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Abstract 

Utilization of data analytics allows for rapid and real-time decision making in the food 

animal production industry. The objective of my research was to implement and utilize different 

data analytic strategies in multiple sectors of the beef cattle industry in order to determine 

management, health, and performance strategies.  

A retrospective analysis using reproductive and genomic records demonstrated that a bull 

will sire a larger number of calves in a multiple sire-pasture compared to other bulls in the same 

pasture. A further study was performed to determine if behavior differences existed among bulls 

in a multiple-sire pasture, and the ability of accelerometers to predict breeding behaviors. 

Machine learning techniques used classifiers on accelerometer data to predict behavior events 

lying, standing, walking, and mounting. The classifiers were able to accurately predict lying and 

standing, but walking and mounting resulted in a lower predictable accuracy due to the 

extremely low prevalence of these behaviors. 

Finally, a new form of meta-analysis to the veterinary literature, a mixed treatment 

comparison, was able to accurately identify differences in metaphylactic antimicrobials on 

outcomes of bovine respiratory disease morbidity, mortality, and retreatment morbidity. The 

meta-analysis was not successful in determining the effects of metaphylactic antimicrobials on 

performance outcomes.   
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Chapter 1 - A review of analytical methods for utilizing data for 

health and performance outcomes in the beef cattle industry 

 

 Introduction 

Data are collected at an exponentially increasing rate from all aspects of the food animal 

industry, including the animal health and production sectors of the beef cattle industry. Group-

level as well as individual-level data are collected and recorded daily throughout the industry. 

Emerging advances in data management and predictive analytics allow data to be transformed to 

aid quick and accurate operational and management decisions. Improved decision making can 

directly affect cattle health and performance thereby increasing overall profitability and 

efficiency of cattle operations.  

Big Data analytics has become widely established in the human health industry, and 

analytical advances from this industry can be directly utilized in the food animal industry. This 

review will describe how data analytic methods are currently utilizing Big Data in the human and 

cattle industries.  

 Defining Big Data 

The term Big Data is quickly being recognized in food animal veterinary medicine and 

this term is already being used extensively in the human health industry. The context-specific 

definition of Big Data is dependent on the industry of application. Currently, Big Data is defined 

based on volume, velocity, variety, and veracity of the dataset (Gandomi & Haider, 2015; Lycett, 

2013).  

Volume refers to the scale, magnitude, or quantity of data collected and analyzed, and 

data volume is currently measured in terabytes, exabytes, zetabytes, or pentabytes (Erevelles et 
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al., 2016; Gandomi & Haider, 2015; Kruse et al., 2016). A single volume threshold does not 

define Big Data across disciplines and applications, based on the variability in types of data that 

are collected. Also, based on expected technology advancements, what is deemed to be Big Data 

today, may not in fact be Big Data in a few years (Gandomi & Haider, 2015).  

Velocity describes the need for real-time analysis of data based on the speed data are 

being collected, and speed of decisions. However in some industries, current speed of analysis 

and dissemination of results may not achieve the velocity desired (Kruse et al., 2016). This is 

very apparent in the food animal industry, where the structure and nature of the industry allows 

for immediate data recording, but not immediate analysis of data because of deficiencies within 

the current data analysis infrastructure.  

Variety within Big Data datasets is based on the different forms and heterogeneity of the 

data within the data set. Data can be structured (e.g. spreadsheets and databases), unstructured 

(e.g. images and video), or semi-structured (Erevelles et al., 2016; Gandomi & Haider, 2015). An 

example of structured Big Data in the food animal industry would be USDA market reports of all 

cattle procured on a single day. Unstructured data such as pathology images are often harder to 

analyze based on lack of clearly identified organizational structure for the data.  

Veracity is a recent term that has been used when defining Big Data, and it refers to the 

overall quality of the data, and the need to be cognizant of where the data originated. If data 

arises from human entry, the chance for error could increase which would decrease the quality of 

that data. Understanding potential sources for noise within a dataset is crucial when attempting to 

quantify patterns, trends, and outcomes.   
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 Causal vs. Predictive Modeling 

 Before evaluating the different analytical methods for Big Data, the purpose of modeling 

outcomes needs to be divided into two categories, causal and predictive modeling. Causal 

modeling is defined as identifying potential causal associations between exposures and outcomes 

of interest (Dohoo et al., 2009). The goal of modeling for causal relationships is to determine 

how an independent variable affects the outcome or dependent variable, and determine the 

magnitude of effect of the relationship. Multicollinearity is a major concern that must be 

addressed when attempting casual modeling, because the goal is to obtain unbiased estimates of 

the coefficients.  

 Predictive modeling is performed to either predict future observations or understand 

relationships between predictors and an outcome of interest (Dohoo et al., 2009). Multiple 

variables are utilized to understand their relationship with the outcome of interest. 

Multicollinearity is tolerated more in predictive modeling, because it is modeling the prediction 

of the outcome of interest, and not as concerned with the individual coefficients estimates 

themselves, as it is in causal modeling.  

 An assumption of linear mixed models is that the variance components are homogeneous 

and constant across environments (Kutner et al., 2005). This assumption is valid when working 

with unadjusted or raw hierarchical data in livestock and human health systems, if the 

hierarchical structure is accounted for in the mixed model. Other predictive and causal modeling 

methods have the ability to model hierarchical or multilevel data sets as well as repeated 

measures data. Proper modeling of the heterogeneous variances can allow for greater accuracy of 

estimating mean differences, as well as identifying possible levels of production that could 

benefit from different management factors.  
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 Analytical Methods 

 Statistical models 

 The statistical approach used in big data analysis needs to be appropriate based on the 

data structure, distribution, and desired outcomes (White et al., 2016). Regression modeling is a 

type of statistical estimation that can be performed for both causal and prediction models. In 

terms of Big Data, multivariable regression modeling has the advantage of utilizing as much of 

the data set as possible in order to predict an outcome, and to understand relationships between 

variables of interest with the outcome (Dohoo et al., 2009). For example, regression techniques 

can allow estimation of the effect of a one unit change in an independent variable x on a 

dependent variable y (Dohoo et al., 2009). Hierarchical data also can be accounted for with 

multivariable modeling, which is important because most biological datasets have some form of 

hierarchical structure (Dohoo, 2008).  

 Statistical software programs such as SAS (SAS Institute Inc., Cary, NC, USA), Minitab 

(Minitab Inc., State College, PA), or STATA (Statacorp LP, College Station, TX), can be used to 

perform statistical analysis on a given dataset. Prior to model building and statistical analysis, a 

given dataset needs to be structured and managed so that desired models can be built to predict 

outcomes with the highest possible accuracy. Programs such as Excel (Microsoft Corp., 

Redmond, WA), International Business Machines Corporation (IBM) Watson Analytics 

(IBMWA), SAS, STATA, and JMP (SAS Institute Inc., Cary, NC, USA) can allow for 

exploration of a dataset to discern possible distributions, trends, and patterns that may be worth 

exploring further in the model building process.  
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 Machine learning 

 Machine learning is another form of statistical analysis that can predict outcomes based 

on algorithms created from large datasets (Hsu, 2006). A decision tree is a type of machine 

learning, and will incorporate a large data set, and splits the dataset based on desired outcomes 

(Gladwin, 1989). The decision to split the data a certain way are based on rules that maximize 

the outcome for the split data. The splitting is repeated multiple times, until the split data have 

the highest accuracy for predicting the desired outcome. For example, imagine a data set from a 

group of children in a classroom, and the outcome of interest is running or walking at recess. The 

independent variables used to predict the outcome of running or walking for each child includes 

knowing if the child is wearing tennis shoes, on a track team, the number of calories consumed at 

lunch, and enjoyment of running. The splitting of the dataset will be determined based on the 

number of yes and no answers within that dataset for the particular independent variables, in 

order to accurately predict the outcome. The decision tree algorithm may split the data first based 

on the child wearing tennis shoes, and determine that 80% of the students who are wearing tennis 

shoes, are going to run at recess. The next split will occur based on that 80%, and 40% of the 

80% of children are on a track team, and so forth until the highest accuracy to predict running at 

recess is accomplished. An example as the one described is a very simple decision tree, but the 

basic principle can be extrapolated to demonstrate the value of a machine learning algorithm to 

enable complex splitting of Big Data datasets to determine real-time outcomes efficiently in a 

production setting.  

 Software programs containing machine learning methods include Knime Analytics, R (R 

Core Team, Vienna, Austria), and Insightful miner (Insightful Corp., Seattle, WA). Each 

program can be tailored based on the level of predictability needed for a given dataset. Predicting 
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an outcome with machine learning is different from regression techniques. Machine learning 

cannot make causal inferences or associations between the independent variables and dependent 

variable, whereas statistical models can model casual relationships. Although statistical 

estimation and modeling is used within machine learning, unlike statistical models, machine 

learning does not require basic assumptions about the data structure. For example, the 

distribution of the dependent and independent variables does not need to be known prior to 

algorithm building.   

 Machine learning has the ability to work with extremely large datasets to learn from 

millions of observations and to learn and predict simultaneously on those observations. A 

random forest classifier is similar to, but is more advanced than the decision tree in the ability to 

predict and learn. A random forest classifier learns in more ways than just simple splitting of 

single variables, as described in the example with the children running at recess (Breiman, 2001). 

Machine learning uses multiple iterations to learn and predict patterns within the dataset. 

Machine learning has a large range of analysis possibilities that go beyond the prediction of 

outcomes based on data collected in research trials (Boulesteix & Schmid, 2014). Machine 

learning has the ability to analyze data collected from social networks, audio, video, finance, 

marketing, and education (Gandomi & Haider, 2015).  

 Bayesian analysis 

 Bayesian methods add the consideration of prior probability in statistical analysis in order 

to model an outcome affected by known and unknown information. Bayesian analysis allows for 

probabilistic modeling of uncertainty around unknown parameters. The probability is deduced 

based on the true underlying nature of the parameter (Freedman, 1996). Bayesian analysis is also 

beneficial when evaluating diagnostics tests, when there is not a present gold standard (Dohoo, 
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2008). As with the earlier description of multivariable modeling methods, Bayesian analysis also 

has the ability to deal with the challenge of spatial and temporal clustering of hierarchical data. 

Bayesian methods are also available to be used for complex meta-analyses, which is currently 

practiced in the human health industry, and just becoming utilized in the veterinary medicine and 

the cattle industry (Dohoo et al., 2007). Bayesian analysis can be performed using the software 

programs previously discussed with statistical models and machine learning techniques.  

 Utilization in the Human Health Industry 

 The term Big Data was first introduced to the human health industry as recently as 2011 

(Gandomi & Haider, 2015). The advancement of Big Data in the human health industry has been 

aided by initiatives by the International Business Machines Corporation (IBM) and other leading 

technology companies. Watson Analytics was released by IBM which has created platforms for 

quick visualization, data quality analysis, and statistical approaches for large data sets (Hoyt, 

Snider, Thompson, & Mantravadi, 2016).  Federal government involvement has helped to 

increase the utilization and benefit of Big Data analytics in the health industry by providing 

provisions such as the Health Information Technology for Economic and Clinical Health 

(HITECH) component of the American Recovery and Reinvestment Act (ARRA) (Kruse et al., 

2016; Services, 2010; Ward et al., 2014). The Act allows for billions of dollars in incentives for 

use of information technology in the health industry. The U.S. government also created a 

program to contribute millions of U.S. dollars to states that participate in the Health Information 

Exchange (HIE) Challenge Grant Program (Kruse et al., 2016; Services, 2011). The government 

incentives along with the platforms to analyze the data has led to sources of health care Big Data 

from the genomic industry, Electronic Health Records (EHR), medical monitoring and wearable 

devices, Laboratory Information Management Systems (LIMS), insurance claims and billing, 
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pharmacy, real-time locating systems, Radio Frequency Identification (RFID), and smartphone 

apps (Kruse et al., 2016; Ward et al., 2014).  

 Currently, Big Data in the human health industry is being used extensively in the field of 

genomics. A government funded initiative, Electronic Medical Records and Genomics 

(eMERGE) Network, uses EHR and DNA repositories of individual human DNA to identify 

underlying genetic factor information to incorporate into routine healthcare (McCarty et al., 

2011). Big Data analytics is also being used to help determine cost effectiveness of treatments 

and medical policies. This form of research is called comparative effectiveness (CE) and is 

currently used in the medical health insurance field (Ward et al., 2014). Hospitals have 

demonstrated the benefits of Big Data analytics by decreasing health care costs, adverse health 

events, and patient readmissions, but have also been challenged by lack of analyst experience 

and high development cost of the analytics (Schaeffer, Booton, Halleck, Studeny, & Coustasse, 

2016).  

 Predictive analysis algorithms have been used to predict and classify Diabetes Mellitus in 

humans and to provide a systematic way to determine availability and affordability of healthcare 

services to a specific population (Kumar et al., 2015). A specialized web portal has been created 

with the use of classification, regression, time series, and association algorithms to determine key 

performance indicators for particular supply chains in business networks (Stefanovic, 2014). 

Predictive algorithms can be continually evaluated and validated through the analysis of large 

datasets provided by outcomes collected over the following month, quarter, or year. Research 

within the specialty of emergency care was investigated for the potential benefit of Big Data 

analytics in the form of Bayesian networks, decision tree learning, and Markov and Monte Carlo 

simulations to improve decision making that enhances health care, improves meeting of patients’ 
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needs, and increases cost-effectiveness (Janke et al., 2016). One issue that become apparent from 

early emergency care analysis was that data from this specialty may be error-filled and highly 

variable due to coming from disconnected data elements (Janke et al., 2016). Predictive analytics 

allow for an added tool of validation when the data sets are large enough to partition data to 

evaluate the models for clinical practice.  

 Technology, such as Radio-Frequency Identification (RFID) enhances the capability for 

real-time data management and analytics (Kruse et al., 2016; Ward et al., 2014). This technology 

is currently being used to track human patients admitted to a hospital, as well as to track 

paramedics and patients when a mass casualty event has taken place (Yu et al., 2010; Yu & 

Ganz, 2011). The use of a sensor-enabled low frequency RFID has been explored to enable 

identification of blood glucose levels in a diabetic patient (Moore, 2009). Technology such as 

RFID has the potential to not only provide real-time analytics, but also provide a large data base 

for the human health industry (Ward et al., 2014).  

 Utilization in the Cattle Industry 

 Big Data utilization in the beef cattle industry is currently a novel practice. The 

infrastructure of the beef industry is extremely diverse and disconnected, creating challenges for 

utilization of Big Data analytics compared to the human health industry.  

 Cow-calf operations that have 1 to 99 beef cows account for 90.4% of all farms with beef 

cows in the United States (USDA, 2011b). The low number of beef cows per farm leads to much 

of the variability that exists in cow-calf operations. Substantial heterogeneity exists among these 

different groups of animals based on environment, genetics, and management practices. 

Multivariable modeling can be used to assess where heterogeneity exists within a given 

production system. For example, comparing one facility system to another using multivariable 
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modeling can demonstrate how facility variation contributes to overall cow health and behavior 

(Simon et al., 2016).  

 Unlike the cow-calf and feedlot industries, the dairy industry has taken initiative to create 

large data banks for dissemination of information within the industry. The Animal Improvement 

Programs Laboratory collects data from dairy animals in order to improve efficiency through 

genetic evaluation and management characterization (USDA, 2014). The data from this system 

has allowed multiple research publications to report predictions on fertility, purchasing, culling, 

and estimated breeding value decisions (Mikshowsky et al., 2017; Tenghe et al,, 2016). The 

dairy industry is more integrated compared to the beef industry due to the structure of the 

industries themselves. In the beef cattle industry, animals can change ownerships multiple times 

throughout their life, whereas in the dairy industry, one calf may remain with the same owner or 

on the same farm throughout its lifetime. Despite inherent challenges, the beef cattle industry 

must continue to strive to collect quality data, and continue to enhance the productivity and 

efficiency of the operations.  

 One form of big data analytics, decision tree modeling, has been demonstrated to detect 

post-calving health problems in a dairy operation (Steensels et al., 2016). This form of modeling, 

if utilized in the cow-calf industry, could be very beneficial to predict outcomes such as dystocia, 

pounds of calf weaned, number of calves weaned per cow exposed for breeding, and the 

feasibility of the owner of the cow-calf operation retaining ownership of calves  all the way 

though slaughter. In order to use data to model these decisions requires accurate records and a 

progressive attitude (White, 2005).  

 Although Big Data has not been utilized as extensively in the beef cattle industry as the 

human health industry, data mining practices have been reported. Data mining is defined as 
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extraction of implicit and potentially useful information or exploration and analysis of the data 

(Tan et al., 2006). Pattern recognition starts with data mining. Data mining takes large amounts 

of data about cattle health and performance and analyzes it over time to formulate predictions, 

similar to decision tree modeling (Hsu, 2006). Mining large data sets and analyzing trends and 

patterns over time has proven to help identify trade communities, shipment patterns, and disease 

surveillance (Gorsich et al., 2016). Pattern recognition has been used in a feedlot data set to 

analyze data on morbidity and mortality of feedlot calves to quantify risk factors that can change 

morbidity and mortality rates even by a few percentage points (Amrine et al., 2014; Moya et al., 

2015).   

