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Abstract

We study the composite group bridge penalized regression methods for conducting bi-

level variable selection in high dimensional linear regression models with a diverging number

of predictors. The proposed method combines the ideas of bridge regression (Huang et al.,

2008a) and group bridge regression (Huang et al., 2009), to achieve variable selection con-

sistency in both individual and group levels simultaneously, i.e., the important groups and

the important individual variables within each group can both be correctly identified with

probability approaching to one as the sample size increases to infinity. The method takes full

advantage of the prior grouping information, and the established bi-level oracle properties

ensure that the method is immune to possible group misidentification. A related adaptive

group bridge estimator, which uses adaptive penalization for improving bi-level selection, is

also investigated. Simulation studies show that the proposed methods have superior perfor-

mance in comparison to many existing methods.

Key Words and Phrases: Bi-level variable selection; High-dimensional data; Oracle property;

Penalized regression; Sparse models.
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Chapter 1

Introduction

In contemporary scientific research, high dimensional data has become increasingly common

in various fields including genetics, finance, medical imaging, social networks, etc. Complex

statistical models of high dimensionality, e.g., regression models with large number of pre-

dictors, are routinely formulated. One key of high dimensional modeling is to efficiently

conduct dimension reduction so that a parsimonious model can be built with both strong

predictive power and clear interpretation. In recent years, many penalized estimation meth-

ods have been proposed, which are capable of conducting efficient variable selection and

model estimation simultaneously. To list a few, Lasso (Tibshirani, 1996), adaptive Lasso

(Zou, 2006), SCAD (Fan and Li, 2001), bridge regression and MCP (Zhang, 2010) were

designed for individual-level variable selection. Group Lasso (Yuan and Lin, 2006), group

MCP (Zhang, 2007) and group SCAD (Wang et al., 2007) were proposed for group-level

variable selection in the presence of some prior grouping structure among variables. For

a comprehensive account of the developments of variable selection techniques, see, e.g.,

Buhlmann and van de Geer (2009) and Huang et al. (2012).

In many applications, however, it is desirable to conduct both group-level and individual-

level variable selection, i.e., not only we want to identify which groups of variables contain

useful information, but also we want to identify the truly important variables within each

selected group. For example, an impact study was designed to determine the effects of

different risk factors on body mass index (BMI) of high school students in two Seattle
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public schools (Huang et al., 2009). The predictors in the study could be naturally divided

into several groups based on the types of the measurements. Particularly, a set of dummy

variables are created to represent ethnicity; it is thus of interest to know whether ethnicity

is an important risk factor on BMI, and if so, which ethnicity groups show significantly

different effects. In genetic studies, gene expression profiles are commonly served as high

dimensional covariates to predict cancer risk. Often the genes can be grouped based on

pathways; therefore, it is of importance to be able to both select relevant pathways and

identify the useful genes within each selected pathway. To some extent, the need for bi-level

selection is also motivated by the fact that in practice, we rarely possess exactly correct

group information such that the important variables and unimportant ones are entirely

separated to form different groups. Therefore, a variable selection method should allow

flexible incorporation of the prior group information, so that not only can the method take

full advantage of the grouping structure when it is correct, but also the method can be

immune from possible group misspecification.

Motivated by these application needs, Huang et al. (2009) propose the group bridge re-

gression approach. The method penalizes the L1 norms of each group of coefficients using a

bridge penalty, to induce sparsity among the regression coefficients at both the group level

and the individual level. Huang et al. (2009) showed that under suitable conditions, the

method enjoys oracle properties at group selection. However, it is well known that using an

L1 norm penalty often leads to overselection, unless strong and maybe unrealistic assump-

tions are imposed (Buhlmann and van de Geer, 2009). As a consequence, a disadvantage

of the group bridge method is that it does not perform well at individual level variable

selection, exhibiting similar behaviors as Lasso.

Combining the ideas of bridge regression, adaptive Lasso and group bridge method,

we propose and study the composite group bridge (CoGB) and the adaptive group bridge

(AdGB) methods for bi-level selection. Unlike the group bridge method in which a L1

penalty is used to induce within-group sparsity, we adopt either a nonconvex bridge penalty
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or an adaptively weighted L1 penalty. We show that under suitable conditions, the proposed

methods achieve the oracle properties for both group and individual level variable selection,

allowing a diverging number of predictors. To our knowledge, this is the first time that

bi-level selection consistency is rigorously developed.

The rest of the report is organized as follows. In Chapter 2, we discuss the need for

dimension reduction in high dimensional data analysis and provide a brief review of the

existing techniques for shrinkage estimation and variable selection. We propose the CoGB

method and develop an efficient computation algorithm for its optimization in Chapter 3.

We also propose the simpler AdGB method, when some reliable initial estimator is available

for constructing the adaptive weights. Asymptotic properties of the CoGB estimator is

studied in Chapter 4. Simulation studies illustrating the new methods are presented in

Chapter 5.
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Chapter 2

Literature Review

2.1 Variable Selection in Multiple Linear Regression

Consider the multiple linear regression model

y = Xβ0 + ε = x1β01 + · · ·+ xdβ0d + ε, (2.1.1)

where y = (y1, ..., yn)′ is the response vector, X = (x1, . . . ,xd) the design matrix, β0 =

(β01, . . . , β0d)
′ a vector of regression coefficients, and ε = (ε1, ..., εn)′ an error vector con-

sisting of independently and identically distributed (i.i.d.) random errors with mean 0 and

variance σ2
ε . Without loss of generality, we assume that the response is centered, i.e.,∑n

i=1 yi = 0, and the predictors are standardized, i.e.,
∑n

i=1 xik = 0 and
∑n

i=1 x
2
ik = n, for

1 ≤ k ≤ d. So there is no intercept term in the model.

In many applications, the number of predictors d may be comparable to or even exceed

the sample size. The commonly used least squares estimator of β0, which is obtained by

minimizing the residual sum of squared error (RSS),

RSS(β; y,X) = ‖y−
d∑

k=1

xkβk‖22 = (y−Xβ)
′
(y−Xβ) (2.1.2)

often leads to overfitting and poor predictive performance. Here and henceforth, we use

‖ · ‖q to denote the Lq norm, for q > 0. Moreover, it can be difficult to interpret the fitted

model from the least squares estimation when the number of predictors is large. To improve

predictive accuracy and facilitate model interpretation, it is often imperative to conduct
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variable selection, so that a parsimonious regression model with only a few selected leading

predictors can be built.

A natural idea of producing a good model with a reduced number of predictors is best

subset selection, which aims to exhaustively search over all 2d possible models and select

the best one judged by some information criterion such as AIC (Akaike, 1974), Mallows CP

(Mallows, 1973), BIC (Schwarz, 1978), etc. Although the idea is appealing, this procedure is

infeasible to implement when d is large, as its computational complexity grows exponentially

with d. Furthermore, the method suffers from instability due to sampling variability and

discontinuity (Breiman, 1996). To get around the computation issue, some commonly used

model selection procedures in practice include forward selection, backward elimination and

stepwise selection. The basis ideas are as follows.

• Backward elimination begins with the full set of variables and at each step, sequentially

drops a variable that is deemed to be the least important based on some information

criterion or some hypothesis testing procedure. This process is repeated until all

variables having nonsignificant effects are dropped from the model.

• Forward selection starts with an empty set of variables and sequentially adds a variable

to the model in each step. Again, the choice of the most important variable in each

step can be based on some information criterion or some hypothesis testing procedure.

This procedure is repeated until no new predictors can be added to the model.

• A hybrid stepwise selection procedure also starts with the null model of no predictor.

At each step, after adding a variable, it then tries to eliminate any variable that

is determined to be insignificant in the current model. The alternation between the

selection and elimination steps is continued until all variables have either been retained

for inclusion or removed. (Izenman, 2008).

A common criticism of the above three procedures is that only a small subset of possible

models is visited and compared during the model-building process, so the resulting model
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may be suboptimal. Nevertheless, the discrete nature of these procedures makes them suffer

from instability.

In recent years, the celebrated penalized estimation approaches, being capable of con-

ducting efficient and simultaneous dimension reduction and model estimation, have under-

gone exciting developments. The main idea of this broad class of approaches is to mitigate

the curse of dimensionality by assuming that the true coefficient vector β0 has some low-

dimensional structure, e.g., sparsity, and employing proper regularization approaches for

model estimation. For Gaussian data, it is appropriate to estimate β0 by minimizing the

penalized least squares criterion with respect to β,

RSS(β; y,X) + Pλ(β),

where RSS(β; y,X) is defined in (2.1.2), Pλ(·) some penalty function measuring the com-

plexity of the enclosed coefficient vector, and λ a non-negative tuning parameter controlling

the degree of penalization. In what follows, we shall review some commonly used and

inspiring penalized estimation methods developed in this exciting era of big data.

2.2 Ridge Regression, Lasso and Related Methods

Shrinkage estimation can be performed by using ridge regression, in which the penalty

function is proportional to the squared L2 norm of the coefficient vector, i.e., the ridge

estimator β̂ridge is obtained by minimizing

LRidge(β) = ‖y−
d∑

k=1

xkβk‖22 + λ‖β‖22. (2.2.1)

It can be shown that,

β̂ridge = (X
′
X + λI)−1X

′
y.

