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I. INTRODUCTION

The Nuclear Engineering department at Kansas State University is involved

in researching beta particle dosimetry and instrumentation. To facilitate the

calibration of beta scintillator and germanium crystal detection systems, as well as

for the purpose of materials energy response characterization, a source of

monoenergetic electrons is useful. This thesis describes the design of a high

resolution monoenergetic electron source based upon the concept of a solenoidal

magnetic lens spectrometer.

iMagnetic lens spectrometer (MLS) systems were conceived by Kapitza [1] in

1923 and first constructed by Tricker [2] in 1924. From the 1940's. Witcher [3].

Klemperer [4], Deutsch, EUiot and Evans [5], DuMond [6], Persico [7], and Schmidt

[8] amongst others have pursued the development of MLS systems. Initially MLS

systems were used for the purpose of characterizing the emissions from beta and

conversion electron sources, and photoelectrons emitted by gamma rays incident

upon target materials. In 1983, Graham and Elliot [9] converted a MLS system at

Lawrence National Laboratory into a cheap source of monoenergetic electrons.

Comparisons will be drawn between the magnetic lens monoenergetic electron

source at Lawrence National Laboratory which will be referred to as

(LNL-MLMES) and the system design arrived at in this thesis.

A design of a MLMES was arrived at with the following specifications:

1) continuously selectable monoenergetic electron beam with pper^v
ranging from 100 keV to 2.84 MeV ' '-"

2) central ray initial emission angle of 25° and allowed emission an-lp -an-^e
23.6440 to 26.3560 for 1.0% transmission



3) transmission of 1.0% (transmission is defined as the fraction of tiie

particles of selected energy emitted from a point source tliat are

accepted by the first collimator)

4) central-ray helical particle trajectory with pitch or "focal length" of

0.762 m

5) vacuum chamber (1.016 m long by 0.254 m i.d.)

6) magnet coil (1196 turns, #6 A.W.G. aluminum wire) resistance=2.3S H
at 25 OC, inductance=0.13 H

7) vacuum requirement of 0.1 torr [9]

A schematic of the KSU MLMES is provided in fig. (1.1).
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II. THEORY OF OPERATION AiND TERMINOLOGY

A beta-particle may be considered as a high energy electron originating from

the decay of a neutron within the nucleus of a radioactive atom. A typical emission

spectrum from a 90Sr/90Y beta source is shown in fig. (2.1). The charge of a

beta-particle is the same as that of an electron (q). When a charged particle travels

through a magnetic field (8) it experiences a magnetic force (?g) as described by

the Lorentz force equation

?g = q (v . 6) .

From the Lorentz force equation, observe that the magnetic force acts normal

to the direction of particle motion. For this reason a magnetic field can do no work

and hence cannot effect the energy of a charged particle. In addition, the magnetic

force is directly proportional to the velocity and therefore energy of a particle.

Because the magnetic force varies according to particle energy, particles of differing

energies emitted in identical directions from a point source will be deflected alonii

different trajectories.

Magnetic beta-particle spectrometers utilize the energy dispersing capability

of a magnetic field coupled with a set of precisely positioned collimators to filter out

all but a narrow range of particle energies. A magnetic lens spectrometer (MLS) is

a widely used spectrometer configuration comprised of a cylindrical vacuum

chamber with a magnet coil wound concentrically. A MLS can be converted into a

source of monoenergetic electrons by simply constructing an exit window at the

location normally occupied by the particle detector. This approach was followed bv
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Graham and Elliot [9] and provides the basic concept upon which the KSU MLMES

was designed. Figure (1.1) depicts the Kansas State University (KSU)

concept-demonstrating magnetic lens monoenergetic electron source named

appropriately (KSU-MLMES#1). Beta-particles emitted from a 90Sr/90Y source

located along the coil axis follow helical trajectories and focus in a region along the

axis. In fig. (1.1) the radial component of the helical trajectories versus axial

position of three particles of the same energy but emitted at angles a and a± Aa

are depicted. The particle traces shown are for particles emitted from the center of

a disk source. The particle emitted at a + Aa just clears collimator la while the

particle emitted at o; - Aa just clears collimator lb. A particle with initial emission

angle a traverses a path through the center of collimators la and lb: the trajectory

of a particle emitted at an angle a is termed the central-ray trajectory.

From fig. (1.1) observe that the ray traces intersect one another in a narrow

region termed the annular or point source ring focus position. Collimator sets 1 and

2 are positioned to coincide radially and axially with the point source ring focus

position. The anti-scatter collimator is provided to eliminate vacuum chamber wall

scattered particles from adding to the scattered component of the monoenergetic

beam. The design of the exit window aperture also diminishes the scattered

component of the beam as well as eliminates particles emitted from the source of

incorrect energy from adding to the beam peak width.

Later sections in this thesis will document the design of each of the

components of KSU-MLMES#1.



III. VACUUM CHAMBER AND COIL DESIGN

The parameters governing the physical design of the vacuum chamber and coil

are the central-ray initial emission angle, the maximum and minimum particle

beam energies of interest, and the magnitude and shape of the focusing magnetic

field. Typically the minimum energy particle of interest in beta dosimetry is 100

keV. The maximum beam energy of interest was selected to be approximately 2.3

MeV, corresponding to the maximum energy beta particle emitted by a 90Sr/90Y

beta-particle source.



3.1. SELECTION OF THE MAGNETIC FIELD SHAPE

Lindgren [11-13] summarized the resolution characteristics of several typical

MLS axial field shapes as a function of initial emission angle. Figure (3.1) depicts

the general results of his analysis. A qualitative comparison of the attributes of the

field shapes relative to one another indicates that the field shapes labeled UF

(uniform field), 24.5 (field strength in center decreases to 75% of the value at the

source and detector), and 24 (source and detector are located at the ends of a

solenoid) present superior resolution characteristics. Note that the field shape of the

Lawrence National Laboratory MLMES is similar to the field shape labeled S or 13

in the figure.

Ideally a system using a uniform field shape would be selected. Uniform field

MLS systems have been extensively analyzed due to the fact that they may be

completely investigated analytically. The standard technique of obtaining a

uniform field requires extending the length of the solenoidal coil a distance equal to

2 or 3 times the coil diameter beyond the source and focal points and by using

additional end correcting coils. Unfortunately economical MLMES systems can't be

constructed with a uniform field. This is a consequence of the fact that the coil in a

uniform field MLMES would interfere with the conically shaped emitted beam.

Field shape 24 was selected over field shape 24.5 for the design of

KSU-MLMES#1. MLMES systems utilize disk sources in order to obtain hio-h

monoenergetic beam intensities: for this reason the disk source resolution is the

governing factor in selecting a field shape. Observe from fig. (3.1), to obtain equal

disk source resolution, a system with field shape 24.5 requires larger initial

emission angles than a system utilizing field shape 24. The initial emission an^le is

directly related to the physical size of a MLMES and therefore the amount of
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required materials (i.e. magnet wire and hence power-supply requirements, vacuum

chamber size, etc.). Economic and performance considerations make a system based

upon field shape 24 a reasonable choice.

10



3.2. SELECTION OF THE CENTRAL-RAY LNITIAL EMISSION ANGLE

The economy and resolution of a system are each related to the magnitude of

the central-ray initial emission angle. Generally as the angle increases the

resolution improves; however, for reasons previously stated the economy of the

system decreases. A trade off between resolution and economy was made leading to

selection of a system based upon a central-ray initial emission angle of 250 even

though fig. (3.1) clearly indicates improved resolution is obtainable at 36° for field

shape 24.

In order to render the effect of the earth's magnetic field negligible, the

minimum focusing magnetic field strength, (i.e. the field required to focus the

minimum energy particles of interest (100 keV)), should be 100-150 times larger

than that of the earth. The magnetic field of the earth is approximately 5xl0"5 T

[14], therefore the average magnetic focusing field strength for 100 keV particles

should be > 7.5x10-3 T.

11



3.3. DETERMINATION OF VACUUM CHAMBER DIMENSIONS

With the central-ray initial emission angle, and minimum values of kinetic

energy and required focusing field specified, the diameter and pitch or "focal length"

of the helical trajectory can be estimated based upon uniform field trajectory

equations [6]

T^ _ 2moCS i n(tt) fEk + 1 - 1

B — Bmin

Ek = Ek
.

:3.i)

T _ 27rmoCcos(a) Ek
Le;

+ 1 -

1

B — Bmin

Ek = Ek
rain

(3.2)

where: D = diameter of uniform field helical trajectory

L = focal length of uniform field helical trajectory

fio = permeability of vacuum
mo = rest mass of electron

c = speed of light in vacuum
q = charge of electron

B = magnetic field

a = central-ray initial emission angle

Ek = kinetic energy of beta-particle

Eo = moc2=rest mass energy of electron.

Note that the maximum diameter and focal length predicted by the uniform field

equations are only approximations to the actual values for a MLMES utilizing a

nonuniform field. The results of equations (3.1) and (3.2) indicated a trajectory of

diameter 0.1259 m and of focal length 0.S483 m. The diameter of the \-acuum

12



chamber must be greater than twice the diameter of the helical trajectory, refer to

fig. (3.2).

Based upon these preliminary results, a vacuum chamber with inside diameter

0.254 m (10"), outside diameter 0.2794 m (11"), and length 1.016 m (40"),

corresponding to an available standard size aluminum pipe, was selected.

13
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3.4. DESIGN OF THE MAGNET COIL

From eq. (.3.1) and the trajectory diameter estimate, an average field of

0.0619 T was estimated to be required for focusing a particle of the maximum

energy of interest (2.3 MeV). With the chamber outside diameter and required

magnetic field range specified, the coil can be designed. Recall that for field shape

24, the source and focal points are positioned to correspond with the ends of the coil.

The average value of the axial component of the magnetic field inside a coil of finite

length and of narrow thickness is approximately, (refer to appendix B for

derivation)

R _ /^oNI

av u '
a2 + D2 - a :3.3)

where: /Zq = permeability of vacuum
N = number of turns in coil

I = electric current flowing in the coil

D = coil length

a = effective coil radius: defined as (Ri+R2)/2, where
Ri and R2 are the inner and outer coil radii

For coil design purposes, a hypothetical coil was assumed of length equal to

the focal length of the particle trajectory (0.8483 m) in order to yield field shape 24.

The hypothetical coil was also assumed to have an effective radius of 0.1524 m (6").

