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Abstract 

Overexposure to the commonly used herbicide atrazine (ATR) affects several organ systems, 

including the brain. Previously, we demonstrated that short-term oral ATR exposure causes 

behavioral deficits and dopaminergic and serotonergic dysfunction in the brains of mice. Using 

adult male C57BL/6 mice, the present study aimed to investigate effects of a 10-day oral ATR 

exposure (0, 5, 25, 125, or 250 mg/kg) on the mouse plasma metabolome and to determine 

metabolic pathways affected by ATR that may be reflective of ATR’s effects on the brain and 

useful to identify peripheral biomarkers of neurotoxicity. Four h after the last dosing on day 10, 

plasma was collected and analyzed with high-performance, dual chromatography-Fourier-

transform mass spectrometry that was followed by biostatistical and bioinformatic analyses. 

ATR exposure (≥5 mg/kg) significantly altered plasma metabolite profile and resulted in a dose-

dependent increase in the number of metabolites with ion intensities significantly different from 

the control group. Pathway analyses revealed that ATR exposure strongly correlated with and 

disrupted multiple metabolic pathways. Tyrosine, tryptophan, linoleic acid and α-linolenic acid 

metabolic pathways were among the affected pathways, with α-linolenic acid metabolism being 

affected to the greatest extent. Observed effects of ATR on plasma tyrosine and tryptophan 

metabolism may be reflective of the previously reported perturbations of brain dopamine and 

serotonin homeostasis, respectively. ATR-caused alterations in the plasma profile of α-linolenic 

acid metabolism are a potential novel and sensitive plasma biomarker of ATR effect and plasma 

metabolomics could be used to better assess the risks, including to the brain, associated with 

ATR overexposure. 

 

 

 

Keywords: Atrazine; Metabolomics; Biomarker; Pesticide; Metabolic pathway analysis; Dual 

chromatography-Fourier-transform mass spectrometry (DC-FTMS) 
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1. Introduction 

Atrazine (ATR) is a widely used herbicide and the most commonly detected pesticide in the 

groundwater, soil, and rain in agricultural areas of the US (Majewski et al. 2014; Toccalino et al. 

2014). Groundwater ATR concentrations at levels close to the regulatory threshold value of 0.1 

µg/L were reported 20 years after it was banned in Germany (Vonberg et al. 2014); 14C-labeled 

ATR could be detected in soil 22 years after application (Jablonowski et al. 2009), indicating 

environmental persistence and widespread potential for chronic, environmental exposures to 

low levels of ATR. Additionally, ATR exposure levels could reach up to 151,000 µg per work 

shift for ATR manufacturing workers (Catenacci et al. 1993) and 15.0 μg/m3 air for ATR 

applicators (Lozier et al. 2013), suggesting that the occupational exposure levels for ATR are 

much higher. Due to its widespread presence and continued use in most countries, including the 

US (EPA 2003), there is an increasing concern about ATR’s potential adverse health effects. 

 

In laboratory animals, excessive ATR exposure causes endocrine, reproductive, immune, and 

especially, nervous systems dysregulations (Cooper et al. 2007; Filipov et al. 2005; Lin et al. 

2013a). For example, ATR exposure (50-300 mg/kg) decreases luteinizing hormone surge and 

disrupts estrous cycle in female rats (Cooper et al. 2007; Cooper et al. 1996). Chronic ATR 

(0.03-0.3 mg/kg) exposure also reduces basal metabolic rate, increases body weight and leads 

to insulin resistance in rats (Lim et al. 2009). Regarding its effects on the brain, we and others 

have shown in rodents that short-term (≥25 mg/kg), long-term (10 mg/kg), or perinatal (1.4 

mg/kg) ATR exposures alter monoamine-associated behaviors and brain dopamine and 

serotonin homeostasis, suggesting that, in the brain, ATR targets tyrosine and tryptophan 

metabolism (Bardullas et al. 2011; Lin et al. 2013a; Lin et al. 2014). In line with the rodent 

studies, epidemiological data based on low, environmental ATR exposure levels report possible 

endocrine, i.e., menstrual cycle length irregularity (Cragin et al. 2011), metabolic, i.e., increased 

risk of gestational diabetes mellitus (Saldana et al. 2007), and neurologic, i.e., increased 
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incidence of Parkinson’s disease (PD; Shaw 2011) perturbations due to ATR. While laboratory 

and epidemiological data suggests that ATR overexposure is a potential risk factor for 

reproductive, metabolic and nervous system diseases, its exact mechanisms of toxicity and, 

importantly, reliable peripheral biomarkers of exposure and/or effect have not been elucidated. 

 

In order to shed light into ATR’s mode of action and aid the search for reliable biomarkers of 

ATR exposure, we developed physiologically based pharmacokinetic (PBPK) models for ATR in 

rodents of different ages (Lin et al. 2011; Lin et al. 2013b) that can be used for target organ 

dosimetry based on ATR’s peripheral biomarkers of exposure, i.e., plasma/urine levels of ATR 

and/or its metabolites, desethylatrazine (DE), desisopropylatrazine (DIP), and didealkylatrazine 

(DACT). We (Ross and Filipov 2006; Ross et al. 2009) and others (Barr et al. 2007; Chevrier et 

al. 2011; Fraites et al. 2011) have generated rodent and human data on the ATR’s kinetics and 

metabolite profile in plasma and/or urine that, with the help of PBPK modeling, can be used for 

ATR exposure dosimetry. However, at present, there are no mammalian data that can be used 

for peripheral biomarkers of ATR’s adverse effects. In an effort to discover peripheral 

biomarkers of toxic effects of environmental contaminants, researchers have begun to employ 

“metabolomics” approach in combination with bioinformatic and biostatistical methods. 

 

The term “metabolomics” can be defined as “the quantitative measurement of the dynamic 

multi-parametric metabolic response of living organisms to pathophysiological stimuli or genetic 

modification” (Nicholson et al. 1999). The advantage of this approach is that it allows rapid 

detection of both global changes of all metabolites or specific metabolites’ changes following 

exposure to xenobiotics using small amounts of easily accessible biological samples, such as 

blood or urine (Soltow et al. 2013). These altered metabolites can serve as biomarkers of 

toxicants’ effects and can also be mapped to known biochemical pathways, thereby helping 

elucidate mechanisms of toxicity. Additionally, this technique can be used to identify novel toxic 
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mechanisms because it can detect a large number of metabolites that may be associated with 

unidentified metabolic pathways (Roede et al. 2012).  

