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Chapter 1

INTRODUCTION

The purpose of one form of the capital budgeting problem is to [ind
a subset of a given set of indivisible projects that will maximize some
function of net present value while satisfying a set of budget and
technical constraints. This is a special case of the knapsack problem.

In the knapsack problem, integral multiples of unit amounts of each
variable must be chosen in such a manner as to optimize some objective
function of the variables, such as value, while being constrained to hold
some other function or functions of the variables, such as weight or
volume, within a fixed set of limits.

Weingartner (19) showed that the capital budgeting problem in the
deterministic form can be formulated as a zero-one integer programming
problem.

Many methods are known for the solution of knapsack type problems
but there is a specific need for an efficient method to solve large
capital budgeting problems after they have been formulated in the form
of the Weingartner model. An algorithm developed by Lawler and Bell (10)
shows promise and this paper describes an investigation of its compu-
tational efficiency and size of problem it can handle. The use of the
algorithm for sensitivity testing in the Weingartner model is also

described.

Weingartner Model for the Capital Budgeting Problem.

Weingartner (19) showed that the capital budgeting problem can be



formulated as a zero-one integer programming problem of the following

form.

n
Maximize Z bjxj

J=1
Subject to
)
(1) €. .. %, 58 (t=1,2, ..., my j=
j=1 tj j t
(2) xj =0,1 for all j (j = 1,2, ..

where bj is the present value for project j (j = 1,2, ...,

and

Ctj is a constant coefficient for project j in year t

(1) 1is a set of constraints of the following types:

Budget constraints: ; ctj lei Bt’ (Bt > 0);

I~

3

Mutual exclusivity: =x; + %, + X3+ +++ +x <1 (k

Contingency between projects a and b: - X + Xy <0

& (1]

1,2, cwmyh)
., M)
P
n) ;
(t = 1,2, ...,m);
= 2,3, ...,n);

(a, b=1,2, ...,n; a # b);

Kj is the decision variable;

(2) is the indivisibility constraint.

Constraints other than budget and indivisibility constraints are

collectively called "technical constraints' in this report.

The capital budgeting problem as formulated in Equations [1]

is in

zero-one integer form. That is, if project j (j = 1,2, ..., n) is se-

lected for execution, the decision variable, xj, takes the value 1;

otherwise it takes the value 0.



To use this deterministic model requires at least two assumptions:

(1) There is perfect knowledge of all parameters of the problem
being investigated.

(2) All alternatives are known.

Weingartner showed that the model can include more than one budget
constraint and more than one of each of the technical constraints. He
also showed that budget constraints need not be in terms of money; e.g.
other scarce resources such as manpower or fuel can be budgeted.

The model can be enlarged slightly by adding another type of

technical constraint:

X, b X, txa by 21 (2]

L

This is a constraint that models the requirement that at least one of the
constrained projects be accepted. It occurs, for example, in "make-or-buy"
problems. The numerical examples in Chapter 2 taken from Mao (13,14) in-
clude this type of constraint.

It should be noted also that a constraint can be of the form of a

budget constraint but with the inequality reversed, as follows:

Y ¢ x; 2B, £=1,2, ..., n. [3]

Such a constraint models the requirement that a minimum amount of some
resource, Bt’ be used. This type of constraint is no different mathe-
matically from the one with the opposite inequality and can be handled
in the same manner as the other constraints in the formulation of the

problem.



Methods of Solving the Problem.

After the problem has been formulated in the Weingartner model it
must be solved.

The problem is essentially a combinatorial problem. Theoretically
at least, it can be solved by enumerating all possible combinations of
the projects and eliminating all combinations that violate any constraint.
The objective function is evaluated for each of the remaining combinations
and those which maximize the objective are the solutions to the problem.
Since there is a finite number of projects, there is a finite number of
combinations, however, the number of combinations increases in powers
of two as the number of projects increases. Thus for n projects, there
are 7 combinations possible. This number is used as the number of enu-
merations possible in evaluating the computational efficiency of an
algorithm in Chapter 2.

Numerous methods of solution based on a partial enumeration of all
possible combinations of the decision variables have been tried.
Weingartner (20) presents a survey of attempts to solve the problem in
the specific form of equations [1]. Integer methods based on the "cutting
plane'" approach are rejected as too inefficient and too unpredictable.

For example, Weingartner cites a problem with ten projects and three
constraints, for which an integer code failed to converge in 5000 iter-
ations.

Linear programming was tried in which the decision variables are
permitted to be continuous but again Weingartner rejects this approach

as not being a solution to an integer problem.



Dynamic programming has been tried by Bellman (5) and is described
by Weingartner. So far, according to Weingartner, the dynamic programming
method has not been very efficient with very many projects or very many
constraints.

Surveys not specifically in the capital budgeting context are given
by Beale (4), Balinski (2,3) and Ashour and Char (1).

Beale (4) describes a number of integer programming methods and
says that they are unpredictable in computing time and number of iter-
ations. Beale also suggests that there is no single approach suitable
for all programming problems in which the decision variables are required
to be integer valued.

Balinski (2,3) gives a long survey of methods of solution with many
examples and a long bibliography. No general conclusions were drawn
from this work that are directly applicable to the capital budgeting
problem.

Ashour and Char (1) present an outline of the different approaches
for solving zero-one problems, with the capital budgeting problem
exemplifying one of the areas of use. They divide the different al-
gorithms into four classes, (1) algebraic, based on cutting plane
methods, (2) combinatorial, (3) enumerative, and (4) heuristic. They
then present an investigation of a pseudo-boclean algorithm from Hammer
and Rudeanu (7) and an adaptive binary algorithmrfrom Salkin and
Spielberg (15). They apply the pseudo-boolean and adaptive binary
algorithms to capital budgeting problems having ten projects and one

constraint and found that the pseudo-boolean algorithm was more efficient



in economizing computing time than the adaptive binary algorithm.

Lawler and Wood (11) present an extensive survey of branch-and-bound
algorithms. In a branch-and-bound algorithm, the total set of possible
combinations is partitioned into subsets or branches by a logical
branching procedure for the selection of branches. A bounding procedure
is used to determine if a selected branch is currently optimal and
feasible.

Lawler and Bell (10) develop a branch-and-bound algorithm for min-
imization of zero-ome problems. The branches are based on a vector
partial ordering, and branch selection and bounding are accomplished by
three rules for skipping based on the partial ordering. This algorithm
together with the description of the partial ordering is described in
detail in Chapter 2.

Lawler and Bell do not consider the capital budgeting problem
specifically but do apply the algorithm to a variety of problems. They
report that it appears more efficient than the other methods they studied.
The largest problem they studied had 21 variables. Lawler and Bell also
reported that the order in which the projects are taken in a problem
affects the computation time but they give no conclusion regarding an
optimal order.

Mao (13) and Mao and Wallingford (14) use the Lawler-Bell algorithm
specifically for the capital budgeting problem. They give a linear
transformation, described in Chapter 2 of this paper, which transforms
the maximization problem of capital budgeting into the minimization form
needed by the Lawler-Bell algorithm. Mao reports that the algorithm is

efficient for problems with as many as 15 projects and 15 constraints.



Weingartner (20) reports on the extension of the original model
to a quadratic form which can be used with the probabilistic form of the
capital budgeting problem but does not give a method of solution.

Mao and Wallingford (l4) give an extension of the Lawler—-Bell al-
gorithm to the probabilistic case by modifying the rules for skipping
and adding another. They reported that the extension has been used with
problems as large as 15 projects and 15 constraints. The extension is

described in more fully in Chapter 2 of this report.