Comparing to the least squares estimation, the ridge estimator is unique for any λ > 0, even

when the design matrix is not of full rank. Applying ridge penalty has the effect of shrinking

the estimates toward zero, which introducing bias but reducing the variance of the estimator,
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and thus ridge regression is especially beneficial in the presence of multicollinearity. However,

as exact sparsity is not induced among the estimated regression coefficients, ridge regression

does not perform variable selection. Consequently, although using ridge estimation can

alleviate overfitting and achieve better predictive performance, it may prove difficult to

interpret the resulting model with a large number of predictors.

Lasso (Tibshirani, 1996) stands for “Least Absolute Shrinkage and Selection Operator”.

The Lasso estimator, denoted by β̂lasso, is obtained by minimizing

LLasso(β) = ‖y−
d∑

k=1

xkβk‖22 + λ‖β‖1. (2.2.2)

Comparing to ridge regression, the only change here is that an L1 norm penalty is used

instead of a squared L2 norm penalty. Note that both ridge and Lasso methods can be cast

as constrained estimation problems, i.e., β̂ridge is obtained by minimizing RSS(β) subject

to ‖β‖22 ≤ t, and β̂lasso is obtained by minimizing RSS(β) subject to ‖β‖1 ≤ t, where

t is a non-negative constant corresponding to some tuning parameter λ. The difference

in their penalty terms leads to important consequences. To illustrate, consider a simple

case when there are only two predictors in the model, i.e., d = 2. Figure 2.1 shows the

geometrical representations of Lasso and ridge regression methods. The constrained region

for Lasso is a rotated square, while the region becomes a disk in ridge regression. The

least squares estimate β̂ls is shown in both panels, surrounded by the elliptical contours of

the sum of squared error RSS(β). For the Lasso method, there is a positive probability

that the contour may touch the rotated square at its corners so that a sparse estimator is

produced, i.e., some coefficient can be estimated as exact zeros. On the other hand, the

constrained area due to ridge penalization is smooth, and hence producing a sparse solution

is of probability 0.

Lasso can be efficiently solved by several methods, e.g., a modified least angle regression

algorithm (LARS) (Efron et al., 2004; Park and Hastie, 2007) and the coordinate descent

algorithm (CDA) (Friedman et al., 2007). The theoretical properties of Lasso have been

throughly investigated (Knight and Fu, 2000; Zhao and Yu, 2006; Zhang and Huang, 2008).
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Figure 2.1: Geometry of Lasso versus Ridge estimation for a two parameters case (Hastie
et al., 2009). The solid rotated square region is the constraint region for |β1|+ |β2| ≤ t and
the solid circle region is the constraint region for β2

1 + β2
2 ≤ t2, where t is a constant. The

ellipses are the contours of the least squares error function.

Particularly, Zhao and Yu (2006) showed that under a strong irrepresentable condition,

Lasso achieves the oracle properties (Fan and Li, 2001), i.e., the method identifies the

correct subset of important predictors with probability tending to one as the sample size

increases, and that the asymptotic distribution of the vector of nonzero coefficients is the

same as it would have if the sparse model structure is known a priori. The irrepresentable

condition essentially requires that the important predictors and the irrelevent ones can not

be strongly related, so the irrelevent predictors that are not in the true model are in a certain

sense “irrepresentable” by the predictors that are in the true model. In practice, however, it

is hard to verify this condition, and empirically Lasso tends to select more predictors than

needed and the estimator may exhibit large bias.

Adaptive Lasso estimator proposed by Zou (2006) is obtained by minimizing

LAdLasso(β) = ‖y−
d∑

k=1

xkβk‖22 + λ‖β‖1,w (2.2.3)

where w = (w1, . . . , wd)
′ is a set of adaptive weights, and we used the operator ‖ · ‖1q,w to

8



denote a w-weighted L1 norm, i.e., ‖β‖1,w =
∑d

k=1wk|βk|. Adaptive Lasso, as an extension

of Lasso, remains to be a convex optimization problem, and it can also be solved efficiently

using LARS or CDA. To construct proper weights, a natural way is to set wk = (β̂
(0)
k )−γ,

where β̂
(0)
k is some initial estimator of β0k, e.g., the least squares estimator or the Lasso

estimator, and γ is a prespecified positive constant. As such, larger coefficients receive a

lighter penalty to help reduce the bias and smaller coefficients receive a heavier penalty

to improve sparsity. With the help of some well-behaved adaptive weights, Zou (2006)

showed that adaptive Lasso estimator enjoys oracle properties in the sense of Fan and Li

(2001), without the requirement of the irrepresentable condition, and Huang et al. (2008b)

later extended the results for adaptive Lasso to high-dimensional models with a diverging

number of predictors. Zou and Hastie (2005) and Zou and Zhang (2009) proposed the elastic

net and the adaptive elastic net methods to combine the strength of L1 and L2 penalization.

In the penalized regression framework, the construction of the penalty function and the

statistical properties of the resulting estimators have been extensively studied. The afore-

mentioned methods all used convex penalties to promote sparsity. However, the weakness

of convex penalties is well understood (Buhlmann and van de Geer, 2009). A promising

way is to adopt nonconvex penalties in penalized regression, which may lead to superior

properties in both model estimation and variable selection under milder conditions. Some

popular choices include SCAD (Fan and Li, 2001), bridge regression (Huang et al., 2008a),

MCP (Zhang, 2010), etc. We refer the interested reader to Buhlmann and van de Geer

(2009) for a comprehensive account of these techniques.

2.3 Group and Bi-level Selection

In many statistical modeling problems, the variables exhibit some natural grouping struc-

tures and these is a need to select them at the group level. For example, a categorical

variable with multiple levels can be coded as a group of dummy variables. Using basis

expansion, a nonparametric component in a regression model can be written as a linear
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combination of a set of basis functions. In gene expression data analysis, gene expression

profiles can be grouped according to the pathways these genes belong to. In CT-Scanned

lung image studies, the lung airway measurements can be grouped by either their generation

number or the type of measurements. In all these cases, it is often desirable that a group of

variables are either kept or eliminated from the model together.

Several penalized estimation methods have been developed for group selection. Yuan and

Lin (2006) proposed the group Lasso method as a natural extension of Lasso (Tibshirani,

1996), in which the L2 norms of the groups of coefficients are penalized using an L1 penalty.

The group Lars and group non-negative garrote methods were also studied by Yuan and Lin

(2006). Meier et al. (2008) studied the group Lasso in logistic regression. Zhao et al. (2009)

proposed a composite absolute penalty, which combines the properties of norm penalties at

the across-group and within-group levels to facilitate hierarchical variable selection. Other

methods proposed for group level variable selection include group SCAD (Wang et al.,

2007), group MCP (Breheny, 2009), etc. To further facilitate model interpretation, an

intelligent idea is to conduct both group-level and individual-level variable selection, i.e.,

not only we want to identify which groups are important, but also we want to identify

the important variables within each selected group. The group bridge method proposed by

Huang et al. (2009) was the first method developed for bi-level variable selection. Breheny

(2009) proposed a general composite penalty form for bi-level selection and developed a

coordinate descent algorithm for solving these problems. We refer the interested reader to

Huang et al. (2012) for a review of the group selection techniques.

In what follows, we present the main ideas of the group Lasso and the group bridge

methods to illustrate the general methodology of group section and bi-level section, respec-

tively. Consider model (2.1.1). Let A1, ..., AJ be subsets of {1, ..., d} representing known

groupings of the predictors, and βAj = (βk, k ∈ Aj)′ be the vector of regression coefficients

in the jth group. We assume only the first J1 groups contain useful predictors, i.e. β0Aj
6= 0

for j = 1, ..., J1 and β0Aj
= 0 for j = J1 + 1, ..., J .
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The group Lasso method (Yuan and Lin, 2006) minimizes the following objective func-

tion,

LgrLasso(β) = ‖y−
d∑

k=1

xkβk‖22 + λn

J∑
j=1

cj‖βAj‖2,

where cj accounts for the varying group sizes, commonly chosen as
√
|Aj|, the square root

of the number of predictors in group j. In the above criterion, the L2 norm of each group

of coefficients is penalized. If all the group sizes equal to one, group Lasso reduces to a

Lasso optimization problem. In general case, the group Lasso penalty induces sparsity at

the group level due to the L1 norm penalization at the group level. However, similar to

Lasso, the group Lasso in general can not achieve selection consistency and tends to select

more groups than needed.