 

Due to the unique advantages of metabolomics, its use in the field of toxicology is expanding 

rapidly. Recently, metabolomics has been used successfully for identification of sensitive 

biomarkers of kidney and liver toxicity caused by exposure to fungicides (e.g., carbendazim) 

(Jones et al. 2013), herbicides (e.g., chlormequat) (Jones et al. 2013), organochlorine (Kim et al. 

2009) and organophosphate (e.g., dichlorvos) insecticides in rats (Du et al. 2013; Feng et al. 

2012; Hao et al. 2012; Sun et al. 2014; Yang et al. 2011). Besides identifying biomarkers of 

exposure and toxic effects, these studies have also revealed key metabolic pathways that are 

associated with the toxicity of each pesticide, highlighting the advantage of metabolomics for 

elucidation of mechanisms of toxicity and for identification of peripheral biomarkers of toxicity.  

 

In terms of studies on mechanisms of ATR toxicity, metabolomics has been employed to 

examine effects of chronic ATR exposure on metabolite profiles of the freshwater amphipod 

Hyalella azteca (Ralston-Hooper et al. 2011). This study identified metabolites (i.e., by-products 

of β-oxidation of fatty acids and eicosanoids) affected by ATR that were indicative of ATR-

induced perturbations of bioenergetics and hormonal (neuropeptide) homeostasis; it also 

demonstrated the feasibility of utilizing metabolomics to determine ATR’s mechanisms of toxicity 

in invertebrate species. However, application of metabolomics for investigating ATR’s toxic 

mechanisms or peripheral biomarkers of toxicity in vertebrates, including mammals, has not 

been reported. 

 

Recently, we established a “top-down” method of metabolic profiling using dual 

chromatography-Fourier-transform mass spectrometry (DC-FTMS) that provided improved 

metabolic profiling capability compared to previous platforms (Soltow et al. 2013). Taking 
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advantage of this new method and considering the absence of data on biomarkers of ATR’s 

effects in mammals, the objective of this study was to determine the effects of short-term ATR 

exposure, which we have already demonstrated to cause adverse behavioral and 

neurochemical effects (Lin et al. 2013a), on the mouse plasma metabolome. 

 

2. Materials and methods 

2.1. Chemicals 

Atrazine (Lot #: 421-55A, 98.9% purity) was purchased from Chem Service (West Chester, PA). 

Other chemicals, including corn oil, acetonitrile (HPLC grade), formic acid (LC/MS grade), and 

water (HPLC grade), unless specified, were obtained from Sigma-Aldrich (St. Louis, MO). 

 

2.2. Animals, experimental design, and plasma collection 

The animals and the experimental design have been described in detail in our previous 

publication (Lin et al. 2013a). In brief, adult male C57BL/6 mice were assigned randomly into 5 

treatment groups (n = 4-5/group) and treated daily with corn oil vehicle or a dose range of 

atrazine (5, 25, 125, or 250 mg/kg) by oral gavage for 10 days. The rationale for this dose 

regimen selection and its relevance to occupational exposure have been justified in detail in our 

previous studies with similar or the same exposure paradigms (Coban and Filipov 2007; Filipov 

et al. 2005; Lin et al. 2013a); these doses are also in line with other short-term exposure studies 

of ATR’s effects on the reproductive, endocrine, and nervous systems (Cooper et al. 2007; 

Cooper et al. 1996; Fraites et al. 2011; Laws et al. 2009; Rodriguez et al. 2013), allowing 

parallel comparisons of study findings. Four hours after the last dosing on day 10, mice were 

deeply anesthetized with CO2, followed by blood collection and euthanasia by decapitation. 

Blood samples were collected via cardiac puncture in evacuated glass tubes containing 3.2% 

buffered sodium citrate solution (BD Vacutainer Systems, Franklin Lakes, NJ), placed on ice on 

a rocker and centrifuged at 3,100 x g for 10 min at 4 0C. Plasma was harvested and stored at -
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80 0C until analysis. All animal procedures were performed in accordance with the latest NIH 

guidelines and were approved in advance by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Georgia. 

 

2.3. Sample preparation and extraction 

The samples were prepared as described by Soltow et al. (2013). Briefly, each plasma aliquot 

(50 μL) was spiked with a 2.5-μL internal standard mix consisting of 14 stable isotopic 

chemicals that represent a broad range of chemical properties of small molecules prior to 

extraction. Metabolites were extracted by adding 100 μL acetonitrile to each 50-μL sample and 

vortexed to mix. The precipitated protein was pelleted via centrifugation and the supernatant 

was transferred to appropriate vials for LC-MS analysis. 

 

2.4. LC-MS analysis of plasma extracts 

The LC-MS analysis was done as in Soltow et al. (2013). Briefly, extracts were loaded onto a 

Shimadzu (Sil-20AC Prominence) autosampler and maintained at 4 0C until injection. HPLC 

separation was performed alternately between anion exchange (AE) and reverse phase (C18) 

columns via a Switchos control valve (LC Packings). The eluate from the HPLC separation was 

connected to a Thermo LTQ-FTICR mass spectrometer (Thermo Fisher, San Jose, CA). MS 

analyses were carried out using the mode scanning from an m/z range of 85–850 in the FT 

detector at a resolution of 50,000 with the wide range scan mode and 3 X 106 maximum number 

of ions per scan. The maximum injection time was 500 ms.  Each sample was run in duplicate 

on each column (10 μL injection volume/replicate). Metabolites of interest were subjected to 

further tandem mass spectrometry analyses to determine molecular structures and for definitive 

identifications using known standards. 

 

2.5. Data collection and processing  
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Data collection and extraction procedure was according to Soltow et al. (2013). Feature tables 

containing m/z features, retention time, and integrated ion intensities were generated using the 

apLCMS software package (Yu et al. 2009). The data were further filtered to only include ions 

that exhibited a coefficient of variation between replicates that was less than 50% (Soltow et al. 

2013). These data were then subjected to further statistical and bioinformatic analyses. 