Based on these estimations of the coil geometry, eq. (3.3) indicated that the product

of the number of turns and the current would be 6054 < NI < 49962 corresponding to

the required focusing fields for the minimum and maximum particle beam energies

of interest. Either the number of turns or the maximum current rating for a

selected wire gauge must be specified in order that both N and I can be determined.

#6 A.W.G. varnish insulated aluminum magnet wire with a maximum current

15



rating of 50 A [15] was chosen. Based upon the maximum current rating of the

wire, the required number of turns was found to be 1000.

The coil of KSU-MLMES#1 consists of 1196 turns of #6 A.W.G. aluminum

magnet wire wound directly onto the vacuum chamber between two aluminum

circular end rings. The actual coil is made up of a wire matrix of approximately 200

turns by 6 rows forming a coil with dimensions: length D=0.S509 m (33.5"), inner

radius Ri=0.1397 m (5.5"), and outer radius R2=0. 16345 m (6.435").

NOTE: the number of turns was increased from the estimate of 1000 to 1196.

By increasing N, the required focusing current for the maximum energy particle of

interest (2.3 MeV), will be beneficially decreased from the maximum current rating

of the wire.

The magnetic field inside of KSU-MLMES#1 will be nonuniform with

varying radial and axial field components between the source and detector. The

next section will describe the derivation of the equations of motion for a particle

traveling through the nonuniform field.

16



IV. THEORETICAL OPERATIONAL ANALYSIS

All aspects of the operation and performance of KSU-MLMES#1 must be

performed numerically due to the nonuniform magnetic field utilized by the system.

In the following sections we will first derive the equations of motion and magnetic

flux-density vector at all points around a solenoidal coil. Next, the method used to

solve the equations of motion will be presented followed by application of the

numerical results to the design of the system. The design aspects that will be

investigated are as follows:

1) determination of the range of allowed initial emission angles

2) determination of the source and focal point positions

3) determination of the spectrometer operating equation

4) determination of the point source ring focus position

5) determination of coUimation angle

6) investigation of additional trajectory information and a comparison
between numerical and approximate analytic solutions

7) determination of transmission and resolution characteristics of the
system.

17



4.1. DERIVATION OF THE EQUATIONS OF MOTION

The equations of motion are determined by examining the forces acting on a

beta-particle as it travels through the nonuniform magnetic field of the MLMES. A

magnetic force acts on the charged particle as given by the Lorentz equation

?g = q(vxB). (4.1)

In general, the velocity and magnetic field vectors will be functions of x, y and z in

rectangular coordinates

V = Vx X + Vy y + Vz z

B = Bx X + By y + Bz z .

where x, y, and z are the rectangular coordinate system unit vectors. Substitution

of the V and 8 vectors into the Lorentz force equation yields

Fg = q[(vyBz - V2By)x + (vzBx - VxBz)y + (vxBy - VyBx)z]. (4.2)

The magnetic force acting on the particle can be equated to Newton's •2nd law.

Newton's 2nd law for a relativistic particle with constant speed is given as

#i - dv
F = m^, (4.3)

where m is the moving mass of the particle. In rectangular coordinates the

acceleration is given as

18



dv _ dvjc ;, dvv - dvz : , , .,

Substitution of eq. (4.4) into Newton's equation, followed by equating the vector

components of the resulting expression to eq. (4.2) yields the equations of motion

^ = i (VyBz - VzBy)
^^ m

g^ = f (vzBx - VxBz) (4.5)

^ = i (VxBy - VyB,)3r m

Note that the equations of motion are coupled. They are coupled since Vx. Vy and Vz

are. interdependent upon one another and must therefore be solved simultaneously.

Also note that Bx, By, and Bz must be known at all points along the trajectory In

the next section the derivation of the magnetic field components will be provided.

19



4.2. DERIVATION OF THE MAGNETIC FLUX-DENSITY VECTOR

In this section, an accurate expression for evaluating the n:iagnetic

flux-density (field) vector at any point around the coil will be developed. The

derivation of the field vector will be performed in rectangular coordinates for

simplicity and then converted to cylindrical coordinates to make use of the system

symmetry. The system configuration to be analyzed is depicted in fig. (4.1). .An

arbitrary point where the field is to be evaluated, i.e. the point (p,h) in cylindrical

coordinates, is shown in the figure. Note the cylindrical symmetry of the system:

the analysis can be simplified by considering the point (p,h) to lie in the xz plane

without sacrificing generality. This is a direct consequence of the fact that a coil

has only radial and axial magnetic field components, but no angular component.

Two approximations are introduced to simplify the analysis:

Approximation 1) the coil volume consists of a close-packed matrix of

conductor, insulation, and air gaps: a uniform current

density is assumed to flow through the entire cross sectional

area of the coil. The current-density magnitude, having

units of A/m2, is given by

J = ^, (4.6)

where: N = number of turns in the coil

I = electric current

A = cross sectional area of coil.

The coil side-view cross sectional area is given as

A = D(R2-Ri), (4.7)
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where: D = length of coil

Ri = inner radius of coil

R2 = outer radius of coil.

Approximation 2) The pitch of individual turns in the winding are neglected.

Note that the first approximation converts the problem of evaluation of the field at

a point from one of summing the field contribution at the point from each individual

turn in the coil to one of integration over the volume occupied by all turns in the

coil.

The differential form of the Biot-Savart law relates the differential magnetic

field vector at a point, say (p,h) in cylindrical coordinates, to a differential current

element generating the field:

38(p,h) =^ (ijt , R) =^ (la^ , ^)

,

where R=R/R. To obtain the magnetic field vector at the point (p.h). we simply

integrate the differential form of the Biot-Savart law over the coil volume:

J(f) X R3B = fe///^^^i^dV. .4.S,

coil

volme

where we have used the relation iat=J(r)dV: dV being the differential volume

element and .J(f ) is the current density vector that will be described later. The task

at hand becomes one of defining each quantity in the integral form of rhe

Biot-Savart law. Each of the quantities defined in fig. (4.1) is instrumental in

developing the terms of the Biot-Savart law and will be described below.
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L= variable position vector of the point (p,ti), wliere the field is to be

calculated, with respect to the transverse plane containing the

current element: L is given as

L = px + (h - z)z .

r= variable vector defining the radial and angular position of the

current element and is given as

r = rcos(0)x + rsin(0)y .

i{(p)= magnitude of the line segment connecting the projection of rhe

point (p,h) into the xy plane containing the differential current

element, and the differential current element. Note that the

magnitude of Ovaries with angle (p and is obtained by applying the

law of cosines to the triangle in the xy plane containing the

differential current element as an apex

ii'f>)
= r2 + p2 - 2rpcos(G)) .

R= variable vector pointing from the differential current elenn'iii to

the point (p,h): by vector addition R is given as

R = L-r = (p-rcos(c))) x-rsin(d)y + (h-z)z . (4.'.1)

Re variable magnitude of R: one way of deriving R is iVoin rhe

Pythagorean theorem
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R =
[i{<t>)Y + (h^)2

Substitution of t{ (p) into the expression for R yields

R = p2 + (h^)2 - 2rpcos(0)
,

wiiere h-zE variable axial separation distance between the current element

and point (p,h).

lJ(r)= variable current density vector; earlier the magnitude was

presented in eq. (4.6). The direction is obtained by noting that

J(r) is perpendicular to r or else by noting J(f) is in the same

direction as the cylindrical coordinate unit vector o: i.e. namely.

-sin((/!))x+cos(0)y. Therefore the current density vector is

"^^^^ " D(R2-Ri)
("Sin(0)x + cos{(p)y) .

The cross product between J(r) as given in the previous expression and R as given

in eq. (4.9) yields

J(r) X R = cos(0)(h-z)x + sin(0)(h-z)y + (r - pcos(<i)))z .

Next a conversion to the cyhndrical coordinates system is desired because the

magnetic field only has two components, i.e. a radial and axial component, in the

cylindrical coordinate system. In general the coordinate transformation equations

are
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r = cos((?ii)x + sin(0)y

(j) = -sin(<^)x + cos(0)y

z = z
;

however, we must specifically apply the transformations at the point (p,h) at which

0=0. For this reason the correct coordinate transformations are given as

r = X

z = z .

Therefore, we obtain

J(f) X R = cos(0)(h-z)r + sin(0)(h-z)0 + (r - pcos(0))z . (4.11)

In cylindrical coordinates the differential volume is given as

dV = rdr d^dz . (4-12)

Now all required quantities are known and can be substituted into the inte.sral

form of the Biot-Savart law. Substitution of equations (4.10), (4.11) and (4.12) into

eq. (4.8) yields

Q(P.'') = jVH -}'3''^''g
\

\' { { rnw)cos(^)r + r(h-z);ir.(o)o - r( scos(oi-riz . .,.
4iiJ(a2-Ki) ,, ^

.) }.\—• c:ao^z
•' .-=-0 -^ ,.= a ' r=R, 1^' - P' -^ ih-2P-2rpcos(9)J-^/^
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Integration over the coil volume is over cylindrical coordinates r.phi.z. To avoid

confusion, note that the radial and axial position of the particle in cylindrical

coordinates are denoted as (p,h). The ^ term integrates analytically to zero leaving

only a radial and axial component as expected. Integration over coil length was

performed analytically leaving the radial and axial magnetic field vector

components in the form

Br(P.l>)r = j^nftf^J J
.-cose*)

0=0 '
r = Ri

.2j R,

-Idrdcr

i-p^ - 2f pCOS(*J

(h -D/2)

/ !'+p'+(ti-Ui2) ' - 2rpcos(#J /r'+P''+lh+ U/2)' -2:pcos((5j|

^d.-d<lz

where: (p.h) = radial and axial coordinates of position where field is to be

evaluated (h measured from center of coil)

N = number of turns in coil

I = electric current flowing in coil

D = length of the coil

Ri = inner radius of coil

Ro = outer radius of coil

/io = permeability of vacuum
= angular variable of integration over coil volume

r = radial variable of integration over coil volume.

