relation is obtained between the

eerie ion reducing capacity of the apples and the concentrations of reducing

sugars present. The difference in potentials (E.M.F.) between the growing

and storage periods is significant at the 0.05 level U-level); thus such

evaluations should be a measure of the oxidative state of the fruit. Ulrich

(152) reported that is ease of pears potential is on the reduction side dur-

ing the ripening ^evio&t while during overripeness, it is more on the oxida-

tion side.

3. Respiratory Saezymes:

Biale et el. (9) reported that the respiratory machinery of the fruit,

as of other plant tissues which have been studies in detail, appears to be

mediated by a particulate enzyme complex, a complex located in mitochondria

and competent to oxidise the acids of the Rreb's cycle, including pyruvate.

The respiratory particles or mitochondria prepared from climacteric fruits

are fully as active as from preclimacteric fruits. With all of the plant

miteehondria, as well as with the animal mitochondria, oxidation of the

substrate is linked to the uptake of inorganic phosphate and incorporation

of this material into adenosine triphosphate (ATP). Rate of mitochondrial
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oxidation Is, therefore, United by the availability of phosphate acceptor,

such as adenylate. Inorganic phosphate Is transformed In the course of

complete phosphorylation Into the phosphate of ATP.

According to Cheng et al. (19) the activity of the apple mitochondria

Is limited to succinate oxidation, while that of avocado Is shown to oxidise

several acids of the KreVs cycle and to carry on phosphorylation. Kitochondrl*

in avocado show high oxidative activity, particularly towards succinate and

/^-Ketoglutarate. Adenylate is required for ^-Retogltttarate oxidation. Thus

it also appears from this that mitochondria are an organised onxyate oonplex.

They also contain cytochrome C and are able to oxidise reduced DM* sad to

reduce and oxidise cytochrome C, This it is suggested that a normal electron

transport pathway operates in the integrated enxyme complex of the cytoplasmic

particles. The sequence of reactions is as follows:

pii £ > methyle Blue f2

Substrate
^ ^

BPHff
^ ^ reduced cyt. C

^ ^ 2

Reaction 4 is shown that methylene blue can be used as an sneroble electron

acceptor for the oxidation of DPHH dependent formic acid by mitochondria.

Watts and Griswold (155) reported the presence of several dehydrogenases

iu the pineapple fruit. Ulrich (152) reported that in apples the dehydrogenase

system shows a maximum activity at about 37°C to 4C
C
C. Testa with methylene

blue show that the dehydrogenase activity drops with ripening and aging of

the fruit. In green apples the malic dehydrogenase is the most active. With

ripening the activity of ethanol and malic acid dehydrogenases declines, "n

storage the process continues further. Succinic dehydrogenase shows a rise

in activity up to harvesting, then shows a rapid decline. The various kinds
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of apples about considerable differences in dehydrogenase activities,

A. Terminal Oxidases:

Jans (72) found that in different tissues, even in the sane tissues,

more than one oxidase may be involved in the final transfer of hydrogen to

molecular oxygen during operation of the Kreb's cycle. Evidence for the

action of a particular oxidase rests partly on a demonstration of its pre-

tence in the tissue concerned, partly on the observation of the effect add*

ing a substrate of the oxidase to the medium containinc the tissue, but more

especially on the effect of inhibitors of the various oxidases on the res-

piratory activity of the tissues. Thus, of the three oxidases supposed to

be mainly responsible for the terminal oxidase action, catechol (polyphenol)

oxidase is inhibited by cyanides, sulphides, azides and carbon monoxide, the

last being unaffected by li^ht, cytochrome oxidase is inhibited by the same

substances, but the inhibition produced by carbon monoxide is reversible in

light; tihile ascorbic acid oxidase is inhibited by cyanide and by

dietbyldithioearhamate but not by carbon monoxide. Cytochrome oxidase, catechol

or polyphenol oxidase and ascorbic acid oxidase have been recognized in a num-

ber of plants.

Mrtch (152) reported that respiratory activity of voting l*am fwit

is inhibited by cyanide, but not in old fruit. Thus, the cytochrome system

is only active in the case of young fruit. At low temperatures, apple res-

piration is carried on largely by polyphenol or catechol oxidase. Cytochrome

oxidase activity is higher in the fruit pulp than in the skin.

-cording to Josiyn et al. (79) there are number of instances where

it has appeared that cytochjsvsc oxidase acts as terminal oxidase, though not
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necessarily the only one. However, James and Beevers (73) suggested that

cytochrome oxidase, catechol oxidase and ascorbic acid oxidase are not the

only one of the terminal oxidases in plants. The part of the respiratory

activity catalysed by metal enzymes decreases during ripening while the

activity of the flavlne enzymes increases at the same time. Polyphenol

oxidase seems to be responsible for 50 percent of the total respiratory

activity (152). Webster (156) found that the respiration of apple slices in

95 percent carbon monoxide is Inhibited in the same manner in light and dark*

ness, thus indicating the absence of cytochrome oxidase. Cheng and Blale (19)

suggested that there are other terminal oxidases besides cytochrome oxidase

such as ascorbic acid oxidase and polyphenollc oxidase. Ulrlch (152) report-

ed that at the last stage of ripeness lycopine could operate as a substitute

of oxidase for carrying oxygen.

Thus, Watts et al. (155) suggested that not one enzyme alone is respon-

sible for the removal of hygrogen by molecular oxygen in the respiration

process, but the recent works with mitochondria shows that the cytochrome

system provides the mala terminal oxidase while other oxidases play at most

a minor part.

5. (kldsees and Fruit Browning:

Many fruits undergo rapid changes in color following mechanical or

physiological Injury during harvesting and storage. Such color damage in

fruit products is accentuated during preparation for processing by canning,

dehydration or freezing, and continues during freezing storage and subsequent

defrosting of frozen fruits. The nature color of the product may be destroyed

or marked by the formation of dark brown or reddish pigments which
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odor and nutritive value usually accompany this browning. Marked decreases

occur in ascorbic acid content (or even its complete loss) as well as de-

creases in other oxidizable nutrients, such as carotene (161).

Enzyme-catalyzed oxidative browning has long been recognized (75).

Several theories have been proposed for the nature and course of enzycaic

browning differing considerably in nomenclature as well as in mechanise.

Another theory has been proposed that plant tissues which darken an injury

contain a substance tensed "oxygenase" which la the presence of air under*

goes auto oxidation, yielding a peroxide. This peroxide, activated by the

enzyme peroxidase present in the most plants, then brings about the oxidation

of the natural phenolic substances.

Onelow (117) systematically investigated the oxidizing enzymes pre-

sent in higher plants and put theta into two groups * those which contain

oxygenase and catechol compound; and those in which oxygenase and catechol

coopounds are absent, the peroxidase plants. The first group of plants dis-

color rapidly on injury and include the fruits of apple, apricot, banana,

cherry, fig, grape, peach, pear and strawberry. The second group of plants

which do not discolor on injury include citrus fruits - lemon, orange, lias

and grapefruit; red currants, melon, pineapple and tomato.

Graubard et al. (37) suggested that there axe three groups of phenolases -

tryosinase (monophenol oxidase), catecolase (polyphenol oxidase) and lacease.

The phenolases calatyse the oxidation of a phenolic substrate by aolecular

oxygen to soma intermediary product, usually a quinone, which can then oxidase

other constituents such as ascorbic acid, or other phenols. Cytochrosae oxidase
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In the presence of cytochrome is also known to reach with certain phenols

in the presence of oxygen and to convert them into pigmented compounds

similar to those observed in the phenoiase.

Hackney (43) reported that the protoplasm, even in actively respiring

cells, is under reducing conditions because the cellular oxidation-reduction

potential is low enough to prevent the accumulation of the oxidised phenols,

even if the phenol oxidase acts as a respiratory enzyme, which is not

generally true. The leek of coloration in intact cells oust be due either

to reduction of oxidized phenols at a rate equal to that of their oxidation

or to the fact that the phenoiase does not act ss a terminal respiratory

enzyme in "oxidase" plants. In damaged tissues, discoloration appears at

once showing that the phenol is either oxidized faster or is reduced more

slowly than in the intact plant tissue. In the living cells the phenols

may not be able to react because of their location in vacuoles, while the

oxidases are situated in the protoplasm. According to James (72) the oxidase

is strongly linked with the solid particles of apple and pear pulp, the

enzyme is concentrated in the core and below the skin.