 

2.6. Statistics and bioinformatics 

The m/z feature data from the AE and C18 columns were compared to determine what m/z 

features were common for both chromatographic techniques using SAS 9.3 for Windows (SAS 

Institute Inc., Cary, NC). SAS was also used to analyze what m/z features were detected only in 

control animals or only in ATR-treated animals for each column. Principal component analysis 

(PCA) was performed using Pirouette version 4.0 (Infometrix, Inc., Bothell, WA). False 

Discovery Rate analysis (FDR), with a significance level set at q = 0.05, was conducted utilizing 

the Limma package in R. Pearson correlation analysis to determine the metabolites associating 

with atrazine and/or atrazine’s main plasma metabolites was conducted utilizing SAS. Ion 

intensity data were log-transformed prior to analysis and analyzed with one-way analysis of 

variance (ANOVA) using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA), followed 

by Turkey’s multiple comparison test post hoc at a significance level of p < 0.05. Significant 

metabolites and other metabolites of interest were searched against the Metlin metabolomics 

database (http://metlin.scripps.edu/index.php) to determine putative identifications (Smith et al. 

2005); these metabolites were also analyzed with the MetaboSearch (http://omics.georgetown. 

edu/metabosearch.html) (Zhou et al. 2012) and the KEGG pathway analysis (http://www.geno 

me.jp/kegg/) (Kanehisa and Goto 2000) tools to identify metabolic pathways that were affected 

by ATR or highly correlated with ATR and/or its metabolites. 

 

3. Results 

http://omics.georgetown/
http://www.geno/
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3.1. Metabolite distribution 

To determine any plasma metabolome phenotypic differences caused by ATR exposure, we 

collected plasma samples from mice orally exposed to vehicle or different concentrations of 

ATR for 10 days. After analyzing with DC-FTMS, AE column resolved 2,491 m/z and C18 

column resolved 3,112 m/z (Fig. 1A). Data from both columns were compared to determine 

what m/z features were common among them. This analysis showed that 934 m/z were 

common for both columns, while 1557 and 2178 were unique for AE and C18, respectively (Fig. 

1A). Together, these results suggest that the present high performance metabolic profiling 

technique resolved 4689 unique m/z features from plasma samples of mice treated with vehicle 

or ATR, with the detection performance of the C18 column being more robust. 

 

Metabolomic data from each column were further analyzed to determine what m/z features were 

detected only in control animals, only in ATR-treated animals, or in both. The AE column data 

analysis showed that 0.3%, 3.2%, and 96.5% were detected, respectively, only in control 

animals, only in ATR-treated animals, or in both (Fig. 1B). With the C18 column, 99.6% of all 

metabolites were detected in both control and ATR-exposed groups, while 0.4% were detected 

only in the ATR-treated groups (Fig. 1C).  

 

3.2. Metabolic profiling 

To discern the possible presence of inherent clusters in the plasma metabolic profiles of mice 

receiving different doses of ATR, Principle Component Analysis (PCA), an unsupervised pattern 

recognition method, was performed (Nicholson et al. 2002). The PCA scores from the C18 

column separated ATR-treated from control animals’ data points quite well and in a dose-

dependent manner, except for one outlier from the 25 mg/kg group (Fig. 2). The dose-

dependent separation within the ATR-treated animals was quite remarkable and the changes in 

metabolic profiles from control, to low, to high dose groups occurred in a clockwise direction; 
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while clearly separated from the control, there was some overlap between the two lower (25 and 

5 mg/kg) dose groups (Fig. 2). The PCA scores from the AE column were similar to those from 

the C18 column and are not shown. Taken together, these results show that ATR exposure 

results in a dose-dependent change of the mouse plasma metabolome. 

 

3.3. Metabolites and metabolic pathways altered by atrazine exposure  

False discovery rate analysis (FDR) was used to determine what m/z features contribute 

significantly towards between-groups discrimination. FDR results indicated that ATR exposure 

increased the number of metabolites with significantly different ion intensities dose-dependently 

(Fig. 3). Specifically, data from the C18 column revealed 3, 5, 27 and 30 m/z features that 

distinguished the 5, 25, 125, and 250 mg/kg dose groups, respectively, from the vehicle group; 

the corresponding features for the AE column data are 4, 15, 37, and 91 m/z (Fig. 3). 

 

To provide putative identities of the differential m/z features, m/z data were analyzed for 

matches within 10 ppm with the publically available Metlin database 

(http://metlin.scripps.edu/index.php). The results are shown in supplementary Table S1 (AE 

column) and Table S2 (C18 column). Briefly, putative identifications of these m/z included fatty 

acids, dipeptides, tripeptides, ATR and its metabolites, as well as a number of other known and 

unknown metabolites.  

 

Of the 91 AE m/z found to distinguish control and the 250 mg/kg groups, 52 m/z were detected 

in the 250 mg/kg group, but not in the control group; 13 m/z were detected in the control group, 

but not in the 250 mg/kg group; 12 m/z had greater ion intensity in 250 mg/kg group, while 14 

m/z had greater intensity in control group (Table S1). FDR analysis also revealed 30 C18 m/z 

that were different between control and 250 mg/kg groups. Of these 30 m/z, 6 m/z were 

detected in the 250 mg/kg group, but not in the control group; 2 m/z were detected in the control 
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group, but not in the 250 mg/kg group; 8 m/z had greater ion intensity in 250 mg/kg group, while 

14 m/z had greater intensity in control group (Table S2). 

 

As expected, ATR and its main metabolites were identified in the ATR-treated mice. C18 

column data demonstrate that the ion intensities of ATR and its metabolites (DE, DIP, and 

DACT) were substantially higher at the higher (250 and 125 mg/kg) than at the lower (25 and 5 

mg/kg) dose groups; the ion intensity of the major end metabolite DACT was increased by ATR 

(≥5 mg/kg) dose-dependently (Fig. 4). Of note, compared to the ion intensities of ATR, DE and 

DIP in the 125 mg/kg group, the corresponding ion intensities were somewhat lower at the 250 

mg/kg group, likely caused by the previously suggested autoinduction metabolism of ATR 

(Fraites et al. 2011; Lin et al. 2013b). 

