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Abstract

High throughput screening technologies have generated a huge amount of biological data

in the last ten years. With the easy availability of array technology, researchers started to

investigate biological mechanisms using experiments with more sophisticated designs that

pose novel challenges to statistical analysis. We provide theory for robust statistical tests in

three flexible models. In the first model, we consider the hypothesis testing problems when

there are a large number of variables observed repeatedly over time. A potential application

is in tumor genomics where an array comparative genome hybridization (aCGH) study will

be used to detect progressive DNA copy number changes in tumor development. In the

second model, we consider hypothesis testing theory in a longitudinal microarray study

when there are multiple treatments or experimental conditions. The tests developed can be

used to detect treatment effects for a large group of genes and discover genes that respond to

treatment over time. In the third model, we address a hypothesis testing problem that could

arise when array data from different sources are to be integrated. We perform statistical tests

by assuming a nested design. In all models, robust test statistics were constructed based on

moment methods allowing unbalanced design and arbitrary heteroscedasticity. The limiting

distributions were derived under the nonclassical setting when the number of probes is large.

The test statistics are not targeted at a single probe. Instead, we are interested in testing

for a selected set of probes simultaneously. Simulation studies were carried out to compare

the proposed methods with some traditional tests using linear mixed-effects models and

generalized estimating equations. Interesting results obtained with the proposed theory in

two cancer genomic studies suggest that the new methods are promising for a wide range

of biological applications with longitudinal arrays.
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Chapter 1

Introduction and motivation

Advances in high through-put technologies have shifted the focus of scientists from mRNA

arrays with known genes to DNA arrays that can scan the entire genome of an organism.

This also enabled the transition from study of individual genes to examination of regions

of a chromosome. One of such techniques is array Comparative Genomic Hybridization

(aCGH), in which the whole genome DNA information of an organism can be scanned onto

a chip with high resolution. The unit on the chip is referred as a probe. A probe can contain

mutations such as a singular nucleotide polymorphism (SNP), or contain a long sequence

of DNA such as BAC clone. There may be multiple probes for a single gene. Though the

goals of their specific biological investigations may be different, biologists all need statistical

tools to identify DNA segments or regions that exhibit differences for the sample of interest

compared with a reference sample. Some examples are identification of DNA regions that

show DNA copy number variations for disease versus normal sample, searching for enriched

DNA fragments using microarray intensity from chromatin immunoprecipitation (ChIP-

chip) to find transcription factor (TF)-binding sites.

Currently, many statistical methods have been used to identify the regions of aberration

when the signal intensities on different chips are from independent samples. These include

hidden Markov models (Fridlyand et al. 2004; Li et al. 2005; Du et al. 2006), change

point analysis (Olshen et al. 2004), local smoothing (Hupe et al. 2004; Zheng et al. 2007),
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Bayesian maximum a posteriori probabilities (Daruwala et al. 2004), hierarchical clustering

(Wang et al. 2005), regression (Reiss et al. 2007), EM algorithm based edge filtering (Myers

et al. 2004) and Bayesian hierarchical model (Gottardo et al. 2008). Most of these methods

assume independence or Gaussian distribution with piecewise constant variance for the (log

ratio of) intensities of the probes. Even though such assumptions in distribution can simplify

the modeling, they may be unrealistic for the complex DNA genomic data and therefore

the accuracy of these methods in practice can be a problem. For example, Lai et al. (2005)

compared several methods and found that hidden Markov models did not detect any of the

three amplified regions in a glioma aCGH data even though they detected smaller regions

in their simulated data. On the other hand, the EM algorithm based edge filtering method

(Myers et al. 2004) found all three regions in the glioma data to be significant but did not

detect the presence of aberrations in their simulated data.

Though many methods are available for independent samples, there are rarely any publi-

cations providing methods for identification of the event regions when the experiments have

longitudinal aCGH arrays. Recently, research with aCGH arrays for multiple time points

have been under development to study the genetic basis of cell development and tumor

progression. In these studies, the dynamic behavior of genomic DNA is monitored through

multiple chips at different cell growth stages. For instance, time course aCGH studies of in

vivo lymphoma and leukemia as well as in vitro tumor cell lines are under investigation for

progressive DNA copy number changes in Abbott Laboratories. The examples below justify

the significance of methods for longitudinal study using aCGH data.

Example. About 15% of children with Wilms tumor suffer from relapse with nearly half

dying of their disease despite aggressive second line treatment regimens. To determine the

molecular genetic changes associated with the progression or relapse of Wilms tumor, aCGHs

were obtained on ten patients at initial diagnosis and recurrence (Natrajan et al. 2007).

Using real-time reverse-transcription polymerase chain reaction (RT-PCR), the authors ob-

served the acquisition of a number of additional molecular alterations between the time of
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diagnosis and subsequent relapse, such as a small deletion at 14q12 in four cases, loss of the

entire X chromosome, and gain of the whole of 15q and chromosome 5. Unfortunately, the

paired t-test they applied did not find any significant recurrent changes in copy number after

correction for multiple testing. There were, however, acquired alterations which occurred

in more than one relapsed tumor including gain of 5p, 8p12, 15q, 16p, and 20q, as well as

the loss of 17p between the time of diagnosis and subsequent relapse. This example makes

it clear that methods for detection of event regions using longitudinal aCGH arrays remain

to be an important topic to be investigated.

Additional examples can be seen from the research of members in the K-State Ecological

Genomics Institute who study how organisms respond to changing environments over long

and shorter evolutionary time scales. These include microarray experiments done to study

the environmental stresses (such as drought and nitrogen changes) on big bluestem tall

grass; expression profiling to examine cellular and molecular responses of aquatic organisms

to various environmental stressors including pesticides, heavy metals, nutrients, and oxygen

depletion; cellular mechanisms of tomato plants in defensive response to a viral pathogen

(tomato spotted wilt virus) and an arthropod herbivore (two-spotted spider mite); genetic

responses of soil nematode to changes in soil chemistry caused by nitrogen addition and fire,

etc. With all these data produced that require matching statistical tools to decipher the

information from biological and pathological processes, statistical methodology for analysis

of longitudinal arrays needs to be developed.

The temporal component in the examples above is an inherent part of the study for

discovery of important genes or transcriptional activity over developmental stages. Repeated

measurements over time on the same subject induce correlations that need to taken into

account. Due to the high cost of array experiments, a large sample size assumption is

usually impractical. This, together with the high dimensionality, makes the likelihood based

optimal test procedures unmanageable or not applicable. See Wahba (1990), Brumback

and Rice (1998), Fan and Lin (1998), Huang and Lu (2000, 2001), and Wang (2002) for

3



examples of innovative models for designs with high-dimensional data. While such models

have had considerable impact in theory and applications, their applications in genomic data

are hindered due to the distributional assumptions that are restrictive or can not be justified

with small sample sizes. For example, many of the models in aforementioned references

assume normality or require large sample sizes. But it has been established that such data

do not follow a normal distribution (Daruwala et al. 2004; Sidorov et al. 2002; Zhao et al.

2004). Therefore, these methods have limited application in genomic studies.

In many aCGH data, the disease sample and reference sample were hybridized on the

same chip. Then the ratio or log ratio of the intensities of the disease and reference samples

are used as the observations. In this case, no additional fixed factors are necessary in the

model. In other cases, additional fixed factors are necessary to account for the effect of

multiple experimental conditions. In this thesis, nonparametric models are developed for

longitudinal high dimensional data with or without additional fixed factors. Test procedures

for the common hypotheses of interest under each of the models based on original observa-

tions are then constructed. The asymptotic distributions of the test statistics are obtained

under the non-classical setting in which the number of variables is large while the number of

replicates is small. Simulation studies were conducted to evaluate the new test procedures.

Applications of the new theory on genomic data from cancer studies are presented. The

methods in this thesis are based on a general model set up that allows robust inference in

presence of temporal correlations for heteroscedastic high dimensional low sample size data.

They provide flexible tools for nonparametric hypothesis testing and can be applied by a

wide range of scientists to accelerate novel gene discovery such as identification of biomarkers

to control tumor progression, important genes in pest and plant/animal/human interactions,

crucial genes for plants, animals or human to acquire tolerance to environmental stresses,

etc.

The rest of the thesis is organized as follows. Chapter 2 is devoted to nonparametric tests

for high dimensional longitudinal arrays when no additional fixed factors are in the model.

4



We will focus our discussion in the setting of time course aCGH study to detect DNA copy

number variations. Chapter 3 gives the testing procedures for longitudinal arrays when

multiple experimental conditions exist. Chapter 4 presents the theory for rank tests for

nested design in high dimensional data. Summaries and future research topics are described

in Chapter 5. A short introduction about Affymetrix SNP array technology and the R code

for the tests are given in Appendices.
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Chapter 2

Non-parametric tests for longitudinal
array CGH data

Tumor cells usually undergo dramatic chromosome changes resulting in gain or loss of DNA

copy numbers. High throughput technologies have made it possible to simultaneously exam-

ine DNA copy numbers at thousands or millions of sites of a genome. A time course array

study enables discovery of DNA copy number variation during tumor development. In this

chapter, we present robust new statistical tests for detecting the DNA regions with copy

number variation. Simulation studies show that the proposed methods are robust against

non-normality and have higher power than linear mixed-effects models (LME) and general-

ized estimating equations (GEE). The theory is applied to a longitudinal array study with

tumor samples collected from Wilms’ patients at both diagnosis and relapse.

2.1 Introduction

The complete genomic information is conveyed by twenty-three pairs of chromosomes in nor-

mal human tissue. Enormous efforts have been dedicated to investigating the association of

DNA copy number alterations with disease. For normal tissues, each DNA segment has two

copies. However, tumor cells undergo complicated pathological progression. Their DNA is

often subject to translocation, amplification, and deletion, which leads to DNA copy number
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abnormality (Fig. 2.1). DNA amplification may cause over-expression of the encoded genes,

and DNA deletion may cause under-expression of the genes. Tumor biomarkers have been

intensively investigated in both academy and pharmaceutical industry. They are potentially

to be used in various stages of clinical management decisions, such as risk assessment, diag-

nostic testing, prognostic stratification, and chemotherapy selection (Forozan et al. (2000)).

Chromosome alterations associated with tumor progression are promising biomarker can-

didates. With the encouragement of FDA, the DNA copy number signature of a cancer

patient is likely to eventually serve as a basis for considering personalized medicine/therapy.

Figure 2.1: Demography of human chromosome in normal and tumor cells. The left panel shows the
normal complete genome for a male, 22 pairs of autosomal chromosomes plus 2 sex chromosomes, X and
Y. Different chromosomes are drawn with distinct colors. The right panel shows the genome from a breast
cancer cell line. The colors display the rearrangement of chromosome segments from the normal cell to the
tumor cell.

The molecular-cytogenetic method used to detect DNA copy number changes is called

comparative genomic hybridization (CGH). Fluorescent in situ hybridization (FISH) and

quantitative PCR (qPCR) have been widely used to detect chromosome aberration. How-

ever, these traditional techniques are low in resolution, slow in production, and labor inten-
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sive. With the rapid advance of high throughput technology, array based technology has

been increasingly used in CGH research today (Pinkel and Albertson (2005a)). Array CGH

(aCGH) is a microarray-alike technique which detects hundreds of thousands of chromosome

sites simultaneously with specific DNA sequences (probes). CGH array detects chromosome

DNA copy number, whereas mRNA microarray detects the amount of messenger RNA.

In comparison, aCGH reflects genome features, and microarray represents gene expression.

Because RNA is a volatile macromolecule which has a very short half life cycle and DNA is

relatively stable, aCGH signal is much more stable than microarray. In statistical analysis,

aCGH data have less noise and yield more reliable results. Figure 2.2 shows the typical

signal of a sequence of aCGH probes. The probe of aCGH is mainly of two types: BAC

(Bacterial Artificial Chromosome) clone and DNA oligonucleotide. BAC clones provides

the resolution on the order of 1 Mb (Greshock et al. 2004; Pinkel and Albertson 2005b).

In the last few years, DNA oligonucleotide arrays have become popular for CGH because

they can offer much higher resolution (Brennan et al. 2004). An example of oligonucleotide

probe is to use singular nucleotide polymorphism (SNP) to design DNA marker. A chip

based on SNP is referred to as a SNP array (Kennedy et al. (2003)). For examples, there

are four versions of widely-used SNP arrays manufactured by Affymetrix, each consisting

of 100K, 250K, 500K, and 1M SNPs, respectively. Another company, Agilent, provides a

250K SNPs array. Compared to microarray, which usually contain 5,000-50,000 probe sets,

aCGH data analysis is more suitable for novel gene discovery but also raises challenge for

statistical methodology, computational cost and memory usage. In section 2.2, we give a

detailed introduction of copy number generation from Affymetrix SNP array.

In aCGH study, we are often interested in copy number variations for large genomic

segments. For example, each chromosome has two arms, p and q, that are connected by a

centromere. Chromosome rearrangement often causes one arm to be translocated, dupli-

cated or lost. The copy number changes of a chromosome arm will affect thousands of SNPs

located in it. A number of statistical tools have been developed to detect gain or loss of
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Figure 2.2: Screenshot of Affymetrix Genotyping Analysis software that generates DNA copy numbers
from aCGH intensity data. GSACN are Gaussian smoothed copy numbers that are used for further data
analysis.

DNA segment. Fridlyand et al. (2004) and Zhao et al. (2004) used hidden Markov models

(HMM) to estimate probe copy numbers; Olshen et al. (2004) proposed a circular binary

segmentation (CBS) algorithm to detect the break points of DNA segments; Daruwala et al.

(2004) and Sabatti and Lange (2008) fitted copy number variation with Bayesian models;

Hsu et al. (2005) smoothed aCGH signal with wavelet; Zou and Hastie (2005), Reiss et al.

(2007), Tibshirani and Wang (2008) selected important genomic regions by constraining

the regression parameters with L1 or L2 Norm. Most of these methods assume a specific

distribution for the (log ratio of) intensities of the probes such as normal, log-normal or

Poisson distribution. Despite the large amount of efforts made to justify those distributions

(Sidorov et al. 2002; Hoyle et al. 2002), it has been vigorously argued as to whether the

fitting of real image data with a well-defined distribution is adequate (Kerr et al. 2000;

Konishi 2004). Low convergence rates and slow computations are another problem with

some of high-computation oriented techniques. Based on our experiments, it affects the

9



Bayesian-based models and regression-based models such as LASSO and elastic net. The

computational difficulty makes those methods impossible to be applied to dense SNP ar-

rays. Because of high dimensional and noisy nature of aCGH data, many of these methods

could not provide reliable and consistent results. Lai et al. (2005) discussed the strengths

and limitations of 11 methods. For examples, HMM was sensitive to detect small abnormal

regions in simulated data, but failed to detect any of the three amplified regions in a glioma

aCGH data; CBS successfully detected all three amplifications of glioma data but blurred

the break points.

In a cancer study, one of the central goals is to understand tumor development and

progression. Studies are designed to monitor the dynamic behavior of genomic DNA. For

instances, chromosomal instability during neoplastic progression was investigated for Bar-

rett’s esophagus patients with Affymetrix 100K SNP arrays (Lai et al. 2007), and relapse of

Wilms’ tumor was investigated with BAC clone CGH array (Natrajan et al. 2007). In these

studies, researchers are interested in identifying a genome signature consisting of DNA aber-

ration regions that is associated with a disease outcome and a drug response. As patients

are repeatedly measured, a proper within-subject correlation should be considered for any

reasonable statistical interpretations. Technically, the within-subject correlation over time

is the same as within-cluster correlation such as genomes within a family. An example of

within-family correlation can be found in the Framingham Heart Study directed by the Na-

tional Heart, Lung, and Blood Institute (Kottgen et al. 2008). They studied the genotypes

of original and Offspring cardiovascular disease patients with Affymetrix 100K SNP array.

The goal of the study is to identify the genetic factors underlying cardiovascular disease and

other disorders. Any methodology developed for longitudinal aCGH data should be able to

be applied to such within-cluster correlation data.

Most data analyses for an longitudinal microarray are based on statistical tests for indi-

vidual gene that is adjusted for multiple tests by using false discovery rate (FDR) procedure.

Linear mixed-effects models and generalized estimating equations (GEE) are widely used
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for longitudinal data analysis (Liang and Zeger (1986); Diggle et al. (2002)). While they

have proven to be useful tools for repeated measures with large sample size, the adequacy

of model fitting is of concern for high dimensional data analysis (Fan and Zhang (2000)).

Park et al. (2003) used a two-stage ANOVA model to calculate the P values for each gene.

At the first stage, a time effect is tested. The residuals of time effects are then used in a

permutation test. For their analysis, the study need to be balanced and the within-subject

correlation cannot be strong to achieve sufficient statistical power. Guo et al. (2003) pro-

posed a modified Wald statistic to test the differential expression of each gene over time. The

Wald statistic converges to a χ2 distribution under the null hypothesis when the number of

subjects is sufficiently large. Each gene is assigned a gene-specific score that is calculated by

the Wald statistic that accounts for within-subject correlation. A permutation test is then

performed to compute the false discovery rate (FDR) for each gene. Storey et al. (2005)

used a mixed model with a polynomial mean function to detect significant genes across

time points between treatment and control groups. Under the null hypothesis of no differ-

ential expression, the two groups are assumed to have the same population average time

curve. The population mean curve is modeled for the profile of each gene, and an F statistic

is then calculated based on it. P values are adjusted by FDR to determine significantly

differentiated genes.

All the above methods are based on univariate test for an individual gene by taking

into account of its within-subject correlation. Despite their wide applications in expression

microarray studies, their usage for aCGH study is limited because a FDR adjustment is not

sensitive enough in detecting small copy number variation, which is often important (Storey

and Tibshirani (2003)). Analysis of aCGH data is usually based on segmented probes for

chromosome rearrangement affecting a large number of probes located within the genomic

region. A rich class of techniques such as HMM and CBS as discussed earlier have been pro-

posed to segment DNA for independent samples. For dependent aCGH samples, researchers

are currently short of robust techniques. Tsai and Qu (2008) performed hypothesis testing
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for a set of genes by applying a non-parametric time-varying coefficient model. The within-

subject correlation was taken into account by a quadratic inference function (QIF). A QIF

derived from GEE is asymptotically χ2 distributed when the number of replications goes to

∞.

Due to the high cost of array experiments, a large sample size is usually not desired.

Therefore, methods based on large sample size have limited application in aCGH study. In

addition, the computational cost is substantially higher for time course analysis than for the

static experiments. The goal of this chapter is to provide a series of test statistics for detect

copy number variation of a DNA segment in a longitudinal aCGH study. The test statistics

should be robust to non-normality. They can also be used for other high dimensional low

replicated data with within-subject correlation. The proposed test statistics are applied to

unbalanced designs and heteroscedastic covariance structures as well. The method can be

used to identify genomic signatures with a test-based clustering algorithm.

In aCGH study, DNA copy number can be inferred by log2 ratio of the disease and

reference samples when both samples are hybridized onto the same chip. A positive log2

ratio indicates gain in copy number and a negative value indicates loss in copy number.

Due to experimental and biological factors such as purity of a sample, the log2 ratio does

not appear as the magnitude of copy numbers. For example, a frequent phenomenon in

the analysis of primary tumors is normal cell contamination caused by imperfect dissection.

Generally, pathologists make sure that each tumor sample contains no more than 50%

(or 30%) of normal cells. The purity of the tumor sample increases as the contamination

proportion decreases. Another factor that affects the copy number estimation is that not

all tumor cells may have acquired a given aberration. These factors make estimation of a

true copy number impossible. Here we aim at testing whether DNA sections within a DNA

region have common copy numbers. The test then can be used to partition the chromosome

into sets of the same copy number segment.
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The outline of this chapter is as follows. Section 2.2 presents the processes of copy number

generation illustrated with Affymetrix 100K SNP array. In section 2.3, we describe the study

design and the model specification. Test statistics are provided in section 2.4. Details of

asymptotic theories for original observations and the corresponding proofs are provided in

section 2.5. Simulation study is presented in section 2.6. Type I error rates were estimated

under various distributions in simulations, and power analysis was compared to LME and

GEE with bootstrap data. In section 2.7, we apply our methods to a Wilms’ tumor study.

2.2 Data generation from Affymetrix SNP arrays

In this section, we give an introduction of the array CGH technology. Array designs vary

manufacturer to manufacturer, and sometimes even vary version-to-version of the same

manufuacturer. For simplicity, we base our discussion on Affymetrix 100K SNP array.

SNPs are sequence changes that arose once during evolution. Public efforts have so

far identified over two million common human SNPs. Affymetrix designed the 100K SNP

array consisting of more than 110K SNPs distributed across a human genome. The SNP

arrays can be used for genetic linkage analyses, genotyping calling, and DNA copy number

variation study (Kennedy et al. 2003).

Typically, only two of the four possible bases at an SNP are present in human. If we

denote the two alleles at an SNP by the letters a and b, then each person has one of three

possible genotypes a/a, a/b, or b/b.

In Affymetrix SNP array, each SNP is assessed by 40 probes, each 25 bases long. Of the

40 probes, 20 are match probes that perfectly hybridize with one of the two alleles, and 20

are mismatch probes intended to measure the level of cross-hybridization. Among the 20

match probes, 10 probes are complementary to allele a, and 10 probes are complementary to

allele b. Each set of 10 match probes is further subdivided into two subsets of 5 probes; one
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subset is complementary to the sense strand and the other subset to the antisense strand

of the DNA molecule. This leads to four probe subsets: sense (s) a, antisense (t) a, sense

b, and antisense b. Each mismatch probe subset is paired with one subset of match probes

and differs from it at the base in the central position of the oligonucleotide.

The sample genomic DNA is processed with the following steps: (1) The DNA is broken

into small fragments by restriction enzyme digestion, (2) the fragments are amplified by

the polymerase chain reaction (PCR), (3) fragment copies are labeled with dye molecules

to distinguish the two alleles, (4) labeled fragment copies are hybridized with the array,

and (5) the intensity of the fluorescent signal at each spot is measured. The DNA labeling

process is illustrated in Figure 2.3.

Numerous algorithms have been proposed to summarize and to analyze the raw fluores-

cent intensity data derived from labeling of the array (Yang et al. 2002; Irizarry et al. 2003).

Here we focus our discussion on the copy number algorithm recommended by Affymetrix

(Affymetrix 2006). The intensity data are first subjeted to probe/SNP filtering for quality

control. Users can exclude mismatch probes for subsequent analysis. Additionally, users

can exclude SNPs based on the length of the PCR fragment with which they hybridize. It

have been shown that the exclusion of SNPs on larger PCR fragment sizes improve analyt-

ical accuracy. Secondly, probe intensities are normalized across multichips with the goal to

reduce experimental noise due to chip-to-chip variation, background, and relative variation

in the performance of probes interrogating a given SNP. Various methods are available for

data normalization. For examples, median scaling, quantile normalization, and Gaussian

smoothing are a few widely used approaches (Quackenbush 2002).

If we use both perfectly matched and mismatched probes in the analysis, we need to

summarize the relative measure with a discrimination score (D). For the ith allele, let PMi

denote the average normalized intensity of the perfectly matched probes, and MMi for the

average of the mismatched probes. The discrimination score for the ith allele is
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Figure 2.3: A schematic of generation and labelling of probes for hybridization of Affymetrix SNP arrays.

Di =
PMi −MMi

PMi + MMi

.

The raw copy number (CN) estimation is based on the log2ratio between tumor sample

and a reference sample. In practice, we use 48 female normal samples provided by Affymetrix

as global references. The copy number is generated for every allele. λi is the raw CN for

the ith allele based on sample score Si and reference score Ri.
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λi = log2
Si

Ri

,

where Si and Ri are the average intensities of perfectly matched probes if only perfectly

matched probes are used, or are discrimination scores if mismatched probes are included.

Then Total Copy Number (TCN) of SNP k can be estimated with sumLog formula by

summing both alleles.

TCNk = log2
SkA

RkA

+ log2
SkB

RkB

,

where

RkA, RkB: scores in the allele a, b for SNP k of the reference;

SkA, SkB: scores in the allele a, b for SNP k of the tumor sample.

Therefore, for each SNP k, three raw CN esimates are generated: TCN, CN for allele a

(λkA), and CN for allele b (λkB). For DNA copy number analysis discussed in this thesis,

TCN are the input data for our statistics. TCN are continuous numerical data. They can

be transformed to integer copy number using hidden Markov models (HMM) or mixture

Gaussian models (Hodgson et al. 2001; Fridlyand et al. 2004). We prefer using raw TCN

data to avoid possible systemtic errors incurred in the transformation.

2.3 Model specification

In this section, we consider statistical analysis of high dimensional data with each subject

repeatedly measured over time. We will focus our discussion on analyses applied to a time

course aCGH study.

Let Xijk be the jth measurement of the ith probe from subject k ( i = 1, ..., I;

j = 1, ..., J ; k = 1, ..., ni). The number of probes is large, whereas the number of time
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points and the number of subjects are fixed. The design is assumed to be either balanced

or unbalanced, in that the number of subjects may vary for different probes. For example,

if all aCGH data come from a same version of a SNP array, the design will be balanced.

However, to take advantage of limited sources, we often need to import aCGH data from

different sources. For example, if data from Affymetrix 100K and 250K arrays are to be

combined, the design will be unbalanced. In this case, the SNPs shared between 100K and

250K arrays have more samples than the SNPs that only exist in 250K arrays. The probe

copy numbers are modeled by

Xijk = µ + αi + βj + γij + εijk, (2.3.1)

where
∑I

i=1 αi =
∑J

j=1 βj =
∑I

i=1 γij =
∑J

j=1 γij = 0, µ is the overall mean, αi represents

the effect of the ith probe, βj represents the effect of the jth time point, and γij represents

the interaction effect of probe and time. The error terms εijk have mean 0, and they are

correlated for repeated measures from the same subject and the same probe. In other words,

εijk and εi′j′k′ are independent if i 6= i′ or k 6= k′, and they are only dependent when i=i’,

j 6= j′, and k=k’. Note that normality is not assumed for εijk.

The dependence of repeated measurements within an individual was taken into account

in the model fitting procedure. The within-subject correlation structure is not necessarily

homogeneous, it could vary for different probes. The covariance of a probe over time is

possibly dependent on its copy number or its location in a chromosome. Furthermore,

experiments of biological time course study are often not evenly spaced in time. Therefore,

the same correlation structure may not be appropriate. We apply a heteroscedastic variance

structure to the model specified by Cov(εijk, εij′k) = σi,jj′ .

The tests can be written in terms of the parameters in the model. For aCGH study, the

null hypothesis of no copy number variation is equivalent to restricting all αi to be zero. The

test will applied to detect the local DNA copy number changes in a given genome region.