The group bridge approach for variable selection was introduced by Huang et al. (2009),

in which β0 is estimated by minimizing

LGB(β) = ‖y−
d∑

k=1

xkβk‖22 + λn

J∑
j=1

cj‖βAj‖
γ
1 , (2.3.1)

where γ ∈ (0, 1] is the bridge index, λ > 0 is the regularization parameter, and cjs are con-

stants adjusting for group sizes, usually set as cj = |Aj|1−γ. Group bridge criterion reduces

to a standard bridge criterion when all the group sizes are equal to one, and further reduces

to Lasso when γ = 1. The method penalizes the L1 norms of the groups of coefficients using

a bridge penalty, to induce sparsity among the regression coefficients at both the group

level and the individual level. Huang et al. (2009) showed that under suitable conditions,

the method enjoys oracle properties at group level selection. However, it is well known

that using an L1 norm penalty often leads to overselection, unless strong assumptions are

imposed on the design matrix (Buhlmann and van de Geer, 2009). As a consequence, a

disadvantage of the group bridge method is that it does not perform well at individual level

variable section, similar to the behavior of Lasso.
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Chapter 3

Composite Group Bridge Regression

3.1 Composite Group Bridge Criterion

Consider the multiple linear regression model in (2.1.1). Recall that we assume the predictors

form J groups, and only the first J1 groups are relevant, i.e., β0Aj
6= 0 for j = 1, ..., J1 and

β0Aj
= 0 for j = J1+1, ..., J . We further assume in each of the first J1 groups, only a subset

of the predictors is important. For each Aj, j = 1, ..., J1, let A1
j = {k; β0k 6= 0, k ∈ Aj} and

A2
j = {k; β0k = 0, k ∈ Aj}. Note that the J groups may overlap with each other and their

union is allowed to be a proper subset of all the predictors.

Motivated by both bridge and group bridge penalized regression methods (Huang et al.,

2009), we propose to conduct bi-level variable selection and model estimation by minimizing

Ln(β) = ‖y−
d∑

k=1

xkβk‖22 + λn

J∑
j=1

cj(
∑
k∈Aj

|βk|µ)γ, (3.1.1)

where µ ∈ (0, 1], γ ∈ (0, 1], cjs are group level weights adjusting for the dimensions or

magnitudes of each group of coefficients, and λn is a tuning parameter controlling degrees

of penalization. Unless otherwise noted, we set cj = |Aj|1−γ.

The proposed method subsumes and extends both the bridge and group bridge ap-

proaches. In the group bridge method, a bridge penalty is used to penalize the L1 norm

of each group of coefficients, which in general does not lead to selection consistency at the

within-group level. In the proposed objective function (3.1.1), however, we adopt another
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bridge penalty to induce within-group sparsity in replace of the L1 penalty, and hence we

refer to (3.1.1) as a composite group bridge penalized regression criterion. When µ = 1, it

reduces to the group bridge method; when γ = 1, it reduces to the form of a bridge regres-

sion. We shall mainly consider µ ∈ (0, 1) and γ ∈ (0, 1). As we will show later, this leads to

variable selection consistency at both the group and individual levels simultaneously. For

simplicity and to streamline the idea, we fix γ = µ = 0.5 in all our numerical studies. We

note that the choice of µ or γ can also be made data adaptive, which may further boost the

performance of the proposed approach.

3.2 Optimization

The minimization of the objective function (3.1.1) is challenging, as the composite group

bridge penalty is nonconvex for µ ∈ (0, 1) and/or γ ∈ (0, 1). Motivated by Huang et al.

(2009), we show that an equivalent minimization problem can be formulated through an aug-

mented variable approach, and an efficient iteratively reweighted Lasso regression algorithm

is then developed for solving (3.1.1).

Define

Sln(β,θ, δ) = ‖y−
d∑

k=1

xkβk‖22 +
J∑
j=1

θ
1− 1

γ

j c
1
γ

j

∑
k∈Aj

δ
1− 1

µ

k |βk|+ ψ
∑
k∈Aj

δk

+ τn

J∑
j=1

θj,

(3.2.1)

where (τn, ψ) are some penalty parameters. The following proposition shows the equivalence

between the minimizers of (3.2.1) and (3.1.1).

Proposition 3.2.1. The composite group bridge estimator β̂n minimizes (3.1.1) if and only

if

(β̂n, θ̂, δ̂) = arg min
(β,θ,δ)

Sln(β,θ, δ) subject to θ ≥ 0, δ ≥ 0.

for some θ̂ and δ̂, where τn = λ
1/(1−γ)
n γγ/(1−γ)(1− γ) and ψ = µµ/(1−µ)(1− µ).
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It can be seen that by minimizing Sln with respect to (β,θ, δ) in (3.2.1), we can induce

sparse solutions at both the group and individual levels, i.e., small θj forces βAj = 0, leading

to group selection, and small δk forces βk = 0, leading to individual variable selection. For

fixed θ and δ, the problem becomes an adaptive Lasso problem in β, which could be solved

efficiently by many methods. Also, solving θ with (β, δ) held fixed and solving δ with

(β,θ) held fixed both lead to explicit solutions. We therefore propose the following iterative

algorithm for solving (3.2.1) and hence (3.1.1).

Composite Group Bridge Regression Algorithm

Initialization : start with an initial estimator β(0), which can be obtained by least

squares, Lasso or group Lasso methods.

For s = 1, 2...,

1. Calculate

θ
(s)
j =cj(λnγ)

γ
γ−1 (

∑
k∈Aj

|β(s−1)
k |µ)γ, j = 1, 2 . . . , J,

δ
(s)
k =µ

µ
µ−1 |β(s−1)

k |µ, k = 1, . . . d.

2. Solve the adaptive Lasso problem,

β(s) = arg min
β
‖y−

d∑
k=1

xkβk‖22 +
J∑
j=1

{θ(s)j }
1− 1

γ c
1
γ

j

∑
k∈Aj

{δ(s)k }
1− 1

µ |βk|

= arg min
β
‖y−

d∑
k=1

xkβk‖22 + λn

d∑
k=1

w
(s)
1k |βk|,

where

w
(s)
1k = γµ

∑
j:k∈Aj

cj‖β(s−1)
Aj
‖µ(γ−1)µ |β(s−1)

k |µ−1. (3.2.2)

3. Repeat steps 1–2 until convergence, e.g., ‖β(s) − β(s−1)‖2/‖β(s−1)‖2 < ε, where ε is

some tolerance level, e.g. ε = 10−4.
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The proposed algorithm has a blockwise coordinate descent structure, in which we al-

ternatively update θ, δ and β, one block at a time with other two blocks held fixed. It

is evident that the proposed composite group bridge method is closely related to adaptive

Lasso, as the above algorithm boils down to an iteratively reweighted adaptive Lasso proce-

dure. Another way to reveal this connection is from adopting a local linear approximation

(Zou and Li, 2008) of the composite group bridge penalty in (3.1.1). Suppose β(0) be an

initial estimator of β0, and denote β
(0)
−l as a subvector of β(0) without its lth entry β

(0)
l , for

any l = 1, . . . , d. For fixed β
(0)
−l , consider the penalty terms involving the lth predictor,

f(βl;β
(0)
−l ) =

∑
j:l∈Aj

cj(
∑

k∈Aj ,k 6=l

|β(0)
k |

µ + |βl|µ)γ

≈f(β
(0)
l ;β

(0)
−l ) + f ′(β

(0)
l ;β

(0)
−l ){βl − β

(0)
l }

=f(β
(0)
l ;β

(0)
−l ) +

γµ ∑
j:l∈Aj

cj‖β(0)
Aj
‖µ(γ−1)µ |β(0)

l |
µ−1

 {βl − β(0)
l }

It can be seen that for fixed β(0), up to a constant, the first-order approximation yields

exactly an adaptive Lasso penalty for βl, and the weight takes exactly the same form as

(3.2.2). This provides an alternative justification of the validity of the proposed algorithm.

As the objective function decreases monotonically along the updates, the convergence of

the algorithm is guaranteed. However, due to the nonconvexity of the proposed criterion,

the algorithm in general converges to a local minimizer. Based on our limited experience,

the proposed method is stable and performs well in practice.

For any fixed λ ≥ 0, the minimizer of (3.1.1) can be computed by the preceding algorithm.

To choose an optimal λ and hence an optimal solution, a general method is to use K-fold

cross validation (CV) (Stone, 1974). However, using CV can be computationally expensive

for large data. We mainly use an BIC criterion (Schwarz, 1978) for tuning because of its

computational efficiency and promising performance on sparse estimation. Denote β̂(λ) as

the estimator of β0 by solving (3.1.1). We define

BIC(λ) = log
[
RSS{β̂(λ)}/n

]
+ log{max(p, n)}df(λ)/n, (3.2.3)
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where RSS{β̂(λ)} is defined in (2.1.2) and df(λ) is the effective degrees of freedom of the

fitted model. Because of the iterative adaptive Lasso interpretation of the final estimator,

we have used the number of nonzero coefficients to estimate the model degrees of freedom,

d̂f(λ) = ‖β̂(λ)‖0, following Zou et al. (2007) and Breheny and Huang (2009a). In our

numerical studies, we compute the solutions over a grid of 100 λ values equally spaced on

the log scale and then select the best λ value by BIC.