Ulrich (152) reviewed the postharvest physiology of fruits and sug-

gested that orthodiphenolase, peroxidase, cat&lass and dehydrase are present

in apple juices. In presence of oxygen the phenol is oxidized by oxidase

into quinone, the latter probably being reduced to phenol by ascorbic acid

by the dehydrase. When all the ascorbic add is oxidized, the phenols can

not reappear from quinones, and the juice becomes brown. However, Ingraham

(71) stated that catechol oxidation by poiyphenoloxldase in air is not in-

hibited by ascorbic acid, but the dehydrase is lacking here.
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Graubard (37) stated that the enzyme system mainly responsible for

browning i£ polyphenol oxidase, but little Information is available as to tha

contribution of the individual substrates which are subject to darkening by

polyphenol oxidate, although it has been recognized that they are* in the

main, compounds containing o-dehydroxy (phenolic) groups. Chlorogenie acid,

which contains such a configuration and has been found in apples and pears,

does in fact take part in the enxyede browning of thesa fruits. As browning

proceeds, ehlorcgenic acid decreases and three fluorescent compounds are

formed from it during the reaction. Ascorbic acid end ether naturally occur-

ring compounds containing -SH groups, such as cystine and glutathione, act

ee inhibitors. Ascorbic acid is supposed to act by reducing the initial

oxidation products of the substrates and so preventing their conversion into

colored products, where as -SH group compounds inhibit the action of the

enzyme Itself. Seigelman (134) while working for the detection for the

substrates of polyphenol oxidase, found l-epicateehol in skin extracts of

apples and pears and email amounts of d-catechol in Bartlett pears.

6. fereb's Cycle and Pentose Cycle
j

As mentioned earlier, the chemical changes that take place in the

detached fruit are directly or indirectly related to the oxidative and

fermentative activities, collectively referred to as biological oxidations.

Respiration, a process concerned with the oxidation of predominantly organic

substances by the cell or by enzymatic systems derived from the cell, is

restricted to the reaction requiring oxygen, whereas fermentation or

glycolysis is characteristic of biological oxidations in an oxygen-free

environment, Sven then, fermentation may also take place in an atmosphere
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containing oxygen. A distinction is node, therefore, between aerobic and

anaerobic glycolysis on the basis of the conditions to which the ferment-

ing material is exposed. The following reactions illustrate the two

processes:

(1) Fermentation: C6H1206 , „ XR3. CO . COCK + 4H

(2) Respiration: CH3, CO. COOH 2% 2 __. 3CO2 * 2%0
(Pyruvic acid)

The breakdown of sugar to pyruvic acid consists of the phosphorylation

of glucose or fructose to a hexose diphosphate, the splitting of the six-

carbon sugar phosphate into two triose phosphate units, isomerizatlon,

oxydation of phosphoglyeeraldehyde to phosphogiyceric acid, and successive

transformation of the latter into pyruvic acid. The coupled oxidation -

reduction results in the formation of adenosine triphosphate (ATP) from

adenosine diphosphate end inorganic phosphate. ATP is also formed when

phosphoenolpyruvase is changed to pyruvate. In reality pyruvic acid is

not the end product of glycolysis but is converted by fermentative processes

into alcohol, lactic acid, propionic acid etc.

In respiration pyruvic acid, the cleavage product of glycolysis, is

completely oxidized to CO2 and water. The metabolic pathway responsible

for this oxidation is known as the Krebs 1 cycle. The essential features

of this cycle are the condensation of a two-carbon fragment derived from

pyruvate with a four carbon acid, oxalacetate, to form citrate, and the

successive transformation of the latter into aconitate, isocetrate, oxal-

succlnate, 4 -ketoglutarate, succinate, fumarate, malate and oxalacetate.

There are five sites in the Krebs* cycle for the transfer of a pair of

electrons froa substrate to oxygen via flavins, cytochromes, and cytochrome
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oxidase, DPS (oxidised dlphoephopyrictin* nucleotide) participate* in

three of these sites, and TPtf+ in one, but pyridine nucleotides are not

involved in the fifth (succinate oxidation). Whenever, an electron is

transferred through BPN and TPN, a minimum of three ATP molecules ax*

fcnned for each molecule of oxygen reduced. Succinate oxidation results

in the generation of two ATP molecules per atom of oxygen. In addition,

the free energy change when A -ketoglutarate is converted to succinate

anearobically, pemits the formation of one ATP molecule for each keto

acid molecule disappearing. The net theoretical result is that at least

15 molecules of ATP are generated for each oolecule of pyruvate oxidised

in the Xrebs* cycle. Thus, the energy that becomes available is much

greater in respiration than fermentation.

During the last few years a number of investigations have indicated

that hexose may be broken down in plants to carbon dioxide and water by a

course different from that of the EMP pathway and the fCrebs' cycle. This

pathyway, "pentose shunt" or "pentose phosphate pathway" or "direct oxidation

pathway" or "oxidative glycotysis pathway" or "hexomonophosphate shunt,"

involves a cycle of reactions in which phosphorylated hexose is degraded

to phosphorylated pentose with release of carbon dioxide and water, and

ultimate reformation of hexose from the pentose through a series of reactions

in which phosphorylated sugars are the intermediates. The supposed reactions

In the cycle are}

(1) Glucose is first phosphorylated to glucose -6- phosphate (enzyme

bexoklnase).

(2) The glucose *6- phosphate is oxidised to 6* phosphogitieonate
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(coenzyme 2{TPSf) and dehydrogenase).

(3) By the action of the enzyme 6-phosphogluconate dehydrogenase with

TEN the phosphorylated keto-peatose sugar ribuloee -5- phosphate

is formed and a molecule of CO2 is released for every molecule of

sugar involved.

(4) The ribuloee -5- phosphate is now transformed to its aldopentose

isomer ribose -5- phosphate through the action of the enzymes

phoribose isomeraee,

(5) Two molecules of the ribose -5- phosphate under the action of the

enzyme transketolase now give rise to a molecule of the heptose

sugar eedoheptulose and a molecule of the triose glyceric aldehyde,

both as phosphate esters*

(6) By the action of the enzyme transaldolase a three carbon atom chain

from the sedoheptulose is now linked to the carbon chain of the

glyceric aldehyde with the result that beacosephosphate is formed,

A second molecule of hejcosephosphate is formed by the linkage of

the remaining chain of four carbon atoms from the sedoheptulose

with a two-carbon portion of a pentose molecule. This leaves a

three-carbon portion, a triose of the pentose noiecuie, and two

of these portions link up to produce further heacese. The enzymes

involved in these two reactions are, respectively, transketolase

and aldolase.

Thus for every sis molecules of heacose entering into this series

of reactions, five are reformed, and from the one lost six molecules of CGg

are provided. There also arise 12 molecules of ceduced coenzyme, and, if
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these are oxidized by six molecules of oxygen by means of terminal oxidases

there will be a net gain of six molecules of water. The overall equation

for the direct "oxidation pathway" is thus the familiAr C6HI2Q6 * 602 s 602 •

6^0.

Ultieh (152) in his review stated that experiments on tissue slices

in the Warburg apparatus show the stimulating effect on respiration of some

organic acids - such as malic acid. The very low efficiency of citric acid

in such experiments led to the hypothesis that the part of the Xxebs 1 cycle

involving this acid is slow or lacking in fruits* Experiments on the effects

of banana extracts on hexose-phosphate and ribose -5- phosphate and on the

action on respiration of sodium fluoride indicate that the pentose cycle

may be active in the respiration of precliaacteric bananas, but near the

climacteric rise, respiration via the BMP pathway seems to increase.

SUGARS

B.

I. Metabolism of Polysaccharides:

Hulrae (68) reported that the residue after extraction of apple and

pear tissue with 70-90 percent ethanoi, the alcohol-insoluble residue, com-

prises all the polysaccharide material of the fruits together with a very

mall amount of ••protein." The polysaccharide material consists of pectic

substances, starch, hemiceiluloses, cellulose, awl in case of pears, lignia

in the stone cells. Starch is most obviously related to changes in su$ -,

but evidence has been accusulAting that the polysacci=aridas associated with
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the eell wall say be continuously involved in the respiratory process of

fruits, presumably, after prior degradation of sugars. A snail amount of

iodine-coloring starch degradation products (dextrine) in apples, at cer-

tain stages of development has also been reported by Griffiths et al. (39).

Peetle substances will be discussed in s. separate section. It will

be convenient, therefore, to discuss starch alone in the present section.

Starch itself is a Mixture of straight-chained aagrlae* component

and a branched-chained amylopeetlc fraction. Ai-ylaee gives an intensely

blue colored complex with iodine while the color of the aavlopectin-iodine

compound is blue-violet } and that their amount varies according to the

varieties.

