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Abstract

The Raspberry Pi is a versatile computer for its size and cost. The research done in this

project will explore how well the Raspberry Pi performs in a clustered environment. Using

the Pi as the components of a Beowulf cluster will produce an inexpensive and small cluster.

The research includes constructing the cluster as well as running a computationally intensive

program called OpenFOAM. The Pi cluster’s performance will be measured using the High

Performance Linpack benchmark. The Raspberry Pi is already used for basic computer

science education and in a cluster can also be used to promote more advanced concepts

such as parallel programming and high performance computing. The inexpensive cost of

the cluster combined with its compact sizing would make a viable alternative for educational

facilities that don’t own, or can’t spare, their own production clusters for educational use.

This also could see use with researchers running computationally intensive programs locally

on a personal cluster. The cluster produced was an eight node Pi cluster that generates up

to 2.365 GFLOPS.
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Chapter 1

Introduction

This project will be investigating the Raspberry Pi computer and its ability to perform

within a computer cluster environment. Computing has found uses in many research areas.

Researchers utilize computers to run simulations of natural phenomena or analyse data

pertaining to their work. As these programs grow in complexity and accuracy so does the

computer resources required to process them. These programs can quickly outscale the

available resources of a single computer and can create processing times of days to weeks.

To develop systems that can run these programs effectively researchers create computing

systems consisting of multiple processors and machines working together. These systems

are called distributed systems. Given a task these processors within the system will each

take a part of the problem and process their sections simultaneously.

The field involved with designing and improving these distributed computing systems

is called High Performance Computing (HPC). Even with the computing power of the su-

percomputers produced by aggregating multiple processors and machines, the ambitions

and program complexity will still be increasing throughout the scientific and business com-

munities. A currently growing example of this trend is Big Data. Big Data is the name

given to incredibly large amounts of stored information on databases and clouds2. Market
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researchers utilize big data to discover trends or patterns to help guide their business de-

cisions3. While other researchers utilize big data strategies such as analyzing genetics of

thousands of humans to discover gene patterns that lead into generating hereditary disease

development4. In 2012 calculations showed that 2.5 exabytes of data (or 2.5 billion giga-

bytes) were being generated each day3. As the demand for big data storage and analytics

grows, the databases, supercomputers, and algorithms that are the backbone of this indus-

try must also grow with it. A consequence of this is that there will also be a demand for

the education of the engineers who can build and maintain these systems. In addition a

requirement for scientists to research and implement improved techniques for the evolving

field of supercomputing.

For the purpose of education and independent research, the cost of producing and main-

taining a clustered computer can be prohibitive. The upfront cost of obtaining components

and the space required to store the devices are just the initial concerns. Depending on the

scale of the cluster to be built, ongoing concerns include the cost of electrical power for run-

ning and continuously cooling the computer cluster. Another scenario found in practice is a

facility already owns a computer cluster but has issues in the way for using it in classroom

usage. An example of this is a research first, pedagogy second policy5 where the cluster pri-

oritizes work related tasks higher than education related tasks. Leading to scenarios where

lab or project based classes are not feasible to execute with the cluster potentially being

unavailable for them during higher priority workloads.

Scenarios like these can be potentially resolved by the Raspberry Pi within a cluster.

The Raspberry Pi is an inexpensive computer that rivals the size of a credit card6. Linking

a series of Raspberry Pis into a distributed computing system would just as well create a

very small sized cluster. Those performing research into the field of distributed computing

could potentially use these small scale clusters as personal research tools. Just as college

level classrooms could utilize these for hands on cluster education in place of an absent
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or unavailable computer cluster. The experiments to be performed on the Raspberry Pi

and the produced cluster will help investigate the performance of a Raspberry Pi computer

cluster.

This paper below will continue with a more in depth description of computer clusters,

the Raspberry Pi, and information on some of the programs Ill be using in this cluster.

The next chapter will explain the experiments performed, followed by how the cluster was

constructed. The paper will end with an analysis of the experimental results.

1.1 Distributed Computing

Mentioned previously, distributed computing aggregates computing power and resources

from many computer sources to complete a common objective. A distributed system is

called a heterogeneous system if there are various types of nodes with varying hardware

within the system. Otherwise a system containing only a series of identical nodes is named

a homogenous system. How the system is constructed depends on the workloads designers

estimate the system will be working with. A system that will be serving millions of http

requests will be largely focusing on their bandwidth, high availability, and databases, while

a big data analysis will appreciate large amounts of ram and small latency between the

data storage and the processors. Other systems include variations on how the machines are

connected. Such as linking together workspace computers in a building, creating a computer

cluster out of the borrowed power of the workers stations7.

While there are many types of distributed computing systems, this thesis will be focusing

on the computer cluster, more specifically a beowulf cluster. A computer cluster is formed by

connecting the nodes over a Local Area Network (LAN) within the same room or building.

Clusters that fall under the Beowulf cluster category have a few notable restrictions that

define them7. Beowulf nodes are created from easily affordable, off the shelf parts. These
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clusters contain a homogeneous set of nodes that all contain their own local storage, ram,

processor, operating system, and network connection. Their nodes are dedicated to the

beowulf cluster and arent simply a persons personal workstation that the cluster borrows

spare computing power the user happens to not be using. One node is special, labeled as

the master which will be in charge of initiating and distributing programs towards the slave

nodes. This master node will also act as the access point to the cluster and the node that

will accept commands from users. Other specifically named types of clusters will share one

or more of these requirements, but this is what in general it means to be a beowulf cluster

specifically. The restrictions for beowulf clusters create a cluster that is simple, aggregates

power from cheaper components, and is consistent. Since each node and the network is

dedicated to the cluster the cluster won’t vary in computing power as in the workstation

distributed computer scenario would.

In the aim of making a general efficient cluster, a balance between cpu speed, I/O speed,

and available ram is preferred. I/O speed refers to the speed of the network or the latency

between reading and writing data between the hard drive and available memory. The amount

of ram available limits the size of problems the computer can work on efficiently. An example

of this is using more memory than available ram leads to thrashing. Trashing is when the

computer is forced to temporarily store parts of memory to the hard drive to make space

for what the program needs to load into memory now. The worst case scenario comes when

the computer must juggle memory between ram and the hard drive repeatedly. While this

occurs the processor cant make much progress. The program cant continue until the needed

data loads. Network speed should also be sufficiently fast to minimize the time it takes

for nodes to communicate. Effectively the time a processor must wait for a message to be

fully sent is time not spent contributing processing power to the completion of the program.