A FORTR.AN code named FIELD was written which utilized 16-point double

Gauss-Quadrature numerical integration to determine the field components ar any

specified point (p.h): (the source code listing is provided in appendix A). Several

plots of the individual field components are provided on the following pages 'o

demonstrate the characteristics of the magnetic field around the coil. T'le iie.xt

section will cover the topic of solving the nonlinear coupled equations of motion.
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4.3. SOLUTION OF THE EQUATIONS OF MOTION

The equations of motion were presented in eq. (4.5). An accurate solution ot

tlie equations of motion can only be performed numerically. The Runge-Kutra 4th

order (RK4) numerical method was implemented in the solution of the equations for

its ease of application and accuracy. Recall that the equations of motion were

expressed as first order ordinary differential equations in terms of the rectani^iiiar

velocity components: \\, Vy, and v^. The helical trajectory, given in rectangular

coordinates as x, y and z as functions of time or axial position, is the desired

solution. The velocity is simply the time rate of change of position, therefore th

equations of motion can be expressed as the following set of first order ordinary

differential equations:

e

3r = ^(vyBz-V3By)

^ = ^(v,Bx-VxBz)
m

3Y^
= ^(V.By-VyB.)

dx_

dv

dz
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Six initial conditions are required: one for eacii 1st order equation. The initial

position and velocity components of the particle yield the required initial coiidirions.

A FORTRAN program named (PATH-RK4) was written to solve the

equations of motion in rectangular coordinates, (refer to appendix A for

self-explanatory source-code listing). The program is general in nature and can be

used to design new or analyze any existing MLS system that has a single

rectangularly shaped coil. A brief description of the - quired input data. lo2;ic. and

the output data generated by the program will be provided:

REQUIRED INPUT DATA

1) coil geometry: coil length (m)
inner coil radius (m|
outer coil radius (m)

# turns in coil

2) vacuum chamber inside radius and length (m)

3) source location [x(0),y(0),z(0)] (m)

4) electric current flowing through the coil (A)

5) particle kinetic energy (MeV)

6) initial emission angle with respect to axial direction (degrees)

7) trajectory convergence option

1) track the particle until it reaches the focal point: the focal point is

defined as the axial position at which the trajectory reaches a niininiuni

radial value

2) track the particle until it reaches a user defined axial position

LOGIC

1) step particle forward in time along the trajectory by using the RK4 numerical
routine to solve the equations of motion

2) evaluate the radial and axial magnetic field components at each poinr and
horner along the trajectory as required
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3) test for particle convergence: a particle is considered to have converged when
it's trajectory reaches a minimum radial value or when it reaches a user
defined axial position

OUTPUT DATA

1) radial and axial components of the magnetic field acting upon the particle
versus the particle's axial position, z

2) velocity components Vx, Vy, and Vz versus z

3) the helical trajectory is 3-dimensional: the x,y,z coordinates of the point
obtained at each time step along the trajectory are provided

4) useful design characteristics of the trajectory are readily obtained bv
considering 2-dimensional views of the trajectory: the following data files are
generated:

a) trajectory rectangular coordinate: x versus z

b) trajectory rectangular coordinate: y versus z

c) trajectory cylindrical coordinate: r versus z

d) trajectory end view in rectangular coordinates: x versus y

5) trajectory focal length: defined as source to focal point distance.

Output data from the program were used to specify the source and focal point

locations, position of ring focus, required angle of collimator edges, the spectrometer

operating equation, and the theoretical resolution of the system. A discussion of the

determination of each of these design specifications will be provided in the following

sections; but first the determination of the range of allowed initial emission angles

will be presented to clarify the discussion that follows.

4.3.1. DETERMINATION OF THE RANGE OF INITIAL EMISSION ANGLE

Only particles emanating from the source into a prescribed range of initial

emission angles {a±Aa), with respect to the MLMES axis, will be allowed to pass

through the first collimator. The range of allowable initial emission angles about
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the central-ray initial emission angle (a) depends upon the desired transmission

(T). Recall that transmission is defined as the fraction of the particles of selected

energy emitted by a point source that are allowed to pass through the first

collimator. The usable fraction of the total solid angle is given as

a+Aa
4;rT=

/ 27rein(^)d^.
•^ 9=a-Aa

The integration yields

47rT = -27r[cos(a+Aa) - cos(Q^Aa)] .

Use of the trigonometric identity

sin(^) sin(7) =
^ [cos(/^7) - cos(/?+7)]

,

yields

T = sin(a) sin(Aa) .

Solve for the only unknown Aa and obtain

Aa = sin"i
sin(a)_

The range of allowed initial emission angles for 1.0% transmission is 25'^ ±

1.3560 and 250 ± 0.6780 for 0.5% transmission. Knowledge of the ran^e of initial
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emission angles plays an important role in determining the source, focal point, ring

focus and collimator positions as will become apparent in the sections that follow.

4.3.2. DETERMINATION OF THE SOURCE AND FOCAL POINT POSITIONS

Recall from the COIL AND VACUUM CHAMBER DESIGN section that an

estimate of the focal length was calculated based upon uniform field expressions for

the helical trajectory. In order to determine the required actual focal length, the

program PATH-RK4 was run using the actual coil and vacuum chamber

dimensions. For KSU-MLMES#1, the maximum focal length of particles emitted

at the central-ray initial emission angle (a=250), is approximately 0.8141 m. At

this focal length the source is located at (0,0,-0.40705 m) and a 3.0565 MeV

particle, at a focusing current of 50 A, will symmetrically focus while just clearing

the vacuum chamber wall, refer to fig. (4.6). The actual focal length was reduced to

0.762 m to prevent particles emitted from a point source at the maximum allowed

angle of 26.3560 (corresponding to a 1% transmission configuration from a point

source) from striking the vacuum chamber wall is provided to account for a small

disk rather than point source. At a focal length of 0.762 m, a 2.S36S6 MeV particle

will symmetrically focus when a focusing current of 50 A is applied to the coil.

In summary, the following design specifications were found in this section:

1) source axial position: z=-0.381 m
2) central ray focal point position: z=+0.381 m
3) at the maximum current of 50 A, the maximum energv particle that can

be focused by the MLMES for a focal length of 0.762 m is 2.83686 MeV.
In the next section the spectrometer operating equation will be developed.
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4.3.3. DETERMINATION OF THE SPECTROMETER OPERATING
EQUATION

The spectrometer operating equation stipulates the kinetic energy of the

particle that will be focused for a given electric current flowing through the MLMES

coil. A focused particle is defined according to the following criterion: 1) initial

emission angle of 25°, 2) emitted from the front center face of the disk source at the

point (0,0,-0.381 m), and 3) must focus at an axial position of z=0.381 m.

The program PATH-RK4 was run with input data: source point (0.0,-0.381),

initial emission angle 25°, an electric current was selected and a kinetic energy was

assumed. After each run the focal length generated by PATH-RK4 was compared

to 0.762 m. The assumed kinetic energy was lowered if the focal length obtained

was greater than 0.762 m and raised otherwise. This iterative process continued to

convergence. Results of this analysis are tabulated below.

Table 4.1. The kinetic energy of particles that will be focused for a specified
electric current. The data was generated by an iterative application of ti:e

program PATH-RK4.

Electric Current Focused Kinetic Energy Focal Length
(A) (MeV) (m)

0.0 0.0 undefined
3.0 0.03721 0.7620430

10.0 0.32506 0.7619963
20.0 0.90768 0.7620029
30.0 1.53889 0.7620006
40.0 2.18478 0.7620012
50.0 2.83686 0.7620011

A plot of the data in table (4.1) is presented in fig. (4.7). The shape of the

resulting curve appears to be characteristic of spectrometers in general, (i.e. note

the curved tail at low kinetic energies and currents and nearly linear response at
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higher energies and currents). In the case of uniform field MLS systems an analytic

expression relating the particle energy and the corresponding focusing current can be

derived from equation (3.1) or (3.2). The resulting expression will be referred to as

the spectrometer operating equation and is of form

Ek = Eo kI2 + 1-1 (4.13)

where: Ek = kinetic energy (MeV)
Eo = electron rest mass energy (MeV)

I = electric current (Al
k = constant = [qRB/(^moClsin(a)]2 = [qLB/(27raioClcos(a))]2

For uniform field xVILS systems the physical quantities making up the constant k are

electric charge (q), radius of curvature (R), magnetic field (B), electron rest mass

(mo), speed of light (c), electric current (I), and the sine of the angle between the

velocity and magnetic field vectors (sin(a)), when equation 3.1 is used to derive the

spectrometer operating equation. If equation 3.2 is used to derive the spectrometer

operating equation the different quantities making up the constant k include the

pitch or "focal length" (L), and the cosine of the angle between the velocity and

magnetic field vectors (cos(a)). Equation (4.13) also applies to nonuniform field

systems except average values of the radius of curvature, magnetic field and sine of

the angle between the velocity and magnetic field vectors are used. Note that k is a

constant because the average radius of curvature and average value of sin(a) are

independent of kinetic energy. Further the ratio of the average value of the

magnetic field divided by the electric current is simply a constant relating to the

coil geometry. Rather than determining the average values of R. B/I. and sin( q) for

the central ray trajectory, the parameter k was simply treated as a constant curve
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fit parameter that was evaluated by substituting in one of the data points from

table 4.1. The point 1=50 A and Ek=2.83686 MeV was arbitrarily selected yielding

a value of the parameter k=0.0167691 A-2.

In summary, the spectrometer operating equation predicts the peak energy of

the monoenergetic beam that will be emitted from the MLMES for a specified

electric current. The equation was found to be

Ek = 0.5110033 0.0167691 12 + 1-1

4.3.4. DETERMINATION OF THE POINT SOURCE RING FOCUS POSITION

From fig. (4.8), the r versus z trajectories of particles of selected energy

emitted at a and a±Aa (corresponding to 1% transmission) are observed to

intersect one another in a narrow region known as the annular or point source ring

focus position. It is common practice to locate the second collimator where the

intersecting traces have minimum width. A magnified view of the trajectory

intersection region is provided in figure (4.9). From a further magnified view the

point of minimum width (ring focus position) was graphically determined to be

approximately r=0.0628 m and z=0.2406 m.