Chapter 2

RESEARCH

Research Objective

The objective of this research was to investigate the computational
efficiency of the Lawler-Bell algorithm for the Weingartner model of the
capital budgeting problem. Both the deterministic case and the extension
to the probabilistic case were considered. The effect of problem size
(number of projects and constraints) on computing time was investigated
and a method of sensitivity testing was developed. A second objective
was to make the algorithm available for academic courses in capital

budgeting or related areas.

Lawler-Bell Algorithm.

The linear transformation used by Mao and Wallingford (14) and
mentioned in Chapter 1 follows:

Substitute xj =1~ xi into the objective function, which then becomes

n
Minimize z b, x& -
j=l A i

L by [4]

He~9

This function is monotonically nondecreasing.
The same substitution must be applied to the constraints which take

the following general form.

(¢ = 1,2, ..., m) [5]

e~
¢
™
1
e~
+
{27
| A
w
t

3

Since some values of c_. may be negative, the transformed constraints

tj



may not be monotonic. However, the constraints are linear and any
linear function can be written as the difference between two monotonically
nondecreasing functions.
The transformed indivisibility constraint is merely the complement
of o since x3 is clearly zero when xj is one and one when oy is zero.
The algorithm due to Lawler and Bell and mentioned in Chapter 1
can now be presented. After using the linear transformation above and
making some changes in notation to simplify writing, the minimization
form of Equations [1] can be written as follows.

Minimize go(x) -
Subject to gll(f) - glz(f)-i 0

8)1(¥) = gy (x) 20 > [6]

By1 (¥) = 8 (x) 20

/

where X = (xl, Xgs Xgs seey xn), a vector of project "complements"

"
I

1,0 (G =1,2,3, «ev, 0)

8g is a vector of coefficients of the objective function,
is a vector of positive coefficients and constants for
constraint j,

is a vector of negative coefficients and constants for
constraint j.

Each constraint is now the difference of two monotonic nondecreasing

functions.
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Equations [6] have a special mathematical structure which is
exploited by the Lawler-Bell algorithm. Each set of projects can now
be expressed as a vector. (Note that because of the transformation
to the minimization space, we are now talking about the "complements"
of the original projects.) An isomorphism exists between the transformed
vectors of projects and the binary number system. For example, a vector
representing non-selection of projects 2 and 3 may be written x = (0,1,1,0,0)

with project number indexing commencing from the left. This vector is

isomorphic to the binary number 1100, whichhas a comparable base ten value
of 12. Let n(x) = 12 denote the numerical value in base 10.
Let the symbol <%, called "under", be defined as follows:

x=y if and only if Xj <y, for all j, where < means

J

"less than or equal' and Xys Y refer to the jth components of

X and vy.
It is well known that the relationship developed by x =< y results in a
partial ordering. That is, this relation is reflexive, antisymmetric and
transitive.

If f:f y, then n(x) < n(y), but the converse is not necessarily true.
For example, let x = (0,0,0,1), v = (0,1,1,1) and z = (0,1,1,0). Then
each component xj of f is less than or equal to its corresponding com-

ponent of y, the relation x Xy is satisfied and [n(x) = 1] < [n (y) = 7].

However, the rightmost component of x is greater than the rightmost com-

ponent of z so x ¥ z even though [n(x)

1] < [n(z) = 6].

Two vectors related by'_(, such as x and y above, are said to be

comparable. Two vectors not related byfjg such as x and z above, are said

to be noncomparable.
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In this paper, the importance of the partial ordering lies in the
fact that if g is a monotonic nondecreasing function and x =< y, then
g(x) < g(y). This is well known and is shown in Johnson (9).

Now for any vector, x, any other wvector with a greater numerical
value must either be above x in the partial ordering or noncomparable
in the partial ordering. Denote by x* the first noncomparable vector
with a higher numerical value than x has, and let x* - 1 be the vector

just below x* in numerical value. Then, x and x* - 1, ags well as all

vectors between them, are comparable.

Some additional notation is now needed. 8g> with a single sub-
script, refers to the objective function; gjl’ with a double subscript,
refers to a constraint j (j = 1,2, ..., m) and subscript 1 refers to
the vector of terms in constraint j with positive coefficients and
subscript 2 refers to the vector of the terms in the constraint j with

negative coefficients. (Here, j now refers to the number of the sub-

script and not to the project number.) The vector x is the one currently

A

being considered by the algorithm and x is the current optimal vector,
i.e., the best feasible vector already found. The subscript i on x
refers to the "non-project" number (the component in vector notation).
Note that since the transformation was made to the minimization space,
these are "complements" of the original projects and the fimal solution
must be inversely transformed to the original maximization space.

Lawler and Bell (10) give the following procedure for calculating
f* for a given x. The vectors must be treated as binary numbers.

1) Calculate (x - 1) by subtracting 1 from x.
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2) Determine (x* — 1) by letting each element (x* - l)j equal zero if

both elements xj and (x - 1), are equal to zero. Otherwise, let

J
(x* - l)j be equal to 1.

3) TFind x* by adding 1 to (x* - 1).

Since x* is the first noncomparable vector following x, all vectors

-~

between must be comparable and x =x + 1= x* - 1. If g is a monotonic
nondecreasing function, then in this interval its smallest value is g(x)
and its largest is g(x* - 1).
Lawler and Bell now give three rules for skipping through branches
of vectors where each set of comparable vectors determines a branch.
Rule 1: 1If go(%)~i go(f),skip to f*'

Explanation: Since x minimizes the value of the objective function,

-

By» in the range between x and x*, it is clear that

no vector following x but preceeding x* in the

~

numerical order will be less costly than x.

Rule 2: If go(%).z go(f) and x is feasible, set % equal f’ and
skip to x*.
Explanation: 1If f reduces the value of 8g» and moreover, is
feasible, we know it is a possible solution. In
fact, since x minimizes Bo in the range between

X and x*, it is the best solution that can be found
in this range.
. * - -
Rule 3: If go(f) z_go(f) and gjl(f 1) gj2(§) < 0 for any
jlj = 1,2, ..., m), skip to x*.

Explanation: If x reduces the value of 8g> but is infeasible, then

there are two possibilities. First, it is possible
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that all vectors between = and }* are infeasible.
This would be the case if gjl(f* - 1) - gj2(§) ¥ 0
for any j, since x* - 1 maximizes the value of a
monotonically nondecreasing function in this range,
and since x minimizes the value of such a function
(and therefore minimizes its negation). The use

of both x* - 1 and x gives the largest possible
value for the preceeding expression in the relevant
range. If even this maximum value is not enough to
satisfy the nonnegativity constraint, then no single
vector between x and x* will be feasible. Second,
it is possible that some vectors between x and x*
are feasible. 1In that case, no skipping is permitted.

If none of the rules apply, no skipping is permitted. Flow charts of

the logic and computations are given in Figures 1 and 2.

Extension of the Lawler-Bell Algorithm to the Probabilistic Case.

Mao and Wallingford (14) give an extension of the Lawler-Bell
algorithm to a probabilistic case. This case requires that the expected
value of the project present value, E(b)j, be used in the selection in

lieu of the present value, b in the deterministic algorithm. Next,

3’
suppose that the variances and covariances of the individual project
present values, with each other pairwise, are known and that the con-
straints are still independent of one another.