It has been found that very little starch is present when apples

aad pears ate normally harvested and stored. Xidd and co-workers (66)

stated that after a short period during which starch synthesis, as a carry-

over from conditions in the fruit on trees, acts as a delaying factor, degra-

dation of starch alone proceeds in detcched applets. The rate of degradation

is preportioncl Co the surface area of the stare1
! grains. The temperature

coefficient of the degradation process is snail; synthesis is taore retarded

at low temperature than in the degradation process.

Sulne (86) reported that in living, healthy tissue the anount of any

substances present in the tissue is a result of an eeuillbriuti between syn»

thesis and breakdown. Based on this, as starch disappears from the stored

apple it would be assumed that the equilibrium synthesis and breakdown is

rapidly shifting In the direction of breakdown, and according to Kidd <8o) t

after ?. certain adjustment phase, breakdos.-n takes over completely. Sttrch
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unlike protein, cellulose, cellwall pectin etc., is act en essential to

a fruit cell. Its main function can, apparently, be taken over by its

constituent parts, tbe sugars.

huiue (68) was unable to £ inc. any data on tbe pattern ox starch change

in pears curing growth on the tree, not indeed, curing storage. Ihe reason

xor this is that little starch remains in pears when harvested cua^arcially.

However, be reported that tbe enzyme responsible tor tbe hydrolysis of

starch in fruits is aayiase. Little data is available on the amyl ase content

of apples and pears. Starch is not synthesized, and probably not hyoroxy^ed

either, in most ostaboliziag ceils by amylases but by processes involving

phosphorylation, aclases are of course concerned with digestion in anioals

and the aofeiiization of starca outing the geruination of seeds. Unci! pure

asylases, which hydrolyze starch in a manner similar to those of germinating

barley, have been Isolated from apples and pears, any demonstration of "starch

splitting activity" by fruit tissue or crude preparation, therefrem, cacnot

be regarded as necessarily due to aayiase action. Ulrica (152) in uis review

stated that the effect of *", -amylase uece&ies greater at low temperature. al-

though starch is lacking. There is a certain parallel between the rise in

aayiase activity and the possibility of ripening after cola storage} if toe

rise in < - aayiase activity is too great, ripening is taade impossible. Me

important changes occur in the quantities of < •aayiase during the storage

period.

Heine (68) stated that pectin, heuiceiluiose, and *C* cellulose are

the resultants of certain sets of operations rather tnaa clsamical individuals.

iiach of these fractions is a mixture of polysaccharides . . . and the same
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polysaccharides may be present in more than one fraction. The study, on

changes In the cell wall during the ripening of the pear in terms of the

polysaccharides corresponding to individual sugar residue, shows that the

alcohol-insoluble residue contains the following polysaccharides: • pectin

(flucosan, galactan, xylan, araban, and polygalacturoaic acid); hemiceiiuloae

I (glucosan, galactan, xylan, araban, and uronic acid); heoiceiluiose B (as A,

but minus araban and urcnic acid); d - cellulose (glueesan, gaiaatan, maonan,

and xylan). Changes in these various fractions have been measured (in terns

of sugars produced in hydrolysis) during storage of "conference pears" at

10 and 15 C. The greatest change occurs in the xylano and arabacs. Both

these types show a rapid rise during a change in the texture of the fruit

from "sleepy" to "slushy14
, and polygalacturonlc acid also rise*? over this

period. Cellulose shows a steady fall in storage*

Chanda et al. (1G) suggested that xylan is a branched chain structure

which appears to have 115 B-xyiopyrauose units in a chain with a single

branch but carrying in addition § terminal L'-glucopyruronic acid residue at

one point.

Changes in the boeiceliuloae content of Bromley's Seedling and Worcester

Pearraaia apples during development on the tree and in storage have been studied

by VlckkwaoR (159), on the pear by Jcrniyn and Isherwood (75), and on Jiclatosh

apples by Erotfcov and Heison (91). Unlike pears there are not lignified

(stone) cells in apples so that iignin is not present in any quantity in

alcohol - isolubla residue, A slight but steady fall, in hemicellulose dur-

ing storage, has been found,

aoiae (68) in his review reported about the changes in cellulose content
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of apples duriag growth and cool storage. The cellulose content rises

rapidly In early July but falls again from the middle of July until just

before normal harvesting tine (mid-October); and reaches its highest

proportion, about 22 percent in the alcohol*insoluble residues, about the

end of October.

2. Metabolism of Soluble Sugars?

Sugars (including starch) which on hydrolysis in the fruit reappears

as sugars forn almost the entire substrate for metabolic processes yielding

energy. The "energy level" of the fruit is expected to determine the length

of its •life" on detachment from the tree.

The bulk of the sugar in both apples and pears is comprised of sucrose,

glucose, and fructose. Host of the studies of sugar changes duriag growth

and storage of the fruits have been carried on with changes in these sugars

(glucose and fructose being often determined together as total reducing

sugars). Hulae (68) in his review has referred to the variation of glucose

and fructose in English varieties of apples. In the juice of apples sucrose

varies between 6.6 and 55.3, glucose between 12.3 and 58.0., and fructcee

between 69.2 sad 113.8 gas per liter depending upon the variety. The juice

of pears generally contains less sugar than that of from apples. After

analysis, It has been found that sucrose varies between 1 and 24, glucose

between 5 and 35, and fructose between 65 and 112 grams per liter. In young

fruits the proportion of the three sugars is about the same as in the mature

fruits. Thus, in both apples and pears fructose is in excess of glucose,

and sucrose is the least abundant of the three sugars.

The existence of xylose and saJnctose has been reported by several
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juice of Williams pears. Ash and Reynolds (2) reported the presence of

galactose in pears and in trace amounts in apples, Siegelman (126) invest-

igated the presence of sucrose, fructose and xylose in the akin of Grimes

Golden apples and Bartlett pears. Though xylose is the only pentose so far

detected in these fruits, ribose at least is also formed for incorporation

in the nucleic acids universally present in living tissue.

Ash and Reynolds (2) have also detected two tetooligosaccbarides in

several varieties of pears in small amounts at least. Qa hydrolysis, one

of these oligosaccharides gives chromatograms on *-feich xylose, glucose and

fructose could be detected. Their work suggests that transfructosidation

can proceed in fruits as in ether plant tissues.

Tutin (151) detected sorbitol, the hexahydroxyl alcohol corresponding

to sorbose, the ketose, fror? apples, Strain (145) and Martin (101) from

pears. Kidd et al. (85) detected considerable aaounts of sorbitol from

Conference pears and reported on the changes in the fruit, during storage at

10°C. Be suggested that sorbitol is transferred into fructose in these fruits.

Ash and Reynolds (2) isolated hexitol and also a cyclltol, which they con-

sidered as probably mesoinostil, from apples and pears. The amount of

hexitoi present is about the same as that of sucrose.

Axelrod and Seegmiller (A) found a formation of radioactive sucrose

(after infiltration of radioactive glucose into apple discs), but not of

free fructose. This process is inhibited by exclusion of oxygen.

Very many papers, on the course of the change in sugars in fruits at

various stages of development an the tree and during the storage, have been
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reported. Fructose is the most prondneat sugar except during the first

few weeks of development. Sugars increase steadily up to* and indeed

rather beyond, the time at which the fruit is harvested commercially,

fructose being in considerable* excess at the end of growth. Works, re*

ported by Archbold (l) and Kidd et el. (88) on the changes undergone in the

sugars whoa apples and pears are placed in storage at different temperatures,

show that fructose is the aost abundant sugar.

Bulae (60) worked on changes in sugars in Breeders seedling apples

picked et different stages of growth and stored at 12%. It was found that

starch synthesis and hydrolysis are not directly related to the increase or

decrease in reducing sugars. Reducing sugars continue to increase long after

starch has disappeared in fruits picked toward the end of the season. Changes

in starch and in sucrose ere generally considered as being linked processes,

although there is far acre sucrose synthesized than could be accounted for

by starch lost. Kidd (86) suggested that no starch synthesis, only degradation,

occurs on removal of fruit from the tree (the starch, where present, does not

present an equilibrium between synthesis and hydrolysis).

The rise in sugars at one period or another In postharveet fruits is

also considered in the work of Krotkov and Nelson (91) who suggested that

the bulk of these sugars com from some (85 percent) alcohol-soluble sub-

stances which are precipitated from the extracts during clearing with lead.