4.3.5. DETERMINATION OF COLLIMATION ANGLE

The angle that the central-ray trajectory makes with respect to the axial

direction at the ring focus position is defined as the collimation angle. It is

important to know the collimation angle since it corresponds to the angle at which

the collimator surfaces must be beveled. A linear slope fit was performed using (r.z)

data points on either side of the ring focus point resulting in an angle of 22.3o.
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4.3.6. ADDITIONAL TRAJECTORY INFORMATION GENERATED BY
PATH-RK4

The program PATH-RK4 is a versatile program that generates a tremendous

amount of useful information. The design of the MLMES was primarily based upon

analysis of r vs. z ray traces. Additional information provided by the program

includes rectangular coordinates of points (x,y,z) along the helical trajectory, the

radial and magnetic field components that a beta-particle experiences as it travels

through the MLMES, and the velocity components of the particle in rectangular

coordinates (vx,Vy,Vz) as it travels through the MLMES. Figure (4.10) shows the

energy independent central ray trajectory ray trace r vs. z as well as the rectangular

components of the ray trace (x and y vs. z). Figures (4.11) and (4.12) represent the

relative shape of the radial and axial magnetic field components that a particle will

experience as it travels along the central ray trajectory through the MLMES. Note

the vertical axis of each plot is Br/I and Bz/I rather than Br and Bz as generated by

the program. The plots were presented in this manner since they yield energy

independent relative magnetic field shape information that is only a function of the

coil geometry. Figure (4.13) indicates typical velocity components of a 1 MeV

particle as it travels along the central-ray trajectory. The velocity components will

have the same general shape but will be of different magnitude for particles of

different energies traveling along the central-ray trajectory.

In addition the end-view of the helical trajectory may be generated by

plotting the x versus y components of data points along the helical trajectory, refer

to fig. (4.14). An unexpected observation was made regarding the end-view of the

helical central-ray trajectory. Intuitively one would expect that a particle emitted

from a point along the axis into the xz plane would follow a trajectory symmetric

with respect to the yz and z=0 planes for a magnetic field symmetric about the z=0
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plane. However, fig. (4.14) clearly indicates that the expected symmetry does not

exist. The dilemma was resolved by demonstrating that the analytic solution to a

simplified form of the equations of motion yielded an unsymmetric end-view offset

in the same manner as the numerical solution. The analytic solution will not be

provided; however, the simplifying approximations required to reduce the problem

to an extent that an analytic solution can be obtained and the analytic results will

be provided to demonstrate the correctness of the numerical solution.

REQUIRED APPROXIMATIONS

Approximation 1) The radial component of the magnetic field must be

neglected in order to solve the equations of motion

analytically.

The axial component of the magnetic field throughout the

volume between the source and focal points was assumed to

be described by the value along the axis of a solenoid of

finite length, namely

Approximation 2)

where:

B.(z)=^ lz+D/21. (z-D/2;

ya^+(z+D/2)^ / a-^+(z-D/2)

/io =
N =
I =
D =
a =

z =

permeability of vacuum
number of turns in coil

electric current flowing in the coil

length of coil

effective radius of coil (Ri+R2)/2: Ri and Ro being the inner
and outer coil radii respectively
axial position where the field is to be evaluated.
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OBSERVATIONS AND RESULTS FROM THE ANALYTIC SOLUTION

Observation 1) The end-view predicted by the analytic solution is unsymmetric

and is shifted in the same manner predicted by the numerical

solution.

Observation 2) The velocity components of the particle at the focal point will not

be the same as they were at the source. The analytic solution

indicated that Vy would be negative at the focal point rather than

zero as it is at the source point, Vx would be positive but decreased

in magnitude at the focal point relative to the source point, and Vz

would be the same at the focal point as the source point. Figure

(4.13) clearly indicates that the numerical solution displays these

characteristics. The speed of the particle will remain constant

along the trajectory as required.

Observation 3) The analytic solution indicated that the r versus z ray trace would

be symmetric about the z=0 plane, while the x and y components

making up r would not be symmetric about the plane z=0. .Again.

the numerical solution presented in fig. (4.10) clearly displays the

trends predicted by the analytic solution.
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4.4. DETERMINATION OF TRANSMISSION AND RESOLUTION
CHARACTERISTICS

The resolution of a MLMES depends on the selected transmission,

monoenergetic beam energy, and disk source diameter. In this section, the effect

each of these parameters has on the base-width resolution will be examined. In

general the resolution also depends on the source spectrum, selected central-ray

initial emission angle, and magnetic field shape. The base width resolution is

defined as

R - ^Ek _ kmax kmin
h ~ V ~ir

'—
ks elected kselected

where the maximum and minimum energy particles that contribute to the beam

define the peak base-width. The following process was followed to determine Ek^ax,

Ekmin, and the base-width resolution:

1) The axial positions of collimators la and lb were determined for 1% and 0.5%

transmissions. Recall that the range of initial emission angles is 25 ± 1.3560

and 25 ± 0.6780 for 1% and 0.5% transmission respectively. Collimators la

and lb are positioned radially to correspond with the ring focus radial position

(rrf=0.0628 m). They are positioned axially to correspond with r versus z ray

traces a ± Aa. For 1% transmission the axial position of collimator la is

zia=-0.2498 m and for collimator lb is zib=-0.231 m. while for 0.5%

transmission: zia=-0.2455 m and zib=-0.2361 m, refer to fig. (4.15). The

axial collimator positions were obtained by performing a linear interpolation

on the r versus z data for ray traces a±Aa about rrf.
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COLLIMATORS

Figure 4.15. r versus z ray traces for particles of selected
energy emitted at extremura angles a,, <^, otj , o^ and from the
center of a disk source at a and ai^ot.
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2) Figure (4.15) depicts particles of selected energy emitted at extremum angles

from the periphery of a disk source of radius (rdisk), and particles of selected

energy emitted at a and Q±Aa from the front center face of the disk source.

In each case the angle denoted is for a particle of selected energy that will

just clear collimator la or lb as shown. Angles ai, a^, as, and ^4 must be

determined because the maximum and minimum particle energies that

contribute to the beam and the axial position of collimators 2a and 2b are

determined by tracking particles emitted at these angles. Extremum angles ai

and as were found by emitting particles of selected energy at angles greater

than and less than each angle from source positions (±rdisk, 0,-0. 381)

respectively. The radial value of each r versus z ray trace at the axial position

of collimator la was recorded and a linear interpolation was performed about

rrf yielding the desired extremum angles. Extremum angles ao and a4 were

found in a similar manner except the axial position of collimator lb was

utilized.

3) Figure (4.16) is a plot of ray traces from particles of selected energy emitted

at ai, 0-2, as, and 04 for 1% transmission. Observe at rrf that the beam width

at collimator set 2 is described by traces of particles emitted from source

positions (±rciisk,0,-0.381) at corresponding emission angles ao and ^4

respectively. In particular, the axial position of collimator 2a is found by

performing a linear interpolation on the r versus z data about rrf for a particle

of selected energy emitted from (rdisk,0,-0.381) at angle ao- The axial

position of collimator 2b is found in a similar manner except angle 04 and

source point (-rdisk,0,-€.381) are used. (NOTE: the preceding method of

determining the axial positions of collimators 2a and 2b makes the maximum
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utilization of all particles of selected energy emitted by a disk source for a

specified transmission. Later a procedure for improving the resolution by

narrowing the slit width between collimators 2a and 2b will be provided).

4) Finally the maximum and minimum contributing particle energies can be

determined. To find Ekmax: particles of energies greater and less than the

actual value of Ekmax were emitted from the source point (rdisk, 0,-0. 381) at

angle oli- They were tracked to the axial position of collimator 2a where their

radial positions were recorded. A linear interpolation was performed about

the radial value rrf yielding Ekmax- Similarly to find Ekmin: particles of

energies greater and less than the actual value of Ekmin were emitted from the

source point (- rdisk,0,-0.381) at angle 0L^. They were tracked to the axial

position of coUimator 2b where their radial positions were recorded, k linear

interpolation was performed about the radial value rrf yielding Ekmin- The

dotted ray traces shown in fig. (4.16) represent particles of the maximum and

minimum energy emitted at the specified extremum angle.

Tables (4.2a) and (4.2b) provide a summary of extremum angles, required

positions of collimators 2a and 2b for maximum utilization of available selected

energy particles, maximum and minimum particle energies contributing to the

beam, and base-width resolution for a point source and disk sources of 0.1, 0.6, and

1.0 cm diameter. The data in each table are for a selected beam energy of 1 MeV:

table (4.2a) is for 1% transmission while table (4.2b) is for 0.5% transmission.

Figure (4.17) is based upon data compiled in tables (4.2a) and (4.2b) and depicts

the base-width variation with source diameter and transmission. NOTE: the

analysis for the case of a point source was different than for disk sources. The beam
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width at the ring focus position is defined by ray traces of particles of selected

energy emitted at angles a and c^^a, refer to fig. (4.9). The a.\ial position of

collimator 2a was based on tracking a particle of selected energy emitted at angle a,

while collimator 2b was based on tracking a particle of selected energy emitted at

angle a-d^a- The maximum particle energy was determined for a particle emitted

at angle o-Aa while the minimum energy was found for a particle emitted at the

central-ray emission angle a.

4.4.1. RESOLUTION VARIATION WITH SELECTED BEAM ENERGY

As stated previously the base-width resolution is a strong function of selected

beam energy. Figure (4.18) depicts the base-width resolution as a function of beam

energy for 1% transmission and disk sources of diameter 0.1, 0.6, and 1.0 cm. The

data for the figure was obtained by examining the trajectories of selected particle

energies other than 1 MeV in the same manner as described previously.

4.4.2 TECHNIQUE TO IMPROVE THE BASE WIDTH RESOLUTION

Improving the base-width resolution may be achieved by simply decreasing

the slit width between collimators 2a and 2b regardless of the selected transmission.

The following procedure may be followed to yield a desired base-width resolution

about a selected energy:

1) Find extremum angles an and ^4 for specified transmission and source

diameter.

3) Find Ekmax and Ekmin for the desired base-width resolution using the

equations
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Ekmax = Ekselected (1+Rb /2)

Ekmin = Ekselected (l-R-b /2).

4) Determine the required axial position of collimator 2a by making a r versus z

ray trace of the maximum energy particle emitted at the source point

(rdisk,0,-0.381) at angle 02. Perform a linear interpolation of the r versus z

data about the radial position rrf=0.0628 m to find the axial position of

collimator 2a. Determine the required axial position of collimator 2b by

making a r versus z ray trace of the minimum energy particle emitted at the

source point (-rdisk,0,-0.381) at angle a^. Perform a linear interpolation of

the r versus z data about the radial position rrf to find the axial position of

collimator 2b.

It should be pointed out that if the slit width is decreased too much the

resolution may decrease or else will remain constant while beam intensity decreases.

This undesirable effect is the result of the increasing ratio of scattered particles from

the collimator surfaces and structural components to uncoUided particles in the

beam as the slit width is decreased.