3.3 Adaptive Estimators

From the preceding discussion, it is evident that the proposed composite group bridge

method is closely related to adaptive Lasso. Similar to Zou and Li (2008), a one-step

adaptive Lasso estimator can be readily constructed with the weights take the form as in

(3.2.2). As the adaptive Lasso is a convex problem, the one-step estimator is a global

minimizer, easy to compute, and its theoretical properties are readily available (Zou, 2006;

Huang et al., 2008b). However, there are some drawbacks. The performance of adaptive

estimation relies heavily on the quality of the initial estimator used in constructing the

adaptive weights. Moreover, adaptive Lasso essentially is an individual variable selection

tool; although the weights (3.2.2) have a group-level component, empirical study suggests

that the group level selection by the adaptive Lasso method is often unsatisfactory.

As a compromise, we propose an adaptive group bridge criterion,

Ln(β) = ‖y−
d∑

k=1

xkβk‖22 + λn

J∑
j=1

cj‖βAj‖
γ
1,w, (3.3.1)

where ‖ · ‖1,w denotes the w-weighted L1 norm for the enclosed vector, e.g., ‖βAj‖1,w =∑
k∈Aj wk|βk|, wks are some individual-level weights, cjs are some group-level weights, and

all the other terms are similarly defined as in (3.1.1).

Suppose some reliable initial estimator β̂
(0)

is available, e.g. the least squares estimator

when the sample size is large relative to the model dimension. We set

wk =
|β̂(0)
k |−µ

αk
,
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where αk =
∑

j I(k ∈ Aj) counts the number of groups the kth predictor belongs to, and

µ ≥ 0 is a power parameter usually set to be 2. For the group-level weights, we can simply

set

cj = |Aj|1−γ, (3.3.2)

accounting for the group size. When µ > 1, we also consider

cj =

∑
k∈Aj

|β̂(0)
k |1−µ

αk

1−γ

, (3.3.3)

adjusting for the magnitude of each group of weighted coefficients.

It is straightforward to show that the problem can also be solved by the proposed iterative

adaptive Lasso algorithm. The only change is that in step 3, the weights become

w
(s)
1k = γ

∑
j:k∈Aj

cj‖β(s−1)
Aj
‖γ−11,w wk. (3.3.4)

Comparing to composite group bridge, the problem is simpler and remains to possess good

properties when reliable adaptive weights are available.
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Chapter 4

Asymptotic Properties

In this section, we explore the asymptotic properties of the proposed composite group bridge

estimator. We show that, for 0 < γ, µ < 1, the composite group bridge estimator identifies

the correct groups and the correct nonzero coefficients within each selected group with

probability converging to one, under reasonable conditions. The estimation error bound

and asymptotic distribution of the proposed estimator are also established.

Recall that without loss of generality, we have assumed that

β0Aj
6= 0, 1 ≤ j ≤ J1,

β0Aj
= 0, J1 + 1 ≤ j ≤ J.

For each Aj, j = 1, ..., J1, A
1
j = {k; β0k 6= 0, k ∈ Aj} and A2

j = {k; β0k = 0, k ∈ Aj}.

Let B2 = ∪Jj=J1+1Aj be the union of the groups with zero coefficients. Let B1 = Bc
2,

B1
1 = {k; β0k 6= 0, k ∈ B1} and B2

1 = {k; β0k = 0, k ∈ B1}. Note that each Aj may

include important predictors, unimportant predictors in B1 and unimportant predictors in

B2. Denote β0Bj
= (β0k, k ∈ Bj)

′ for j = 1, 2, and define other subvectors of β0 similarly.

Assume the variables are arranged so that β0 = (β′0B1
1
,β′0B2

1
,β′0B2

)′. Since β0B2
1

= 0 and

β0B2
= 0, the response variable is fully explained by the important variables belonging to

B1
1 within the first J1 groups. In this notation, β̂nB1

1
, β̂nB2

1
and β̂nB2

are respectively the

estimates of β0B1
1
, β0B2

1
and β0B2

from the composite group bridge estimator β̂n.

Let X = (x1,x2, ...,xd), X1 = (xk, k ∈ B1), X11 = (xk, k ∈ B1
1) and X12 = (xk, k ∈ B2

1).
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Define

Σn =
1

n
X′X, Σ1n =

1

n
X′1X1, Σ11n =

1

n
X′11X11 (4.0.1)

Let ρn and ρ∗n be the smallest and largest eigenvalues of Σn, and let τ1n and τ ∗1n be the

smallest and largest eigenvalues of Σ11n.

We consider the following conditions.

A1. The errors ε1, ε2, ....εn are uncorrelated with mean zero and finite variance σ2.

A2. The maximum multiplicity c∗n = maxk
∑J

j=1 I(k ∈ Aj) is bounded, and

λ2nη
2
n

nρnσ2d
= Mn = O(1),

where ηn = {
∑J1

j=1 c
2
j‖β0A1

j
‖2µ−22µ−2‖β0A1

j
‖2µ(γ−1)µ }1/2.

A3. The constants cjs are scaled to satisfy minj≤J cj ≥ 1, and

λnρ
1−µγ/2
n

d1−µγ/2ρ∗nn
µγ/2
→∞.

A3*. The constants cjs are scaled to satisfy minj≤J cj ≥ 1, and

λnρ
1−µ/2
n

d1−µ/2ρ∗nn
µ/2
→∞.

A4. There exist constants τ ∗1 <∞ such that τ ∗1n ≤ τ ∗1 for all n.

Assumption A1 is standard about the error distribution. Assumptions A2 and A3 are

about the degree of overlapping, the growth rate of the tuning parameter and the growth rate

of the model size; they imply full rank design with rank(X) = d ≤ n, ρn > 0, and τ1n > 0.

The first three assumptions are used to establish the group level selection consistency. To

establish individual level selection consistency, however, A3 shall be replaced by a stronger

version A3*, and A4 is also needed to ensure the largest eigenvalue of X11 is bounded.

In general, the selection consistency of the individual level is stronger than that of the

group level. This fact is reflected in the above required assumptions. Note that A3* implies
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A3, as individual level selection consistency implies group level consistency. The choice of

the group level penalty does not have a direct impact on the within-group variable selection.

On the other hand, A3 involves both µ and γ, because the choice of the within-group penalty

determines the behavior of individual variable selection and hence also influences the group

selection performance. Similar to Huang et al. (2009), for [B1
1 ,β0B1

1
, J1] fixed but unknown,

assumptions A2 and A3 hold when

(a) (1/ρn) + ρ∗n +

J1∑
j=1

c2j = O(1),

(b)
λn
n1/2

→ λ0 <∞,

(c)
λnd

µγ/2

dnµγ/2
→∞, (4.0.2)

provided that cj ≥ 1 and c∗n = O(1). For assumptions A2 and A3*, (c) is strengthened to

(c*)
λnd

µ/2

dnµ/2
→∞. (4.0.3)

Here the number of covariates d = dn is allowed to grow at a certain rate as n > dn → ∞.

To ensure group selection consistency, we allow dn = o(1)n(1−µγ)/(2−µγ), which is faster

than what is allowed by group bridge. To ensure both group and individual level selection

consistency, we allow a slower rate dn = o(1)n(1−µ)/(2−µ).

Theorem 4.0.1 (Estimation Error Bound). Suppose that 0 < µ ≤ 1, 0 < γ < 1 and

assumptions A1–A2 hold. Then

E(‖β̂n − β0‖22) ≤
σ2d

nρn
(8 + 64c∗nMn).

Theorem 4.0.2 (Group Selection Consistency). Suppose that 0 < µ ≤ 1, 0 < γ < 1 and

assumptions A1–A3 hold. Then,

P (β̂nAj = 0, j > J1)→ 1, (4.0.4)

as n→∞.
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Theorem 4.0.3 (Individual Selection Consistency). Suppose that 0 < µ < 1, 0 < γ ≤ 1

and assumptions A1, A2, A3* and A4 hold. Then (4.0.4) holds, and

P (β̂nA2
j

= 0, j ≤ J1)→ 1,

as n→∞.

Theorem 4.0.4 (Asymptotic Distribution). Suppose {B1
1 ,β0B1

1
, J1} are fixed unknowns and

(4.0.2) holds. Suppose further that Σ1n → Σ1 and n−1/2X′1ε → W1 ∼ N(0, σ2Σ1), and

consequently Σ11n → Σ11 and n−1/2X′11ε→W11 ∼ N(0, σ2Σ11). Then,

√
nβ̂nB2

→d 0,
√
nβ̂nB2

1
→d 0,

and
√
n(β̂nB1

1
− β0B1

1
)→d arg minV11(u),u ∈ R|B1

1 |,

where

V11(u) = −2u′W11 + u′Σ11u + µγλ0

J1∑
j=1

cj‖β0Aj
‖µ(γ−1)µ

∑
k∈A1

j

uk|β0k|µ−1sgn(β0k).
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Chapter 5

Simulation

5.1 Simulation Setup

We compare the proposed composite group bridge (CoGB) and adaptive group bridge

(AdGB) techniques with group bridge (GB) (Huang et al., 2009), composite MCP (CoMCP)

(Breheny and Huang, 2009b), group Lasso (grLasso) (Yuan and Lin, 2006), group MCP

(grMCP) (Breheny, 2009), and adaptive Lasso (AdLasso) (Zou, 2006) methods for variable

selection. The grLasso, grMCP, GB and CoMCP estimators are computed using the grpreg

package (Breheny and Huang, 2009b) in R (R Development Core Team, 2008). We have also

implemented all the other methods considered in this report in R. We have experimented

with several information criteria including BIC, AIC and GCV for tuning parameter selec-

tion, and in general BIC gives better results on variable selection. Hence we shall compare

all the methods with BIC tuning.