Thus, it has been suggested that a component of the "organic acid fraction"

is involved and, indeed, Krotkov et el. (92) concluded that the carbohydrate

and acid metabolisms of the apples are closely related, but that the relation

is not a siuple one.
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Smock and Heubert (138) quoted the work done by Magness et ai. (98)

who measured the changes la total and reducing sugars In apples stored at

different teapcr&tures. Lowering of the temperature resulted in a retarda-

tion in the loss of both reducing sugars and sucrose. Griffiths et al. (42)

worked on the changes in glucose, fructose and sucrose in mature Branley's

seedling apples in storage at various temperatures. Rj found that there is

a saall loss in weight during storage, and these weight losses do not account

to any appreciable extent for the increase in glucose and fructose during the

storage period, even at the higher teeperafinfa where weight looses are

greatest. Starch falls to negligible proportions in the first 50 days at

1°C and in less than 20 days at 15°C. Changes in glucose and fructose ap-

pear to be least affected by temperature, the most striking changes being

in sucrose. Although the increase in sucrose nay be partly a result of

hydrolysis of starch, the Increase is greater and lasts longer than can be

accounted for in terns of loss of starch.

Kieser and ioliard (90) worked on the juices of several apple varieties,

and found that sucrose changes considerably more than reducing sugars during

storage of the fruit at 3-5°C Iluine (68) in Ms review reported that dur-

the ripening of pears at 15 C, sucrose increases ropidly and then falls as

rapidly, while reducing sugars undergo ouch less change.

Onslow et al. (118) analysing the sugar changes in Worcester Poaroain

and Bramley's Seedling apples concluded that glucose is constantly being con-

verted to fructose in the fruit. Baking Mepot" deterndnations of the two

sugars Misleading; and the fructose formed is immediately condensed to

sucrose. This lead to the hypothesis that aucroae at tbe point of inversion
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is the main substrate for respiration In the form of the y-fructoae

liberated, Cnslov et al. (117) stated that sucrose never falls to zero

but that there Is a critical residual amount, the basal sucrose content,

which never enters into the respiration processes. They associate a high

level of this basal sucrose content with bad keeping. But Archbold (I)

associated a high level of basal sucrose merely with late harvesting.

Onslow et al. (118) stated that the susceptibility of apples to tissue break-

down at low temperatures Is associated either with a failure of the cell

mechanism to convert glucose to fructose or with the abeence of any mechentsm

In the cell for the flycolysis and respiration of glucose. The level of

sucrose is certainly very susceptible to storage conditions, and it is

therefore possible that the level of sucrose, or its rate of change in

storage, might be a major factor in determining the storage life of the

fruit.

And finclly Hldd et al. (86) suggested that In stored apples from

the time of the disappearance of starch, the change in sucrose fits a curve

with the following formula: log (c*m) + b - at, in which G is the observed

sucrose content, a the steady state value, b the Initial value, a the rate

constant, and the final lew level (steady state) value may be higher for

Worcester Pearmaln than for Bram2,ey*s Seedling apples.

OMSAffiC ACIDS

C,

1. Adds found In fruits:

After the new chromatographic methods came into use, numerous papers



have been published dealing with the distribution and characterization of

organic adds in fruits. Since 1951 rapid strides have been made, as the

result of the use of paper chromatographic techniques in the detection of

organic acids in apples and pears. The following table gives a list of

the acids which, In addition to malic and citric acid, are now known with

certainty to be present In these fruits.

08GAMC ACIDS QKWW TO BE PfiESEHT It; APPLE AKD PEARS

APPLE Mil

Whole fruit
or juice of
whole fruit

Pulp Peel
Whole fruit
or juice of

whole fruit
Pulp Peel

quinic quinic quinic quinic quinic quinic

glycolic •fytfa^iS slilkcdc glycolic shikffiic shiknic

succinic succinic eitranalic succinic glycolic glyceric

lactic glyceric glyeerlie lactic mucic citramatic

galacturonic

citramalic

•ketoglu*
taric
pyruvic

oxal^oettc

•ketoglu*
taric
pyruvic

oxalacefcf c.

galacturonic

glycoxylic

isocitric
t

114)
Evidence discussed by Nitsch ( shows that both acids and sugars

enter
the frult are P*«fow«d« However, Tomkins (148) concluded that at best

a part of the acids are formed in the fruit from carbohydrate.
Krolkov * al

-
(91)

found a close relationship between carbohydrate and acid metabolism in fruit
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attached to the tree but concluded that the relation is not a simple one.

Possibly the acids found in the fruit arise from both sources. There is

not critical evidence in this point, but it is perhaps significant that an

appreciable increase in the tifcratabie acidity has never been observed

when once the fruit has been detached from the tree. Some email increase

in titratabie acidity may occur in the first day or two after picking in

immature fruits, but this may be due to the minor acids such as qulnic acid.

hula* (68) stated that in the light of present knowledge of the position

of acids in plant metabolism, it appears probable that the acids present in

small amount may play a part of e^ual or even of greater importance than the

major acids, in the general metabolism of apple and pear fruits. These major

acids may indeed be reservoirs for feeding acids into a complicated cycle of

acid transformations (the cycle itself providing energy, through energy-ricn

phosphate bonds, such greater than that provided by the direct oxidation of

the acids), or they may be 'sinks'' of acids thrown out by such a cycle. Such

alicyclic acids as quinic and shikimic are almost certainly moving in metabolic

pathways other than those involving the open chain acids such as malic and

citric.

2. Fluctuations of the different acids:

* rem the early work of &tf&es (54) numerous papers have been reported

on the changes in the titratable acidity of apples after removal from the

tree, especially after detachment at the normal time of harvest. Mo3t of

this work lias bean on the pulp of the fruit, and since the bulk of the acid

at this stage is malic acid and the amount of cation (mainly potassium)

cannot change, changes in titratable acitiity may reasonably be taken as
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truly representative of the gross change In malic acid. rjtdd and Hanee

(82) found that drifts In pH at various temperatures are explicable on the

hauls of decreasing concentration of free malic acid, in apples to storage,

In the presence of a small amount of aoncbasic salt which regains constant

in concentration.

Xieser and Pollard (90) working on change* in acid for a number of

varieties of apples, stored at 3-5°C, found that after an initial period

of a few days when the acid content remains constant or **ay rise slightly,

there is a steady logrithanic fall at low or high tosswratarrea. Uaynes (54),

Ridd «t al. (37) and Fldler (31) found that the rate of loss is constant,

and it is not affeeted by the climacteric rise in respiration and it appear*

to be constant for a given variety of apple.

'Icr (31) showed that fcitratable acid (malic acid) in apples in

storage st 12°C is lost as rapidly in pure nitrogen ac in air. This is most

surprising since oxidation of malic acid would require large amounts of

oxygon and if "oxidized" in absence of oxygen would involve the formation

of large quantities of highly reduced compoun. .

Very few papers have been published on changes in the titrafeable

acidity in detached pears. Kidd et al. (85) stated that the acidity of

Conference pears is very low as compared with apples. It shows no signifies**

change during storage at 1C°C until physiological breakdown of the tissos

occurs; subsequently the acid content falls considerably. Leonard (55) found

that a** tf r-vtlett ptni 6 crease during ripening except in the later

stages.

Turner (ISO) found t- ,-«y Scith applet contains snail
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amounts of oxalic and tartanic acids. lie found a vary small erratic loss

o
of malic acid from apples stored at C.

Hulue (68) worked on the changes in citric, citraaalic (present in

peel only), quinic, and shikimic acids in Brantley's Seedling apples stored

at 15°C. In the pulp citric acid rises rapidly during the first 15 days

and then more slowly at the end of 100 days of storage. Shikimic acid

appears in very small quantity near the end of the storage period. In

the peel of the apples, citric acid content remains low and fairly constant

during storage, Quinic acid follows a similar pattern to that obtaining

in the pulp, with a peak at about 40 days. Shikimic acid rises steadily,

with an increase in irate when quinic acid commences to fall, from 5 at

commencement to G mg per 100 grams at 100 days. Uhen the fruit is harvested,

the peex chains no citraaalic acid. After 25 days, it has been found that

10 mg per 100 grams is present and this rises by the end of the storage period

(100 days) to 25 mg. Therefore, one of the most intriguing aspects of this

new knowledge of the "micro acids" is the relatively large changes they undergo

during the life, especially the off-the-tree life, of apples and quite large

variations have been found from season to season and variety to variety. It

has also been found that, in pears, this pattern is even more mobile.

3. Pathways of Syntheeis and Breakdown:

"Acid'' in general sense is mostly involved in "respiration." Kidd et al.

(87) feel the formation of acid in the tree is due to processes requiring the

presence of oxygen. They consider that it is linked with the systems involving

cell-wall formation through intermediate "cell-wall products" according to the

following scheme:
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Transport sugars v Intermediate -v cell wall material

cell-wall + O2

products
n
y

- co
2

degradation products

But there is no biochemical evidence to prove or disprove this tiypothe-

sis.