 Data from feedlots are considered to be large enough that simple analytics may not be 

optimal to create predictive outcomes (Cole et al., 2012). Even though predictive abilities exist, 

many feedlot operations may not be using available data this way, possibly because the amount 

of gathered data is greater than the current ability to analyze the data. Access to large enough 

data sets can allow for dataset partitioning in order to create predictive models on specific 

outcomes. The data can to be transformed to make predictions on how cattle will perform in 

relation to health and growth (Garcia, 2013). Recently published literature has taken large data 

sets to predict certain feedlot cattle outcomes such as time to disease events, risk factors for 

disease, and failure to finish a production cycle due to disease (Babcock et al., 2013; Babcock et 

al. 2009; Cernicchiaro et al., 2012; Cernicchiaro et al., 2013; Jenko et al., 2017). The data 

gathered must be accurate to identify potential relationships between variables collected, and 

lack of concise and accurate data can lead to bias in the results as well as increased error (I. 

Dohoo et al., 2009).   
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 Tracking animals from one cattle industry operation to another has been discussed in 

recent years, and could provide a valuable information-driven dataset for the veterinary 

profession and the food animal industry. In 2006, the USDA announced a voluntary program, 

National Animal Identification System (NAIS), in order to track cattle to aid animal disease 

programs and to become a comprehensive information system (USDA, 2006). An information 

system in this form has proven to benefit the development of machine learning algorithms that 

accurately and rapidly trace back animals from a mock database (Scanga et al., 2007). A tracking 

system has proven to be successful in Australia to determine the influence of movement on 

disease spread in cattle (Iglesias & East, 2015). In the European Union, the National Cattle 

Register has demonstrated how tracking cattle movements can quantify associations with disease 

transmissions (Perrin et al., 2010). Technology, in the form of a tracking system, has been a 

valuable resource for data acquisition in the beef supply chain and a source of transparency for 

larger corporations in China (Liang et al., 2015).  

 Tags in the form of simple numbers or as advanced as electronic identification tags 

(RFID) are currently available to track and record animals in a production system. A successful 

tracking system utilizing RFID technologies in the cattle industry would be extremely beneficial, 

but currently lacks economic incentives for producers implementing the technology. In order to 

be successful, a government incentivized program, similar to the ones established in the human 

health industry, would be necessary. University of California Davis in 2010 began collecting 

data from the cattle industry with the use of RFID tags in order to analyze production from 

conception to carcass, and demonstrated the benefits of real-time data sharing (Van Eenennaam 

et al., 2010). Cow-calf producers and feedlots implementing this technology can utilize the data 
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within integrated companies, but dissemination of the data has not been widely accepted due to 

confidentiality concerns and competition among the different companies. 

 Bayesian analysis is very beneficial to begin to estimate outcomes when certain clinical 

trials have not occurred due to financial, logistic, or ethical constraints. One form of Bayesian 

analysis that is just beginning to be recognized in food animal production is mixed treatment 

comparison meta-analysis (O'Connor et al., 2013; O’Connor et al., 2016). Meta-analyses are 

currently utilized to combine estimates from multiple research trials making direct comparisons 

that address a specific hypothesis. The mixed treatment comparisons have the ability to combine 

not only direct comparisons between treatments, but also indirect comparisons where a clinical 

trial has not yet occurred (Jansen et al., 2008; Jansen et al., 2011). It is believed that Bayesian 

analysis will continue to advance the body of literature available to the food animal industry.  

 Conclusion 

 As demonstrated, the cattle industry infrastructure contributes to diversity of large 

amounts of data within the industry. Animal movement throughout the different operations 

within the industry account for a lot of the variability that exists within a production system. The 

beef cattle industry is currently not integrated, making tracking and following data at the animal-

level extremely challenging. Big Data analytics allow researchers and producers to begin to 

understand where variability exists within operations, thereby allowing enhanced management 

decisions even in systems with extensive heterogeneity (Dohoo et al., 2001). The main difference 

between the current utilization of Big Data in the human health industry and the cattle industry is 

due to government incentives and the established infrastructure that exists in the human health 

industry. Understanding and addressing issues of transparency and confidentiality will lead to 

increased use of Big Data in the cattle industry. The cattle health industry has the potential to 
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utilize Big Data analytics to continue to expand on the prediction methods for quantifying 

management factor effects on health and performance.  
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 Abstract 

The objective of this project was to quantify patterns in the calving rate of sires in multiple-sire 

pastures over seven years at a large-scale cow-calf operation. Data consisted of reproductive and 

genomic records from multiple-sire breeding pastures (n=33) at the United States Meat Animal 

Research Center (USMARC) from 2007 to 2013. Calving intervals were analyzed in 21-day 

periods. A ranking system for each bull was developed based on the calving rate per pasture over 
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the breeding season, with Rank 1 = the bull with greatest calving rate, Rank 3 = the bull with the 

least calving rate, and Rank 2 = all other bulls. A total of 179 bulls and 3,703 calves were 

successfully genotyped over seven years. A uniform distribution described the expected 

percentage of calves sired per rank within pasture. Rank 1 bulls sired 113% greater calves than 

the expected pasture-average, Rank 2 bulls sired 6% less than expected, and Rank 3 bulls sired 

81% less than expected. A rank by calving interval interaction effect was identified (P < 0.05). A 

Rank 1 bull in calving interval 1 produced a greater average percent of the total calf crop over 

the entire season, compared to a Rank 2 and Rank 3 bull. The calving rate for individual sires is 

not homogeneous and there is a large difference between bulls siring the greatest and least 

number of calves. More research is needed to determine how rank changes over multiple 

breeding years and its association with dominance, libido, and fertility.  

 Introduction 

In commercial cow-calf operations in the United States, multiple bulls are utilized within 

individual breeding pastures. On average there are 24 cows per mature bull and 17 cows per 

yearling bull (USDA, 2009). Bulls are expected to impregnate a high number of cows in a 

relatively short breeding season. Reproductive performance of bulls relies on the ability to detect 

cows in estrus, effectively mate cows, and successfully fertilize the oocyte to produce a viable 

fetus. The theory and practice of breeding soundness examinations is to screen bulls prior to the 

breeding season to assess some factors that impact reproductive success, such as sperm cell 

morphology and motility and musculoskeletal conformation (Chenoweth et al., 1984; Chenoweth 

et al., 1995). The desire of a bull to actively seek cows in estrous in order to mate is described as 

libido (Chenoweth, 1997). The number of estrous cows successfully mated is thought to be 

influenced not only by libido, but also by other bulls within the hierarchical nature of the herd, 
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more commonly known as social dominance (Blockey, 1979; Rupp et al., 1977). Understanding 

and quantifying social dominance has been attempted, with little success to accurately predict 

reproductive performance based on social dominance (Blockey, 1979; Ologun, Chenoweth, & 

Brinks, 1981; Whitworth et al., 2008). Although commercial cow-calf managers do not have 

simple methods to identify bulls with high libido or high social dominance, there may be genetic 

and economic benefits for identifying these bulls.  

 Variability in the number of offspring born per bull exists between sires in multiple-sire 

pastures. The reasons for the variability are currently unknown, but have been speculated to be 

due to differences in libido, social dominance, or conception success among bulls (Smith et al., 

1981; Whitworth et al., 2008). If variability of reproductive success between bulls in multiple-

sire pastures is due to libido or social dominance, an accurate understanding of bull behavior is 

needed. Serving capacity, as a proxy for libido, has been shown to be correlated with proportion 

of estrous cows mated by a bull in a single-sire pasture (Blockey, 1976). The effect of serving 

capacity on the number of offspring sired in a multiple-sire pasture may be mediated by the 

bull’s hierarchical social ranking. If the number of cows in estrous is three or less, Blockey 

(1979) observed that a dominant bull is able to successfully prevent mating by other bulls, 

presumably regardless of competing bulls’ libido (Blockey, 1979). If libido and social 

dominance rank are unrelated behavioral traits, then bulls with high libido and low social 

dominance or bulls with low libido and high social dominance are likely to negatively impact the 

number of calves sired by bulls with these characteristics in a multiple-sire pasture. Analyzing 

overall calving success by bull and patterns of calving success by 21-day intervals are necessary 

to investigate reasons for variability in progeny data. The objective of this study was to quantify 

patterns in the number of calves sired by bulls in multiple-sire pastures over multiple years at a 
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large-scale cow-calf operation. We hypothesized that patterns of calving success by 21-day 

intervals during the calving season would show that bulls siring the greatest number of calves 

had different calving patterns than other bulls within that pasture.  

 Materials and Methods 

 Herd description 

 Retrospective reproductive data were collected from cowherds housed at the United 

States Meat Animal Research Center (USMARC). Data consisted of reproductive and genomic 

records from multiple-sire breeding pastures (n=33) from 2007 to 2013. The breeding season 

began in June for each year analyzed and lasted for 63 days, and only one breeding season per 

year per bull was considered. Pastures consisted of cool and warm season grasses and ranged 

from 24.3 to 48.6 hectares in size. Rotational grazing was utilized to insure adequate nutrition.  

Each breeding pasture contained 23 to 243 cows with an average of 16 cows per bull (range 8 to 

26). Bulls within each pasture were the same age. Breed of cows and bulls consisted of purebred 

as well as composites of approximately 16 breeds (ranging from 100% to 6.25% of any given 

breed). Breed within each breeding pasture was selected to produce the desired breeds and sire 

lines for genetic evaluation projects unrelated to this project. Breeding lifetimes averaged two 

years for bulls at USMARC, with a range of one to six years. A bull was culled during or after a 

breeding season based on injuries, reproductive performance, and/or genetic selection purposes. 

If a bull was removed during the breeding year, the length of total days the bull was in the 

breeding year was recorded. 

 Genotyping 

 All cows, bulls, and calves were genotyped using the animal’s blood or semen with the 

Bovine SNP50 BeadChip to determine parentage (Stone et al., 2002). Genotyping was confirmed 
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by pedigree as previously described (Thallman, 2001a, 2001b). Only sires with successfully 

genotyped calves were included in the dataset. If a calf was not successfully genotyped, the calf 

was removed from the analysis.  

 Calving intervals, rank classification, calving distributions 

 Calving intervals were analyzed in 21-day periods within the calving season; interval 1 

consisted of days 0 to 21, interval 2 consisted of days 22 to 43, and interval 3 consisted of days 

44 to 63. An individual bull’s reproductive performance as measured by calving rate was 

calculated as number of calves sired divided by the days the bull was in the pasture for the 

breeding year. For example, if a bull sired 10 calves and was in the breeding pasture the entire 63 

days, then the calving rate would be calculated as 10 calves/63 days = 0.159 calves per breeding-

day.  If a bull was in the breeding pasture for less than 63 days, this number was used to 

determine the calving rate. For example, if a bull sired 7 calves, and was in the breeding pasture 

for 27 days, the calving rate would be calculated as 7 calves/27 days = 0.259 calves per 

breeding-day. Based on this calving rate, a ranking system for each bull over the entire breeding 

season was developed, with Rank 1 = the bull with greatest calving rate, Rank 3 = the bull with 

the least calving rate, and Rank 2 = all other bulls. If two bulls had the same greatest calving rate, 

both those bulls received a “Rank 1” as their rank score. If two bulls had the same least calving 

rate, those bulls received a “Rank 3” as their rank score.  

 A uniform distribution was used to describe the expected percentage of calves sired per 

rank within a pasture. Observed percentage of calves sired was determined based on total calves 

sired by individual bull rank per pasture. The standardized rate between the observed and 

expected percentage of calves sired for each rank for all breeding seasons was calculated by the 

following formula (Dohoo et al., 2003): 
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(Observed % of calves sired per rank per pasture-Expected % of calves sired per rank per pasture)

Expected % of calves sired per rank per pasture
 

 Statistical analysis 

 All descriptive analytics were performed in Excel (Microsoft Office Excel 2010, 

Microsoft Corporation, Redmond, WA). Statistical analysis was conducted to evaluate the 

overall calving distribution based on calving percent in each 21-day interval in each pasture, 

each year. The model was ran with the PROC GLIMMIX procedure (SAS Institute Inc., Version 

9.4, Cary, NC, USA) and included the 21-day interval as a fixed effect and a random intercept 

term to account for clustering within pasture within year. Statistical analysis was conducted to 

evaluate differences between individual bull rankings within intervals of the total calving percent 

with the PROC GLIMMIX procedure (SAS Institute Inc., Version 9.4, Cary, NC, USA). The 

model included fixed effects for rank, interval, and a rank by interval interaction, a random 

intercept term was included to account for clustering within pasture within year, and a random 

residual term with compound symmetry covariance structure was included to account for 

repeated measures for each sire.  

 Results 

 Reproductive performance and calving distribution 

 A total of 3,703 calves were successfully genotyped, and a total of 179 bulls were 

individually analyzed. Average calving success (calves born per cow exposed for breeding) 

between the 33 breeding pastures was 89% (range of 67 to 100%) over all 7 years. Fig. 2.1 

shows the calving distribution of the calving percent per 21-day interval for all individual bulls 

within pastures. The percentage of calves born per 21-day period decreased as the days in the 

breeding season progressed.  
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 Sire rankings 

 The results on the observed percentage of calves sired for Rank 1 bulls and the expected 

percentage of calves sired if there was a uniform distribution between the percentages of calves 

sired between bulls per pasture is shown in Table 2.1. The standardized rate between the 

observed and expected percentage of calves sired for each rank indicates that Rank 1 bulls sired 

113% greater calves than expected on average, Rank 2 bulls sired 6% less than expected, and 

Rank 3 bulls sired 81% less than expected. 

 The results of the calving percent difference between individual bulls by rank in 21-day 

intervals are shown in Fig. 2.2. A calving interval by bull rank interaction was present, P < 0.05. 

A Rank 1 bull in interval 1 produced on average 13% of the total calf crop, a Rank 2 bull 

produced on average 6% of the total calf crop in interval 1, and a Rank 3 bull produced 2% of 

the total calf crop in interval 1. The differences between the ranks of individual bulls within 

interval 1 were statistically significant, as were the differences between ranks within intervals 2 

and 3. Overall, individual Rank 1 bulls sired the greatest percentage of calves in interval 1, 2, 

and 3, compared to Rank 2 and Rank 3 in the same intervals.  

 Rank changes between years for individual bulls based on the number of breeding years 

bulls are used are shown in Table 2.2. Breeding years ranged from one to six years, with a 

majority of the bulls being utilized for two breeding years. Only 19 bulls had a change in rank 

over breeding years. There were a total of 21 rank changes from all bulls because two of the 19 

bulls had two rank changes over their breeding years. Most rank changes occurred for bulls used 

for 4 breeding years, and the rank change that occurred most commonly was a change from Rank 

2 to Rank 1. There was one bull that had a rank change from a Rank 3 to Rank 1.  There were 11 
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bulls which increased rank, and there were 10 bulls which decreased rank over the breeding 

seasons evaluated.   

 Discussion 

 The current study shows a reliable way to classify bulls with successfully genotyped 

calves in order to describe bulls in multiple-bull pastures with the greatest calving rate. This 

dataset was consistent with other reports demonstrating the variability in reproductive 

performance between bulls in multiple-sire breeding pastures (Fordyce et al., 2002; Holroyd et 

al., 2002; McCosker et al., 1989). One study of a breeding pasture with 27 herd sires found that 

five bulls produced greater than half of all viable offspring, and 10 bulls did not sire any calves 

(Van Eenennaam et al., 2007). Variability in bull reproductive success has also been 

demonstrated at a breeding farm in Northern Australia where 235 bulls were exposed to cows 

that sired 4,251 calves; of which, 14% of the bulls sired greater than 30% of the calves, and 6% 

of the bulls did not sire any calves (Fordyce et al., 2002). Some studies have shown that social 

dominance and scrotal circumference are highly heritable and related to herd fertility (Blockey, 

1978; Meyer et al., 1990).Whereas, other research has shown no difference between social 

dominance and calf output, as well as between social dominance and libido (Farin et al., 1989; 

Holroyd et al., 2002; Ologun et al., 1981). Therefore, there is a need for technology (e.g. 

genotyping, GPS) to aid in understanding what is happening in breeding pastures before 

management strategies can be improved. 

 Factors, such as social dominance and libido, are evaluated on herd level data to predict 

fertility and reproductive success within a breeding season. The ranking system developed in the 

current study is not used as a prediction for calving rate or success. The ranking system is a way 

to evaluate calving rate differences between bulls at the end of the breeding season, and identify 
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those top and bottom producing bulls. Understanding more about the genetic and management of 

these ranked bulls may be advantageous for predicting reproductive success in a breeding season. 

Further research is needed to develop methods to accurately classify the rank of the bulls and 

identify the effect on calving rate. In the present study, we used parentage genotyping to begin to 

develop methods to rank bulls within a pasture using 21-day intervals. 

Established, controlled breeding seasons for a herd increases productivity compared to 

long or year-around breeding seasons (Chenoweth, 2005). Analyzing the herd reproductive data 

from a single breeding season in 21-day intervals allows for an overall assessment of the herd to 

determine differences in reproductive success between 21-day intervals as the breeding season 

progresses compared to desired patterns (Larson, 1999). Analyzing the percent of calves being 

born over these intervals serves as a method to evaluate herd-level reproductive efficiency, but 

does not assess the reproductive efficiency of individual bulls. Assessing individual bulls by their 

rank within calving intervals serves as a method to determine the total contribution these bulls 

had to the overall calving percentage of the breeding season and how performance varied across 

the breeding season.  