We consider five simulation examples covering various practical scenarios, e.g., bi-level

sparsity, group sparsity, overlapping of predictors, varying group sizes, correlation within

and among groups, etc. The setup is in a similar fashion as the simulation study in Huang

et al. (2009). We consider sample sizes of n = 100, 200 and 400. The experiment is repli-

cated 400 times under each setting.

Example 1: There are J = 6 groups of variables, with |A1| = |A2| = |A3| = 10 and
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|A4| = |A5| = |A6| = 4. To generate d = 42 covariates, we first form n× 1 vectors r1, . . . , rd

and z1, . . . , zJ ; all the entries in these vectors are independently generated from N(0, 1).

The covariates x1, ..,xd are generated as

xk = (zgk + rk)/
√

2, 1 ≤ k ≤ d,

where (g1, . . . , gd)=(1, ....., 1,︸ ︷︷ ︸
10

2, ....., 2,︸ ︷︷ ︸
10

3, ......, 3,︸ ︷︷ ︸
10

4, ...., 4,︸ ︷︷ ︸
4

5, ...., 5,︸ ︷︷ ︸
4

6, ...., 6︸ ︷︷ ︸
4

), indicating the group

membership structure. Therefore, the covariates within each group are correlated, while the

covariates from different groups are uncorrelated. The response y is then generated using

model (2.1.1), where

β0A1
= (1,−2, 1.25, 1,−1, 1, 3,−1.5, 2,−2)′, β0A2

= (−1.5, 3, 1,−2, 1.5, 0, 0, 0, 0, 0)′,

β0A3
= (0, . . . , 0)′, β0A4

= (2,−2, 1, 1.5)′, β0A5
= (−1.5, 1.5, 0, 0)′, β0A6

= (0, . . . , 0)′,

and ε ∼ N(0, 4I).

Example 2: The model is the same as in Example 1, except that

β0A2
= (−1.5, 3, 0, . . . , 0)′.

So the second group is very sparse.

Example 3: We consider overlapping of predictors within groups. There are six groups,

with |A1| = 10, |A2| = 11, |A3| = 12, |A4| = 4, |A5| = 4, and |A6| = 4. The 10th covariate

belongs to both the first and the second groups, and the 19th and 20th covariates belong

to both the second and the third groups, so the total number of covariates still equals to

d = 42. The covariates x1,...,x42 are generated in the same way as in Example 1, except

that for k = 10, xk = (z1 + z2 + rk)/
√

3, and for k = 19, 20, xk = (z2 + z3 + rk)/
√

3. There-

fore, each overlapping covariate is correlated with all the other covarites from the groups it

belongs to. The response is computed using model (2.1.1), where β0 is exactly the same as
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in Example 1 and ε ∼ N(0, 4I).

Example 4: We consider a very sparse model. In this example, J = 5, |A1| = · · · = |A5| = 8

and d = 40, so there is no overlap of group membership. The covariates x1,...,x40 are

generated the same way as in Example 1. The response y is generated using model (2.1.1),

where

β0A1
= (0, 0, 0, 2, 0, 2, 0, 0)′, β0A2

= (3, 3, 0, 0, 0, 0, 0, 0, 0, 0)′,

β0A3
= β0A4

= β0A5
= 0′, and ε ∼ N(0, 4I).

Example 5: We consider a model in which all the coefficients in a nonzero group are

nonzero, with J = 5, |A1| = · · · = |A5| = 8 and d = 40. We first simulate r1, ..., r40

independently from N(0, I). Next, to generate zj vectors (j = 1, . . . , J), we simulate n

independent samples from a J-dimensional Gaussian distribution N(0,Σ), where the (h, l)th

entry of Σ equals to σhl = 0.4|h−l|. Then the covariates x1, . . . ,x40 are generated as

x5(j−1)+k = {zj + r4(j−1)+k}/
√

2. 1 ≤ j ≤ 5, 1 ≤ k ≤ 8.

In this way, the AR(1) correlation structure of the zjs induces correlation across different

groups of covariates. The response vector is computed using model (2.1.1), where

β0A1
= (1, 1, 1.5, 2, 2.5, 3, 3.5, 4)′, β0A2

= (2, 2, 2, 2, 2, 2, 2, 2)′,

β0A3
= β0A3

= β0A3
= 0′, and ε ∼ N(0, 4I).

5.2 Evaluation Methods

For each method, the model accuracy is measured by the average of the model error from

all 400 runs (Model Error), i.e., (β0 − β̂)′Σ(β0 − β̂) where Σ is the true covariance matrix

of the predictors. To evaluate the sparse bi-level estimation performance, we report the
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average number of nonzero coefficients (No. of Var.) and the average number of selected

nonzero groups (No. of Groups). To further evaluate bi-level variable selection accuracy,

we report the following measures,

1. the frequency of correct identification of the group sparsity structure (Correct Groups),

2. the frequency of correct identification of the bi-level sparsity structure (Correct Model),

3. the false negative rate (FNR) of missing important predictors,

4. the false discovery rate (FDR) of selecting unimportant predictors.

To be precise, for each fitted model, denote the number of false positives as FP, the number

of false negatives as FN, the number of true positives as TP and number of true negatives

as TN. Then FNR is calculated as FN/(TP+FN), and FDR is calculated as FP/(FP+TP).

Tables 1–3 summarize the simulation results for sample sizes 400, 200 and 100, respectively.

5.3 Simulation Results

The first three examples are in favor of the bi-level selection methods. In terms of estima-

tion accuracy, AdGB, CoGB and CoMCP have comparable performance, and they slightly

outperform GB, which is also capable of conducting bi-level selection but does not enjoy

individual level selection consistency. All these methods generally outperform grMCP, gr-

Lasso and AdLasso, which do not perform bi-level selection, and the advantage of the former

set of methods is persistent across different sample sizes. Not surprisingly, AdGB, CoGB

and CoMCP all perform very well in variable selection, and the FNR and FPR rates are

general low. CoMCP slightly outperforms CoGB, mainly because the latter tends to have a

slightly larger false negative rate than the former. We also note that grMCP also performs

much better than grLasso in group selection and model estimation. These show the superior

performance of a well designed nonconvex MCP penalty to the convex Lasso penalty and the

nonconvex but simpler bridge penalty. Nevertheless, CoGB performs much better than GB
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in terms of correct model identification, supporting the developed bi-level selection oracle

property.

Example 4 is designed in favor of AdLasso, as the model is extremely sparse. As ex-

pected, AdLasso performs better than most of the methods. As all the nonzero groups are

very sparse, i.e, very few important predictors are grouped with a large number of irrelevant

predictors, we may view this structure as a case of severe group misidentification. Our re-

sults show that the bi-level selection methods still perform satisfactorily, while grMCP and

grLasso perform poorly in model estimation because of high false positives. This demon-

strates that using bi-level selection methods may greatly alleviate the influence of group

misspecification, and in practice it is especially beneficial when the prior group information

may be unreliable. In Example 5, the model is sparse at the group level but nonsparse at

the within group level. Therefore, this is exactly the structure the group selection methods

aim to recover. As expected, both grMCP and grLasso perform extremely well in model

selection. But again, the bi-level selection methods are not far behind.

To further examine the variable selection performance of various methods, for each co-

variate in a simulated model, we plot the relative frequency that it is not selected in the 400

simulation runs. The plots for the first three examples with sample sizes 400, 200 and 100

are shown in Figures 2, 3 and 4. CoGB estimates are represented as solid blue dots, AdGB

estimates are represented as filled red squares, CoMCP estimates are represented as purple

stars, and GB estimates are represented as green triangle point-ups. It is clear that GB

method often yields false positives, and the other three bi-level selection methods perform

much better because of their enhanced individual level selection capability.
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(b) Example 2
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(c) Example 3

Figure 5.1: Relative frequency plot of each covariate not been selected for sample size 400.
Composite group bridge: solid blue dots; adaptive group bridge: filled red square; composite
MCP: purple star; group bridge: green triangle point-up.
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(b) Example 2
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(c) Example 3

Figure 5.2: Relative frequency plot of each covariate not been selected for sample size 200.
All the legends are same as in Figure 2.
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(c) Example 3

Figure 5.3: Relative frequency plot of each covariate not been selected for sample size 100.
All the legends are same as in Figure 2.
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Appendix A

Proofs

A.1 Proof of Propostion 3.2.1

Proof. For any fixed β and θ ≥ 0,

δ̂(β,θ) ≡ arg min
δ≥0
{Sln(β,θ, δ)},

= arg min
δ≥0


J∑
j=1

θ
1−1/γ
j c

1/γ
j (

∑
k∈Aj

δ
1−1/µ
k |βk|+ ψ

∑
k∈Aj

δk)

 .