Robertson end Turner (125) suggested that organic acids are transported

from the leaf in approximately the proportions in which they occur in the leaf

tissue and that only as the fruit develops, ana its -enzymatic capacity" in-

creases, they are transformed gradually to those characteristic of the mature

fruit.

Kidd et el. (87) reported that the loss of acid which takes place in

stored fruit is due to decarboxylation wliich does not require the presence of

oxygen. This also agrees with the work dona by Fidler (31). Turner (150) sug-

gested his results on malic and citric acid changes on the basis of the iirebs

citric acid cycle, but there is no.firra evidence to date for the operation of

"full" Krebs cycle in the apple.

A possible role for quinie and shikimic acid ia as precursors of aromatic

ring compounds. An essentially active role for these acids ia consistent with

the considerably higher concentration in the more vigorously metabolizing peel

tissue. Peel tissue is also relatively rich in phenolic substances. These

acids, small in absolute amount, also fluctuate rapidly, and the appearance

of shikimic acid in pulp tissue only when the fruit is "run down 1 ' may be a

reflection of the disorganization and slc.'inc down of the cellular processes
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at this stage, Hulme (61) has suggested that shiklmlc and quinic acids

might form a dehydrogenase system analogous to the succinic-fumaric

malic system)

-H +H2
Dihydroshikimic acid v Shikimic acid v quinic acid

v " r
+H -HjO

But there is no experimental evidence to support this theory.

Hulme (65) stated that citramallc acid has never been found in the

pulp of apples so far. It appears in the peel only at maturity. This acid

is readily oxidized in vitro to acitoacetic acid which in turn readily breaks

down to acetone. Heigh (107) found that in apples stored at 4 C acetone is

the most abundantly produced volatile carbonyl compound and that in some

varieties the amount evolved increases with storage. It seems, therefore,

that at least some of this acetone might arise from the citramallc acid in

the peel of the fruit. The pathways leading to the production of citramallc

acid are quite unexplored.

Ulrich (152) reported that organic acids do not contribute to the

increase in sugars during climacteric and are not formed during the decrease

in sugars in the postclimacteric period. They are formed by carboxylation.

14
It has been found that apples exposed for 18 hours in darkness to CO

14
fixed C into malic, aspartlc, and glutamic acids, 2-alanlne and serine.

14
Malic acid and amine acids contain over 80 percent of C incorporated in

the involatile compounds. Carbon dioxide fixation increases as the C02

concentration in the atmosphere is raised. Hulme (67) stated that C0
2

Injury of apples stored in an atmosphere containing 20 percent CO2 is
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accompanied by an increase in succinic acid content of the tissue. Uirich

o
(152) in his review stated that Williams pears, stored at C in air en-

riched with iO percent C02# accumulate malic and succinic acids in the

tissues.

Hulme (62) put forth his views on the biosynthesis of 1-quinic acid

in apples. In vitro, quinic acid may lead to citric and aconitic acids by

oxidation and to protocatechuic acid and ahikliaic acid. By combining with

the relatively insoluble caffeic acid, quinic acid gives chiorogenic acid

in apples, Hulme (63). It is not certain, however, that shikimic acid comes

from quinic acid in vitro. It has been suggested that quinic acid might pro-

vide a link between aliphatic and aromatic compounds in plants and that

shikimic acid might be the first stage from quinic acid in the desaturation.

PECTIC SUBSTANCES

D.

1. Definition and Nomenclature:

The pectic substances are carbohydrates or, more exactly, carbohy-

drate derivatives. D-galacturonic acid is the main building unit of the

pectic substances. On the basis of the term "polyuronide," first used by

Smolenski, the pectic substances are polyuronides composed mostly of

anhydrogalacturonic acid residues, although some authors (102,143) still main-

tain that other carbohydrates, for example arabinose, galactose, sorbose,

rhamnose are attached to the chain of anhydrogalacturonic acid units.

The revised nomenclature of the pectic substances was reported to the
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American Chemistry Society in 1943 and adopted as official in April, 1944.

"lectio substances": - ! Lectic substances" is a group designation for these

complex, colloids! carbohydrate derivatives which occur in, or are prepared

from, plants and contain a large portion of aahydrogalacturonie acid units

which are thought to exist in a chain-like combination. The carboxyl groups

of polygalacturonic acids nay be partially esterified by methyl groups and

partly or completely neutralized by one or more bases, according to Kertesz

(80).

Kertesz (90) also stated that the term pectic substance appear to be

the most satisfactory general designation for this group of compounds. It

is undesirable to use pectin or pectins for this purpose. These substances

are described as carbohydrate derivatives in contrast to carbohydrates. In

general, peccic suostances are distinguished from polysaccharides by the

possession of carboxyl groups. The carboxyl groups are part of the anhydro-

galacturonic acid units characteristic of all pectic substances.

According to Kertesz (80) the followings could be defined as follows!

"Pectinic acids": "The term pectlnic acids is used for colloidal

polygalacuturonic acids containing more than a negligible proportion of methyl

easter groups. Pectinic acids, under suitable conditions, are capable of

forming gels (jellies) with sugar and add or, if suitably low in methoxyl

content, with certain metallic ions. The salts of pectinic acids are either

normal or acid pectinates."

"Pectin": "The general term pectin (or pectins) designates those

water soluble pectinic acids of varying methyl ester content and degree of

neutralization which are capable of forming gels with sugar and acid under
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suitable conditions."

"Pectic acid": "The term pectic acid is applied to pectic substances

mostly composed of colloidal polygalacturonic acids and essentially free from

methyl ester groups. The salts of pectic acid are either normal or acid

pectases.

2. Occurrence and Distribution of Pectic Substances in Plants:

Kertesz (80) write that pectic substances occur in most, perhaps in

all, plant tissues. Generally speaking, they are found in relatively large

amounts in succulent, soft tissues composed chiefly of primary walls, and

under conditions of rapid growth and high water content. During the process

of llgnification the content of pectic materials in plants usually decreases

and in hard tissues such as woody they constitute only a negligible fraction

of the total plane substances.

Kertesz (80) also stated that the bulk of the interior of mature cells

is occupied by a single large cavity, the vacuole. This is filled with water

in which a great variety of substances are dissolved or dispersed. Although

the occurrence of pectic substances in the cell sap has been observed, there

is doubt whether such dissolved pectic substances are common. The pectic

compounds of the cell wall are formed in the cell itself and are only later

deposited, which makes the cell sap the primary source of pectic substances

in the plant tissue. There is no doubt, however, that some of the dissolved

pectic substances may at times originate from the Insoluble pectic constituents

of the cell walls and the middle lamela. There is ample evidence that such

dissolution takes place, especially as the tissues mature and disintegrate.

As a consequence, pectic materials in the state of transition can also be
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found In plant tissues. The solubility of pectic substances in the cell sap

might be governed, at least partly, by the degree of raethylation.

la young tissues the cell wall consists of a sing la layer, while in

older tissues it is composed of two or more layers. A well developed cell

wall is composed of the following three main layers:

1. The middle laraela or intercellular substance is formed from the

cell plate during cell division and is shared by adjacent cells.

This is composed largely, or entirely, of pectic substances.

2. The primary wall is composed of cellulose, hemicallulose, pectic

substances and lignin.

3. The secondary wall does not contain pectic substances.

According to Kertess (80) the poetic subntancee of the middle lanela

are deposited in a single or double layer by the plasma membranes and undergo

changes in form, quantity, and characteristics during the development of the

plant. This ma3S is often increased by the secretion of further pectic

materials from the adjoining cells into the spaces formed when they are round-

ing off. The primary cell wall, contrary to the middle laraela, is rich in

typical protopectin. The majority of root hairs contain all inner aeabrane

composed mostly of cellulose and an outer one consisting of pectic substances.

3. Metabolism:

Pectic substances are largely associated with the cell wall, and in

consequence, the softening of fruits might be expected to be a function of

pectic changes. Generally soluble pectin increases during ripening at the

expenses of protopectin, but the qualitative changes of pectin are not well

known. Bonner (11) quoted Waller's (45) data to show the correlation, in
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apple fruit in ccid storage, of decrease in protopectin content with Increase

in pectin content and decrease in firmness as measured by penetrometer.

However, Sailer et al. (46) stated that softening in storage is apparently

due to the conversion of the insoluble pectic substances, principally proto-

pectia, into soluble form. The storage temperature affects the rate of change

in pectic substances, but does not affect the general trend which is a more

or less rapid fall in net protopectin accompanied by a concomitant rise in net

water-soluble pectin. Later there is a period in which both fractions remain

constant} the fruit becomes mealy, soluble pectin decreases rapidly and pro-

topectin again increases somewhat.