4.4.3 OBSERVATIONS AND CONCLUSIONS REGARDING RESOLUTION

1) From tables (4.2a) and (4.2b) or fig. (4.17) observe that decreasing the

transmission from 1% to 0.5% only yields an improvement in resolution of less

than 10%. At the same time the beam intensity is decreased by

approximately 50%; for this reason 1% transmission is a logical choice for

configuring the collimators.

2) From fig. (4.17) the base-width resolution was shown to be a strong function

of the disk source diameter.

61



3) From fig. (4.18) the base-width resolution was shown to be a strong function

of selected beam energy.

4) A technique was provided for attaining a specified base-width resolution

exceeding the values tabulated in tables (4.2a) and (4.2b).

5) The cross hatched portion of the beam shown in fig. (4.16) contains no

particles of desired selected energy. Particles of energy greater and less than

the selected energy, which are emitted from the periphery of a disk source, at

emission angles ranging between the extremum angles are observed to form

into distinct bands at the fringe of the beam. The base-width resolution can

be improved without affecting the transmission of particles of selected energy

by stripping the undesirable beam components by the use of additional exit

window collimators. The previously quoted base-width resolutions are

theoretically decreased by approximately a factor of 2 when the undesirable

particles are stripped from the fringes of the beam.

6) The base-width resolutions quoted are indicative of the beam just after it

passes through collimators 2a and 2b. Scattering from the collimators.

MLMES structure, exit window aperture or mylar window, and air molecule

scattering inside the vacuum chamber or between the detector and exit

window are not accounted for. All of these unaccounted effects will add

uncertainty to the theoretically quoted base-width resolution. Figure (4.19)

depicts the peak broadening and energy shifting that occurs as a

monoenergetic beam passes through air layers of different thicknesses.

7) Experimental results weren't available for KSU-MLMES#1 at the time of

this thesis because the system was in the final construction phase. Fi2;ure

(4.20) depicts nearly monoenergetic peaks generated by the Lawrence National
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Electron energy spectra measured 4 cm from electron spectro<T>eter's exit port
Magnet current: a) 1,75 amps, b) 2.50 amps, c) 3.00 aynps. d) 4.05 amps

(b)

V-

\

ns keV

Electron Energy
270 keV

Electron Energy

(c)

o

370 keV
Electron Energy Electron Energy

510 keV

Figure 4.20. Monoenerget ic electron peaks generated by the
Lawrence National Laboratory magnetic lens nonoenerge t ic electron
source [ 9 ]

.
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Laboratory monoenergetic electron source. The results were generated with

their system configured with a 1.0 cm diameter, 20 mCi isrcg source.

Transmission and central-ray initial emission angle data weren't provided in

their article. Based on their quoted exit beam diameter of 5.0 cm at a

distance of 10.0 cm from the exit window, one can decipher that oftUO for

their system. The monoenergetic beam passed through a 3 mg/cm2 thick

mylar exit window, 4.0 cm of air, and a 10.0 mg/cm2 Be detector entrance

window before being recorded by an intrinsic Ge detector. Recall the work

performed by Lindgren presented earlier in fig. (3.1) and the theoretical

ba^e-width resolution predictions summarized in tables (4.2a) and (4.2b).

The evidence suggests that KSU-MLMES#1 will have the capability to

exceed the performance of the LxNL-MLMES.
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V. DETERMINATION OF THE POWER-SUPPLY STABILITY
REQUIRExMENTS

Any fluctuation in the electrical current about the selected focusing current

will lead to a broadening of the peak width. To limit the peak base-width

broadening to 0.1% the following analysis was performed in order to obtain the

power-supply stability requirements. The derivative with respect to electric current

of the spectrometer operating equation yields

^Ek_ kEpI ,...

JkI2 + 1

A plot of eq. (5.1) is provided in fig. (5.1). Next the allowed deviation in Ek for

0.1% broadening is determined. At a selected beam energy Ek=2.8.36S6 MeV,

corresponding to a maximum focusing current of 50 A

dEk = .5(.001) 2.83686 = 0.001418 MeV.

The factor of .5 appearing in the expression arises to account for the ± dl variation

about the focusing current. Solving for dl from eq. (5.1) yields

Idll = dEk

r^Eki

0.001418

0.06544
= 0.02167A

[d\
\ I=50A

Therefore the power-supply stability requirement for a focusing current of 50 A is
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(0.02167/50) xl00%=±0.043%. Similarly for a focusing current of 5 A the stability

requirement is found to be ±0.027%. The percentage stability requirements apply

to any current fluctuation of duration greater than or equal to the particle transit

time (defined as the elapsed time of a particle traveling along the central-ra\-

trajectory between the source and focal point). At a focusing current of 50 A. the

transit time of the corresponding 2.83686 MeV focused particle is appro.ximarely

2.845 ns while at 5 A and 0.09776 MeV focused particle the transit time is

approximately 5.174 ns.

In summary: the power-supply stability requirement is observed to decrease

as the focusing current increases. To limit peak broadening due to power-suppl\-

fluctuations to 0.1%, a power-supply of stability ±0.043% at 50 A and ±0.027% at

5 A should be used.

The actual power-supply stability requirements may be less restrictive.

Recall in the previous analysis that the stability requirements were based upon the

stringent base-width broadening limitation. Further, the inductive nature of the

load (coil), will aid in power-supply stabilization.
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CONCLUSION

The theoretical design of a magnetic lens monoenergetic electron source was

presented in this thesis. The work of Lindgren [11-13], regarding the relationship

between magnetic field shape, resolution, and initial emission angle was examined.

Based upon Lindgren's work and economic considerations, a MLMES with the

source and focal points located near the ends of a coil and with a central-ray initial

emission angle of 25^ was selected.

A design procedure based upon the desired range of beam energies, minimum

allowable magnetic focusing field, and uniform field trajectory equations was

developed to estimate the required vacuum chamber dimensions. Next the

dimensions and number of turns in the magnet coil were specified. Because the

magnetic field shape utilized by the system was nonuniform, the operational

characteristics of the system could only be determined numerically. .'V program

titled PATH-RK4 was written to evaluate the trajectory of a beta-particle

traveling through the nonuniform magnetic field.

Trajectory results from the program PATH-RK4 were used to find the source

and focal point locations, ring focus point position, spectrometer operating equation,

the angle at which the collimators must be beveled, and the resolution and

transmission characteristics of the system. The base-width resolution of the system

was investigated as a function of disk source diameter, transmission, and selected

beam energy. As anticipated, the base-width resolution increased with source

diameter, transmission, and decreasing selected beam energy.
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APPENDIX A

COMPUTER PROGRAMS
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:
™J/O^LOWING FORTRAN PROGRAM NAMED ••PATH-RK4" CALCUiItES THF *

* TRAJECTORY OF A BETA PARTICLE TRAVELING THROUGH THfSSmt™

t

!

: !:?^ MAGNETIC FIELD OF THE MAGNETIC LENS mSnERGETI^ *
* ELECTRON SOURCE AT KANSAS STATE UNIVERSITY DEPArJmEN? OF I* NUCLEAR ENGINEERING. THE PROGRAM mIy BE US^D TO DESIgS MFW I
* OR ANALYZE ANY EXISTING MAGNETIC^ENS SPECTROMETER SYSTEM *
* PROVIDED THE MAGNET COIL IS CONSTRUCTED OF A SINGLE CO^f *
* WITH A RECTANGULAR SIDE-VIEW CROSS SECTION !* ALGORITHM: " *

* THIS PROGRAM CALCULATES THE TRAJECTORY BY USING THE *
* RUNGE-KUTTA 4TH ORDER NUMERICAL METHOD TO SOLVE JSe I

! xr.^
NONLINEAR COUPLED EQUATIONS OF MOTION

*

* ^Ao^SL^^^'^^^ "^^ COMPILED USING THE MICROSOFT (R)* FORTRAN OPTIMIZING COMPILER VERSION 4 10 !* AUTHOR: RICHARD WEINER
^^^^UN 4.10. *

* DATE: DECEMBER 31,1988
*

IMPLICIT REAL*8 (A-H,0-Z)
CHARACTER QUESTl

, QUEST2
DIMENSION Y(6,4) ,F(6,4) , W (16) , ZER ( 16)

**PI =3!lIl592654*******
VARIABLE NOMENCLATURE *************.*.....

* U=PERMEABILITY OF FREE SPACE
* Q=ELECTRONIC CHARGE (C)
* C=SPEED OF LIGHT IN VACUUM (M/S)
* RME=REST MASS OF ELECTRON (KG)
* EM=ELECTRON MOVING MASS (KG)
* CF=CONVERSION FACTOR (J/MEV)
* V=VELOCITY MAGNITUDE (M/S)
* EK=KINETIC ENERGY OF BETA PARTICLE (MEV)
* ^^,^^='^^STANCE COVERED IN ONE TIME STEP (.01 M)
: °^J™^^ 2T^P ^0« THE TRAJECTORY CALCULATION (S)
* CUR=ELECTRIC CURRENT THROUGH THE COIL (A)

* NSSSBL^^S^\^Ss^i;°^0?f^f 1?^)
'^'^ ^—^ ^—^) *

* D=COIL LENGTH (M)
*

* R2:™R ?SlL Tnrnt Sm!
— ^^'^^^ INTEGRATION LIMIT ON R :

* PHI?=0 (R^DIAN^t ^^^ —UPPER INTEGRATION LIMIT ON R

: li-^iil/s^.^.'^A^^^^^^^^ TO Z = OISt\.!c"^ .