Let A denote the risk aversion coefficient, which may be taken to

be a value obtained from the decision-maker's strictly concave utility
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function that expresses numerically his disinclination to assume risk,
where risk is measured by project present value variance, C(b)j.
Mao and Wallingford (14) write the objective function for the

probabilistic case as

m m 2 m m
Maximize ) xEM), -A ) [xE®.1°-A[] 7T x;x.C(b), .1 [7]
where E(b)j is the expected value of present value for project

j, (3 =1, 2, «v., m).
C(b)ij is the variance of the present value of project j,
if 1 = j; and the covariance between present values
of projects i and j (i,j =1, 2, ..., m) if i # j
for all pairs i and j.
It appears that Mao and Wallingford assumed that the decision-maker's
utility function is quadratic and thus the form of the second term in
Equatiaon [7].

In a later reference, Maoc (13) apparently assumed that the decision-
maker's utility function is of exponential form and the second term in
Equation [7] disappears. The later form of the objective function is
used here and is taken to be

Maximize

m
21 xE(®); - A [igl jzl x%,6(b) 1 [8]

J

This objective function is no longer monotonic, since covariances

may be negative, but since the cross product term xixj is 1 when X, and
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x, are both 1 and O otherwise, it is still linear and thus can be written
as the difference between two monotonic nondecreasing functions. After
applying the linear transformation described in the description of the
deterministic algorithm (which must now be applied to the variance/
covariance matrix as well as to the objective function and constraints)
to transform the probabilistic problem to the minimization space, and
after separating positive and negative terms, Equation [8] becomes
Minimize gé(f} - ga(f) [9]
where g' is a vector of positive coefficients and cénstants of the
transformed Equation [8]
and g" is a vector of negative coefficients and constants of the
transformed Equation [8].

Now in the range between x and x* in the partial ordering given

above, gé is minimized at x and ga is maximized at x* - 1. Therefore

gé(x} - ga (f* - 1) takes on its smallest possible value in the range

between x and x*. If this is still greater than g6 (x) - g"(Q), then

no new minimum will be found in this range, and we can skip to x*.
Therefore Mao modifies Rule 1 to read

Rule 1': 1If ga(%) - gg(%) f-g'(f) - g"(f* - 1) skip to f*'

If Rule 1' does not apply, then some vector in the interval between
x and f* - 1 may reduce the value of the objective function. In this
case, use Rule 3 from the deterministic case, which Mao now calls the
second rule for the probabilistic case:

Rule 2': Same as Rule 3 in the deterministic algorithm.

1f Rule 2' does not apply, some vectors in the range between x
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and x* may be feasible. Test this with:

Rule 3': 1If g,

Jl(x) - gjz(x)‘i 0 for any j (j = 1,2, ..., m) con-

tinue the enumeration with x + 1.
If a feasible vector x is found, then Rule 4, which is an extension
of Rule 2 in the deterministic algorithm must be used:
Rule 4: If gy(x) - gy(x) < gé(gc) = g"(fc), let >f equal x and
continue with x + 1.
Flow charts for the logic and computations of the probabilistic
algorithm are given in Figures 3 and 4. The flow chart as shown in
references (13,14) has a misprint in the block representing M <« g'(x)-g"(x)

which has been corrected in this paper in Figure 4., This follows frcm a

literal reading of Rule 4, above.

Procedure.

Three computer programs were written in FORTRAN IV. The first,
called the Strong Deterministic form in this report, was written to use
the original Lawler-Bell algorithm. This algorithm finds only one optimal
feasible vector of projects. A second program, called the Weak Deter-
ministic form in this paper, was written with the rules of the algorithm
weakened to find multiple optimal solutions if they exist. The third
program, called the Probabilistic form in this report, was written to use
the extension to the probabilistic case. The descriptions of the programs
are given in the next section and the programs themselves are given in
Appendix A.

After the programs were written and debugged, machine object decks

were made to reduce compiling time. The object decks were used for the



19

*98B) 2TISTTIqEqold 103 3irY) MOTd °T1807

¢ 2an81g

T + X 03 pa9doag
9TqrseajuT ST X

1 + X 03 pasdsoxd
uotjouny aArldafqo syl
donpsx 10u saop ¥

dTqIsEa] 2q Aru
TeAID2]UT 2yl utl
SI0329A BWO

Vmwlﬁxumm Jo antea
2yj IINpax Lem

JdeoTTdde ¢ aTnyg [T-#X ‘X]

9TqTISesF ST X TeAI23UT BY3

uT J1032°9A 3alulog
‘arqeatrdde ¢y arny
uotriounj
9ATI09[q0 aya

saonpax *aT7qeoT1dde X
pat X TqeotTdde ,7 oTny s

9TqISEaj ST TeAI=juf
Yl UT I03V3A QN

0 *afqeay1dde |1 aTny
(x);3 - Axvmm JOo ®NTEA @Yl S30npal
[T - X °X] TBAIS3UT @Yz uf I0303A O)



Fraustarm {rom
ariginal space to
mininization
space
\.i <0
X. =0
i
for all i
M- o=
R |
[ 4
Calculate
Xt -1, x*

- gplxT y
? Ruje 1
ule 27 *
A
Rule 3' d
1
£,(%)
™ Bgth) i M M- 200
? . o
- BplX}
X+ X

No §

X+X+1

x-x

*»

Inverse trans-
form to original
space

Tlguro 4

Computntion Flow Chart Cor Prababllistic tlate



sensitivity tests which are described below. The problems given below
were run with the object decks to determine the execution time and ef-
fectiveness of the skipping rules.

All programs were written to use with the capital budgeting problem
and some generality in the use of the algorithm was sacrificed.

Since the source decks and object decks are to be made available
for use in solving capital budgeting and related problems by other
interested persons, an instruction booklet has been written for the

preparation of data decks. It is presented as Appendix B.

Descriptions of the Programs.

A. Strong Deterministic Form.

This computer program is intended to converge as rapidly as possible
and uses the Lawler-Bell algorithm in its original form. If there are
multiple solutions, this form of the algorithm finds only the first one
since skipping is done by the "less-than-or-equal" decisions (tests) in
Rules 1 and 2.

The program is written to receive data conforming to the conventional
Weingartner deterministic model, which is a maximization problem, and
transforms the data internally within the program into the form needed for
the Lawler-Bell algorithm, which solves a minimization problem. This is
done by the linear transformation described earlier in this chapter and
the transformed values are stored in arrays needed for the Lawler-Bell
algorithm. Printouts are made of the transformed (minimization) arrays.

The Lawler-Bell algorithm itself follows the transform step in the

program. Since the algorithm terminates when the leftmost digit (a



signalling digit) in the solution vector equals one, all projects are dis-
placed one position to the right with the leftmost digit representing a
dummy project. An IF statement sends the computation to the end when

this digit becomes one. The current vector is initiallv set to zero

and the current objective value set very large. The vectors x* and f*

— 1 referred to in the description of the algorithm are designated XSTAR
and XSTAR1, respectively, in the program.

The rules for skipping use the vectors XSTAR (the next noncomparable
vector) and XSTAR1l, so the next stage in the program is a routine to
compute these vectors for a given current vector. The computation is
based on the method given in the description of the algorithm.

Routines for the rules of skipping and feasibility follow. Most of
these are included in the main program but those that are needed at more
than one place are written as subroutines and called when needed.

The vectors under current consideration during execution are printed
out so that the progress through the algorithm can be seen and solutions
printed as they occur. When a solution is found, the current solution
is updated.

A subroutine is provided to invert the minimization transformation
so that when a solution is found it is printed in both the minimization
space of the algorithm and in the original maximization space.

A subroutine is provided to print out the final result. Here, the
projects comprising the optimal solution vector and the value of the
objective, both in the original maximization space, are printed. In

other words, the final answer to the problem is printed out with the
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answer stated in terms of the inputted maximization problem.