Huime (68), in his review, gave a typical example of changes in proto-

pectin and soluble pectin as related to changes in the hardiness of apples.

He stated that at the four temperatures of storage, net fall in protopectin

is in each case almost exactly balanced by increase in soluble pectin. Trends

in both fractions are not all in one direction; the fluctuations are probably

greater than can be accounted for by experimental error. Changes in the

hardiness of the apple follow very closely the changes in protopectin content.

The rise in protopectin toward the end of the storage period is not always

evident in stored apples.

liulne (68) reported that there is a relationship between the softening

of apples and the total organic acid content. IHiring storage at 4 C from

December to June, the ratio remains fair.y constant with a gradual rise up to

March, the rise being more prolonged in some varieties than in others. The

rise in this ratio appears to be almost entirely a reflection of a fall in

organic acid.
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Poast and Phillips (121) claimed that in apples stored at 0°C, changes

in "soluble pectin" (Pectin and pectinic -rcids) fall into three phases.

The "climacteric" peak of the first phase coincide with maximum eating

quality. The high quality and longe storage life coincide with low levels

of soluble pectin and that in apples receiving a high level of nitrogen

the pectin clim-.c'ceric is high and sharp, as high nitrogen apples are poor

keepers.

Hulme (68) also reported that the situation in the pear is much more

interesting and more readily followed. The change from a hard condition to

the soft "meltinq ripe" condition so essential to eating quality in pears

takes place rapidly at ripening temperatures, about 20 C. Changes in pectic

substances are rapid during this softening process. A few varieties of

pears never ripen on the trees. Most pears that do not ripen after detachnunt

will not ripen (soften) normally if maintained too long at cold or moderately

cold temperatures. They become sleepy and only soften with concomitant

browning of the tissue when brought to higher temperatures.

Host comprehensive study of pectic changes in pears during growth

on the tree and during storage and ripening has been reported by (68), in his

review. Unlike the apple there is no rapid fall in total pectin during June.

In fact total pectin remains constant throughout June and two thirds of July.

A relatively rapid decrease in total pectin then occurs which lasts until

about the 20th of August. From then until the 10th of September total pectin

remains constant followed by a rapid fall tc the beginning of October. The

changes in total pectic substances during growth are largely due to changes

in protopectin. A drop in protopectin does not result directly in an increase
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of soluble pectin} it is possible that the shifting equilibrium between the

"pectic fractions' is a reflection of a utilization of these substances in

respiration. The respiration of pears falls rapidly from May until the end

of July and low value for soluble pectin with a gradual rise during June,

July, and early August lends support for this suggestion.

He further reported that pectic changes in pears maintained from the

29th of August to the end of November at 0°C are small. Where the pears are

given an intermediate period of 15°C, pectic changes are appreciable, most

of the change occurs during this warming up period. The most profound

changes occur in fruit stored at 0°C up to the 15th of November and then kept

at 15 C for 10 days. Fall in protopectin is accompanied by rise in soluble

pectin though the quantities involved are not identical. In general, the

decrease in hardiness of the fruit, as with apples, tends to accompany fall

in protopectin.

Date and Hansen (26) reported on the different behavior of different

varieties of pear. They also throw light on the development o~ "sleepiness"

in pears. Pears harvested at the normal time were stored at -1.11 to 0.56°C.

Three varieties of pears were examined: Bartlett, Bose and Anjou. In cold

storage, protopectin increases to a maximum and then declines steallly to

the end of the storage period. They emphasize that as Bartlett and Bose pears

progress in cold storage, their ability to hydrolyse protopectin on removal

to higher temperatures declines and in January, after 12 days at 20-21. ll°C,

they still contain more protopectin than when originally harvested. Towards

the end of the storage period, the Bartlett pears failed to soften to



68

"melting ripe" when removed to ripening temperatures so that it would appear

that "sleepiness" in pears may be associated with inactivation of proto-

pectinase. The Anjou pears were in a preclimacteric state at harvest,

and exhibited no fall in soluble pectin on ripening immediately after

harvesting, and retained their ability to convert protopectin to soluble

pectin and to soften on ripening to the end of the storage period.

tfulme (68) state: "To summarize, the gross overall pectic changes during

normal ripening of apples and pears appear to involve firstly a hydrolysis of

protopectin resulting in an increase in soluble pectin. This in later stages

itself disappears, presumably through degradation of the polygalacturonic acid

chains since the viscosity of the extracted pectin decreases as ripening pro-

ceeds, "

4. Pectic Enzymes and their Mechanism:

No account of the pectic changes taking place in apples and pears

can disregard some consideration of the mechanism responsible for these

changes. It has been found that pectin, hemicellulose, and cellulose are

both broken down and synthesized during the physical changes which take place

during ripening. This being so, enzyme processes must be involved.

Two kinds of enzymes seem to be involved in the breakdown o.- pectic

materials. Pectin polygalacturonase (P.G.) - the enzyme responsible for the

breakdown of pectinic acid (more strictly, pectic acid) to shorter chain

length polygalacturonic adds and even to galacturonic acid itself. "Fectase"

or pectin methylesterase (P,E.) is responsible for demethylating pectinic

acids. "Pectinase" may be regarded as a mixture of P.G. and P.E. since Jansen

and MacDonnell (74) reported that P.G. has but slight action on a methylated
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pectin. Protopectinase has been regarded as the seme enzyme (or enzyme

comples) as "pectinase" although the recent works suggest that two enzymes

are Involved.

Hulme (68) in his review provided the evidence which demonstrates

the presence of pectic enzymes in fruits. A high P.G. activity in ripe

Bartlett pear has also been reported by McCready and MeComb (105). Hulme

further reported that the pear pulp at picks made on June 9, June 18 and

July 9 shows no protopectinase activity but appreciable P.G. activity.

Thereafter unit harvest, no (pectic) enzyme activity is apparent. In fruit

ripened off the tree, and in fruit cold stored and then ripened, protopectinase

and P.G. activity are clearly present, while in fruit taken directly from store

(and not ripened) only slight P.G. activity appears.

Hulme (68) further stated that the failure of attempts to prove the

presence of "pectinase" in fruits has been suggested as due to the presence of

two inhibitors of this enzyme. It has been suggested that one of these (a

thermolabile substance) appears in arly August and is responsible for the

failure to show P.G. activity from August until harvest. The thermolabile

factor appears later and its action could in no way be attributed to the pre-

sence of "pectase." The inhibitor is present in the sap of several varieties

of pears, and it is not found to have proteolytic character. Although it has

been shown that active "pectinase" appears again at a critical period during

the normal ripening of pears, inhibitor studies do not make it clear whether

this is due to a decrease in the amount of inhibitor present or whether the

"pectinase" content is so high at this stage as to be in excess of inhibitor.
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It has also been found that Inhibition of a given amount of enzyme increases

with increasing amount of inhibitor up to a maximum after which no further

increase in inhibition is found. This property suggests that "pectinase" may

be a mixture of several enzymes*

Bollard and Kieser (122) suggested that ,!pectase" activity of mature

apples varies considerably with variety. It has also been shown that ripe

fruits contain, in general, more ensyne than unripe fruits.

Jones and Reid (77) and Domain and Phaff (28) have provided valuable

clues to the mode of action of polygalacturonase. Jermyn and Tomkins (148),

employing paper chromatographic techniques, have shown that the typical

properties of pectin solutions disappear somewhere between an average (poly-

galacturonic acid) chain length of 32 and 5 galaeturonic acid units. They

reported that enzymatic degradation of polygalacturonie acid takes place by

random scission of the component units in a manner similar to the hydrolysis

of cellulose. "Perhaps, following up a suggestion of Date and Hansen (26)

and by analogy with other high-molecular metabolic constituents of plants,

phosphorylating mechanisms involving nucleotides are concerned,"

1. Nitrogenous compound found in fruit:

Kulrne (68) stated that it has been only in comparatively recent years

that serious attempts have been made to link a high nitrogen content of the

fruit itself with keeping quality and further to ascertain which component

of the nitrogen fraction is responsible for a "nitrogen effect." Various

nitrogenous fractions have been found in apples and pears. The total nitrogen

content of mature apples and pears is extremely low (less than 80 mg/100 g
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fresh weight). In the early, rapid stages of growth, the total nitrogen

content may be nearly 300 mg in the pulp and 400 tag In the peel tissue. Of

this, protein nitrogen may comprise 30-50 percent in the pulp and 80-90

percent In the more actively metabolizing peel tissue, depending on the

stage of development. Hulme and Smith (70) showed that the protein nitrogen

per cell varies between 2 and 10 mg x 10-7. They assumed that this protein

nitrogen consists of the cytoplasmic lining of the cell. Hulme (68) further

suggests that this protein nitrogen represents virtually the total enzyme

content of the fruit,

David et al. (27) found some oxidase activity in protein preparations,

and suggested that the presence of phosphorus In the ash of preparations

indicates the presence of nuclecprotein, but In small quantity.