WRITE ( * , 1

)

& ' ENTER [Y/N] AND PRESS RETURN' //
& ' DEFAULT COIL DIMENSIONS : LENGTH=. 85 09 H,',/,
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& ' INNER RADIUS=.1397 M,',/,
& ' OUTER RADIUS=. 16345 M'/,
& '

# TURNS=119 6',//,
& ' DEFAULT VACUUM CHAMBER DIMENSIONS : INNER RADIUS=.127 M,

^
'

LENGTH=1.016 M')
READ(*,

•
(Al) ) QUESTl

IF (QUESTl .EQ. 'N') THEN
WRITE ( * , 2

)

2 FORMAT (IX, 'ENTER COIL LENGTH (M) ')
READ(*,

'
(F8.0) ') D

WRITE (*, 3)
3 FORMAT (IX, 'ENTER COIL INNER RADIUS (M)

'

)

READ(*,
'
(F8.0) ') Rl

WRITE(*,4)
4 FORMAT (IX, 'ENTER COIL OUTER RADIUS (M) ')

READ(*,
•
(F8.0) ') R2

WRITE(*,5)
5 FORMAT (IX, 'ENTER THE NUMBER OF TURNS IN THE COIL')

READ(*, ' (15) ') N
WRITE(*,6)

6 FORMAT (IX, 'ENTER THE VACUUM CHAMBER INNER RADIUS AND

'

& ' LENGTH (M)
'

)

READ(*,
'
(2F8.0) ') RVAC,ZVAC

ELSE
* DEFAULT COIL DIMENSIONS

D=,8509
Rl=.1397
R2=. 16345
N=1196

* DEFAULT VACUUM CHAMBER DIMENSIONS
RVAC=.127
ZVAC=1,016
END IF

&

&

&

&

&

WRITE(*,7)
7 F0RMAT(/,1X, 'DO YOU WANT TO USE DEFAULT PARTICLE INITtal'

'
• POSITION?' ,//,

'^

ENTER [Y/N] AND PRESS RETURN',//,
DEFAULT POSITION:X(0)=0 M, ',/,

Y(0)=0 M, ',/,
Z(0)=-.381 M'

)

READ(*,
'
(Al) •) QUEST2

IF (QUEST2 .EQ. 'N') THEN
WRITE ( * , 8

)

8 FORMAT (IX, 'ENTER THE INITIAL POSITION: X(0),Y(0) ZfO)')
READ(*, '(3F8.0) )XINIT,YINIT,ZINIT ^ ^ ' ^

i

'
^ )

)

RINIT=(XINIT**2+YINIT**2) **.5
ELSE

* DEFAULT INITIAL POSITION
XINIT=0
YINIT=0
ZINIT=-.381
RINIT=0
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END IF

WRITE(*,9)
9 FORMAT(/, IX, 'ENTER PARTICLE KINETIC ENERGY (MEV)

'

)

READ (*,

•

(F8.0) ') EK
WRITE (*, 10)

10 FORMAT (IX, 'ENTER ELECTRIC CURRENT (AMPS)')
READ (*,

'

(F8,0) ) CUR
WRITE (*, 11)

11 FORMAT (IX, 'ENTER INITIAL EMISSION ANGLE (DEGREES) ')
READ (*,

'

(F8.0) •) ANGLE

WRITE (*, 12)
12 FORMAT(/, IX, 'SELECT TRAJECTORY CONVERGENCE CRITERION'

&

&

&

&

&

OPTION 1 OR 2
' ,/,

1) TRACK PARTICLE TO FOCAL POINT (I.E. STOP',/,
TRACKING PARTICLE ONCE IT REACHES A MINIMUM',/,
RADIAL VALUE ALONG THE TRAJECTORY) ',/,

2) TRACK PARTICLE TO A USER DEFINED FINAL AXIAL' /

& ' POSITION',/)
READ (*,

•
(II) ') IFLAG

IF (IFLAG .EQ. 2) THEN
WRITE (*, 13)

13 FORMAT(/, IX, 'ENTER THE FINAL AXIAL POSITION TO WHICH' /
& • THE PARTICLE IS TO BE TRACKED (METERS) ')
READ (*,

•

(F8.0) ') ZFINAL
END IF

**************** OPEN DISK FILES FOR DATA OUTPUT ********** •k -k it -ie -x -k

OPEN (UNIT
OPEN(UNIT^
OPEN(UNIT^
OPEN (UNIT:
OPEN(UNIT=
OPEN(UNIT=
OPEN(UNIT=
OPEN(UNIT=
OPEN(UNIT=
OPEN (UNIT

= 1, FILE=
=2, FILE=
^3, FILE=
A, FILE=
5, FILE=
6, FILE=
7, FILE=
8, FILE=
9, FILE=

FILE= 10

A:XZ')
A:YZ'

)

XY')
RZ')
VXZ'

)

VYZ')
VZZ')
BRZ'

)

BZZ'
)

='A:XYZ'
)

* CONVERT INITIAL EMISSION ANGLE FROM DEGREES TO RADIANS
PI=2*ASIN(1.

)

ALPHA=ANGLE*PI/18 .

FL=ABS(ZINIT)
U=4*PT*lE-07
Q=-l. 6021892E-19
C=2.99792458E8
RME=9.109534E-31
CF=1.6021892E-13
EM=EK*CF/C**2+RME
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QDM=Q/EM
V=C*(1-(RME/EM) **2) **.5
SIZE=.01
DELT=SIZE/V
UNI=U*N*CUR
PHI 1=0
PHI2=2*PI
CONST=(UNI/ (4*PI*D* (R2-R1)

)
) * . 25* (PHI2-PHI1) * (R2-R1)

*************** GAUSS-QUADRATURE WEIGHTS AND ZEROS **************

DATA(ZER(I) ,1=1,8)/ .095012509837637, .281603550779259,
& .458016777657227, .617876244402644, .755404408355003,
& .865631202387832, .944575023073233, .989400934991649/
DATA(W(I) ,1=1,8)/ .189450610455068, .182603415044924,

& .169156519395003, .149595988816577, .124628971255534,
& .095158511682494, .062253523938648, .027152459411754/
DO 100 1=1,8
ZER(I+8)=-ZER(I)

100 W(I+8)=W(I)

* THE PROGRAM UTILIZES THE CURRENT AND PREVIOUS THREE VALUES 0^
* THE PARTICLE'S POSITION IN CYLINDRICAL COORDINATES IN ORDER
* THAT A DETERMINATION CAN BE MADE REGARDING TRAJECTORY CONVER-
GENCE TO THE FOCAL POINT: INITIALIZE THE VALUES OF THESE POINTS.

RNEW=0
ROLD1=0
ROLD2=0
ROLD3=0
ZNEW=-FL
ZOLD1=0
ZOLD2=0
ZOLD3=0

*

* THE PROGRAM UTILIZES THE PREVIOUS THREE VALUES OF THE PARTI

-

* CLE'S VELOCITY COMPONENTS IN RECTANGULAR COORDINATES IN ORDER
* THAT THEY MAY BE EVALUATED AT THE FOCAL POINT: INITIALIZE THE
* VALUES OF THESE POINTS.

VXNEW=V*SIN (ALPHA)
VXOLD1=0
VXOLD2=0
VXOLD3=0
VYNEW=0
VYOLD1=0
VYOLD2=0
VYOLD3=0
VZNEW=V*COS (ALPHA)
VZOLD1=0
VZOLD2=0
VZOLD3=0
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***************** RUNGE-KUTTA 4TH ORDER METHOD ******************
* THE RUNGE-KUTTA 4TH ORDER METHOD IS USED TO SOLVE THE 6 *
* COUPLED NONLINEAR EQUATIONS OF MOTION IN RECTANGULAR COORD- *
* INATES. THE FOLLOWING NOTATION IS USED: *
* Y(1,J)=VX F(1,J)=(Q/M)*(VY*BZ-VZ*BY) *
* Y(2,J)=VY F(2,J)=(Q/M)*(VZ*BX-VX*BZ) *
* Y(3,J)=VZ F(3,J)=(Q/M)*(VX*BY-VY*BX) *
* Y(4,J)=X F(4,J)=VX *
* Y(5,J)=Y F(5,J)=VY *
* Y(6,J)=Z F(6,J)=VZ *

********************** INITIAL CONDITIONS ***********************

Y(1,1)=V*SIN(ALPHA)
Y(2,l)=0
Y(3,1)=V*C0S(ALPHA)
Y(4,1)=XINIT
Y(5,1)=YINIT
Y{6,1)=ZINIT
P=RINIT

WRITE(1,1020) Y(6,l) ,Y(4,1)
WRITE(2,1020) Y(6,l) ,Y(5,1)
WRITE(3,1020) Y(5,l) ,Y(4,1)
WRITE(4,1020) Y(6,l) ,P
WRITE(5,1010) Y(6,l) ,Y(1,1)
WRITE(6,1010) Y(6,l) ,Y(2,1)
WRITE(7,1010) Y(6,l) ,Y(3,1)
WRITE (10, 1030) Y(4,l) ,Y(5,1) ,Y(6,1)

1010 F0RMAT(1X,F9.6,1X,E16.9)
1030 F0RMAT(1X,F9.6,1X,F9.6,1X,F9.6)

* TIME STEP LOOP

DO 15 LOOP=1,1000

* RK4 HORNER EVALUATION LOOP

DO 20 J=l,4

******************* MAGNETIC FIELD EVALUATION *******************
* THIS PORTION OF THE PROGRAM UTILIZES 16-POINT GAUSS -QUADRATURE*
* DOUBLE NUMERICAL INTEGRATION TO CALCULATE THE RADIAL AND AXIAL*
* COMPONENTS OF THE MAGNETIC FIELD AT THE SPECIFIED PARTICLE *
* POSITION.

^

P=(Y(4, J) **2+Y(5, J) **2) **.5
H=Y(6,J)
SUM2A=0
SUM2B=0
DO 200 N=l, 16
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R=.5*(R2+R1+(R2-R1) *ZER(N)

)

SUM1A=0
SUM1B=0
DO 210 K=l,16
PHI=. 5* (PHI2+PHI1+ (PHI2-PHI1) *ZER(K)

)

V1=R*C0S(PHI)
V2=R**2+P**2-2*P*V1
V3=(V2+(H-D/2.)**2 )**(-. 5)
V4=(V2+(H+D/2.) **2)**(-.5)
SUM1A=SUM1A+W(K) *V1*(V3-V4)
SUM1B=SUM1B+W (K) * ( (P*V1-R**2 )

/V2 ) * ( (H-D/2 .
) *V3 - (H+D/2 .