 The ranking system described in this study identifies and compares those bulls with the 

greatest calving rate to the bulls with a lesser calving rate, and is the first attempt to classify bulls 

with this type of system to the author’s knowledge. The Rank 1 bulls produced a greater 

percentage of the calving percent per 21-day interval per pasture. This is similar to other research 

studies that identified a higher percentage of calves sired by a lower percentage of the total bulls 

per pasture (Drake et al., 2011; Van Eenennaam et al., 2007). Rank was modified by the interval 

of the calving season with the magnitude of the effect of rank on the percent of calves sired per 

21-day interval decreasing as the calving season progressed (Fig 2.2). There is value to identify 
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bulls with greater reproductive success compared to the least successful bulls. Our hypothesis 

was supported in that bulls that sired the greatest number of calves were consistently superior to 

lower ranked bulls for each 21-day interval of the breeding season. The least ranked bull 

produced the least calving rate within the three intervals analyzed, which could negatively 

influence pregnancy risk over an entire breeding season. 

 Possible management interventions for commercial herds that are able to identify the 

relative ranking of bulls could be to remove the bull with perceived greatest dominance from a 

breeding pasture after a prescribed period of time, if bull rankings over time do not change (i.e. 

once one-half the cows are expected to have been bred). Removing the most dominant bull 

would allow bulls with desirable genetic worth but less reproductive success to be able to sire an 

increased number of calves in spite of lower social dominance or other behavioral factors that 

limit calving success in multiple-sire breeding pastures. Similarly, bulls with less social 

dominance but desired genetic worth could be removed to a single-sire pastures where social 

dominance is not expected to influence reproductive success, and therefore be more efficient in 

their calving success (Farin et al., 1982). The effect of age on social dominance and behavior has 

been studied (Carpenter et al., 1992; Coulter & Kozub, 1989; Makarechian & Farid, 1985), and 

groups of bulls of the same age achieve higher pregnancy rates than groups of bulls of mixed age 

(Blockey, 1979). Effect of age on reproductive rank could not be assessed in the current study 

because the bulls within each pasture were the same age. Understanding how age of bulls effects 

rank over time would be beneficial. Additional research is needed to determine the genetic and 

management factors that are associated with variability in bull rankings before changes in sire 

selection or management of commercial cattle herds is suggested.  
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 One of the limitations of our study was that bulls were most commonly used 2 breeding 

years due to the herd management established at USMARC. As shown in Table 2.2, most of the 

bulls ranking did not change over time. The low numbers of bulls that changed ranks did not 

allow us to evaluate potential reasons for changing ranks in this study. More research is needed 

to determine frequency and factors related to an individual bull changing ranks over multiple 

years. Another limitation of this study is the data can only be extrapolated to the study 

population available from USMARC, more research is needed to determine the association of 

different breeding management practices and individual bull rank.   

 Conclusion 

 This study demonstrates variability in the number of progeny by bull in multiple-sire 

pastures over seven years. Analyzing the percent of calves being born over 21-day intervals as a 

whole-herd assessment does not assess the reproductive efficiency of individual bulls. Ranking 

bulls by calving rate for the entire calving season is associated with number of calves sired by 

individual bulls in each 21-day period of the calving season. More research is needed in order to 

determine how rank changes for bulls over multiple breeding years, how to identify bulls with 

the greatest and least rank, and how calving rank is associated with dominance, libido, and 

fertility.  
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Figure 2.1. Model-adjusted least square means (±SE) calving percentage for each 21-day 

interval.  
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Figure 2.2. Model–adjusted calving percent (±SE) per bull by reproductive rank by 21-day 

intervals. An interaction based on rank and interval was identified (P < 0.05).  Rank with non-

connecting letters were significant (P < 0.05) within an individual interval. 
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Table 2.1. Average observed and expected percentage of calves sired per bulls categorized in the 

different ranking.  

 

Average observed 

percentage of calves 

sired per pasture 

Average expected 

percentage of calves 

sired per pasture 

Standardized rate between 

observed and expected 

percentage of calves sired 

Rank 1a 34% 16% 113% 

Rank 2b 15% 16% -6% 

Rank 3c 3% 16% -81% 
a Bulls with the greatest number of calves sired per pasture 
b All other bulls not included in Rank 1 or Rank 3 
c Bulls with the least number of calves sired per pasture  
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Table 2.2. Rank by year for individual bull counts. Breeding years correspond to the number of 

years a bull was used in a breeding season.  

 Number of breeding years  

Rank 

change 
1 2 3 4 5 6 Total 

No change 47 92 5 15 0 1 160 

1-2 0 0 1 3 0 0 4 

1-3 0 0 0 1 0 0 1 

2-1 0 0 4 2 0 0 6 

2-3 0 1 2 2 0 0 5 

3-2 0 0 2 3 0 0 5 

Total 47 93 14 26 0 1 181 
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 Abstract 

 Parentage data from beef calves has shown that in multiple-sire pastures a 

disproportionate number of calves are born from a single bull. Investigating and accurately 

quantifying bull behavior within multiple-sire pastures will begin to determine reason(s) for the 

variability in the number of calves sired. The study objective was to assess accelerometer data 

and various classification algorithms to accurately predict bull behavior events in a multiple-sire 
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pasture. Behavior events of interest in this study included lying, standing, walking, and 

mounting.  

Two bulls and ten estrous synchronized cows were used. True behavior events were 

determined during daylight hours with video analysis, and matched with accelerometer data. 

Accelerometers were attached to both ears, withers, and neck of both bulls. Accelerometer data 

were recorded for every second over 3 days. Accelerometer data were used to generate 

algorithms and accuracy was evaluated compared to known video behavioral data.  

The prevalence based on the raw video data for lying was 32.6%, standing was 59.4%, 

walking was 7.4%, and mounting was 0.6%. The random forest classifier had the highest 

accuracy compared to other classifiers (random tree and decision tree) for each tag location and 

behavior of interest. The accuracies from the random forest algorithms ranged from 92 to 99% 

for lying, 85 to 90% for standing, 73 to 77% for walking, and 74% to 80% for mounting. The 

classification algorithm was able to accurately predict a lying and standing event, and predict a 

walking and mounting event with a lower accuracy.  Further research is needed to determine how 

behaviors between bulls affects overall parentage data.   

 Introduction 

Bull behavior can influence overall conception rates in multiple-sire pastures (Blockey, 

1979). Libido, the willingness for a bull to breed a cow, and serving capacity have been 

identified as factors influencing fertility and conception rates in pasture breeding operations 

(Blockey, 1978; Chenoweth, 1981; Crichton and Lishman, 1988). The purpose of utilizing 

multiple bulls in a breeding pasture is to increase overall fertility and calving rates in a herd and 

reduce the number of pasture required compared to a single sire pasture breeding program. Once 

a bull services a female, she needs to conceive, maintain the pregnancy, and have a viable calf. If 
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a particular bull is not actively breeding cows or the act of mating does not result in a successful 

pregnancy, then that bull is not contributing to the overall productivity of that herd.  

Parentage data from beef calves has shown that in multiple-sire pastures a 

disproportionate number of calves are born from a single bull (Fordyce et al., 2002; Holroyd et 

al., 2002; Van Eenennaam et al., 2007). The disproportionate parentage distribution shows that 

not all bulls are contributing equally to the number of calves being sired on the operation. 

Successful investigation of the factors influencing the variability in the number of calves born 

per bull requires accurate ways of quantifying bull behavior in a multiple-sire pasture. 

Previously, quantifying bull behaviors in a multiple sire pasture involved visual observations of 

the desired individual behaviors (Blockey, 1979; Boyd et al., 1989). Visual observation is labor 

intensive, increases the chance for human error by missing behavioral events in a given time 

period, and can influence the behavior of animals through human interaction (Theurer et al., 

2013). Some investigations using visual observation to quantify bull behavior have been 

performed in controlled settings, such as small pens or within a limited time frame, e.g. 20 mins 

(Carpenter et al., 1992; Whitworth et al., 2008). The use of technology provides new tools to 

assess behavior accurately while decreasing the need for human observations, as well as 

increasing the time frame that animal behavior can be monitored.  

Accelerometers can be used to assess lying and standing behaviors in cattle (Robert et al., 

2009; Theurer et al., 2013). Using accelerometers to record specific behaviors of cattle in beef 

cow-calf herds in real-time provides advantages when investigating the bull’s role and behavior 

in the reproductive efficiency of that operation. Understanding a bull’s overall activity 

throughout a breeding season can be used to predict his contribution to the overall calving rate. It 

is hypothesized that actively breeding bulls will spend more time standing, walking, and 
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mounting and less time lying compared to bulls not mating as many females. The study objective 

was to assess accelerometer data and various classification algorithms to accurately predict bull 

behavior events for lying, standing, walking, and mounting in a multiple-sire pasture.  

 Materials and Methods 

 Animal population 

All procedures were approved by the institutional animal care and use committee of 

University of Nebraska-Lincoln (IACUC # 1124). Two bulls, aged 3 years old were used in the 

project. One bull was Angus (designated bull #2) and the other was a composite of Red Angus, 

Simmental, and Gelbvieh (designated bull #1). Both bulls were placed in a rectangular pasture 

with 10 estrus-synchronized crossbred cows for three days (6/22/16 to 6/24/16). Three 

observations days were chosen due to the time period expected for cows to exhibit signs of estrus 

from estrus synchronized using the select-synch protocol (Patterson et al., 2003). All the cows 

exhibited signs of estrus during the observation period. The pasture was enclosed with electrical 

fencing and was 280 by 180 feet. A single movable oval water trough was placed in the pen and 

a rectangular feed bunk was used to provide ad libidum access to grass hay.   

 Accelerometer data collection 

Accelerometer data were recorded with the use of Smartbow ear tags (MKW Electronic 

GmbH, Weibern, Austria). Accelerometer data recorded the three-dimensional location (x, y, and 

z axis) of each tag during each second of the study duration. Ear tags were attached to both bulls 

in four difference locations, the left and right ear, the withers, and the neck. Smartbow tags were 

attached to collars that fit around each bull’s neck and were attached to each bull’s wither with 

the use of glue, netting, and a cloth patch, and were attached to each ear with a button tag (Fig. 

3.1).  
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 Video analysis 

 Cameras (Axis Communications, Lund, Sweden) were attached the southwest and 

northeast corner of the pasture. The cameras were programmed to record activity of all cattle 

within the pasture in the camera frame, and to provide a one-second interval time-stamp during 

the 3 day trial. The camera time stamp was synched with the accelerometer time stamp at the 

start of the study to record data at the exact same hour:minute:second.millisecond.  

 With the use of only two cameras within the rectangular pasture, there were areas in the 

pen both bulls could be out of frame throughout the recording period. Video data were watched 

by a single investigator (KA) and logged (Noldus- Observer XT 11, Leesburg, VA) to quantify 

the exact onset time and duration of each behavior event by each of the two bulls. Behavior 

events of interest included lying, standing, walking, and mounting. Video recorded events were 

classified using the following definitions: 

 Lying –Bull has all 4 legs tucked underneath the torso or lying on one side of its body for 

1 s or longer. The lying period ended when the bull transitioned into another behavior.  

 Standing –Bull has all 4 feet planted on the ground for 1 s or longer. Time spent grazing 

is included in this category, even if a small number of steps are taken during the grazing 

period. A period of time classified as standing ended when the bull transitioned into 

another behavior. 

 Walking - Animal has taken 3 steps in a progressive direction, this behavior ends when 

the progressive movement stops.   

 Mounting – Mounting event begins when the front feet of the bull leaves the ground, and 

ends when the front feet are back on the ground. During the mounting period, the animal 

being mounted stands in place during the mounting event in order to be bred.  
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 Out of frame – The bull is no longer visualized by either camera placed in the northeast 

and southwest corners of the pasture.  

 Other – The bull does not display a defined lying, standing, walking, or mounting 

behavior.  

Each event was mutually exclusive, meaning a bull identified as exhibiting one behavior 

could not simultaneously be classified as exhibiting another behavior. Each bull’s behavior was 

recorded independent of the other bull’s behavior.  

 Data preparation 

Data from the accelerometer and video were exported as Excel spreadsheets (Microsoft 

Corp., Redmond, WA). Spreadsheets were imported into KNIME Analytics software as CSV 

files. Data were matched between the accelerometer and video log for each second of the study 

in order to create a combined dataset. The combined data set was partitioned into ear, wither, and 

neck sub-groups. The two ear tags were combined into a single dataset. Binary variables was 

created for each behavior of interest (lying, standing, walking, and mounting) and assigned a 

value of 1 (behavior occurred) or 0 (behavior did not occur) for each second of each sub-grouped 

dataset.   

The prevalence for each behavior of interest (lying, standing, walking, and mounting) 

based on raw video data was determined by combining the number of video-recorded events for 

the four behaviors of interest for both bulls divided by the total number of behavior events. 

Behaviors logged ‘out of frame’ and ‘other’ were not included in the prevalence analysis for the 

raw video data. The final dataset used to build the algorithm included bull identification, 

accelerometer tag number, behavior onset time, behavior, and the x-axis, y-axis, and z-axis 



45 

 

accelerometer readings. A flow diagram of data preparation, refinement, partitioning, and 

classification is shown in Fig. 3.2.   

 Variable preparation and creation 

 Variables were created in order to increase the predictive accuracy of each behavior 

event. Multiple variables were created with the raw accelerometer data recordings for the x, y, 

and z, axis. The list of all created variables are in Table 3.1. Data points missed due to 

accelerometers not capturing every second, which occurred randomly throughout the study, were 

removed prior to variable manipulation, and was performed with the rule engine node in KNIME 

to remove cells containing missing data. 

 A pair-wise correlation analysis was performed on all variables created before the 

predictive algorithm building, with the use of the linear correlation node in KNIME (Berthold et 

al., 2008). A correlation statistic of |0.8| or higher was used to determine collinearity between 

two variables, and only one of the identified variables was selected and used in the predictive 

classification algorithm.  

 The animal identification, recording date, and tag number were removed from the data set 

prior to the predictive classification algorithm building. This was done to ensure that data was 

only being used in the algorithm that could be repeated in future studies.  

 Using a balanced datasets has been proven to optimize the performance of the 

classification algorithms (Japkowicz, 2000; Amrine et al., 2014). A balanced dataset was created 

for training of the classification algorithms for each sub-grouped dataset by tag location (ear, 

neck, wither) in terms of the binary variable created for each behavior of interest. An equal 

distribution node in KNIME was used to randomly under-sample the dataset by randomly 
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removing non-behavior events from the dataset until an approximately equal amount of behavior 

events and non-behavior events exist in each sub-grouped dataset.  

 Data partitioning 

Data were partitioned into training, testing, and validation datasets based on 50%, 25%, 

and 25%, respectively from each sub-grouped dataset. Datasets were trained using three 

classifiers (decision tree, random tree, and random forest) to identify specific behavior events 

(lying, standing, walking, and mounting). Training a dataset involves utilizing created variables 

to learn and predict the outcome of interest with the highest accuracy possible. Validation data 

were used to determine accuracy, and accuracies were compared between the different classifiers 

for each sub-group.   

 Classification algorithms 

 Classification algorithms were determined using The Waikator Environment for 

Knowledge Analysis (WEKA) nodes within KNIME (Hall et al., 2009). The selected 

classification algorithm nodes used in each partitioned dataset included the decision tree 

classification, random forest classification, and random tree classification (Breiman, 2001; 

Maimon and Rokach, 2005).  

 Classifier accuracy 

 Overall accuracy for each classifier was determined based on the validation dataset. 

Predicted probabilities were generated for each behavior of interest as a 1 = lying, standing, 

walking or mounting for each different sub-grouped data set, and 0. Using these generated 

probabilities, a receiver operating characteristic curve (ROC) was created using the ROC curve 

node in KNIME. The ROC curve is a plot of the cutpoint sensitivity as measured by the 

classification algorithm versus the false positive rate of that same algorithm computed at a 
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number of different cutpoints, other than the standard generated by the algorithm (0.5). The 

optimum cutpoint is selected for distinguishing between the probability of a behavior event 

occurring and non-behavior event occurring (Greiner et al., 2000; Silipo et al., 2014). The 

predicted behavior event with a probability greater than or equal to the cutpoint probability was 

categorized as a 1, and those less than or equal to the cutpoint were given a behavior = 0.  

 Overall diagnostic performance was calculated using the predicted behavior of interest as 

determined by the classifier and the true behavior of interest as determined by the video logger to 

calculate the true positives (TP), false positives (FP), true negative (TN), false negatives (FN), 

sensitivity (Se), specificity (Sp), and accuracy (Acc) for each classifier. Accuracy was calculated 

as the sum of the TP and TN, divided by the sum of the TP, TN, FP, and FN.   

 Results 

Descriptive Statistics 

Combination of the accelerometer, video, and both bulls’ data resulted in a full dataset 

with 1,963,207 event rows. One bull had a total of 1,011,590 matched events, and the other bull 

had 951,617 matched events. After removal of behavior logged as ‘other’ and ‘out of frame’ as 

well as removal of missing accelerometer data (n = 158,610), the final dataset included 

1,804,597 event rows for all tag locations and all behaviors of interest (lying, standing, walking, 

and mounting).  