Since the problem is separable in each δk, it follows that

δ̂k = δ̂k(β,θ) = arg min
δk≥0

 ∑
j:k∈Aj

θ
1−1/γ
j c

1/γ
j (δ

1−1/µ
k |βk|+ ψδk)

 = (
1− µ
µ

)µψ−µ|βk|µ.

Because we have chosen ψ = µµ/(1−µ)(1− µ),

δ̂k = µ
µ
µ−1 |βk|µ, δ̂1−1/µk = µ|βk|µ−1.

Substituting the above expressions to Sln(β,θ, δ), we see that

Sln{β,θ, δ̂(β,θ)} = ‖y−
d∑

k=1

xkβk‖22 +
J∑
j=1

θ
1−1/γ
j c

1/γ
j (

∑
k∈Aj

|βk|µ) + τn

J∑
j=1

θj. (A.1.1)
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Therefore, to minimize Sln(β,θ, δ), it suffices to minimize Sln{β,θ, δ̂(β,θ)} with respect

to (β,θ). For any fixed β,

θ̂(β) ≡ arg min
θ≥0

[
Sln{β,θ, δ̂(β,θ)}

]
= arg min

θ≥0


J∑
j=1

θ
1−1/γ
j c

1/γ
j (

∑
k∈Aj

|βk|µ) + τn

J∑
j=1

θj

 .

The problem is separable in each θj, and it follows that

θ̂j = θ̂j(β) = arg min
θj≥0

θ1−1/γj c
1/γ
j (

∑
k∈Aj

|βk|µ) + τnθj

 = τ−γn (
1− γ
γ

)γcj(
∑
k∈Aj

|βk|µ)γ.

Substituting the above expression and τn = λ
1/(1−γ)
n γγ/(1−γ)(1− γ) to Sln{β,θ, δ̂(β,θ)}, we

see that

Sln(β, θ̂(β), δ̂(β,θ)) = ‖y−
d∑

k=1

xkβk‖22 + λn

J∑
j=1

cj(
∑
k∈Aj

|βk|µ)γ,

which is exactly the same as the composite group bridge criterion. This completes the

proof.

A.2 Proof of Theorem 4.0.1

Proof. By the definition of β̂n,

‖y−Xβ̂n‖22 − ‖y−Xβ0‖22 ≤ λn(
J∑
j=1

cj‖β0Aj
‖µγµ −

J∑
j=1

cj‖β̂nAj‖
µγ
µ ).

Using bγ − aγ ≤ 2(b− a)bγ−1 for 0 ≤ a ≤ b and the Cauchy Schwartz inequality,

‖β0Aj
‖µγµ − ‖β̂nAj‖

µγ
µ ≤ ‖β0A1

j
‖µγµ − ‖β̂nA1

j
‖µγµ

≤ 2(‖β0A1
j
‖µµ − ‖β̂nA1

j
‖µµ) · ‖β0A1

j
‖µ(γ−1)µ

= 2{
∑
k∈A1

j

(|β0k|µ − |β̂nk|µ)} · ‖β0A1
j
‖µ(γ−1)µ

≤ 2{2
∑
k∈A1

j

(|β0k − β̂nk| · |β0k|µ−1)} · ‖β0A1
j
‖µ(γ−1)µ

≤ 4‖β̂nA1
j
− β0A1

j
‖2 · ‖β0A1

j
‖µ−12µ−2 · ‖β0A1

j
‖µ(γ−1)µ .
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Then we have,

J∑
j=1

cj‖β0Aj
‖µγµ −

J∑
j=1

cj‖ β̂nAj‖
µγ
µ ≤

J1∑
j=1

cj‖β0A1
j
‖µγµ −

J1∑
j=1

cj‖ β̂nA1
j
‖µγµ

≤4

J1∑
j=1

cj‖β0A1
j
‖µ−12µ−2 · ‖β0A1

j
‖µ(γ−1)µ · ‖β̂nA1

j
− β0A1

j
‖2

≤4ηn(

J1∑
j=1

‖β̂nA1
j
− β0A1

j
‖22)1/2,

where ηn = (
∑J1

j=1 c
2
j‖β0A1

j
‖2µ−22µ−2 · ‖β0A1

j
‖2µ(γ−1)µ )1/2. Therefore,

‖y−Xβ̂n‖22 − ‖y−Xβ0‖22 ≤ 4λnηn(

J1∑
j=1

‖β̂nA1
j
− β0A1

j
‖22)1/2

≤ 4λnηn(
J∑
j=1

‖β̂nAj − β0Aj
‖22)1/2

≤ 4λnηn
√
c∗n‖β̂n − β0‖2.

4λnηn
√
c∗n‖β̂n − β0‖2 ≥ ‖y−Xβ̂n‖22 − ‖y−Xβ0‖22

= ‖X(β̂n − β0)‖22 + 2ε′X(β0 − β̂n).

The rest of the proof is very similar to Huang et al. (2009), and we shall present the details

for the sake of completeness. Let δn = ‖X(β̂n − β0)‖2 and ε∗ be the projection of ε to the

span of {X1, . . . ,Xd}. By the Cauchy Schwarz inequality,

2|ε′X(β0 − β̂n)| ≤ 2‖ε∗‖2δn ≤ 2‖ε∗‖22 + δ2n/2.

It follows that

δ2n − 4λnηn
√
c∗n‖β̂n − β0‖2 ≤ 2|ε′X(β0 − β̂n)| ≤ 2‖ε∗‖22 + δ2n/2,

and

δ2n ≤ 4‖ε∗‖2 + 8λnηn
√
c∗n‖β̂n − β0‖2.

Since ρn is the smallest eigenvalue of X′X/n, the above inequality implies,

nρn‖β̂n − β0‖22 ≤ δ2n ≤ 4‖ε∗‖22 + 8λnηn
√
c∗n‖β̂n − β0‖2.
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As ε∗ is the projection of ε to a d-dimensional space, E‖ε∗‖22 ≤ σ2d. Thus,

E(‖β̂n − β0‖22) ≤ 4σ2d/(nρn) +
1

2
{8λnηn

√
c∗n/(nρn)}2 +

1

2
E‖β̂n − β0‖22

≤ 8σ2d

nρn
+

64λ2nη
2
nc
∗
n

n2ρ2n

=
σ2d

nρn
(8 + 64c∗nMn),

where Mn = λ2nη
2
n

nρnσ2d
= O(1). This completes the proof.

A.3 Proof of Theorem 4.0.2

Proof. Using the objective function and by the Karush-Kuhn-Tucker condition, for each

β̂nk 6= 0,

2(y−Xβ̂n)′xk = λnγµ
∑
j:k∈Aj

cj‖β̂nAj‖
µ(γ−1)
µ · |β̂nk|µ−1sgn(β̂nk).

Recall that B2=∪Jj=j1+1Aj, B1=B
c
2. We define an oracle estimator,

β̃nk =

{
β̂nk k /∈ B2;
0 k ∈ B2.

Then (β̂nk − β̃nk)sgn(β̂nk) = |β̂nk|I(k ∈ B2). Note that even for j ≤ J1, β̂nAj 6= β̃nAj ,

because of overlapping of predictors. It follows that

2(y−Xβ̂n)′X(β̂n − β̃n) = λnγµ
∑
k∈B2

|β̂nk| · |β̂nk|µ−1
∑
j:k∈Aj

cj‖β̂nAj‖
µ(γ−1)
µ

= λnγµ
J∑
j=1

cj‖β̂nAj‖
µ(γ−1)
µ (‖β̂nAj‖

µ
µ − ‖β̃nAj‖

µ
µ).

Since γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, for j ≤ J1, we have

γ‖β̂nAj‖
µ(γ−1)
µ (‖β̂nAj‖

µ
µ − ‖β̃nAj‖

µ
µ) ≤ ‖β̂nAj‖

µγ
µ − ‖β̃nAj‖

µγ
µ .

It follows that,

|2(y−Xβ̂n)′X(β̂n − β̃n)| ≤ λnµ

J1∑
j=1

cj(‖β̂nAj‖
µγ
µ − ‖β̃nAj‖

µγ
µ ) + λnγµ

J∑
j=J1+1

cj‖β̂nAj‖
µγ
µ .
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Therefore,

|(y−Xβ̂n)′X(β̂n − β̃n)|+ (1− γ)λnµ
J∑

j=J1+1

cj‖β̂nAj‖
µγ
µ

≤λnµ
J∑
j=1

cj(‖β̂nAj‖
µγ
µ − ‖β̃nAj‖

µγ
µ )

≤µ‖y−Xβ̃n‖22 − µ‖y−Xβ̂n‖22

=µ‖X(β̂n − β̃n)‖22 + 2µ(y−Xβ̂n)′X(β̂n − β̃n)

Since nρ∗n is the largest eigenvalue of X′X, it follows that

(1− γ)λn

J∑
j=J1+1

cj‖β̂nAj‖
µγ
µ ≤ ‖X(β̂n − β̃n)‖22 ≤ nρ∗n‖β̂nB2

‖22 ≤ nρ∗n‖β̂n − β0‖22.