) *V4

]

210 CONTINUE
SUM2A=SUM2A+W(N) *SUM1A
SUM2B=SUM2B+W(N) *SUM1B

2 00 CONTINUE
BR=C0NST*SUM2A
BZ=C0NST*SUM2B

IF (J .EQ. 1 .AND. FLAG .NE. 1) THEN
WRITE(8,1020) H,BR
WRITE(9,1020) H,BZ

1020 F0RMAT(1X,E16.9,1X,E16.9)
END IF

* EXPRESS RADIAL COMPONENT OF MAGNETIC FIELD IN RECTANGULAR
* COORDINATES

IF (P .EQ. 0) THEN
BX=0
BY=0
ELSE
BX=BR*Y(4, J)/P
BY=BR*Y(5,J)/P
END IF

F(1,J)=QDM*(Y(2,J)*BZ-Y(3,J)*BY)
F(2,J)=QDM*(Y(3,J)*BX-Y(1,J)*BZ)
F(3,J)=QDM*(Y(1,J)*BY-Y(2,J)*BX)
F(4,J)=Y(1,J)
F(5,J)=Y(2,J)
F(6,J)=Y(3,J)

IF (J .LT. 3) THEN
DO 30 1=1,6

3 Y(I,J+l)=Y(I,l)+DELT*F(I,J)/2.
ELSE IF (J .EQ. 3) THEN
DO 40 1=1,6

40 Y(I,J+1)=Y(I,1)+DELT*F(I,J)
ELSE
DO 50 1=1,6

50 Y(I,l)=Y(I,l)+DELT*(F(I,l)/2.+F(I,2)+F(I,3)+F(I,4)/2.)/3.
END IF

2 CONTINUE
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* KEEP TRACK OF PREVIOUS THREE PARTICLE POSITIONS

ZOLD3=ZOLD2
Z0LD2=Z0LDI
Z0LD1=ZNEW
R0LD3=R0LD2
R0LD2=R0LD1
R0LD1=RNEW

* KEEP TRACK OF PREVIOUS THREE PARTICLE VELOCITY COMPONENTS

VXOLD3=VXOLD2
VX0LD2=VX0LD1
VX0LD1=VXNEW
VXNEW=Y(1,1)
VYOLD3=VYOLD2
VY0LD2=VY0LD1
VYOLDI=VYNEW
VYNEW=Y(2,1)
VZOLD3=VZOLD2
VZ0LD2=VZ0LD1
VZ0LD1=VZNEW
VZNEW=Y(3,1)

****************** TRAJECTORY CONVERGENCE TEST ******************
* THE CONVERGENCE TEST IS BASED UPON FINDING THE LOCATION WHERE *

* THE MINIMUM RADIAL COMPONENT OF THE HELICAL TRAJECTORY OCCURS *

* AND CONSIDERING THIS LOCATION AS THE FOCAL POINT. *

RNEW=(Y(4, 1)**2+Y(5,1)**2)**.5
ZNEW=Y(5,1)

* TEST FOR FLAG ALREADY SET: THIS INDICATES THAT THE LAST DATA
* POINT HAS BEEN ACQUIRED AND THE FOCAL POINT CAN BE EVALUATED

IF (FLAG .EQ. 1) THEN
GOTO 7

END IF

* CHECK TO SEE IF PARTICLE HAS STRUCK THE VACUUM CHAMBER WALL

IF (RNEW .GE. RVAC .AND. ZNEW . LE . ZVAC/2.) THEN
WRITE (*, 60) ZNEW

60 FORMAT (IX, 'THE PARTICLE PiAS STRUCK THE WALL AT Z=',F9.6)
GOTO 2000
END IF

**************** poR THE CASE OF IFLAG=OPTION 2 *****************

IF (IFLAG .EQ. 2) THEN
* CHECK FOR PARTICLE CONVERGENCE

IF (ZNEW .GT. ZFINAL) THEN
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RFINAL=RNEW- (RNEW-ROLDl )
* ( ZNEW-ZFINAL) / ( ZNEW-ZOLDl

)

VXFIN=VXNEW-(VXNEW-VX0LD1)*(ZNEW-ZFINAL)/(ZNEW-Z0LD1)
VYFIN=VYNEW- (VYNEW-VYOLDl ) * ( ZNEW-ZFINAL) / ( ZNEW-ZOLDl

)

VZFIN=VZNEW-{VZNEW-VZ0LD1)* (ZNEW-ZFINAL) /(ZNEW-ZOLDl)
WRITE (4, 102 0) ZFINAL, RFINAL
WRITE(5,1010) ZFINAL,VXFIN
WRITE(6,1010) ZFINAL,VYFIN
WRITE(7,1010) ZFINAL,VZFIN
GOTO 2000
END IF

* PARTICLE HAS NOT CONVERGED
GOTO 80
END IF

*****************kkk***i,k^,*^,k^,^,i,k^,^,i,^,^,^,^,i,^,^,i,^,^,i,^,^,^,^^,^^^^^^^^^^^^^_^
* WHEN PARTICLE NEARS THE FOCAL POINT DECREASE THE TIME STEP IN
* ORDER TO INCREASE ACCURACY OF FOCAL POINT COORDINATES
* EVALUATION

IF (RNEW .LT. .015 .AND. ZNEW. GT. .1) THEN
SIZE=.002
DELT=SIZE/V
END IF

IF (RNEW .GT. ROLDl .AND. ZNEW .GT. .1) THEN
* PARTICLE HAS CONVERGED: CHECK TO SEE IF ONE MORE STEP REQUIRED

IF (RNEW .GT. R0LD2) THEN
* FINISHED: NO MORE STEPS REQUIRED

GOTO 70
ELSE .

* NEED ONE MORE STEP: SET FLAG=1
FLAG=1
GOTO 15
END IF
ELSE

* PARTICLE HAS NOT CONVERGED
GOTO 8

END IF

70 SL0PE1= (ROLD2-ROLD3
) / ( ZOLD2-ZOLD3

)

SL0PE2= (RNEW-ROLDl) /(ZNEW-ZOLDl)
Bl=ROLD2-ZOLD2*SLOPEl
B2=RNEW-ZNEW*SLOPE2

* COORDINATES OF FOCAL POINT

ZFL=(B2-B1)/(SL0PE1-SL0PE2)
RFL=. 5*

( (SL0PE1+SL0PE2) *ZFL+B1+B2)
WRITE(4, 1020) ZFL,RFL

* VELOCITY COMPONENTS AT FOCAL POINT

DENOM=l/(ZFL-ZOLD3)-l/(ZFL-ZOLD2)
VXFL=(VXOLD3/(ZFL-ZOLD3)-VXOLD2/(ZFL-ZOLD2))/DENOM
VYFL=(VYOLD3/(ZFL-ZOLD3)-VYOLD2/(ZFL-ZOLD2))/DENOM
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VZFL= ( VZ0LD3/ ( ZFL-Z0LD3 ) -VZ0LD2/ ( ZFL-Z0LD2
) ) /DENOMWRITE(5,1010) ZFL,VXFL

WRITE (6, 1010) ZFL,VYFL
WRITE(7,1010) ZFL,VZFL

* CALCULATE THE FOCAL LENGTH

FLEN=FL+ZFL
WRITE (*, 1000) FLEN

1000 FORMAT (IX, 'FOCAL LENGTH=
'

, E16 . 9

)

GOTO 2000

80 WRITE(1,1020) Y (6 , 1) , Y (4 , 1)
WRITE(2,1020) Y(6,l) ,Y(5,1)
WRITE(3,1020) Y(5,l) ,Y(4,1)
WRITE (4, 102 0) ZNEW,RNEW
WRITE(5,1010) Y(6,1),Y(1,1)
WRITE(6,1010) Y(6,l) ,Y(2,1)
WRITE(7,1010) Y(6,l) ,Y(3,1)
WRITE(10,1030) Y(4,1),Y(5,1),Y(6,1)

* CONTINUE STEPPING FORWARD IN TIME UNTIL THE PARTICLE REACHES
* THE FOCAL POINT.

15 CONTINUE
2000 STOP

END
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*

*

************** ******^,^,*^,**^,^,^,****k^,k*^,kk^,*),^,^,^,),^,^,kk^,^,^,^,^,^,^,^,^,^,^,^,^^,^^^,^^
* THE FOLLOWING FORTRAN PROGRAM NAMED "FIELD" CALCULATES THE *

MAGNETIC FIELD AT ANY LOCATION INSIDE THE MAGNETIC LENS MONO- *
ENERGETIC ELECTRON SOURCE AT KANSAS STATE UNIVERSITY. THE *
PROGRAM IS GENERAL IN NATURE AND MAY BE USED TO DETERMINE THE *

MAGNETIC FIELD INSIDE OF ANY SOLENOID WITH A RECTANGULARLY *
* SHAPED CROSS SECTION. *
* REQUIRED INPUTS:

1) POSITION IN CYLINDRICAL COORDINATES
: (P,H) *

* P CAN BE ANY VALUE
* H CAN BE ANY VALUE
* H=0 IS IN CENTER OF SOLENOID
* 2)ELECTIC CURRENT FLOWING THROUGH THE COIL: (CUR) (AMPERES) *
* OUTPUT: *
* 1) RADIAL MAGNETIC FIELD COMPONENT: BR (TESLAS) *
* 2) AXIAL MAGNETIC FIELD COMPONENT: BZ (TESLAS) *
* ALGORITHM:
* THE MAGNETIC FIELD EQUATIONS WERE DEVELOPED BY SOLVING *

THE THE BIOT-SAVART LAW IN CYLINDRICAL COORDINATES. *
THE FIELD COMPONENTS (BR AND BZ) EACH REQUIRED A TRIPLE *
INTEGRATION (I.E. OVER THE THREE CYLINDRICAL COORDINATES). *

* THE INTEGRATION OVER THE Z DIRECTION WAS PERFORMED ANAL- *

YTICALLY WHILE THE INTEGRATION OVER THE R AND PHI *

DIRECTIONS IS PERFORMED NUMERICALLY BY GAUSS-QUADRATURE *

NOTE: THE PROGRAM WAS COMPILED WITH THE MICROSOFT (R) FORTRAN *

OPTIMIZING COMPILER VERSION 4.10. *
* AUTHOR: RICHARD WEINER
* DATE: MARCH 19,1988 *
************************ *************-),i,*i,-i,.k-k-ki,.k-),*i,i,.),-ki,i,.i,^,i,i,i,i,i,i,i,i,i,i,i,i,i,

IMPLICIT REAL*8 (A-H,0-Z)
CHARACTER QUEST

1

DIMENSION X(16),W(16)

************************* VARIABLE NOMENCLATURE **********************
* PI=3. 141592654 *

U=PERMEABILITY OF FREE SPACE *
CUR=ELECTRIC CURRENT THROUGH THE COIL (A) *

UNI=(PERMEABILITY)*(# TURNS IN COIL ( 1198 ))* (ELECTRIC CURRENT) *

D=COIL LENGTH (M) *
R1=INNER COIL RADIUS (M) LOWER INTEGRATION LIMIT ON R *
R2=0UTER COIL RADIUS (M) UPPER INTEGRATION LIMIT ON R *
PHI1=0 (RADIANS) LOWER INTEGRATION LIMIT ON PHI *