 

To test whether the m/z features that were altered by ATR exposure mapped to metabolic 

pathways, we used MetaboSearch tool (Zhou et al. 2012) and KEGG pathway analysis 

(Kanehisa and Goto 2000). MetaboSearch analyses revealed 0, 2, 4, and 4 ATR-altered C18 

m/z matched known KEGG metabolites (compound IDs) in the 5, 25, 125, and 250 mg/kg dose 

groups, respectively. After incorporating these KEGG compound IDs into KEGG, analyses 

showed that ATR (≥25 mg/kg) exposure affected map00791 (atrazine degradation) and 

map01100 (metabolic pathways) pathways; at higher doses (≥125 mg/kg), ATR also impacted 

map01120 (microbial metabolism in diverse environments) and map00980 (metabolism of 

xenobiotics by cytochrome P450) pathways (Table 1). 

  

3.4. Metabolites and metabolic pathways strongly correlated with atrazine exposure 

Pearson correlation analysis was performed to determine which metabolites were strongly (r > 

0.3 or r < -0.3) correlated with ATR, DE, DIP, and/or DACT. C18 data analysis demonstrated 

that 569, 721, 744, and 544 m/z were strongly correlated with ATR, DE, DIP, or DACT, 
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respectively; 932 m/z correlated with at least one of them (Fig. 5). Among these 932 m/z, 394 

m/z were correlated with both ATR and DACT, while 365 m/z were correlated with ATR and all 

its three major chlorinated metabolites. In addition, data from AE column showed that 2,172 of 

the 2,491 m/z were correlated with at least one of ATR, DE, DIP or DACT. Of these 2,172 m/z, 

724 and 250 m/z were correlated with ATR+DACT and ATR+DE+DIP+DACT, respectively 

(other data not shown). 

 

To determine which general and specific metabolic pathways are strongly correlated with ATR 

exposure, the 394 C18 m/z that correlated with ATR and DACT were analyzed with the 

aforementioned methods. MetaboSearch analyses showed that 180 m/z matched known KEGG 

metabolites (compound IDs). Of these 180 KEGG metabolites, some are not known to be 

involved in major metabolic pathways; whereas some can be considered as “benchmark” 

metabolites and can be present in multiple metabolic pathways. Overall, metabolic pathways 

with at least 2 mapped metabolites strongly correlated with ATR exposure include map01100 

(metabolic pathways), map01110 (biosynthesis of secondary metabolites), map01120 (microbial 

metabolism in diverse environments), map02010 (ABC transporters), map04974 (protein 

digestion and absorption), map00592 (α-linolenic acid metabolism), map00591 (linoleic acid 

metabolism), map00980 (metabolism of xenobiotics by cytochrome P450), map00140 (steroid 

hormone biosynthesis), and map00380 (tryptophan metabolism) (Table 2). To confirm that the 

metabolic pathways correlated with ATR corresponded to those correlated DACT, the 569 C18 

m/z correlated with ATR and the 544 C18 m/z correlated with DACT were also analyzed with 

the above-mentioned approach. The results showed that the metabolic pathways that were 

strongly correlated with ATR were, in most cases and to a similar extent, strongly correlated 

with DACT or with ATR+DACT (Table 2). These results suggest that the observed alterations 

related to the major metabolite DACT are consistent with the detected effects associated with 

ATR.    
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3.5. Potential plasma metabolome biomarkers of atrazine toxicity 

To search for potential plasma biomarkers of ATR toxicity, including for possible peripheral 

indicators of ATR’s effects on the nervous system, strongly correlated m/z features were 

analyzed for matches within 10 ppm with Metlin database. Results showed that tyrosine, 

leucine/isoleucine, lysoPC(20:3), lysoPC(22:4), carnitine, hexanoylcarnitine, phenylalanine, and 

stearoylcarnitine were negatively correlated, whereas kynurenic acid, linolenic acid, proglinazine, 

indolepyruvate, and dihydroxyindole were positively correlated with ATR+DE+DIP+DACT (Table 

3). Additionally, tryptophan was negatively correlated with ATR and DACT. From these strongly 

correlated features, we focused on metabolites from the tyrosine, tryptophan, linoleic acid, and 

α-linolenic acid metabolism pathways. Tyrosine and tryptophan were selected because in the 

striatum of mice exposed to the same dose-regimen of ATR, dopamine (tyrosine is a precursor 

of dopamine) and serotonin (tryptophan is a precursor of serotonin) metabolism were impacted 

by ATR, with the effects being most prominent at the 125 mg/kg exposure level (Lin et al. 

2013a). Linoleic acid and α-linolenic acid were selected based on a recent metabolomics study 

with atrazine in hyalella azteca (Ralston-Hooper et al. 2011) which reported that chronic ATR 

exposure disrupted linoleic acid (linoleate) metabolism pathway by upregulating Ƴ-linolenic acid 

(Ƴ-linolenate). 

 

3.6. Effects of atrazine exposure on selected metabolic pathways 

To identify specific metabolites, potential reactions, and/or enzymes in selected metabolic 

pathways that were affected by ATR exposure, we first labeled metabolites that were highly 

correlated with ATR exposure in these pathways (Fig. 6; “+” and “-” symbols and blue and red 

color for positive and negative correlation, respectively). Next, we compared the ion intensities 

of these metabolites between the control and 125 mg/kg ATR groups with Student’s t-test 

(Table 4). The results revealed a trend towards a significant decrease (p < 0.10, ~2-fold) in the 
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ion intensity of beta-tyrosine in ATR-exposed mice, indicating that conversion of L-tyrosine to 

beta-tyrosine via tyrosine 2,3-aminomutase might by affected by ATR (Table 4 and Fig. 6A). 

ATR-treated animals also exhibited a trend towards a significant increase (p < 0.10) in the ion 

intensity of indolepyruvate (34-fold) and the indolepyruvate/tryptophan ratio (~100-fold), 

indicating a trend towards increased tryptophan metabolism (Table 4 and Fig. 6B). In addition, 

ATR exposure increased the ion intensities of α-linolenic acid and its metabolites (13(S)-

HpOTrE, 12,13EOTrE, and 12-OPDA), as well as Ƴ-linolenic acid and crepenynate (metabolites 

of linoleic acid), suggesting increased metabolism of linoleic and α-linolenic acids (Table 4 and 

Fig. 6C, 6D). 

 

4. Discussion 

The major findings of this study are: (1) short-term exposure to as low as 5 mg/kg ATR induces 

a dose-dependent change in the mouse plasma metabolome and (2) ATR disrupts multiple 

critical metabolic pathways, including tyrosine, tryptophan, linoleic acid and α-linolenic acid 

metabolism. Within the context of ATR toxicity studies, these findings are novel.  