Both of these scenarios where the processor is idle because of thrashing or communication

bottlenecks is called CPU starvation, as the system just isnt feeding data fast enough for
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continuous processing. These concerns are shared generally with all of computing however

in a clustered environment one processor lagging behind can be the cause of slowdown for

hundreds of others. And in this field of generating massive computing power, these are very

important concerns.

1.1.1 How Parallelization Works

As Ive mentioned multiple times, clusters will be aggregating computing power. At this

point Im going to explain how this is achieved, as it is only possible with certain types

of programs. For a cluster to achieve a processing power of completely independent but

connected machines the program must be divisible. This means that at some point in

a program the remaining work can be divided into several subprograms and computed

relatively independently of each other. By sending each division to a node within the

cluster the processing can be done in parallel. This means that sequential programs will not

be gaining any speedup from clustering, these programs only can be ran on one machine.

Programs that are designed to be divisible are called parallel or distributable programs.

An example of a simple parallelizable algorithm is matrix addition. Two large matrices

added together can observe a speedup in a parallel environment by dividing the problem into

subproblems. The first step is to distribute the matrices to the cluster, where each node in

this case can claim 1/Nth of the rows of matrix A and the same rows from matrix B. Where N

is the number of nodes available for computing the answer. Each node simultaneously adds

their two submatrices together and eventually returns the result back to the master node

who compiles the resulting matrix from the clusters subproblem results. Matrix addition

is a very simple parallel algorithm because each subprogram doesnt depend on any other

subprogram to complete.

For this very simple example the resulting matrix would be calculated in a little more

than 1/Nth the time taken for a single node to compute the same answer. The overhead of
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distributing the program to the cluster and the time taken communicating the results back

to the master will add time to the clusters results. However the parallel computation most

cases, such as this one, will show a dramatic speedup to the computation time.

Another potential case in this scenario is if the three matrices are so large that they

exceed the available ram of the node working alone. In this case the calculation can po-

tentially take longer as page faults and thrashing are possible. Though with distribution,

if 1/Nth of each array can fit into the memory of a single node then this problem will not

experience the same potential thrashing scenario. This is one of the great advantages of a

clustered environment that we can take problems that are too large for one machine and

divide them into chunks that can fit comfortably on a single machine.

1.2 Brief Overview of the Raspberry Pi

The Raspberry Pi is a small computer produced by the Raspberry Pi foundation. The

foundation aimed to make a small, low cost computers to encourage the practice and learning

of basic computer science concepts6. Their goal was to create a device with just enough

processing power while still being inexpensive, small, and available for a target audience of

hobbyists, education, and inventors. To aid attracting these customers the Raspberry Pi

was to have enough processing power for simple tasks such as web browsing, playing simple

games, and capable of outputting 1080p from an hdmi output. The development process

involved six years of designs and planning until in 2012 the first model B Raspberry Pi

became available for purchase. The interest the community had for these tiny computers

exceeded the expectations of the Raspberry Pi Foundation as they sold out within minutes8.

The order backlog for the Pis took over 3 months to finally be overcome.

The current iteration of Raspberry Pis consist of a model A and model B. Both models

contain many of the same components including a USB connector, HDMI slot, and a 3.5mm
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audio jack. Each version also requires an SD card that the Pi will use to boot with and

use for its local persistent storage. The processor is a 700 MHz arm6 chip9. The arm

architecture has a history of energy efficiency, low heat production, and small size has made

a popular choice for mobile devices such as cellphones and tablets. For these same reasons

its also a good choice for the Raspberry Pi. The gpu found within the Pi is a 250 Mhz

VideoCore IV.

The Raspberry Pi runs on a linux operating system, the most popular operating system

of choice is Raspbian. Raspbian is debian operating system optimized for the Pi hardware.

This operating system is produced and updated by the Raspberry Pi foundation and is freely

available online or found preloaded on special Raspberry Pi SD cards. Since their initial

release the Raspbian image has been updated with some important features. The initial

release focused on python and c/c++ and in 2013 Java 7 JKD was added to the Raspbian

repository10.

An announcement that excited many hobbyists was the Raspberry Pi Foundations an-

nouncement of overclocking profiles being added to the Raspbian image? . Since these

profiles were tested and supported by the foundation, they also have the added bonus of

not voiding the Raspberry Pi warranty. The highest overclock profile, called Turbo Mode,

scales the Raspberry Pis processor speed to 1 GHz and the gpu speed becomes 500 MHz.

The Raspberry Pi Foundation also states that in their testing didnt detect any detriment

to the lifespan of the Pi when overclocked to these profiles. Should the Pi begin to overheat

however the overclock will automatically revert to normal speeds (700 Mhz, 250 Mhz) until

the temperature no longer exceeds 85 degrees celsius. These are the main features that the

model A and B have in common, the table below shows the hardware specifications of the

two models and the few areas they differ.

Because the intention is to turn multiple Raspberry Pis into a computer cluster the

ethernet port located only on the model B is critical. The model B is what will be used to
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Model A Model B With Turbo
CPU 700 MHz 700 MHz 1000MHz
GPU 250 MHz 250 MHz 500 MHz
RAM 256 MB 512 MB
Ethernet None 10/100 Mbit/s
USB 2.0 1 Port 2 Ports

Table 1.1: Raspberry Pi Hardware Specs

construct the cluster and for the rest of this thesis any mentioning of the Raspberry Pi will

be intended toward the model B.

1.3 Programs

1.4 OpenFOAM

OpenFOAM is an open source collection of Computational Fluid Dynamics (CFD) solvers11.

With it researchers can simulate and view how fluid or gaseous systems react to a given

situation under a specific scientific model12. Since the solvers of OpenFOAM are open source

researchers are able to modify the solvers at will. This allows the simulations to change to

the needs of the researchers implementing it. The default package of OpenFOAM contains

over 80 solver programs, each solver simulating a specific model in CFD11.