PHI2=2*PI (RADIANS) UPPER INTEGRATION LIMIT ON PHI *

******************************^^^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

************************ PROMPT USER FOR DATA ************************

WRITE (*,1)
1 F0RMAT(1X, 'DO YOU WANT TO USE DEFAULT COIL DIMENSIONS FOR THE'
& ' MLMES ?',.//,
& ' ENTER [Y/N] AND PRESS RETURN',//,
& ' DEFAULT COIL DIMENSIONS : LENGTH= . 8509 M,',/,
&

' INNER RADIUS=.1397 M,',/,
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&
' OUTER RADIUS=. 16345 M',/,

&
'

# TURNS IN COIL=1196. ,//)
READ(*,

'
(Al) •) QUESTl

IF (QUESTl .EQ. 'N') THEN
WRITE(*,2)

2 FORMAT (IX, 'ENTER COIL LENGTH (M)
'

)

READ(*,
'
(F8.0) ') D

WRITE(*,3)
3 FORMAT (IX, 'ENTER COIL INNER RADIUS (M)

'

)

READ(*,
'
(F8.0) ') Rl

WRITE(*,4)
4 FORMAT (IX, 'ENTER COIL OUTER RADIUS (M)',//)

READ(*,
'
(F8.0) ') R2

WRITE(*,5)
5 FORMAT (IX, 'ENTER THE NUMBER OF TURNS IN COIL')

READ(*,
'
(15) •) N

ELSE
* DEFAULT COIL DIMENSIONS

D=.8509
Rl=.1397
R2=. 16345
N=1196
END IF

WRITE(*,6)
6 FORMAT (IX, 'SELECT OPTION (1,2 OR 3)',//,
&

&

&

&

&

&

&

&

1) EVALUATE RADIAL AND AXIAL FIELD COMPONENTS AT A',/,
SINGLE POINT' ,/,

2) EVALUATE RADIAL AND AXIAL FIELD COMPONENTS ALONG',/,
A LONGITUDINAL LINE (I.E. VARY AXIAL POSITION',/,
WHILE KEEPING RADIAL POSITION CONSTANT) ',/,

3) EVALUATE RADIAL AND AXIAL FIELD COMPONENTS ALONG',/,
A TRANSVERSE LINE (I.E. VARY RADIAL POSITION WHILE',/,
KEEPING AXIAL POSITION CONSTANT)',//)

READ(*,
'
(F8.0)

'
) OPTl

WRITE (
* , 7

)

7 FORMAT (IX, 'ENTER ELECTRIC CURRENT FLOWING THROUGH COIL (A) ')
READ(*,

'
(F8.0) ') CUR

IF (OPTl .EQ. 1) THEN
WRITE(*,8)

8 FORMAT ( IX ,' ENTER RADIAL AND AXIAL POSITION COORDINATES (P,H)
& ' IN METERS' ,/)
READ (*,

'
(2F8.0)

'
) P,H

GOTO 15
END IF

IF (OPTl .EQ. 2) THEN
WRITE(*,9)

9 FORMAT (IX, 'ENTER RADIAL POSITION VALUE IN METERS')
READ(*, • (F8.0) ') P
WRITE (*, 10)

10 FORMAT (IX, 'ENTER INITIAL AND FINAL AXIAL POSITION VALUES'
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& ' (INITIAL, FINAL) IN METERS',/)
READ(*,

'
(2F8.0) ') HMIN,HMAX

GOTO 15
END IF

IF (OPTl .EQ. 3) THEN
WRITE(*,11)

11 FORMAT (IX, 'ENTER AXIAL POSITION VALUE IN METERS')
READ(*,

'
(F8.0) ') H

WRITE (*, 12)
12 FORMAT (IX, 'ENTER INITIAL AND FINAL RADIAL POSITION VALUES',/,

& ' (INITIAL, FINAL) IN METERS : TYPICALLY (0,RMAX)
' ,//)

READ(*,
'
(2F8.0) ') PMIN,PMAX

END IF
15 CONTINUE

PI=2*ASIN(1,)
U=4*PI*lE-07
UNI=U*1198*CUR
PHI1=0
PHI2=2*PI
CONST=UNI/ (4*PI*D* (R2-R1)

)

***************** GAUSS QUADRATURE WEIGHTS AND ZEROS ****************

DATA(X(I) ,1=1,8)/ .095012509837637, .281603550779259,
& .458016777657227, .617876244402644, .755404408355003,
& .865631202387832, .944575023073233, .989400934991649/
DATA(W(I) ,1=1,8)/ .189450610455068, .182603415044924,

& .169156519395003, .149595988816577, .124628971255534,
& .095158511682494, .062253523938648, .027152459411754/
DO 50 J=l,8
X(J+8)=-X(J)

50 W(J+8)=W(J)

****************** OPEN DISK FILES FOR DATA OUTPUT ******************

IF (OPTl .EQ. 1) GOTO 25
0PEN(UNIT=1,FILE='A:BR'

)

OPEN (UNIT=2 , FILE= ' A : BZ
'

)

25 CONTINUE
IF (OPTl .EQ. 1) GOTO 20
DO 1000 MM=-100,100
IF (OPTl. EQ. 2) THEN
H=(HMAX-HMIN) *MM/2 00.
ELSE
P=(PMAX-PMIN) * (100+MM)/200.
END IF

2 CONTINUE

* CALCULATE RADIAL AND AXIAL MAGNETIC FIELD COMPONENTS IN CYLINDRICAL
* COORDINATES: BR AND BZ

Vl=H-D/2.
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V1A=V1**2
V2=H+D/2.
V2A=V2**2
SUM2A=0
SUM2B=0
DO 100 N=l,16
R=. 5* (R2+R1+ (R2-R1) *X(N)

)

SUM1A=0
SUM1B=0
DO 110 K=l,16
PHI=. 5* (PHI2+PHI1+ (PHI2-PHI1) *X (K)

)

V3=C0S(PHI)
V4=R*V3
V5=R**2+P**2-2*P*V4
V6=V5+V1A
V6A=V6**(-.5)
V7=V5+V2A
V7A=V7**(-.5)
V8=R*(P*V3-R)
V9=V8/V5
SUM1A=SUM1A+W(K)*(V4*(V6A-V7A)

)

SUK1B=SUM1B+W(K) * (V9* (V1*V6A-V2*V7A)

)

110 CONTINUE
SUM2A=SUM2A+W(N) *SUM1A
SUM2B=SUM2B+W(N) *SUM1B

100 CONTINUE
C0NST1=. 25* (PHI2-PHI1) * (R2-R1)
BR=C0NST*C0NST1*SUM2A
BZ=C0NST*C0NST1*SUM2B

************************* *i,**i,********-k**i,*i,**********-k*i,i,*-),i,i,i,i,-k**i,.i,*

* WRITE OUTPUT TO SCREEN OR DISK FILES
IF (OPTl .EQ. 1) THEN
WRITE(*,30)BR,BZ

30 FORMAT (IX, ' BR=
'

, E16 . 9 , IX, 'BZ=' ,E16.9)
ELSE IF (OPTl .EQ. 2) THEN
WRITE (1,40) H, BR/CUR
WRITE (2, 40) H,BZ/CUR
ELSE
WRITE(1,40) P,BR/CUR
WRITE (2, 40) P,BZ/CUR
END IF

40 F0RMAT(1X,E16.9, 1X,E16.9)
IF (OPTl .EQ. 1) GOTO 2000

1000 CONTINUE
2000 STOP

END
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APPENDIX B

DERIVATION OF THE APPROXIMATE AVERAGE AXIAL MAGNETIC
FIELD COMPONENT INSIDE A SOLENOIDAL COIL OF FINITE LENGTH

The axial component of the magnetic field along the axis of a solenoidal coil of

effective radius a=(Ri+R2)/2, may be derived from the expression for Bz (p,h)

obtained in the section DERIVATION OF THE MAGNETIC FLUX-DENSITY

VECTOR. Recall that we used the relation, iat=j3v, where the magnitude of the

current^ensity is J=NI/(D(R2-Ri) and dV=rdrd^dz in the derivation of Bzlp.h).

For the simplified case of a coil of effective radius one obtains, iSt^J^A, where the

magnitude of the current^ensity if J=NI/D and dA=rd0dz. Since we are assuming

a coil of no thickness, we set r=constant effective radius (a) wherever r appears in

the expression for Bz(p,h), and note that the integration over the radial direction is

eliminated. Since we are only interested in the field along the axis of the solenoid.

we set p=0 in the expression for Bz{p,h). These simplifications lead to the following

analytic integral

-'' ' (h+D/2) (h-D/2)Bz(0,h)=^/ _____ _____ d© .

Perform the integration and obtain

Bz(z) =^ (z+D/2) (z-D/2)

Va'^+(z+D/2)'-^ Va^+(z-D/2)2

where we have made a variable change from h to z in the result.

Now we are ready to determine an approximate average value of the axial

component of the magnetic field inside a solenoid of finite length. The result we

obtain is only an approximation because Bz(z) along the axis is assumed over the
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entire volume within the solenoid, i.e. note that the variation of B^ with the radial

direction has been neglected. The average value of the axial component of the field

within a solenoid of finite length is given as

1 r°/2
Bz =4/ Bz(z)dz

av ^-^ z=-D/2

The integral may be solved analytically and the result is
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ABSTRACT

The theoretical design of a continuously selectable

100 keV to 2.8369 MeV monoenergetic electron source was

developed based upon the concept of a magnetic lens

spectrometer. The topics of selection of an appropriate

magnetic field shape and central-ray initial emission angle

were considered. The system designed utilized a nonuniform

magnetic field, central-ray initial emission angle of 250,

and central-ray trajectory focal length of 0.762 m. A

computer program named PATH-RK4 was developed to provide the

precise trajectory of a beta-particle traveling through the

nonuniform magnetic field generated by a single solenoidal

coil of finite length. The code is general in nature and

may be used to characterize the operational character is i tics

of any existing magnetic lens spectrometer or design new

systems provided they consist of a single rectangularly

shaped magnet coil of arbitrary dimensions.

A detailed examination of the resolution and

transmission characteristics are provided for the proposed

system. The base-width resolution and the required system

collimator positions as a function of source diameter,

transmission and selected beam energy were investigated.