 

One of the novel findings from this study is that short-term ATR exposure results in a dose-

dependent change in the plasma metabolomic profile of mice. The PCA score plot shows that 

PCA scores for vehicle-treated animals are clearly separated from those of ATR-treated animals 

at doses as low as 5 mg/kg. Earlier, we reported that these 5 mg/kg ATR-treated animals did 

not differ from the vehicle-treated animals in terms of motor, emotional behavior, and brain 

monoamine homeostasis (Lin et al. 2013a). Similarly, other studies suggest that exposure to 5 

mg/kg ATR causes minimal or no significant effects on the immune (Filipov et al. 2005), 

endocrine (Laws et al. 2009), and nervous systems (Coban and Filipov 2007). The current US 

EPA no observed adverse effect level (NOAEL) for acute exposure risk assessment of ATR is 

10 mg/kg (EPA 2003), whereas the acute no observed effect level (NOEL) for reproductive and 
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developmental endpoints (rabbits) is 5 mg/kg (Gammon et al. 2005). This finding suggests that 

plasma metabolomics may be a more sensitive endpoint than other indices evaluated in the 

literature. Therefore, the plasma metabolic profile may be a reliable and more sensitive global 

biomarker of ATR effect.  

 

A number of studies with multiple exposure scenarios, i.e., adult short-term or chronic 

exposures and perinatal exposure to ATR, have shown that ATR disrupts striatal dopamine 

homeostasis in rodents (Bardullas et al. 2011; Lin et al. 2013a; Lin et al. 2014; Rodriguez et al. 

2013), an indication that ATR exposure perturbs tyrosine metabolism. However, information 

about mechanisms of ATR-induced alterations in tyrosine and/or dopamine metabolism is very 

limited. Several studies have shown that ATR exposure does not alter the expression of the 

rate-limiting enzyme in the synthesis of dopamine, tyrosine hydroxylase, in catecholaminergic 

PC12 cells (Das et al. 2003), rat striatal slices (Filipov et al. 2007), mice (Lin et al. 2013a), and 

rats (Rodriguez et al. 2013). The present study demonstrates that ATR exposure numerically 

decreases the ion intensity of the m/z (182.0810, M+H) that is matched to L-tyrosine and also 

beta-tyrosine (compound ID: C04368; confirmed by MetaboSearch tool and KEGG database). 

Thus, the increased demand for dopamine that we observed in the striatum of ATR-treated 

animals (≥125 mg/kg ATR; (Lin et al. 2013a) is also reflected by a shift of tyrosine metabolism in 

the plasma. The potential decrease of beta-tyrosine could be due to ATR-caused inhibition of 

tyrosine 2,3-aminomutase and it may lead to increased availability of L-tyrosine that is further 

metabolized to produce dopamine (Fig. 6A); however, this needs to be verified with more 

sensitive, targeted analysis that reliably quantifies the two forms of tyrosine and by evaluation of 

ATR’s effects on the expression and activity of tyrosine 2,3-aminomutase. 

 

Tyrosine serves many important physiological functions, including being a building block for 

protein synthesis, a source of energy, and a precursor for the synthesis of melanin and several 
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catecholaminergic neurotransmitters, including dopamine (Ferguson et al. 2013). In addition, 

several recent studies suggest that alterations in tyrosine metabolism are associated with 

increased risk of developing metabolic diseases, including diabetes and obesity (Cheng et al. 

2012; Wang et al. 2011; Wurtz et al. 2012). In this regard, a study using data from the 

Agricultural Health Study (AHS) showed that ever-use of ATR is associated with increased risk 

for gestational diabetes mellitus among women who reported agricultural pesticide exposure 

during the first trimester of pregnancy (Saldana et al. 2007). A laboratory study demonstrated 

that chronic 5-month exposure to low concentrations of ATR (30 or 300 µg/kg/day) via drinking 

water resulted in decreased basal metabolic rate and increased body weight, intra-abdominal fat, 

and insulin resistance without changing food intake or physical activity in rats. Obesity and 

insulin resistance were exacerbated in high-fat diet (40% fat for 2 months after 3 months of 

regular diet during the 5-month exposure period) groups compared to the regular diet groups 

(Lim et al. 2009). Therefore, our current data suggest that ATR exposure disrupts peripheral 

tyrosine metabolism, which, besides being an indicator of perturbed tyrosine metabolism in the 

brain, may be partly responsible for the observed association between ATR exposure and 

metabolic diseases (Lim et al. 2009; Saldana et al. 2007). Further studies examining the role of 

ATR exposure in the development of metabolic diseases should consider including detailed 

plasma metabolomics analysis. 

 

Neurochemical data from identical exposure paradigm study showed that ATR (125 or 250 

mg/kg) increased striatal levels of serotonin’s metabolite, 5-hydroxyindoleacetic acid (5-HIAA), 

but it did not affect striatal serotonin levels measured at 4 h after exposure, indicating that ATR 

increases serotonin metabolism, but the underlying mechanism is unknown (Lin et al. 2013a). 

The present metabolomics data demonstrate that ATR (125 mg/kg) exposure numerically 

decreased tryptophan and increased tryptophan’s metabolite indolepyruvate and 

indolepyruvate/tryptophan ratio. Although these differences lack statistical significance, partially 
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due to the ion intensity variability, these data indicate that short-term ATR exposure increases 

peripheral metabolism of tryptophan, which, when taking place in the brain, explains the 

previously observed increase of 5-HIAA at 4 h after 10-day ATR exposure (Lin et al. 2013a). It 

should be noted that decreased plasma tryptophan will eventually result in decreased precursor 

availability for serotonin and 5-HIAA synthesis (Biskup et al. 2012), which may ultimately lead to 

decreased brain serotonin and 5-HIAA levels with continued exposure as recently reported 

(Rodriguez et al. 2013). This apparent time-dependent effect of ATR on serotonin metabolism 

should be reflected in the plasma metabolome, but this remains to be investigated.   

Compared to the non-essential amino acid tyrosine, tryptophan is one of the eight essential 

amino acids and it is critical for a number of physiological functions, including the synthesis of 

proteins, kynurenine, melatonin, tryptamine, and serotonin (Richard et al. 2009). In the brain, 90% 

of the available tryptophan is metabolized via the kynurenine pathway (Szabo et al. 2011). 