 Prevalence of behavior events  

 The prevalence based on the raw video data for lying was 32.6%, standing was 59.4%, 

walking was 7.4%, and mounting was 0.6%. The prevalence after the data was processed through 

the classification algorithms varied for individual behaviors and classifiers, but was similar to the 

raw video data prevalence. The variability in the prevalence between the sub-grouped data was 
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due to the approximate randomization from the equal size sampling node and the approximate 

partitioning of the datasets. The prevalence for lying behavior for individual data sets ranged 

from 29.5% to 33.1% (Table 3.2), standing behavior ranged from 58.4% to 61.6% (Table 3.3), 

walking ranged from 7.5% to 7.8% (Table 3.4), and mounting ranged from 0.6% to 0.7% (Table 

3.5) for each of the different sub-groups (ear, neck, and wither). 

 Classification accuracy 

 Between all the three different classifiers evaluated, the best performing classifier for 

each location and behavior of interest was the random forest. The probability cutpoints, as 

determined by the ROC curves, varied 0.3 to 0.7, and a majority of the classifiers utilized the 0.5 

cutpoint. The 0.5 cutpoint was the automated cutpoint used for each of the classifiers for the 

software. The location with the highest accuracy was wither based on the random forest classifier 

for lying (99.0%) and walking (77.1%) (Table 3.2 and 3.4). For standing and mounting, the neck 

had the highest accuracy (90.5% and 79.9%, respectively) (Table 3.3 and 3.5). The behavior with 

the highest accuracy between all locations was lying (99.0%), and the random forest classifier 

was able to predict almost every lying event that occurred (7893/8084) (Table 3.2). Sensitivity 

and specificity also ranged between 66.1% and 99.5% for all the sub-grouped data within each 

behavior of interest. 

 Discussion 

Bull behavior related to reproductive performance varies greatly between bulls in a 

multiple-sire pasture (Farin et al., 1982; Farin et al., 1989; Chenoweth, 1997). It has been 

suggested that bulls with higher libido and serving capacity have a higher mating potential (Silva 

-Mena et al., 2000). Using accelerometers to quantifying bull behavior in a multiple-sire pasture 

as described in this manuscript is the first attempted to the authors’ knowledge. This technology 
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allows bull behavior to be quantified without the need for visual observation. Using the results 

from this research, a researcher could accurately predict if a bull is lying or standing and when 

these events are occurring in real time, but could not accurately predict walking or mounting 

based on the proposed algorithm. Knowledge of behavioral events can be used to determine how 

bulls’ behavior varies within a given breeding season, and begin to quantify the differences 

related to reproductive performance and the variability that exists in the number of calves sired.   

Using classifier accuracy was proven to be misleading if it is the sole classification of 

overall predictability accuracy (Unruh et al., 2016). Sensitivity is the ability of the test to detect 

and true positive, and specificity is the ability of a test to exclude a true negative (Dohoo et al., 

2003b). In order to determine the percentage of test positive or negative results that are truly 

positive or negative, assessment of the positive and negative predictive values is necessary (PVP, 

NVP). The best performing classifier as determined by accuracy was the random forest classifier, 

for lying behavior on the wither location (99.0%) (Table 3.2). The random forest classifier also 

has higher Se and Sp (97.5% and 99.5%, respectively), compared to the other classifiers for lying 

behavior on the wither location. The PVP for this same classifier in the same location is 98.9% 

and the NPV is 99.1%. The random forest classifier is able to detect a true positive based on the 

high Se, and if the test classifies an event as lying this is truly a lying event (98.9%). The inverse 

relationship is true in regards to Sp and NPV. The high PVP is related to the prevalence of the 

event (Dohoo et al., 2003a), and the prevalence of a lying event for the wither location was 

30.4%. The accuracy of the test is reflective of the PVP. The same conclusion can be made when 

analyzing standing behavior for the best performing classifier in the neck location (Table 3.3). 

The PVP for standing was 91.1% and NPV was 89.6%.  
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An example where the accuracy is misleading towards classification ability is with the 

mounting behavior. The accuracy for the best performing classifier for mounting was 79.9% for 

the neck location (Table 3.5). The Se and Sp was 79.1% and 79.9%, respectively. Solely looking 

at the Se and Sp, one may determine this predictability to be moderate. The PVP of this classifier 

is 2.5% and the NPV is 99.8%. Therefore, when the algorithm predicts a mounting event, the 

likelihood that the event was truly a mount is only 2.5%, and when the algorithm predicts a non-

mounting event, it is truly a non-mounting event for 99.8% of the predicted events. The reason 

for this low PVP is due to the low prevalence in the dataset (0.68%) which results in a high 

number of false positives (23,839) when specificity is not perfect. There were only 196 true 

mounting events in this dataset, and the high number of FP demonstrates that a lot of other 

behaviors appear similar to a mounting event in terms of the x, y, and z axis. Overall, the 

mounting event was extremely challenging to predict using accelerometer data due to the low 

prevalence in the dataset and the lack of unique movement through the x, y, and z axes during a 

mount compared to other behaviors. A similar conclusion can be made for the walking behavior. 

The wither location provided the best performing classifier (Table 3.4), however, the PVP was 

only 23.8% and NPV was 97.8%. Mounting and walking could be further tested in series, by 

creating a dataset which includes all predicted positive outcomes from the initial classifiers, reran 

through the same classifiers, and establish accuracy based on the outcome of the second 

classifier. Testing in series will increase Sp, but decreases Se (Dohoo et al., 2009). Series testing 

was not believed to improve the predictability of these behavior events because of the low 

prevalence in the dataset.  

The location that had the lowest accuracy was the ear for each behavior of interest. This 

is most likely due to the ears having more movement that effect the x, y, and z axis readings 



51 

 

compared to wither and neck locations. The random forest classifier found that the ear location 

differed in overall PVP compared to the other locations with the same classifier by 15% for 

lying, 5.8% for standing, 5.2% for walking, and 0.5% for mounting. The differences are most 

likely due to the FP rates, and tag location does not appear to be great enough to prefer one 

location over another. It is believed tags placed on the ears, neck, or wither of the bulls would 

not have impacted the behavior events analyzed.  

Limitations of this study include the cows utilized were synchronized prior to bulls 

entering the pasture. The study only lasted for 3 days because that was the duration cows were in 

estrus and mounting behavior occurred. It is common practice in cow-calf operations to utilize 

multiple bulls within a single breeding pasture, and breeding performance does change when 

comparing a single-sire versus a multiple-sire herd, and between different ratios of bulls: cows 

within a pasture (Farin et al., 1982; Neville et al., 1987). It is unknown how the predictability of 

accelerometer data will change based on a bulls’ behavior when used in different pasture 

settings. The pasture used in this study was smaller compared to actual breeding pastures, and 

breeding behavior events may change in larger pasture settings. It is believed that the 

accelerometers would still be able to predict lying and standing behavior, although walking and 

mounting would still have a high risk of FP due to the lack of highly specific accelerometer 

readings for those behaviors. Further research is needed to clearly understand the role of 

classifying lying and standing behavior throughout a breeding season and the effect these 

behaviors could have on overall reproductive performance.  

 Conclusion 

The objective of this study was to determine if classification algorithms could accurately 

predict behavior events from bulls in a multiple-sire pasture. The classification algorithm was 
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able to predict a lying and standing event with a high accuracy, Se, Sp, PVP, and NVP. The 

behaviors of walking and mounting have a lower accuracy, Se, Sp and this is due to the lower 

prevalence in each dataset as well as a high number of FP behavior event classifications, leading 

to a low PVP.  Further studies are necessary to determine differences between bulls in multiple-

sire pastures based on the number of offspring sired and certain bull behaviors.  
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Figure 3.1. Position of the three-dimensional Smartbow accelerometer tags on the left and right 

ear (a), attached to a collar on the neck (b), and attached to netting and a patch on the wither (c).  
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Figure 3.2. Flow diagram of data preparation, refinement, partitioning, and classification 

algorithm evaluations.  

  

a The location and event dataset was repeated for each location (ear, neck, and wither) within 

each behavior event of interest (lying, standing, walking, and mounting) within three different 

classification algorithms (Random Tree, Random Forest, and Decision Tree) creating a total of 

36 different classification algorithms evaluated. 
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Table 3.1. Variables created on full dataset that was used for the classification algorithm. This was performed after missing data and 

behaviors of non-interest were removed and prior to the data being sub-grouped by tag location within behavior event.  

 

Variable Description 

Animal Identification bull 1 and bull 2 

Accelerometer Tag  unique number for each Smartbow accelerometer tag 

Recording time  mm/dd/yyyy hh:mm:ss 

Behavior lying, standing, walking, mounting, other, out of Frame 

xaccel accelerometer reading for x axis 

yaccel accelerometer reading for y axis 

zaccel accelerometer reading for z axis 

Accelerometer 

Location 

left ear, right ear, neck, wither 

Sumxyz xaccel + yaccel + zaccel 

Avgxyz average(xaccel +yaccel + zaccel) 

Mounting_0/1 mounting event = 1 

non-mounting event = 0 

MA(xaccel) moving average, repeated for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the xaccel column 

MA(yaccel) moving average, repeated for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the yaccel column 

MA(zaccel) moving average, repeated for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the zaccel column 

MA(sumxyz) moving average, repeated for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the sumxyz column 

MA(avgaxy) moving average, repeated for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the avgxyz column 

Range(xaccel) moving aggregation, range calculation for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the xaccel 

column 

Range(yaccel) moving aggregation, range calculation for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the yaccel 

column 

Range(zaccel) moving aggregation, range calculation for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the zaccel 

column 

Range(sumxyz) moving aggregation, range calculation for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the 

sumxyz column 

Range(avgaxy) moving aggregation, range calculation for every 2, 5, 10, 15, 30, 60, and 120 rows of data within the 

avgxyz column 
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Delta(xaccel) difference between MA(xaccel) and xaccel values for every 2, 5, 10, 15, 30, 60, and 120 rows of data with 

those columns 

Delta(yaccel) difference between MA(yaccel) and yaccel values for every 2, 5, 10, 15, 30, 60, and 120 rows of data with 

those columns 

Delta(zaccel) difference between MA(zaccel) and zaccel values for every 2, 5, 10, 15, 30, 60, and 120 rows of data with 

those columns 

Delta(sumxtz) difference between MA(sumxyz) and sumxyz values for every 2, 5, 10, 15, 30, 60, and 120 rows of data 

with those columns 

Delta(avgxyz) difference between MA(avgxyz) and avgxyz values for every 2, 5, 10, 15, 30, 60, and 120 rows of data 

with those columns 
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Table 3.2. Diagnostic performance of classifiersa for lying behavior = 1 for each tag location. 

Tag 

location 

Classifier ROC 

prob  

TPb FPb TNb FNb Se 

(%) 

Sp 

(%) 

PVPb 

(%) 

NVPb 

(%) 

Acc 

(%) 

Prev 

(%) 

Ear DT 0.5 13,728 4729 32116 1711 88.9 87.2 74.4 94.9 87.7 29.53 

 RT 0.5 13,354 5281 31564 2085 86.5 85.7 71.7 93.8 85.9 29.53 

 RF 0.6 13,662 2610 34235 1777 88.5 92.9 84.0 95.1 91.6 29.53 

Neck DT 0.5 9435 1118 18968 493 95.0 94.4 89.4 97.5 94.6 33.08 

 RT 0.5 9228 1328 18758 700 92.9 93.4 87.4 96.4 93.2 33.08 

 RF 0.5 9375 300 19786 553 94.4 98.5 96.6 97.3 97.2 33.08 

Wither DT 0.5 7,893 412 18131 191 97.6 97.8 95.0 99.0 97.7 30.36 

 RT 0.5 7,883 511 18032 201 97.5 97.2 93.9 98.9 97.3 30.36 

 RF 0.5 7,911 86 18457 173 97.9 99.5 98.9 99.1 99.0 30.36 
a DT = Decision Tree, RT = Random Tree, RF = Random Forest 
b TP = true positive, FP = false positives, TN = true negative, FN = false negatives, PVP = positive predictive value, NVP = negative 

predictive value 
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Table 3.3. Diagnostic performance of classifiersa for standing behavior = 1 for each tag location. 

Tag 

location 

Classifier ROC 

prob  

TPb FPb TNb FNb Se 

(%) 

Sp 

(%) 

PVPb 

(%) 

NVPb 

(%) 

Acc 

(%) 

Prev 

(%) 

Ear DT 0.3 26,615 3465 16,591 5613 82.6 82.7 88.5 74.7 82.6 61.64 

 RT 0.5 24,410 4647 15,409 7818 75.7 76.8 84.0 66.3 76.2 61.64 

 RF 0.5 27,447 3213 16,843 4781 85.2 84.0 89.5 77.9 84.7 61.64 

Neck DT 0.5 15,126 1601 10,897 2390 86.4 87.2 90.4 82.0 86.7 58.36 

 RT 0.5 14,940 1779 10,719 2576 85.3 85.8 89.4 80.6 87.6 58.36 

 RF 0.5 16,246 1585 10,913 1270 92.7 87.3 91.1 89.6 90.5 58.36 

Wither DT 0.3 13,795 1634 8919 2279 85.8 84.5 89.4 79.6 85.3 60.37 

 RT 0.5 13,489 1579 8974 2585 83.9 85.0 89.5 77.6 84.4 60.37 

 RF 0.5 14,725 1669 8884 1349 91.6 84.2 89.8 86.8 88.7 60.37 
a DT = Decision Tree, RT = Random Tree, RF = Random Forest 
b TP = true positive, FP = false positives, TN = true negative, FN = false negatives , PVP = positive predictive value, NVP = negative 

predictive value 
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Table 3.4. Diagnostic performance of classifiersa for walking behavior = 1 for each tag location. 

Tag 

location 

Classifier ROC 

prob  

TPb FPb TNb FNb Se 

(%) 

Sp 

(%) 

PVPb 

(%) 

NVPb 

(%) 

Acc 

(%) 

Prev 

(%) 

Ear DT 0.6 2756 15,725 32,504 1299 68.1 67.2 14.9 96.2 67.2 7.76 

 RT 0.5 2773 16,357 31,872 1282 68.4 66.1 14.5 96.1 66.3 7.76 

 RF 0.5 2931 12,803 35,426 1124 72.3 73.5 18.6 96.9 73.4 7.76 

Neck DT 0.5 1647 7689 20,065 613 72.9 72.3 17.6 97.0 72.3 7.53 

 RT 0.5 1595 8343 19,411 665 70.6 69.9 16.0 96.7 70.0 7.53 

 RF 0.5 1767 6620 21,134 493 78.2 76.1 21.1 97.7 76.3 7.53 

Wither DT 0.5 1627 6898 17,529 573 74.0 71.8 19.1 96.8 71.9 8.26 

 RT 0.5 1585 7128 17,299 615 72.0 70.8 182 96.6 70.9 8.26 

 RF 0.5 1776 5673 18,754 423 80.8 76.8 23.8 97.8 77.1 8.26 
a DT = Decision Tree, RT = Random Tree, RF = Random Forest 
b TP = true positive, FP = false positives, TN = true negative, FN = false negatives , PVP = positive predictive value, NVP = negative 

predictive value 
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Table 3.5. Diagnostic performance of classifiersa for mounting behavior = 1 for each tag location. 

Tag 

location 

Classifier ROC 

prob  

TPb FPb TNb FNb Se 

(%) 

Sp 

(%) 

PVPb 

(%) 

NVPb 

(%) 

Acc 

(%) 

Prev 

(%) 

Ear DT 0.7 263 16,712 35,218 91 74.3 67.8 1.5 99.7 67.9 0.68 

 RT 0.5 248 16,828 35,102 106 70.1 67.6 1.5 99.7 67.6 0.68 

 RF 0.6 273 13,621 38,309 81 77.1 73.8 2.0 99.8 73.8 0.68 

Neck DT 0.5 141 7126 22,692 55 71.9 76.1 1.9 99.8 76.1 0.65 

 RT 0.5 155 5979 23,839 41 79.1 79.9 2.5 99.8 79.9 0.65 

 RF 0.5 155 5979 23,839 41 79.1 79.9 2.5 99.8 79.9 0.65 

Wither DT 0.5 137 7395 19,055 40 77.4 72.0 1.8 99.8 72.1 0.66 

 RT 0.5 138 8310 18,140 39 78.0 68.6 1.6 99.8 68.6 0.66 

 RF 0.6 143 5784 20,666 34 80.8 78.1 2.4 99.8 78.1 0.66 
a DT = Decision Tree, RT = Random Tree, RF = Random Forest 
b TP = true positive, FP = false positives, TN = true negative, FN = false negatives , PVP = positive predictive value, NVP = negative 

predictive value.
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 Abstract 

The objective of this project was to evaluate the effects of antimicrobials approved for parenteral 

metaphylactic use in feeder and stocker calves on morbidity and mortality for bovine respiratory 

disease with the use of a mixed treatment comparison meta-analysis. An initial literature review 

was conducted in April 2016 through Pubmed, Agricola, and CAB for randomized controlled 

trials for metaphylaxis antimicrobial administered parentally to incoming feedlot or stocker 

calves within 48 h of arrival. The final list of publications included 29 studies, with a total of 37 

trials. There were 8 different metaphylactic antimicrobials. Final event outcomes were 

categorized into BRD morbidity cumulative incidence d 1 to ≤ 60 of the feeding period, BRD 

morbidity cumulative incidence d 1 to closeout of the feeding period, BRD mortality cumulative 

incidence d 1 to closeout of the feeding period, and BRD retreatment cumulative incidence 

morbidity d 1 to closeout of the feeding period. Network meta-analysis combined direct and 
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indirect evidence for all the event outcomes to determine mean odds ratio (OR) with 95% 

credibility intervals (CrIs) for all metaphylactic antimicrobial comparisons. The “upper tier” 

treatment arms for morbidity d 1 to ≤ 60 included tulathromycin, gamithromycin, and tilmicosin. 