If the goal is to find the DNA segments whose copy numbers are altered by time points, we
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will test that all βj equal to zero. The null hypothesis of DNA copy number is the same

over all time points is equivalent to restricting all γij to zero. It will be used to detect the

genome regions that have the same time response.

At the end of the section, we present a summary of notations which will be used in the

rest of the manuscript.

X̃i·· = J−1

J∑
j=1

X ij·, X̃·j· = I−1

I∑
i=1

X ij·,

σi,jj1 = Cov(Xijk, Xij1k) for any k, (note σi,jj = V ar(Xijk) = σ2
ij),

σi,jj1,j2j3 = Cov(XijkXij1k, Xij2kXij3k), (σi,jj1,jj1 = σ2
i,jj1

).

2.4 Testing statistics

In this section, we will use a few modified Wald test statistics and modified F test statistics

to provide robust tests for main effects and interactions.

First, we consider to explore whether copy number variation exists in a given genomic

region. Statistically, it is a test of no main effect of probe. The test will be very useful in

DNA segmentation, by which we want to partition the whole genome into amplified, deleted,

and normal regions. Under the null hypothesis, there is no copy number difference within

the DNA segment of interest. The null hypothesis is

H0(A) : all αi = 0, for i = 1, ..., I.

where I is the total number of probes located in this DNA segment.

To test H0(A), we modified the F statistic used in mixed ANOVA model.

FX(A) =
MSTA

MSEA

, MSTA =
1

I − 1

I∑
i=1

J∑
j=1

(X̃i·· − X̃···)2, (2.4.1)

MSEA =
1

IJ

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k=1

(Xijk −X ij.)(Xij1k −X ij1.). (2.4.2)
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where X̃i·· is the sample average of X ij· for j = 1, ..., J , and X̃··· is the sample average of X̃i··

for all i. The definition of MSTA slightly different from that of ANOVA in that unweighted

averages are used instead of weighted averages. The definition of MSEA is different from

that of the traditional MSE in that the within-subject correlation over time is taken into

account.

Secondly, we want to carry out a statistical test of time effect. In a longitudinal aCGH

study, researchers are often interested in identifying DNA segments whose copy number

varies over time. These are potential genomic signatures indicating tumor progression or

regression. The test of time effect is targeted on all probes in a selected genomic region.

The null hypothesis of no time effect is

H0(B) : all βj = 0, for j = 1, ..., J.

In order to test H0(B) of time effect, we also consider a more general hypothesis H0(BG) :

Lβ = 0 where L is a p× J contrast matrix with full row rank, β = (β1, ..., βJ)′, and 0 is a

p dimensional zero vector. A modified Wald-type test statistic is used for testing H0(BG).

WB = D′
BL′(LV̂BL′)−1LDB (2.4.3)

where DB = (X̃·1·, ..., X̃·J ·)′, and V̂B is the estimated J × J covariance matrix for DB, with

the value at the jth row and the j′th column be V̂B,jj′ = I−2
∑I

i=1(ni(ni−1))−1
∑ni

k=1(Xijk−
X ij·)(Xij′k −X ij′·).

Finally, the high throughput time course study is often targeted to identify the variables

that show time response, such as genes regulated by cell cycle, or genomic regions that reflect

progressive tumors. Note that DNA copy number variation implies the changes of expression

level for the encoded genes by the DNA segment. The hypothesis test of interaction between

probe and time will allow us to identify the candidate gene in the genome region where the

probe is located, and whose expression changes over time. The null hypothesis is

H0(AB) : all (αβ)ij = 0, for i = 1, ..., I, and j = 1, ..., J.
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Similar to the test for main effect of gene, the test statistic for no interaction is also

based on a modified F statistic

FX(AB) =
MSTAB

MSEAB

, (2.4.4)

where

MSTAB =
1

(I − 1)(J − 1)

∑
i,j

(X ij· − X̃i·· − X̃·j· + X̃···)2, (2.4.5)

MSEAB =
1

I(J − 1)

I∑
i=1

J∑
j

1

ni(ni − 1)

ni∑

k=1

(Xijk −X ij.)
2 −

1

IJ(J − 1)

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k=1

(Xijk −X ij.)(Xij1k −X ij1.).

The asymptotic distribution for each of the test statistics in (2.4.1), (2.4.3), (2.4.4) will

be derived in the following sections.

2.5 Main results based on original observations

This section is devoted to developing the asymptotic distribution of the test statistics which

are defined in the last section. For simplicity, we use notation eijk = Xijk − E[Xijk] in the

proof.

Theorem 2.5.1. For testing H0(A): all αi = 0, let FX(A) be the statistic given in (2.4.1).

If Xijk has finite fourth central moment, then under H0(A),

√
I(FX(A)− 1)

VA

d→ N(0, 1), as I →∞.

where

VA =
√

τA/σA, (2.5.1)
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with

τA =
1

IJ2

I∑
i=1

2

ni(ni − 1)

J∑
j,j1,j2,j3

σi,jj1σi,j2j3 , and σA =
1

IJ

I∑
i=1

J∑
j,j1

σi,jj1

ni

.

Lemma 2.5.2. Under the settings and assumptions of Theorem 2.5.1,

MSEA − σA
p→ 0 as I →∞.

Proof:

For any j, j1 = 1, ..., J, note that

E
[
(Xijk −X ij.)(Xij1k −X ij1.)

]

= E [(eijk − eij.)(eij1k − eij1.)]

= E(eijkeij1k)− E(eij.eij1k)− E(eijkeij1.) + E(eij.eij1.)

= σi,jj1 −
1

ni

σi,jj1 −
1

ni

σi,jj1 +
1

n2
i

ni∑

k,k1

E(eijkeij1k1)

=
ni − 1

ni

σi,jj1 .

Thus, we have

E(MSEA) =
1

IJ

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k

E
[
(Xijk −X ij.)(Xij1k −X ij1.)

]
= σA.

The result will follow if we show V ar(MSEA) → 0 as I →∞.

|V ar(MSEA)| =
1

I2J2

I∑
i=1

ni∑

k=1

1

n2
i (ni − 1)2

∣∣∣∣∣Cov[
J∑

j,j1

(eijk − eij.)(eij1k − eij1.),

J∑
j2,j3

(eij2k − eij2.)(eij3k − eij3.)]

∣∣∣∣∣ .
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Note that

E
[
(Xijk −X ij.)(Xij1k −X ij1.)

]2

= E [(eijk − eij.)(eij1k − eij1.)]
2

= E[eijkeij1k − eij.eij1k − eijkeij1. + eij.eij1.]
2

≤ 4[E(eijkeij1k)
2 + E(eij.eij1k)

2 + E(eijkeij1.)
2 + E(eij.eij1.)

2]

= 4

[
E(e2

ijke
2
ij1k) +

1

n2
i

E(e2
ijke

2
ij1k) +

1

n2
i

E(e2
ijke

2
ij1k) +

1

n4
i

ni∑

k=1

E(e2
ijke

2
ij1k)

]

=
4(n3

i + 2ni + 1)

n3
i

Cov(e2
ijk, e

2
ij1k)

< ∞,

where the last inequality holds because Xijk has the finite fourth central moment. The first

inequality follows from Hölder’s inequality,
∣∣∣∣∣

m∑
i=1

zi

∣∣∣∣∣

p

≤ mp−1

m∑
i=1

|zi|p, m ≥ 1, p > 1. (2.5.2)

We have∣∣∣∣∣Cov[
J∑

j,j1

(eijk − eij.)(eij1k − eij1.),
J∑

j2,j3

(eij2k − eij2.)(eij3k − eij3.)]

∣∣∣∣∣ (2.5.3)

≤
∣∣∣∣∣V ar[

J∑
j,j1

(eijk − eij.)(eij1k − eij1.)]V ar[
J∑

j2,j3

(eij2k − eij2.)(eij3k − eij3.)]

∣∣∣∣∣

1
2

≤
∣∣∣∣∣E[

J∑
j,j1

(eijk − eij.)(eij1k − eij1.)]
2

∣∣∣∣∣

1
2
∣∣∣∣∣E[

J∑
j2,j3

(eij2k − eij2.)(eij3k − eij3.)]
2

∣∣∣∣∣

1
2

≤
∣∣∣∣∣J

2

J∑
j,j1

E[(eijk − eij.)(eij1k − eij1.)]
2

∣∣∣∣∣

1
2
∣∣∣∣∣J

2

J∑
j2,j3

E[(eij2k − eij2.)(eij3k − eij3.)]
2

∣∣∣∣∣

1
2

= J2

∣∣∣∣∣
J∑

j,j1

E[(eijk − eij.)(eij1k − eij1.)]
2

∣∣∣∣∣

1
2
∣∣∣∣∣

J∑
j2,j3

E[(eij2k − eij2.)(eij3k − eij3.)]
2

∣∣∣∣∣

1
2

< ∞,
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where the inequalities follow from the properties of variance and Hölder’s inequality, and the

last equality holds for the finiteness showed previously. Therefore, V ar(MSEA) = O(I−1)

and MSEA − σ2
A

p→ 0 as I →∞.

Lemma 2.5.3. Under the settings and assumptions of Theorem 2.5.1 and under H0(A), we

have

√
I(MSTA − PA(e))

p→ 0 as I →∞,

where PA(e) = J
I

∑I
i=1 ẽ2

i...

Proof:

Note that under H0(A),

MSTA =
1

I − 1

I∑
i=1

J∑
j=1

(ẽi.. − ẽ...)
2

=
J

I − 1

I∑
i=1

(ẽi.. − ẽ...)
2

=
J

I − 1

(
I − 1

I

I∑
i=1

ẽ2
i.. −

1

I

I∑

i6=i′
ẽi..ẽi′..

)

=
J

I

I∑
i=1

ẽ2
i.. −

J

I(I − 1)

I∑

i6=i′
ẽi..ẽi′...

Thus, we have

E[
√

I(MSTA − PA(e))] =

√
IJ

I(I − 1)

I∑

i6=i′
E [ẽi..ẽi′..] = 0,
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and

E[
√

I(MSTA − PA(e))]2 =
IJ2

I2(I − 1)2
E

[
I∑

i6=i′
ẽi..ẽi′..

]2

=
J2

I(I − 1)2
E

[
I∑

i 6=i1,i2 6=i3

ẽ2
i..ẽ

2
i1..ẽ

2
i2..ẽ

2
i3..

]

=
2J2

I(I − 1)2
E

[
I∑

i6=i1

ẽ2
i..ẽ

2
i1..

]

=
2J2

I(I − 1)2

I∑

i6=i1

E[ẽ2
i..]E[ẽ2

i1..]

= O(I−1).

Therefore, under H0(A),
√

I(MSTA − PA(e))
p→ 0 as I →∞.

Proof of Theorem 2.5.1: By Lemmas 2.5.2 and 2.5.3, we need only to consider the

asymptotic distribution of QA(e) =
√

I(PA(e) − MSEA) under H0(A), where PA(e) =

J
I

∑I
i=1 ẽ2

i...
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We can write

QA(e) =
√

I

[
J

I

I∑
i=1

ẽ2
i.. −

1

IJ

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k=1

(Xijk −X ij.)(Xij1k −X ij1.)

]

=
1

J
√

I

I∑
i=1

[
(

J∑
j

eij.)
2 −

J∑
j,j1

1

ni(ni − 1)

ni∑

k=1

(eijk − eij.)(eij1k − eij1.)

]

=
1

J
√

I

I∑
i=1

J∑
j,j1

[
eij.eij1. − 1

ni(ni − 1)

ni∑

k=1

(eijk − eij.)(eij1k − eij1.)

]

=
1

J
√

I

I∑
i=1

J∑
j,j1

[
ni − 2

ni − 1
eij.eij1. − 1

ni(ni − 1)

ni∑

k=1

(eijkeij1k − eij1keij. − eijkeij1.)

]

=
1

J
√

I

I∑
i=1

J∑
j,j1

[
ni − 2

n2
i (ni − 1)

ni∑

k,k1

eijkeij1k1 −
1

ni(ni − 1)

ni∑

k=1

eijkeij1k+

2

n2
i (ni − 1)

ni∑

k,k1

eij1keijk1

]

=
1

J
√

I

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k 6=k1

eijkeij1k1 .

Therefore, E[QA] = 0. It follows that

V ar(QA(e))

=
1

IJ2

I∑
i=1

1

n2
i (ni − 1)2

V ar

[
J∑

j,j1

ni∑

k 6=k1

eijkeij1k1

]

=
1

IJ2

I∑
i=1

2

n2
i (ni − 1)2

ni∑

k 6=k1

V ar

[
J∑

j,j1

eijkeij1k1

]

=
1

IJ2

I∑
i=1

2

n2
i (ni − 1)2

ni∑

k 6=k1

J∑
j,j1,j2,j3

σi,jj1σi,j2j3

=
1

IJ2

I∑
i=1

2

ni(ni − 1)

J∑
j,j1,j2,j3

σi,jj1σi,j2j3 .

Since V ar(QA(e)) is bounded away from zero and infinity, Lyapunov’s condition will be
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satisfied if

LA(a) =
∑I

i=1 E| 1
J
√

I

∑J
j,j1

1
ni(ni−1)

∑ni

k 6=k1
eijkeij1k1|4 → 0.

We have

LA(a) =
1

I2J4

I∑
i=1

E

∣∣∣∣∣
J∑

j,j1

1

ni(ni − 1)

ni∑

k 6=k1

eijkeij1k1

∣∣∣∣∣

4

≤ J6

I2J4

I∑
i=1

J∑
j,j1

E

∣∣∣∣∣
1

ni(ni − 1)

ni∑

k 6=k1

eijkeij1k1

∣∣∣∣∣

4

=
J2

I2

I∑
i=1

J∑
j,j1

1

n4
i (ni − 1)4

E

∣∣∣∣∣
ni∑

k 6=k1

eijkeij1k1

∣∣∣∣∣

4

≤ J2

I2

I∑
i=1

J∑
j,j1

n3
i (ni − 1)3

n4
i (ni − 1)4

ni∑

k 6=k1

E|eijkeij1k1|4

=
J2

I2

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k 6=k1

E[e4
ijk]E[e4

ij1k1
]

= O(I−1), if the fourth moment of eijk exists for any i, j, and k.

where the two inequalities follow Hölder’s inequality (2.5.2). This completes the proof.

Theorem 2.5.4. For testing H0(BG): Lβ = 0 where L is a J × p contrast matrix, β =

(β1, ..., βJ)′, and 0 is a p dimensional zero vector, let WB be the statistic given in (2.4.3).

If Xijk has finite second and fourth moments, then under H0(BG),

WB
d→ χ2

p

holds for all ni ≥ 2, i=1, ..., I.

Proof of Theorem 2.5.4: Under H0(BG), LE[D(B)] = 0, then LD(B) = L(D(B) −
E[D(B)]). Let V (B) = V ar[D(B)]. V(B) is a J × J matrix, where the value of j1th row

and j2th column is defined as

Cov(X̃·j1·, X̃·j2·) = η(B)j1j2 =
1

I2

I∑
i

σi,j1j2

ni

.
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If j1 = j2 = j, it is the variance of X̃·j·, and it is denoted as

η(B)j =
1

I2

I∑
i

σ2
i,j

ni

.

The result will follow from the Continuous Mapping and Slutsky’s Theorems, by showing
√

N(D(B)− E[D(B)])
d→ NJ(0, NV (B)) as I →∞, where N =

∑I
i=1 ni. It is sufficient to

show for any finite constants a = (a1, ..., aJ)′,

√
Na′(D(B)− E[D(B)]) =

J∑
j=1

aj

√
N(X̃·j· − E(X̃·j·))

d→ N(0, Na′V (B)a).

where Na′V (B)a = N
∑I

i=1

∑J
j,j1

ajaj1σi,jj1/niI
2 converges if (

∑I
i

1
ni

)(
∑I

i ni)/I
2 converges,

which holds since ni are finite.

J∑
j=1

aj

√
N [X̃·j· − E(X̃·j·)]

=

√
N

I

I∑
i

J∑
j=1

aj[X ij· − E(X ij·)]

=
I∑
i

(√
N

I

J∑
j

ajeij·

)
.

The asymptotic normality can be shown by Lyapounov’s Theorem. The Lyapounov condi-

tion will be satisfied if

L(B) =
I∑
i

(√
N

I

)4

E

(
J∑
j

ajeij·

)4

→ 0.

Note that

L(B) =
I∑
i

(√
N

I

)4

E

(
J∑
j

ajeij·

)4

≤
I∑
i

N2

I4
J3

J∑
j

E(I4
j e4

ij·)

=
I∑
i

N2

I4
J3

J∑
j

I4
j

1

n4
i

E

(
ni∑

k

eijk

)4

≤
I∑
i

N2

I4
J3

J∑
j

I4
j

n4
i

B4

[
ni∑

k

E(e2
ijk)

]2

=
I∑
i

N2

I4
J3

J∑
j

I4
j

n4
i

B4n
2
i [E(e2

ij1)]
2 = O

(
I∑
i

N2

I4n2
i

)

= O(I−1),

27



where the first inequality follows Hölder’s inequality (2.5.2), and the last equality holds if

ni are finite. The second inequality follows from the Khintchine inequality:

Let {zn}N
n=1 be i.i.d random variables with zero mean. Let 0 < p < ∞, then

(
E|

N∑
n=1

zn|p
)1/p

≤ Bp

(
N∑

n=1

E|xn|2
)1/2

, (2.5.4)

for some constant Bp > 0 depending only on p (Newman 1975). This complete the proof.

Theorem 2.5.5. For testing H0(AB): all γij = 0, let FX(AB) be the statistic given in

(2.4.4) with Xij = Xij. If Xijk has the finite fourth moment, then under H0(AB),
√

I(FX(AB)− 1)

VAB

d→ N(0, 1), where VAB is defined in (2.5.5).

The variance component is calculated by

VAB =
√

τAB/σAB, (2.5.5)

where

τAB =
2

I(J − 1)2

I∑
i

[
1

ni(ni − 1)

J∑
j,j1

σ2
i,jj1

+
1

J2ni(ni − 1)

J∑
j,j1,j2,j3

σi,jj1σi,j2j3−

2

Jni(ni − 1)

J∑
j,j1,j2

σi,jj1σi,jj2

]
,

σAB =
1

I(J − 1)

I∑
i=1

J∑
j

σ2
i,j

ni

− 1

IJ(J − 1)

I∑
i=1

J∑
j,j1

σi,jj1

ni

.

Lemma 2.5.6. Under the settings and assumptions of Theorem 2.5.5,

MSEAB − σAB
p→ 0 as I →∞.

Proof:

As shown in lemma 2.5.2,

E
[
(Xijk −X ij.)(Xij1k −X ij1.)

]
=

ni − 1

ni

σi,jj1 .
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Then

E(MSEAB) =
1

I(J − 1)

I∑
i=1

J∑
j

1

ni(ni − 1)

ni∑

k

E
[
(Xijk −X ij.)

2
]−

1

IJ(J − 1)

I∑
i=1

J∑
j,j1

1

ni(ni − 1)

ni∑

k

E
[
(Xijk −X ij.)(Xij1k −X ij1.)

]

=
1

I(J − 1)

I∑
i=1

J∑
j

σ2
i,j

ni

− 1

IJ(J − 1)

I∑
i=1

J∑
j,j1

σi,jj1

ni

= σAB.

And, we have,

V ar(MSEAB)

=
1

I2(J − 1)2

I∑
i=1

1

n2
i (ni − 1)2

ni∑

k

{
V ar

[
J∑
j

(Xijk −X ij.)
2

]
+

1

J2
V ar

[
J∑

j,j1

(Xijk −X ij.)(Xij1k −X ij1.)

]
−

2

J
Cov

[
J∑
j

(Xijk −X ij.)
2,

J∑
j,j1

(Xijk −X ij.)(Xij1k −X ij1.)

]}
.

In the proof of lemma (2.5.2), we showed in formula (2.5.3) that

∣∣∣∣∣Cov[
J∑

j,j1

(Xijk −X ij.)(Xij1k −X ij1.),
J∑

j2,j3

(Xij2k −X ij2.)(Xij3k −X ij3.)]

∣∣∣∣∣

=

∣∣∣∣∣Cov[
J∑

j,j1

(eijk − eij.)(eij1k − eij1.),
J∑

j2,j3

(eij2k − eij2.)(eij3k − eij3.)]

∣∣∣∣∣
< ∞.
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This follows from

V ar

[
J∑
j

(Xijk −X ij.)
2

]
< ∞,

V ar

[
J∑

j,j1

(Xijk −X ij.)(Xij1k −X ij1.)

]
< ∞,

Cov

[
J∑
j

(Xijk −X ij.)
2,

J∑
j,j1

(Xijk −X ij.)(Xij1k −X ij1.)

]
< ∞.

Therefore, we have V ar(MSEAB) = O(I−1) and it follows that MSEAB − σ2
AB

p→ 0 as

I →∞.

Lemma 2.5.7. Under the settings and assumptions of Theorem 2.5.5 and under H0(AB),

we have

√
I(MSTAB − PAB(e))

p→ 0 as I →∞,

where PAB(e) = 1
I(J−1)

∑I
i=1

∑J
j=1(eij. − ẽi..)

2.

Proof:

Note that under H0(AB),

MSTAB

=
1

(I − 1)(J − 1)

I∑
i=1

J∑
j=1

[
(eij. − ẽi..)

2 − 2

I

I∑
i1

(eij. − ẽi..)(ei1j. − ẽi1..) +
1

I2

I∑
i1

(ei1j. − ẽi1..)
2

]

=
1

(I − 1)(J − 1)

J∑
j=1

[
I + 1

I

I∑
i=1

(eij. − ẽi..)
2 − 2

I

I∑
i,i1

(eij. − ẽi..)(ei1j. − ẽi1..)

]

=
1

I(J − 1)

I∑
i=1

J∑
j=1

(eij. − ẽi..)
2 − 2

I(I − 1)(J − 1)

I∑

i6=i1

J∑
j=1

(eij. − ẽi..)(ei1j. − ẽi1..).

Thus, we have

E[
√

I(MSTAB − PAB(e))] =
2
√

I

I(I − 1)(J − 1)

I∑

i6=i1

J∑
j=1

E [(eij. − ẽi..)(ei1j. − ẽi1..)] = 0.
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And

E[
√

I(MSTAB − PAB(e))]2

=
4I

I2(I − 1)2(J − 1)2
E

[
I∑

i6=i1

J∑
j=1

(eij. − ẽi..)(ei1j. − ẽi1..)

]2

=
4I

I2(I − 1)2(J − 1)2
E


2

I∑

(i=i2)6=(i1=i3)

(
J∑

j=1

(eij. − ẽi..)(ei1j. − ẽi1..)

)

(
J∑

j1=1

(ei2j1. − ẽi2..)(ei3j1. − ẽi3..)

)]

=
8I

I2(I − 1)2(J − 1)2
E

[
I∑

i6=i1

J∑
j,j1

(eij. − ẽi..)(ei1j. − ẽi1..)(eij1. − ẽi..)(ei1j1. − ẽi1..)

]

=
8I

I2(I − 1)2(J − 1)2

I∑

i6=i1

J∑
j,j1

E[(eij. − ẽi..)(eij1. − ẽi..)]E[(ei1j. − ẽi1..)(ei1j1. − ẽi1..)]

= O(I−1).

Therefore under H0(AB),
√

I(MSTAB − PAB(e))
p→ 0 as I →∞.

Proof of Theorem 2.5.5: By Lemma 2.5.6 and Lemma 2.5.7, we need only to consider

the asymptotic distribution of QAB(e) =
√

I(PAB(e)−MSEAB) under H0(AB).
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With some simple algebra, we have

QAB(e)

=
√

I

[
1

I(J − 1)

I∑
i

J∑
j

(eij· − ẽi··)2 − 1

I(J − 1)

I∑
i

J∑
j

1

ni(ni − 1)

ni∑

k

(eijk − eij·)2+

1

IJ(J − 1)

I∑
i

J∑
j,j1

1

ni(ni − 1)

ni∑

k

(eijk − eij·)(eij1k − eij1·)

]

=
1√

I(J − 1)

I∑
i

[
J∑
j

(eij· − ẽi··)2 −
J∑
j

1

ni(ni − 1)

ni∑

k

(eijk − eij·)2+

J∑
j,j1

1

Jni(ni − 1)

ni∑

k

(eijk − eij·)(eij1k − eij1·)

]

=
1√

I(J − 1)

I∑
i

[
(

J∑
j

e2
ij· −

1

J

J∑
j,j1

eij·eij1·)−
J∑
j

1

ni(ni − 1)

ni∑

k

(eijk − eij·)2+

J∑
j,j1

1

Jni(ni − 1)

ni∑

k

(eijk − eij·)(eij1k − eij1·)

]

=
1√

I(J − 1)

I∑
i

[
(

1

n2
i

J∑
j

ni∑

k,k1

eijkeijk1 −
1

Jn2
i

J∑
j,j1

ni∑

k,k1

eijkeij1k1)−

(
1

ni(ni − 1)

J∑
j

ni∑

k

e2
ijk −

1

n2
i (ni − 1)

J∑
j

ni∑

k,k1

eijkeijk1) +

(
1

Jni(ni − 1)

J∑
j,j1

ni∑

k

eijkeij1k − 1

Jn2
i (ni − 1)

J∑
j,j1

ni∑

k,k1

eijkeij1k1)

]

=
1√

I(J − 1)

I∑
i

[
1

ni(ni − 1)

J∑
j

ni∑

k 6=k1

eijkeijk1 −
1

Jni(ni − 1)

J∑
j,j1

ni∑

k 6=k1

eijkeij1k1

]
.
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Therefore, E[QAB(e)] = 0. It follows that

V ar(QAB(e))

=
1

I(J − 1)2

I∑
i

V ar

[
1

ni(ni − 1)

J∑
j

ni∑

k 6=k1

eijkeijk1 −
1

Jni(ni − 1)

J∑
j,j1

ni∑

k 6=k1

eijkeij1k1

]

=
2

I(J − 1)2

I∑
i

ni∑

k 6=k1

[
V ar(

1

ni(ni − 1)

J∑
j

eijkeijk1) + V ar(
1

Jni(ni − 1)

J∑
j,j1

eijkeij1k1)−

2Cov(
1

ni(ni − 1)

J∑
j

eijkeijk1 ,
1

Jni(ni − 1)

J∑
j,j1

eijkeij1k1)

]

=
2

I(J − 1)2

I∑
i

ni∑

k 6=k1

[
1

n2
i (ni − 1)2

J∑
j,j1

E(eijkeij1k)E(eijk1eij1k1)+

1

J2n2
i (ni − 1)2

J∑
j,j1,j2,j3

E(eijkeij2k)E(eij1k1eij3k1)−
2

Jn2
i (ni − 1)2

J∑
j,j1,j2

E(eijkeijk1eij1keij2k1)

]

=
2

I(J − 1)2

I∑
i

[
1

ni(ni − 1)

J∑
j,j1

σ2
i,jj1

+
1

J2ni(ni − 1)

J∑
j,j1,j2,j3

σi,jj1σi,j2j3−

2

Jni(ni − 1)

J∑
j,j1,j2

σi,jj1σi,jj2

]
.