Some of tryptophan’s intermediate metabolites, i.e., quinolinic acid and 3-hydroxy kynurenine, 

are neurotoxic, while others, such as kynurenic acid, are potentially neuroprotective (Szabo et al. 

2011). Disrupted tryptophan metabolism has been demonstrated in several neurological 

disorders, including in PD (McCusker et al. 2014; Szabo et al. 2011). Our metabolomics data 

suggest that further studies investigating effects of ATR on tryptophan metabolism in the brain, 

especially focused on several critical intermediates, including quinolinic acid, 3-hydroxy 

kynurenine, and kynurenic acid are needed. 

 

Consistent with an earlier study that showed chronic exposure to ATR disrupted linoleic acid 

metabolism in Hyalella Azteca (Ralston-Hooper et al. 2011), another important and novel finding 

from the present study is that exposure to a higher dose of ATR (125 mg/kg) disrupts both 

linoleic acid and α-linolenic acid metabolism pathways in mice. Linoleic and α-linolenic acids are 

ω-6 and ω-3 polyunsaturated fatty acids (PUFAs), respectively, which are essential nutrients for 

mammals. They are parent compounds of eicosanoids and many other long-chain ω-6 and ω-3 
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fatty acids, including eicosapentaenoic acid and docosahexaenoic acid. PUFAs have been 

shown to possess many physiological functions, including modulation of hormonal, 

immunological, and anti-inflammatory functions (Schuchardt et al. 2010). In addition, they play a 

central role in the normal brain development and functioning. For example, PUFAs have the 

ability to modulate the expression, properties, and action of dopamine and serotonin, especially 

during the perinatal period when maximal brain growth and development takes place (Das 

2013). Chronic imbalance of PUFAs induces abnormalities in dopamine and serotonin 

neurotransmission in adult rats (Delion et al. 1996) and exposure of rats to PUFA-deficient diet 

from postnatal day 0 to 70 reduces the number of dopamine neurons in the substantia nigra 

pars compacta and ventral tegmental area (Ahmad et al. 2008). Clinical plasma metabolomic 

analyses show that linoleic acid and α-linolenic acid metabolic pathways are disrupted in 

patients with amnestic mild cognitive impairment and with Alzheimer’s disease (Wang et al. 

2014). Epidemiological studies also demonstrate that imbalance in PUFAs is associated with 

increased risk of several neurodevelopmental disorders, including attention-deficit/hyperactivity 

disorder and autism (Caylak 2012; Lyall et al. 2013). In line with these studies, we reported that 

short-term ATR exposure (≥125 mg/kg) decreased the number of dopamine neurons in the 

substantia nigra pars compacta and ventral tegmental area in juvenile mice (Coban and Filipov 

2007). Additionally, our recent study demonstrated that perinatal exposure to a low dose of ATR 

(1.4 mg/kg) resulted in motor and cognitive behavioral abnormalities that were associated with 

disruption of brain dopamine and serotonin homeostasis in the mouse offspring (Lin et al. 2014). 

Therefore, the present results suggest that ATR-induced neurotoxicity may be, in part, attributed 

to disbalance of essential PUFAs, especially linoleic acid and α-linolenic acid, which are novel 

potential targets of ATR. Combined with the fact that the ion intensities of α-linolenic acid and its 

metabolites (13(S)-HpOTrE, 12,13EOTrE, and 12-OPDA), as well as linoleic acid’s metabolites 

(Ƴ-linolenate and crepenynate) were all consistently and significantly increased by ATR (125 

mg/kg) to a greater extent than ion intensity changes caused by ATR exposure for tyrosine or 
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tryptophan metabolites, plasma α-linolenic acid and its metabolites could be more reliable and 

robust biomarkers of ATR’s adverse effects.  

 

It is worth mentioning that of the 91 AE m/z found to separate control from the 250 mg/kg 

groups, 52 m/z are detected only in the 250 mg/kg group and 13 m/z are present only in the 

control group. Similar results are found from the C18 column data. These results indicate that 

ATR exposure inhibits the production and/or increases the elimination of certain plasma 

metabolites, and it also induces the generation of metabolites that may otherwise not exist in the 

normal animals. Even though the high resolution and mass accuracy of the instrument we used 

(Soltow et al. 2013) gives substantial confidence in the results, the metabolite identification is 

putative. Putative identities of some of significantly different m/z are available in the Metlin 

database and are provided in Tables S1 and S2. The presence of a number of unidentified m/z 

suggests existence of unknown targets of ATR which should be studied further.  

 

In summary, the present study demonstrates the feasibility of using plasma metabolomics to 

identify biomarkers and investigate mechanisms of ATR toxicity after short-term exposures. This 

approach may be also very beneficial in cases of chronic, low-dose exposures, which are more 

relevant to humans. Of note, for human samples, a non-invasive approach that may be more 

appropriate is urine-based metabolomics. Urine metabolomics’ use is on the rise and it has 

been used successfully to determine biomarkers and study mechanisms of toxicity caused by 

chronic low-dose exposures to pesticide mixtures (Du et al. 2013) or individual pesticides (Feng 

et al. 2012; Hao et al. 2012; Sun et al. 2014; Yang et al. 2011). In addition, urine metabolomics 

has been shown to be useful in identifying discriminating urine metabolites between reference 

controls and humans exposed to mixtures of pesticides including ATR (Bonvallot et al. 2013; 

Chevrier et al. 2011); a urine metabolic signature that distinguishes normal controls from PD 

patients has been suggested as a useful biomarker for PD (Michell et al. 2008). Therefore, 
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future studies using detailed urine metabolomics analyses in addition to plasma metabolomics 

for biomarker identification exploration of mechanisms of ATR toxicity following chronic low-

dose exposures are warranted in both laboratory animals and humans. Metabolomics analyses 

of urine and/or plasma samples from humans with known recent occupational exposure to ATR 

are also needed to further evaluate the relevance of this study to humans.   

 

5. Conclusions 

The present study shows that short-term exposure to ATR causes dose-dependent changes in 

the plasma metabolome that include aromatic amino acid, PUFA and other metabolic pathways. 