For BRD mortality cumulative incidence d 1 to closeout and BRD retreatment morbidity d 1 to 

closeout, classifying the treatment arms into tiers was not possible due to overlapping 95% CrIs. 

The results of this project accurately identified differences between metaphylactic 

antimicrobials, and metaphylactic antimicrobial options appear to offer different outcomes on 

BRD morbidity and mortality odds in feedlot cattle. 

 Introduction 

Bovine respiratory disease (BRD) complex is a well-documented, multi-faceted disease 

syndrome involving environmental factors, host factors, and management practices affecting the 

health and performance of feedlot calves (Kelly & Janzen, 1986; Smith, 1998). Marketing and 

shipment of cattle are associated with stress prior to feedlot arrival, which increases the risk for 

BRD of fed cattle (Camp et al., 1981; Lofgreen et al., 1978). Mass medication, also known as 

metaphylaxis, has been used to prevent BRD in groups of cattle arriving at feedlots with over 

half of United States feedlots using metaphylaxis on at least some groups of cattle near the time 

of feedlot arrival (USDA, 2011a).  

 Multiple antimicrobials are currently available and used metaphylactically to decrease 

negative effects of BRD in groups of feedlot cattle, and the decision to implement a specific 

antimicrobial is dependent on the efficacy and cost effectiveness (Nickell & White, 2010). 

Clinical trials have been conducted to investigate the efficacy of antimicrobials for the treatment 

and control of BRD, and metaphylaxis uses have been investigated as a method to reduce 

morbidity and mortality associated with BRD in feedlot cattle (DeDonder & Apley, 2015; Ives & 
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Richeson, 2015). Meta-analysis and systematic reviews of the available literature have been 

previously performed to summarize published clinical trials for antimicrobial treatment of 

clinical BRD cases and for specific antimicrobials used metaphylactically, but no systematic 

review or meta-analysis has been published that summarizes clinical trials for all approved 

parenterally administered metaphylactic antimicrobials (Nickell & White, 2010; Van 

Donkersgoed, 1992; Wellman & O'Connor, 2007; Wileman et al., 2009).  

 A mixed treatment comparison (MTC) meta-analysis can assess indirect comparisons 

between antimicrobials where an actual clinical trial was not performed. (Higgins & Whitehead, 

1996; Jansen et al., 2011; Lu & Ades, 2004b). The indirect comparison have been proven to be 

realistic estimates of disease risk when direct estimates are not available (O’Connor et al., 2016). 

The MTC of meta-analysis has been done frequently in the human medical field (Mills et al., 

2009; Roever & Biondi-Zoccai, 2016; Shao et al., 2016), and has previously evaluated 

antimicrobial efficacy for treatment of BRD (O'Connor et al., 2013). The objective of this 

research was to evaluate the effect of parenterally administered metaphylactic antimicrobials 

approved for feeder and stocker calves on morbidity and mortality due to BRD using a MTC 

meta-analysis. These results should aid in the understanding of the effect of metaphylactic 

antimicrobial options on clinically important BRD outcomes.   

 Materials and Methods 

 Literature search 

 An initial literature review was conducted in April 2016 by a reviewer (KA) using, 

AGRICOLA (all years available), Commonwealth Agricultural Bureau (all years available), and 

Pubmed (all years available) for retrieval of topics relevant to the objective. The search terms 

included [beef OR cattle OR cow or OR bovine OR steer OR heifer OR calf OR calves] AND 
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[metaphyl* OR prophylactic]. An initial search revealed a total of 3,753 papers. Titles of peer 

reviewed papers published in English that included the search terms were examined for 

relevance. The initial search process was repeated with another independent reviewer (RL). 

Abstracts of relevant manuscripts were reviewed, and if agreed relevant, the full manuscript was 

acquired. Relevant manuscripts obtained by both reviewers were compared and only those 

relevant to the objective were fully reviewed. A third party reviewer was utilized if a 

disagreement between the first two reviewers occurred over the relevance of a manuscript. 

 Studies were excluded if randomization was not reported. In addition, metaphylaxis 

antimicrobial had to be administered parentally to incoming feedlot or stocker calves within 48 h 

of arrival. Studies using young, lightweight veal or dairy calves were excluded; however, if age, 

weight, or type of cattle were specifically described and were consistent with cattle arriving at 

U.S. feedlots, the study was included in the analysis. Metaphylactic administration had to be the 

only treatment variable. Only naturally occurring BRD was used as study outcome and challenge 

studies were excluded from the analysis. Blinding was reported in 24 trials, and was not reported 

in 16 trials, all trials were included in the statistical analysis regardless of blinding criteria. In 

two trials, blinding was reported to have not been possible due to the person implementing the 

BRD treatment protocol having prior knowledge of previous antimicrobials administered 

metaphylactically (Van Donkersgoed, 2012; Van Donkersgoed & Merrill, 2013a). 

 Data extraction 

 Outcome data comparing a metaphylactic antimicrobial to another antimicrobial or a 

control within each trial within each study was extracted (Larson & Step, 2012; Theurer et al., 

2015). If a study contained multiple trials, the data from each trial were extracted separately. All 

data for each trial were extracted by a single reviewer (KA), and verified by a second reviewer 
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(RL). A treatment arm was considered a different antimicrobial for each trial. For example, if a 

trial consisted of antimicrobial A and B, this trial included two different treatment arms. For each 

trial, the following data were extracted: the interventions (antimicrobial) for each treatment arm, 

the number of animals enrolled in each treatment arm, and event occurrence for each treatment 

arm (Table 1). Event occurrence included morbidity, retreatment morbidity, and mortality related 

to BRD. Data were aggregated between treatment arms within a trial if the difference between 

those treatment arms was due to a difference in the post metaphylactic interval or route of 

antimicrobial administration. For example, if the difference between two antimicrobial groups 

was the dosage of the antibiotic (tilmicosin 10 mg/kg and 20 mg/kg), then antimicrobials were 

aggregated to a single antimicrobial group (tilmicosin) (Corbin et al., 2009). Also, if the 

difference between two treatments with the same antimicrobial was due to post-metaphylactic 

interval (ceftiofur 3 PMI and 7 PMI), then antimicrobials were aggregated to a single 

antimicrobial group (ceftiofur) (Booker et al., 2006).  

 BRD morbidity included calves that were enrolled in the trial and had to be treated for 

BRD. The protocol for BRD diagnosis needed to be described in the report, and had to include 

rectal temperature, clinical signs consistent with BRD, and administration of an antimicrobial. If 

this protocol was not outlined, the corresponding author was contacted for clarification of the 

protocol to diagnose BRD. Two corresponding authors were contacted and responded for 

clarification. If the results were given as a percent of animals in each treatment arm, then the 

event occurrence was extracted based on the total number of animals enrolled in that trial for 

each of the treatment arms. If the numerator and denominator used to calculate the percent could 

not be distinguished, the data were excluded in the analysis.  
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 BRD retreatment morbidity was classified as animals initially diagnosed with BRD and 

treated with an antimicrobial that required an additional antimicrobial for BRD. If mortality data 

were not provided in the trial, or BRD mortality could not be distinguished from the overall 

mortality events, the mortality data were excluded in the analysis. 

 Treatment periods were established as either d 1 to ≤ 60 of the feeding period or d 1 to 

the end of the feeding period, and a single event could be classified as occurring in both 

treatment periods. The end of the feeding period is referred to as closeout. Day 1 included the 

day the metaphylactic treatment was given. If the monitoring period of the study was less than 60 

d, the data were only included in the d 1 to ≤ 60 of the feeding period category. Trial days ranged 

from 7 – 60 d and this variability was accounted for in the analysis. If a trial included event 

results from d 1 to ≤ 60 over multiple periods, the event results closest to 60 d was included. Any 

trial data that did not fall into one of these categories were excluded. 

 Multiple treatment comparison analysis 

 The effectiveness of each individual treatment arm for the BRD morbidity d 1 to ≤ 60 

was examined using the binomial likelihood, complimentary log-log (cloglog) link, random-

effects model for combining direct and indirect evidence in mixed treatment comparisons using a 

Bayesian approach as previously described (Dias et al., 2010; Higgins & Whitehead, 1996; Lu & 

Ades, 2004b). This model assumes that the outcome for BRD morbidity d 1 to ≤ 60 is time 

dependent, and based on the differing lengths of each treatment arm the time until an event 

occurs has an exponential distribution (Dias et al., 2011). Differing days at risk were accounted 

for BRD morbidity d 1 to ≤ 60, for example if a trial period was 14 days, the days at risk would 

be 14/60 = 0.23 days at risk. Trial days were only accounted for in trials included in the BRD 

morbidity d 1 to ≤ 60 outcome. The effectiveness of each individual treatment arm for BRD 
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morbidity, BRD mortality, and BRD retreatment d 1 to ≤ closeout was examined using the 

binomial likelihood, logit link, random-effects model for combining direct and indirect evidence 

in mixed treatment comparisons using a Bayesian approach similar to d 1 to ≤ 60 d evaluation. 

(Dias et al., 2010; Higgins & Whitehead, 1996; Lu & Ades, 2004b). This model assumes that the 

proportional odds assumption holds, that all trials occur within the same time period, and further 

days at risk would not affect the differences between events (Dias et al., 2011). The code was 

called through WinBUGS with R to fit the model with the R2Winbugs package (Dias et al., 

2011).  

A homogeneous variance was assumed and uniformed priors were used for the standard 

deviation, σ for each of the BRD morbidity d 1 to ≤ 60 d, BRD morbidity d 1 to closeout, BRD 

mortality d 1 to closeout, and BRD retreatment morbidity d 1 to closeout models. Two uniform 

standard deviation priors were compared for each individual outcome model, σ ~ uniform (0, 5) 

vs. σ ~ uniform (0, 2), and based on narrower CrIs and lower deviance information criterion 

(DIC), σ ~ uniform (0, 5) was used in the final code. Gelman-Rubin diagnostics were performed 

to determine best convergence for chains (Gelman & Rubin, 1992). A total of two chains were 

used for each model, each with 120,000 iterations, with the first 20,000 interactions discarded. 

The output from the code was the posterior mean for odds ratio between the treatment arm 

comparisons with corresponding 95% CrIs. Treatment arms with the least OR and with 

corresponding overlapping 95% CrIs were classified as “upper tier.” Treatment arms with the 

greatest OR and with corresponding overlapping 95% CrIs were classified as “lesser tier.” 

Treatment arms in between the greatest and least OR and with corresponding overlapping 95% 

CrIs were classified as “middle tier.”  
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 Results 

 After initial screening for relevant titles and abstracts, a final list of 170 publications were 

retrieved and evaluated. From these publications, 29 studies, with a total of 37 trials met all 

inclusion criteria. The length of the trial periods ranged from 7 to 293 days. Only BRD morbidity 

cumulative incidence is reported for treatment period d 1 to ≤ 60 of the feeding period and all 

event outcomes (BRD morbidity, mortality, and retreatment morbidity) are reported for 

treatment period d 1 to closeout.  

 Figure 4.1 shows a network of the different treatment arms included for each individual 

event outcome. BRD morbidity cumulative incidence d 1 to ≤ 60 included 62 treatment arms 

from 27 trials, BRD morbidity cumulative incidence d 1 to closeout included 37 treatment arms 

from 13 trials, BRD mortality cumulative incidence d 1 to closeout included 40 treatment arms 

from 14 trials, and BRD retreatment morbidity cumulative incidence d 1 to closeout included 26 

treatment arms from 11 trials (Fig. 4.1). The maximum number of treatment arms within a trial 

were four (Booker et al., 2007; Harland et al., 1991; Morck et al., 1993; Tennant et al., 2014), all 

other trials contained two treatment arms. There were a total of 8 different metaphylactic 

antimicrobials (Table 4.1). All treatment arms were included in four or more trials except 

florfenicol, tildipirosin, and TMS. Florifenicol had three trials, tildipirosin had 1 trial, and TMS 

had 1 trial included. A placebo control was present in 25 trials.  

  Forest plots of the mean odds ratio (OR) comparisons between antimicrobial and control 

with 95% CrIs for each event outcome are shown in Fig 4.2. The dotted line in the center of each 

forest plot designates the OR equal to 1. If the OR are equal to 1, odds of the event occurrence 

are the same for the antimicrobial compared to the control; if odds are less than 1, the odds for 

the event occurrence are greater for the control compared to the antimicrobial; if odds are greater 
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than 1, the odds for the event occurrence are greater for the antimicrobial compared to the 

control. BRD morbidity cumulative incidence d 1 to ≤ 60 “upper tier” treatment arms were 

tulathromycin, gamithromycin, and tilmicosin. The “middle tier” included ceftiofur and 

oxytetracycline, and the “lesser tier” included florfenicol and TMS. Morbidity cumulative 

incidence d 1 to closeout “upper tier” treatment arms included tulathromycin, the “middle tier” 

include tildipirosin, gamithromycin, ceftiofur, tilmicosin, and oxytetracycline, and the “lesser 

tier” included TMS. Mean odds ratios (OR) for all comparisons between antimicrobials with 

95% CrIs for each event outcome are shown in Table 4.2.  

For BRD mortality cumulative incidence d 1 to closeout and BRD retreatment morbidity 

d 1 to closeout, classifying the treatment arms into tiers was not possible due to overlapping 95% 

CrIs. However, there were some differences between individual antimicorbials. In Fig. 4.2(c), the 

95% CrIs for tulathromycin did not overlap with the 95% CrIs of tilmicosin and oxytetracycline. 

Overall, tulathromycin and tilmicosin has a lesser odds than the controls, and oxytetracycline is 

similar to the controls. The OR and 95% CrIs of the comparison of tulathromycin vs. tilmicosin 

is 0.26 (0.13-0.49) and tulathromycin vs. oxytetracycline is 0.20 (0.08 - 0.41) (Table 4.2(c)). OR 

for tulathromycin is different from tilmicosin and oxytetracycline, and the odds of mortality 

cumulative incidence d 1 to closeout of the feeding period is 4 times greater for tilmicosin than 

tulathromycin, and 5 times greater for oxytetracycline than tulathromycin. 

 Discussion 

 The results of the MTC meta-analysis were able to accurately identify differences 

between metaphylactic antimicrobials related to BRD morbidity, retreatment, and mortality. A 

wide variety of trials conducted between different antimicrobials were identified in the published 

literature. This MTC meta-analysis allows for simultaneous inference between treatment arms 
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based on the model estimates (Lu & Ades, 2004b). The data included in the MTC meta-analysis 

performs comparisons between the direct and indirect treatments and allows precision to increase 

with the assumption of consistency between these antimicrobials (Salanti et al., 2008).  

 Veterinarians and producers establish a metaphylactic treatment protocol based on prior 

knowledge of the incoming group of calves risk factors, season, weight, geographic origin, prior 

experience and published literature (Ribble et al., 1995; Sandersonet al., 2008; Snowder et al., 

2006; USDA, 2011a). The overall goal of a metaphylactic antimicrobial is to decrease the risk 

and negative effect of BRD in feedlot cattle.  The results from this MTC meta-analysis provide 

veterinarians and producers guidance to more accurately predict the expected outcomes when 

choosing among antimicrobials to use on incoming high-risk cattle in a feedlot or stocker 

operation. For example, tulathromycin has the least OR compared to all other treatment arms in 

BRD morbidity cumulative incidence d 1 to ≤ 60 d, BRD morbidity cumulative incidence d 1 to 

closeout, BRD mortality cumulative incidence d 1 to closeout, and BRD retreatment morbidity 

cumulative incidence d 1 to closeout outcomes when compared to controls (Fig. 4.2). 

Tulathromycin is also comparable to other antimicrobials for BRD morbidity cumulative 

incidence d 1 to ≤ 60, because the 95% CrIs of tulathromycin overlaps with gamithromycin and 

tilmicosin (Fig. 4.2(a)). These three “upper tier” treatment arms appear comparable in the effect 

differences between controls for the odds of disease. Results from a MTC meta-analysis can be 

applied to a group of incoming cattle, if this group has a predicted BRD morbidity of 30% within 

the first 60 days of the feeding period. If all cattle are administered at arrival an “upper tier” 

treatment with an OR 0.1 – 0.2, then the expected BRD morbidity would be about 4% to 8%, or 

a 80 to 90% reduction in odds of being diagnosed with BRD compared to controls. Overall, this 



74 

 

type of analysis has the potential to efficiently estimate the odds of disease which can be used to 

assess comparative health, performance, and economic outcomes of feedlot and stocker cattle. 