Since V ar(QAB(e)) is bounded away from 0 and∞, Lyapounov’s condition will be satisfied if

LAB(a) =
I∑

i=1

E

∣∣∣∣∣
1√

I(J − 1)
[(

1

ni(ni − 1)

J∑
j

ni∑

k 6=k1

eijkeijk1 −
1

Jni(ni − 1)

J∑
j,j1

ni∑

k 6=k1

eijkeij1k1)]

∣∣∣∣∣

4

→ 0.
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We then have that

LAB(a) =
1

I2(J − 1)4

I∑
i=1

1

n4
i (ni − 1)4

E

∣∣∣∣∣(
J∑
j

ni∑

k 6=k1

eijkeijk1 −
1

J

J∑
j,j1

ni∑

k 6=k1

eijkeij1k1)

∣∣∣∣∣

4

≤ 8

I2(J − 1)4

I∑
i=1

1

n4
i (ni − 1)4

[
E(

J∑
j

ni∑

k 6=k1

eijkeijk1)
4 + E(

1

J

J∑
j,j1

ni∑

k 6=k1

eijkeij1k1))
4

]

≤ 8

I2(J − 1)4

I∑
i=1

n3
i (ni − 1)3

n4
i (ni − 1)4

ni∑

k 6=k1

[
E(

J∑
j

eijkeijk1)
4 +

1

J4
E(

J∑
j,j1

eijkeij1k1))
4

]

≤ 8

I2(J − 1)4

I∑
i=1

n3
i (ni − 1)3

n4
i (ni − 1)4

ni∑

k 6=k1
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= O(I−1) if the fourth moment of eijk exist for any i, j, and k,

where the two inequalities follow Hölder’s inequality (2.5.2). This completes the proof.

2.6 Simulation results

In order to evaluate the proposed non-parametric test statistics (NPT), we compare NPT

with linear mixed estimation model (LME) and generalized estimating equations (GEE) by

simulation studies. First, we performed simulation to calculate the type I error rates for

random numbers generated from various distributions and covariance structures. Secondly,

we generate bootstrap re-sampling data from real aCGH profiles. We then introduced

within-subject correlation to the data, and conducted power analysis to compare NPT,

LME, and GEE. All the data in this section were generated from the model specified in

(2.3.1)

Xijk = µ + αi + βj + γij + εijk.

We used R programming to conduct all calculations and simulations. For calculations based

on LME and GEE methods, R packages nlme and geepack were used.
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2.6.1 Simulated data

In this subsection, simulations were used to estimate type I error rates for the proposed

method (NPT). The aCGH data were often modeled with log-normal or Poisson distribu-

tion (Sidorov et al. (2002); Zhao et al. (2004)). Nonetheless, such models have been shown

to be inappropriate because they skew data histograms or probability plots (Konishi 2004).

Therefore, we used normal, exponential, Poisson, or Cauchy distributions to generate ran-

dom samples. Proper within-subject correlation structures were introduced into the data as

well. All simulations were conducted using 1000 iterations.

As the copy number of normal chromosomes is 2, we used a mean of 2 for normal,

exponential,and Poisson distributions. The normal distribution had a standard deviation

equal to 1. The Cauchy distribution had a location parameter 0, and a scale parameter 1.

The within-subject correlation (over time points) were modeled either with an AR(1)

or an unstructured correlation structure. For AR(1) correlation, the covariance vector X

was conditioned by cov(Xijk, Xij1k) = .5|j−j1|. The unstructured correlation structures were

obtained by generating a symmetric matrix that has random numbers uniformly distributed

between 0 and 1. The methods to introduce the correlation structures are described below.

First, we examined the proposed test statistic for H0(A) of no probe copy number vari-

ation. The probe copy numbers were randomly generated under null hypothesis of equal

numbers for distinct subjects at the same time point. For convenience, we used the same

mean for all probes at all time points. For the balanced design, the random numbers were

put in a matrix X of J rows and I × n columns. J is the number of time points, I is the

number of probes, and n is the number of replications. For unbalanced design, the number

of columns of X is the sum of the number of replications for all individual probes.

An AR(1) or unstructured correlation structure J × J matrix L was then generated as

described above. The Cholesky decomposition of L calculates the lower half triangle matrix
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h. Thus, we have the simulated data matrix Y = h · X that had the desired correlation

structure. The matrix Y had equal means across columns. Nonetheless, at different time

points (between rows), the copy numbers from the same probe could vary. It was then used

for analysis by our statistic defined in 2.4.1. There is an exception in the data generating

process for Poisson distribution. We intended to use Poisson distribution to generate integer

copy number data. Therefore, we first calculated the means matrix M for Y by multiplying

the half matrix h with a data matrix consisting of only copy number 2’s. Then the random

data matrix Y was generated by using Poisson distribution with mean M.

In the test of the probe effect, we considered both balanced and unbalanced designs.

Each sample have 5 replicates in the balanced design. The type I error rates with an AR(1)

correlation were shown in Table 2.1. Either 2 or 8 time points were simulated for each

dataset. The number of time points does not significantly affect the error rates. They had

similar error rates in all conditions. We increased the number of probes from 5 to 1000. At

the level α = 0.05, the error rate converges to 0.05 as the number of probes increases, and

they were close to 0.05 for normal, exponential and Poisson distributions when the number

of probes was 40 or above. The error rate for Cauchy distribution did not converge to 0.05

since Cauchy distribution does not have a finite mean.

For the unbalanced design, we created data by assigning four fifths of probes with 4

replications, and the remaining probes with 6 replications. The results of AR(1) and un-

structured correlation are shown in Table 2.2 and Table 2.3 separately. The conclusions

were similar to those of balanced designs (Table 2.3).

Secondly, we conducted hypothesis test for the time effect. Similar to that of the probe

effect, we first generate random copy numbers matrix X with equal means for all tested

distributions except for Poisson distribution. In order to maintain equal means across time

points (rows), we cannot use the Cholesky decomposition to introduce correlation structure.

Instead, we used a iterative algorithm. Suppose for probe i, the correlation between the jth
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no.time no.snp normal exponential Poisson Cauchy
5 0.107 0.117 0.118 0.190

10 0.091 0.076 0.096 0.173
20 0.085 0.073 0.066 0.147
30 0.074 0.063 0.059 0.135

2 40 0.063 0.060 0.048 0.132
50 0.050 0.055 0.053 0.128

100 0.053 0.051 0.053 0.107
200 0.051 0.046 0.060 0.123
500 0.054 0.053 0.056 0.111

1000 0.042 0.052 0.049 0.104
5 0.103 0.098 0.105 0.206

10 0.094 0.072 0.075 0.164
20 0.078 0.071 0.059 0.156
30 0.065 0.064 0.071 0.141

8 40 0.059 0.042 0.063 0.128
50 0.054 0.064 0.061 0.128

100 0.049 0.059 0.055 0.130
200 0.051 0.059 0.057 0.111
500 0.049 0.059 0.035 0.103

1000 0.051 0.051 0.063 0.085

Table 2.1: Estimated type I error estimate of the test of no probe effect at 0.05 level. The
data from the same probe follow AR(1) with correlation =0.5. There are 5 replications in
the design.

and (j+1)th time points is ρ. Given a copy number Xj for the jth time point, the random

copy number of the (j+1)th time point can be generated by

Xj+1 = ρXj + b,

where b is a random number with mean 2(1− ρ). Thus, the mean of Xj+1 is 2. For Poisson

distribution, similar to the process for the probe effect, we first generated the means with

desired correlation structure, and then used the means to generate random integer copy

numbers.

The type I error rates at alpha level 0.05 with an AR(1) correlation were shown in

Table 2.4. Two or eight time points were simulated for each experiment. For each dataset,
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no.snp normal exponential Poisson Cauchy
10 0.102 0.111 0.101 0.163
20 0.083 0.074 0.075 0.149
30 0.071 0.067 0.072 0.121
40 0.062 0.066 0.074 0.138
50 0.072 0.059 0.057 0.134

100 0.051 0.068 0.067 0.111
200 0.041 0.038 0.043 0.114
500 0.047 0.056 0.053 0.112

1000 0.052 0.053 0.048 0.087

Table 2.2: Estimated type I error of the test of no probe effect at 0.05 level. The data from
the same probe follow AR(1) with correlation =0.5. The number of time points is 2. For
each experiment, Four fifths of probes have 4 replications, and the remaining one fifth of
probes have 6 replications.

no.snp normal exponential Poisson Cauchy
10 0.089 0.091 0.100 0.156
20 0.077 0.072 0.075 0.133
30 0.060 0.072 0.054 0.117
40 0.071 0.069 0.048 0.120
50 0.070 0.071 0.043 0.116

100 0.054 0.074 0.051 0.121
200 0.055 0.057 0.048 0.121
500 0.050 0.055 0.057 0.108

1000 0.046 0.063 0.053 0.100

Table 2.3: Estimated type I error of the test of no probe effect at 0.05 level. The data from
the same probe follow unstructured correlation. The number of time points is 5. For each
experiment, Four fifths of probes have 4 replications, and the remaining one fifth of probes
have 6 replications.

four fifths of probes were assigned 4 replications, and the remaining one fifth of probes

were assigned 6 replications. As the number of time points increases, it needs more probes

to reach the expected error rate. Normal, exponential, and Poisson distributions showed

similar convergence rate. But as expected, the error rate for Cauchy distribution did not

converge to 0.05.

Table 2.5 showed the type I error rates for the unstructured correlation. The conclusions
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no.time no.snp normal exponential Poisson Cauchy
10 0.060 0.061 0.051 0.030
20 0.064 0.052 0.047 0.029
30 0.067 0.054 0.063 0.025

2 40 0.053 0.050 0.052 0.024
50 0.053 0.054 0.058 0.011

100 0.043 0.055 0.051 0.022
200 0.048 0.047 0.048 0.017
500 0.044 0.045 0.053 0.019

1000 0.058 0.037 0.052 0.016
5 0.373 0.404 0.349 0.319

10 0.192 0.207 0.176 0.106
20 0.113 0.125 0.106 0.052
30 0.092 0.090 0.077 0.033

8 40 0.075 0.075 0.088 0.024
50 0.065 0.082 0.074 0.027

100 0.048 0.059 0.049 0.017
200 0.052 0.044 0.055 0.011
500 0.052 0.053 0.042 0.015

1000 0.055 0.052 0.039 0.011

Table 2.4: Estimated type I error estimate of the test of no time effect at 0.05 level. The
data from the same probe follow AR(1) with correlation =0.5. For each probe, the number
of replications is either 4 or 6.

were similar to those of the balanced designs.

Thirdly, simulation was conducted to test the interaction of probe and time. The data

generating process was similar to that for test of time effect. Under null hypothesis, the copy

number for all probes at all time points are equal. We gave 8 time points in the experiment.

An unbalanced design was used such that four fifths of probes have 4 replications, and one

fifth of probes have 6 replications. The type I error rate at alpha level 0.05 were reported

in Table 2.6 and Table 2.7 for AR(1) and unstructured correlations, respectively. Normal,

exponential, and Poisson distributions showed similar convergence rate. Like other tests,

the error rate for Cauchy distribution did not converge.
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no.snp normal exponential Poisson Cauchy
10 0.114 0.121 0.103 0.052
20 0.084 0.074 0.086 0.027
30 0.070 0.093 0.058 0.023
40 0.065 0.069 0.077 0.026
50 0.065 0.074 0.060 0.019

100 0.038 0.054 0.047 0.016
200 0.052 0.051 0.048 0.015
500 0.038 0.039 0.041 0.018

1000 0.049 0.038 0.045 0.017

Table 2.5: Estimated type I error of the test of no time effect at 0.05 level. The data from
the same probe follow unstructured correlation. For each simulation, there are 8 time points.
For each probe, the number of replications is either 4 or 6.

no.snp normal exponential Poisson Cauchy
10 0.086 0.084 0.101 0.175
20 0.071 0.079 0.066 0.153
30 0.073 0.076 0.074 0.149
40 0.056 0.073 0.066 0.151
50 0.045 0.051 0.054 0.142
100 0.047 0.062 0.052 0.139
200 0.070 0.054 0.056 0.105
500 0.035 0.044 0.046 0.097
1000 0.062 0.047 0.055 0.095

Table 2.6: Estimated type I error rates of the test of no interaction of probe and time effects
at 0.05 level. The data from the same probe follow AR(1) with correlation =0.5. For each
probe, the number of replications is either 4 or 6.

2.6.2 Bootstrap data

In this subsection, we used power analysis to compare the proposed method (NPT) with

linear mixed-effects model (LME) and generalized estimating equations (GEE). To simulate

data as closely as possible to the real aCGH data, we used bootstrap to generate re-sampled

data based on an aCGH application.

It has been reported that amplification of chromosome 7q is associated with glioma
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no.snp normal exponential Poisson Cauchy
10 0.080 0.087 0.086 0.175
20 0.076 0.074 0.057 0.155
30 0.050 0.070 0.059 0.153
40 0.048 0.057 0.055 0.145
50 0.049 0.063 0.051 0.136
100 0.060 0.052 0.043 0.117
200 0.050 0.065 0.053 0.140
500 0.050 0.071 0.047 0.110
1000 0.061 0.062 0.040 0.099

Table 2.7: Estimated type I error rates of the test of no interaction of probe and time effects
at 0.05 level. The data from the same probe follow unstructured correlation with correlation
=0.5. For each probe, the number of replications is either 4 or 6.

tumor (Maher (2006)). We acquired the copy numbers of 3,000 SNPs in chromosome 7q

from Affymetrix 100K SNP arrays for both a healthy person and a glioma patient. From

Figure 2.4, we see that the glioma sample has 7q amplification. Its mean copy number is 4.4.

The normal sample has a mean of 2.05. In the simulation design, 100 SNPs were repeatedly

measured at 5 time points with either a balanced or unbalanced design. In each dataset,

the majority of data came from normal 7q sample (under H0), and they were contaminated

with a small proportion of glioma data (under Ha).

Figure 2.5 showed the power curves of testing SNP effects in the balanced design with an

AR(1) correlation structure. In each experiment, there were 5 time points, and 5 replications.

The contamination percentage of glioma SNPs varied from 0 to 2%. The re-sampling data

formed a data matrix X with 5 rows and 500 (5 × 100) columns. Each row represented

a time point, and each column represented a SNP. The 5 replications of each SNP were

in adjacent columns. The AR(1) correlation structure was introduced with the Cholesky

decomposition as described in the subsection 2.6.1. The proposed method (NPT) had

the fastest convergence rate to 1. The power was 100% when there were at least 0.9%

contamination. At 0.9% contamination, the power of LME was 54.5%, and that of GEE

was only 25.3%. GEE had the worst power among the three methods. It had a power of
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Figure 2.4: The plots of DNA copy numbers in chromosome 7q of normal and glioma samples. Red plots
denote the copy numbers of glioma SNPs, and blue plots denote the copy numbers of normal SNPs. The x
axis showed the genomic positions of each SNP on chromosome 7q.

96.9% for 2% contamination whereas the other two methods had 100% power.

We next considered unbalanced design and unstructured correlation for the bootstrap-

resampled data. Four fifths of SNPs were assigned 4 replications, whereas the remaining

one fifth of SNPs were assigned 6 replications. An unstructured correlation matrix were

introduced with the Cholesky decomposition such that the correlation between distinct time

points for the same SNP was random. Still, we considered 5 time points. The contamination

percentage of glioma SNPs in each dataset was in the range of 0 to 2%. The conclusion

was similar to that of the balanced design (Figure 2.6). The proposed method (NPT)

outperformed the other two methods. It reached 100% power when there was at least 1.3%

of contamination, whereas LME and GEE had 75% and 51% of powers, respectively. With

2% of contamination, LME had 97.3% of power, and GEE had 88.1% of power.

For the test of the time effect, bootstrap-resampled data were generated with 5 time

points. The design was unbalanced and the correlation structure was unstructured. The
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Figure 2.5: The power curves of balanced design with an AR(1) correlation.
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Figure 2.6: The power curves of unbalanced design with unstructured correlation.

correlation structure was incorporated via the interactive algorithm as described in the

previous subsection. Figure 2.7 showed the power curves for the three methods. With 2%
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of amplified copy number contamination, NPT had a power of 96.7%, LME of 71.8%, and

GEE of 62.2%.
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Figure 2.7: The power curves of unbalanced design with unstructured correlation

For the test of the interaction of SNP and time, we generated unbalanced unstructured

correlated data by bootstrap-resampling for 5 time points. Similarly, we used the interactive

algorithm to generate the unstructured correlation as discussed earlier. Figure 2.8 showed

the power curves for the three methods. The contamination of amplified SNPs were changed

from 0% to 4%. The three methods were not discriminable when the contamination is less

than 0.9%. Nonetheless, NPT had a higher power for more than 0.9% of contamination.

GEE performed better than LME in the interaction test, but not in the SNP and the time

effect tests. With 4% of contamination, NPT had a power of 96.8%, LME of 63.6%, and

GEE of 89.0%.
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Figure 2.8: The power curves of unbalanced design with unstructured correlation.

2.7 A longitudinal study

Wilms’ tumor typically occurs in children’s kidney. Although the percentage of patients

who survive at least five years is above 90%, 15% of patients will suffer from tumor relapse

(Kalapurakal et al. (2004)). A lot of recent work regarding Wilms’ tumor has been aimed

at discovering the genetic biomarkers for diagnosis, prognosis, and treatment management

(Eggert et al. (2001); Takahashi et al. (2002); Williams et al. (2004); Dome et al. (2005)).

Genetic aberrations such as loss of heterozygosity and chromosome copy number changes

have been found to be associated with the tumor relapse (Grundy et al. (2005); Yuan et al.

(2005); Natrajan et al. (2006)). However, few longitudinal studies have been conducted to

identify biomarkers that are responsible to tumor progression and recurrence.

Natrajan et al. (2007) carried out aCGH experiments for 10 Wilms’ patients with re-

lapse. The aCGH samples were conducted at both diagnosis and relapse for each patient.

They used Breakthrough Breast Cancer Human CGH 4.6K 1.1.2 arrays that consist of 4179
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Bacterial Artificial Chromosome (BAC) clones. The BAC clones serve as probes for measur-

ing the genomic DNA copy number. In their report, 29 chromosome regions were identified

to have copy number alterations responsible to Wilms’ tumor relapse. However, their con-

clusions were based on pairwise comparison of diagnosis and relapse for each patient. It is

not statistically justified to conduct hypothesis test without replications of subject. The

reproducibility of such analysis is expected to be low, and the claimed biomarkers are pos-

sibly not useful for predicting the potential relapse of new Wilms’ patients. In fact, only 6

of the 29 regions were found in 2 of the 10 patients according the their paper. Motivated by

the need to redo the analysis with rigorous statistical method, we acquired the raw aCGH

data and conducted analysis with the following steps.

We first performed quality control and normalization for the raw data. As female and

male people have different number of sex chromosomes, to avoid them confounding with the

analysis, we removed X and Y chromosomes from the data. The raw data were adjusted to

baseline by subtracting the median background signal. In the experiment, each probe was

labeled with two fluorescent dyes, Cy5 and Cy3. The fluorescent intensity ratio of Cy5/Cy3

were used as input data. The Cy5/Cy3 ratio were subject to quantile normalization across

all samples (Bolstad et al. (2003)). The processed data had a median copy number of 2 and

a standard deviation of 0.04 for each sample. They were used for subsequent analysis.

As discussed in section 2.1, a first goal of a CGH study is usually to detect the gain or loss

of a chromosome arm because it is often the unit of genomic mutation and translocation

activity. For instances, Hing et al. (2001) and Lu et al. (2002) found that the gain

of chromosome 1q is associated with relapse of Wilms’ tumor. We applied our proposed

methods to each chromosome arm for hypothesis tests of probe, time, and probe× time

effects. There were no probes for 5 of the 44 arms. They were 13p, 14p, 15p, 21p, and 22p.

For the other arms, the minimum number of probes was 84, and the maximum number was

699. Table 2.8 lists the chromosome arms that were statistically significant for the tests.

Totally 16 arms showed significant probe× time interaction. That implied the copy numbers
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of some of the probes in these arms varied between diagnosis and relapse. Of the remaining

chromosome arms, no time effects were detected, and two arms showed significant probe

effects.

p arm q arm
chromosome probe time probe×time probe time probe×time

1
2 2.552E−03 2.720E−03
3 6.697E−03 2.472E−04 0.014 0.010
4
5 5.070E−09 1.216E−11 2.382E−04 9.936E−05
6 0.034
7 2.426E−08 0.023 0.031
8 0.041
9 0.036 0.036
10
11 5.054E−08 4.350E−07
12 0.016
13
14
15 0.038
16 5.538E−05 6.836E−07
17 0.015
18 2.554E−14 1.776E−15
19
20
21 1.593E−03
22 0.013

Table 2.8: Summary of significant P values (< 0.05) calculated by NPT methods for each
chromosome arm.

We were most interested in the chromosome regions in which all probes had copy num-

ber gain or loss simultaneously and had no significant effect. From Table 2.8, 26 chro-

mosome arms were not detected for any effect. We calculated the mean value for each of

the arm. Unfortunately, none of these mean values was abnormally higher or lower than

2. Further analysis can be conducted by comparing to normal reference samples with the

non-parametric methods proposed by Wang and Akritas (2004). The desired biomarkers

for predicting relapse should show a consistent pattern between diagnosis and relapse. If
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a genetic event only occurs in either of the two measures, its association with tumor re-

currence is hard to be established. For the purpose of identifying prognostic biomarkers,

we were not interested in the chromosome arms with probe×time interaction. Nevertheless,

the interaction may indicate important genetic regulation mechanisms, and be worth further

biological studies.

We explored the chromosome 8p and 21q that showed only probe effect. Significant probe

effect suggests some regions in the two arms have gain or loss of DNA copies. By calculating

the mean value of each probe with the measures from both diagnosis and relapse, we found

four regions with abnormal copy numbers. The results were summarized in Table 2.9.

Chromosome region 8p21.3 was found to have a DNA deletion. Two genes are encoded in

this region. INTS10 is a subunit of RNA polymerase. Reduced expression level of RNA

polymerase could lead to abnormal expression of many other genes. Thus, it is a potential

oncogenesis gene. LPL is responsible for lipoprotein uptake, and it was reported to be

associated with prostate cancer (Narita et al. (2004)). Chromosome 21q11.1 and 21q11.3

loss may affect the expression of genes CR614803, NCAM2, and CYYR1. However, the gene

functions and their relevancy with cancer is not clear currently. The loss of 21q22.3 were

associated with functions of 3 genes, NX1, NX2, and TMPRSS2. NX1 is responsible for

anti-viral reaction; NX2 is a subunit of GTPase; TMPRSS2 belongs to the serine protease

family. Both GTPase and serine protease are involved in a number of fundamental gene

regulation pathways. The four selected regions overlapped with 2 copy number alterations

reported by Natrajan et al. (2007). Thus, out of their 29 selected regions, we were only

able to verify 2 potential biomarkers.

Longitudinal aCGH studies can provide unique insights into the genetic abnormalities

involved in disease development and progression. However, there are a lot of challenges

faced by statistical analysis. Researchers often use over-simplified analysis methods that

are not able to provide sufficient statistical power and justification. We provided a robust

tool based on non-parametric statistics that has potentially broad applications in this area.
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Genomic region Gene Function
8p21.3 INTS10 RNA transcription

LPL lipoprotein
21q21.1 CR614803 NA

NCAM2 NA
21q21.3 CYYR1 NA
21q22.3 NX1 anti-viral response

NX2 GTPase
TMPRSS2 Serine protease

Table 2.9: Summary of the copy number alterations detected for both primary and relapse
tumors.
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Chapter 3

Statistical tests for time course
microarray data

Time course microarray experiments have been widely used to explore dynamic changes in

gene expression in varying biological conditions. In a longitudinal gene expression study,

each subject is repeatedly measured over time. Statistical models need to take within-subject

correlation into account. In this chapter, we provide robust test procedures to compare

groups of genes under multiple treatments or experimental conditions using expression data.

3.1 Introduction

Recent advances in high-throughput screening technology and in high-dimensional data anal-

ysis have made it possible for scientists to study more complex problems, such as measuring

dynamic response of organisms at the molecule level. For examples, time-course microarray

experiments have been conducted to investigate gene expression in the cell cycle, in the

Drosophila immune response, in the mouse cardiac development, in the human osteoblast

differentiation, in the inflammatory response of human blood leukocyte, and in the aging

of human kidney cortex tissue (Shedden and Cooper (2002); Gregorio et al. (2001); Qi

et al. (2003); Rodwell1 et al. (2004); Calvano et al. (2005)). Many time-course microarray

experiments are designed to repeatedly measure the gene expression from the same object
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over time. The following two examples highlight the structure of the data.

Example 1. A recent study was carried out on human (Calvano 2005) to study gene ex-

pression over time during acute inflammatory and immune response. Gene expression in

whole blood leukocytes was determined by microarray immediately before and at 2, 4, 6, 9

and 24 h after the intravenous administration of bacterial endotoxin to four healthy human

subjects. Four additional subjects were studied under identical conditions but without en-

dotoxin administration. The blood samples were taken from the same patient at different

time points were therefore correlated. Changes in blood leukocyte gene expression patterns

were analyzed. The study provide insight into the generic regulation of global leukocyte

activities.

Example 2. The Hessian fly (Mayetiola destructor) is one of the most destructive pests of

wheat in the U.S., Western Asia, and Northern Europe. Resistance (R) genes in wheat

have been the most effective means in controlling Hessian fly damages. The challenge for

using resistance genes is that the effectiveness of a R gene is short-lived, lasting from six

to eight years after its initial deployment Hatchett et al. (1987), Ratcliffe et al. (2000).