Hulme (61) examined the protein of young Bramley's Seedling apples,

and suggested the presence of different amino acids, such as: aspartlc

and glutamic acids, leucine (and/or lsoleuclne), serine, glycine, threonine,

•alanine, proline, and tyroeline, valine, phenylalanine, argini.:e, and

lysine. McKee and Urbach (106) reported the presence of hydroxproline In

the protein of Granny Smith apples. lysine, phenylalanine, and leucine are

the most abundant acids in the "protein" of mature pears.

Hulme (57), using the older, classic methods for the determination

of amino and amide nitrogen, found that. In the pulp of apples, more than

50 percent of the nitrogen could be present in a soluble nonprotein form.

At certain stages of growth, asparaglne accounted for 80 percent, of this

alcohol soluble nitrogen. By maturity, asparaglne falls down so that at

this stage half the soluble nitrogen could be accounted for by amino acids
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other than asparagine. Oland (115) considers asparagine to ba the nain

nitrogenous "storage" compound in apple trees as a whole.

The provisional identification of some of the individual amino acids

In apples and pears has been first achieved by paper chromatographic methods.

Joslyn and Stepka (78) found asparagine, aspartic acid, serine, and y-

aminobutyric acid from extracts of ^wton Pippin apples; and asparagine,

serine, glycine, and a trace of valine from Bartlett pears. Hulme and

Arthington (69) showed the presence of y-andnobutyric acid in young fruits

of Bramley's Seedling apples. B-Alanine, glycine valine, serine, leucine,

tryptophan, gluamic and aspartic acids, phenylalanine, asparagine,

and proline were also identified. Piperidine-2-carboxylin acid (pipecolic

acid) » y-methylproline, homoserine, methylhydroxproline were also identified,

but in small quantities. Burroughs (16) working on apples and pears, found

that asparagine, aspartic, and glutamic acids are the principal amino acids

in these fruits, while moderate amounts of serine, -alanine, y-arainobutyric

acid, valine, isoleucine, and methylhydroxyproline are also found. He also

noted the traces of peptides in apple juices. According to Elliott (29),

an appreciable change in the amino acid pattern during the development of

the fruit is In glutamine which is especially conspicuous in very young and

in overmature fruits. The absence of glutamine during the intermediate stages

of growth may be regarded due to a storage of adenosine triphosphate known

to be required for its synthesis in Vitro.

tfulme (68), in his review, reported the presence of relatively large

amounts of aspartic acid and asparagine throughout the growth of Williams

and Paese-Crassane pears. Smaller amounts of glutamic acid, serine,
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threonine, -alanine, valine, and leucine are also present. Lysine is

found only at maturity, and phenylalanine is present only in very small

quantity. Proline is the most prominant acid at maturity. Burroughs (16),

working on Perry pear identified hydroxperidine-2-carboxylic acid. He

also isolated 1-aminocyelopropane -1-carboxylic acid,

2, Changes of Nitrogenous Compounds:

A, Changes due to climacteric rise:

There is a special phase in the life history of apples and pears which

appears to be associated with the change over from development to senescence.

This is the climacteric rise in respiration "the climacteric," a rapid rise

in the respiration rate of fruit, which occurs just before visible ripening

sets in. During this period the balance between protein and non-protein

nitrogen is shifted in favor of protein*

Kidd and West (81) showed that the "climacteric" has a high temperature

coefficient and attributed the onset of the climacteric to a change of state

in the protoplasm, Hulrae (58) found that coinciding with the climacteric

rise In respiration in detached apples, there is a rise in the net protein

content of the fruit, but there is not change in total nitrogen. Hulme (64)

working in different varieties of apples showed that there is always a shift

in the equilibrium between non-protein and protein nitrogen in favor of pro-

tein over the period Of the climacteric. He also showed (66), for fruits

picked at any stage of development and stored at 12°C, that fruits which have

a climacteric, also exhibit at the same period in their life history a net

increase in protein. This also applies to fruits commencing their climacteric

on the tree.
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B, Changes at different stages of growth:

Archbold (1), Askew (3), tiulm (57), and Robertson and Turner (125)

working on several varieties of apples grown in different counties, ail

found the sane pattern of change in the total nitrogen content of the fruits

during development on the tree. The concentration of nitrogen is high in

the young fruits (a few days after petal fall, as high as 0.35 percent of

the fresh weight) falling to as little as 0.02 percent of the fresh weight

at maturity. Nevertheless, as long as the fruit increases in weight, the

amount of nitrogen per fruit continues to rise. Hulme (125), Robertson and

Turner (125) studied the changes in the protein and non-protein nitrogen

of the apple during growth. The equilibrium between soluble and protein

nitrogen moves rapidly in the direction of soluble nitrogen during the first

60 days from petal fall then move slowly up to 140 days by which time protein

nitrogen forms only about 45 percent of the total nitrogen. Thereafter pro-

tein nitrogen increases rapidly at the expense of soluble nitrogen until the

fruit is harvested.

C. Changes in storage:

Hulrae (59) stated that there is no evidence for any significant change

in ti« total nitrogen of apples or pears as for any transfer between pulp and

seeds when once they have been detached from the tree. Apart from the changes

in the balance between protein and soluble nitrogen which occur over the region

of the respiration climacteric, changes in storage are small. It has been

found that the pattern of changes in the nitrogen constituents during storage

Is the same in pear as in apple.
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Lipids;

Ulrich (152) has reported several studies that have been made of

the lipids from the peel of apples and pears. Oil, wax, ursolic acid and

cutin have been extracted from the epidermis of apple peelings. It has

been found that the oil fraction of the natural coating increases during

storage to a maximum - three to four times the initial value; this increase

is less important in gas storage. The oil content also increases with

the maturity of the fruit at picking time. The iodine number of the oil

increases with the oil concentration. Small increases occur in the wax*

ursolic acid and cutin fractions after prolonged scorag©. The presence of

stearic, archidic acids has been found by the method of distillation, with

smaller amounts of palmitic and behenic acids and acids of higher molecular

weight - tetracosanoic acid for example.

Different Pigments:

A. Pigments other than Flavonoid compounds:

Ulrich (152) says that little systematic work appears to have been

carried out on the changes in the carotenoid and chlorophyll In apples and

pears. The results of several studies reported have shown the presence of

B-carotene, lycopene, tetrahydrolycopene, hydro carbons of the phytofiuence

series, xanthophylls, cryptoxanthln and chlorophyll in pears and apples.

Xanthophylls in fruit differ from the leaf xanthophylls by the fact that

they occur mainly as esters. According to Hulme (58) the peel of most

deciduous fruits contains many times more of these pigments than does the

flesh.

B. Effects of different factors on carotenoid content:

Ulrich (152) reported the effect of light and temperature on the
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carotenoids In fruits. A better color in tomato fruits picked at a green

stage and ripened at 21°C under light than In those ripened in the dark

has been observed. Red light has been found to be particularly active.

Better color is obtained for fruits ripened at 16°C than for fruits ripened

at A C. It has been also found that in green fruits chlorophyll does not

disappear and the carotenoids fail to develop in the absence of oxygen

unless the fruits are illuminated. In tomato fruits the synthesis of

lycopene at 37°C is inhibited without an Increase of phytofluene, S-

carotene, or neurosporene content. Synthesis of - carotene and B-carotene,

is very slightly inhibited at 37°C. At 0°C all synthesis are inhibited. It

has also been found that storage temperature has no effect in the changes

of color of pear.

C. Evolution of carotenoids during ripening:

According to Ulrich (152) ripening Is marked by an increase in the

amount of carotenoids in the fruit. The general yellowing of the flesh of

apples after removal from the store is due mainly to an increase in the carotene

rather than in the carotenol content, and that chlorophyll decreases during

ripening. The failure of the skin of pears to yellow during ripening at vari-

our temperatures is due to incomplete decomposition of chlorophyll which tends

to mark the carotenoids present. Chlorophyll distribution could be hastened

by treating the fruit eith ethylene.

He also stated that xanthophylls originate from hydrocarbons by oxida-

tion and that 8-methylcrotonaldehyde is the precursor of carotenoids. The

different hydrocarbons may arise on out of the other or from a common

precursor. Carotenes could arise from colorless polyenes by dehydration.
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ring formation, and oxidation. It is also possible that carotenoids might

come from ethylene.