The vectors were dimensioned in this program for twenty—five pro-
jects, or twenty-four real projects plus one dummy project as mentioned
above, and for twenty-five constraints. If a problem does not need all
twenty-five values, the program accepts fewer, starting at the left
for projects and from the top for constraints. For example, for a
problem with six projects, the first seven positions from the left of
the project vector are used and the remaining ones are zerced internally.
If there are five constraints, they are taken in order and the rest
of the array is not used. The input/output routines are formatted ac-—
cordingly. A different format is used for budget constraints than for
technical constraints to simplify data input. The program will accept
up to five budget constraints as part of the twenty-five constraints

mentioned above.

B. Weak Deterministic Form.

This program is intended to be used after the optimal solution to a
problem has been found with the Strong Deterministic form. It is identical
to the Strong Deterministic form except as described below. The Lawler-
Bell rules for skipping have been weakened so that skipping occurs only
for a strict inequality. Thus if there are multiple solutions, the pro-
gram can find them.

To reduce redundant computation, the initial vector and objective

values in this program are set to the optimal solution already found by

the Strong form program. This is done by means of a data card which is
added to the data deck for the problem. This resetting of the current

solution is analogous to the practice of resetting the initial conditions
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in simulation.

The inverse transform subroutine was modified to store up to five
optimal solutions transformed to the original problem space {maximization).
If there are more than five solutions, the skipping continues as in the
Strong form.

The output subroutine was modified to print out the solutions stored
by the inverse transform subroutine and print out a comment that there are
more than five solutions when that fact exists.

If there are more than five solutions, they can be found by changing
the card for the initial vector. After running the problem as described
above, replace the initial vector on the data card with the fifth vector
in the set of sclutions and run it again. The iteration now begins at

the new value and continues the search.

C. Probabilistic Form.

This program was written for the extension of the Lawler-Bell al-
gorithm to the probabilistic case. The basic algorithm is the same but
some modifications are needed to provide for the variance and covariance
terms.

The input is modified to permit insertion of values of the risk
aversion coefficient and to accept the variance/covariance matrix. After
these values are read in, they are then transformed to the minimization
space of the Lawler-Bell algorithm in a manner similar to that used in
transforming the objective function and constraints. The routines for
the rules are modified and Rule 4 is added as described in the description

of the algorithm. A subroutine to find the variance term for use in the
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rules is also needed. The transformed variance/covariance matrix is
printed out.

In order to investigate the behavior of the selection process for
different values of the risk aversion coefficient, an array was set up
to store the risk aversion coefficient values read in. The program
selects the first and its value is printed and the computation is made.
The results are printed as in the deterministic case. This is then
repeated for the other values of the coefficient. For a risk aversion
coefficient of zero, the Strong Deterministic or Weak Deterministic

form should be used, to economize execution time in the computer.

Problems Used.

Three basic problems were used. Each was used in both the determin-
istic and the probabilistic form making six problems in all.
The first problem was taken from Maoc (13), pages 253-255 and 295-296,

and is given below.

Maximize z = 10x1 + 20x., + 5x3 + 3x4 + 2x

2 5

Subject to 20}:l + 30x2 + 15x3 + le4 + 5x5 < 65
20x1 + 15x2 + 5x3 + 7x4 + 4x5_i 46
500x1 + lOOOx2 + lOOx3 + 50x4 + 20x5 > 500

500xl + lOOOx2 + 100x3 + 50x4 + 20x5 < 1100
X + X, <1
- x, + Xq <0
x, =0, 1



This problem was used in the probabilistic case by adding the fol-

lowing variance/covariance matrix

Project No. 1 2 3 4 5
1 1.1 3.0 0.1 0 0.5
2 3.0 36.1 2.0 0 0
3 0.1 2.0 1.0 0 0.5
4 0 0 0 0 0
5 0.5 0 0.5 0 1.0

together with risk-aversion coefficients A= 0, 0.1, 0.3, 1.1.

The printouts of solutions of this problem are included with the
programs in Appendix A.

The second problem was taken from Mao and Wallingford (14) and is

given below.



Maximize

z = 757x1 + 825x

Subject to:

Ix, +

1

5%, +

1.

5%, +

1

5%, +

1

5, +

1

x, =0orl
]

2

35x

15x

12x

4x

4x

4x

+

987x

20x

30x

2x

8x

+ 350x

+ 12x

+ 10x

10x

bx

+ 596x5
+ 65x5
+ 7x5
+

4x5
+ 4x5
+ 4x5
+ éxs
+ Xs
+ XS

+ 650x

6
+ 60x6
+ 15x6
+ 2x6
+ 2x6
+ 2x6
+ 2x6
+ x6
+ X6

+ 1420x., + 1425x

+

7

20x7 + 5x
SOx7 + 7%
le7 + 7x
5x7 + 7x
ix

7

x7 + bid
x7 + X

8
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30
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The following variance/covariance matrix and values of risk aversion

coefficients were used with this problem in the probabilistic program.
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Project No. 1 2 3 4 5 6 7 8
1 2500 0 0 1800 -2100 -3300 -600 -990
2 0 6400 0 -2900 3400 4800 960 2000
3 0 0 12000 -3960 6500 10000 1200 3000
4 1800 -2800 -3960 3600 0 0 -800 -1000
5 -2100 3400 6500 0 4900 0 1000 1500
6 -3300 4800 10000 0 0 14000 1200 3000
7 -600 960 1200 =800 1000 1200 400 0
8 -990 4500 3000 -1000 1500 3000 0 1000

A=0, 1.5 (107%, 2 (107Y.

4



The third

Maximize z =
+ 335xB +

Subject to:

+ 155x, +

+ 125x%. +

8

+ 121x8 +

problem

255x1 +

324x9 +

l45xl +

l40x9 +

lOOxl +

100x9 +

was constructed specially for this report:

3 4

+ 125xll+ 440x12+

575x2 + 80x., + 325x, +

358x10

130x4 +

l65x12+

120x4 +

125x12+

250x2 + 65x3 +

lSOxlO+

200x2 +

95311+

125316+

100x2 +

25x10— 115x12+

160x2 + 60x3 +

80xll+

95x4 +

lZéxl +

0 l50x1 +

2

X6

10

14

560x5 + 535x6 G ll5x8

560x, ,+ 45x

550xl3+ 14

15

200x5 + 310x6 + 95x7

185x14+ 40x

220x6

175x13+

+
200x5

15

l45x13+ lSOxl4

lSOx5

+
lZle3

165x5 +

135xl3+

140}{14

140}{6 + 75x7

l35x1 + 55xl

4 5

The variance/covariance matrix is given in Table 1.

The values for Risk Aversion Coefficient are:

A=0, 1, 10.
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Table 1

Variance/Covariance Matrix for Problem 3
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Sensitivity Tests

This part of the report is concerned with the effect of using dif-
ferent limits on the budget constraints. After an optimal solution has
been found, it is sometimes desirable to know how much a somewhat higher
or lower budget would affect the objective value. That is, would in-
creasing the budget say 10%, produce 10%Z more present value in the ob-
jective, or more or less than that? The intent here is to make an in-
cremental analysis of objective value sensitivity to budget changes.

In this report, the sensitivity tests were made using the third
problem and varying the first tﬂree budget limits by + 20% and + 40%
from the initially assumed value. The fourth budget constraint can
be thought of as budgeting something besides money (such as manpower)
and was held constant.

The budget limits for the sensitivity tests are shown below.