OpenFOAM also has the ability to be ran in a parallel fashion. For a CFD solver paral-

lelism quickly becomes more vital when increasing the resolution or length of the simulation.

The runtime to solve such problems can lead to hours or days of computation time to finish

the simulation on a single machine. Because of this importance, the parallelism is built into

the OpenFOAM libraries and simulations created in OpenFOAM are just as easily ran in

parallel across multiple machines as they are ran on a single core.
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1.5 Benchmarking With High Performance Linpack

The act of benchmarking in computing is attempting to measure the peak performance of

computer systems or its components. There are many methods of benchmarking and in

general each benchmark focuses on a single aspect of the machine to be tested. Some exam-

ples of these aspects are FLoating Operations Per Second (FLOPS), memory bandwidth,

network throughput, and network latency.

However the numbers coming from a benchmark dont entirely state how well a computer

system runs any program. In the most pragmatic sense a benchmark simply tells you how the

computer system performs at processing the benchmarks test. For example a benchmark

focusing on network throughput will usually be optimized for running on that system in

particular. The optimized algorithms then produce a much more attractive throughput

result that general programs will find difficult to reach. However in a more realistic point

of view one can view these results as the upper limit of the systems performance.

The value that comes from benchmarking is it allows system designers to create a baseline

result for future comparisons. This base result allows cluster inventors and managers to

modify their system configuration, either with new libraries, hardware, or network topologies

and compare their new configuration with the old. Using benchmarks in this way will allow

the cluster administrators to measure any performance increase or decrease within their

newly modified architecture.

For this project I will be focusing on measuring the Raspberry Pi clusters ability to gen-

erate FLOPS with the High Performance Linpack (HPL)13. As many scientific simulations

involve floating point operations how fast a computing system can generate these operations

are a real concern for these areas. HPL calculates the rate these operations are completed

by solving a dense, randomized, series of linear equations over a large coefficient matrix.
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1.5.1 The Current Standard

The high performance linpack is currently considered a standard for measuring computing

power in the HPC community, and has been for a couple of decades. But this may not always

be the case. Bill Kramer of the National Center for Supercomputing Applications (NCSA)

has summarized a few key drawbacks of measuring modern supercomputers with HPL14.

One of biggest points to consider is that modern computing has changed over the last couple

of decades. During the time period HPL was created the most common computing problem

was solving large dense linear equations arrays, so it makes sense that HPL would measure

these situations specifically. However modern day supercomputing programs have grown

to also test the limits of the entire computer cluster which HPL doesnt factor into the

equation. This leads to the problem that the general supercomputing standard has fallen to

measuring only a single facet of the entire system and in effect penalizes a more well rounded

supercomputer. Some of Kramers potential improvements to the benchmarking standard

include simply combining multiple benchmarks that focus on other areas of the systems as

well as system costs being a factor for being the best supercomputer14. Even though the

current standard, HPL, is becoming somewhat dated I still believe that for this project it

will still be useful. The amount of FLOPS generated by our Pi cluster will be relevant

for computing programs such as the simulations generated by OpenFOAM. Measuring the

FLOPS will also show how well the Pi cluster is performing in a cluster.

1.6 Related Work

1.6.1 LittleFe

The LittleFe project began in 2005 to assist institutions in high performance computing

education15. LittleFe acknowledged the fact that not all institutions can afford systems such
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as computer clusters for educational purposes such as hands-on labs work or demonstrations.

For the goal of bringing clusters to fill this educational gap, the project developed critical

design constraints such as costing less than $3000, weighing under 50 pounds, and fits in a

travel case (in this instance a pelican case) that can be easily transported16. The current

iteration of LittleFe is the Littlefe v4 which is a six node beowulf style cluster. Each node

is powered by a 1.8Ghz dual core atom processor with 2GB of ram communicating over

a gigabit switch. The total parts list of the LittleFe cluster with todays prices easily falls

under $2,500, includes the casing the nodes will be mounted in, and was designed to be put

together with simple tools15. As a strategy to reduce weight and cost the master node is

the only node to contain a hard drive. The cluster itself netboots off of a linux image in

the dvd drive making setting up and managing the nodes simple. The LittleFe group has

also had an active part in high performance computing outreach by taking their LittleFe

clusters to competitions, conferences, and LittleFe build events16. LittleFe is a solution

for institutions lacking demonstration clusters and in a way the Raspberry Pi cluster can

become an alternative solution as well.

1.6.2 Raspberry Pi in Bitcoin Mining

One group showing quite a bit of interest in Raspberry Pis is the Bitcoin mining enthusi-

asts/industry. Bitcoin is a digital currency, sometimes called cryptocurrency due to how it’s

processed17. With no central bank the transfer and holdings of bitcoins relies on a decentral-

ized system to process the digital transactions between bitcoin wallets. This decentralized

processing is completed by the bitcoin miners. A bitcoin miner is any processing device that

is running the bitcoin mining program17. This program joins the computer with the bitcoin

peer to peer network. When a bitcoin transaction is attempted a data block to validate

the transaction is also created. Processing this data block requires the bitcoin miners to

take cryptographic hashes distributed to them and begin computing the block. In effect the
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bitcoin reward for computing these blocks is the bitcoin service paying the miners for their

processing time. Which is paid by the processing fee of bitcoin transactions.

The bitcoin mining program itself is an interesting program in a distributed system sense

because its a cpu bound program without an upper limit. If you devote more computing

power to mining, the hashes you receive will become harder to compute. There is still a

better reward for bringing more power to the bitcoin peer to peer network. Which leads

to some truly impressive bitcoin mining operations, such as the one produced by Dave

Carlson18. Carlson has set up 5,600 bitcoin mining modules. Each module consists of

a Raspberry Pi, an extension board that has 16 slots for a bitfury board. Each of these

boards contain 16 bitfury chips that specialize in hash computing relevant to bitcoin mining.

Each module is connected to a few linux servers that check the bitcoin mining network for

work. The target is delivered to each Raspberry Pi who then funnels the data to the 256

mining chips under its control. Once the chips send data back to the Pi, the Pi sends

the computed solution to the linux server. The server then relays the answer back to the

network. This monolithic set up represents about 7-10
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Chapter 2

Planned Experiments

2.1 Raspberry Pi Hardware Tests

The hardware tests consists mostly of observing how well the Pis components act under

pressure. The three areas that will be given extra attention are the Raspberry Pis temper-

ature to detect any overheat tendencies, SD card quality and specifically its impact on the

Pi operation, and the impact of the ethernet port use on the Raspberry Pi.