Consequently, new R genes need to be continuously identified and incorporated into wheat

cultivars for continued success. In addition, experiments at Kansas State University found

that rice is a nonhost plant for Hessian fly since 100% Hessian fly larvae died in rice during

the whole larval stage (Chen et al. 2008). To identify genes and pathways that were affected

in resistant wheat, suspectable wheat and rice leading to host and nonhost resistance, whole

genome arrays of wheat and rice were used at different time points (half-day, 1-day, 3-day

and 5-day) after Hessian fly attacks. The genes affected at an early time are likely involved

in regulations and signal transduction whereas the genes affected at a later time are likely

involved in direct chemical defense. Large amount of array data from this experiment

involving interactions of Hessian fly with wheat and rice over time remain to be analyzed

effectively to identify critical genes for genetic engineering.
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In the examples above, the temporal component is an inherent part of the study and

multiple treatments are involved for discovery of important genes or transcriptional activ-

ity over developmental stages. These poses novel challenges for statistical analysis since

effective methods need to take into account both curse of dimensionality and within-subject

correlations. A few statistical attempts have been made to analyze longitudinal microar-

ray data. Most of data analysis for longitudinal microarray is based on statistical test for

individual genes and then is adjusted for multiple tests by false discovery rate (FDR). Lin-

ear mixed-effects model (LME) and generalized estimating equation (GEE) are commonly

used for longitudinal data analysis (Liang and Zeger (1986); Diggle et al. (2002)). While

they have been proved to be useful tools for repeated measures with large sample size, the

adequacy of model fitting is of concern for high dimensional data analysis (Fan and Zhang

(2000)). Park et al. (2003) used a two-stage ANOVA model to calculate the P values for

each gene. At the first stage, the time effect is tested; the residuals of the time effect are

then used for permutation test. They require the study to be balanced and there is no strong

within-subject correlation. Guo et al. (2003) proposed a modified Wald statistic to test the

differential expression of each gene over time. The Wald statistic converges to a χ2 distribu-

tion under null hypothesis when the number of subjects is sufficiently large. Each gene was

assigned a gene-specific score that was calculated by the Wald statistic by accounting for

within-subject correlation. The gene-specific score was adjusted by a small positive number

to comprise small gene expression level. Permutation test was then performed to compute

the false discovery rate (FDR) for each gene. Storey et al. (2005) used a mixed model with

a polynomial mean function to detect significant genes across time between treatment and

control groups. Under the null hypothesis of no differential expression, the two groups were

assumed to have the same population average time curve. The population mean curve for

the profile of each gene was modeled, and it was used for calculating F statistic for the gene.

And then FDR was used to call significantly differentiated genes.

All methods above consider within-subject correlations, and they are targeted to test
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individual genes. However, the following FDR adjustment leads to a high P value for the

multiple tests at one hand, and FDR is so conservative that it excludes many positive signals

at the other hand (Storey and Tibshirani (2003)). It has become a current trend to test a

set of genes simultaneously instead of performing tests for individual genes. A set of genes,

selected from biological knowledge from pathway information or literature mining, are tested

for variation as a group. One of such knowledge-based approaches was recently reported

as Gene set enrichment (Subramanian et al. (2005); Efron and Tibshirani (2007)). Tsai

and Qu (2008) tested a subset of genes by applying non-parametric time-varying coefficient

model. The within-subject correlation was taken into account by the quadratic inference

function (QIF). QIF is derived from GEE and it is asymptotically χ2 distributed when the

number of replications goes to ∞.

Due to the high cost of microarray experiments, a large sample size is usually difficult

to obtain. Therefore, the methods based on large sample size have limited application in

array study. In addition, the large number of variables and multiple time points entail high

requirement for computation. Efficient computation algorithm need to be implemented for

methodology development. In microarray data analysis, the raw data are to be pre-processed

for quality control and data normalization. In many studies, it is convenient to make normal

or log-normal distribution assumption about the raw or processed data (Tseng et al. (2001);

Olshen and Jain (2002); Sidorov et al. (2002)). Hoyle et al. (2002) justified that microarray

data are in agreement with both Benford’s law and Zipf’s law, and suggested the lognormal

model to be a good candidate concerning the data distribution. However, there are a number

of arguments that the data are largely skewed, and the normal or log-normal distributions

does not provide a close fit to the data (Kerr et al. (2000); Konishi (2004)). Therefore, a

statistical method that has wide application in microarray data analysis should be robust

for multiple distribution assumptions and potential outliers.

For Affymetrix microarray chips, the raw microarray data are generated in a similar

way as aCGH data described in section 2.2. Both expression microarray and aCGH are
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based on fluorescent intensities, which are then transformed to discrimination scores by

summarizing the relative measures of perfectly matched mismatched probes. In contrast to

aCGH, microarray takes the discrimination scores as raw input data, instead of calculating

a ratio to a reference sample, and microarray does not summarize the allele information.

The goal of this chapter is to provide a series of hypothesis testing theory to compare the

expression levels for the effect of a set of probes or genes, the time effect and probe by time

interactions in a longitudinal microarray study. We would like to use a general model set up

so that the test statistics are robust with respect to non-normality. They can also be used for

other high dimensional low sample size data with within-subject correlations. The proposed

test statistics consider unbalanced designs and heteroscedastic covariance structures as well.

An unbalanced design is very common in current microarray data analysis. The data are

often collected from different sources such as multiple centers or online database. The

dataset often contain different versions or even different manufacturers of microarray. Thus,

the number of measurements varies between genes. Our proposed methods can be adapted to

various designs. Furthermore, they have the potential to be used with test-based clustering

to identify groups of genes with similar expression patterns, producing a gene expression

signature.

The outline of this chapter is as follows. In section (3.2), we describe the study design and

the model specification. Test statistics are provided in section (3.3). Details of asymptotic

theory for original observations and their proofs are provided in section (3.4). Section (3.5)

presents the simulation results on type I error estimates and power analysis for our proposed

methods. In section (3.6), we applied our method to a recent longitudinal microarray study

in which the gene expression profiles of murine T cells with or without interleukin-2 (IL-2)

stimulation were collected at 4 and 8 h. Sets of genes from different functional groups were

tested for IL-2 signaling over time.

54



3.2 Model specification

We consider high dimensional longitudinal data in this manuscript. The subjects are ran-

domly assigned to different treatment groups, each subject has thousands of variables, and

they are repeatedly measured over time. We focus on the applications of analysis of biolog-

ical data, such as genomic, proteomics, and metabonomics data.

Let Xijkl be measurement of the kth gene/probe from subject l in treatment group i at

time j (i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K; l = 1, ..., nik). The number of probes is large,

whereas the number of time points and the number of replications are small. The design

is assumed to be either balanced or unbalanced, in that the number of replications may

vary for different treatment groups and for different probes. The measurement values are

modeled by

Xijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + εijkl (3.2.1)

where
∑I

i αi =
∑J

j βj =
∑K

k γk =
∑I

i (αβ)ij =
∑J

j (αβ)ij =
∑I

i (αγ)ik =
∑K

k (αγ)ik =
∑J

j (βγ)jk =
∑K

k (βγ)jk = 0, µ is the overall mean measurement, αi represents the effect of

ith treatment, βj represents the effect of the jth time point, and γk represents the effect of

the kth gene. The interaction effect of treatment and gene is denoted by (αγ)ik, and the

interaction effect of time and gene is denoted by (βγ)jk. The error terms εijkl are identically

distributed with mean 0. Assume that εijkl and εi′j′k′l′ are independent if i 6= i′ or k 6= k′

or l 6= l′. They are only dependent when they are observations at various time points for

the same gene from an individual, in this case, i=i’, j 6= j′, k=k’, and l=l’. The three-way

interaction of treatment, time, and response is not of biological interest, so it is not included

in the model. Note that normality is not assumed for εijkl. We only requires the existence

of the fourth moment.

The treatment effect αi accounts for differences between treatments averaged over the
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whole time period and over all genes. Such differences could arise if the mRNA transcription

of some genes is inhibited by the treatment. Similarly, the time effect βj accounts for the

differences between time points. The gene expression may have a trend over time. The

gene effect γk accounts for the average relative expression level of gene k. The term (αγ)ik

accounts for the effect of treatment i for gene k. An individual gene could have distinct

responses to different treatments. Nonzero treatment*gene interaction indicates differential

expression for some genes. The term (βγ)jk accounts for the effect of gene k at time point

j. Genes could have distinct expression trends over time.

The dependence of repeated measurements within an individual was taken into account

in the model fitting procedure. The within-subject correlation structure is not necessar-

ily homogeneous, but could vary for different genes. In microarray data, each individual

gene has its own transcription activity, therefore, each gene has its unique correlation struc-

ture. Biological time course experiments are often not evenly spaced in time. Thus, the

same correlation structure should not be assumed for different time point for the same

subject. Therefore a heteroscedastic variance structure is used for the model such that

Cov(εijkl, εij′kl) = σi,k,jj′ .

The tests can be written in terms of the parameters in the model. In microarray exper-

iments, the null hypothesis of no differential expression between treatments is equivalent to

restricting all αi to be zero. The test of the null hypothesis that the gene expression does

not vary over time is equivalent to testing all βj equal to zero. The null hypothesis of no

variation in gene expression levels between treatments is equivalent to restricting all (αγ)ik

to zero. The null hypothesis of gene expression independent of time points is equivalent to

restricting all (βγ)jk to zero. In order to identify differentially expressed genes, we will test

whether all γk equal to zero across all treatments and over the whole time period.

At the end of the section, we present a summary of notations which will be used in the
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rest of the manuscript.

X̃i·k· = J−1

J∑
j=1

X ijk·, X̃ij·· = K−1

K∑

k=1

X ijk·, X̃·jk· = I−1

I∑
i=1

X ijk·, X̃i··· = J−1

J∑
j=1

X̃ij··,

X̃·j·· = I−1

I∑
i=1

X̃ij··, σ2
i,k,j = V ar(Xijkl), σi,k,jj1 = Cov(Xijkl, Xij1kl) ( note σi,k,jj = σ2

i,k,j),

σ2
i,k,jj1

= V ar(XijklXij1kl), σi,k,jj1,j2j3 = Cov(XijklXij1kl, Xij2klXij3kl), (σi,k,jj1,jj1 = σ2
i,k,jj1

).

3.3 Test statistics

The analysis of variance (ANOVA) is often used for the model specified in last section (Kerr

2000). However, the asymptotic results for traditional ANOVA are not satisfied because the

sample size is small and the data may not be normally distributed. Here we will construct

new test statistics that are suitable when there is unknown within-subject correlation in

the presence of a large number of variables. In this section, we will use a few modified

Wald test statistics and modified F test statistics to provide robust tests for main effect and

interactions.

First, we will test the treatment main effect. One of the major purposes of a microar-

ray study is identifying changes in expression across various biological conditions, such as

different tissues, species, or drug response states. Under the null hypothesis for microarray

studies, there is no differential expression of genes between treatments. The null hypothesis

is

H0(A) : all αi = 0, for i = 1, ..., I.

In order to test H0(A) of the treatment effect, we consider a more general hypothesis

H0(AG) : Lα = 0 for a contrast among αi, where L is a p×I contrast matrix, α = (α1, ..., αI)
′,

and 0 is a p dimensional zero vector. If we test the treatment effect for each individual gene,

a Wald-type test statistic with estimated correlation structure for the gene may be consid-
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ered (Kent 1982). The Wald statistic for the kth gene is

WA,k = D′
A,kL

′(LV̂AkL
′)−1LDA,k

where DA,k = (X̃1·k·, ..., X̃I·k·)′, and V̂Ak is the estimated I × I variance matrix for vector

DA,k, which is a diagonal matrix for subjects are independent between treatment groups.

The purpose is to perform multivariate test for the treatment effect that takes into

account the large number of variables and the within-subject dependence. To adapt the

Wald statistic to high dimensional and non-normal data, we proposed a modified Wald-type

test statistic for null hypothesis H0(AG) that takes into account all genes.

WA = D′
AL′(LV̂AL′)−1LDA, (3.3.1)

where DA = (X̃1···, ..., X̃I···)′, and V̂A = diag(η̂A1, ..., η̂AI), which is the estimated covariance

matrix for DA. The term η̂Ai represents the estimation of variance of X̃i···, and it is defined

as

η̂Ai =
1

J2K2

J∑
j1,j2

K∑

k

1

nik(nik − 1)

nik∑

l

(Xij1kl −X ij1k·)(Xij2kl −X ij2k·). (3.3.2)

Secondly, we carry out a statistical test for the time effect. In a longitudinal microarray

study, researchers are often interested in genes whose expression changes over time, such as

cell cycle genes and HOX genes involved in tissue development. The test of the time effect

is only intended for a subset of genes of interest, selected from pathways or from a biological

database.

The null hypothesis of no time effect is

H0(B) : all βj = 0, for j = 1, ..., J.

Similar to testing H0(A), in order to test H0(B) of the time effect, we also consider a

more general hypothesis H0(BG) : Lβ = 0 where L is a p× J matrix, β = (β1, ..., βJ)′, and
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0 is a p dimensional zero vector. A modified Wald-type test statistic is used for testing

H0(BG).

WB = D′
BL′(LV̂BL′)−1LDB, (3.3.3)

where DB = (X̃·1··, ..., X̃·J ··)′, and V̂B is the estimated J × J covariance matrix for DB, with

the value at the j1th row and the j2th column being

η̂Bj1j2 =
1

I2K2

I∑
i

K∑

k

1

nik(nik − 1)

nik∑

l

(Xij1kl −X ij1k·)(Xij2kl −X ij2k·). (3.3.4)

A third hypothesis test is conducted for the main effect on the gene of interest. While the

expression levels vary greatly between genes, it is not desirable to compare the expressions

directly. To make comparisons between genes, the data should be adjusted to other data,

such as a reference or a control dataset, or an alternative dye intensity. In such cases,

we often use log-ratio to transform the original gene expression profile. We are interested

in detecting discordance of expression pattern between large groups of genes. The null

hypothesis is

H0(G) : all γk = 0, for k = 1, ..., K.

To test H0(G), similar to analysis of variance, a modified F test statistic is considered.

F (G) =
MSTG

MSEG

. (3.3.5)

But these versions of MST and MSE are slightly different from that of ANOVA, in that

MSTG =
IJ

K − 1

K∑

k=1

(X̃··k· − X̃····)2 (3.3.6)
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where X̃··k· is the sample average of all X̃i·k· for i=1, ..., I, and in the same way, X̃i·k· is the

sample average of X ijk· X̃···· is the sample average of all X̃··k·.

MSEG =
1

IJK

I∑
i=1

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l=1

(Xijkl −X ijk.)(Xij1kl −X ij1k.). (3.3.7)

The definition of MSEG is different from that of the traditional MSE in that the within-

subject correlation over time is taken into account.

The fourth test statistic is for interaction effect of treatment and time. In such situation,

we want to identify the gene sets that are activated by treatment in only some specific time

points. The expression of genes are affected by treatment, but the effects are only observed

after a period of time.

The null hypothesis of no interaction of treatment and time is

H0(AB) : all (αβ)ij = 0, for i = 1, ..., I, and j = 1, ..., J.

Similar to test H0(B), in order to test H0(AB) of the time effect, we also consider a

more general hypothesis H0(ABG) : L(αβ) = 0 where L is matrix with p rows and I × J

columns, (αβ) is the vector of (αβ)ij with length I×J , and 0 is a p dimensional zero vector.

A modified Wald-type test statistic is used for testing H0(ABG).

WAB = D′
ABL′(LV̂ABL′)−1LDAB, (3.3.8)

where DAB = (X̃11··, X̃12··, ..., X̃ij··, ..., X̃IJ ··)′, and V̂AB is the estimated covariance matrix

for DAB. The estimated covariance of X̃ij·· and X̃i1j1·· is given at the ((i − 1)J + j)th row

and ((i1− 1)J + j1)th column of V̂AB. If i 6= i1, the value is zero. If i = i1, the value is given

by

η̂AB(ij)(ij1) =
1

K2

K∑

k

1

nik(nik − 1)

nik∑

l

(Xij1kl −X ij1k·)(Xij2kl −X ij2k·). (3.3.9)
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The next test is targeted to find the gene set that have some genes responsible to the

treatment. The gene set can be discovered via hypothesis test of the interaction of gene and

treatment effect. The null hypothesis is

H0(AG) : all (αγ)ik = 0, for i = 1, ..., I, and k = 1, ..., K.

Similar to the test statistic for main effect of gene, the test of interaction H0(AG) is also

based on a derivative of F statistic

F (AG) =
MSTAG

MSEAG

, (3.3.10)

where

MSTAG =
J

(I − 1)(K − 1)

I∑
i

K∑

k

(X̃i·k· − X̃i··· − X̃··k· + X̃····)2, (3.3.11)

MSEAG =
1

IJK

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

(Xijkl −X ijk.)(Xij1kl −X ij1k.).

The calculation of sample average is different from ANOVA model, and it is denoted by

X̃····).

Finally, the high throughput time course study is often targeted to identify the vari-

ables that show positive time response, such as genes regulated by cell cycle. We provide

hypothesis test for the interaction of variables and time. The null hypothesis is

H0(BG) : all (βγ)jk = 0, for j = 1, ..., J, and k = 1, ..., K.

Alike to the test statistic for main effect of gene, the test of interaction H0(BG) is also

based on a derivative of F statistic

F (BG) =
MSTBG

MSEBG

, (3.3.12)
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where

MSTBG =
I

(J − 1)(K − 1)

J∑
j

K∑

k

(X̃·jk· − X̃·j·· − X̃··k· + X̃····)2, (3.3.13)

MSEBG =
1

IK(J − 1)

I∑
i

J∑
j

K∑

k

1

nik(nik − 1)

nik∑

l

(Xijkl −X ijk.)
2 −

1

IKJ(J − 1)

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

(Xijkl −X ijk.)(Xij1kl −X ij1k.).

The calculation of sample average is different from ANOVA model, and it is denoted by

X̃····.

The asymptotic distribution for each of the test statistic will be derived in the following

sections.

3.4 Main results based on original observations

This section is devoted to develop the asymptotic distribution of the test statistics which

are defined in the last section. The asymptotic properties are derived based on the original

observation under null hypotheses. For simplicity, we use the residual eijkl = Xijkl−E[Xijkl]

in this section.

Theorem 3.4.1. For testing H0(AG): Lα = 0 where L is a I × p contrast matrix, α =

(α1, ..., αI)
′, and 0 is a p dimensional zero vector, let WA be the statistic given in (3.3.1).

If Xijkl has a finite fourth moment, then under H0(AG),

WA
d→ χ2

p as K →∞.

We will start the proof by first showing that the variance estimation in WA is consistent.
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Lemma 3.4.2. Let ηA,i = V ar(X̃i···) denote the variance of X̃i···, and let η̂A,i be the statistic

given in (3.3.2). Under the settings and assumptions of Theorem 3.4.1,

K(η̂A,i − ηA,i)
p→ 0 as K →∞.

for i=1, ..., I.

Proof: By the independence of X̃i·k· for k=1, ..., K, we have

ηA,i = V ar(X̃i···) = V ar

(∑K
k=1 X̃i·k·

K

)
=

1

K2

K∑

k=1

V ar(X̃i·k·).

Let

η̂Ai,k =
1

J2nik(nik − 1)

J∑
j1,j2

nik∑

l

(Xij1kl −X ij1k·)(Xij2kl −X ij2k·).

We will show that η̂Ai,k is an unbiased estimator of ηA,i,k = V ar(X̃i·k·). First note that

E
[
(Xij1kl −X ij1k·)(Xij2kl −X ij2k·)

]

= E [(eij1kl − eij1k·)(eij2kl − eij2k·)]

= E(eij1kleij2kl)− E(eij1k·eij2kl)− E(eij1kleij2k·) + E(eij1k·eij2k·)

= σi,k,j1j2 −
1

nik

σi,k,j1j2 −
1

nik

σi,k,j1j2 +
1

n2
ik

nik∑

l

E(eij1kleij2kl)

=
nik − 1

nik

σi,k,j1j2 .

We then have

E(η̂Ai,k) =
1

J2nik(nik − 1)

J∑
j1,j2

nik∑

l

E
[
(Xij1kl −X ij1k·)(Xij2kl −X ij2k·)

]
=

1

J2ni,k

J∑
j1j2

σi,k,j1j2

It is easy to show that

ηA,i,k =
1

J2ni,k

J∑
j1j2

σi,k,j1j2 .
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Therefore we have shown that E(η̂Ai,k) = ηA,i,k. The lemma will follow by showing that

1
K

∑K
k=1(η̂Ai,k − ηA,i,k)

p→ 0. The convergence is obtained by applying the Markov weak law

of large number. The Markov condition will be satisfied if 1
K2

∑K
k=1 E(η̂Ai,k − ηA,i,k)

2 → 0

as n →∞. It is sufficient to show that E(η̂Ai,k)
2 is finite. By Hölder’s inequality,

E(η̂Ai,k)
2

= E

[
1

J2nik(nik − 1)

J∑
j1,j2

nik∑

l

(eij1kl − eij1k·)(eij2kl − eij2k·)

]2

=
1

J4n2
ik(nik − 1)2

E

[
J∑

j1J2

nik∑

l

(eij1kl − eij1k·)(eij2kl − eij2k·)

]2

≤ 1

J2nik(nik − 1)2

J∑
j1J2

nik∑

l

E [(eij1kl − eij1k·)(eij2kl − eij2k·)]
2

=
1

J2nik(nik − 1)2

J∑
j1J2

nik∑

l

E [eij1kleij2kl − eij2kleij1k· − eij1kleij1k· + eij2k·eij2k·]
2

≤ 4

J2nik(nik − 1)2

J∑
j1J2

nik∑

l

[
E(eij1kleij2kl)

2 + E(eij2kleij1k·)2 + E(eij1kleij1k·)2+

E(eij2k·eij2k·)2
]

< ∞,

for fixed J and nik. The finite bound is obtained because the first four moments of Xijkl

exist. This completes the proof.

Proof of Theorem 3.4.1: Under H0(AG), LE[DA] = 0, where DA = (X̃1···, ..., X̃I···)′, we

have LDA = LDA−E[DA]). Let VA = V ar[DA] = diag(ηA,1, ..., ηA,I). From Lemma (3.4.2),

we have that V̂A is a consistent estimate of VA. Because of the independence of X̃1···’s,

the result will follow with the Continuous Mapping and Slutsky’s Theorems, by showing

(X̃i··· − E[X̃i···])/
√

ηA,i
d→ N(0, 1) as K → ∞. Since X̃i·k·’s are independent for k=1, ...,K,

it is sufficient to show that
∑

k(X̃i·k· − E[X̃i·k·])/(K
√

ηA,i) =
∑

k ẽi·k·/(K
√

ηA,i)
d→ N(0, 1)

as K →∞. And the asymptotic normality of X̃i··· can be shown by Lyapounov’s Theorem.

64



The Lyapounov condition will be satisfied if

LA =

∑K
k=1 E|ẽi·k·|4

(
∑K

k=1 ηA,i,k)2
→ 0

Because the first four moments of Xijkl exists, it is easy to show E|ẽi·k·|4 is finite for any k by

Hölder’s theorem. Since ηA,i,k’s are non-zero constant, LA → 0 as a → ∞. This completes

the proof.

Theorem 3.4.3. For testing H0(BG): Lβ = 0 where L is a p × J contrast matrix, β =

(β1, ..., βJ)′, and 0 is a p dimensional zero vector, let WB be the statistic given in (3.3.3).

If Xijkl has a finite fourth moment, then under H0(BG),

WB
d→ χ2

p as K →∞.

Proof of Theorem 3.4.3: Under H0(BG), LE[DB] = 0, then LDB = L(DB − E[DB]).

Let VB = V ar[DB]. VB is a J × J matrix, where the value of j1th row and j2th column is

defined as

Cov(X̃·j1··, X̃·j2··) = ηB,j1j2 =
1

I2K2

I∑
i

K∑

k

σi,k,j1j2

nik

.

If j1 = j2 = j, it is the variance of X̃·j··, and it is denoted

ηB,j =
1

I2K2

I∑
i

K∑

k

σ2
i,k,j

nik

.

The result will follow with the Continuous Mapping and Slutsky’s Theorems, by showing
√

N(DB − E[DB])
d→ NJ(0, limK→∞ NVB) as K → ∞, where N =

∑I
i=1

∑K
k=1 nik. It is

sufficient to show for any finite constants a = (a1, ..., aJ)′,

√
Na′(DB − E[DB]) =

J∑
j=1

aj

√
N(X̃·j·· − E(X̃·j··))

d→ N(0, lim
K→∞

Na′VBa),

where Na′VBa = N
∑I

i=1

∑J
j,j1

∑K
k ajaj1σi,k,jj1/(nikI

2K2) converges if

(
∑I

i

∑K
k n−1

ik )(
∑I

i

∑K
k nik)/K

2 converges, which holds if max nik/min nik = O(1).
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Note that

J∑
j=1

aj

√
N [X̃·j·· − E(X̃·j··)]

=

√
N

K

J∑
j=1

aj

K∑

k

[X̃·jk· − E(X̃·jk·)]

=
K∑

k

(√
N

K

J∑
j

aj ẽ·jk·

)
.

Asymptotic normality is attained by applying Lyapounov’s Theorem. The Lyapounov

condition will be satisfied if

LB =
K∑

k

(√
N

K

)4

E

(
J∑
j

aj ẽ·jk·

)4

→ 0.

To see this,

LB =
K∑

k

(√
N

K

)4

E

(
J∑
j

aj ẽ·jk·

)4

≤
K∑

k

N2

K4
J3

J∑
j

E(a4
j ẽ

4
·jk·)

=
K∑

k

N2

K4
J3

J∑
j

a4
j

I
E(

I∑
i

e4
ijk·) ≤

K∑

k

N2

K4
J3

J∑
j

a4
j

I
B4

[
I∑
i

E(e2
ijk·)

]2

=
K∑

k

N2

K4
J3

J∑
j

a4
j

I
B4

[
I∑
i

1

n2
ik

E(

nik∑

l

eijkl)
2

]2

=
K∑

k

N2

K4
J3

J∑
j

a4
j

I
B4

[
I∑
i

1

nik

σ2
i,k,j)

]2

= O

(
K∑

k

N2

K4

I∑
i

1

n2
ik

)

= O(K−1),

where the first inequality follows Hölder’s inequality (2.5.2), and the last equality holds

if max{nik} = O(min{nik}). The second inequality follows from Khintchine’s inequality

(2.5.4). B4 is a constant with definition of B2m = ((2m)!/2mm!)
1

2m .
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This completes the proof.

Theorem 3.4.4. For null hypothesis H0(G): all γk = 0, let F (G) be the statistic given in

(3.3.5). If Xijkl has a finite fourth moment, then under H0(G), as K →∞,

√
K(F (G)− 1)

VG

d→ N(0, 1),

where VG is the asymptotic variance defined as

VG =
√

τG/σG. (3.4.1)

where

τG =
2

I2J2K

K∑

k=1

[
I∑

i 6=i1

J∑
j,j1,j2,j3

1

nikni1k

σi,k,jj1σi1,k,j2j3 +
I∑
i

J∑
j,j1,j2,j3

1

nik(nik − 1)
σi,k,jj1σi,k,j2j3

]
,

σG =
1

IJK

I∑
i=1

J∑
j,j1

K∑

k

σi,k,jj1

nik

.

Lemma 3.4.5. Under the settings and assumptions of Theorem 3.4.4,

MSEG − σG
p→ 0 as K →∞.