Percent Budget Budget Budget Budget
Change Constraint Constraint Constraint Constraint
No. 1 No. 2 No. 3 No. 4
-40% 600 410 150 800
-20% 800 540 200 800
Initial
value 1000 670 250 800
+20% 1200 800 300 800

+40% 1400 930 350 800
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Chapter 3

RESULTS AND COMCLUSIONS

Iteration and Computation Time Results.

The problems described in Chapter 2 were solved with the programs
for the Strong Deterministic Form and for the Probabilistic Form of the
algorithm. The number of iterations necessary to solve the problem and
the number of the iteration at which the optimal solution occured were
compared to the total number of iterations possible (2n) and the computer
execution time was noted.

The optimal solution often occurs early in the iterations but to
determine that it is optimal requires searching a larger number of
vectors.

The number of iterations and computer execution time for the sensi-
tivity tests were also used, making a larger set of problems for compar-
ison.

The results of these observations are shown in Table 2. A separate
set of results is given for the Weak Deterministic Form program, since
this program does not process the iterations preceding the first optimal
solution. For this program, the results are shown in Table 3 for total
iterations and execution time, Multiple optimal solutions are shown
when they exist. The third problem in Chapter 2 was not tested with this

program in order to conserve computing time.

Probabilistic Results.

The results for the deterministic case were taken as the results
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Table 2

Iteration and Computation Time Results, Strong and Probabilistic Forms

Problem Size Total Number Number of Computer Execution Iteration
and Type of Iterations Iterations Time, Minutes Giving Optimal
Possible Needed (IBM 360/50) Solution

5x6 Deterministic 2° = 32 14 12 12
5x6 Probabilistic

A= .1 18 .12 15

A=.3 18

A=1.1 16 9
8x13 Deterministic 28 = 256 75 .12 56
8x13 Probabilistic

A= .01 77 .36* 62

A=.1 75 61

A=.5 75 57
15x9 Deterministic 21° = 32,768 3416 2.1 187
15x9 Probabilistic

A=1.0 3338 8.04 1967

A =10.0 2610 6.12 1391
15x9 Determinisitc 215 = 32,768

+ 20% Bud Lim 3092 1.92 539

- 20% Bud Lim 3343 2.12 961

+ 40% Bud Lim 3150 1.98 539

- 40% Bud Lim 2261 1.39 1736

* The results for each of these entries were obtained on one run so a

breakdown of execution time for each value of A is not available.
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Table 3

Solution Sets Using Weak Deterministic Form.

Problem Size Solution Project Set Objective Value Remarks
5x6 2,3 25 Optimal Feasible
Deterministic Solution No. 1
2,4,5 25 Alternate Optimal
Solution No. 2
8x13 2,6,8 2900 This is the only
Deterministic Optimal Feasible

Solution,
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for risk éversion coefficient A = 0. The results for the other values

for A were obtained using the Probabilistic Form program and the change

in objective value and shift in the selection of projects to those with
smaller values of variance/covariance was observed. These results are
shown in Table 4. It should be observed that the values for A were

scaled to the values for the variance/covariance matrix and the two

sets of values set at such a range that they would fit the formats already
chosen for the program. This is permissible when the exponential as-

sumption is made as mentioned in the discussion of results below.

Sensitivity Tests Results.

The effects of changing the budget limits were investigated. First,
the limits as given in the third problem of Chapter 2 were taken as the
base values. The optimal solution and objective value were observed
along with computer execution time. The budget limits were changed
+ 20% and the optimal solution and objective value along with computer
execution time were observed. This was repeated for - 20% and for + 40%.
The results are shown in Table 5. A graph of these results is given in

Figure 5.

Discussion of Results.

From Table 2, it is seen that the number of iterations possible
to solve the problem increases in powers of two as the number of projects
increases but that the number of iterations necessary to find the optimal
solution with the Lawler-Bell algorithm does not increase nearly so

rapidly. The programs in this report took more execution time than
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Table 4

Probabilistic Results

Problem Risk Aversion Project Set Objective
Coefficient, A Solution Value

5x6 o* 2,3 25.00

.1 2,4,5 21.29

o 1,4,5 14.10

1.1 1,4 11.90

8x13 o* 2,6,8 2900.00

.01 2,6,8 2897.11

.1 2,6,8 2871.00

+5 2,6,8 2755.00

15x9 0* ;S 10,11 J2 2158.00

1.0 2,3,4,7,10,11,13 1982.40

10.0 1,6,7,10,14 1411.02

*
The values for A = 0 were taken from the deterministic results.
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Sensitivity Tests Results
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Budget Limits 0Pt1m91 Objective Value Execution Time
Solution
Dollars Per Cent Project Dollars Per Cent Time, Min Per Cent
Change Set Change (IBM 360) Change
From From From
Norm Norm Norm
600,410,150 -40 4,10,11,13 1358 -37.1 1.39 -33.8
800,540,200 -20 1,4,7,10, 1738 -19.4 2.10 0
11,14
1000,670,250 O 1,2,3,4, 2158 0 2.10 0
10,11,12
1200, 800,300 +20 1,2,4,7, 2313 +10.8 1.92 ~-9.05
10,11,14
1400,930,350 +40 1,2,4,7, 2313 +10.8 1,98 ~5.72

10,11,14
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was reported in the literature, but it must be recognized that the
transformation from a maximization to a minimization problem and the
inverse transformation of the results were done by these programs,
whereas the execution times reported in the literature did not include
these two steps. The articles in the literature used a manual trans-
formation for the sample problems and then used the algorithm.

The specific results for the first problem are identical with those
reported by Mao (13) for both the deterministic and probabilistic cases.
Mao does not report on the weak form of the algorithm and it is believed
that this is the first use of it to discover alternate optima.

For the second problem, the results for the deterministic case are
identical with those of Mac and Wallingford (14) but differ for the
probabilistic case. The reason for this is that in reference (14), Mao
and Wallingford apparently assume that the decision-maker's utility
function is quadratic and hence, the risk aversion coefficient applies
to both the variance/covariance matgix and to the square of the means
of the projects, while in reference (13), Mao apparently assumes that
the utility function is exponential and applies the risk aversion coef-
ficient only to the variance/covariance matrix. The program reported
here was written with the exponential assumption.

For the probabilistic case, the results were generally as expected,
i.e., as the risk aversion coefficient 1s increased, the program shifts
the optimal selection of projects to those having lower values of
variance/covariance. TFor the first and third problems, the variance/

covariance terms were large for the projects with high means and there
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was a noticable shift as A was increased. For the second problem,
there was no shift. This was perhaps due to the terms of the variance/
covariance matrix being too small to produce a significant change in
the solution. If the program had been written with the quadratic as-
sumption mentioned above, it is thought that there would have been a
shift in the solution.

For the sensitivity tests, it was found that as the limits for
the budget constraints were increased, the value of the objective in-
creased and the selection of projects shifted. For the smaller values
of the limits, the increase in the value of the objective was almost
proportional but as the limits became larger, the value of the ob-
jective leveled out. Further increase in budget limits gave no in-
crease in objective value and no further shifting of projects in the
optimal solution vector, thereby indicating a marginal effect on the
objective value and a loosening of the budget constraint effectiveness.
This procedure makes it possible to investigate a number of similar
problems without reformulation and specifically makes it possible to
investigate the effects of different budgets.

In this paper it was found that the computing time was small for
small problems but increases sharply at about fifteen projects. The
number of constraints and types of constraints seem to have an effect,
with the fastest convergence being for three or four budget constraints
and five or six other constraints. Attempts to use twenty projects or
fewer than five or six constraints exceeded the time limits used on the

control cards, with the last vector printed cut still being far from



41

the end of the process. The time for many projects is not surprising
as there is an increase in the number of iterations as the number of
projects increases even though the algorithm has been seen to reduce
the total quite effectively. The increase in iterations due to few
constraints is because the skipping rules of the algorithm are designed
to use the constraints in the skipping process. It appears that if the
number of constraints becomes too large, the saving in iterations is
lost in additional computations.