We also have
J∑

j=J1+1

cj‖β̂nAj‖
µγ
µ ≥

J∑
j=J1+1

‖β̂nAj‖
µγ
µ

≥ (
J∑

j=J1+1

∑
k∈Aj

|β̂nk|µ)γ

≥ {(
∑
k∈B2

|β̂nk|µ)1/µ}µγ

≥ ‖β̂nB2
‖µγ2 .

Altogether, we have

(1− γ)λn‖β̂nB2
‖µγ2 ≤ nρ∗n‖β̂nB2

‖22 ≤ nρ∗n‖β̂n − β0‖22 ≤ Op(σ
2dρ∗n/ρn).

This implies that when ‖β̂nB2
‖2 > 0,

(1− γ)λn ≤ nρ∗n(
σ2d

nρn
)1−µγ/2.

Therefore,

P (‖β̂nB2
‖2 > 0) ≤ P

{
(1− γ)λn ≤ nρ∗n(

σ2d

nρn
)1−µγ/2Op(1)

}
= P

{
λnρ

1−µγ/2
n

d1−µγ/2ρ∗nn
µγ/2
≤ Op(1)

}
→ 0,

as n→∞, based on assumption A3. This completes the proof.
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A.4 Proof of Theorem 4.0.3

Proof. Based on the estimation error bound, we know that for sufficiently large C, β̂n lies

in the ball {‖β̂n − β0‖2 ≤ hnC} with probability 1, where hn = {d/(nρn)}1/2. Define

β1n = β0B1
1

+ hnu1 and β2n = β0B2
1

+ hnu2 with ‖u1‖22 + u2‖22 = ‖u‖22 ≤ C2. Define

Vn(u1,u2) = Ln{(β′1n,β′2n,0)′} − Ln{(β′0B1
1
,0′,0′)′}

= Ln{(β′0B1
1

+ hnu
′
1, hnu

′
2,0
′)′} − Ln{(β′0B1

1
,0′,0′)′}.

By the group selection consistency results established in Theorem 2, it holds with probability

tending to 1 that

arg min
u:‖u‖2≤C

Vn(u1,u2) = {h−1n (β̂nB1
1
− β0B1

1
), h−1n (β̂nB2

1
− β0B2

1
)}.

That is, we only have to consider the predictors in B1. Now to establish the desired result,

it suffices to show that if ‖u2‖2 > 0 for any ‖u‖2 ≤ C, Vn(u1,u2) − Vn(u1,0) > 0 with

probability tending to 1.

Recall that X11 = (xk, k ∈ B1
1) and X12 = (xk, k ∈ B2

1). It can be shown that

Vn(u1,u2)− Vn(u1,0)

=h2nu
′
2X
′
12X12u2 − 2h2nu

′
2X
′
12X11u1 + 2hnu

′
2X
′
12ε

+ λn

J1∑
j=1

cj

(
∑
k∈A1

j

|β0k + hnu1k|µ +
∑

k∈A2
j∩B1

|hnu2k|µ)γ − (
∑
k∈A1

j

|β0k + hnu1k|µ)γ


=T1n + T2n + T3n + T4n.

For the first two terms, we have

T1n + T2n ≥ h2nu
′
2X
′
12X12u2 − h2n(u′2X

′
12X12u2 + u′1X

′
11X11u1)

= −h2nu′1X′11X11u1

≥ −nh2nτ ∗1n‖u1‖22

≥ −τ ∗1 (d/ρn)C2
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For the third term, because

E(u′2X
′
12ε) ≤ {E(u′2X

′
12ε)

2}1/2

= {σ2tr(X12u2u
′
2X
′
12)}1/2

= σ(u′2X
′
12X12u2)

1/2

≤ σn1/2ρ∗1/2n ‖u2‖2,

then we have

T3n = hnn
1/2ρ∗1/2n ‖u2‖Op(1) = d1/2(ρ∗n/ρn)1/2Op(1).

Now consider the forth term. Because bγ − aγ ≥ γbγ−1(b− a) for 0 ≤ a ≤ b, we have

λn

J1∑
j=1

cj

(
∑
k∈A1

j

|β0k + hnu1k|µ +
∑

k∈A2
j∩B1

|hnu2k|µ)γ − (
∑
k∈A1

j

|β0k + hnu1k|µ)γ


≥λnγ

J1∑
j=1

cj

 ∑
k∈A2

j∩B1

|hnu2k|µ
∑

k∈A1
j

|β0k + hnu1k|µ +
∑

k∈A2
j∩B1

|hnu2k|µ
γ−1

=λnγh
µ
nO(‖u2‖µµ) ·O(1)

≥λnhµnO(‖u2‖µ2)

=
λnρ

1−µ/2
n

d1−µ/2ρ∗nn
µ/2
· dρ

∗
n

ρn
·O(‖u2‖µ2).

By A3*, if ‖u2‖2 6= 0, the fourth term T4n dominates the first three terms and T4n →∞

as n → ∞; consequently, Vn(u1,u2) − Vn(u1,0) > 0 with probability tending to 1. This

completes the proof.

A.5 Proof of Theorem 4.0.4

Proof. Since [B1
1 ,β0B1

1
, J1] are fixed, (4.0.2) implies that assumptions A2 and A3 hold. Recall

that β0 = (β′0B1
1
,β′0B2

1
,β′0B2

)′ and β̂n = (β̂
′
nB1

1
, β̂
′
nB2

1
, β̂
′
nB2

)′. Since all the assumptions of

Theorems 4.0.1 and 4.0.2 are met, we have ‖β̂n − β0‖22 = Op(1/n) and ‖β̂nB1
− β0B1

‖22 =
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Op(1/n). Let hn=n−1/2. For u1 ∈ R|B1
1 |, u2 ∈ R|B2

1 | and u = (u′1,u
′
2)
′, define

V1n(u) = Ln(β0 + hn(u′1,u
′
2,0
′
B2

)′)− Ln(β0)

=
{
−2hnu

′X′1ε+ h2nu
′X′1X1u

}
+ λn

J1∑
j=1

cj

(
∑

k∈Aj∩B1

|β0k + hnuk|µ)γ − ‖β0Aj
‖µγµ


= T1n(u) + T2n(u).

Let ûn = arg min{V1n(u),u ∈ R|B1|}. By the group selection consistency results es-

tablished in Theorem 4.0.2, we have
√
nβ̂nB2

→d 0 and β̂n − β0 = hn(û′n1, û
′
n2,0

′
B2

)′ with

probability tending to 1.

Consider the first term T1n(u),

T1n(u)→d −2u′W1 + u′Σ1u.

Now consider the second term T2n(u). For each j = 1, ..., J1,

lim
hn→0

{
λnhn

(
∑

k∈Aj∩B1
|β0k + hnuk|µ)γ − ‖β0Aj

‖µγµ
hn

}

=λ0γ‖β0Aj
‖µ(γ−1)µ

∑
k∈Aj∩B1

lim
hn→0

{
|β0k + hnuk|µ − |β0k|µ

hn

}

=

{
λ0γ‖β0Aj

‖µ(γ−1)µ

∑
k∈A1

j
ukµ|β0k|µ−1sgn(β0k) uk = 0 for any k ∈ A2

j ∩B1;

∞ otherwise.

It follows that

T2n(u)→

{
λ0γµ

∑J1
j=1 cj‖β0Aj

‖µ(γ−1)µ

∑
k∈A1

j
uk|β0k|µ−1sgn(β0k) uk = 0 for any k ∈ B2

1 ;

∞ otherwise.