Proof:

First note that in the proof of Lemma (3.4.2) we have shown

E
[
(Xij1kl −X ij1k·)(Xij2kl −X ij2k·)

]
=

nik − 1

nik

σi,k,j1j2 .

Then,

E(MSEG) =
1

IJK

I∑
i=1

J∑
j,j1

∑

k

1

nik(nik − 1)

nik∑

l=1

E
[
(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]

= σG.
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And we have

V ar(MSEG)

=
1

(IJK)2

I∑
i=1

J∑
j,j1

∑

k

1

n2
ik(nik − 1)2

nik∑

l=1

nik∑

l2=1

Cov

[
b∑

j,j1

(Xijkl −X ij.)(Xij1kl −X ij1.),

b∑
j2,j3

(Xij2kl2 −X ij2.)(Xij3kl2 −X ij3.)

]
.

Note that

E
[
(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]2

= E [(eijkl − eijk.)(eij1kl − eij1k.)]
2

= E[eijkleij1kl − eijk.eij1kl − eijkleij1k. + eijk.eij1k.]
2

≤ 4[E(eijkleij1kl)
2 + E(eijk.eij1kl)

2 + E(eijkleij1k.)
2 + E(eijk.eij1k.)

2]

= 4

[
E(e2

ijkle
2
ij1kl) +

1

n2
ik

E(e2
ijkle

2
ij1kl) +

1

n2
ik

E(e2
ijkle

2
ij1kl) +

n2
ik

n4
ik

nik∑

l=1

nik∑

l1=1

E(e2
ijkle

2
ij1kl1

)

]

=
4(n2

ik + 2 + nik)

n2
ik

Cov(e2
ijkl, e

2
ij1kl) + 4σ2

ijkσ
2
ij1k

< ∞,

where the first inequality follows Hölder’s inequality (2.5.2), and the last inequality holds

because Xijk has the finite fourth moment.
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We have
∣∣∣∣∣Cov

[
J∑

j,j1

(eijkl − eijk.)(eij1kl − eij1k.),
J∑

j2,j3

(eij2kl2 − eij2k.)(eij3kl2 − eij3k.)

]∣∣∣∣∣ (3.4.2)

≤
∣∣∣∣∣V ar

[
J∑

j,j1

(eijkl − eijk.)(eij1kl − eij1k.)

]
V ar

[
J∑

j2,j3

(eij2kl2 − eij2k.)(eij3kl2 − eij3k.)

]∣∣∣∣∣

1
2

≤
∣∣∣∣∣∣
E

[
J∑

j,j1

(eijkl − eijk.)(eij1kl − eij1k.)

]2
∣∣∣∣∣∣

1
2
∣∣∣∣∣∣
E

[
J∑

j2,j3

(eij2kl2 − eij2k.)(eij3kl2 − eij3k.)

]2
∣∣∣∣∣∣

1
2

≤
∣∣∣∣∣J

2

J∑
j,j1

E [(eijkl − eijk.)(eij1kl − eij1k.)]
2

∣∣∣∣∣

1
2
∣∣∣∣∣J

2

J∑
j2,j3

E [(eij2kl2 − eij2k.)(eij3kl2 − eij3k.)]
2

∣∣∣∣∣

1
2

= J2

∣∣∣∣∣
J∑

j,j1

E [(eijkl − eijk.)(eij1kl − eij1k.)]
2

∣∣∣∣∣

1
2
∣∣∣∣∣

J∑
j2,j3

E [(eij2kl2 − eij2k.)(eij3kl2 − eij3k.)]
2

∣∣∣∣∣

1
2

< ∞,

where the inequalities follow from the Cauchy Schwartz Inequality and Hölder’s inequality,

and the last inequality holds due to the results previously shown.

Therefore,

V ar(MSEG) = O(K−1)

It follows that MSEG − σG
p→ 0 as K →∞.

Lemma 3.4.6. Under the settings and assumptions of Theorem 3.4.4 and under H0(G), we

have

√
K(MSTG − PG(e))

p→ 0 as K →∞,

where PG(e) = IJ
K

∑K
k=1 ẽ2

··k·.

Proof:
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Note that under H0(G),

MSTG =
IJ

K − 1

K∑

k=1

(ẽ··k· − ẽ····)2

=
IJ

K − 1

(
K − 1

K

K∑

k=1

ẽ2
··k· −

1

K

K∑

k 6=k′
ẽ··k·ẽ··k′·

)

=
IJ

K

K∑

k=1

ẽ2
··k· −

IJ

K(K − 1)

K∑

k 6=k′
ẽ··k·ẽ··k·.

Thus, we have

E[
√

K(MSTG − PG(e))] =

√
KIJ

K(K − 1)

K∑

k 6=k′
E [ẽ··k·ẽ··k·] = 0.

Furthermore,

E[
√

K(MSTG − PG(e))]2

=
KI2J2

K2(K − 1)2

(
K∑

k 6=k′
E [ẽ··k·ẽ··k·]

)2

=
I2J2

K(K − 1)2
E

[
K∑

k 6=k1,k2 6=k3

ẽ2
··k·ẽ

2
··k1·ẽ

2
··k2·ẽ

2
··k3·

]

=
2I2J2

K(K − 1)2
E

[
K∑

k 6=k1

ẽ2
··k·ẽ

2
··k1·

]

=
2I2J2

K(K − 1)2

K∑

k 6=k1

E[ẽ2
··k·]E[ẽ2

··k1·]

= O(K−1).

Therefore, under H0(G),
√

K(MSTG − PG(e))
p→ 0 as K →∞.

Proof of Theorem 3.4.4: From Lemmas 3.4.5 and 3.4.6, we need only to consider the

asymptotic distribution of QG(e) =
√

K(PG(e) − MSEG) under H0(G), where PG(e) =

IJ
K

∑K
k=1 ẽ2

··k·.
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Using some simple algebra, we have

QG(e)

=
√

K

[
IJ

K

K∑

k=1

ẽ2
··k· −

1

IJK

I∑
i=1

J∑
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1

nik(nik − 1)
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]

=
1

IJ
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K
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[
(
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i

J∑
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l

eijkl
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J∑
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1

nik(nik − 1)

nik∑

l=1

(eijkl − eijk.)(eij1kl − eij1k.)

]

=
1

IJ
√

K

J∑
j,j1

K∑
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l

ni1k∑
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eijklei1j1kl1
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1
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=
1

IJ
√

K

J∑
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[
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l

ni1k∑
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eijklei1j1kl1

nikni1k

+
I∑
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1
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nik∑

l 6=l1

eijkleij1kl1

]
.
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Therefore, E[QG] = 0. It follows that

V ar(QG(e))

= E

(
1

IJ
√

K

J∑
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[
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1
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1
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E

(
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l
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1
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1
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K∑
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1

nik(nik − 1)
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eijkleij1kl1)
2

]

=
2

I2J2K

K∑

k=1

[
I∑

i6=i1

1

n2
ikn

2
i1k

E(
J∑
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nik∑

l

ni1k∑

l1
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2 +

nik∑

l 6=l1

E(
I∑
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J∑
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1
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eijkleij1kl1)

2

]

=
2

I2J2K

K∑

k=1

[
I∑

i6=i1

J∑
j,j1,j2,j3

nik∑

l

ni1k∑

l1

1

n2
ikn

2
i1k

E(eijkleij1klei1j2kl1ei1j3kl1)

+
I∑
i

J∑
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nik∑
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1

n2
ik(nik − 1)2

E(eijkleij1kleij2kl1eij3kl1)

]

=
2

I2J2K

K∑

k=1

[
I∑

i6=i1

J∑
j,j1,j2,j3

nik∑

l

ni1k∑

l1

1

n2
ikn

2
i1k

E(eijkleij1kl)E(ei1j2kl1ei1j3kl1)

+
I∑
i

J∑
j,j1,j2,j3

nik∑

l 6=l1

1

n2
ik(nik − 1)2

E(eijkleij1kl)E(eij2kl1eij3kl1)

]

=
2

I2J2K

K∑

k=1

[
I∑

i6=i1

J∑
j,j1,j2,j3

1

nikni1k

σi,k,jj1σi1,k,j2j3 +
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i

J∑
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1
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σi,k,jj1σi,k,j2j3

]

= τG.

Since V ar(QG(e)) is bounded, Lyapunov’s condition will be satisfied if
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E
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1
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√

K
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1
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∣∣∣∣∣

4

→ 0.
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We have

LG =
1

I4J4K2
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E

∣∣∣∣∣
J∑

j,j1

[
I∑

i6=i1

nik∑

l

ni1k∑

l1

eijklei1j1kl1

nikni1k

+
I∑

i=1

1

nik(nik − 1)

nik∑

l 6=l1

eijkleij1kl1 ]

∣∣∣∣∣

4
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∣∣∣∣∣
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I∑
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1
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I4K2
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ikn
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i1k

n4
ikn
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E|eijklei1j1kl1|4
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nik∑

l 6=l1

I3n3
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n4
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E|eijkleij1kl1|4
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=
8J2

IK2
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K∑
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[
I∑

i6=i1
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l

ni1k∑

l1

(I − 1)3

nikni1k

E(eijkl)
4E(ei1j1kl1)

4

+
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1

nik(nik − 1)
E(eijkl)

4E(eij1kl1)
4

]

= O(K−1),

if the fourth moment of eijk exists for any i, j, and k. The inequalities follow from Hölder’s

inequality, and the last equation results from the finite fourth central moment of Xijkl. This

completes the proof.

Theorem 3.4.7. For testing H0(ABG): L(αβ) = 0 where L is a contrast matrix with p

rows and I × J columns, (αβ) is the vector of (αβ)ij, and 0 is a p dimensional zero vector,

let WAB be the statistic given in (3.3.8). If Xijkl has a finite fourth moment, then under

H0(ABG),

WAB
d→ χ2

p as K →∞.

Proof of Theorem 3.4.7: Under H0(ABG), LE[DAB] = 0, then LDAB = L(DAB −
E[DAB]). Let VAB = V ar[DAB]. VAB is a (IJ)× (IJ) matrix, and the estimated covariance
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of X̃ij·· and X̃i1j1·· is given at the ((i− 1)J + j)th row and ((i1− 1)J + j1)th column of V̂AB.

If i 6= i1, the value is zero. If i = i1, the value is given by

η̂AB(ij)(ij1) =
1

K2

K∑

k

1

nik(nik − 1)

nik∑

l

(Xij1kl −X ij1k·)(Xij2kl −X ij2k·). (3.4.3)

The result will follow with the Continuous Mapping and Slutsky’s Theorems, by showing
√

N(DAB −E[DAB])
d→ NJ(0, limK→∞ NVAB) as K →∞, where N =

∑I
i=1

∑K
k=1 nik. It is

sufficient to show for any finite constants a = (a11, a12, ..., aij, ..., aIJ)′,
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∑K
k aijaij1σi,k,jj1/(nikK

2) converges if
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∑I
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2 converges, which holds if max nik/min nik = O(1).

I∑
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J∑
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aij

√
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)
.

The asymptotic normality can be shown by Lyapounov’s Theorem. The Lyapounov condi-

tion will be satisfied if
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Note that
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J∑
j=1

a4
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where the inequalities follow from Hölder’s inequality (2.5.2), and the last equality holds if

the fourth moment exists. This completes the proof.

Theorem 3.4.8. For null hypothesis H0(AG): all (αγ)jk = 0 for j=1, ...,J, and k=1, ...,K,

let F(AG) be the statistic given in (3.3.10). If Xijkl has a finite fourth moment, then under

H0(AG),

√
K(F (AG)− 1)

VAG

d→ N(0, 1) as K →∞,

VAG =
√

τAG/σAG, (3.4.4)

with

τAG =
2

I2J2K

J∑
j,j1,j2,j3

K∑

k

[
I∑
i

1

nik(nik − 1)
σi,k,jj1σi,k,j2j3+

1

(I − 1)2

I∑

i6=i1

1

nikni1k

σi,k,jj1σi1,k,j2j3

]
,

σAG =
1

IJK

I∑
i=1

J∑
j,j1

K∑

k

σi,k,jj1

nik

.

Lemma 3.4.9. Under the settings and assumptions of Theorem 3.4.8,

MSEAG − σAG
p→ 0 as K →∞.

Proof:

As shown in lemma 3.4.2,

E
[
(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]
=

nik − 1

nik

σi,k,jj1 .
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Then

E(MSEAG)

=
1

IJK

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

E[(Xijkl −X ijk.)(Xij1kl −X ij1k.)]

=
1

IJK

I∑
i

J∑
j,j1

K∑

k

σi,k,jj1

nik

= σAG.

Therefore,

V ar(MSEAG)

=
1

I2J2K2

I∑
i

K∑

k

1

n2
ik(nik − 1)2

nik∑

l

V ar

[
J∑

j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]
.

From formula (3.4.2), we have

∣∣∣∣∣Cov

[
J∑

j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.),
J∑

j2,j3

(Xij2kl −X ij2k.)(Xij3kl −X ij3k.)

]∣∣∣∣∣

=

∣∣∣∣∣Cov

[
J∑

j,j1

(eijkl − eijk.)(eij1kl − eij1k.),
J∑

j2,j3

(eij2kl − eij2k.)(eij3kl − eij3k.)

]∣∣∣∣∣
< ∞.

Therefore, we have

V ar

[
J∑

j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]
< ∞.

It follows that

V ar(MSEAG) → 0

as K →∞. Thus we proved MSEAG − σ2
AG

p→ 0 as K →∞.
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Lemma 3.4.10. Under the settings and assumptions of Theorem 3.4.8 and under H0(AG),

we have

√
K(MSTAG − PAG(e))

p→ 0 as K →∞,

where PAG(e) = J
K(I−1)

∑I
i=1

∑K
k=1(ẽi.k. − ẽ..k.)

2.

Proof:

Note that under H0(AG),

MSTAG

=
J

(I − 1)(K − 1)

I∑
i=1

K∑

k=1

(ẽi.k. − ẽi... − ẽ..k. + ẽ....)
2

=
J

(I − 1)(K − 1)

I∑
i=1

K∑

k=1

[
(ẽi.k. − ẽ..k.)

2 − 2

K

K∑

k1

(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.)+

1

K2

K∑

k1

(ẽi.k1. − ẽ..k1.)
2

]

=
J

(I − 1)(K − 1)

I∑
i=1

[
K + 1

K

K∑

k=1

(ẽi.k. − ẽ..k.)
2 − 2

K

K∑

k,k1

(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.)

]

=
J

K(I − 1)

I∑
i=1

K∑

k=1

(ẽi.k. − ẽ..k.)
2 − 2J

K(I − 1)(K − 1)

I∑
i=1

K∑

k 6=k1

(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.).

Thus, we have

E[
√

K(MSTAG − PAG(e))] =
2J
√

K

K(I − 1)(K − 1)

I∑
i=1

K∑

k 6=k1

E[(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.)] = 0.

77



And

E[
√

K(MSTAG − PAG(e))]2

=
4J2K

K2(I − 1)2(K − 1)2
E

[
I∑

i=1

K∑

k 6=k1

(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.)

]2

=
8J2

K(I − 1)2(K − 1)2
E




K∑

(k=k1)6=(k2=k3)

(
I∑

i=1

(ẽi.k. − ẽ..k.)(ẽi.k2. − ẽ..k2.)

)

(
I∑

i=1

(ẽi.k1. − ẽ..k1.)(ẽi.k3. − ẽ..k3.)

)]

=
8J2

K(I − 1)2(K − 1)2
E

[
K∑

k 6=k1

I∑
i

(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.)(ẽi.k. − ẽ..k.)(ẽi.k1. − ẽ..k1.)

)

=
8J2

K(I − 1)2(K − 1)2

I∑
i

K∑

k 6=k1

E[(ẽi.k. − ẽ..k.)(ẽi.k. − ẽ..k.)]E[(ẽi.k1. − ẽ..k1.)(ẽi.k1. − ẽ..k1.)]

= O(K−1).

The last equation holds if Xijkl has the finite fourth moment. Therefore under H0(AG),
√

K(MSTAG − PAG(e))
p→ 0 as K →∞.

Proof of Theorem 3.4.8: From Lemma 3.4.9 and Lemma 3.4.10, we need only to consider

the asymptotic distribution of QAG(e) =
√

K(PAG(e)−MSEAG) under H0(AG).
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With some simple algebra, we have

QAG(e)

=
√

K

[
J

K(I − 1)

I∑
i=1

K∑

k=1

(ẽi.k. − ẽ..k.)
2 − 1

IJK

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

(eijkl − eijk·)(eij1kl − eij1k·)

]

=
√

K

[
1

JK(I − 1)

I∑
i=1

K∑

k=1

J∑
j,j1

(eijk. − ẽ.jk.)(eij1k. − ẽ.j1k.)− 1

IJK

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

(eijkl − eijk·)(eij1kl − eij1k·)

]

=
1

J(I − 1)
√

K

I∑
i

J∑
j,j1

K∑

k

(eijk. − ẽ.jk.)(eij1k. − ẽ.j1k.)− 1

IJ
√

K

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

(eijkl − eijk·)(eij1kl − eij1k·)

=
1

J(I − 1)
√

K

I∑
i

J∑
j,j1

K∑

k

(eijk.eij1k. − eij1k.ẽ.jk. − eijk.ẽ.j1k. + ẽ.jk.ẽ.j1k.)−

1

IJ
√

K

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

(eijkleij1kl − eij1kleijk· − eijkleij1k· − eijk·eij1k·)

=
1

J(I − 1)
√

K

J∑
j,j1

K∑

k

(
I∑
i

eijk.eij1k. − 1

I

I∑
i,i1

eijk.ei1j1k.

)
−

1

IJ
√

K

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

(
nik∑

l

eijkleij1kl − 1

nik

nik∑

l,l1

eijkleij1kl1

)

=
1

J(I − 1)
√

K

J∑
j,j1

K∑

k

(
I∑
i

nik∑

l,l1

I − 1

In2
ik

eijkleij1kl1 −
I∑

i6=i1

nik∑

l

ni1k∑

l1

1

Inikni1k

eijklei1j1kl1

)
−

1

IJ
√

K

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

(
nik − 1

nik

nik∑

l

eijkleij1kl − 1

nik

nik∑

l 6=l1

eijkleij1kl1

)

=
1

IJ
√

K

J∑
j,j1

K∑

k

(
I∑
i

nik∑

l 6=l1

1

nik(nik − 1)
eijkleij1kl1 −

1

I − 1

I∑

i6=i1

nik∑

l

ni1k∑

l1

1

nikni1k

eijklei1j1kl1

)
.
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Therefore, E[QAG(e)] = 0. It follows that

V ar(QAG(e))

=
1

I2J2K

K∑

k

V ar

[
J∑

j,j1

(
I∑
i

nik∑

l 6=l1

1

nik(nik − 1)
eijkleij1kl1 −

1

I − 1

I∑

i6=i1

nik∑

l

ni1k∑

l1

1

nikni1k

eijklei1j1kl1

)]

=
1

I2J2K

K∑

k

[
V ar

(
I∑
i

J∑
j,j1

nik∑

l 6=l1

1

nik(nik − 1)
eijkleij1kl1

)
+

V ar

(
I∑

i6=i1

J∑
j,j1

nik∑

l

ni1k∑

l1

1

(I − 1)nikni1k

eijklei1j1kl1

)]

=
1

I2J2K

K∑

k

[
2

I∑
i

nik∑

l 6=l1

V ar

(
J∑

j,j1

1

nik(nik − 1)
eijkleij1kl1

)
+

2

(I − 1)2

I∑

i 6=i1

(
nik∑

l

V ar

(
J∑
j

1

nik

eijkl

))(ni1k∑

l1

V ar

(
J∑
j1

1

ni1k

ei1j1kl1

))]

=
2

I2J2K

K∑

k

[
I∑
i

nik∑

l 6=l1

1

n2
ik(nik − 1)2

J∑
j,j1,j2,j3

E(eijkleij2kl)E(eij1kl1eij3kl1)+

1

(I − 1)2

I∑

i 6=i1

(
nik∑

l

1

n2
ik

J∑
j,j1

E(eijkleij1kl)

) (ni1k∑

l1

1

n2
i1k

J∑
j,j1

E(ei1jkl1ei1j1kl1)

)]

=
2

I2J2K

K∑

k

[
I∑
i

1

nik(nik − 1)

J∑
j,j1,j2,j3

σi,k,jj1σi,k,j2j3+

1

(I − 1)2

I∑

i 6=i1

(
1

nik

J∑
j,j1

σi,k,jj1

)(
1

ni1k

J∑
j,j1

σi1,k,jj1

)]

=
2

I2J2K

K∑

k

[
I∑
i

1

nik(nik − 1)

J∑
j,j1,j2,j3

σi,k,jj1σi,k,j2j3+

1

(I − 1)2

I∑

i 6=i1

1

nikni1k

J∑
j,j1,j2,j3

σi,k,jj1σi1,k,j2j3

]
.

Since V ar(QAG(e)) is bounded, Lyapunov’s condition will be satisfied if
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LAG(K) =
K∑

k

E

∣∣∣∣∣
1

IJ
√

K

J∑
j,j1

(
I∑
i

nik∑

l 6=l1

1

nik(nik − 1)
eijkleij1kl1−

1

I − 1

I∑

i6=i1

nik∑

l

ni1k∑

l1

1

nikni1k

eijklei1j1kl1

)∣∣∣∣∣

4

→ 0.
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We have

LAG(K) =
1

I4J4K2

K∑

k

E

∣∣∣∣∣
J∑

j,j1

(
I∑
i

nik∑

l 6=l1

1

nik(nik − 1)
eijkleij1kl1−

1

I − 1

I∑

i 6=i1

nik∑

l

ni1k∑

l1

1

nikni1k

eijklei1j1kl1

)∣∣∣∣∣

4

≤ 8J2

I4K2

J∑
j,j1

K∑

k


E

(
I∑
i

nik∑

l 6=l1

1

nik(nik − 1)
eijkleij1kl1

)4

+

E

(
1

I − 1

I∑

i6=i1

nik∑

l

ni1k∑

l1

1

nikni1k

eijklei1j1kl1

)4
∣∣∣∣∣∣

≤ 8J2

I4K2

J∑
j,j1

K∑

k




I∑
i

I3

n4
ik(nik − 1)4

E

(
nik∑

l 6=l1

eijkleij1kl1

)4

+

I∑

i6=i1

I3

(I − 1)n4
ikn

4
i1k

E

(
nik∑

l

ni1k∑

l1

eijklei1j1kl1

)4
∣∣∣∣∣∣

≤ 8J2

I4K2

J∑
j,j1

K∑

k

[
I∑
i

I3

nik(nik − 1)

nik∑

l 6=l1

E(eijkleij1kl1)
4+

I∑

i6=i1

I3

(I − 1)nikni1k

nik∑

l

ni1k∑

l1

E(eijklei1j1kl1)
4

∣∣∣∣∣

=
8J2

I4K2

J∑
j,j1

K∑

k

[
I∑
i

I3

nik(nik − 1)

nik∑

l 6=l1

E(e4
ijkl)E(e4

ij1kl1
)+

I∑

i6=i1

I3

(I − 1)nikni1k

nik∑

l

ni1k∑

l1

E(e4
ijkl)E(e4

i1j1kl1
)

∣∣∣∣∣

= O(K−1) if the fourth moment of eijkl exist for any i, j, k, and l.

where the two inequalities follow from Hölder’s inequality (2.5.2). This completes the proof.

Theorem 3.4.11. For null hypothesis H0(BG): all (βγ)jk = 0 for j=1, ...,J, and k=1,

...,K, let F(BG) be the statistic given in (3.3.12). If Xijkl has a finite fourth moment, then
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under H0(BG),
√

K(F (BG)− 1)

VBG

d→ N(0, 1) asK →∞,where VBG is defined in (3.4.5).

The variance component is calculated by

VBG =
√

τBG/σBG (3.4.5)

where

τBG =
2

I2K(J − 1)2

I∑
i

K∑

k

[
1

nik(nik − 1)

J∑
j,j1

σ2
i,k,jj1

+
1

J2nik(nik − 1)

J∑
j,j1,j2,j3

σi,k,jj1σi,k,j2j3−

2

Jnik(nik − 1)

J∑
j,j1,j2

σi,k,jj1σi,k,jj2

]

σBG =
1

IK(J − 1)

I∑
i

J∑
j

K∑

k

σ2
i,k,j

nik

− 1

IKJ(J − 1)

I∑
i=1

J∑
j,j1

K∑

k

σi,k,jj1

nik

.

Lemma 3.4.12. Under the settings and assumptions of Theorem 3.4.11,

MSEBG − σBG
p→ 0 as K →∞.

Proof:

As shown in lemma 3.4.2,

E
[
(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]
=

nik − 1

nik

σi,k,jj1 .

Then

E(MSEBG)

=
1

IK(J − 1)

I∑
i

J∑
j

K∑

k

1

nik(nik − 1)

nik∑

l

E
[
(Xijkl −X ijk.)

2
]−

1

IKJ(J − 1)

I∑
i

J∑
j,j1

K∑

k

1

nik(nik − 1)

nik∑

l

E
[
(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]

=
1

IK(J − 1)

I∑
i

J∑
j

K∑

k

σ2
i,k,j

nik

− 1

IKJ(J − 1)

I∑
i=1

J∑
j,j1

K∑

k

σi,k,jj1

nik

= σBG.
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Therefore,

V ar(MSEBG)

=
1

I2K2(J − 1)2

I∑
i

K∑

k

1

n2
ik(nik − 1)2

nik∑

l

{
V ar

[
J∑
j

(Xijkl −X ijk.)
2

]

+
1

J2
V ar

[
J∑

j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]

− 2

J
Cov

[
J∑
j

(Xijkl −X ijk.)
2,

J∑
j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]}
.

From formula (3.4.2), we have

∣∣∣∣∣Cov

[
J∑

j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.),
J∑

j2,j3

(Xij2kl −X ij2k.)(Xij3kl −X ij3k.)

]∣∣∣∣∣

=

∣∣∣∣∣Cov

[
J∑

j,j1

(eijkl − eijk.)(eij1kl − eij1k.),
J∑

j2,j3

(eij2kl − eij2k.)(eij3kl − eij3k.)

]∣∣∣∣∣
< ∞.

It follows that

V ar

[
J∑
j

(Xijkl −X ijk.)
2

]
< ∞

V ar

[
J∑

j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]
< ∞

∣∣∣∣∣Cov

[
J∑
j

(Xijkl −X ijk.)
2,

J∑
j,j1

(Xijkl −X ijk.)(Xij1kl −X ij1k.)

]∣∣∣∣∣ < ∞.