Application of a high-resolution metabolomics analysis to a mouse model of ATR toxicity with 

documented behavioral and neurochemical deficits provides plasma correlate, dysregulated 

peripheral tyrosine and tryptophan metabolism for the central alterations of brain dopamine and 

serotonin homeostasis; it also identifies additional novel disruption of essential fatty acid 

metabolism and demonstrates widespread metabolic effects beginning at concentrations below 

those currently recognized as toxic. Overall, global alterations in the plasma metabolome and 

specific effects on -linolenate metabolism are potential novel and sensitive biomarkers of ATR 

toxicity.  
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Figure legends 

 

Fig. 1. Distribution of plasma metabolites of vehicle- vs. atrazine (ATR)-exposed male C57BL/6 

mice resolved by anion exchange (AE) and reverse phase (C18) chromatography. Data from 

both columns were compared to determine common for both chromatographic techniques 

metabolites (A). Data from each column were further analyzed to determine metabolites that 

were detected only in control animals, only in ATR-treated animals, or in both groups. B and C 

represent AE and C18 columns, respectively. 

 

Fig. 2. Principal component analysis (PCA) score plot results comparing plasma metabolic 

profiles of vehicle- vs. atrazine (ATR)-treated male C57BL/6 mice from the C18 column.  

 

Fig. 3. Number of metabolites altered by atrazine (ATR) exposure. Data were analyzed with 

false discovery rate (FDR) analysis with significance level set at q = 0.05. A and B represent 

data from anion exchange (AE) and reverse phase (C18) columns, respectively. 

 

Fig. 4. Ion intensities of atrazine (ATR) (A) and its metabolites DE (B), DIP (C), and DACT (D) in 

plasma samples from vehicle- and ATR-treated male C57BL/6 mice determined with the C18 

column. * Indicates significant difference from the control group (p < 0.05). ^ Indicates significant 

difference compared to the 5 mg/kg group (p < 0.05). Ion intensity data were log-transformed 

and then analyzed with one-way ANOVA, followed by Turkey’s multiple comparison post hoc 

test.  

  

Fig. 5. Number of metabolites (C18 column) that were strongly correlated (defined as Pearson’s 

r > 0.3 or r < -0.3) with atrazine (ATR), and/or its metabolites DE, DIP, and DACT.  
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Fig. 6. Short-term atrazine (ATR, 125 mg/kg) exposure disrupts tyrosine (A), tryptophan (B), 

linoleic acid (C), and α-linolenic acid (D) metabolism pathways in male C57BL/6 mice. 

Metabolites in green color represent metabolites that were increased by ATR and/or highly 

positively correlated (Pearson’s r > 0.3) with ATR exposure. Metabolites in red color represent 

metabolites that were decreased by ATR and/or highly negatively correlated (Pearson’s r < -0.3) 

with ATR exposure. “+” and “-” symbols represent positive and negative correlations, 

respectively. Green upward and red downward arrow(s) indicate an increase or a decrease 

caused by ATR. Please refer to the Results Section 3.6 and Table 4 for more detailed 

description. Abbreviations for enzymes in textboxes are as follows: AAAH: aromatic amino acid 

hydroxylase; AAO: L-amino-acid oxidase; AFMID: arylformamidase; ALOX15: arachidonate 15-

lipoxygenase; AO: acetylindoxyl oxidase; aoc: allene oxide cyclase; AOS: hydroperoxide 

dehydratase; CCBL: kynurenine-oxoglutarate transaminase/cysteine-S-conjugate beta-lyase; 

DDC: aromatic-L-amino-acid decarboxylase; DFAD: delta12-fatty acid dehydrogenase; INDO: 

indoleamine 2,3-dioxygenase; L9L: linoleate 9S-lipoxygenase; LCD: linoleoyl-CoA desaturase; 

LOX2S: lipoxygenase; MAO: monoamine oxidase; OAR: 12-oxophytodienoic acid reductase; 

PLA2G: secretory phospholipase A2; PLA2G16: HRAS-like suppressor 3; PO: polyphenol 

oxidase; TA: tyrosine 2,3-aminomutase; TAA1: L-tryptophan-pyruvate aminotransferase; Tam1: 

tryptophan aminotransferase; TDC: tyrosine decarboxylase; TDO2: tryptophan 2,3-dioxygenase; 

TH: tyrosine hydroxylase; tnaA: tryptophanase; TPH1_2: tryptophan 5-monooxygenase; TYR: 

tyrosinase.  
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Table 1. Metabolic pathways affected by 10-day oral atrazine (ATR) exposure in male 

C57BL/6 mice. 

Pathway ID Pathway definition # of mapped metabolites 

5 mg/kg 
  

- - - 

   
25 mg/kg 

  
map00791 Atrazine degradation 2 

map01120 Microbial metabolism in diverse environments 2 

map01100 Metabolic pathways 1 

   
125 mg/kg 

  
map00791 Atrazine degradation 3 

map01120 Microbial metabolism in diverse environments 3 

map00980 Metabolism of xenobiotics by cytochrome P450 1 

map01100 Metabolic pathways 1 

   
250 mg/kg 

  
map00791 Atrazine degradation 3 

map01120 Microbial metabolism in diverse environments 3 

map00980 Metabolism of xenobiotics by cytochrome P450 1 

map01100 Metabolic pathways 1 
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Table 2. Metabolic pathways with at least 2 mapped metabolites that are strongly correlated with 
atrazine (ATR) and/or its major metabolite DACT. 

Pathway ID Pathway definition # of mapped metabolites 

ATR DACT ATR+DACT 

map01100 Metabolic pathways 30 29 21 

map01110 Biosynthesis of secondary metabolites 14 15 11 
map01120   Microbial metabolism in diverse environments 10 8 8 
map01060 Biosynthesis of plant secondary metabolites 9 9 8 
map02010   ABC transporters 7 7 7 
map00280 Valine, leucine and isoleucine degradation 6 6 6 

map04978 Mineral absorption 5 6 5 

map04974 Protein digestion and absorption 5 6 5 

map01230 Biosynthesis of amino acids 5 6 5 

map01210 2-Oxocarboxylic acid metabolism 5 6 5 

map00970 Aminoacyl-tRNA biosynthesis 5 6 5 

map00966 Glucosinolate biosynthesis 5 6 5 

map00592 α-Linolenic acid metabolism 6 5 5 

map00791   Atrazine degradation 4 4 4 

map00591 Linoleic acid metabolism 10 4 4 

map00290 Valine, leucine and isoleucine biosynthesis 4 4 4 

map00121 Secondary bile acid biosynthesis 4 8 4 

map01070 Biosynthesis of plant hormones 4 4 3 

map01065 Biosynthesis of alkaloids derived from histidine and 
purine 

3 3 3 

map01064 Biosynthesis of alkaloids derived from ornithine, 
lysine and nicotinic acid 