2.1.1 Heat Monitoring

While the Raspberry Pi operating under normal settings, in this case with no overclock,

there is no need to worry about heat generation. This doesnt come as much surprise, as

the arm chip architecture has a history of use in cell phones and other handhelds. All of

which are low voltage devices that would be undesirable if they began to burn the hands

of their operators. However the question this test is created to answer is if this quality still

holds when we overclock to the highest supported setting of the Raspbian operating system.

Information distributed by the Raspberry Pi Foundation includes an automatic disabling of

overclocking should the chip reach overheating temperatures of 85 degrees celsius1.
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The first test will be with the Raspberry Pis on a turbo overclock setting while exposed

to the open air without any casings. The second test will involve the Raspberry Pi standard

clear plastic cases. If these two tests should fail to cause an overheating situation, there will

be extra tests to attempt to force an overheating situation. These tests will be performed

in a room temperature environment with no active fans for added cooling. A single Pi will

have its heat levels monitored through the temperature sensor located on the Raspberry

Pi. Cpu throttling will be disabled for the duration of the tests to measure potential heat

production. Should the test results show that the Raspberry Pis doesnt approach the

critical 85 degree celsius threshold, they will be repeated with the plastic casings attached.

Adding the cases will create an environment which will limit the transfer of air around the

Pis themselves. This effectively adds a level of insulation around the Raspberry Pis, and

theoretically limiting their ability to passively cool.

Each test will involve running an HPL benchmark to keep the Pis processing with an in-

tensive workload. Measuring the temperature will be done through the temperature sensors

already existing in the Raspberry Pi hardware. A shell script will monitor the system tem-

perature once every two minutes while the HPL benchmark processes. The task will involve

recording the results and stopping the test should the temperature reach the aforementioned

85 celsius threshold.

2.1.2 SD Cards

SD cards are effectively the hard drive of the Raspberry Pi. SD cards main target audience

however are camera devices. The main way cameras interface with their SD cards are send

bulk data, in this case as images, to and from the card. The manufacturers advertise a

read/write speed for their SD cards, and in this case its a sequential read/write speed.

This can have a potential impact on how well a Raspberry Pi can use the SD card given

to it. Operating systems tend to rely heavily on reading specific files anywhere in their
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file systems. To find the random access read/write times of the SD card I will be using

CrystalMarkDown19 which allows us to benchmark these values. I will also be loading a

Raspbian image on each of the SD cards. The Raspbian images will be observed in how

they perform with these SD cards and how the various read and write speeds impact the

operating system. The speeds returned by CrystalMarkDown will also be compared with

the speeds obtainable in a live environment of Raspbian on the Raspberry Pi.

2.1.3 Networking

In a distributed environment networking is a critical component. Cluster builders will

want to have the highest speed networks they can manage to minimize the time spent

communicating rather than processing. The Raspberry Pi Model B comes with an ethernet

port rated for 10/100MBit/s speeds. However this ethernet port is connected to the USB

bus6. As a consequence, there is a lack of a network controller on the Pi board itself.

The network tests will simply be an observation of how the lack of a controller impacts

the Raspberry Pi when utilizing network protocols such as SCP and NFS. The workload a

controllerless ethernet port can place on the Pi can potentially be a concern when deciding

what programs a Raspberry Pi cluster owner will want to run. And thus is worth looking

into.

2.2 OpenFOAM

OpenFOAM will be one of the first distributable programs to be run on the cluster. My goal

with OpenFOAM is to be able to observe a noticeable speedup in computation time through

distribution. OpenFOAM itself is a cpu bound program and thus when we distribute the

program the cpu workload per chunk of the simulation will be lowered. To measure speedup

I will be using a standard tutorial program with the OpenFOAM 2.3.0 distribution called
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DamBreakFine11. DamBreakFine simulates a solid column of water initially, which during

the simulation will collapse and fill the resulting container with introduced turbulence from

an added wall at the bottom of the tank.

Figure 2.1: damBreakFine Initial State20

To measure the speedup of DamBreakFine I will be running the program multiple times.

The first run will contain only one node as the base run time. Each subsequent run will add

an additional node to the cluster until the cluster is utilizing all eight nodes simultaneously.

The time to completion will be recorded for each run and compared with one another to

show any measurable speedup in the simulation creation run times.

2.3 HPL

As stated previously the high performance linpack will be used to measure the computational

power of the Pi cluster. Since this projects motivation is to generate an inexpensive computer

cluster the results of this benchmark test can be helpful for other clusters designed for the

same role. The results of this test also can prove useful for future Pi cluster experiments as

a baseline to compare this simple eight node cluster with more complicated Pi clusters, or

16



to compare any improvements/decrements in performance as the Raspberry Pi software or

hardware receives updates.

Since optimization plays a heavy role in benchmark results, and the Raspberry Pis arm6

architecture doesnt come with a heavily optimized BLAS library, the project will utilize

ATLAS? to generate an automatically optimized and tuned BLAS library21. Sine ATLAS

performs some generalized optimizations this will also lead to a benchmark configuration

that can be easily recreated on similar clusters elsewhere.

The entire cluster will be used for the benchmark and the initial value of N will be

calculated from the advice given on the HPL website13. For an initial N value the following

formula will be used:

N0 =
√

Ma∗Nodes
8

∗ 0.8

N0 being the initial value of N to consider in HPL, Ma is the average available memory to

each node, and Nodes is the amount of nodes available for the test. The formula is basically

a rough estimate of how large the coefficient matrix will have to be to fill the largest amount

of available ram to the cluster. For testing there will be multiple benchmarks performed

spanning around the value N0. The result with the highest ram utilization should also

produce the highest amount of measured GFLOPS, or 1 billion FLOPS. This performance

peak will then be compared against the theoretical computation limit for floating point

operations of the Raspberry Pi’s arm6 chip.
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Chapter 3

Cluster Construction

This chapter will go over the decisions and methods used to construct the Raspberry Pi

cluster. Starting with the hardware making up the physical components of the cluster and

continuing on with the setup and installation of relevant programs for this project. The

cluster to be produced in this project is an eight node beowulf style cluster. In beowulf

style there will be a single master node that will be our interface with the rest of the cluster

for job starting, resource distribution, and cluster monitoring.