 Previous meta-analyses have indicated metaphylaxis can reduce BRD morbidity, and that 

reduction can be from 55% to 29% comparing control cattle to treated (Van Donkersgoed, 1992; 

Wileman et al., 2009). Mortality due to BRD has also been reported to be reduced from 3.8% to 

1.8% for cattle not receiving metaphylaxis compared to those that do receive metaphylaxis 

(Wileman et al., 2009). The results from this MTC meta-analysis presented similar results; cattle 

treated with an antimicrobial have a reduced OR compared to controls for morbidity (Fig. 4.2) 

and allows producers and veterinarians to compare efficacy between antimicrobials, to determine 

antimicrobials that are similar (i.e. no difference), and antimicrobials that may be superior to 

other antimicrobials (i.e. a difference exists).   

 Event outcome for BRD mortality in Fig. 4.2(c) had overlapping 95% CrIs for all the 

treatment arms making full interpretation of these antimicrobial comparisons challenging. The 

lack of identified differences between multiple treatments arms may be due to the low incidence 

of mortality in feedlots (Snowder et al., 2006), and the incidence was low in the studies included 

in the analysis which most likely contributes to the overlapping CrIs. The lack of differences 

does not imply observed differences would not be higher in populations at a higher risk for BRD 

mortality.  

 In the US, 59% of all feedlot cattle are treated with a metaphylactic antimicrobial at 

arrival (USDA, 2011a). Analyzing retreatment of cattle diagnosed with BRD after metaphylactic 

administration is beneficial in determining the overall affect the metaphylactic antimicrobial has 

on BRD morbidity, treatment success, and mortality. Retreatment for the present study refers to 

animals initially diagnosed with BRD and treated with an antimicrobial that required an 
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additional antimicrobial for BRD. The results from this MTC meta-analysis for the BRD 

retreatment morbidity cumulative incidence were challenging to interpret, event outcome for 

BRD retreatment morbidity in Fig. 4.2(d) had overlapping 95% CrIs for all the antimicrobial 

arms. An analysis to compare retreatment protocols after initial metaphylactic administration was 

attempted, but was unsuccessful due to few trials with similar BRD retreatment morbidity 

protocols that could be compared. 

 The prevalence of BRD morbidity differs among days following feedlot arrival (Babcock 

et al., 2010).  The reported trial days in the treatment period d 1 to ≤ 60 were variable in the total 

days at risk for calves. Accounting for variability days at risk for treatment periods is necessary 

when analyzing the odds of disease for a MTC meta-analysis which we accomplished using the 

binomial likelihood, complimentary log-log (cloglog) link, random-effects model for combining 

direct and indirect evidence in mixed treatment comparisons using a Bayesian approach. While 

this model accounts for days at risk, it cannot account for a skewed distribution of morbidity case 

occurrence in the first 60 days.  

 When a study is published, reporting all aspects of the design, such as blinding, 

randomization, and allocation to treatment units, is crucial to perform a MTC meta-analysis. 

Because of incomplete reporting, making decisions based on published literature can be 

hampered due to limited data and subjective prediction (Jackson, 2006; Pollreisz et al., 1991). 

Previous publications have reported lack of reporting of crucial aspects of trials and the influence 

the inclusion or exclusion of specific trials have on the final analysis of a systematic review or 

meta-analysis (O'Connor et al., 2013; Theurer et al., 2015; Van Donkersgoed, 1992). A 

limitation of this project included the limited published literature for many of the metaphylactic 

treatments. Inconsistency may increase when later publications are combined with earlier 
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publications due to changes in cattle, pathogens, or management over time, and careful 

consideration should be made when interpreting results from a MTC meta-analysis if the data 

between trials appears to be inconsistent (Mills et al., 2012). 

 Summary and Conclusions 

 The results from this MTC meta-analysis identified differences between parenteral 

metaphylactic antimicrobial options currently available. Metaphylactic antimicrobial options 

appear to offer different effects on BRD morbidity and mortality odds in feedlot and stocker 

cattle. Further research is needed to determine the effects of different metaphylactic 

antimicrobials on the BRD mortality, retreatment morbidity, performance, and economics of 

feedlot cattle.  
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Table 4.1. Data extracted from 37 individual trials and 29 studies included in the mixed treatment comparison meta-analysis for each 

outcome event.  

1 Experimental units per antimicrobial group 
2 Allocation weight in kilograms 
3 BRD morbidity cumulative incidence d 1 to ≤ 60 of the feeding period 

4 BRD morbidity cumulative incidence d 1 to close out of the feeding period  
5 BRD mortality cumulative incidence d 1 to closeout 
6 BRD retreatment cumulative incidence d 1 to closeout 

Treatment Arms Number 

of 

animals 

EU’s/group1 Wt2 

(kg) 

BRD 

morb to 

603 

BRD morb to 

closeout4 

BRD 

mort to 

closeout
5 

BRD 

retreat to 

closeout6 

Trial 

ceftiofur/gamithromy

cin 

1853 931/922 205 354/295 - - - (D. Amrine 

et al., 2014) 

control/gamithromyci

n 

87 44/43 582 12/8 - - - (Baggott et 

al., 2011) 

control/gamithromyci

n 

242 121/121 390 32/8 - - - (Baggott et 

al., 2011) 

control/gamithromyci

n 

227 114/113 430 32/6 - - - (Baggott et 

al., 2011) 

tilmicosin/oxytetracy

cline/tulathromycin 

9910 3304/3302/3304 300 - 464/562/113 62/84/10 179/218/

26 

(Booker, 

Abutarbush, 

Schunicht, 

Jim, Perrett, 

et al., 2007) 

tilmicosin/ceftiofur 11,605 3870/7735 256 - 1116/2120 423/626 713/1222 (Booker, 

Abutarbush, 

Schunicht, 

Jim, Perrett, 

et al., 2007) 

control/tilmicosin 1000 200/800 207 - 68/164 

 

27/54 23/58 (Corbin et 

al., 2009) 
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control/tilmicosin 997 200/797 265 - 137/374 1/14 53/107 (Corbin et 

al., 2009) 

control/tilmicosin 64 32/32 224 

 

23/15 - - - (Duff, 

Walker, 

Malcolm-

Callis, 

Wiseman, 

& Hallford, 

2000) 

control/oxytetracyclin

e 

1793 893/900 120 71/30 - - - (Fazzio, 

Giuliodori, 

Galvan, 

Streitenberg

er, & 

Landoni, 

2015) 

control/florfenicol 60 30/30 230 13/10 - - - (Frank, 

Briggs, 

Duff, Loan, 

& Purdy, 

2002) 

control/florfenicol 42 21/21 230 12/9 - - - (Frank et 

al., 2002) 

control/tilmicosin 57 28/29 170 13/0 - - - (Galyean, 

Gunter, & 

Malcolm-

Callis, 

1995) 

control/tilmicosin 116 58/58 191 19/7 - - - (Galyean et 

al., 1995) 

control/tilmicosin 121 62/59 232 27/7 - - - (Galyean et 

al., 1995) 
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control/tilmicosin 400 200/200 273 113/51 123/60 0/2 12/8 (C. A. 

Guthrie et 

al., 2004) 

control/TMS/oxytetra

cycline 

900 300/300/300 325 139/133/

97 

172/169/140 10/9/6 - (Harland et 

al., 1991) 

control/gamithromyci

n 

308 154/154 293 64/34 - - - (Lechtenber

g et al., 

2011) 

control/gamithromyci

n 

159 53/106 256 34/15 - - - (Lechtenber

g et al., 

2011) 

control/florfenicol 108 54/54 271 16/18 - - - (Martin et 

al., 2007) 

control/tilmicosin 199 100/99 215 54/15 - - - (McClary & 

Vogel, 

1999) 

control/tilmicosin 

/oxytetracycline 

1806 601/602/603 300 254/117/

157 

- - - (Morck et 

al., 1993) 

tilmicosin/tulathromy

cin 

293 147/146 219 100/48 - 20/5 - (Nickell, 

White, 

Larson, 

Blasi, & 

Renter, 

2008) 

control/gamithromyci

n 

250 125/125 350 43/6 - - - (Rossi, 

Vandoni, 

Bonfanti, & 

Forbes, 

2010) 

oxytetracycline/gamit

hromycin 

470 235/235 345 34/4 - - - (Rossi et 

al., 2010) 

tulathromycin/gamith

romycin 

1136 568/568 325 83/53 - - - (Rossi et 

al., 2010) 
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control/tilmicosin 305 154/151 337 35/8 - - - (Schumann, 

Janzen, & 

McKinnon, 

1990) 

control/tilmicosin 205 103/102 269 21/2 - - - (Schumann, 

Janzen, & 

McKinnon, 

1991) 

tilmicosin/oxytetracy

cline 

10,989 5494/5495 281 - 1064/1239 77/85 

 

409/454 (Schunicht, 

Guichon, et 

al., 2002b) 

tilmicosin/ceftiofur 385 194/191 - 14/18 - - - (Step et al., 

2007) 

control/tilmicosin/tul

athromycin 

2336 783/784/769 312 - 112/45/16 24/11/8 - (Tennant et 

al., 2014) 

tulathromycin/gamith

romycin 

2529 1266/1263 230 274/361 - - - (Torres, 

Thomson, 

Bello, 

Nosky, & 

Reinhardt, 

2013a) 

tilmicosin/gamithrom

ycin 

5000 2500/2500 312 - 480/320 10/15 81/44 (Van 

Donkersgoe

d, 2012) 

tilmicosin/tildipirosin 4500 2250/2250 336 - 608/338 20/20 79/54 (Van 

Donkersgoe

d & Merrill, 

2013a) 

control/tilmicosin 4314 2157/2157 348 - 259/173 9/2 53/33 (Van 

Donkersgoe

d & Merrill, 

2013b) 
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tilmicosin/tulathromy

cin 

4494 2250/2244 274 - 315/67 5/1 28/7 (J. Van 

Donkersgoe

d, J. K. 

Merrill, & 

S. 

Hendrick, 

2008) 

control/tilmicosin 1096 550/546 259 298/165 317/185 23/9 50/22 (G. J. Vogel 

et al., 1998) 
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Table 4.2. The mean odds ratio with 95% credibility intervals for BRD morbidity cumulative 

incidence d 1 to ≤ 60 of the feeding period (a)1, BRD morbidity cumulative incidence d 1 to 

close out of the feeding period (b)2, BRD mortality cumulative incidence d 1 to closeout (c)2, and 

BRD retreatment cumulative incidence d 1 to closeout (d)2 of the mixed treatment comparison 

meta-analysis. The metaphylactic antimicrobial on the left for all odds ratio comparisons is the 

reference category.  

1 Binomial likelihood, complimentary log-log (cloglog) link, random-effects model 
2 Binomial likelihood, logit link, random-effects model 
3 The antimicrobial on the left of each comparison is the denominator in the ratio, and the 

antimicrobial on the right is the numerator. If the OR are equal to 1, odds of the event occurrence 

are the same for each antimicrobial; if odds are less than 1, the odds for the event occurrence are 

greater for the antimicrobial on the left; if odds are greater than 1, the odds for the event 

occurrence are greater for the antimicrobial on the right. 

 Comparison3 OR 95% CrIs 

(a) BRD morbidity d 1 to ≤ 

60 

tilmicosin vs. TMS 3.59 1.19 - 9.30 

tilmicosin vs. oxytetracycline 2.16 1.11 - 3.92 

tilmicosin vs. florfenicol 3.15 1.26 - 6.68 

tilmicosin vs. tulathromycin 0.59 0.27 - 1.14 

tilmicosin vs. ceftiofur 1.10 0.43 - 2.43 

tilmicosin vs. gamithromycin 0.69 0.39 - 1.15 

TMS vs. oxytetracycline 0.74 0.24 - 1.74 

TMS vs. florfenicol 1.11 0.26 - 3.03 

TMS vs. tulathromycin 0.21 0.05 - 0.57 

TMS vs. ceftiofur 0.39 0.09 - 1.14 

TMS vs. gamithromycin 0.24 0.07 - 0.58 

oxytetracycline vs. florfenicol 1.57 0.54 - 3.56 

oxytetracycline vs. tulathromycin 0.30 0.11 - 0.63 

oxytetracycline vs. ceftiofur 0.55 0.18 - 1.26 

oxytetracycline vs. gamithromycin 0.34 0.16 - 0.62 

florfenicol vs. tulathromycin 0.22 0.07 - 0.53 

florfenicol vs. ceftiofur 0.41 0.11 - 1.12 

florfenicol vs. gamithromycin 0.25 0.09 - 0.55 

tulathromycin vs. ceftiofur 2.05 0.65 - 5.07 

tulathromycin vs. gamithromycin 1.26 0.64 - 2.27 

ceftiofur vs. gamithromycin 0.73 0.29 - 1.55 

(b) BRD morbidity d 1 to 

closeout 

tilmicosin vs. TMS 2.07 1.11 - 3.56 

tilmicosin vs. oxytetracycline 1.29 0.94 - 1.77 

tilmicosin vs. tulathromycin 0.23 0.16 - 0.32 

tilmicosin vs. ceftiofur 0.97 0.54 - 1.62 

tilmicosin vs. gamithromycin 0.64 0.35 - 1.08 

tilmicosin vs. tildipirosin  0.50 0.27 - 0.83 

TMS vs. oxytetracycline 0.67 0.37 - 1.14 

TMS vs. tulathromycin 0.12 0.06 - 0.22 

TMS vs. ceftiofur 0.51 0.21 - 1.04 

TMS vs. gamithromycin 0.34 0.14 - 0.69 
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TMS vs. tildipirosin  0.26 0.11 - 0.53 

oxytetracycline vs. tulathromycin 0.18 0.12 - 0.27 

oxytetracycline vs. ceftiofur 0.77 0.39 - 1.36 

oxytetracycline vs. gamithromycin 0.51 0.25 - 0.92 

oxytetracycline vs. tildipirosin  0.39 0.20 - 0.70 

tulathromycin vs. ceftiofur 4.43 2.17 - 7.88 

tulathromycin vs. gamithromycin 2.94 1.41 - 5.28 

tulathromycin vs. tildipirosin  2.27 1.10 - 4.06 

ceftiofur vs. gamithromycin 0.71 0.30 - 1.43 

ceftiofur vs. tildipirosin  0.55 0.23 - 1.12 

gamithromycin vs. tildipirosin  0.84 0.35 - 1.70 

(c) BRD mortality d 1 to 

closeout 

tilmicosin vs. TMS 1.35 0.28 - 3.84 

tilmicosin vs. oxytetracycline 1.44 0.74 - 2.70 

tilmicosin vs. tulathromycin 0.26 0.13 - 0.49 

tilmicosin vs. ceftiofur 0.88 0.25 - 2.02 

tilmicosin vs. gamithromycin 1.96 0.44 - 5.43 

tilmicosin vs. tildipirosin  1.21 0.32 - 3.17 

TMS vs. oxytetracycline 1.64 0.37 - 4.82 

TMS vs. tulathromycin 0.31 0.06 - 1.00 

TMS vs. ceftiofur 1.07 0.14 - 3.56 

TMS vs. gamithromycin 2.86 0.25 - 8.95 

TMS vs. tildipirosin  1.52 0.17 - 5.41 

oxytetracycline vs. tulathromycin 0.20 0.08 - 0.41 

oxytetracycline vs. ceftiofur 0.74 0.15 - 1.75 

oxytetracycline vs. gamithromycin 1.52 0.27 - 4.60 

oxytetracycline vs. tildipirosin  1.02 0.19 - 2.70 

tulathromycin vs. ceftiofur 3.81 0.83 - 9.42 

tulathromycin vs. gamithromycin 8.41 1.45 - 25.26 

tulathromycin vs. tildipirosin  5.39 1.03 - 14.73 

ceftiofur vs. gamithromycin 3.38 0.42 - 10.70 

ceftiofur vs. tildipirosin  2.01 0.30 - 6.41 

gamithromycin vs. tildipirosin  1.15 0.12 - 3.58 

(d) BRD retreatment 

morbidity d 1 to 

closeout 

tilmicosin vs. oxytetracycline 1.00 0.59 - 1.60 

tilmicosin vs. tulathromycin 0.50 0.22 - 0.98 

tilmicosin vs. ceftiofur 0.82 0.39 - 1.52 

tilmicosin vs. gamithromycin 0.86 0.37 - 1.70 

tilmicosin vs. tildipirosin  1.38 0.60 - 2.69 

oxytetracycline vs. tulathromycin 0.52 0.22 - 1.01 

oxytetracycline vs. ceftiofur 0.90 0.34 - 1.85 

oxytetracycline vs. gamithromycin 0.93 0.33 - 2.05 

oxytetracycline vs. tildipirosin  1.67 0.54 - 3.24 

tulathromycin vs. ceftiofur 2.04 0.62 - 4.65 

tulathromycin vs. gamithromycin 2.06 0.59 - 5.13 
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tulathromycin vs. tildipirosin  3.39 0.97 - 8.09 

ceftiofur vs. gamithromycin 1.30 0.37 - 2.88 

ceftiofur vs. tildipirosin  1.94 0.61 - 4.53 

gamithromycin vs. tildipirosin  2.01 0.55 - 4.77 
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Figure 4.1. Network of treatment arms for the metaphylactic antimicrobial for BRD morbidity 

cumulative incidence d 1 to ≤ 60 of the feeding period (a), BRD morbidity cumulative incidence 

d 1 to closeout of the feeding period (b), BRD mortality cumulative incidence d 1 to closeout (c), 

and BRD retreatment morbidity cumulative incidence d 1 to closeout (d) in the mixed treatment 

comparison meta-analysis. The width of the lines corresponds to the number of direct 

comparisons between antimicrobials, the size of the dot indicates the number of antimicrobials 

within each arm, and number in parenthesis corresponds to the number of comparisons for each 

antimicrobial.  
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Figure 4.2.  Forest plots of the odds ratio comparison between individual antimicrobials and 

control in the mixed treatment comparison with a 95% CrIs for BRD morbidity cumulative 

incidence d 1 to ≤ 60 of the feeding period (a)1, BRD morbidity cumulative incidence d 1 to 

close out of the feeding period (b)2, BRD mortality cumulative incidence d 1 to closeout (c)2, and 

BRD retreatment morbidity cumulative incidence d 1 to closeout (d)2. 