Phenolic Constituents:

Hulme (68) stated that phenolic substances are, as the name implies,

substances ultimately related to phenol, but the numbers of the group so

far identified in the fruits of apple and pear are alaost all of a flavonoid

nature. Among these components flavones, anthocyanins and catechin deriva-

tives have been recently investigated in fruits. Four leucoanthocyanins are

present in various varieties of apples. Chlorogenlc acid, and epicatechln

also occur in the fruits. Idaein, quercetin, and hyperin have been found as

coloring matters in the skin of different varieties of apples. Other com-

pounds such a3 quercitrin, isoquercitrln, avicularin, rutin, and quercetin

3-xyloside have also been reported.

He also stated that sincemmuch of the astringency, the color of the

skin, and the browning of the cut surfaces of apples and pears is due to

the presence of phenolic substances, a measure of the total phenolic sub-

stances present in the fruit has been a great interest to nomologists and

fruit juice cider makers. Because many of these compounds were first recog-

nized in tanning liquors, the name tannin is coined as a generic name. The

tannins of pears can be divided into three groups as follows:

1. True tannins - bodies having the properties of tannins and

precipitated by gelatin 1 percent aqueous solutions.

2. Nbntannin polyphenols - not precipitated by gelatin: compounds

such as gallic and ellagic acids.

3. Colored compounds belonging to the class of anthocyanins and

flavons.
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Vitamin C (Ascorbic Acid):

Hulme (68) reported that fruits are one of the main dietary source*

of ascorbic acidf it is not surprising that the ascorbic acid content of

apples, and to a lees extent pears which have a much lower content of ascorbic

acid, has received much attention throughout the world. The ascorbic acid

content of apples and pears changes during ripening. This variation may

be explained in part by a difference in the maturity of apples and pears of

a given variety. The peel from the apple contains three to five times as

o
much ascorbic acid as pulp. Losses of the vitamin during storage at C

and 3°C are smaller, especially in the peel. A higher content of ascorbic

acid in apples exposed to high light intensity has been observed as compared

with the inner, shaded fruits on the tree.

He also stated that during the development of apples and pears on the

tree and -ascorbic acid content of the whole fruit is highest during the

early stages of development when the seeds are still soft and undeveloped,

after which it falls rapidly. In general summer apples have a higher con-

centration of ascorbic acid than fall and winter varieties but they lose

the vitamin faster in common storage. The loss of ascorbic acid is somewhat

higher in the gas-stored than in the ordinary cold stored fruits, but this

may have been a question of temperature difference.

He further stated that low temperature appears to favor synthesis of

ascorbic acid, and it is speculated that synthesis may result from the slow

liberation of galacturonic acid during the breakdown if pectic substances

which occurs in stored fruits. In apples and pears when first placed in

storage, ascorbic acid synthesis may be limited by precursors which are sub-

sequently liberated as the tissue softens. The loss of ascorbic acid in
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apples and pears stored at higher temperatures might be due, either to the

rate of hydrolysis exceeding the rate of synthesis at these temperatures,

or to the general slowing down of synthesis which occurs in overripe fruit.

A. Role played by ascorbic acid in the physiology of fruits:

Hulme (68} says that little is known of the role played by vitamins

in the physiology of fruits. Vitamin C is found in variable proportions of

ascorbic acid (reduced form) and dehydroascorbic acid (oxidized form) in the

fruits. The system ascorbic-acid-ascorbic-acid-oxidase-dehydroascorbic acid

is probably "geared-in" with the other oxidation-reduction system present

in the tissue such as the cytochromes and cytochrome oxidase and the poly-

phenols and polyphenoloxldase* There is, however, little positive evidence

one way or another that ascorbic acid acta as a respiratory catalyst. Ascorbic

acid may also be concerned in oxidations and reductions involving glutathione*

Polyphenolase activity closely parallels Vitamin C oxidation capacity except

in ripe pears.

The hormones controlling growth have become known generally as the

auxins i.e., growth regulators which induce cell enlargement at low concen-

trations or the substances which affect extension of the cell wall, accompanied

by water uptake in the cell. Modern techniques itt plant hormone analysis, in

particular the use of paper chromatography for the purification of extracts,

followed by bioassay, have revealed a number of as yet chemically unidentified

auxins in various plant species. The fruit auxins are mainly localized in the

seeds,

Nitsch (114) has made an important report on the presence and role of
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auxins in the growth fruit. Among the various workers lackwill (96) and

Wright (161) have reported the role of auxins in relation to fruit growth

and fruit drop. Ulrich stated that very little work has been done on the role

of auxins in postharvest fruits. However, the end of fruit growth and maturity

are narked by a very low auxin content. During storage the auxin content

remains very low and inhibitors are present.

caromsioK

In spite of the fact that several papers have been published since

1950, it is not yet possible to give a comprehensive view of the life of

postharvest fruit. Ulrich (152) says: "The end of the life of a fruit is

generally a slow agony, but it is often preceded by a period of great activity

although growth is over. Ripening is characterized by intense oxidations,

in which mitochondria play an important role; by the appearance or increase

of certain constituents such as pigments, volatiles, ethylene, sucrose,

soluble pectins; and finally by the decrease of other constituents such as

organic acids, chlorophyll and auxins."

Though the efferts have been made to find some links between the dif-

ferent physiological reactions » such as between ethylene evolution and

respiration, pectin production and respiration, between the different acids

or carotenes, between acidity or ascorbic acid and pectin; yet new experiments

are necessary.

The effects on the storage life of the apple and pear on the nutritional

factors, climate and soil, and of a number of other preetorage conditions have

been determined but a more extensive study of the effects of these variables
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and of their interrelationships is very much required.
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Several works have been reported on the postharvest physiology of

fruits. The purpose of this report is to review the works done on post*

harvest physiology of pomaceous fruits exclusively* The stain new facts

and opinions concerning the conditions of ripening, the gas exchange, and

the metabolism of postharvest physiology of pomaceous fruits have been

reviewed here*

There are various factors which affect the conditions of ripening.

These are temperature, humidity, ethylene, volatiles, and growth substances.

Harvested fruits receive oxygen end sometimes water vapor or CO2

from the environment and give out C02, ethylene, volatiles, and water vapor.

The marked rise in oxygen uptake and CO2 output known as "climacteric rise"

Is a characteristic phenomenon of the ripening process. Respiratory activ-

ity is affected by temperature, oxygen concentration, ethylene, and growth

The loss of carbon in the form of volatile organic substances never

exceeds 1 percent of that lost as C0
2. in term of carbon, ethylene forms

70-80 percent of the total. The remainder which includes alcohol, esters,

and aldehydes and ketones, is referred to as "odorous fraction,"

The main substrates in respiration are sugars and organic acids.

During the ripening period the oxidation-reduction potential is found to

be on the reduction side, while during over-ripeness it is more on the

oxidation side. The respiratory activity catalysed by metal enzymes increases

at the same time. The respiratory rate is governed by the amount of ADP

(Adenosine diphosphate) which is available to accept phosphate.



Degradation of starch proceeds at the rata proportional to the

surface area of the starch grain. The presence of soluble sugars in fruits

has been determined. Immediately after picking, sucrose increases only a

little, after that it decreases to a lev level. Soluble pectin increases

during ripening at the expense of protopectin, but the Qualitative changes

of pectin are not well known.

The total nitrogen content of nature apples and pears is extremely

low. Several amino acids have been found in the extract of apple and pear

juice and their content varies during the prehaxvest and postharvest period.

Several organic acids have been detected in fruits by new chromatographic

methods. Organic acids do not contribute to the increase in sugars during

the climacteric and are not formed during the decrease of sugars in the

post-climacteric period. Organic acids are formed by the process of earbo-

xylation.

It has been foun ' that the epidermis of apple peelings contain oil,

wax, ursolic acid and "cutin." The oil fraction increases to the

during storage, with a small increase in wax, ursolic acid and "cutin." The

content of oil also increases with the maturity of fruit.

B-carotane is always present in fruits. In the presence of lyeopene

B-carotene is a minor constituent. Xanthophylls in fruits differ from leaf

xanthopbylls by the fact that they occur mainly as esters. Ripening is

marked by an increase in the amount of caroteooids in fruits. Ught, tern*

perature and oxygen affect the amount of earotenoids in fruits.

Among the phenolic constituents flavones, anthoeyanins and catechin

derivatives have been investigated. The fruit auxins ere mainly localised



in the seeds. The end of fruit growth and maturity are marked by a very

low auxin content. During storage the auxin content remains very low and

inhibitors for auxin are present.