3.1 Hardware

For this cluster eight Raspberry Pi model B was used, as the ethernet port is vital for the

cluster. Another reason to favor the model B is it contains double the ram of the model

A which will let the cluster run more memory heavy programs. Basic necessities for the

Pi include an SD card and micro usb power cable. The SD card used for this project was

the Transcend 16GB class 10 SD card. For larger clusters than what this project considers,

getting a powered usb hub to distribute more power per outlet can be useful. Since theres

only eight Raspberry Pis in this scenario though this project just uses two power strips for
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all of the devices in the cluster. For this project the Raspberry Pis each have a transparent

plastic case that will be used in the overheat tests but are otherwise completely optional.

The tests carried out will be without the case. While the Pis won’t overheat inside their

cases running normally these will be overclocked to their highest overclock profile. Whether

or not these will induce overheating will be determined by later tests when the cluster is

complete.

The networking aspect is taken care of by a simple eight port gigabit switch. A 100Mbit

switch would be sufficient for the Raspberry Pi cluster, however I used the gigabit switch

because I had it on hand. With the Pis plugged into the switch, and the switch and last Pi

then plugged into a router the basic hardware setup is complete. Overall the total cost of

parts, not taking into account the router or optional plastic cases would come out to under

$500.

3.2 Raspberry Pi Setup

The next step is to begin producing the master image for the SD cards to be inserted in the

Pis. The first step is determining which operating system to use as a base for the cluster.

The most popular choice for general Raspberry Pi setups is definitely Raspbian. Raspbian

comes out of the box with many programs installed for convenience and has a large amount

of community support available22. Another operating system looked into for this project was

Arch Linux Arm6. Arch Linux takes the minimalist approach upon installation, meaning

less programs will come installed by default allowing you to easily make a streamlined image

for the cluster. An important quality both operating systems share and is important for

higher performance with our experiments is the hard float support6. Hard float support

is important because the Raspberry Pi does contain floating point registers. Hard floating

point operation support in this context means that the operating system can utilize the
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Overclock Mode CPU MHz GPU MHz SDRAM MHz overvoltage
None 700Mhz 250MHz 400Mhz 0
Modest 800Mhz 250MHz 400Mhz 0
Medium 900Mhz 250MHz 450Mhz 2
High 950Mhz 250MHz 450Mhz 6
Turbo 1000Mhz 500MHz 600Mhz 6

Table 3.1: Overclock Profiles1

processors floating point registers. The alternative is soft floating point support. If a

program or operating system utilizes soft floating point then, regardless of the chip, the

floating point operations will be emulated by using multiple integer registers. Emulating

floating point operations this way is much slower than utilizing existing hardware registers.

Since the Arm architecture has a wide array of devices that dont contain floating point

registers there is a definite trend of general Arm support using soft floating point.

With the Raspbian image loaded onto an SD Card the basic image was ready to be

configured with settings and programs common to each node within the cluster. Later this

image will be used to produce the master and worker node images which will contain only

minor differences.

A Raspberry Pi was loaded with the SD card and booted to begin modifying settings.

Raspbian comes with a configuration utility called raspi-config and is a convenient way to

set up a single Pi. The settings used in this project where expanding the file system to

encompass the entire SD card and enabling the turbo mode overclock profile. As of 2012

Raspbian comes with 5 profiles for overclocking, shown in the table below. These overclock

profiles are stable and testing shows they do not impose a significant impact on the lifespan

of the device. Utilizing any of these profiles has the added benefit of not voiding the warranty

of the device and is supported by the Raspberry Pi Foundation. However end users are still

free to attempt their own overclock settings.

Following basic settings the system needs to have an MPI library installed. This project
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chose OpenMPI and MPICH2 for their popularity and more importantly their available

source code for compiling to the arm6 architecture of the Raspberry Pi.

With this core image created the next step is to clone it onto another SD card, giving us

two unique versions of the core for the master and worker. Its worth mentioning that cloning

a 16GB sd card can take quite a bit of time. Reading the 16GB file took around 17 minutes,

while writing the image to another SD card took 26 minutes. The Raspberry Pi doesnt

support booting off of a network image, so each Pi will require an SD card to operate and

join the cluster. Another disadvantage that comes from not using network booting is that

updating the Raspberry Pi cluster becomes more troublesome. Updating general settings

on the Raspberry Pi cluster that contains more than a few nodes can become very time

consuming. The first option is to make changes to one Raspbian image and propagate the

changes by recloning the new SD image to the rest of the cluster. Cloning the Raspbian

images can take quite a large amount of man hours depending on the number of SD writers

available, so this method discourages modifications. The second option involves utilizing the

raspi-config interface or performing manual changes on each individual node. This method

can be just as tedious as the first, however it has the advantage of being automatable through

scripting. Scripting is very attractive and its worth knowing that any action that can be

performed with the raspi-config tool can be performed on command line or by modifying

certain text files. An example of this, when the raspi-config tool is used to modify the

overclock profile it creates changes to the /boot/config.txt file which contains all of the

settings for overclocking. Being able to manually set changes this way allows the cluster

maintainer to automate all actions raspi-config can perform and quickly relay the update to

the rest of the cluster.
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3.2.1 Master and Worker Node Setup

The master node will be unique from the rest of the SD card images since this particular

node will be the general access point to the rest of the cluster. To allow the master node

to access an arbitrary node on the cluster there will need to be some form of passwordless

login setup for the master node. Since some of the distributed programs to be run on the

cluster utilize ssh, the cluster was set up for passwordless ssh logins. First the RSA key was

generated for the master, and then sent the public key to the initial worker node images

authorized keys file. This allows the master to connect to the initial worker node. Since

this worker nodes SD image will be cloned over the remaining worker nodes, the master will

also be able to log onto any worker within the cluster. In this project the master node will

also be computing, so the public key was also added to the masters authorized keys file. For

ease of distributing files to the entire cluster, the master node was also configured to export

directories containing the experiments binaries and base files through an NFS server.