Therefore,

V ar(MSEBG) → 0

as K →∞. It follows that MSEBG − σ2
BG

p→ 0 as K →∞.
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Lemma 3.4.13. Under the settings and assumptions of Theorem 3.4.11 and under H0(BG),

we have

√
K(MSTBG − PBG(e))

p→ 0 as K →∞,

where PBG(e) = 1
IK(J−1)

∑I
i=1

∑J
j=1

∑K
k=1(eijk. − ẽi.k.)

2.

Proof:

Note that under H0(BG),

MSTBG

=
I

(J − 1)(K − 1)

J∑
j=1

K∑

k=1

[
(ẽ.jk. − ẽ..k.)

2 − 2

K

K∑

k1

(ẽ.jk. − ẽ..k.)(ẽ.jk1. − ẽ..k1.)+

1

K2

K∑

k1

(ẽ.jk1. − ẽ..k1.)
2

]

=
I

(J − 1)(K − 1)

J∑
j=1

[
K + 1

K

K∑

k=1

(ẽ.jk. − ẽ..k.)
2 − 2

K

K∑

k,k1

(ẽ.jk. − ẽ..k.)(ẽ.jk1. − ẽ..k1.)

]

=
I

K(J − 1)

J∑
j=1

K∑

k=1

(ẽ.jk. − ẽ..k.)
2 − 2I

K(J − 1)(K − 1)

J∑
j=1

K∑

k 6=k1

(ẽ.jk. − ẽ..k.)(ẽ.jk1. − ẽ..k1.).

And note that

E

[
I

K(J − 1)

J∑
j=1

K∑

k=1

(ẽ.jk. − ẽ..k.)
2

]

=
1

IK(J − 1)

J∑
j=1

K∑

k=1

E

[
I∑

i=1

(eijk. − ẽi.k.)

]2

=
1

IK(J − 1)

I∑
i=1

J∑
j=1

K∑

k=1

E(eijk. − ẽi.k.)
2

= E[PBG(e)].

Thus, we have

E[
√

K(MSTBG − PBG(e))] =
2I
√

K

K(J − 1)(K − 1)

J∑
j=1

K∑

k 6=k1

E[(ẽ.jk. − ẽ..k.)(ẽ.jk1. − ẽ..k1.)] = 0.
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And,

E[
√

K(MSTBG − PBG(e))]2

=
4I2K

K2(J − 1)2(K − 1)2
E

[
J∑

j=1

K∑

k 6=k1

(ẽ.jk. − ẽ..k.)(ẽ.jk1. − ẽ..k1.)

]2

=
8I2

K(J − 1)2(K − 1)2
E




K∑

(k=k1)6=(k2=k3)

(
J∑

j=1

(ẽ.jk. − ẽ..k.)(ẽ.jk2. − ẽ..k2.)

)

(
J∑

j=1

(ẽ.jk1. − ẽ..k1.)(ẽ.jk3. − ẽ..k3.)

)]

=
8I2

K(J − 1)2(K − 1)2
E

[
K∑

k 6=k1

J∑
j,j1

(ẽ.jk. − ẽ..k.)(ẽ.jk1. − ẽ..k1.)(ẽ.j1k. − ẽ..k.)(ẽ.j1k1. − ẽ..k1.)

)

=
8I2

K(J − 1)2(K − 1)2

K∑

k 6=k1

J∑
j,j1

E[(ẽ.jk. − ẽ..k.)(ẽ.j1k. − ẽ..k.)]E[(ẽ.jk1. − ẽ..k1.)(ẽ.j1k1. − ẽ..k1.)]

= O(K−1).

Therefore under H0(BG),
√

K(MSTBG − PBG(e))
p→ 0 as K →∞.

Proof of Theorem 3.4.11: From Lemma 3.4.12 and Lemma 3.4.13, we need only to

consider the asymptotic distribution of QBG(e) =
√

K(PBG(e)−MSEBG) under H0(BG).
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With some simple algebra, we have

QBG(e)

=
√

K

[
1

IK(J − 1)

I∑
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(eijkl − eijk·)(eij1kl − eij1k·)

]
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j
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J∑
j

1

nik(nik − 1)
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l
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]
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I
√
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i

K∑

k

[
(

J∑
j
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J
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1
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1
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]

=
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I
√

K(J − 1)
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i
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k
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(

1

n2
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j
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Jn2
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(
1
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J∑
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nik∑

l
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1

n2
ik(nik − 1)

J∑
j

nik∑
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eijkleijkl1) +
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Jn2
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]

=
1

I
√
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I∑
i
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k

[
1

nik(nik − 1)

J∑
j
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l 6=l1

eijkleijkl1 −
1

Jnik(nik − 1)
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eijkleij1kl1

]
.
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Therefore, E[QBG(e)] = 0. It follows that

V ar(QBG(e))

=
1

I2K(J − 1)2

I∑
i

K∑

k

V ar

[
1

nik(nik − 1)
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ik(nik − 1)2
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E(eijkleij2kl)E(eij1kl1eij3kl1)−

2

J2n2
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Since V ar(QBG(e)) is bounded, Lyapunov’s condition will be satisfied if

LBG(K) =
K∑

k=1

E

∣∣∣∣∣
1

I
√
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∣∣∣∣∣

4

→ 0.
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We have

LBG(K) =
1
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1
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]

= O(K−1) if the fourth moment of eijkl exist for any i, j, k, and l,

where the two inequalities follow from Hölder’s inequality (2.5.2). This completes the proof.

3.5 Simulation results

Simulation study was carried out to evaluate the proposed nonparametric test statistics

(NPT) in various conditions. First, we looked at their type I error rates under null hypoth-

esis. To test the robustness of the proposed statistics, we generated random numbers from

various distributions and covariance structures. Secondly, power analysis were conducted

to compare NPT statistics to linear mixed-effects model (LME) and generalized estimat-

ing equations (GEE). In order to generate random numbers as close as to real microarray

data, we use bootstrap to re-sample data from a two-treatment microarray experiment.
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Proper within-subject correlation was then incorporated to the data, and power curves were

produced for each of NPT, LME, and GEE methods.

All the data in this section were generated from the model specified in (3.2.1)

Xijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + εijkl.

Throughout the manuscript, all calculations and simulations were completed with R pro-

gramming. LME and GEE methods were implemented by using gls and geese functions

from R packages nlme and geepack , respectively ((Pinheiro and Bates (2000)); (Yan and

Fine (2004)).

3.5.1 Type I error rate analysis with simulated data

In this section, we measured the specificity of our proposed model (NPT) based on type I

error rates for simulated data from various distributions. In most of microarray applications,

the researchers are interested in identifying gene expression changed by treatment comparing

to a control group. In the simulation, we will focused on two treatment groups. The number

of time points we simulated is either 2 or 5. As balanced design is only a special form of

unbalanced design, here we only consider unbalanced design in that four fifths of genes

having 4 replications and the remaining one fifth of genes having 6 replications.

The gene expression microarray data were often modeled with log-normal or normal

distribution (Sidorov et al. (2002); Hoyle et al. (2002)). Nonetheless, there are a number

of arguments that the real gene profile does not closely fit these distributions, and to model

the distribution is still an hot research field with big challenge (Kerr et al. (2000); Konishi

(2004)). To allow a wide variety of data types, normal, exponential, Poisson, and Cauchy

distributions were used to generate random samples. Appropriate within-subject correlation

structures were introduced into the data with the methods described for each experiment.

Throughout the manuscript, all simulations were performed using 1000 iterations.
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For normal, exponential, and Poisson distributions, the mean of random numbers was set

to 2. The normal distribution was given a standard deviation of 1. The Cauchy distribution

had a location value of 0, and a scale value of 1. The within-subject correlation (over

time points) were modeled either with AR(1) or unstructured correlation structure. For

AR(1) correlation, the covariance vector X was conditioned with cov(Xijk, Xij1k) = .5|j−j1|.

The unstructured correlation structures were obtained by generating correlation symmetric

matrix that has random numbers uniformly distributed between 0 and 1.

First, we examined the proposed test statistic for H0(A) of no gene expression variations

across treatments. A data matrix X of J rows and n columns were were randomly generated

with each row representing a time point and each column representing a gene. J is the

number of time points, and n is the sum of the number of replications for all genes across all

treatment groups. The data matrix were generated under null hypothesis such that there

were no expression changes across columns. An AR(1) or unstructured correlation structure

matrix L with J rows and J columns were then generated as described above. We used

the Cholesky decomposition to produce the lower triangle half matrix h for the correlation

matrix L. The Cholesky decomposition is conducted via R function chol. Thus the data

matrix Y=h*X has the desired correlation structure and it would be used for subsequent

data analysis. The matrix Y had equal means across columns. Nonetheless, at different

time points (across rows), the values from the same gene could be varied. Random data

generation from Poisson distribution was performed slightly differently. We aimed to use

Poisson distribution to generate integer data that simulate specific image data, such as DNA

copy number and cell count. Therefore, we first calculated the means matrix M of the same

dimensions as Y. The matrix M was generated by incorporating the correlation structure to

a matrix with identical elements of value 2. Then the random data matrix Y was obtained

by generate random numbers from Poisson distribution with mean M.

The results of Type I error rate at alpha level 0.05 were given in Table 3.1. Subjects were

assumed to be repeatedly measured at 5 time points with AR(1) within-subject correlation
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structure. As the number of genes increases, the error rate converges to 0.05 for normal,

exponential, and Poisson distribution. They were close to 0.05 with at least 30 genes.

However, the error rate for Cauchy distribution did never go to 0.05 because it does not

have a finite mean.

no.gene normal exponential Poisson Cauchy
5 0.051 0.071 0.075 0.035

10 0.056 0.067 0.062 0.026
20 0.037 0.058 0.053 0.023
30 0.049 0.053 0.055 0.023
40 0.053 0.057 0.054 0.020
50 0.057 0.053 0.052 0.026

100 0.041 0.055 0.051 0.025
200 0.049 0.056 0.054 0.020
500 0.051 0.049 0.047 0.021

1000 0.051 0.051 0.051 0.020

Table 3.1: Estimated type I error estimate of the test of no treatment effect at 0.05 level in
unbalanced design. The data from the same gene follows AR(1) with correlation =0.5.

Table 3.2 showed the type I error rates for unstructured correlation. Either 2 or 5 time

points were simulated for each dataset. For normal, exponential, and Poisson distributions,

the error rates for at least 5 genes and 2 or 5 time points were in high agreement with the

expected level alpha = 0.05. The error rate for Cauchy distribution failed to converge to

0.05.

Secondly, we conducted hypothesis test for the time effect with simulated data. The

random numbers were generated as described above. As correlation introduction via the

Cholesky decomposition does not maintain equal means across time points (rows), we used

an iterative algorithm to generate the AR(1) or unstructured correlation. Suppose for gene

i, the correlation between the jth and (j+1)th time points is ρ that was given based on

AR(1) or unstructured correlation. Given the value Xj of gene i at the jth time point, the
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no.time no.gene normal exponential Poisson Cauchy
5 0.060 0.053 0.063 0.021

10 0.047 0.052 0.048 0.024
20 0.053 0.046 0.054 0.026

2 30 0.048 0.063 0.058 0.019
40 0.044 0.052 0.053 0.021
50 0.043 0.052 0.057 0.020

100 0.040 0.050 0.042 0.020
5 0.056 0.052 0.059 0.032

10 0.053 0.055 0.057 0.025
20 0.047 0.045 0.066 0.020

5 30 0.060 0.058 0.050 0.014
40 0.050 0.049 0.047 0.018
50 0.044 0.041 0.041 0.016

100 0.062 0.047 0.050 0.023

Table 3.2: Estimated type I error estimate of the test of no treatment effect at 0.05 level in
unbalanced design. The data from the same gene have unstructured correlation.

random copy number of the (j+1)th time point can be obtained by

Xj+1 = ρXj + b,

where b is a random number with the mean of 2(1− ρ). Thus the mean of Xj+1 is 2, which

is the same as that of Xj. For Poisson distribution, we first generated the mean values with

the iterative algorithm, and then used the means to generate random integer numbers.

The type I error rates at alpha level 0.05 with unstructured correlation structure were

shown in Table 3.3. Two time points were simulated for each experiment. The error rates

were close to 0.05 for normal, exponential, and Poisson distributions when there were at

least 50 genes in the dataset. The error rate for Cauchy distribution did not converge to

0.05.

Thirdly, simulation was conducted to test the gene effect. Under null hypothesis of no

gene log-ratio variation, the data generating process was the same to that for test of the

treatment effect. An unstructured correlation was introduced to the repeated measures for
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no.gene normal exponential Poisson Cauchy
5 0.049 0.058 0.061 0.025

10 0.062 0.050 0.041 0.016
20 0.055 0.055 0.045 0.018
30 0.074 0.057 0.058 0.020
40 0.062 0.040 0.051 0.018
50 0.047 0.052 0.054 0.022

100 0.042 0.040 0.044 0.017
200 0.044 0.046 0.045 0.021
500 0.053 0.043 0.041 0.017

1000 0.056 0.046 0.037 0.017

Table 3.3: Estimated type I error of the test of no time effect at 0.05 level. The data from the
same gene followed unstructured correlation. For each simulation, there are 2 time points.

either 2 or 5 time points for each gene. The type I error rates at alpha level 0.05 were

shown in Table 3.4. Normal, exponential, and Poisson distributions with both 2 and 5 time

points had similar convergence rate. They converged to 0.05 with at least 40 genes. Cauchy

distribution did not converge to 0.05 as expected.

The next test was concerned with the interaction of treatment and time effect. Under

null hypothesis of no interaction, we generate random data with the same process as to

that for test of the time effect. An unstructured correlation was introduced to the repeated

measures of two time points for each gene. The type I error rates at alpha level 0.05 were

shown in Table 3.5. Normal, exponential, and Poisson distributions had error rates close to

0.05 when the number of genes was above 50. Cauchy distribution did not converge to 0.05.

The fifth test was conducted for the interaction of treatment and the gene effect. Under

null hypothesis of no interaction, the data were simulated in the same way as to that for test

of the gene effect. An unstructured correlation was introduced to the repeated measures

of two time points for each gene. The type I error rates at alpha level 0.05 were shown

in Table 3.6. Normal, exponential, and Poisson distributions had error rates converging to

0.05 with at least 50 genes. Cauchy distribution did not converge to 0.05.
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no.time no.gene normal exponential Poisson Cauchy
5 0.076 0.093 0.097 0.184

10 0.063 0.067 0.058 0.145
20 0.062 0.069 0.055 0.141
30 0.055 0.063 0.053 0.177

2 40 0.067 0.055 0.054 0.138
50 0.059 0.057 0.053 0.135

100 0.052 0.040 0.049 0.158
200 0.049 0.052 0.044 0.141
500 0.060 0.058 0.052 0.137

1000 0.037 0.055 0.048 0.141
5 0.073 0.096 0.072 0.189

10 0.080 0.068 0.074 0.179
20 0.062 0.062 0.065 0.135
30 0.067 0.064 0.070 0.148

5 40 0.051 0.060 0.046 0.140
50 0.043 0.050 0.047 0.159

100 0.053 0.056 0.038 0.143
200 0.046 0.046 0.047 0.146
500 0.041 0.057 0.041 0.113

1000 0.060 0.063 0.027 0.142

Table 3.4: Estimated type I error rates of the test of no gene effect at 0.05 level. The data
from the same gene follow unstructured correlation. There were either 2 or 5 time points
for repeated measures.

Our last attempt was for the interaction test of time and gene effect. Under null hypoth-

esis of no interaction, the random samples were generated in the same way as described for

test of time effect. An unstructured correlation was introduced to the repeated measures

for either 2 or 5 time points for each gene. The number of time points did not play an

important role to affect the error rate. The type I error rates at alpha level 0.05 were shown

in Table 3.7. Normal, exponential, and Poisson distributions had error rates converging to

0.05 with at least 40 genes. Cauchy distribution did not converge to 0.05.
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no.gene normal exponential Poisson Cauchy
5 0.087 0.103 0.099 0.046

10 0.074 0.082 0.064 0.035
20 0.061 0.063 0.050 0.024
30 0.070 0.071 0.063 0.019
40 0.071 0.060 0.065 0.019
50 0.064 0.052 0.056 0.011

100 0.037 0.051 0.048 0.012
200 0.043 0.050 0.052 0.018
500 0.048 0.040 0.051 0.022

1000 0.057 0.046 0.048 0.013

Table 3.5: Estimated type I error of the test of no treatment*time interaction at 0.05 level.
The data from the same gene followed unstructured correlation. For each simulation, there
are 2 time points.

no.gene normal exponential Poisson Cauchy
5 0.088 0.083 0.089 0.195

10 0.072 0.076 0.064 0.173
20 0.070 0.072 0.059 0.186
30 0.053 0.063 0.049 0.167
40 0.053 0.066 0.050 0.138
50 0.058 0.059 0.056 0.163

100 0.057 0.064 0.043 0.140
200 0.054 0.053 0.049 0.139
500 0.055 0.050 0.052 0.147

1000 0.044 0.049 0.051 0.139

Table 3.6: Estimated type I error of the test of no treatment*gene interaction at 0.05 level.
The data from the same gene followed unstructured correlation. For each simulation, there
are 2 time points.

3.5.2 Power analysis with bootstrap data and simulated data

In this sub-section, power analysis was conducted to compare the proposed method (NPT)

with linear mixed model (LME) and generalized estimating equations (GEE) . Since the

distribution fitting for microarray data is not satisfactory as discussed in section 3.1, we

primarily used bootstrap to produce data samples based on real microarray data. As the
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no.time no.gene normal exponential Poisson Cauchy
5 0.083 0.099 0.107 0.261

10 0.055 0.068 0.090 0.254
20 0.056 0.053 0.068 0.248
30 0.051 0.069 0.073 0.242

2 40 0.047 0.050 0.050 0.238
50 0.049 0.039 0.068 0.251

100 0.042 0.037 0.057 0.242
200 0.032 0.034 0.037 0.270
500 0.031 0.033 0.039 0.254

1000 0.034 0.034 0.028 0.249
5 0.090 0.088 0.097 0.261

10 0.049 0.072 0.074 0.267
20 0.047 0.043 0.049 0.252
30 0.053 0.050 0.039 0.242

5 40 0.045 0.054 0.034 0.246
50 0.034 0.037 0.039 0.245

100 0.039 0.037 0.048 0.258
200 0.055 0.045 0.032 0.259
500 0.038 0.038 0.029 0.249

1000 0.028 0.037 0.041 0.239

Table 3.7: Estimated type I error rates of the test of no time*gene effect at 0.05 level. The
data from the same gene follow unstructured correlation. There were either 2 or 5 time
points for repeated measures.

simulation study for type I error rates, we only used unstructured correlation matrix for it is

a general form. The correlation was then introduced to bootstrap samples with the iterative

algorithm described in the previous sub-section. In each experiment, we only consider 2

time points for it is common in a longitudinal microarray experiment design. Based on

our simulation study for type I error rates, 50 genes is sufficient large to achieve expected

error rates. So we used 50 genes for all power analysis experiments. Similar to type I error

simulation, the design was unbalanced with four fifths of genes having 4 replications and one

fifth of genes having 6 replications. Two treatment groups were considered in this bootstrap

study. As a comparison, we also used random number generated from normal distributions

for power analysis. The results were shown at the end of the section for two hypothesis
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tests.

We acquired the data of two microarray samples for IL-2 response experiment in murine

T cell (Zhang et al. (2007)). One sample were stimulated with IL-2 for 4 hours, and the

other was a control without IL-2 treatment. The detail of the experiment design and data

preprocession was described in the next section (3.6). We used the following procedure to

determine the gene list under H0 and under Ha. For each gene, we calculated its log-ratio

expressions of the IL-2 treatment to the control. If the log-ratio was between ±0.1, we

regarded the gene is normal (under H0). If the log-ratio was above 1.3, we regarded the

gene to be abnormal (under Ha) for it was activated by IL-2 by more than 3.5 fold change.

In such an arbitrary definition, we had 3652 genes in the normal list, and 1409 genes in

the abnormal list. The power analysis was conducted by contaminating a bootstrap sample

of normal genes with a small proportion of a bootstrap sample of abnormal genes. For

different tests, we bootstrapped either the original gene expressions (log transformed) or

the log ratios of the two samples. We will discuss which type of data should be used for

each experiment.

LME analysis was carried out by gls function available in contributed R package nlme

(Pinheiro and Bates (2000)). Unstructured within-subject correlation structure was assumed

to the model. Since random effect was not considered, we used generalized least squares

were used to fit the LME model (Carroll and Ruppert (1988)). GEE analysis was carried

out by geese function available in contributed R package geepack (Yan and Fine (2004)).

Unstructured correlation was assumed to the model. The Gaussian family was assumed for

the error distribution.

First, we conducted power analysis for the treatment effect. We considered log ratio data

in this test to simulate the data of two-channel microarray (two dyes) or the data comparing

to a reference sample. In the simulation, for one treatment group, all data came from the

normal gene lists. For the other treatment group, the normal genes were contaminated a
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small percentage of abnormal genes. Both normal and abnormal data were bootstrapped

from the previously defined gene lists. The contamination percentage in each dataset varied

from 0 to 1%. The unstructured correlation structure was introduced to the bootstrap data

by the Cholesky decomposition as described in the previous sub-section. The three power

curves for NPT, LME, and GEE were shown in Figure 3.1. When the contamination was

less than 0.7%, GEE had a higher power than the other two methods, but its power did not

monotonously increase with percentage of contaminations. NPT outperformed LME and

GEE when there was at least 0.7% contamination, and it was the method that first reached

80% power. Therefore, NPT had a better performance in this situation.
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Figure 3.1: The power curves of testing the treatment effect for unbalanced design with unstructured
correlation correlation. There were 2 time points in the experiment.

To illustrate how the number of genes affects statistical power, we displayed power curves

with varying number of genes. The contamination percentage was fixed at 0.5%. As the

number of genes increased, the power of NPT approached to 100% (Figure 3.2). It was the

only method whose power significantly increased with the number of genes. GEE increased

slightly. The power of LME stayed close to zero for the whole range of number of genes.
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Figure 3.2: The power curves of testing the treatment effect with 0.5% contamination. The design was
assumed to be unbalanced with unstructured correlation correlation. There were 2 time points in the experi-
ment.

Our next test was for time effect. We used the log expression values for bootstrap. Since

we only considered two time points, we bootstrapped the gene IDs, and let the data from

IL-2 sample form one time point, and let the data from the control sample form the other

time point. As discussed in the previous subsection, we had to use the iterative algorithm to

incorporate the unstructured correlation. All three methods were very sensitive in detecting

gene expression variation over time. At 2% contamination, all reached a power of 100%

(Figure 3.3). Nonetheless, NPT performed the best because it was the first method to reach

100% power.

Thirdly, we explored the sensitivity of testing the gene effect with the three methods.

As described in section 3.3, log ratio is commonly used to identify differentially expressed

genes. So we calculated the log ratio for this hypothesis test. Both treatment groups were

contaminated with the same percentage (≤ 1%) of abnormal genes. From Figure 3.4, NPT

showed much higher power than LME and GEE with minimal contamination. With 0.5%
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Figure 3.3: The power curves of testing time effect with up to 2% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.

contamination, NPT has 89.2% power, whereas LME and GEE have powers of 31.4% and

24.3%, respectively.

Fourthly, we conducted power simulation analysis for treatment and time interaction.

The data generation is similar to that for time effect except that only one treatment group

was contaminated with abnormal genes in this study. We ran simulation up to 1.5% contam-

ination to illustrate how the three power curves approached to 100%. As shown in Figure

3.5, the power curves of the three methods were very close thought NPT reached 80% and

100% powers first.

The fifth test was for treatment and gene interaction. Bootstrap data were generated

in a similar way to that for test of the gene effect. The only exception is that we only

contaminated one treatment group with up to 2% of abnormal genes. The performance of

NPT was obviously higher than the other two methods (Figure 3.6). The power of NPT

went to above 90% at 1% contamination, whereas the powers of GEE and LME reached
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Figure 3.4: The power curves of testing time effect with up to 1% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.
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Figure 3.5: The power curves of testing time effect with up to 1.5% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.
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90% at close to 2% contamination.

0.0 0.5 1.0 1.5 2.0

0.
2

0.
4

0.
6

0.
8

1.
0

Power Estimate for the Treatment and Gene Interaction

% Contamination

Pr
op

or
tio

n 
of

 R
ej

ec
tio

n

NP
LME
GEE

Figure 3.6: The power curves of testing time effect with up to 2% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.

Our sixth test was conducted for time and gene interaction. We used the same data-

generating process as for test of time effect. We ran the simulation up to 1.5% contamination

with two time points. As the other bootstrap studies, NPT performed the best in the

power analysis (Figure 3.6). Its power curve increased sharply above 90% at about 0.5%

contamination. GEE and LME achieved above 90% power with at least 1% contamination.

To evaluate the effects of real microarray data on the statistical powers of these methods,

we generated Gaussian distributed random numbers for power analysis. We want to know

the behaviors of the three methods in such an ideal condition.

The simulations were only conducted for the time effect and the time*gene interaction.

For the test of the time effect, the data for one time point were generated from a normal

distribution with mean 0 and standard deviation 1. The data for the other time point were

based on a normal distribution with a mean varying from 0 to 0.4. Its standard deviation
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Figure 3.7: The power curves of testing time effect with up to 1.5% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.

was still 1. For the test of time*gene interaction, the data for the majority of genes came

from a normal distribution with mean 0 and standard deviation 1. The remaining gene

expressions had a mean of 2 and a standard deviation of 1. As shown in Figures 3.8 and

3.9, the three methods behaved equivalently well for the normality assumption.

Of all the bootstrap simulations, NPT were constantly the first method to reach a high

power (> 90%). In most of the conditions, especially for those tests for the gene effect or

its interaction, it performed significantly better than LME and GEE. As shown in Figure

3.2, whereas the large number of genes may have a negative effect on the performance of

LME and GEE, we expected the performance of NPT increases with the number of genes.

NPT is a robust method as well. It performed as good as LME and GEE for Gaussian

distributed data. For the noisy intensity data, it maintains a high sensitivity to detect

a very low contamination (usually < 1% contamination) with above 80% power. As we

used real microarray data for bootstrap, we expect NPT have similar high performance in
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Figure 3.8: The power curves of testing time effect with up to 1.5% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

Power Estimate for the Time and Gene Interaction

% Contamination

Pr
op

or
tio

n 
of

 R
ej

ec
tio

n

NP
LME
GEE

Figure 3.9: The power curves of testing time effect with up to 1.5% contamination. The design was assumed
to be unbalanced with unstructured correlation correlation. There were 2 time points in the experiment.
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microarray applications.

3.6 Real data analysis

Cytotoxic T lymphocyte (T cells) is of key importance in cell-mediated immune response.

They destroy virally infected cells, tumor cells, and other disease cells. The effective im-

mune response to a foreign antigen depends on rapid activation and proliferation of T cells.