Therefore, we must have
√
nβ̂nB2

1
→d 0; we note that a strong condition in A3* is not

needed to establish this result. The rest of the results in Theorem 4.0.3 follows from the

limiting objective function and by invoking the argmax theorem in, e.g., van der Vaart

(2000). This completes the proof.
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Appendix B

R code

B.1 R code for Composite group bridge estimation

library(MASS) ## Load library MASS

library(lars) ## Load library LARS

################################################################

Creating a Function named BridgeBridge with Y:response

vector,X:Design matrix,G:Group matrix lambda value,gamma

value,mu value and initial value of beta as input parameters

################################################################

BridgeBridge <- function(Y,X,G,lambda,ini=NULL,gamma=0.5,mu=0.5)

{

n <- nrow(X) ## Assign n as the number of observations

p <- ncol(X) ## Assign p as the number of predictor variables
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J <- ncol(G) ## J :No of groups

# Least square estimate as the initial estimate

beta_ls <- ginv(t(X)%*%X)%*%t(X)%*%Y

# Calculate group level weights Step 1

theta1=(lambda*gamma)^(gamma/(gamma-1))

# Calculate tau

tau <- lambda^{1/(1-gamma)}*gamma^{gamma/(1-gamma)}*(1-gamma)

h <- apply(G,1,sum)

# if the initial value is null or the estimated beta has all zeros

# then assign beta_p as Least square estimate else assign the

# beta_p as the initial value

if(is.null(ini) | sum(ini)==0)

{

beta_p <- beta_ls

}

else

{

beta_p <- ini

}

beta_p <- as.matrix(beta_p,nrow=p)

diff <- 1

j <- 1

zero <- FALSE
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while(diff > 1e-6)

{

## Calculate group level weights(unpowered) Step 2:betaJ

betaJ <- apply(G*as.vector(abs(beta_p)^mu),2,sum)

c <- apply(G,2,sum)^(1-gamma)

## Calculating group level weights(un powered)

## Step 3 :theta1*c*betaJ^gamma

theta <- theta1*c*betaJ^gamma

## Calculating individual level weights(unpowered)

delta=mu^(mu/(mu-1))*abs(beta_p)^mu/h

## if theta=0, then the corresponding predictors shall be removed.

## gid :ids of zero groups

gid <- which(theta==0)

if(length(gid)==0)

{

gid <- J+1

}

## pid:ids of zero predictors

pid <- which(delta==0)

if(length(pid)==0)

{

pid <- p+1
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}

## Group level weights calculation (significant groups)

wJ <- theta[-gid]^(1-1/gamma)*c[-gid]^(1/gamma)

## Individual level weights calculation( significant predictors )

wI=delta[-pid]^(1-(1/mu))

## Calculating wlasso weights

wlasso

<- apply(G[-pid,-gid]%*%diag(wJ,nrow=length(wJ))*as.vector(wI),1,sum)

## fitting the model using lars package

## with Intercept option:False,normalize:False

## transforming the wlasso by inverting the weights

fit

<- lars(X[,-pid]%*%diag(wlasso^(-1),nrow=length(wlasso)),

Y,intercept=FALSE,normalize=FALSE)

beta_c

<- as.matrix(predict.lars(fit,s=lambda/(2/n),

type="coe",mode="lambda")$coe)

## transforming back beta_c : dividing by wlasso

beta_c <- beta_c/wlasso

## Calculating the difference between current beta
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## and the beta calculated in the previous iteration

diff <- sum((beta_p[-pid]-beta_c)^2)/sum(beta_p[-pid]^2)

beta_p <- rep(0,p)

beta_p[-pid] <- beta_c

j <- j+1

## if all the predictors are zero come out of the while loop

if(sum(beta_p==0)==p)

{

diff <- 1e-6

zero <- TRUE

}

} ## close while loop

## If all the predictors are zero

if(zero==TRUE)

{

## Show that degrees of freedom are =0

df1 <- 0

df2 <- 0

gcount <- 0 ## Number of significant groups=0

groupids <- NA ## No significant group ids

sigvarid <- NA ## No significant variable ids

sigvaridcount <- 0 ## Number of significant variables =0

}

else

{
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##calculating the degrees of freedom

betaJ <- apply(G*as.vector(abs(beta_p))^mu,2,sum)

c <- apply(G,2,sum)^(1-gamma)

theta <- theta1*c*betaJ^gamma

wJ <- theta^(1-1/gamma)*c^{1/gamma}

gid <- which(theta==0)

gcount<-length(which(theta!=0))

groupids<-which(theta!=0)

if(length(gid)==0) gid <- J+1

pid <- which(beta_p==0)

sigvaridcount<-length(which(beta_p!=0)) ## count of significant predictors

sigvarid<-which(beta_p!=0) ## ids of significant predictors

if(length(pid)==0) pid <- p+1

Wlam <- apply(as.matrix(G[-pid,-gid]*as.vector(abs(beta_p[-pid]))),1,sum)

Xlam <- X[,-pid]

## calculating degrees of freedom1

df1 <- sum(diag(Xlam%*%ginv(t(Xlam)%*%Xlam

+0.5*diag(Wlam,nrow=length(Wlam)))%*%t(Xlam)))

## degrees of freedom 2 is the number of active non zero variables

df2 <- sum(beta_p!=0)

}

logsse <- log(sum((Y-X%*%beta_p)^2)/n)

## calculating BIC penalty 1 using degrees of freedom1
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bic1 <- logsse + log(n)/n*df1

## calculating BIC2 using degrees of freedom 2

bic2 <- logsse + log(n)/n*df2

## calculating AIC penalty 1 using degrees of freedom1

aic1 <- logsse + 2/n*df1

## calculating AIC2 using degrees of freedom 2

aic2 <- logsse + 2/n*df2

list(bic=bic1,aic=aic1,bic2=bic2,aic2=aic2,df=c(df1,df2),

beta=beta_p,noofgroups=gcount,siggroups=groupids,

sigvar=sigvarid,sigvarcount=sigvaridcount)

}

B.2 R code for Adaptive Group Bridge estimation

library(MASS)

AdaGB <- function(Y,X,G,lambda,ini=NULL,gamma=0.5,mu=2,ada=TRUE)

{

n <- nrow(X)

p <- ncol(X)

J <- ncol(G)

beta_ls <- ginv(t(X)%*%X)%*%t(X)%*%Y

if(ada==TRUE)
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{

##predictor occurences

h <- apply(G,1,sum)

##weights

w <- abs(beta_ls)^{-mu}/h

##c_j

c <- apply(G*as.vector(abs(beta_ls*w)),2,sum)^(1-gamma) ###c_1

##c <- apply(G,2,sum)^(1-gamma) ###c_2

}

else

{

w <- rep(1,p)

c <- apply(G,2,sum)^(1-gamma)

}

##tau

tau <- lambda^{1/(1-gamma)}*gamma^{gamma/(1-gamma)}*(1-gamma)

theta_1 <- ifelse(gamma==1,1,((1-gamma)/gamma/tau)^gamma*c)

if(is.null(ini))

{

beta_p <- beta_ls

}

else

{

beta_p <- ini
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}

beta_p <- as.matrix(beta_p,nrow=p)

diff <- 1

j <- 1

zero <- FALSE

while(diff > 1e-6)

{

betaJ <- apply(G*as.vector(abs(beta_p*w)),2,sum)

theta <- theta_1*betaJ^gamma

##if theta=0, then the corresponding predictors shall be removed.

gid <- which(theta==0)

if(length(gid)==0)

{

gid <- J+1

pid <- p+1

}

else

{

pid <- which(apply(as.matrix(G[,gid]),1,sum)!=0)

}

##calculate weights for adLasso

if(gamma==1)

{

wJ <- lambda*c[-gid]^(1/gamma)

}
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else

{

wJ <- theta[-gid]^(1-1/gamma)*c[-gid]^(1/gamma)

}

##if gamma=1, the same as w.

wlasso <- apply(G[-pid,-gid]%*%

diag(wJ,nrow=length(wJ))*as.vector(w[-pid]),1,sum)

fit <- lars(X[,-pid]%*%diag(wlasso^(-1),

nrow=length(wlasso)),Y,intercept=FALSE,normalize=FALSE)

beta_c <- as.matrix(predict.lars

(fit,s=lambda/2/n,type="coe",mode="lambda")$coe)

beta_c <- beta_c/wlasso

diff <- sum((beta_p[-pid]-beta_c)^2)/sum(beta_p[-pid]^2)

beta_p <- rep(0,p)

beta_p[-pid] <- beta_c

j <- j+1

if(sum(beta_p==0)==p)

{

diff <- 1e-6

zero <- TRUE

}

}

if(zero==TRUE)

{

df1 <- 0
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df2 <- 0

}

else

{

##calculate df

betaJ <- apply(G*as.vector(abs(beta_p*w)),2,sum)

theta <- theta_1*betaJ^gamma

if(gamma==1)

{

wJ <- lambda*c^(1/gamma)

}

else

{

wJ <- theta^(1-1/gamma)*c^(1/gamma)

}

gid <- which(theta==0)

gcount<-length(which(theta!=0))

groupids<-which(theta!=0)

if(length(gid)==0) gid <- J+1

pid <- which(beta_p==0)

sigvaridcount<-length(which(beta_p!=0))

sigvarid<-which(beta_p!=0)

if(length(pid)==0) pid <- p+1

Wlam

<- apply(as.matrix(G[-pid,-gid]*as.vector(abs(beta_p[-pid]))),1,sum)
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Xlam <- X[,-pid]

df1 <- sum(diag(Xlam%*%ginv(t(Xlam)%*%Xlam

+0.5*diag(Wlam,nrow=length(Wlam)))%*%t(Xlam)))

df2 <- sum(beta_p!=0)

}

logsse <- log(sum((Y-X%*%beta_p)^2)/n)

bic1 <- logsse + log(n)/n*df1

bic2 <- logsse + log(n)/n*df2

aic1 <- logsse + 2/n*df1

aic2 <- logsse + 2/n*df2

list(bic=bic1,aic=aic1,bic2=bic2,aic2=aic2,df=c(df1,df2),beta=beta_p,

noofgroups=gcount,siggroups=groupids,sigvar=sigvarid,

sigvarcount=sigvaridcount)

}
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