1 Binomial likelihood, complimentary log-log (cloglog) link, random-effects model 
2 Binomial likelihood, logit link, random-effects model 
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Chapter 5 - A mixed treatment comparison meta-analysis of 

metaphylaxis treatments for bovine respiratory disease and the 

effects on performance outcomes in beef cattle 

 

 Introduction 

 Bovine respiratory disease (BRD) leads to economic losses due to mortality, treatment 

costs, decreased performance, and carcass value (Griffin, 1997; Schneider et al., 2009). Multiple 

methods to combat BRD have been researched and performed in order to minimize the negative 

impact of BRD in incoming feedlot calves, one example is metaphylaxis. Metaphylaxis treatment 

options have been shown to decrease the risk of BRD morbidity and mortality in feedlot cattle as 

well as improve treatment response rates in calves (Abell et al., 2017; O’Connor et al., 2016). 

Differences between multiple treatment options has been analyzed using a mixed treatment 

comparison (MTC) meta-analysis in order to make direct and indirect comparisns among 

antimicrobial treatments. A MTC meta-analysis has proven to generate results comparable to 

direct clinical trials (O’Connor et al., 2016). Direct comparisons between trials using meta-

analysis techniques has shown calves treated with a metaphylactic antimicrobial had a greater 

average daily gain (ADG) of 0.11 kg/d compared to controls (Wileman et al., 2009). 

Performance measurements such as dry matter intake (DMI), feed to gain ratio (F:G), and 

carcass measurements (hot carcass weight (HCW), quality and yield grade) would be beneficial 

to analyze the differences between animals treated with different metaphylactic antimicrobials in 

order to understand the effects metaphylaxis may have on cattle performance.  

 The objective of this research was to evaluate the effect of metaphylactic antimicrobials 

approved for feeder and stocker calves to be administered parenterally for the prevention of 

BRD, on performance outcomes using a MTC meta-analysis. The results from this analysis 
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should contribute to the understanding of performance outcomes from calves metaphylactically 

treated at arrival to a feeder or stocker operation.  

 Materials and Methods 

 Literature search 

 A literature search was performed as previously described (Abell et al., 2017). 

Manuscripts were included from trials where a metaphylactic antimicrobial was randomly 

administered parentally to incoming feedlot calves within 48 h of arrival and performance 

measurements were collected at the end of the feeding period, or closeout. Performance 

measurements included ADG, DMI, F:G, HCW, quality grade choice or better, and yield grade 

1-2.  

 Data extraction 

 Outcome data were extracted from trials that included data to the end of the feeding 

period. The end of the feeding period did not need to be defined by actual days, but had to be 

specified as closeout, terminal sort, end of feeding period, or slaughter. Data from trials within 

the same study were extracted separately. Data were extracted by a single reviewer (KA). Data 

were extracted for each antimicrobial within each trial and individual antimicrobials were 

classified as individual treatment arms. The following data were extracted from each trial: the 

antimicrobial for each treatment arm, number of animals enrolled in each treatment arm, number 

of animals processed for each treatment arm, and event occurrence for each performance 

outcome for each treatment arm (Table 5.1 and 5.3). Data were not included if performance 

analysis was not specified as deads included or deads excluded, or variability of means, standard 

deviation (SD) or standard error (SE), were not reported. For two trials, the variability (SE/SD) 

for a given mean was zero, and the zero was changed to 0.0001 for purpose of model 
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convergence (Booker et al., 2006; G.J. Vogel et al., 1998). Event occurrence included ADG, 

DMI, F:G, HCW, quality grade choice or better, and yield grade 1-2. Two trials included in the 

quality and yield grade analysis were performed in Canada and had different grading systems for 

quality and yield grade (Booker, et al., 2007; Schunicht et al., 2002a). Canada AAA was 

categorized as choice or greater, Canada prime was included in the choice or greater category, 

Canada 1 was categorized as yield grade 1, and Canada 2 was categorized as yield grade 2 

(Processors, 2016). Data reported as prime and choice grade were combined to create the 

outcome choice or greater. The raw data from yield grade 1 was combined with the raw data 

from yield grade 2 to create the outcome yield grade 1-2. Data were aggregated as previously 

described, if the difference between treatment arms within a trial was due to a difference in post 

metaphylactic interval or route of administration (Abell et al., 2017). Results reported as 

percentages for each treatment arm were extracted based on the number of animals enrolled as 

deads-included or deads-excluded, or the number of animals that were processed. Data were 

excluded from the analysis if the number of animals enrolled or processed could not be 

determined.  

 Multiple treatment comparison analysis 

 The effectiveness for each individual treatment arm for ADG, DMI, F:G, and HCW was 

examined using the normal likelihood, identity link, random effects model in order to combine 

the direct and indirect evidence in the mixed treatment comparison meta-analysis with a 

Bayesian approach (Dias et al., 2010; Higgins & Whitehead, 1996; Lu & Ades, 2004a). The 

effectiveness for each individual treatment arm for quality grade choice or better and yield grade 

1-2 was examined using the binomial likelihood, logit link, random effects model. Based on the 

known ordinal relationship of carcass outcomes, only quality grade choice or better was 
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analyzed, and yield grade 1 and 2 were combined for the analysis (Osterstocket al., 2010). The 

code was called through WinBUGS through R with the R2Winbugs package to fit the model for 

all event outcomes (Dias et al.2011).  

 A homogeneous variance was assumed for all models and uniformed priors were used for 

the standard deviation, σ. In order to determine the best fitting model, two uniformed standard 

deviation priors were tested, σ ~ uniform(0, 5) vs σ ~ uniform(0, 2). The σ ~ uniform (0, 5) 

proved to have narrower credibility intervals as well as a lower deviance information criterion 

(DIC) compared to σ ~ uniform (0, 2), therefore σ ~ uniform (0, 5) was used in the final code. 

Best convergence chains were determined based on visualization of Gelman-Rubin diagnostics 

(Gelman & Rubin, 1992). The final model for all event outcomes included 2 chains, each with 

150,000 iterations, the first 50,000 of those were discarded. The final model output for ADG, 

DMI, F:G, and HCW included the posterior mean between treatment arm comparisons with 

corresponding 95% credibility intervals (CrIs). The final model output for quality grade choice 

or better and yield grade 1-2 included the posterior mean for odds ratio between treatment arm 

comparisons with corresponding 95% CrIs.  

 Results 

 The initial screening of the literature revealed 170 publications, with a total of 11 trials 

meeting all inclusion criteria (Table 5.1 and 5.3). A placebo control was present in 4 trials for 

ADG, DMI, F:G, and HCW analysis, and a placebo control was present in 3 trials for quality and 

yield grade analysis. The maximum number of treatment arms per trial was 3 (Booker et al., 

2007; Tennant et al., 2014), and the remaining trials contained 2 treatment arms. The treatment 

arms analyzed between all models included Tilmicosin, Oxytetracycline, Ceftiofur, 

Tulathromycin, Tildipirosin, and Gamithromycin. Tilmicosin was included in 10/11 of trials 
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included in the ADG, DMI, F:G, and HCW analysis, and included in all trials in the quality and 

yield grade analysis.  

  The model for ADG with deads-included consisted of a total of 8 trials with 4 different 

treatment arms analyzed (Table 5.1) (Gamithromycin, Tildipirosin, Tilmicosin, and 

Tulathromycin). Posterior mean comparisons with 95% CrIs between metaphylactic 

antimicrobials and controls are shown in Fig. 5.1(a). All posterior mean antimicrobials are 

greater than 0, or animals that were treated with one of the 4 antimicrobials included in the MTC 

meta-analysis had a greater ADG compared to controls by approximately 0.05 kgs. The lower 

limit of the 95% CrIs for Tildipirosin and Tulathromycin are less than 0, and is approximately 0 

for Gamithromycin.  

 The model for ADG with deads-excluded consisted of a total of 8 trials with 5 different 

treatment arms analyzed (Table 5.1) (Ceftiofur, Gamithromycin, Tulathromycin, Tilmicosin, and 

Oxytetracycline). Posterior mean comparisons with 95% CrIs between metaphylactic 

antimicrobial and controls are shown in Fig 5.1(b). The posterior mean ADG for all 

antimicrobials is greater than 0 compared to controls and ranges between 0.02 to 0.05 kgs. The 

lower limits of the 95% CrIs for all antimicrobials is less than 0, with Gamithromycin having the 

widest CrIs of -0.04 to 0.12 kgs.  

 The number of trials included for DMI deads-included analysis was 6 and for DMI deads-

excluded was 5. The posterior means for all antimicrobials included in the DMI deads-included 

analysis were greater than 0 compared to controls, but the lower limit of all 95% CrIs were less 

than 0 for all antimicrobials (Fig. 5.2(a)). Tildipirosin had the widest 95% CrIs of -0.70 to 0.85 

kg. The posterior means for the antimicrobials included in the DMI deads-excluded analysis had 
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wide 95% CrIs that included 0 within the interval. Ceftiofur had a posterior mean less than 0 for 

the DMI deads-excluded analysis of -0.11 kg.  

 The analysis for F:G deads-included and deads-excluded analysis both had 7 trials and 4 

different antimicrobials (Table 5.1). All posterior means for the 4 different antimicrobials in the 

F:G deads-included analysis outcome were less than 0 compared to the controls with the upper 

95% CrIs greater than 0. The widest 95% CrIs was Gamithromycin compared to controls, -0.23 

to 0.42 (Fig. 5.3(a)). The posterior means for all 4 different antimicrobials compared to controls 

for the F:G deads-excluded analysis were very similar, the posterior mean range of treatments 

was -0.01 to 0.02 (Fig. 5.3(b)).  

 Hot carcass weight (HCW) was included in 4 different trials. The reason for the small 

number of trials for this outcome was due to the outcome or a measure of variability (SE/SD) not 

being reported. The antimicrobials included in this analysis were Tulathromycin, Ceftiofur, 

Tilmicosin, and Oxytetracycline (Fig 5.4). All posterior mean comparisons between the 

metaphylactic antimicrobial and control, and the associated 95% CrIs were greater than 0 except 

for Oxytetracycline. The 95% CrIs for Oxytetracycline was -1.93 to 11.9 kg. All pairwise 

comparisons between the antimicrobials posterior means with 95% CrIs for ADG, DMI, F:G, 

and HCW are shown in Table 5.2.  

 The analysis for quality and yield grade included 6 different trials (Table 5.3). The model 

for yield grade did converge, but the results were not believable due to the odds ratio computed 

was outside of the 95% CrIs. The results for yield grade 1-2 are not shown, but the raw data is 

provided in Table 5.3. Figure 5.5 shows the forest plot of the log odds ratio (OR) comparison 

between individual antimicrobials and control in the MTC meta-analysis. An OR equal to 1 

indicates the odds of event occurrence are the same for both antimicrobial and control; an OR 
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less than 1 indicates the odds for event occurrence are greater for the control compared to the 

antimicrobial; an OR greater than 1 indicates the odds of event occurrence are greater for the 

antimicrobial compared to controls. The lower limit of the 95% CrIs for all antimicrobials were 

less than 1 compared to controls. The mean odds ratios between each metaphylactic 

antimicrobial are shown in Table 5.4.  

 Discussion 

 The results from the mixed treatment comparison meta-analysis were able to identify 

differences between the performance outcomes of ADG, DMI, F:G, HCW, and quality grade 

choice or better for cattle treated with metaphylactic antimicrobials versus controls. The analysis 

was not able to identify differences in yield grade 1-2 due to unrealistic mean odds ratios 

produced from the model. The results presented are the first to the authors’ knowledge that 

compare indirect and direct evidence of the effect of metaphylactic antimicrobials on 

performance outcomes in feedlot calves.  

 The purpose for administering a metaphylactic antimicrobial at arrival to feedlot cattle is 

to prevent BRD (Young, 1995), and it is important to recognize that the antimicrobials are not 

labeled to be given in order to influence performance outcomes in calves. In the current study, 

the outcomes were analyzed to determine if differences existed in performance outcomes at the 

end of the feeding period between antimicrobials and controls, as well as between different 

antimicrobials. The results presented should not be interpreted as evidence for and an 

endorsement of administration of a metaphylactic antimicrobial to obtain a desired performance 

outcome.  

 When evaluating the outcome ADG, the posterior mean comparison between 

metaphylactic antimicrobial and control show a slightly lower ADG advantage for metaphylactic 
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antimicrobial treatment compared to controls when calculated as deads-excluded versus when 

calculated as deads-included (Fig. 5.1). A previous meta-analysis demonstrated calves treated 

with an metaphylactic antimicrobial versus control had a greater ADG of 0.11 kg/d (Wileman et 

al., 2009). In the current study, the largest posterior mean comparison between an antimicrobial 

versus control was Ceftiofur, 0.05 kg/d, which is lower than the direct meta-analysis results 

combining all cattle receiving a metaphylactic antimicrobial versus control cattle reported by 

Wileman et al (Wileman et al., 2009). Reasons for the discrepancy with this study may be 

because Wileman et al. included trials that ended prior to the end of the feeding period and 

antimicrobials administered orally. The outcome F:G shows that the deads-included posterior 

means compared to controls are lower compared to the deads-excluded calculations (Fig. 5.3). 

The posterior means for the DMI deads-included and -excluded appear very similar (Fig. 5.2). 

Reasons for the similarity between the DMI deads-included and deads-excluded analysis may be 

due to the small number of trials reporting that outcome, which may also be the reason for the 

wide 95% CrIs for each antimicrobial. The 95% CrIs are overlapping between antimicrobials in 

all performance outcomes, making full interpretation between antimicrobials difficult.  

 Figure 4 shows the differences between treatments compared to controls and the effect on 

HCW. All treatments were greater than 0, except for Oxytetracycline. The total number of trials 

to determine the HCW outcome was 4, and the differences between each treatment arm versus 

the control were robust enough to demonstrate a difference in the MTC meta-analysis.  

 The results for quality grade choice or better shows there are overlapping 95% CrIs for 

antimicrobials versus control, as well as between antimicrobials (Fig. 5.5). Table 4 shows the 

results of the mean OR between antimicrobials, and the OR for each comparison are very close 

to 0, meaning the odds of quality grade choice or greater is the same for each antimicrobial. All 
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the 95% CrIs for each comparison contains 1, except for Tilmicosin versus Oxytetracycline. 

Tilmicosin was presented in each trial included in the MTC meta-analysis, and one paper does 

estimate the direct differences between Tilmicosin and Oxytetracycline, and the difference is not 

statistically significant (P > 0.05) (Schunicht et al., 2002). The discrepancy between the indirect 

estimate created by the MTC meta-analysis and the direct comparison from the manuscript 

demonstrates the need to interpret the results from this study with caution. The estimates created 

from this analysis may not be robust due to the small number of trials included in the analysis. 

Estimates were not believable for the yield grade 1-2 outcome and may be due to the small 

number of studies included in the MTC meta-analysis. The raw data may be added to future 

research comparing different antimicrobials administered to cattle and the effects on 

performance outcomes. The raw data could potentially be used in an economic evaluation to 

determine cost differences between metaphylactically treated cattle and the effect on 

performance outcomes. 

 Overall, the number of studies evaluated for each outcome were small, with the greatest 

number of trials included in the ADG outcome analysis (8 trials). Interpretation of the results 

from this MTC meta-analysis should be performed with caution due to potential publication bias 

and inconsistencies between the combined data to produce the presented outcomes. The data 

included in this analysis were from trials that followed cattle to the end of the feeding period. 

The definition for the end of the feeding period may be different between studies, and may be a 

source of confounding bias in the analysis. For example, in one study, calves were followed to 

terminal sort, which means that some animals may have been on feed for an additional 30 to 40 

days (Van Donkersgoed & Merrill, 2013a). The differences between feeding days between trials 

may confound the results presented in this study, therefore the results should be interpreted with 
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caution. The performance outcomes were usually secondary outcomes in each of the trials 

included in the analysis, with health outcomes (morbidity and mortality) being the primary 

outcomes. The trials included in the current study ranged from the years 1998 to 2015, and there 

is a potential risk in combining results from performance outcomes in calves that were fed in 

feedlots in different countries, environments, rations, etc.  