Interleukin-2 (IL-2) cytokine plays an important role in stimulating the growth, differenti-

ation and survival of antigen-selected cytotoxic T cells via the activation of the expression

of specific genes (Beadling et al. (1993)). A number of studies have been conducted to

illustrate the gene expression profile with IL-2 stimulation and approximately 3000 IL-2-

regulated genes were identified in human T cells (Beadling and Smith (2002); Kovanen

et al. (2005); Mzali et al. (2005); Gatzka et al. (2006); Kovanen et al. (2008)).

Time course microarray study was recently carried out in Sandia National Laboratories

to explore the expression profiles of IL-2 regulated genes during T cell proliferation and

differentiation (Zhang et al. (2007)). The murine T cell line CTLL-2 was cultured in the

presence or in the absence (control) of IL-2 stimulation. There were 3 independent cell

cultures for either treatment group. For each culture, cells were harvested at time points 4

h and 8 h. Harvested cell samples were applied to microarray experiment with one array

per sample. The Affymetrix Mouse Genome 430 2.0 Array were used. It comprises 45,000

probes representing approximately 30,000 mouse genes. We calculated the gene expression

profile for each array by averaging the multiple probes of the gene. The gene profiles were

log-transformed, and were then normalized with quantile-normalization method (Bolstad

et al. (2003)). The normalized data were analyzed by gene set enrichment approach with

the proposed statistics.

We used the C2 collection of gene sets from the Molecular Signature Database (MSigDB)

of Broad Institute. C2 collection are curated gene sets that came from various sources such as

106



online pathway database, biomedical literature, and knowledge of domain experts (Newman

and Weiner (2005)). The collection contains 1892 gene sets. The previous simulation studies

have shown that a gene set consisting at least 50 genes would achieve sufficient statistical

power and satisfactory type I error rate. Of the 1892 gene sets, 548 sets consist at least 50

genes. The distribution of the number of genes from the 548 gene sets was shown in Figure

3.10. The majority of gene sets (> 300) have between 50 and 100 genes. The largest gene

set consists of 1601 genes. They are the genes enriched in mouse neural stem cell comparing

to differentiated brain and marrow cells (Ramalho-Santos et al. (2002)).

In order to identify the gene sets that are regulated by IL-2, we used NPT to perform

hypotheses testing for two effects, the interactions of treatment and time, and the main effect

of IL-2 treatment. It is tempting to carry out test for the interaction of treatment and gene,

for it would detect the gene sets that have a subset of genes differentially expressed between

treatment groups. However, gene set enrichment analysis is only concerned with detecting

expression alteration for the whole gene set, because a subset of genes would overlap with

other gene sets and it does not convey all genetic information for an independent biological

function. Therefore, we were not interested in such kind of gene sets. The P value of each

test was converted to false discovery rate (FDR) with Storey’s positive FDR method (Storey

(2002)). The FDR was calculated by R package fdrtool (Strimmer (2008)).

With FDR cut off value at 5%, 285 out of 548 gene sets showed significant treatment*time

interaction. In other words, they had differential expression between two treatment groups

at 4 or 8 or both hours after IL-2 stimulation, but their expression patterns were distinct

between the two time points. The biological analysis of the 285 gene sets need to be further

explored. Of the remaining 263 gene sets, statistical tests for the treatment effect were

performed, and 20 sets were identified to be significantly differentially expressed. Thus, all

together we have 283 gene sets that are responsible to IL-2. The 20 selected gene sets for

the treatment effect were reported in Table (3.8). Their FDR values were displayed as well.

There were 1,760 distinct genes involved in the 20 gene sets.
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Figure 3.10: The histogram showed the distribution of the size of the 548 gene sets used for data analysis.

In order to illustrate how the gene expression in a selected gene set were uniformly

altered by IL-2 over time period, we calculated ratio score by the formula: ratio score =

(log(G11)− log(G12))− (log(G21)− log(G22)), where Gij is the gene expression value at the

ith treatment group, and at the jth time point. We expected that the ratio scores in the

20 selected gene sets to be close to zero. The ratio scores for each gene sets were plotted in

Figures 3.11 and 3.12. They were distributed around the horizontal line at y=0, implying

NPT selected the desired gene sets.
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Gene Set FDR
ROSS CBF 0.020
PEART HISTONE UP 0.047
ROME INSULIN 2F UP 0.038
HIVNEFPATHWAY 0.025
CELL ADHESION 0.041
HADDAD HSC CD7 UP 0.010
FLECHNER KIDNEY TRANSPLANT REJECTION PBL UP 0.009
SHEPARD POS REG OF CELL PROLIFERATION 0.029
HADDAD CD45CD7 PLUS VS MINUS UP 0.010
HSIAO LIVER SPECIFIC GENES 0.031
TAKEDA NUP8 HOXA9 3D UP 0.030
CROMER HYPOPHARYNGEAL MET VS NON DN 0.028
VANASSE BCL2 TARGETS 0.006
GAMMA UNIQUE FIBRO DN 0.018
TNFALPHA ADIP DN 0.026
GN CAMP GRANULOSA DN 0.041
AGED MOUSE NEOCORTEX UP 0.026
ADIP DIFF UP 0.006
HSA04370 VEGF SIGNALING PATHWAY 0.016
HSA04520 ADHERENS JUNCTION 0.008

Table 3.8: The IL-2 regulated gene sets.

T lymphocyte activation with IL-2 culminates many cellular processes, including blas-

togenesis, cell cycle progression, DNA replication and Mitosis (Beadling and Smith (2002)).

Many of the selected gene sets are responsible such complicated biological functions. The

gene set, VANASSE BCL2 TARGETS, consists of genes differentially expressed in murine

CD19+ B cells overexpressing Bcl-2, a key gene regulating apoptosis. IL-2 is known to have

antiapoptotic effects that proliferate T cells (Lenardo et al. (1999)). The other gene sets

having similar functions of cell proliferation and aging are SHEPARD POS REG OF CELL

PROLIFERATION, GAMMA UNIQUE FIBRO DN, and AGED MOUSE NEOCORTEX

UP. Some selected gene sets, such as FLECHNER KIDNEY TRANSPLANT REJECTION

PBL UP and HSIAO LIVER SPECIFIC GENES, are involved in the immune response of T

cell. The gene sets, HADDAD HSC CD7 UP and HADDAD CD45CD7 PLUS VS MINUS
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Figure 3.11: The plots of log odds ratio for the first 10 selected gene sets.
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Figure 3.12: The plots of log odds ratio for the second 10 selected gene sets.
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UP, are involved in T cell development. The gene sets, CELL ADHESION and HSA04520

ADHERENS JUNCTION, are responsible to the interaction of T cell with foreign cell, the

core function of T cell mediated cytotoxicity. Insulin 2F related gene set, ROME INSULIN

2F UP, plays multiple roles in many gene regulating pathways including cell proliferation.

The gene set HSA04370 VEGF SIGNALING PATHWAY often functions in tumor agiogen-

esis. The relationship of these gene sets with IL-2 stimulation is worth further investigation.

Most microarray data analyses in biological literature employ univariate analysis for each

individual gene or probe. A list of genes is selected by FDR, and pathway analysis is then

conducted for the candidate genes. On one hand, such analysis suffers low statistical power

of detecting desired genes. On the other hand, the reported pathways are often misleading

because they are based on one or very few selected genes, and those genes are most likely

involved in many pathways. The proposed NPT methods via gene set enrichment analysis

provides a promising alternative for biological functional analysis. The reported gene sets

are highly relevant to the key functions of IL-2. It suggests high performance of the proposed

methods in longitudinal microarray analysis.
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Chapter 4

Rank-based Hypothesis Testing in
Unbalanced Heteroscedastic Nested
Design

In this chapter, we consider statistical testing for high dimensional data from a nested

design when the number of lower-level factors is large. The proposed methods have potential

applications in biological and meterological studies.

4.1 Model specification

Consider the nested design model:

Xijk = µ + αi+ βij + eijk, i = 1, . . . , a; j = 1, . . . , bi; k = 1, . . . , cij,

where α and β are fixed effects due to factor A and B, respectively. eijk is the error term

with mean zero and variance σij < ∞. And we assume E(eijk
4) = δij < ∞. We consider the

case that a and cij are fixed and bi → ∞.

Let

Xijk ∼ Fij, i = 1, . . . , a; j = 1, . . . , bi; k = 1, . . . , cij

We have the decomposition
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Fij = M + Ai + Bij,

where

a∑
i=1

Ai =
a∑

i=1

Bij

bi∑
j=1

Bij = 0

We use the following notations in this chapter. X∗ denotes a monotone transformation of

X. X̃ denotes the average of X ij·’s.

4.2 Test statistics

To test the hypothesis that there is no main effect for A factor, i.e. H0(A): Ai = 0 for all i,

we use a Wald-type test statistics

Qx∗(A) = W ′C ′
A(CAV̂ C ′

A)−1CAW, (4.2.1)

where W = (X̃
∗
1··, ..., X̃

∗
a··)

′, CA = (1a−1j − Ia−1), V̂ = diag(η̂1, ..., η̂a), and

η̂i =
1

b2
i

bi∑
j=1

S2
ij,X∗

cij

,

with

S2
ij,X∗ = (cij − 1)−1

cij∑

k=1

(X
∗
ijk − X̄

∗
ij·)

2.

To test H0(B): Bij = 0 for all i and j, we use a modified F test.
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FX∗(B) =
MSTB

MSE
,

where

MSTB =
1

a∑
i=1

bi − a

a∑
i=1

bi∑
j=1

(X̃∗
ij· − X̃∗

i··)
2,

MSE =
1

a

a∑
i=1

1

bi

bi∑
j=1

1

cij(cij − 1)

cij∑

k=1

(X∗
ijk − X̄∗

ij·)
2 =

1

a

a∑
i=1

1

bi

bi∑
j=1

S2
ij,x

cij

,

and n is the total number of samples.

4.3 Main results based on original observations

First, we consider the balanced case such that bi = b for all i. We have

MSTB =
1

ab− a

a∑
i=1

b∑
j=1

(X̃ij· − X̃i··)2,

and

MSE =
1

ab

a∑
i=1

b∑
j=1

1

cij(cij − 1)

cij∑

k=1

(Xijk − X̄ij·)2 =
1

ab

a∑
i=1

b∑
j=1

S2
ij,x

cij

.

Theorem 4.3.1. For testing H0(A): Ai = 0 for i=1,...,a, let QX(A) be the statistic given

in (4.2.1). If Xijk has the finite fourth moment, then under H0(A),

QX(A)
d→ χ2

a−1

holds for all ni ≥ 2, i=1, ..., I.

The proof is similar to that of theorem 3.2.1 in Wang (2004).
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Theorem 4.3.2. For testing H0(B), suppose Xijk have finite variance σ2
ij and

lim sup(ab)−1

a∑
i=1

b∑
j=1

1

cij

E[Xijk − E(Xijk)]
4 < ∞.

Set

τB =
2

ab

a∑
i=1

b∑
j=1

σ4
ij

cij(cij − 1)
,

and

σ2 =
1

ab

a∑
i=1

b∑
j=1

σ2
ij

cij

As b → ∞,

√
ab(Fx(B)− 1)√

τB/σ2

d→ N(0, 1)

holds when cij >3 stay fixed.

Proof: By Lemma A.1 And A.2, we only need to consider the asymptotic distribution of

TB(e) = n(a, b)
√

ab(PB(e)−MSE)

under H0(B), where n(a,b) = mini,j{nij}, and

PB(e) =
1

ab

a∑
i=1

b∑
j=1

ē2
ij·.

We have
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TB(e) = n(a, b)
√

ab(PB(e)−MSE)

=
n(a, b)√

ab

a∑
i=1

b∑
j=1

[
ē2

ij· −
cij∑

k=1

(eijk − ēij·)2

cij(cij − 1)

]

=
n(a, b)√

ab

a∑
i=1

b∑
j=1

cij∑

k 6=k′

eijkeijk′

cij(cij − 1)
.

It is clear that E[TB(e)] = 0, and as b → ∞,

V ar[TB(e)] =
n2(a, b)

ab
V ar

[
a∑

i=1

b∑
j=1

cij∑

k 6=k′

eijkeijk′

cij(cij − 1)

]

=
2n2(a, b)

ab

a∑
i=1

b∑
j=1

σ4
ij

cij(cij − 1)

< ∞.

We will use Lyapounov’s theorem to obtain the asymptotic distribution of T1A(e). Lya-

pounov’s condition will be satisfied if

L(b) =
b∑

j=1

E

∣∣∣∣∣
n(a, b)√

ab

a∑
i=1

cij∑

k 6=k′

eijkeijk′

cij(cij − 1)

∣∣∣∣∣

4

→ 0.
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L(b)

=
b∑

j=1

E

∣∣∣∣∣
n(a, b)√

ab

a∑
i=1

cij∑

k 6=k′

eijkeijk′

cij(cij − 1)

∣∣∣∣∣

4

=
b∑

j=1

n4(a, b)

(ab)2

a∑
i,i1,i2,i3

cij∑

k 6=k′

ci1j∑

k1 6=k′1

ci2j∑

k2 6=k′2

ci3j∑

k3 6=k′3

E(eijkeijk′ei1jk1ei1jk′1ei2jk2ei2jk′2ei3jk3ei3jk′3)

cij(cij − 1)ci1j(ci1j − 1)ci2j(ci2j − 1)ci3j(ci3j − 1)

= O(
b∑

j=1

n4(a, b)

(ab)2

a∑
i,i1

cij∑

k 6=k′

ci1j∑

k1 6=k′1

E(e2
ijk)E(e2

ijk′)E(e2
i1jk1

)E(e2
i1jk′1

)

c2
ij(cij − 1)2c2

i1j(ci1j − 1)2
)

= O(
n4(a, b)

a2b2

b∑
j=1

(
a∑

i=1

σ4
ij

cij(cij − 1)
)2)

= O(b−1).

This completes the proof.

4.4 Main results based on ranks

In this section, we use the overall (mid-)ranks (Rijk) of the original observations to test

hypotheses. We denote H(x) = N−1Σi,jnijFij(x) and Yijk = H(Xijk), the average distribution

function, and denote Ĥ the average of the left and right continuous version of the edf and

Zijk = Ĥ(Xijk).

Then, we have

Rijk = NĤ(Xijk) + 0.5.

Theorem 4.4.1. For testing H0(A): Ai = 0 for i=1,...,a, let QR(A) be the statistic given
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in (4.2.1) with X∗
ijk = Rijk. If Xijk has the finite fourth moment, then under H0(A),

QR(A)
d→ χ2

a−1

holds for all ni ≥ 2, i=1, ..., I.

The proof is similar to that of theorem 3.4.1 in Wang (2004).

Theorem 4.4.2. For testing H0(B): all Bj = 0 when a is fixed and b is large. Let FR(B)

be the statistics FX∗(B) with X∗
ijk = Rijk. As b →∞,

√
ab(FR(B)− 1)√

τB/σ2

d→ N(0, 1),

where τB and σ2 are defined in Theorem 3.2 with evaluation at Yijk.

Proof We denote MSTB(Y), MSTB(Z) and MSTB(R) the MSTB evaluated on Y, Z and

R respectively. Note that MSTB(R)/N2 = MSTB(Z). By lemma A.3 and A.4, it suffices to

obtain the asymptotic distribution of

T (Z − E(Y )) = n(a, b)
√

ab(PB(Z − E(Y ))−MSE(Z)).

We will show that T(Z - E(Y)) – T(Y – E(Y)) = op(1) for

T (Y − E(Y ))√
τB/σ2

d→ N(0, 1)

by theorem (4.3.2). The proof is similar to Lemma A.4 after the expand of T(Z - E(Y)) and

T(Y – E(Y)) as in proof of theorem (4.3.2).

Appendix

Lemma A.1 Under the settings and assumptions of Theorem (4.3.2), we have

n(a, b)(MSE - σ2) → 0 in probability, where n(a,b) = mini,j{nij}.
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Proof Note that

E(MSE) = E(
1

ab

a∑
i=1

b∑
j=1

S2
ij,X

cij

) = σ2,

and

(ab)2Var(MSE) =
a∑

i=1

b∑
j=1

1

c2
ij(cij − 1)2

Var

(
cij − 1

cij

cij∑

k=1

e2
ijk −

1

cij

cij∑

k 6=k′
eijkeijk′

)

=
a∑

i=1

b∑
j=1

1

c4
ij

[
cij∑

k=1

(E(e4
ijk)− σ4

ij) +
2cij

cij − 1
σ4

ij

]

=
a∑

i=1

b∑
j=1

1

c4
ij

[
cij∑

k=1

δ4
ij −

cij(cij − 3)

cij − 1
σ4

ij

]

≤
a∑

i=1

b∑
j=1

1

c4
ij

cij∑

k=1

δ4
ij.

(cij > 3)

Thus

Var[n(a, b)MSE] ≤ 1

(ab)2

a∑
i=1

b∑
j=1

n2(a, b)

n4
ij

nij∑

k=1

δ4
ij → 0

as b→∞. Therefore, n(a, b)(MSE - σ2) → 0 in probability.

Lemma A.2 Define

PB(e) =
1

ab

a∑
i=1

b∑
j=1

ẽ2
ij·

Under the settings and assumptions of Theorem 3.2, and under H0(B), we have

T ∗
B(e) = n(a, b)

√
ab(MSTB − PB(e))

P→ 0
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as b→∞, where n(a,b) = mini,j{cij}.
Proof Under H0(B),

MSTB =
1

a(b− 1)

a∑
i=1

b∑
j=1

(ẽij· − ẽi··)2

=
1

a(b− 1)

a∑
i=1

(
b− 1

b

b∑
j=1

ẽij· − 1

b

b∑

j 6=j′
ẽij·ẽij′·

)

=
1

ab

a∑
i=1

b∑
j=1

ẽ2
ij· −

1

ab(b− 1)

a∑
i=1

b∑

j 6=j′
ẽij·ẽij′·.

Thus, we have

T ∗
B(e) = n(a, b)

√
ab

(
− 1

ab(b− 1)

a∑
i=1

b∑

j 6=j′
ẽij·ẽij′·

)

= − n(a, b)√
ab(b− 1)

a∑
i=1

b∑

j 6=j′
ẽij·ẽij′·.

It follows that
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E[T ∗
B(e)]2 =

n2(a, b)

ab(b− 1)2
E

[
a∑

i=1

b∑

j 6=j′
ẽij·ẽij′·

]2

=
2n2(a, b)

ab(b− 1)2

a∑
i=1

b∑

j 6=j′
E[ẽ2

ij·ẽ
2
ij′·]

=
2n2(a, b)

ab(b− 1)2

a∑
i=1

b∑

j 6=j′

σ2
ij

cij

σ2
ij′

cij′

≤ 2n2(a, b)

ab(b− 1)

a∑
i=1

b∑
j=1

σ4
ij

cij

= O(b−1).

Therefore,

T ∗
B(e) = n(a, b)

√
ab(MSTB − PB(e))

P→ 0

as b → ∞.

Lemma A.3 Under the settings and assumptions of Theorem 4.2, we have

n(a, b)(MSE/N2 - σ2) → 0 in probability as b → ∞, where n(a,b) = mini,j{nij} and a and

cij remain fixed.

Proof For details, refer to the proof of Lemma 3.7.8 in Wang (2004).

Lemma A.4 Let PB(Z – E(Y)) be defined as PB(E) in lemma A.2 with eijk replaced by

Zijk – E(Yijk). Then under H0(B) and under the settings and assumptions of Theorem 4.2,

as b → ∞, we have

T ∗
B(Z − E(Y )) = n(a, b)

√
ab(MSTB(Z)− PB(Z − E(Y )))

P→ 0

as b→∞, where n(a,b) = mini,j{cij} ≥ 2.
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Proof By lemma A.2, TB*(Y - E(Y)) = op(1) under HB(0). Therefore, it suffices to show

that DZY = TB*(Z - E(Y)) - TB*(Y - E(Y)) = op(1). Note that E(Z) = E(Y). Using the

similar decompositions as in lemma A.2, under HB(0) we have

T ∗
B(Y − E(Y )) = n(a, b)

√
ab

[
− 1

ab(b− 1)

a∑
i=1

b∑

j 6=j′
(ȳij· − p̄ij·)(ȳij′· − p̄ij′·)

]

= − n(a, b)√
ab(b− 1)

a∑
i=1

b∑

j 6=j′
(ȳij·ȳij′· − ȳij′·p̄ij· − ȳij′·p̄ij′· + p̄ij·p̄ij′·),

and

T ∗
B(Z − E(Y )) = n(a, b)

√
ab

[
− 1

ab(b− 1)

a∑
i=1

b∑

j 6=j′
(z̄ij· − p̄ij·)(z̄ij′· − p̄ij′·)

]

= − n(a, b)√
ab(b− 1)

a∑
i=1

b∑

j 6=j′
(z̄ij·z̄ij′· − z̄ij′·p̄ij· − z̄ij′·p̄ij′· + p̄ij·p̄ij′·).

Then we have DZY = D1 + D2, where

D1 = − n(a, b)√
ab(b− 1)

a∑
i=1

b∑

j 6=j′
(z̄ij· − ȳij·)(z̄ij′· − ȳij′·),

and

D2 = − 2n(a, b)√
ab(b− 1)

a∑
i=1

b∑

j 6=j′
(z̄ij· − ȳij·)(ȳij′· − p̄ij′·)

= − 2n(a, b)√
ab(b− 1)

a∑
i=1

b∑

j 6=j′

∑

k,k′

(z̄ijk − ȳijk)(ȳij′k′ − p̄ij′k′)

cijcij′
.

Because

sup
x

(Ĥ(x)−H(x)) = Op(N
−1/2),

we have
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D1 = Op(
√

abn(a, b)/N) = op(1).

Note E(D2) = 0 for E(zijk) = E(yijk).

E(D2)
2 =

4n(a, b)2

ab(b− 1)2

a∑
i=1

b∑

j 6=j′

∑

k,k′

(z̄ijk − ȳijk)
2(ȳij′k′ − p̄ij′k′)

2

c2
ijc

2
ij′

≤ 4n(a, b)2

ab(b− 1)2

a∑
i=1

b∑

j 6=j′

∑

k,k′

1

c2
ijc

2
ij′

=
4n(a, b)2

ab(b− 1)2

a∑
i=1

b∑

j 6=j′

1

cijcij′

≤ 4

b− 1

= op(1).

This completes the proof.
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Chapter 5

Summary and future studies

5.1 Summary of the current study

In recent years, high throughput technology have made available a great deal of biological

data to the researchers. The technology has been increasingly applied to more complicated

design such as time course study or nested design. The scientific community is in great

need of statistical tools to analyze such high dimensional data. We attempted to provide

a set of statistics for main effect tests for which traditional methodology is not successful.

Robust statistics have been obtained for high dimensional data with heteroscadastic within

subject correlation and unbalanced design. The asymptotic properties were provided as

well. Comprehensive simulation studies have been conducted to test our methods in various

conditions. In all conditions, our proposed methods provided satisfactory type I error rate.

Power analysis were conducted to compare the approaches to linear mixed-effects model

(LME) and generalized estimating equations (GEE). To allow the simulated data to closely

represent real data, we used bootstrap to generate data based on applications from array

CGH and expression microarray. The proposed methods were very sensitive with statistical

testing power superior to that of LME and GEE in all tests. Our methods were applied to two

recent longitudinal researches, Wilms’ tumor aCGH study and IL-2 responsive microarray

study. Comparing the literature reports, we provided results that were statistically more
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justified and biologically more interpretable. It is promising to extend the methodology to

a broader area of biological applications.

5.2 Future studies

Similar to the proposed methods, statistical methodology could be implemented and devel-

oped to a wide range of high dimensional data applications. We mainly consider three areas

for future studies.

5.2.1 Spatially correlated image data

In Chapter 2, we focused on analysis longitudinal array CGH data. An important fea-

ture about array CGH is that probes are spatially correlated that adjacent probes tend

to be deleted or amplified together. Similar spatial correlation is also observed in other

image technology such as Magnetic Resonance Imaging (MRI) and Geographic Information

Systems (GIS) imaging. Although most of current analyses of aCGH data assumed inde-

pendence between probes (Weir et al. (2007); Sabatti and Lange (2008)), a few attempts

have been made to consider the correlation. Fridlyand et al. (2004) used a hidden Markov

model for the sequence of probes. However, it has to assume the correlation is exponentially

distributed and the measures are log-normal distributed. Tibshirani and Wang (2008) pro-

posed fused LASSO technique to constrain the copy number difference between neighboring

probes. We implemented their method, but found it impossible to be applied to arrays with

more than 100K probes due to the computation cost.

Wang et al. (2008) proposed a non-parametric clustering method for functional data

whose time series satisfy an α−mixing condition. As the spatial sequence of probes bears

similar correlation property to that of time series data, it is desirable to develop method-

ology for longitudinal aCGH study based on their techniques with proper consideration of

correlations between time points.
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5.2.2 Genetic interaction and gene networking

It is essential to elucidate gene-gene interaction for understanding how the basic biological

activities of an organism are regulated by its genome. It has been a active research area

to investigating genetic interaction and gene networking with high throughput technology

(Brem et al. (2005); Zhong and Sternberg (2006)). In Chapter 3, we applied our test

statistics to gene set enrichment analysis (GSEA) and detected activated gene groups. The

selected genes within the same group are good candidates for investigating gene networking.

Furthermore, our test statistics are potentially useful for test-based gene clustering and

classification (Liao and Akritas (2007)).

5.2.3 High dimensional data integration

Nowadays, microarray or array CGH data are often collected from multiple centers or are

acquired from various sources. It is important to control the batch effects between sources

before data analysis. Furthermore, the multiple centers often use different platforms or ver-

sions of chips. Technically it is hard to integrate the data into a unified format (Irizarry et al.

(2005)). In Chapter 4, we provided test statistics for nested design with high dimensional

variables. They are intended to be used for high dimensional data integration. Simulation

and real data anlaysis need be conducted to verify our methods.
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Appendix A

R codes for data analysis

In this Appendix, we provide the R functions used for the simulation study and for the real

data analysis. They are listed in the order of the chapters.

A.1 R functions for longitudinal aCGH study

For all the functions presented in this section, there are two input parameters. One is for the

input data, named Data, d, or sim.data. The other is a vector of the number of replications

for each probe, and it is named n or ni in the following functions.

The input data should be a data matrix. Each row represents a time point, and each

column represents a probe. Let Xijk denotes the copy number of the ith probe, the jth time

point, and the kth replicate. The input data matrix should be in the following format.




x111 x112 · · x211 x212 · · xa1na

x121 x122 · · x221 x222 · · xa2na

· · · · · · · · ·
x1J1 x1J2 · · x2J1 x2J2 · · xaJna




where a is the number of probes, J is the number of time points, and na is the number

of replications of the ath probe.