3 3 3 

map00980 Metabolism of xenobiotics by cytochrome P450 3 3 3 
map00960 Tropane, piperidine and pyridine alkaloid 

biosynthesis 
3 3 3 

map00460 Cyanoamino acid metabolism 3 3 3 

map00140 Steroid hormone biosynthesis 3 7 3 

map07033 Anticonvulsants 2 2 2 

map04976 Bile secretion 2 3 2 

map01040 Biosynthesis of unsaturated fatty acids 2 2 2 

map00930 Caprolactam degradation 2 2 2 

map00906 Carotenoid biosynthesis 2 2 2 

map00562 Inositol phosphate metabolism 2 2 2 
map00522 Biosynthesis of 12-, 14- and 16-membered 

macrolides 
6 2 2 

map00380 Tryptophan metabolism 2 2 2 
map00981   Insect hormone biosynthesis 1 2 1 
map03320   PPAR signaling pathway 2 0 0 
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Table 3. Metabolites of interest that are strongly correlated with atrazine (ATR) exposure. 

m/z 
Retention 

time (s) 
Metabolite name Formula Adduct ppm 

Correlation 

coefficient 

Correlated 

atrazine/metabolites 

182.081 104.878 Tyrosine C9H11NO3 M+H 0 -0.60 ATR+DE+DIP+DACT 

132.102 192.841 Leucine/Isoleucine C6H13NO2 M+H 3 -0.56 ATR+DE+DIP+DACT 

546.355 518.894 LysoPC(20:3) C28H52NO7P M+H 1 -0.52 ATR+DE+DIP+DACT 

572.367 529.039 LysoPC(22:4) C30H54NO7P M+H 7 -0.51 ATR+DE+DIP+DACT 

162.112 102.706 Carnitine C7H15NO3 M+H 1 -0.50 ATR+DE+DIP+DACT 

260.187 521.723 Hexanoylcarnitine C13H25NO4 M+H 4 -0.44 ATR+DE+DIP+DACT 

166.086 100.046 Phenylalanine C9H11NO2 M+H 1 -0.36 ATR+DE+DIP+DACT 

428.376 499.214 Stearoylcarnitine C25H49NO4 M+H 5 -0.36 ATR+DE+DIP+DACT 

190.050 525.208 Kynurenic acid C10H7NO3 M+H 1 0.42 ATR+DE+DIP+DACT 

279.233 507.641 Linolenic Acid C18H30O2 M+H 2 0.53 ATR+DE+DIP+DACT 

246.075 173.374 Proglinazine C8H12ClN5O2 M+H 1 0.60 ATR+DE+DIP+DACT 

204.064 149.866 Indolepyruvate C11H9NO3 M+H 5 0.67 ATR+DE+DIP+DACT 

172.038 122.136 Dihydroxyindole C8H7NO2 M+Na 6 0.84 ATR+DE+DIP+DACT 

205.097 105.479 Tryptophan C11H12N2O2 M+H 1 -0.57 ATR+DACT 

450.358 468.727 Stearoylcarnitine C25H49NO4 M+Na 5 0.31 ATR+DACT 
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Table 4. Ion intensities (mean ± SEM) of metabolites of interest in control and atrazine (ATR)-treated (125 mg/kg) groups. 

Pathway/Metabolite m/z ratio Adduct Control 125 mg/kg atrazine p value 

Tyrosine metabolism 
       Beta-tyrosine 182.0810 M+H 189283.992 ± 37488.177 98210.812 ± 27956.879 0.087 

      

Tryptophan metabolism 
       Tryptophan 205.0969 M+H 1019420.962 ± 147828.090 645464.129 ± 213771.769 0.188 

  Indolepyruvate 204.0643 M+H 1947.036 ± 168.859 66304.072 ± 28804.879 0.095 

  Kynurenic acid 190.0501 M+H 31028.104 ± 16880.597 23194.91 ± 2871.946 0.660 

  N-Acetylisatin 190.0501 M+H 31028.104 ± 16880.597 23194.91 ± 2871.946 0.660 

  Indolepyruvate/Tryptophan ratio - M+H 0.00168 ± 0.000133  0.180 ± 0.0907 0.095 

  Kynurenic acid/Tryptophan ratio - M+H 0.0338 ± 0.0223 0.0717 ± 0.0282 0.322 

  N-Acetylisatin/Tryptophan ratio - M+H 0.0338 ± 0.0223 0.0717 ± 0.0282 0.322 

      

Linoleic acid metabolism 
       Ƴ-Linolenate 279.2325 M+H 26377.484 ± 10676.857 99976.905 ± 29811.562 0.049 

  Crepenynate 279.2325 M+H 26377.484 ± 10676.857 99976.905 ± 29811.562 0.049 

  9-OxoODE 295.2274 M+H 174688.392 ± 46316.891 227818.573 ± 42553.150 0.423 

  13-OxoODE 295.2274 M+H 174688.392 ± 46316.891 227818.573 ± 42553.150 0.423 

      

α-Linolenic acid metabolism 

       α-Linolenic acid 279.2325 M+H 26377.484 ± 10676.857 99976.905 ± 29811.562 0.049 

  13(S)-HpOTrE 311.2223 M+H 84042.802 ± 22155.600 325147.659 ± 66906.121 0.009 

  12,13EOTrE 293.2113 M+H 63114.041 ± 21272.621 143606.124 ± 19669.706 0.024 

  12-OPDA 293.2113 M+H 63114.041 ± 21272.621 143606.124 ± 19669.706 0.024 

  OPC8 295.2274 M+H 174688.392 ± 46316.891 227818.573 ± 42553.150 0.423 

  13(S)-HpOTrE/α-Linolenic acid - M+H 19.384 ± 11.852 4.658 ± 1.519 0.253 

  12,13-EOTrE/α-Linolenic acid - M+H 6.821 ± 2.759 2.142 ± 0.706 0.139 

  12-OPDA/α-Linolenic acid - M+H 6.821 ± 2.759 2.142 ± 0.706 0.139 

  OPC8/α-Linolenic acid - M+H 73.522 ± 42.879 3.742 ± 1.951 0.143 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

Figure 5 
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Figure 6 
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