The programs were dimensioned for twenty-four projects and twenty-
five constraints and although they were not tested with a problem that
large, there is no reason to expect that they won't run with problems
that large. However it is thought that the execution time would be
great.

It is concluded that this is an efficient algorithm for problems of
moderate size. It is much better than manual solution procedures but the
increase in the amount of computing time required for problems greater
than fifteen or twenty projects indicates that it probably is not too
useful for larger problems. In any integer programming problem the
number of possible solutions increases by powers of two for zero-one
problems, but the exact increase in the number of iterations and in
execution time depends on the algorithm used. In general, each pro-
gram becomes too large for economical computation eventually. The
question is, when does this happen. It appears that this algorithm
is limited to the size mentioned above. If one had plenty of computing

time, he might use the Lawler-Bell algorithm with slightly larger
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problems but the increase in iterations would prevent a great increase

in problem size.

Suggestions for Use of Programs.

There are two main areas where these programs could be used. The
first in in capital budgeting analysis where they could be used for pro-
ject selection. If more than twenty-four projects or twenty-five con-
straints were to be considered, the dimensions and formats could be
changed accordingly. The WRITE statements could be removed except for
those in SUBROUTINE OTPT, to reduce the input/output time and printing
since all that is needed in a management application is the final answer.
If this is done, new object decks should be made as computing with the
object deck takes less time than with the source deck.

The other main area of use is in academic courses in capital
budgeting or management. The programs can handle problems of sufficient
size to be useful for instructional purposes, and the instructions for
preparation of data decks (Appendix B) should be adequate. Problems
such as those used in this paper, already formulated or in word-problem
form for practice in formulation, could be assigned to the students.
Either object decks or source decks could be used. The WRITE statements
should be left in the programs for class use as the printout of each of

the iterations is also instructive.

Suggestions for Further Research.

Other algorithms for zero-one programming could be coded for this
type of problem and then the computer execution times compared. Con-

versely, the input transformations and inverse transformations could be



removed from these programs and then problems already in minimizing
form could be solved with this algorithm and with programs for other
algorithms. The execution times for the algorithms could then be
compared.

The dimensions could be increased and the formats changed, which
would make possible a systematic study of the number of iterations and
execution time for larger problems.

The order of projects or constraints could be varied to determine
if there is some most efficient arrangement in problem formulation.
Lawler and Bell (10) report that the order does affect the efficiency
but give no specific conclusions. A study of the effects of order of
projects to find if the effects are systematic or random would be in-
teresting and perhaps useful. Similarly, a study of the effects of
order of constraints might be useful.

Although it is felt that these are good programs, they can be
coded more efficiently to conserve computer time. Also, it is possible
thatr there are other routines which would require less execution tice
than these do. No attempt has been made in this research to provide

compacted efficient codes.
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Appendix A

PROGRAMS AND PRINTOUTS OF SOLUTION TO THE FIRST PROBLEM OF CHAPTER 2

This appendix is subdivided into six parts as follows:

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

1
l— 1
2
2-1
3
3-1

page
Program for the Strong Deterministic Form

of the algorithm. 45
Printout of the solution to the first problem
of Chapter 2 using the Strong Deterministic
Form of the algorithm. 52
Program for the Weak Deterministic Form of

the algorithm. 55
Printout of the solution to the first problem
of Chapter 2 using the Weak Deterministic Form
of the algorithm. 63
Program for the Probabilistic Form of the
algorithm. 66
Printout of the solution to the first problem
of Chapter 2 using the Probabilistic Form

of the a2lgorithm. 75

b4



Appendix A - 1

PROGRAM FOR THE STRONG DETERMINISTIC FORM OF THE ALGORITHM

45



P474

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



46

(TINA=PA 1T 2%
(MASC=l
AT 29 DG
([ ERERENRIFPARR VS I R LS L I TS MR
JutTun=1 1% OU
' Ly D1 09 (0*03*2uN) 4l
(LIYeS =9 G%
Ate=] a=nu
g=ar
(AP Z= (9 TP (LTI L1)D 2 5)0uan
1SS SN
SUN e .3 )N
1+al,=x
JON* AN dNIZ2 G ) IV3n
(ex
147319189914 T+Xs*9GL 2% LSH0Da %2918 ¢ SVIINT*SEL LIS XU) LV relld 608
(6X
14321914991 aTeXa*H61% ITRISVSd®2%1% .2 3NU*SEL*1ISZXS)1VnENT BOS
(6145
A1YGIAGLY W4V N *HGLPZI% e LSMNDe4Z%1 € 2INYS *CEL LIGZ XL IVALNS L0OG
(10 HEL I 92 VLS Xat%61t 1 IMNULACEL TG NG I nbild Y90S
{21dC 1%T78HNT 40 ANIVALPERL1420NvA LINNG LIIFR0 49914 401 dINS WX

toe)t, 1IN wNd MOSYIra*Sel X ENLDZA Q3Wy0dShVULL*6L///) LIV alid SOS
(27052070 XTulVW INIVHLSAGD O03WE0dSKYYL THL s/ 1vIeDd LOL
(o™X

W91y ST O HATLITICHO FHL 4C 90 CLIWITY Q3IWHUISNY YL FHL o /) 1IVAad 908
LUXT*91101/2/X
P ESMIING SLRIVRISHMOD FHL HJ0 U119 “uN1I3A LIWIT 3HL /) 1ved 90L
((XT*91)0T/y S1 (141)79 14210 =P ot HINLlVacltd 0L
((91*?116/21%91) Llvda'id £0L
CIX1491)0T/ ST (1°F)TD 210 =0 UETIIVARNS TO0L
(IXT49110T//6°SM07704 (119 *wnlldknd ZATLIICrA0 2HL P TETILIY e 0OL
(911) 1tvWalid 2
0=ir¢1)ly ¢
0=(r*1).o
s2'1=1 13
a=(r)an1
0={r)10
0=(r)o
O={r ) eI X
Q=(r)HtIn
O=(rytix
0=(r)uvisSx
O=(r)1HviSX
O=(lF)IX
e=(rix
C={0)AvX
Uatl)UN
O=(ri1x
O=(r)avr
§241=0C w101
C=7441
boBELELLL=rAd
[(EXS LIRS SRTHAL IS § AEE-FA VR4 LN RS ITE B T AV LN |
AR PRERI R ULE -+ 4 B L AN E4 R0h EREPREFS VL LN E-FARSH B ARS8 LA NI Y |
()T (G2 TRULS X LTI nvESX* 1S2) TN (G2 n e oh v xia3 )]
SHHLIMODAY FHL HU wel' ) ORODYLS
TAULIFO9TY 3HL 40 WHCH DIASINIne 4130

J
2

05090
64502
8723
L4500
9402
5402
#4%GC0
L20)
FA i 0]
1200
(VR V3]
6E0D
B8E0D
LEQ0

9:02
SE0D

%€00
€eCO

ZeC00
1£00

“0t0d

6200
8202
LZ0D
9¢00
5200
2200
€200
220D
1209
0209
6100
8102
L10D
5100
$100
4102
€102
¢100
1102
01032
6000
6oed
LUGD
9002
SL0D
%L0D
£u0d
2000
1002