The worker nodes do not need much work compared to the master. Any programs to

be tested locally on the machines can be installed before replicating the nodes image to the

remaining workers. Since the worker nodes will primarily be gathering most of the binaries

from the master nodes NFS shares those network directories are added to the file system

table located at /etc/fstab. For this cluster they are set to not mount automatically and

only will be mounted when needed with some scripts I wrote for the master node.

3.3 Installing and Configuring Testing Programs

The following sections contain information about how the testing programs were installed for

testing. Including any installation issues, how they were resolved, and what configuration

options were taken.
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3.3.1 OpenFOAM

OpenFOAM hosts the source code on their main website, as well as releases debian software

packages of precompiled binaries for the operating systems they support. Raspbian, and the

arm6 architecture in general, isnt supported by the OpenFOAM team. I first attempted to

compile the source code locally on the Raspberry Pi itself. This requires modification of more

than a few makefiles throughout the build. When compilation began a few critical libraries

of OpenFOAM-2.3.0 failed to compile, resulted in compilation errors a few hours into the

build. While researching potential solutions to compile these libraries for the Raspbian OS,

this was found to be a recurring problem as people tried to run OpenFOAM on their own

Raspberry Pi. Though a CFD company, Rheologic23, has solved these compilation issues

and hosts the working binaries for Raspbian specifically on their website.

3.3.2 ATLAS, BLAS, and HPL

BLAS libraries can be found many places online, including package repositories used by

operating systems used on the Raspberry Pi. For running the high performance linpack

benchmark the best version of BLAS to use is a system specific optimized version. The

optimization level of BLAS will have a significant impact on the results produced by HPL.

Highly optimized binaries are machine specific and typically released by the hardware ven-

dor. This level of optimization couldnt be found for the Raspberry Pi. Instead the project

will use ATLAS to generate a tuned version of BLAS.

While ATLAS does support the arm architecture, its default is to generate soft floating

point calculations24. This can be changed by downloading and utilizing a specific architec-

tural defaults file for ATLAS? . Making ATLAS use the new architectural defaults involves

editing a configuration file to reference hardfp options and adding a configuration flag when

running ATLAS. Other than these changes, the rest of the BLAS generation follows the
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standard ATLAS installation and configuration procedures. For the best results of the tun-

ing stage of ATLAS cpu throttling must be disabled. The tuning stage relies on many

timed tests. These tests measure different hardware components and their performance at

various times during compilation. If cpu throttling is enabled these timed tests will produce

incorrect results as the cpu speed changes. Without overriding through the use of runtime

flags, the ATLAS configure stage will produce an error if throttling is enabled. Disabling

cpu throttling involves adding force turbo=1 within the /boot/config.txt file located on

the Raspbian image citeRP:Rasp. For those interested in maintaining their warranties dis-

abling throttling will void them. Once the configuration and tuning stage begins, expect

the Raspberry Pi to be performing these tests and optimizations for at least 26 hours.
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Chapter 4

Result Analysis

4.1 Hardware

4.1.1 Heat Tests

Before running the temperature tests the Pis were left idle so that I could assess their idle

temperature state. The Pi cluster was oriented in such a way that each Raspberry Pi was

around one inch from another Pi for all save the last test performed. The rooms temperature

they were left in was noted to be within the 23-24 celsius range. After a few periods of rest

and temperature checking the Pis showed an average idle temperature of 45.5 celsius. Each

Pi appeared to run naturally hotter or cooler than one another, but stayed within ±2 degrees

celsius of the average. After assessing their idle state the first temperature test began with

the cluster as it was. To reiterate how the test was performed, a suitably long test run

of HPL was performed to keep the Pis intensively computing. And a shell script in the

background would check the Raspberry Pis heat sensor every two minutes.

The first heat test performed was with the Raspberry Pis without their cases attached.

In this test run the Pis quickly heated to a running temperature of around 55 degrees celsius.

However the heat build up plateaued relatively quickly and the cluster never approached
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Figure 4.1: Overheating Test Results Without Casings

the dreaded 85 degrees celsius threshold. For a cluster of Raspberry Pis in a non insulating

environment such as a case or closed frame the nodes do not require active cooling, or even

extra passive cooling measures such as the heat sink accessories available for the Pi.

After the Pi cluster had time to cool down from the first experiment I placed the cluster

within their plastic cases. These cases will restrict some airflow between the Pi and its

environment, though it won’t be a complete insulation as each case does have openings to

the outside world. Most of the openings in the case are to allow access to the Pis connections

but in addition to those are two vents that will be under the board as well as two holes

where mounting screws can be placed.

The cased experiment began just as the uncased, with a measurement of the idle tem-
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Figure 4.2: Overheating Test Results With Casings

perature of the Raspberry PI. This time, with their cases attached, the Pis had an idle

temperature of 56 celsius. During the HPL benchmark run their temperatures eventually

peaked at 68 degrees celsius and remained in the range of 66-68 degree range until the test

finished. Once the test ended the nodes began to approach their idle temperatures but at

a noticeably slower rate than when they were uncased. This shows that while the cases

produce a more insulated environment they alone are not enough to bring the Raspberry Pi

board to an overheating state.

These results show that in a room temperature environment the Raspberry Pi hardware

will stay below their overheat threshold of 85 degrees celsius even with the Turbo mode

overclock profile selected. These results are attributable to the arm chips design towards
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energy efficiency with a history of low heat producing chips found in mobile devices that

tend to not have any active cooling. This is encouraging for creating a Raspberry Pi node

cluster since active cooling is largely situation dependent.

However, since a Pi cluster can come in many different physical orientations I decided

to attempt another test run to see if I could force an overheating scenario. A third test was

performed where each Raspberry Pi was within their case and I stacked them in a formation

that would minimize at least one Pis ability to passively cool. The figure /refoverheatnocase

shows the arrangement of the cluster for the third test. This arrangement should give the

center Raspberry Pi the largest chance to overheat short of placing it near a major heat

source or covering it in a thermal blanket.

Figure 4.3: Pyramid Stack Diagram
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The thought process leading to this configuration was that the passive cooling with the

Pis outside environment was sufficient even through the plastic casing. This configuration

however cuts the central Pis access to the environment and worse exposes it to the heat of

the other nodes. This test like the others allowed the Pis to return to their idle temperature

before stacked. The Pi in the middle of the pyramid formation would be the Pi to be

monitored during the HPL benchmark test run.