 Conclusion 

 In summary, the results of this study demonstrated the use of a MTC meta-analysis to 

determine the effects on performance outcomes of different metaphylactic antimicrobials used in 

feedlot calves. Unfortunately, the estimates were not robust enough to determine differences 

among antimicrobials for ADG, DMI, F:G, HCW, quality grade choice or better, or yield grade 

1-2, due to an insufficient number of trials included in the analysis. Further research is needed to 

determine the effects of different metaphylactic antimicrobials on performance outcomes and 

possible economic differences that may exists in feedlot cattle.  
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Table 5.1. Data extracted from 11 individual trials included in a mixed treatment comparison meta-analysis for ADG, DMI, F:G, and 

HCW performance event outcomes. Deads-excluded is defined as mortalities and railers throughout the feeding period were not 

included in the analysis. Deads-included is defined as mortalities and railers throughout the feeding period were included.  

1 Average daily gain (kg) 

2 Daily dry matter intake (kg) 

3 Feed to gain conversion (kg/kg) 

4 Hot Carcass Weight (kg) 

Treatment Arms 

ADG1  

Deads 

in. 

ADG 

 Deads 

exl. 

DMI2 

 Deads 

in. 

DMI  

Deads 

exl. 

F:G3  

Deads 

in. 

F:G  

Deads 

exl. 

HCW4 Reference 

Control/Tilmicosin 

1.29/1.3

6  

(±0.01) 

1.44/1.46 

(±0.0001) 

7.4/7.5  

(±0.1) 

7.4/7.5 

(±0.1) 

5.75/5.3

9 

(±0.04) 

5.15/5.1

8 

(±0.05) 

- 
(G.J. Vogel et 

al., 1998) 

Tilmicosin/Oxytetracyline - 
1.35/1.35 

(±0.0001) 
- 

8.65/8.65 

(±0.03) 
- 

6.45/6.4

3 

(±0.02) 

- 

(Schunicht, 

Guichon, et al., 

2002a) 

Control/Tilmicosin 

1.46/1.5

0 

(±0.03) 

1.52/1.56 

(±0.014) 
- 

8.55/8.55 

(±0.17) 

5.74/5.6

2 

(±0.14) 

5.63/5.5

0 (±0.1) 

353.6/359.7 

(±1.51) 

(C.A. Guthrie 

et al., 2004) 

Tilmicosin/Ceftiofur - 
1.23/1.26 

(±0.009) 
- 

8.14/7.97 

(±0.05) 
- 

6.46/6.4

7 

(±0.03) 

401.0/404.2 

(±1.59) 

(Booker et al., 

2006) 

Tilmicosin/Oxytetracyclin

e/Tulathromycin 
- 

1.17/1.16/

1.20 

(±0.005) 

- 

7.99/8.03

/8.34 

(±0.04) 

- 

6.80/6.9

2/6.94 

(±0.04) 

334.4/333.4/3

38.4 (±0.73) 

(Booker, 

Abutarbush, 

Schunicht, Jim, 

& Perrett, 

2007) 
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Tilmicosin/Tulathromycin 

1.33/1.3

2 

(±0.004) 

1.30/1.30 

(±0.004) 
- - 

6.87/6.9

5 

(±0.06) 

6.97/7.0

2 

(±0.05) 

- 

(J. Van 

Donkersgoed, 

J. Merrill, & S. 

Hendrick, 

2008) 

Tilmicosin/Gamithromyci

n 

1.40/1.3

8 

(±0.014) 

- 
8.68/8.64 

(±0.03) 
- 

6.52/6.6

3 

(±0.07) 

- - 

(Van 

Donkersgoed, 

2012) 

Tilmicosin/Tildipirosin 

1.52/1.5

2 

(±.014) 

- 
8.77/8.77 

(±0.03) 
- 

5.77/5.7

7 

(±0.05) 

- - 

(Van 

Donkersgoed 

& Merrill, 

2013a) 

Control/Tilmicosin 

1.82/1.8

8 

(±.005) 

- 

10.68/10.

59 

(±0.08) 

- 

5.84/5.6

2 

(±0.05) 

- - 

(Van 

Donkersgoed 

& Merrill, 

2013b) 

Tulathromycin/Gamithro

mycin 

1.52/1.5

2 

(±0.03) 

1.2/1.2 

(±0.01) 

7.3/7.4 

(±0.08) 
- - - - 

(Torres, 

Thomson, 

Bello, Nosky, 

& Reinhardt, 

2013b) 

Control/Tilmicosin/Tulath

romycin 

1.47/1.5

3/1.55 

(±.04) 

1.53/1.56/

1.57 

(±0.04) 

8.31/8.50

/8.53 

(±0.11) 

- 

5.65/5.5

6/5.56 

(±0.003) 

5.43/5.4

6/5.43 

(±0.004) 

398.5/406.0/4

70.1 (±2.6) 

(Tennant et al., 

2014) 
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Figure 5.1. Forest plot of posterior mean comparisons between metaphylactic antimicrobial and 

control in the mixed treatment comparison meta-analysis with 95% CrIs for average daily gain 

with deads-included (a) and deads-excluded (b)1.  

1Normal likelihood, identity link, random effects model for multi-arm trials.  
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Figure 5.2. Forest plot for posterior mean comparisons between metaphylactic antimicrobial and 

control in the mixed treatment comparison meta-analysis with 95% CrIs for daily dry matter 

intake with deads-included (a) and deads-excluded (b)1.  

1Normal likelihood, identity link, random effects model for multi-arm trials.  
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Figure 5.3. Forest plot of posterior mean comparison between metaphylactic antimicrobial and 

control in the mixed treatment comparison meta-analysis with 95% CrIs for feed to gain ratio 

with deads-included (a) and deads-excluded (b)1.  

1Normal likelihood, identity link, random effects model for multi-arm trials.  
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Figure 5.4. Forest plot of posterior mean comparison between metaphylactic antimicrobial and 

control in the mixed treatment comparison meta-analysis with 95% CrIs for hot carcass weight 

(HCW) (kg)1.  

1 Normal likelihood, identity link, random-effects model 
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Table 5.2. Pairwise comparison results between metaphylactic antimicrobials for each 

performance event outcome with 95% credibility intervals of the mixed treatment comparison 

meta-analysis1. Posterior means for each metaphylactic antimicrobial comparison are included 

for ADG with deads-included (a), ADG with deads-excluded (b), DMI with deads-included (c), 

DMI with deads-excluded (d), F:G with deads-included (e), F:G with deads-excluded (f), and hot 

carcass weight (HCW). The metaphylactic antimicrobial on the left for all mean comparisons is 

the reference category.  

1 Normal likelihood, identity link, random-effects model 

Event Outcome Comparison Mean 95% CrIs 

(a) ADG 

Deads included 

Tilmicosin vs. Tulathromycin -0.02 -0.08 - 0.04 

Tilmicosin vs. Gamithromycin 0.01 -0.05 - 0.09 

Tilmicosin vs. Tildipirosin 0.00 -0.09 - 0.09 

Tulathromycin vs. Gamithromycin 0.03 -0.04 - 0.12 

Tulathromycin vs. Tildipirosin 0.02 -0.09 - 0.13 

Gamithromycin vs. Tildipirosin -0.01 -0.13 - 0.09 

(b) ADG 

Deads excluded 

Tilmicosin vs. Oxytetracycline -0.01 -0.05 - 0.03 

Tilmicosin vs. Tulathromycin  0.02 -0.02 - 0.05 

Tilmicosin vs. Ceftiofur 0.03 -0.03 - 0.09 

Tilmicosin vs. Gamithromycin 0.02 -0.06 - 0.09 

Oxytetracycline vs. Tulathromycin 0.03 -0.02 - 0.07 

Oxytetracycline vs. Ceftiofur 0.04 -0.03 - 0.11 

Oxytetracycline vs. Gamithromycin 0.03 -0.05 - 0.10 

Tulathromycin vs. Ceftiofur 0.01 -0.06 - 0.08 

Tulathromycin vs. Gamithromycin 0.00 -0.06 - 0.06 

Ceftiofur vs. Gamithromycin -0.01 -0.10 - 0.08 

(c) DMI 

Deads included 

Tilmicosin vs. Tulathromycin 0.00 -0.52 - 0.57 

Tilmicosin vs. Gamithromycin 0.01 -0.51 - 0.61 

Tilmicosin vs. Tildipirosin -0.001 -0.67 - 0.68 

Tulathromycin vs. Gamithromycin 0.01 -0.55 - 0.58 

Tulathromycin vs. Tildipirosin -0.001 -0.88 - 0.84 

Gamithromycin vs. Tildipirosin -0.02 -0.91 - 0.83 

(d) DMI Tilmicosin vs. Oxytetracycline 0.04 -0.58 - 0.68 
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Deads excluded Tilmicosin vs. Tulathromycin 0.35 -0.49 - 1.19 

Tilmicosin vs. Ceftiofur -0.18 -1.11 - 0.72 

Oxytetracycline vs. Tulathromycin 0.31 -0.54 - 1.16 

Oxytetracycline vs. Ceftiofur -0.22 -1.35 - 0.87 

Tulathromycin vs. Ceftiofur -0.53 -1.77 - 0.66 

(e) F:G 

Deads included 

Tilmicosin vs. Tulathromycin  0.07 -0.23 - 0.36 

Tilmicosin vs. Gamithromycin 0.11 -0.35 - 0.57 

Tilmicosin vs. Tildipirosin -0.001 -0.45 - 0.43 

Tulathromycin vs. Gamithromycin 0.04 -0.50 - 0.59 

Tulathromycin vs. Tildipirosin -0.07 -0.06 - 0.45 

Gamithromycin vs. Tildipirosin -0.11 -0.75 - 0.53 

(f) F:G 

Deads excluded 

Tilmicosin vs. Oxytetracycline 0.02 -0.13 - 0.18 

Tilmicosin vs. Tulathromycin 0.03 -0.09 - 0.17 

Tilmicosin vs. Ceftiofur 0.01 -0.22 - 0.24 

Oxytetracycline vs. Tulathromycin 0.01 -0.17 - 0.19 

Oxytetracycline vs. Ceftiofur -0.01 -0.30 - 0.26 

Tulathromycin vs. Ceftiofur -0.02 -0.29 - 0.23 

(g) HCW 

 

Tilmicosin vs. Ceftiofur 3.24 -3.39 - 9.85 

Tilmicosin vs. Oxytetracyline -1.29 -6.86 - 3.78 

Tilmicosin vs. Tulathromycin 3.43 -1.36 - 7.57 

Ceftiofur vs. Oxytetracycline -4.53 -13.17 - 3.72 

Ceftiofur vs. Tulathromycin 0.19 -8.03 - 7.79 

Oxytetracycline vs. Tulathromycin 4.72 -0.76 - 9.81 
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Table 5.3. Data extracted from 6 individual trials included in a mixed treatment comparison meta-analysis for quality grade choice or 

better and yield grade 1-2 event outcome.  

Treatment 

Arms 

Animals 

processed/group 
Choice or better YG 1-2 Reference 

Tilmicosin/Ceftiofur 3286/6829 2343/5114 1602/3359 (Booker et al., 2006) 

Tilmicosin/Oxytetracycline 
5345/5342 1047/996 5200/5230 

(Schunicht, Guichon, et al., 

2002a) 

Tilmicosin/Oxytetracycline/Tulathromycin 

3142/3103/3229 1545/1476/1670 2693/2715/2715 

(Booker, Abutarbush, 

Schunicht, Jim, & Perrett, 

2007) 

Control/Tilmicosin 164/721 59/251 84/622 (Corbin et al., 2009) 

Control/Tilmicosin 179/734 60/295 76/327 (Corbin et al., 2009) 

Control/Tilmicosin/Tulathromycin 759/773/761 358/349/372 370/313/331 (Tennant et al., 2014) 
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Figure 5.5. Forest plot of the odds ratio comparison between individual antimicrobials and 

control in the mixed treatment comparison1 meta-analysis with a 95% CrIs for quality grade 

choice or better. 

1 Binomial likelihood, logit link, random-effects model 
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Table 5.4. The mean odds ratio with 95% credibility intervals for quality grade choice or better1.  

1 Binomial likelihood, logit link, random-effects model 
2 The antimicrobial on the left of each comparison is the denominator in the ratio, and the 

antimicrobial on the right is the numerator. If the OR are equal to 1, odds of the event occurrence 

are the same for each antimicrobial; if odds are less than 1, the odds for the event occurrence are 

greater for the antimicrobial on the left; if odds are greater than 1, the odds for the event 

occurrence are greater for the antimicrobial on the right. 

Event Outcome Comparison2 OR 95% CrIs 

Choice or better 

Tilmicosin vs. Oxytetracycline 0.94 0.77 - 0.98 

Tilmicosin vs. Tulathromycin 1.11 0.90 - 1.16 

Tilmicosin vs. Ceftiofur 1.22 0.90 - 1.27 

Oxytetracycline vs. Tulathromycin 1.19 0.93 - 1.24 

Oxytetracycline vs. Ceftiofur 1.33 0.91 - 1.36 

Tulathromycin vs. Ceftiofur 1.10 0.77 - 1.16 
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Chapter 6 - Dissertation conclusions 

 

 Emerging advances in data management and predictive analytics allow data to be 

transformed to aid quick and accurate operational and management decisions in veterinary 

medicine. The purpose of this dissertation was to evaluate current analytic methods utilizing Big 

Data in the cattle health industry. Data analytic techniques such as statistical estimation with 

regression, machine learning techniques, and Bayesian analysis are currently being utilized to 

understand relationships between variables and desired outcomes. These results help quantify 

how data is being analyzed currently, as well as novel analyses available that will continue to 

advance the veterinary research profession. 

 Cow-calf production commonly utilizes multiple bulls within a single breeding pasture. 

The variability that exists in the number of progeny by bull was analyzed over time and 

demonstrated the changes that exist between bulls. Categorizing bulls by rank identified 

associations with the number of calves sired by individual bulls in each 21-day period of the 

calving season. Data management and further analytics will help quantify how rank changes for 

bulls over multiple breeding years, how to identify bulls with the greatest and least rank, and 

how calving rank is associated with dominance, libido, and fertility. To perform an analysis of 

this scale, a dataset is needed that provides accurate reproductive records of bulls over multiple 

breeding seasons, along with progeny records of all calves sired. A dataset as robust as the one 

required to quantify rank changes would be acquired from a large cow-calf production operation, 

and an initial predictive model could be generated based on initial data inquiries, and data could 

be added to the model over the years to provide an accurate estimation of overall individual bull 
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rank changes. Unfortunately, a dataset of this size would require funding to not only generate the 

overall reproductive records, but also progeny testing of individual bulls and calves.    

Machine learning allows predictive algorithms to be created on a large amount of data. 

Predictive modeling in this form has been proven to be accurate for identifying behaviors for 

lying and standing in bulls in a multiple-sire pasture. Understanding behaviors of animals allows 

for further evaluation of animal health and performance in the beef cattle industry. Machine 

learning can further identify how diagnostic sensitivity, specificity, positive predictive value, and 

negative predictive value changes based on the accuracy of a given classifier algorithm. Machine 

learning also has the advantage of removing a sub-set of the data for validation of the algorithm 

generated without having to conduct a separate research study. Removing a sub-set of the data 

for validation purposes deems more challenging in small datasets that utilize simple analytic 

techniques. 

 Simple analytic techniques, such as linear and logistic regression will remain invaluable 

for analyzing clinical trial, retrospective, and prospective data in veterinary medicine. A dataset 

that is not great enough to be considered Big Data can still be analyzed to determine 

relationships between variables and outcomes of interest. Variables such as temperature, 

behavior, and social interactions can be analyzed using regression techniques to understand 

associations with outcomes such as morbidity and mortality in beef cattle.  

 Bayesian analysis will continue to be utilized in the beef cattle industry considering prior 

probability in statistical analysis to model an outcome with known and unknown information that 

may not be as accurately and fully analyzed with regression techniques. The mixed treatment 

comparison meta-analysis presented in the previous chapters used Bayesian techniques to 

identify differences between parenteral metaphylactic antimicrobial options currently available 
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in feedlot cattle. Metaphylactic antimicrobial options appear to offer different effects on BRD 

morbidity and mortality odds in feedlot and stocker cattle. We were unable to identify 

performance and carcass differences between treatments due to a small number of trials available 

for the analysis.  

 Large amounts of data will continue to be collected in every aspect of the beef cattle 

industry, but actually implementing that data into daily management decisions may be lacking in 

certain areas. Knowing that advanced analytics, such as machine learning and Bayesian analysis 

exist allows a greater level of knowledge to be gained on desired outcomes. It is believed that 

these techniques will continue to be utilized and advance research in the cattle industry. 

Furthering the breadth of knowledge and understanding how to utilize advanced analytical 

techniques is critical for the beef cattle industry and the animal research industry. The human 

health industry continues to strive in advancing their management system based on real-time Big 

Data analytics. The veterinary health industry has the potential to advance as well, and even 

perform research that may not be possible in the human health industry due to regulatory 

constraints. The veterinary profession and cattle health industry have the potential to utilize Big 

Data analytics to continue to expand on the prediction methods for quantifying management 

factor effects on health and performance. 

 