Less2/see 270¢L = 31va NIYW B0 3A3T 9 AL NYuLw0d



47

SL 21 "9 1032

(rvISX*T™VISL*¥IQQYI9 1Y) 0012
. WOILIQUY AXYALG D
¥visx 1ivin2ivd 2
INKLLRTYD) 61 6600
T1={P)TnvlsSx 91 B&GCD
s1 ul U9 LaC)
O={F)TaYL1SX . 96739
91 N1 02(0*3N* (1} x4 500
91 01 DO 3R=(r X144 LT
Wii=r Ss%.1] LoD

ANUILICOY K5370049 2 ¥
Tuvisx JLIVINDIVD 2

L1rxsdlplx wl Z6u)

1'T1=1 w»ind 1650

1-r=1 0600

O={r)iv Q1 6802

T=01)1x €1 9u0D

Aiw=l €10 Lyl

1+l =n 9303

1T 01 03003 trix)4] 510
3 SZ 0L 09¢1°03I°*risi %507
T=-r=r 11t £ ¢CO

01 N1 NJIO*AN(r1x)d] 2302
A=r 1302

NOTLIWULANS AnvnIg 2D
T=x 3LvINDI¥I 2
YIS wVd2usdHns 2

00T 0L Nai*0d*(1yxidl 6890
SINTUINUD L L0l

{FIUVISX=(M)K & BLDD

A i=r onl LL00

Akl 1Lyl g $100

L 0l u9 4100

(5039151144 2L00

aC (9CL*9)3LIHm £LC0
(IN®T=]0(1)0T) (SCL4w)SLImM 200
(MST=I4(100)29)40 (9024%9) 311u ZOL 1269
N T=1 (1 P11 r(T0L Y1 dInm CLUO
INGT= 2uL D7 69092

(LOL*9) L TuY : 8900

(N T=1 0110 100L 91 51Lem L5900
OENA={1)CNH={ 1197 5% 9500
(FAE)T19+G00A =DM 9% $90)

. Wii=l 940 R900
=90y EwoD

CIVED £ B PN| 2900

(BN T=FY(rIanul (2945)0vin LYy 1500
INNTANOD 14 0502

JUN=T19%T=( 1) LSGD
(FPIZ9=(0 1) TS+ONIL=00N 9y $502

WHT=T 44000 Ls03

O=0rN ¥500

3NN TANND €% $653

C=(r*rin 7502

(FY1) sl T=3=00" 1) 79 £500

€% 01 NALo*39*(r*1112}4] : 2452
Re1=rF €90 1502

4
~N

AN ATY %T0EL = 1YL NTYH 61 T13A37 9 AT NYz1¥0d



48

UN3 5410

d4C1s €210

(B0 ONIX*4NIX) LdlD 1%D cH10
INHTIMO3 001 1210

2 2w 40 UN3 D
AL1149ISv3d 20 ON3 D

L 0L oav (LA %]
(I)TIx=11IX 6% bE10
AT=1 ko ge1o
CTIX X WICUTIS 1vd LETO
WAACONA TR (eZ2 =14 (1) X) (606 YY) =11a" 9¢10
ankilLnd 0s 510
ERMEL-EFTTD M|
< nL o 4€1D
(A 0BO0T *HAW OF T ONNSONT XA NI X4 X ) LANTE 1TVD celo
WHN TN (SZ*T=T4 (1)IX) (B0G*Y)31]av 2e10
' (FI)Xx=(F)LlvHXx BE T1e16
W41=F 42037 VETO
Ah=awid 6210
2 31w 9
ankI1nnd 9¢ 8210
0s 0L ND(O®LI*NH) 3] Lzlo
(11940 1)12=Tan=hN 9210
(CIXa (P I TS+12N=19Y LE sZ1lu
Hi1=F LeNy 2210
0=19M e210
AN T=149¢0y 2210
JEISYI4ANT 41 Inddeasl3d DL D
t da 4U UNI D
2uh=(1)1D s¢ 1210
S Ll oy 010
WWASANAT 4G22 T=74{1IX) (L0S*9)2tium 6119
SE N1 NI(HKN*SI*0)4] bT110
(1)97+42N=T00=1N LTI1D
(PIXe(F*1ICOeZON=T0N EE€ 9112
AFITUYLSXa(r I 1S+ 1ON=10N s110
W= L0l 7113
DEFR L] £110
0=19N 2110
IN'T=1 Geau 1110
£ 37Ny 2
1 370y 49 N3 2
ANKNTLROD 1€ 011D
S bl LY ¢C12
W ONS(GZ4T=TLTIXD (90649 3114Y BL12
1€ 0L DAUWKWTLI* SN 4] L1
(FIXs(F)S+ON=ON OE 9019
A'T=r OtNu $CTI
0=9N 2010
1 3y D
SONTLLNY SL EU1D
YV1S WYBOLEONS 40 IN3 D
T=(M)uvisx 62 o010

st 3o te/q2r22 2T02L = 31%N NIvW vl 73A37 9 AT Nvddiwod



49

P I |

ct/ugrie

210ZL = FLVQ

uk3

NEN13Y
3ANL11INDD BY
ARIX=11)T1x L%

FT=0 Ly0d

1=r=1

8% 0L NDLTI*CI M1 41

S 0L OJ(0"3In"(riXN)41
1-r=r 49

s 0L 00003 ()X} 4]

A=

[ETARGS R ETAR B WL RNTA

[1Txx a0l INELOUBLNS

L1023
9102
s 1900
%102
£l00
2100
1100
0190
(3]
6000
FRvN]
900D
50902
7000
£E000
Zued
1002

aavig BT 13A37 9 Al NValeld



50

uNZ
Naftlls
ANKTLE)D %%
(PINIX=(r)ALIx ¢S
Gl4l=r €5
Ok =§135]
%G 0L D9{4AAI*31°0nt 131
AWM IS T=rCIPINIXY)LEL*9 )T (1M
(Z2°SANKTILINND KNNELvYILT /a® a9l ST 20X
vdS Iy AL N1 USWHOLSKYHL JATLIErd0 3HL afe® Wt llerts 51 X
IIvdsS WRIDIUD Il OL C3waendShvyl HULJI3A FIRISYIS v W PORI IVHG Y EL
Lty 2L
o=irLIx 1L
¢L Ul ug
T=(rInEX
TL 0L OUtT*05° 10yl
W= ¢t 0y
Whn=90 =4 AN
[LZIANIX Y (GTINTRAIGE )X BuIDTLNI
(A OUAT WHA PSRN ENTX NI X X ) LAMT 3NTLAaHENS

8102
L1900
9182
5102
2160
£102
¢102
1100

0102
002
auL2
LUGD
9053
SLLd
9593
E3C30
ZGLo
1C02

Lulaese ST0EL = 3174 LAN] w1 TIA3T 9 Al NVelnuO:



51

N3
Ndni2y

(HW'T=rtrIONTIX) *dUy LT 913 L1un

InN1LhUd
T=1=O)UNIX
T4+d=n

€ 0L 09 (0=23°(1)uhlXx) Jl

sZ%=1 £ M
0=»
't

e Y02 1062%91/7SH0OTI0Y SLDIMDYa 40 BOLIIA INVISVIS VWL 14U IHL
ST FA1LI3ICA0 3HL 40 aNIVA TvWILd0 3HL o/ LENRNd T
(SZIUNTIX*{G2)UNTR ¥IT2UNT

YLD

fEsc/20

o e

(ENT *OLIX"ONTX)

ld10

1410 AN LNDEHNS

H1

X
X

13437 2 Al

2100
1102
G192
6002
vQ02
La0d
9602
$000
2002

€002
2000
1003

[IAR-FR-1¢E|



Appendix A -1 -1

PRINTOUT OF THE SOLUTION TO THE FIRST PROBLEM OF CHAPTER 2

USING THE STRONG DETERMINISTIC FORM OF THE ALGORITHM
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Appendix A - 2

PROGRAM FOR WEAK DETERMINISTIC FORM OF THE ALGORITHM
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Appendix A -2 -1

PRINTOUT OF THE SOLUTION TO THE FIRST PROBLEM OF CHAPTER 2

USING THE WEAK DETERMINISTIC FORM OF THE ALGORITHM
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Appendix A - 3 -1

PRINTOUT OF THE SOLUTION TO THE FIRST PROBIEM OF CHAPTER 2
USING THE PROBABILISTIC FORM OF THE ALGORITHM
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Appendix B

Problem Formulation and Preparation of Data Cards.
First, define the notation used as follows:

NP = Number of projects.