The vector of the numbers of the replications is in the format of {n1, n2, · · ·, na}, where
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ni is the number of replications for the ith probe.

For the functions used by NPT, the output value is the statistic calculated by NPT. For

the functions of LME and GEE, a P value is reported.

A.1.1 R function for the test of the probe effect by NPT

# calculate the test statistic of the SNP effect for unbalanced data

calcStat.CN <- function(Data, n){

b <- nrow(Data)

a <- length(n)

X<-Data

VQ <- 0

MSE <- 0

for (i in 1:a) {

if (i==1) start <- 1 else {

start <- sum(n[1:(i-1)])+1

}

end <- sum(n[1:i])

temp <- X[,start:end]

temp.1 <- cbind(temp[,-1], temp[,1])

Xd <- temp-temp.1 # paired difference X_{ijk}-X_{ijk+1}
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Xd.mult1 <- kronecker(Xd, rep(1,b))

Xd.mult2 <- kronecker(rep(1,b), Xd)

Xd.prod1 <- Xd.mult1 * Xd.mult2

Xd.mult3 <- kronecker(rep(1,b^2), Xd.prod1)

Xd.mult4 <- kronecker(cbind(Xd.prod1[,-c(1,2)],

Xd.prod1[,c(1,2)]), rep(1, b^2))

Xd.prod2 <- Xd.mult3 * Xd.mult4

VQ <- VQ + sum(Xd.prod2)/(2*n[i]^2*(n[i]-1))

# MSE

Mean.1 <- apply(temp, 1, mean) #mean of row

Xm.d <- temp - Mean.1

Xmd.mult1 <- kronecker(Xm.d,rep(1,b))

Xmd.mult2 <- kronecker(rep(1,b),Xm.d)

Xmd.prod <- Xmd.mult1 * Xmd.mult2

MSE <- MSE + sum(Xmd.prod)/(n[i]*(n[i]-1))

}

TauA <- VQ /(a*b^2)

MSE <- MSE/(a*b)

ind <- rep(1:a, n)

Mean.B <- NULL # average over replication n, b*a matrix

for (i in 1:b) {

Mean.B <- rbind(Mean.B, tapply(X[i,], ind, mean))

}
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Mean.A <- apply(Mean.B, 2, mean)

A <- Mean.A - mean(Mean.A)

MST <- b / (a-1) * sum(A * A)

Stat <- sqrt(a) * (MST - MSE) / sqrt(TauA)

Stat

}

A.1.2 R function for the test of the time effect by NPT

# calculate the chi-sq statistic of time effect

# the unbalnaced design

calcStat.CN <- function(d, n.i){

I <- length(n.i)

J <- nrow(d)

L <- rbind(t(rep(1, J-1)), -diag(J-1))

#calculate means

id.i <- rep(1:I, n.i)
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calcMeanij <- function(vd) tapply(vd, id.i, mean)

mean.ij<-t(apply(d, 1, calcMeanij))

mean.j <- apply(mean.ij,1,mean)

#calculate eta

data.d <-d - t(apply(mean.ij, 1, rep, times=n.i)) # x_ijk - mean.ij

d1 <- kronecker(data.d, rep(1,J))

d2 <- kronecker(rep(1,J), data.d)

d.sq <- d1*d2

d.sq.ij <- t(apply(d.sq, 1, calcMeanij)/(n.i-1))

d.sq.j <- matrix(apply(d.sq.ij, 1, mean), J, J) # matrix of length J^2

eta <- t(L) %*% d.sq.j %*% L /I

Stat <- t(mean.j) %*% L %*% solve(eta) %*% t(L) %*% mean.j

Stat

}

A.1.3 R function for the test of the probe and time interaction
by NPT
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# calculate the test statistic of interaction effect for unbalanced data

calcStat.CN <- function(sim.data, n){

b <- nrow(sim.data)

a <- length(n)

X<-sim.data

# variance matrix V1 -- sum(\sigma^2_{i,jj1)) for any j, j1

V1 <- 0

V2 <- 0

V3 <- 0

MSE <- 0

for (i in 1:a) {

if (i==1) start <- 1 else {

start <- sum(n[1:(i-1)])+1

}

end <- sum(n[1:i])

temp <- X[,start:end]

temp.1 <- cbind(temp[,-1], temp[,1])

Xd <- temp-temp.1 # paired difference X_{ijk}-X_{ijk+1}

Xd.mult1 <- kronecker(Xd, rep(1,b))

Xd.mult2 <- kronecker(rep(1,b), Xd)

Xd.prod <- Xd.mult1 * Xd.mult2
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V.mult1 <- kronecker(rep(1,b^2), Xd.prod)

V.mult2 <- kronecker(cbind(Xd.prod[,-c(1,2)], Xd.prod[,c(1,2)]),

rep(1, b^2))

V.prod <- V.mult1 * V.mult2

#sigma^2 matrix

# sigma.sq <- matrix(apply(Xd.prod, 1, mean)/2, J)

# V1 <- V1 + sum(sigma.sq^2)/(n[i]*(n[i]-1))

V1.id <- c(TRUE, rep(c(rep(FALSE, b^2), TRUE), b^2-1))

V1 <- V1 + sum(V.prod[V1.id,])/(4*n[i]^2*(n[i]-1))

# V2 <- V2 + sum(sigma.sq %*% sigma.sq)/(J^2*n[i]*(n[i]-1))

V2 <- V2 + sum(V.prod)/(4*b^2*n[i]^2*(n[i]-1))

V3.id <- c(rep(c(rep(TRUE, b), rep(FALSE, b^2-b)), b-1), rep(TRUE, b),

rep(c(rep(FALSE, b), rep(c(rep(FALSE, b^2-b),

rep(TRUE, b)), b)), b-1))

V3 <- V3 + sum(V.prod[V3.id,])/(2*b*n[i]^2*(n[i]-1))

# MSE

Mean.1 <- apply(temp, 1, mean) #mean of row

Xm.d <- temp - Mean.1

Xmd.mult1 <- kronecker(Xm.d,rep(1,b))

Xmd.mult2 <- kronecker(rep(1,b),Xm.d)

Xmd.prod <- Xmd.mult1 * Xmd.mult2
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MSE <- MSE + sum(Xm.d*Xm.d)/(a*(b-1)*n[i]*(n[i]-1))

- sum(Xmd.prod)/(a*b*(b-1)*n[i]*(n[i]-1))

}

TauA <- 2* (V1 + V2 - V3) /(a*(b-1)^2)

# MSE <- MSE/(a*b)

ind <- rep(1:a, n)

Mean.AB <- NULL # average over replication n, b*a matrix

for (i in 1:b) {

Mean.AB <- rbind(Mean.AB, tapply(X[i,], ind, mean))

}

Mean.A <- t(matrix(rep(apply(Mean.AB, 2, mean), b), ncol=b))

Mean.B <- matrix(rep(apply(Mean.AB, 1, mean), a), nrow=b)

Mean <- mean(Mean.A)

AB <- Mean.AB - Mean.A - Mean.B + Mean

MST <- 1 / ((a-1)*(b-1)) * sum(AB * AB)

Stat <- sqrt(a) * (MST - MSE) / sqrt(TauA)

Stat

}

147



A.1.4 Sample codes for LME and GEE calculations

We present two example functions for LME and GEE. They are used for the test of the

probe and the time interaction. For the tests of the main effects, the codes need only to be

slightly changed for the effect of interest.

## LME for the probe and time interactions

library(nlme)

calcStat.LME <- function(sim.data, n) {

I <- length(n)

J <- nrow(sim.data)

Time <- as.vector(row(sim.data))

SNP <- as.vector(t(matrix(rep(rep(1:I, n), J), ncol=J)))

Sub <- as.vector(col(sim.data))

CN <- as.vector(sim.data)

X <- cbind(SNP, Time, Sub, CN)

X <- data.matrix(X)

gls.o=gls(CN~SNP+Time+SNP*Time, data=data.frame(X),

corr=corSymm(form=~1|Sub))

anova(gls.o, type="marginal")$"p-value"[4]

}
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## GEE for the probe and time interaction.

library(geepack)

calcStat.GEE <- function(sim.data, n) {

I <- length(n)

J <- nrow(sim.data)

Time <- as.vector(row(sim.data))

SNP <- as.vector(t(matrix(rep(rep(1:I, n), J), ncol=J)))

Sub <- as.vector(col(sim.data))

CN <- as.vector(sim.data)

X <- cbind(SNP, Time, Sub, CN)

#X <- data.matrix(X)

family <- "gaussian" #"poisson"

gee.o=try(geese(CN~SNP+Time+SNP*Time, id=Sub,

data=data.frame(X), family=family), T)

if (!is(gee.o, "try-error")) geePvalue=c(summary(gee.o)$mean[4,4],

1) else geePvalue=c(0,0)

geePvalue # pvalue for the trt effect

}
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A.2 R functions for longitudinal microarray study with

treatment groups

For all the functions presented in this section, there are two input parameters. One is for

the input data, named Data or d. The other is a vector of the number of replications for

each probe, and it is named n or nik in the following functions.

The input data should be a data matrix. Each row represents a time point, and each

column represents a gene. Let Xijkl denotes the copy number of the ith treatment group,

the jth time point, and the kth gene, and the lth replicate. In the example of two treatment

groups, the input data matrix should be in the following format.




x1111 x1112 · · x1121 x1122 · · x11KniK
x2111 x2112 · · x2121 x2122 · · x21KniK

x1211 x1212 · · x1221 x1222 · · x12KniK
x2211 x2212 · · x2221 x2222 · · x22KniK

· · · · · · · · · · · · · · · · ·
x1J11 x1J12 · · x1J21 x1J22 · · x1JKniK

x2J11 x2J12 · · x2J21 x2J22 · · x2JKniK




where K is the number of genes, J is the number of time points, and nik is the number

of replications of the kth probe in the ith treatment group.

The vector of the numbers of the replications is in the format of {n11, n12, ···, n1K , n21, n22, ··
·, n2K}, where nik is the number of replications for the kth gene in the ith treatment group.

For the functions used by NPT, the output value is the statistic calculated by NPT. For

the functions of LME and GEE, a P value is reported.

In Chapter 3, we only considered the cases with 2 treatment groups for it is the most

common. So in the sample codes, we assume two treatments group (I = 2).

A.2.1 R function for the test of the treatment effect by NPT

# calculate the test statistic of treatment effect.
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calcStat.CN <- function(Data, n.ik){

I <- 2

J <- nrow(Data)

K <- length(n.ik)/2

#calculate means

id.ik <- rep(1:(I*K),n.ik)

mean.ijk<-NULL

for (i in 1:J) {

mean.ijk <- rbind(mean.ijk, tapply(Data[i,],id.ik,mean))

}

# mean.ijk <- apply(Data, 1, tapply, INDEX=id.ik, FUN=mean)

mean.ik <- apply(mean.ijk,2,mean)

id.i<-rep(1:I, rep(K,I))

mean.i <- tapply(mean.ik, id.i, mean)

#calculate eta

Data.d <-Data - t(apply(mean.ijk, 1, rep, times=n.ik))

d1 <- kronecker(Data.d, rep(1,J))

d2 <- kronecker(rep(1,J), Data.d)

d.sq <- d1*d2

d.sq.ijk <- NULL

for (i in 1:J^2) {

d.sq.ijk <- rbind(d.sq.ijk, tapply(d.sq[i,], id.ik, sum))
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}

d.sq.ijk <- t(t(d.sq.ijk)/(n.ik*(n.ik-1)))

eta <- sum(d.sq.ijk)/J^2/K^2 #eta1+eta2

Stat <- (mean.i[1]-mean.i[2])^2/eta

Stat

}

A.2.2 R function for the test of the time effect by NPT

# calculate the chi-sq statistic of time effect.

calcStat.CN <- function(d, n.ik){

I <- 2

J <- nrow(d)

K <- length(n.ik)/2

L <- rbind(t(rep(1, J-1)), -diag(J-1))

#calculate means

ind.ijk <- rep(1:(2*K), n.ik)

ind.jk <- rep(1:K, 2)

mean.ijk <- NULL # average over replication n, J*(2K) matrix

for (j in 1:J) {

mean.ijk <- rbind(mean.ijk, tapply(d[j,], ind.ijk, mean))
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}

mean.jk <- NULL # average over replication n, J*K matrix

for (j in 1:J) {

mean.jk <- rbind(mean.jk, tapply(mean.ijk[j,], ind.jk, mean))

}

mean.j <- apply(mean.jk,1,mean) # J*1 vector

#calculate eta=LVL’

data.d <-d - t(apply(mean.ijk, 1, rep, times=n.ik))

d1 <- kronecker(data.d, rep(1,J))

d2 <- kronecker(rep(1,J), data.d)

d.sq <- d1*d2

d.sq.jk <- NULL

for (j in 1:J^2) {

d.sq.ijk <- tapply(d.sq[j,], ind.ijk, mean)/(n.ik-1)

d.sq.jk <- rbind(d.sq.jk, tapply(d.sq.ijk, ind.jk, mean))

}

d.sq.j <- matrix(apply(d.sq.jk, 1, mean), J, J)

eta <- t(L) %*% d.sq.j %*% L /I /K

Stat <- t(mean.j) %*% L %*% solve(eta) %*% t(L) %*% mean.j

Stat

}
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A.2.3 R function for the test of the gene effect by NPT

# calculate the test statistic of gene effect for unbalanced data

calcStat.CN <- function(d, n.ik){

I <- 2

J <- nrow(d)

K <- length(n.ik)/2

n <- n.ik[1:K]

X <- list(d[, 1:sum(n)], d[, (sum(n)+1):ncol(d)])

V1 <- 0

V2 <- 0

MSE <- 0

for (k in 1:K) { # for each gene

if (k==1) start <- 1 else {

start <- sum(n[1:(k-1)])+1

}

end <- sum(n[1:k])

sigma <- list(NULL, NULL) # sigma estimation for 2 trts

for (i in 1:I) { # for each trt

temp <- X[[i]][,start:end]

temp.1 <- cbind(temp[,-1], temp[,1])

Xd <- temp-temp.1 # paired difference X_{l}-X_{l+1}
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Xd.mult1 <- kronecker(Xd, rep(1,J))

Xd.mult2 <- kronecker(rep(1,J), Xd)

sigma[[i]] <- Xd.mult1 * Xd.mult2 / 2

Xd.mult3 <- kronecker(rep(1,J^2), sigma[[i]])

Xd.mult4 <- kronecker(cbind(sigma[[i]][,-c(1,2)],

sigma[[i]][,c(1,2)]), rep(1, J^2))

Xd.prod2 <- Xd.mult3 * Xd.mult4

V2 <- V2 + sum(Xd.prod2)/(n[k]^2*(n[k]-1))

# MSE

Mean.1 <- apply(temp, 1, mean) #mean of row

Xm.d <- temp - Mean.1

Xmd.mult1 <- kronecker(Xm.d,rep(1,J))

Xmd.mult2 <- kronecker(rep(1,J),Xm.d)

Xmd.prod <- Xmd.mult1 * Xmd.mult2

MSE <- MSE + sum(Xmd.prod)/(n[k]*(n[k]-1))

}

Xd.prod3 <- kronecker(sigma[[1]], rep(1, J^2)) * Xd.mult3

V1 <- V1 + 2 * sum(Xd.prod3) / n[k]^3

}

TauA <- 2*(V1 + V2) /(I^2*J^2*K)

MSE <- MSE/(I*J*K)

# MST

ind <- rep(1:(2*K), n.ik)
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Mean.K <- NULL

for (j in 1:J) {

Mean.K <- rbind(Mean.K, tapply(d[j,], ind, mean))

}

Mean.J <- apply(Mean.K, 2, mean) #1*2K matrix

ind.i <- rep(1:K, 2)

Mean.I <- tapply(Mean.J, ind.i, mean) # 1*K matrix

A <- Mean.I - mean(Mean.I)

MST <- I*J / (K-1) * sum(A * A)

Stat <- sqrt(K) * (MST - MSE) / sqrt(TauA)

Stat

}

A.2.4 R function for the test of the treatment and time interac-
tion by NPT

# calculate the chi-sq statistic of trt and time interaction.

calcStat.CN <- function(d, n.ik){

I <- 2

J <- nrow(d)
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K <- length(n.ik)/2

L <- rbind(t(rep(1, I*J-1)), -diag(I*J-1))

#calculate means

ind.ijk <- rep(1:(2*K), n.ik)

# ind.jk <- rep(1:K, 2)

ind.ij <- c(rep(1,K), rep(2,K))

mean.ijk <- NULL # average over replication n, J*(2K) matrix

for (j in 1:J) {

mean.ijk <- rbind(mean.ijk, tapply(d[j,], ind.ijk, mean))

}

mean.ij <- NULL # average over trts, J*I matrix

for (j in 1:J) {

mean.ij <- rbind(mean.ij, tapply(mean.ijk[j,], ind.ij, mean))

}

mean.ij.vec <- as.vector(mean.ij)

mean.j <- apply(mean.ij,1,mean) # J*1 vector

#calculate eta=LVL’

data.d <-d - t(apply(mean.ijk, 1, rep, times=n.ik))

d1 <- kronecker(data.d, rep(1,J))

d2 <- kronecker(rep(1,J), data.d)

d.sq <- d1*d2 # (J^2)*(IK)

d.sq.ij <- NULL # (J^2)*I

for (j in 1:J^2) {

d.sq.ijk <- tapply(d.sq[j,], ind.ijk, mean)/(n.ik-1)
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d.sq.ij <- rbind(d.sq.ij, tapply(d.sq.ijk, ind.ij, mean))

}

# d.sq.j <- matrix(apply(d.sq.jk, 1, mean), J, J) # J*J matrix

d.sq.i <- diag(I*J)

for (i in 1:I) {

d.sq.i[((i-1)*J+1):(i*J), ((i-1)*J+1):(i*J)] <-

matrix(d.sq.ij[,i], nrow=J)

}

eta <- t(L) %*% d.sq.i %*% L /K # (IJ)*(IJ)

Stat <- t(mean.ij.vec) %*% L %*% solve(eta)

%*% t(L) %*% mean.ij.vec

Stat

}

A.2.5 R function for the test of the treatment and gene interac-
tion by NPT

# calculate the test statistic of interaction effect of trt and gene

# for unbalanced data with unstructured correlation

calcStat.CN <- function(d, n.ik){

I <- 2

J <- nrow(d)
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K <- length(n.ik)/2

n <- n.ik[1:K]

X <- list(d[, 1:sum(n)], d[, (sum(n)+1):ncol(d)])

V1 <- 0

V2 <- 0

MSE <- 0

for (k in 1:K) { # for each gene

if (k==1) start <- 1 else {

start <- sum(n[1:(k-1)])+1

}

end <- sum(n[1:k])

sigma <- list(NULL, NULL) # sigma estimation for 2 trts

for (i in 1:I) { # for each trt

temp <- X[[i]][,start:end]

temp.1 <- cbind(temp[,-1], temp[,1])

Xd <- temp-temp.1 # paired difference X_{l}-X_{l+1}

Xd.mult1 <- kronecker(Xd, rep(1,J))

Xd.mult2 <- kronecker(rep(1,J), Xd)

sigma[[i]] <- Xd.mult1 * Xd.mult2 / 2

Xd.mult3 <- kronecker(rep(1,J^2), sigma[[i]])

Xd.mult4 <- kronecker(cbind(sigma[[i]][,-c(1,2)],
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sigma[[i]][,c(1,2)]), rep(1, J^2))

Xd.prod2 <- Xd.mult3 * Xd.mult4

V2 <- V2 + sum(Xd.prod2)/(n[k]^2*(n[k]-1))

# MSE

Mean.1 <- apply(temp, 1, mean) #mean of row

Xm.d <- temp - Mean.1

Xmd.mult1 <- kronecker(Xm.d,rep(1,J))

Xmd.mult2 <- kronecker(rep(1,J),Xm.d)

Xmd.prod <- Xmd.mult1 * Xmd.mult2

MSE <- MSE + sum(Xmd.prod)/(n[k]*(n[k]-1))

}

Xd.prod3 <- kronecker(sigma[[1]], rep(1, J^2)) * Xd.mult3

V1 <- V1 + 2 * sum(Xd.prod3) / n[k]^3

}

TauA <- 2*(V1/(I-1)^2 + V2) /(I^2*J^2*K)

MSE <- MSE/(I*J*K)

# MST

ind.ijk <- rep(1:(2*K), n.ik)

ind.i <- c(rep(1,K), rep(2,K))

ind.k <- rep(1:K, 2)

Mean.ijk <- NULL

for (j in 1:J) {

Mean.ijk <- rbind(Mean.ijk, tapply(d[j,], ind.ijk, mean))

}
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Mean.ik <- apply(Mean.ijk, 2, mean)

Mean.i <- tapply(Mean.ik, ind.i, mean)

Mean.k <- tapply(Mean.ik, ind.k, mean)

Mean <- mean(Mean.k)

A <- Mean.ik - rep(Mean.i, rep(K,I)) - rep(Mean.k, I) + Mean

MST <- J /((I-1) * (K-1)) * sum(A * A)

Stat <- sqrt(K) * (MST - MSE) / sqrt(TauA)

Stat

}

A.2.6 R function for the test of the gene and time interaction by
NPT

# calculate the test statistic of interaction effect of time

# and gene for unbalanced data with unstructured correlation

calcStat.CN <- function(d, n.ik){

I <- 2

J <- nrow(d)

161



K <- length(n.ik)/2

n <- n.ik[1:K]

X <- list(d[, 1:sum(n)], d[, (sum(n)+1):ncol(d)])

V1 <- 0

V2 <- 0

V3 <- 0

MSE <- 0

for (k in 1:K) { # for each gene

if (k==1) start <- 1 else {

start <- sum(n[1:(k-1)])+1

}

end <- sum(n[1:k])

for (i in 1:I) { # for each trt

temp <- X[[i]][,start:end]

temp.1 <- cbind(temp[,-1], temp[,1])

Xd <- temp-temp.1 # paired difference X_{l}-X_{l+1}

Xd.mult1 <- kronecker(Xd, rep(1,J))

Xd.mult2 <- kronecker(rep(1,J), Xd)

Xd.prod <- Xd.mult1 * Xd.mult2
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V.mult1 <- kronecker(rep(1,J^2), Xd.prod)

V.mult2 <- kronecker(cbind(Xd.prod[,-c(1,2)],

Xd.prod[,c(1,2)]), rep(1, J^2))

V.prod <- V.mult1 * V.mult2

V1.id <- c(TRUE, rep(c(rep(FALSE, J^2), TRUE), J^2-1))

V1 <- V1 + sum(V.prod[V1.id,])/(4*n[k]^2*(n[k]-1))

V2 <- V2 + sum(V.prod)/(4*J^2*n[k]^2*(n[k]-1))

V3.id <- c(rep(c(rep(TRUE, J), rep(FALSE, J^2-J)), J-1),

rep(TRUE, J), rep(c(rep(FALSE, J), rep(c(rep(FALSE,

J^2-J), rep(TRUE, J)), J)), J-1))

V3 <- V3 + sum(V.prod[V3.id,])/(2*J*n[k]^2*(n[k]-1))

# MSE

Mean.1 <- apply(temp, 1, mean) #mean of row

Xm.d <- temp - Mean.1

Xmd.prod1 <- Xm.d*Xm.d

Xmd.mult1 <- kronecker(Xm.d,rep(1,J))

Xmd.mult2 <- kronecker(rep(1,J),Xm.d)

Xmd.prod2 <- Xmd.mult1 * Xmd.mult2

MSE <- MSE + sum(Xmd.prod1)/(n[k]*(n[k]-1))

- sum(Xmd.prod2)/(J*n[k]*(n[k]-1))

}

}
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TauA <- 2* (V1 + V2 - V3) /(I*K*(J-1)^2)

MSE <- MSE/(I*K*(J-1))

# MST

ind.ijk <- rep(1:(2*K), n.ik)

ind.jk <- rep(1:K, 2)

Mean.jk <- NULL

for (j in 1:J) {

Mean.ijk <- tapply(d[j,], ind.ijk, mean)

Mean.jk <- rbind(Mean.jk, tapply(Mean.ijk, ind.jk, mean))

}

Mean.j <- apply(Mean.jk, 1, mean)

Mean.k <- apply(Mean.jk, 2, mean)

Mean <- mean(Mean.k)

A <- Mean.jk - Mean.j - kronecker(t(Mean.k), rep(1,J)) + Mean

MST <- I /((J-1) * (K-1)) * sum(A * A)

Stat <- sqrt(K) * (MST - MSE) / sqrt(TauA)

Stat

}
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A.2.7 Sample codes for LME and GEE calculations

We present two example functions for LME and GEE. They are used for the test of the gene

and the time interaction. For the tests of the main effects and other interactions, the codes

need only to be slightly changed for the effect of interest.

## LME for the gene and time interactions

library(nlme)

calcStat.LME <- function(Data, n) {

I <- 2

J <- nrow(Data)

K <- length(n)/2

Trt <- as.vector(col(Data))

Trt[Trt<=sum(n)/2] <- 1

Trt[Trt>sum(n)/2] <- 2

Time <- as.vector(row(Data))

Gene <- as.vector(t(matrix(rep(c(rep(1:K, n[1:K]),

rep(1:K, n[(K+1):(2*K)])), J), ncol=J)))

Sub <- as.vector(col(Data))

Exp <- as.vector(Data)

X <- cbind(Trt, Gene, Time, Sub, Exp)

X <- data.matrix(X)
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gls.o=gls(Exp~Trt+Gene+Time+Time*Gene,

data=data.frame(X), corr=corSymm(form=~1|Sub))

anova(gls.o, type="marginal")$"p-value"[5]

}

## GEE for the gene and time interaction.

library(geepack)

calcStat.GEE <- function(Data, n) {

I <- 2

J <- nrow(Data)

K <- length(n)/2

Trt <- as.vector(col(Data))

Trt[Trt<=sum(n)/2] <- 1

Trt[Trt>sum(n)/2] <- 2

Time <- as.vector(row(Data))

Gene <- as.vector(t(matrix(rep(c(rep(1:K, n[1:K]),

rep(1:K, n[(K+1):(2*K)])), J), ncol=J)))

Sub <- as.vector(col(Data))

Exp <- as.vector(Data)

X <- cbind(Trt, Gene, Time, Sub, Exp)
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family <- "gaussian" #"poisson"

gee.o=try(geese(Exp~Trt+Gene+Time+Time*Gene, id=Sub,

data=data.frame(X), family=family), T)

if (!is(gee.o, "try-error")) geePvalue=c(summary(

gee.o)$mean[5,4],1) else geePvalue=c(0,0)

geePvalue # pvalue for the trt effect

}
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