Figure 4.4: Overheating Test Results With Stacking

The idle temperature reached by the central Pi as expected was higher than previous

tests, 60 degrees celsius. This experiment was the only overheat result of the tempera-

ture measurement tests. As a precaution, if the measurements hit the 85 degree overheat

threshold the monitoring shell script would disable the cluster. Around the 30 minute mark
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the measured Raspberry Pi breached that threshold and the cluster shutdown before any

hardware damage could occur.

In conclusion the overheat tests where promising to me. In general the Raspberry Pi

without overclocking doesnt have to worry about overheating. These tests help show that

even with an overclock to 1Ghz the Raspberry Pis passive cooling is still sufficient. The

exception of course is if the Pi cluster is placed within a configuration that limits their

exposure to the surrounding air or strongly insulates the surrounding air. In these situations

some form of active cooling is going to be required such as a small fan. For any future Pi

clusters theses tests show that to control heat production the main factor is in the physical

orientation of the cluster.

4.1.2 Networking Observations

During some of these tests the Pis cpu utilization was monitored. The absence of a network

controller on the Raspberry Pi board shows that in practice the overhead of using the

ethernet port falls upon the cpu. Any test utilizing NFS had a spike in cpu utilization by

the NFS daemons. This is expected as the master node is distributing the binaries not

loaded onto the worker nodes. During this distribution the master node cpu utilization will

stay at a constant 100

With this information the OpenFOAM tests will not be utilizing NFS to distribute the

data. OpenFOAM by default is designed to separate the simulation into distributed chunks.

Each node will simulate on a given chunk, writing their portion of the simulation to their

own independent file systems. With NFS this will flood the master with unnecessary writes

causing an avoidable network overhead to the entire simulation and as noticed beforehand

would take up the majority of the masters cpu utilization from OpenFOAM on every write

cycle.
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4.1.3 SD Card Benchmarks

The SD cards showed to have an effect on how the Raspberry Pi performs in general. In

some small tests performed to measure the read/write speeds of the three cards on hand.

CrystalMarkDown allowed me to determine the speeds of the Pis for continuous and random

access read times. CrystalTo see the impact the cards had in Raspbian a sample test to

obtain read and write speeds in linux from elinux25 was performed to observe the read/write

rate of blocks in the filesystem.

Type Seq. Read Seq. Write Raspbian Read Raspbian Write
Raspbian 8GB SD Card 22.60 MB/s 6.0 MB/s 10.8 MB/s 6.0 MB/s
Transcend 16GB SD Card 22.61 MB/s 10.26 MB/s 18.4 MB/s 10.6 MB/s
SanDisk 16 GB SD Card 22.81 MB/s 13.8 MB/s 19.0 MB/s 13.1 MB/s

Table 4.1: SD Card Benchmarks

All three cards had similar sequential read speeds but the Raspbian SD card tends to

have a slower sequential write than the others. While the Transcend and SanDisk both

showed their class 10 qualities, the Raspbian card appears to be a class 6 equivalent SD

card. The benchmarks show that the class however has little impact on random access

times, and that for large block sizes the read times approach their sequential reads. But

as the block size shrinks the performance of random access degrades with size. For block

sized reading and writing in a Raspbian environment approaches the sequential speed of

the card used. As far as any observed effects the SD cards have on Raspbian, in general

programs tend to initialize much slower when using the Raspbian card. Meanwhile almost

Type Read (512KB) Write (512KB) Read (4KB) Write (4KB)
Raspbian 8GB SD Card 22.3 MB/s 1.14 MB/s 7.4 MB/s 1.9 MB/s
Transcend 16GB SD Card 22.20 MB/s 8.6 MB/s 5.0 MB/s 1.39 MB/s
SanDisk 16 GB SD Card 22.5 MB/s 2.7 MB/s 7 MB/s 1.3 MB/s

Table 4.2: SD Card Random Access Benchmarks
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no difference was noticed between the SanDisk and Transcend cards. This implies that the

Raspberry Pis general file system operations can effectively utilize the faster speeds of higher

class cards better than I originally wouldve assumed.

An example of the noticeable slowdown was in initializing an SSH connection. For

any Pi node utilizing the Raspbian card establishing an ssh connection took at minimum

6.25 seconds while on the Transcend or SanDisk card the connection was established in

less than 1.3 seconds. For cluster management this can leave a preference in the higher

quality cards. The faster read and write speeds will allow deploying images onto the Pis

SD cards in a quicker fashion and allow commands to be relayed through the cluster in a

faster fashion. However as a program and its assets are loaded into ram the SD card has

very little to no impact. Programs such as running a single thread HPL benchmark showed

no difference between SD cards used. However programs that periodically write and read

from the filesystem such as OpenFOAM will notice a performance hit due to the slower file

system throughput. Programs that also generate lots of page misses due to poor locality

will also experience a performance decrease when utilized by lower quality SD cards.

4.2 OpenFOAM

The results of the OpenFOAM test runs were interesting. My original hypothesis going

into this experiment was to use OpenFOAMs parallelism to demonstrate speedup produced

by adding addition Raspberry Pi cores to the distribution. However as shown in figure ??

there is a speedup trend followed by a sharp increase in runtimes. After a certain threshold

each additional node added to the computation incurs an increase in simulation calculation

runtime.

This led me to begin investigating the OpenFOAM simulation in more detail to find

the source of the slowdown. To understand the source I investigated how OpenFOAM
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Figure 4.5: OpenFOAM Run Times

works more closely. OpenFOAM runs in cycles working on a simulation frame followed by

writing the results. Then repeat by computing the next frame followed by another write.

In this cycle there are 3 major steps, communication and computation followed by an I/O

write. Adding more Pis to the cluster will then reduce the computation step, to which I

based my original hypothesis upon. The I/O write step also would become faster by adding

additional Pis, with each frame written to the file system is effective 1/Nth of the entire

frame of the entire simulation. This means adding more Pis reduces how much is written

on an individual Pi level. With these realizations the communication step becomes more

suspicious. The main cause of the slowdown is related to communication during these tests

and deals with how OpenFOAM distributes work between nodes combined with the fact
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that this experiment divided the same amount of workload into successively smaller and

smaller workloads.