NB = Number of budget constraints.
NOC = Number of other constraints.
BUD m = Limit for budget constraint m.
LGGI k = Limit for other constraint k.

In this report, the dimensions and formats are such that n must not
be greater than 24, NB not greater than 6 and NOC + NB not greater than 25.

To formulate a problem for solution with these programs, write it

in the following form.

Maximize z = alxl + a2x2 + a3x3 + ... +ax

Such that bllx1 +byox, + b13x3 + .00 F blnxn‘i BUD 1

bNlel + bNBzx2 + bNB3x3 + ... + bNBXn < BUD NB
cllxl + clle + c13x3 +oww s clnxn < LGGI 1

“Noc1®1* “moc2®2t Swoca®3t ctt Yt Cnoca¥i-HCGL NOC
x=20,1
If any constraint is > in the problem as formulated on paper,
multiply it by -1 to reverse the inequality as the program was written

with the constraintsall < .
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Since there are three programs, there are three forms for the data

Each data deck has several types of cards. A description of each

data deck and its card types along with specific instructions for prepar-

ation follows.

Data Deck for the Strong Deterministic Form.

Type

Type

Type

Type

Description.

The data deck for this program contains five types of cards.

1

3A

This type gives the number of projects NP, number of budget
constraints NB, and number of other comstraints NOC. There
is only one card of this type in the data deck.

This type gives the objective and budget constraint coef-

b for each project. There is one

ficients, a;s bli’ «ses byps

card of this type for each project.

This type gives the limit and number of non-zero coefficiants
for each other constraint.

This type gives the project number and value of each non-zero
coefficient. Each type 3A card contains up to five projects

and coefficients. Additional cards of this type are used as

needed for constraints with more than five non-zero coef-

ficients.

One type 3 card followed by one or more type 3A cards are used for each

other constraint.

Type

4

This type gives the budget limits. There is only one card of

this type in the data deck.
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Preparation.

All entries are to be right justified in their respective fields

and written as integers. If an entry is zero, it may be entered as

zero or left blank but 1f it is left blank, the next non-zero entry

must be correctly placed.

Type 1

Type 2

Type 3

Type 3A

Write number of projects, NP, in colummns 1 - 6.

Write number of budget constraints, NB, in columns 7 - 12.
Write number of other constraints, NOC, in columns 13 - 18.
Write a, in column 1 - 6.

Write bli in column 7 - 12.

Write bZi in colummn 13 - 18.

Write b6i in column 36 - 42,

There are as many entries as there are budget constraints.
Repeat for each project in order, each on a separate card.
Increase the index of each project by 1.

Write LGGI in column 1 - 6.

Write number of non-zero coefficients in column 7 - 8.

For the first non-zero coefficient, write its project number
(increased by 1 above) in column 1 - 2, and its coefficient
in column 3 - 8. Write the project number for the next non-
zero coefficient in column 9 - 10 and the coefficient in
column 11 - 16. Repeat for up to five values. If there are

more than five, continue the procedure on the next card for

as many cards as are needed.
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Type 4 Write the first budget limit BUD 1 in column 1 - 6.
Write the second budget limit BUD 2 in columm 7 - 12.

Continue, six columns per budget for each budget constraint.

Data Deck for the Weak Deterministic Form.

Description.

The data deck for the Weak Form is identical to that for the Strong
Form except for the addition of two cards. After running a problem with
the program for the Strong Form, if a search for additional optimal
solutions is desired, put the type 5 and type 6 cards ahead of the cards
already used in the Strong Form and use the deck with the Weak Form
program.
Type 5 This type gives a known optimal value of the objective. There

is only one card of this type.

Type 6 This type gives a known optimal vector. There is only one card

of this type.

Preparation.

Type 5 Write the known optimal value (the value found in the program
for the Strong Form) in column 1 - 9.

Type 6 Write the known optimal vector of projects in column 1 - 24,

Data Deck for the Probabilistic Form.

Description.

The data deck for the probabilistic form contains six types of
data cards.

Type 1A This type is similar to type 1 for the Deterministic form
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except that there is a fourth entry giving the number of
values for A, the risk aversion coefficient. There is only
one card of this type in the data deck.

Type 2 Identical to type 2 for the deterministic programs.

Type 3,3A Identical to type 3 and type 3A for the deterministic programs.

Type & Identical to type 4 of the deterministic programs.

Type 7 This type gives the entries in the variance/covariance matrix.
There is one card or one set of cards for each constraint.

Type 8 This type gives the wvalues for the Risk Aversion Coefficient.

Preparation.

Type 1A Prepare this card exactly as for the deterministic programs
but write the number of values for the risk aversion coefficient
in columns 19 - 24,
Prepare the cards or types 2, 3, 34, and 4 exactly as for the deterministic
programs.
Type 7 The entries for this type are in F6.2.
Write the value for variance/covariance for project one in
column 1 - 6 with the decimal in column 4, for project two
in column 7 - 12 with the decimal in column 10, continuing
in this manner for up to five values. If there are more than
five projects, continue on as many cards as needed. Repeat
on new cards for each row of the matrix.
Type 8 The entries for this type are in F6.2 alse.
Write the first value for A in columns 1 - 6, with the decimal
in column 4. Continue using six columns per entry for up to

five values per card.
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The Lawler-Bell algorithm for zero-one integer programming was coded
in FORTRAN IV and its efficiency, as measured by computing time and number
of vectors enumerated, was observed in solving Weingartner-type capital
budgeting problems. The program was written so that it could accept data
from typical problems in which some function of net present value is to be
maximized. To do this, it was necessary to transform the capital budgeting
problem, which is a maximization problem, into a minimization problem
solvable by the Lawler-Bell algorithm. This was done with a linear trans-
formation of coefficients in the objective function and constraints.

A second program was written with the decision statements in the
algorithm weakened in order to find all alternate optimal solutions. It
is believed that this is a new form of the algorithm.

A third program was written for the extension of the algorithm to the
probabilistic capital budgeting case. Results using different values for
the risk aversion coefficient were compared.

A method of incremental sensitivity testing was developed and in-
vestigated in which the resource limits for the budget constraints were
varied, giving corresponding incremental changes in the objective value
and optimal project vectors. It is believed that this is a new appli-
cation of the algorithm.

The algorithms were found to be very efficient in reducing the
number of vectors to be enumerated, as compared with the number required
for complete enumeration. For fewer than about twenty projects the
algorithms are also efficient ineconomizing computing time but for
larger problems the computing time becomes excessive from a practical

standpoint.



It is concluded that these algorithms are useful for moderately

large problems (n < 20 projects, n' < 10 constraints) but not for

larger ones because of the greater computing time required.