OpenFOAMs strategy for parallelizing simulations is called domain decomposition11.

Domain decomposition works by taking the entire domain of the simulation, the entire 3D

space to simulate, and slicing it into equal sized chunks. For example one can take a 3D

cube and cut it in half, now there are two 3D objects to distribute to the nodes. However

the borders where the two subdomains touch can interfere with each other. This means

that while processor A can work on most of its subdomain without any cooperation, the

border of its domain requires assistance from processor B to solve, and likewise there is an

area that processor B requires assistance from A to solve. Figure 4.6 visualizes the effect

of decomposition over a static problem size. As the static problem set becomes more and

more divided the highlighted areas that border the divisions represent the areas requiring

the neighboring subdomain to be computed.

OpenFOAM models its 3D space into individual cells, thousands to hundreds of thou-

sands of cells can make up an entire simulation space. These are like points on a graph.

A domain with a set number of cells divided in half will then have half of the cells in each

sub domain. However the border cells require communicating with the adjacent subdo-

mains cells. The slowdown can be seen as each Pi node being added reduces the amount

of work that can be completed alone and increases the amount of communication required.

Originally I believed OpenFOAM would be a straightforward case for clustered speedup,

but instead has turned out to become a somewhat complicated case of how the ratio of

computation versus communication can interfere with the progress of the program.

To view how many cells are divided to each node and how much communication is

required is outputted by the OpenFOAM utility called decomposePar. Below is a table that

shows the trend of decreasing cell count with increasing communication requirements.

The effect of the increased network complexity on the Pi leads to large increases in
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Figure 4.6: Domain Decomposition Example

Node Count Cells Per Node (Average) Communication Faces (Average) Ratio (Work/Comm)
2 Nodes 3850 87 44.2
4 Nodes 1925 89 22.6
6 Nodes 1283 88 14.6
8 Nodes 962.5 88 10.9

Table 4.3: decomposePar Output

runtime on OpenFOAM simulations. Ways to increase the workload per Pi would be to

increase the resolution of the problem as one increases the distribution. This would also

lead to an increased run time of the simulation compilation.

This implies that a given OpenFOAM simulation has a thread saturation limit. Where

adding threads after a certain threshold causes program run time increases as opposed to
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decreases. For this I ran the program at an increased resolution on my laptop. The increase

in resolution allowed my laptop to spend more time on the simulation since it runs at a

higher speed than the Raspberry Pi with a 2.6 GHz processor. My laptop experienced an

initial speedup, followed by the same slowdown trend of communication vs computation.

This shows that the problem can be repeated on any general system and not just specific to

the Raspberry Pi. However the Raspberry Pi shows greater increases in run time due to its

slower processor and networking compared to running in parallel on a multicore machine.

Figure 4.7: Laptop Runtime over Increasing Threads
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Figure 4.8: HPL Performance Results Over Problem Size N

4.3 HPL

The performance graph shows the measured gflop performance of the cluster over various

HPL problem sizes of N. At around N=18000 the benchmark returned a peak performance

of 2.365 Gflops. At this value of N almost all of the available ram the cluster owned was

filled by the coefficient matrix of the benchmark run. Before this value there is an upwards

trend towards the peak as N increases. This is because as the problem size increases the

time spent calculating floating point operations tends to overshadow the overhead costs of

the rest of the program including message passing13. Above the 18000 N size threshold

theres a significant trend in decreased measured performance. This is the case because

weve exceeded the amount of memory available to the cluster and thrashing begins. Also
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Figure 4.9: HPL Runtime Over Problem Size N

exceeding the amount of memory available began to lead the Raspberry Pi cluster to have

trouble completing HPL at all. This higher range of N will tend to return test cases that do

not pass residual checks. The default residual check makes sure the experimental calculated

result is within 16.0 of the theoretical result calculated by a formula. However the more

the system exceeds the available memory, the more likely the cluster is to fail as individual

nodes crash from out of memory errors.

The fastest speed a Raspberry Pis arm6 chip can compute a floating point operation

is two cycles? . Because of this, our theoretical peak processing power on floating point

operations with a 1GHz overclock is 500 MFLOPS, or .5 GFLOPS. Thus the entire clusters

theoretical peak computing power comes to 4.0 GFLOPS. With a theoretical limit of 4.0
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GFLOPS, and an observed performance of 2.365 GFLOPS our cluster was able to tap into

59.1
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Chapter 5

Conclusion

The projects original goal was to investigate the Raspberry Pis abilities in a clustered

environment. The experiments and general managing of the experimental cluster leads to

the conclusion that the Raspberry Pi has potential for educational uses. With the Pi cluster

effectively being a scaled down supercomputer the cluster still represents the concepts and

principles of high performance computing. The high performance linpack demonstrated

the the Pis ability to cooperate and solve parallel problems while OpenFOAM showed the

principles of message complexity. Programs that approach trivial levels of communication

such as many matrix operations would however show a more appropriate speedup that is well

within the properties of HPC concepts such as Amdahl’s law. This allows the Pi cluster

to easily become a candidate for demonstration purposes for project or lab work within

a computer science curriculum. While LittleFe was created to make a clustered system

affordable for any education facility the Raspberry Pi has shown to be a viable alternative

with this less than $500 dollar computer cluster created for these experiments.
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5.1 Future Work

The concept behind this project can benefit from continued research. With the release

of the Raspberry Pi, the popularity of a single board computer has grown in the market.

Other small systems on a chip have began to appear at similar price points. Most notable

is the BeagleBone Black. At $45 dollars with similar levels of hardware the BeagleBone

Black has similar potential for computer science education as the Raspberry Pi does. While

more of these single board computers appear on the market they may create clusters with

different strengths than the Raspberry Pi. With these other candidates clusters could also

be constructed to be heterogeneous to demonstrated other HPC concepts such as load

balancing or high availability. Due to the trend of introducing computer concepts such as

basic use and programming to earlier middle school levels these clusters can also be available

for introducing these more advanced concepts of computing in outreach events. As inventors

such as the bitcoin miners have shown the Raspberry Pi can be very versatile for its $35

price point and it along with other single board systems deserve further research in their

potential uses.
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